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Student : Guan-Yu Chen Advisors : Dr. Yuan-Chung Sheu
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ABSTRACT

How many times a deck of cards needed to be shuffled in order to get close
to the uniform distribution. Mathematically, this question falls in the realm of
the quantitative study of the conwvergence of finite Markov chains. Similar
convergence rate questions-for finite Markov chains are important in many
fields including statistical physics, computer science, biology and more. In this
dissertation, we discuss the -relation’ between the 1°-distance and the

hypercontractivity. To bound ' the convergence rate, we introduced two
well-known constants, the spectral gap and the logarithmic Sobolev constant.

Our goal is to compute the logarithmic Sobolev constant for nontrivial
models. Diverse tricks in use include the comparison technique and the collapse
of Markov chains. One of the main work concerns the simple random walk on
the n cycle. For n even, the obtained logarithmic Sobolev constant is equal to
half the spectral gap. For n odd, the ratio between the logarithmic Sobolev
constant and the spectral gap is not uniform.

Ideally, if the collapse of a chain preserves the spectral gap and the original
chain has the logarithmic Sobolev constant equal to a half of the spectral gap,
then the logarithmic Sobolev constant of the collapsed chain is known and equal
to half the spectral gap. We successfully apply this idea to collapsing even
cycles to two different sticks. Throughout this thesis, examples are introduced to
illustrate theoretical results. In the last section, we study some three-point
Markov chains with introduced techniques.
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Chapter 1

Introduction

How many times a deck of cards needed to be shuffied in order to get close to
the uniform distribution. Mathematically, this question falls in the realm of the
quantitative study of the convergence of finite Markov chains. Similar convergence
rate questions for finite Markov chains are important in many fields including
statistical physics, computer science, biology and more. Many questions posted in
these fields are to estimate the average of a function f defined on a finite set 2 with
respect to a probability measure 7 on 2. From the view point of Markov Chain
Monte Carlo method, this is achieved by simulating a Markov chains with limiting
distribution 7 and selecting a state at a random time 7" as a random sample.
Knowing the qualitative behavior_of convergence is not enough to determine the
sampling time 7. A quantitative understanding of the mixing time is essential for
theoretical results. In practice; various-heuristics are used to choose T'.

Diverse techniques have been introduced to estimate the mixing time. Coupling
and strong uniform time are discussed by Aldous and Diaconis in [1, 2]. Jerrum
and Sinclair use conductance to bound mixing time in [17]. Application of rep-
resentation theory appears in [8] and Diaconis and Saloff-Coste used comparison
techniques in [9, 10]. For lower bound, important techniques are described in [7]
and in more recent work of Wilson [27].

In this dissertation, we introduce two well-known constants, the spectral gap
and the logarithmic Sobolev constant. Applying fundamental result in calculus and

linear algebra, we are able to determine both constants for some specific models.



1.1 Preliminaries

Let X be a finite set. A discrete time Markov chain is a sequence of X-valued

random variables (X,,)5° satisfying
P{Xn+1 = ZL‘n+1|Xi = [EZ,VO S Z S n} = P{Xn+1 = ZL‘n+1|Xn = l’n}

for all z; € X with 0 <7 <n and n > 0. A Markov chain is time homogeneous if
the quantity in the right hand side of the above identity is independent of n. In this
case, such a Markov chains is specified by the initial distribution (the distribution
of X) and the one-step transition kernel K : X x X' — [0, 1](also called the Markov

kernel) which is defined by
Ve,ye X, K(z,y) =P{X,1 =y|X, =z}

An immediate observation en the Markov kernel K is that > _, K(x,y) =1 for

yeX
all x € X. Throughout=this thesis; all Markov chains are assumed to be time
homogeneous. For any Markoy.chain (X, )5 twith transition matrix K and initial
distribution p, that is, P{Xgs. =2} = p(@)for all x € X, the distribution of X, is
given by

Vo e X, P{X,=a}=(uK")(z) =Y ny)K"(y z)
yeX
where K™ is a matrix defined iteratively by

Ve,ye X, K"( ZK”lxz (z,9).

zEX

In a similar way, one may also consider a continuous-time Markov process.
Here we consider only the following specific type. For any Markov kernel K,
let (X}i)i>0 be a Markov process with infinitesimal generator K — I(the Q-matrix
defined in [19]). One way to realize this process is to stay in a state for an ex-

ponential(1) time and then move to another state according to the Markov kernel



K. In other words, the law of X; is determined by the initial distribution pu

t(l—K)(

and the continuous-time semigroup H; = e~ a matrix defined formally by

Hy(z,y) = et>2° LK™ (z,y) for 1,y € X and t > 0, where K° = I) through

n=0 n!

the following formula

VeeX, t>0, P{X,=z}=> uly)Hly ).

yeX

Note that if (Y,)3° is a Markov chain with transition matrix K and N, is a Pois-
son process with intensity 1 and independent of (Y;,)5°, then the Markov process
(X¢)i>0 with infinitesimal generator K — I satisfies X; < Yy, (in distribution) for

t > 0. This is because
Vo,y € X, H(x,y) =E[K"(z,y)] = P{Yyn, =y|Yo = z}.

For any finite Markov process (Y;);>0, we may find a constant ¢ > 0, a Markov
chain (X,,)$° and a Poissen(d) processsindependent of (X,,)$° such that Y; = Xy,

in distribution, or equivalently
P{}/t = y'% = .T} = e_Ct(IiK)(xay)a Vx, y e Xa

where K is the Markov kernel of (X,,);°. To see the details, let () be the infinites-

imal generator of (Y;);>0, which is a |X| x |X| matrix satisfying

Q(z,y) >0, VYr#vy, v,y€ X,

and

ZQ(x,y) =0, VredX.

yeX
Then, for ¢ > 0, the law of Y; is given by

(e}

BLY; = oYy = 2} = U y) = 3 TLEY
n=0 '



By letting ¢ = max{—Q(z,z) : * € X}, where we assume its positivity, and
K = q'Q + I, one may check K(z,y) > 0 and ZyK(x,y) =1forall z,y € X.

Then the distribution of Y; starting from = can be expressed by
P{Y, = y|Yp = 2} = ¢'“(z,y) = e Tz y), Va,yeX.

Another view point on the continuous-time semigroup H; is the following. For
any Markov kernel K, let £ = L be a linear operator on RI*! defined by

Vo e X, Lf(x)=(K-1)f(x)=) K(z,y)f(y) - f(o). (1.1)

yeX

The operator £ can be viewed intuitively as a Laplacian operator on X. A di-
rect computation shows that, for any real-valued function f on X, the function
u(t,x) = Hyf(z) is a solution for the initial value problem of the discrete-version

heat equation, i.e.,

(O +L)u=0 u: R, xX —>R

u(0, wh="flw)" Yo e X.

For any Markov kernel K, a measure m on X is called invariant(with respect

to K) if 1K = m or equivalently

Vo e X, Zﬂ(y)K(y,x) = m(x). (1.2)

yeX

A measure m on X is called reversible if the following identity holds
Ve,ye X, w(z)K(z,y) =7(y)K(y, z).

In this case, K is said to be reversible with respect to m. From these definitions,
it is obvious that a reversible measure is an invariant measure. Besides, if =

is invariant(resp. reversible) with respect to K, then, for all t > 0, 7H;, = 7



or equivalently > _, m(y)H(y,z) = mw(z) for all z € X(resp. n(x)H(z,y) =
m(y)H(y, x) for all z,y € X).

Note that, for any Markov kernel K on X, a constant vector on X is a right
eigenvector of K with eigenvalue 1. This implies the existence of a real-valued
function f on X satisfying f = fK, or equivalently f(z) = Zy f(y)K(y, z) for all
x € X. By the following computation,

GIEDY

zeX zeX

> WKy, x)

yekX

<D WIKx) =Y 1f©),

r,yeX yeXx

one can find that |f| is also a left eigenvector of K with eigenvalue 1. Hence, for
any Markov kernel, there exists a probability measure 7, which is invariant with
respect to K. In that case, 7 is called a stationary distribution for K.

A Markov kernel K is called grreducible if, for any x,y € X', there exists n =
n(z,y) such that K" (z,y)> 0. Avstate x € X is called aperiodic it K™(x,2z) > 0
for sufficiently large n, and K is called aperiodic if all states are aperiodic. It
is known that under the ‘assumption ofiirreducibility of K, there exists a unique
stationary distribution 7. In‘partieular; the distribution 7 is positive everywhere.
In addition, if K is irreducible, then K is aperiodic if and only if X’ has an aperiodic

state.

Proposition 1.1. Let K be an irreducible Markov kernel on a finite set X with

the stationary distribution w. Then
Vo,y € X, tlim Hi(z,y) = 7(y).
If K is wrreducible and aperiodic, then

Ve,ye X, lim K"(z,y) = 7(y).

n—oo



Under mild assumptions —irreducibility for continuous-time Markov processes
and irreducibility and aperiodicity for discrete-time Markov chains— Proposition
1.1 shows the qualitative result that Markov chains converge to their stationarity
as time tends to infinity. If such a convergence happens, the Markov kernel is
called ergodic.

Note that the irreducibility of a Markov chain is sufficient, by Proposition 1.1,
but not necessary for the ergodicity. A counterexample for the necessity is to

consider a Markov chain on a two point space {0, 1} whose kernel is given by
K(0,0) =1, K(0,1) =0, K(1,0)=1—p, K(1,1) = p,

where p € (0,1). In this example, K is not irreducible because K™(0,1) = 0 for

n > 0. A few computations show, that for n > 1 and t > 0,

1 0 1 0
K" = H, —

]

1 — pn pn 1 — e(p—l)t e(p—l)t

By the above formulas, the distribution of-the Markov chain starting from any

fixed state converges to (1,0).

Proposition 1.2. Let K be a Markov kernel on a finite set X and w is a positive

probability measure on X. If, for all x,y € X,
lim Hy(z,y) = 7(y),
then K is irreducible. If the following holds
lim K™(z,y) = n(y), Vao,yeX,

then K 1is irreducible and aperiodic.



By Proposition 1.1 and 1.2, if the limiting distribution is assumed positive, then,
in continuous-time cases, K is ergodic if and only if K is irreducible, whereas, in
discrete-time cases, ergodicity is equivalent to irreducibility and aperiodicity.

In many cases, the state space X is equipped with a group structure and the

Markov kernel K is driven by a probability measure p on X in the following way.
K(z,y) =p(z™'y), Vr,yeX.
Let E be the support of p and, for n > 1, E™ denote the set
E"={x129 -2, :1; € E, V1 <i<n}.

In the above setting, it is clear that the irreducibility of K is equivalent to the

existence of a positive integer n such that

X:OH.
7=

Under the assumption ofsirreducibility of K’ ,~the Markov kernel K is aperiodic if
and only if there exists a positivé integer n such that X = E".

The following proposition eharacterizes the irreducibility and the aperiodicity
of finite Markov chains introduced in the previous paragraph, which has been

proved many times by many authors. See [25, 26] for references.

Proposition 1.3 (Proposition 2.3 in [24]). Let X be a finite group and p be a
probability measure on X with support E = {x € X : p(x) > 0}. Let K be a

Markov kernel given by K (z,y) = p(x~ly) for x,y € X. Then

(1) K is irreducible if and only if E generates X, that is, any element of X can

be expressed as a product of finitely many elements of E.

(2) Assume that K is irreducible. Then K is aperiodic if and only if E is not

contained in a coset of any proper normal subgroup of X .



In particular, if X is simple and K is irreducible on X, then K is aperiodic.

To determine the reversibility of a Markov chain, by definition, one always
needs to compute the stationary distribution first. In the following, we introduce
a criterion to inspect the reversibility of a Markov chain without the computation

of its stationary distribution.

Proposition 1.4. Let K be an irreducible Markov kernel on a finite set X with
stationary distribution w. Then (K, ) is reversible if and only if for any sequence

{zo, ..., xp} with xy = x,,

K(wo, 1)K (21, 22) - K(2p-1, T0) (1.3)

= K(-:Erm mn—l)K(xn—la xn—?) e K(xlv .Z'o).
Proof. Assume first that K is reversible with respect to m, that is, m(z)K(x,y) =

m(y)K(y,x) for all z,y € XtLet {xo, ..., a5} be a sequence with =y = x,. Then

n—1 =1 7T($ )K(.TJ x ) n—1

41 =1, L1
1] G m EZZR B = L] K20
i=0 =0 fi 1=0

For the other direction; we assume-that (1.3) holds for any sequence {z, ..., x,, }

satisfying x¢ = x,,. This implies'that for x,y € X and n > 1,

K"(z,y)K(y,z)

= Z K(x, 1) H K (i, vip1) K (201, y) K (y, 7)
L1, Tp—1 =1

n—2

— Z K(z,y)K(y,r,-1) H K(ip1, 3:) K (21, %)

L1y Tp—1 i=1

= K(z,y)K"(y, ).

Applying the above identity to the expansion formula of the continuous-time semi-

group, we get

Hy(z,y)K(y,z) = H(y,z)K(z,y), VYo,yeX.



Letting ¢t — oo, the reversibility of K is then proved by Proposition 1.1. O]

The following is an application of the above proposition to random walks on

finite trees.

Corollary 1.1. Let K be an irreducible Markov kernel on a finite set X and
G = (X, E) be an undirected graph induced from K whose vertex set is X and the

edge set E 1is given by
E={{ry} e X xX 1z #y, K(z,y)+K(y,x)>0}.
If G is a tree, then K 1is reversible.

Remark 1.1. In Corollary 1.1, the induced graph G is connected if and only if K

is irreducible. In particular, if G is a tree, we have
Ve,y € Xy K(z,y) 30 <— K(y,z) > 0.

Proof of Corollary 1.1. For'convenience, any finite sequence of states in A is called

¢

a path. For any path (zo5..., 25)swe-let H?:-(,l K (x;, ;1) denote its “weight”. By
the above remark, it sufficés to.prove the identity (1.3) with paths of positive
weight. To show this fact, we define D to be the set of all paths in G and, for all

zr,y € X, let fu,) be a function on D defined by

n—1
v,-)/ = (x[)a SES) xn) € D7 f(x,y) (’Y) = Z 5(z,y)((~ria xiJrl)) - 5(y,m)(('xia xiJrl))-
=0

Since G is a tree, it is obvious that, for all z,y € X, f,)(7) € {1,0,—1} for any
positively weighted path v € D. If zy = x,, is assumed further, then fq ,(v) =0
for all z,y € X. This implies that, for such a path ~, the multiplicity of the
directed edge (x,y) in 7y is the same as that of (y,z). Thus, for all z,y € X, the
multiplicity of (z,y) in «y is the same as that in the inverse path of v, (z, ..., o),

and hence v and (x,, ..., xo) have the weight. O



1.2 The /P-distance and the submultiplicativity

As a consequence of Proposition 1.1, irreducible and aperiodic Markov chains con-
verge in distribution to their stationarity. From the view point of the quantitative
study, one may arise the following question: How fast the convergence can be? To
answer this question, we need to specify the function used to measure the distance
between the law of a Markov chain and its stationary distribution. In this section,
we will introduce some frequently used distances or functions for measuring and

give some basic results.

Definition 1.1. Let g and v be probability measures on a set X. The total

variation distance between p and v is denoted and defined by

o (11,v) =gy = max{p(4) — v(A)}.

Let m be a positive probability measurezon X'. For 1 < p < oo and any
(complex-valued) function f on-&', the £7(m)=norm(or briefly the ¢P-norm) of f is
defined by

1/p
(ZLNM%WD 1< p < oo
1l = 1l = 4 \ie¥ |

max | f(z)] if p=o0

Definition 1.2. Let i, v and 7 be finite probability measures on X and assume
that 7 is positive everywhere. The (P(7)-distance(or briefly the ¢P-distance) be-

tween p and v is defined to be

dﬂ,P(:uv V) = Hf - g”fp(ﬂ)v

where f and ¢ are densities of © and v with respect to m, that is, u = fm and

v =gr.

10



Remark 1.2. From the above two definitions, it is easy to see that, for any proba-

bility measures p and v,
V>0, dei(p,v) =2dw(p,v).

Let (X, pu) be a measure space. It is well-known that, for 1 < p < oo, if f is

(P-integrable, then
1]l = sup /X f(@)g(@)du(x),

llgllg<1

where p~! + ¢! = 1. By this fact, we may characterize the ¢P-distance in the

following way.

Proposition 1.5. Let 7w, u,v, f,g be the same as in Definition 1.2. Then, for
I <p<oo,

deplft, v) = sup. [|(f = g)hls,

lifallg <1

where p~1 4+ ¢! = 1.
By Jensen’s inequality; if 7 is a‘pesitive probability measure, then
Ifllp < Ifllg; V1<p<g<ooc
With this fact, we may compare the ¢ and ¢ distances.

Proposition 1.6. Let w be a positive probability measure on X. For any two

probability measures p,v on X, one has
dﬂ,p(u7y) §qu(,u,y), \VI1 SPSQS .

The following fact shows that, for fixed 1 < p < oo, the ¢P-distance of Markov

chains to their stationarity decays exponentially.

11



Proposition 1.7. Let K be an irreducible Markov kernel with stationary distrib-

ution w. Then, for 1 < p < 0o, the maps

n +— r;lea;( dmp(Kn(ZL‘, '), 7T) and t— Ig?e%\}’( dw,p(Ht<m7 ')a 7T)

are non-increasing and submultiplicative. In particular, if there exists 3 > 0 such
that

max d, ,(K™(x,-),m) < (resp. maxd, ,(Hs(z,-),m) < f3),

TzEX reX -

then for n > m(resp. t > s),

max dr (K" (2, ), m) < B™ (resp. max dr, (Hy(x,),m) < B4/%).
S Te

Remark 1.3. By Proposition 1.7, if 3 € (0, 1), then the exponential convergence of
(P-distance has rate at least m~'log(1/4) in discrete-time cases and rate s~ log(1/03)

in continuous-time cases.

For any Markov kernel K, we may associate it with a linear operator which is

also denoted by K and defined by

Kf(z) = Y K(z,pfy). Yrex, fech

yeX

In a similar way, we can view H; and 7 as linear operators on Cl*! by setting

Hif(x) =Y Hiz,y)f(y), =)= fla)m(z).

yexXx T€EX

To a standard usage, we let L* denote the adjoint operator of L. The follow-
ing proposition equates the maximum ¢P-distance and the operator norm of the

associated linear operator.

Proposition 1.8. Let K be an irreducible Markov operator with stationary distri-

bution m. For 1 < p < oo,

maﬁcdmp(K”(fv, ), ) = |K" — 7|40, formn >0,
Te

12



and

mz?é(dmp(Ht(x, ), m) = ||Hy — 7l|g00, fort>0,
Te

where p~1 + ¢7' = 1 and for any linear operator L : {"(w) — £*(7),

|L|[;~s = sup [Lf

I fller (=<1

Remark 1.4. By Jensen’s inequality, for 1 < p < oo, the linear operators K™ and

H,; are contractions in /P, which means that
K lp—p <1, [[Hillp—p < 1.
This fact implies
[Hits = llpooe < [ Hillp—pll Hs = 7llp—oo < [1Hs = 7lpmoo
and

HHt+s = 7T||p—>oo S HHt e 7T”;DHPHHS - 7T||pﬂoo

A, lf, )| H, — 7l

By Proposition 1.8, these are the-monotonicity and the submultiplicativity of the
map ¢ — max, d. ,(H(z,-),7), where p~' + ¢~' = 1. The same line of reasoning

also applies for the discrete-time cases.

Besides the (P-distance, there are many other functions of interest in measuring
how close a Markov chain to its stationarity. We end this section by introducing
two other well-known functions which are frequently used in probability theory
and statistical physics. Let m be a positive probability measure on a finite set X.
For any probability measure o on X', let h be the density of p with respect to 7.

The separation of p with respect to 7 is defined by
dsep(u77r) = 1916'168;%({1 - h(.T)},

13



and the (relative) entropy of u with respect to 7 is defined by

dent(p1, ™) = Ente (1) = Y [h(x) log h)]r (2).

TeEX

(Generally, the entropy of any nonnegative function f on X with respect to any
measure 7 is defined by Ent,(f) = «[flog(f/m(f))].) The following proposition

connects the P-distance and the functions introduced above.

Proposition 1.9. Let m and p be probability measures on a finite set X and 7 is

positive everywhere. Then one has

1
§d7r,1(/JJ7 7T) S dsep(,ua 7T) S dﬂ',oo(,uu 7T)

and

[dﬂ,l (/Lv ﬂ-) + dm(ﬁ% 7T>2] :

N | =

1
Edﬂ,l(//é?W)z S dent<u777) S

Proof. Let h = p/n. For'the first-part, it is obvious that max, {1 — h(z)} <

|h — 1|l For the lower bound, setting A= {x € X' : h(z) < 1} implies that

mac{1 — h(z)} = gl T=HERF SN (1= he) (o) = [l — 7.

zeX
TEA
For the second part, the upper bound is obtained by bounding the positive

terms in the summation of the entropy though the following inequality.

u2

Vu >0, (14+u)log(l+u)<u+ 5

For the lower bound, applying the fact

Vu >0, V3u—1|</(4u+2)(ulogu —u+1)
and Cauchy-Schwartz inequality implies that

3|k — 1|2 < |4+ 2h|1 | hlogh — b + 1|, = 6x(hlog k).

14



As in Proposition 1.7, if the distance between a Markov chain and its station-
arity is measured by the maximum separation and the maximum entropy, then it

is decreasing in time.

Proposition 1.10. Let (X, K, ) be a finite Markov chain and Hy; be the continuous-

time semigroup associated to K. Then the following maps

n > max dsep(K™ (2, ), ), t+ max dsep(Hi (2, ), ), (1.5)
and
n > max Aent (K™ (2, ), ), T+ max Aent (Hy (2, ), 7). (1.6)

are non-increasing. Furthermore, the maps in (1.5) are submultiplicative.

Remark 1.5. By definition, if (X, K, 7) an irreducible Markov chain, then
I;fle%?{ dsep(K(xv ')7 7T) =3 I:?E%‘?( dSGP(K (l‘, ’)7 W)'

Proof of Proposition 1.10. Liet A; and® A5 be two stochastic matrices satisfying

T =mA; = wAy and set A = AjAs;TForithe first part, it suffices to prove that

Iilea;é{ dsep(A(wv ')’ W) < Izne%%{ dsep(Al (ma ')’ 7T)

and

Ig?e%\}’{ dent(A(-r7 ')7 7T) < glea;\}f dent(Al (l’, ')a 71—)‘
The first inequality can be easily obtained by the following computation.
(y) = m(2) m(y)

§max{1—w}, Vo,y e X.
zZEX 7'('(2)




Since the function u — ulogu is convex, by Jensen’s inequality, one has

") )= 22w
Multiplying 7(y) on both sides, summing up all entries y in X and taking the

maximum with respect to  implies the desired inequality.

For the submultiplicativity of the maximum separation, let Ay, A5, A be the
same as in the previous paragraph. We prove this property by following the proof
in [3]. Let ¢; = max, dep(A1(x,-), ) and co = max, dsep(A2(z, -), 7). By definition,

we may express A; and A, as follows.
A1($7y> = (1—01)7T(y)+6131($,y), vx?Z/E X?

and

As(z,y) = (L= co)m(y) +eoBa(x,y), Vr,ye X,

where B; and B are stochastic matrieés. Furthermore, one may check that 7B, =

mBy = w. A simple calculation gives

Alz,y) =Y A, 2) Ao (2 ) =11 = crea)m(y) + caca Y Bulw,y) Ba(w,y)

zeX zeX

> (1= cieo)m(y), Vx,y e X.

This proves the submultiplicativity of the maximum separation. Il

1.3 Poincaré inequality and the spectral gap

In this section, we introduce classical tools(the spectral gap of the transition ma-
trix) to bound the ¢2-distance of continuous-time Markov chains to their stationary
distributions. The following definition fits the classical notion of Dirichlet form if

a Markov chain (X, K, ) is reversible.
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Definition 1.3. Let (X, K,7) be an irreducible Markov chain. The quadratic

form
E(f.9) = Ex(f,9) = Re((I = K)f,9)=, Vf,g€C?]

is called the Dirichlet form associated to the semigroup H; = e 7tU=5) where (-, ),

is the inner product in the complex space £2(r).
By definition, if f = g, one can rewrite the Dirichlet form as follows.

Lemma 1.1. Let (X, K,7) be an irreducible Markov chain and £ be the Dirichlet

form associated to the semigroup H,. Then, for f € CI*!,

E(F ) = (T~ 3K + KNF. £)e = |1~ Re(KF, )
=2 3 1)~ FW)PE ).

T, YyeX

In particular, one has
9 2

From (1.7), one can see that a bound of the ratio E(H, f, H, f)/||H; f]|3 will give
a bound on the ¢*-norm of H;f.The following quantity is useful in bounding the

rate of the exponential convergence of the ¢2-distance.

Definition 1.4. Let (X, K,7) be a Markov chain with Dirichlet form €. The

spectral gap denoted by A = A\(K) is defined by

vt {EED vy )

where Var,(f) is the variance of f, that is, Var,(f) = n(f — n(f))*

By definition, \(K) = A(K™*). Generally, the spectral gap is not an eigenvalue

of I — K. Note that A\ can be characterized by

17



If K is irreducible, the first equality in Lemma 1.1 and the minmax theorem in
matrix analysis imply that the spectral gap is the smallest non-zero eigenvalue of
I — %(K + K*). In particular, if K is reversible, or equivalently, the operator K
is self-adjoint in ¢%(7), then X is the smallest non-zero eigenvalue of I — K. Since
the operator K + K* is self-adjoint, the spectral gap can be obtained by taking

the infimum of the ratio in Definition 1.4 over all real-valued functions f.

Definition 1.5. Let (X, K,7) be an irreducible Markov chain. A Poincaré in-

equality is an inequality of the following type
If = m(HI5 < CELf), VfelP(m),
where C' is a positive constant in dependent of f.

From the above definition, if the Poincaré inequality holds for a Markov kernel
K with constant C, then X(K) >,C}. I other words, the spectral gap is the
inverse of the smallest C=such that the Poincaré inequality holds.

By applying (1.7), weimay bound-the operator norm || H; — 7||a—» from above

by using the spectral gap.

Proposition 1.11. Let (X, K,7) be an irreducible Markov chain and X\ be the

spectral gap of K. Then the continuous-time semigroup H; satisfies
V€ (), |Hf-n(fl3 < e Varg(f).
Proof. Let g = f — w(f). By Lemma 1.1, one has
S Hgl3 = 28 (Hig, Hig) < ~2\Var,(Hug) = ~2| Higl3
This implies that

1H . f =7 ()5 = [1Heglls < e[ Hogll3 = e Varx(f).
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Remark 1.6. Since the Dirichlet form and the variance are invariant under the
addition of a constant vector, the conclusion in Proposition 1.11 is equivalent to
saying that

|Hy — 7l|ama < e, VE>0.
By considering the spectrum of a Markov kernel, if K is reversible, we have || H;, —
7||a—o = e for all ¢ > 0. In general, this identity does not hold for all ¢ > 0.
However, it is proved in [12] that A is the largest value 3 such that | H; — 7||2—2 <

e Bt for all t > 0.

By Proposition 1.11, we may derive an upper bound on the ¢?-distance for

continuous-time Markov chains.

Theorem 1.1. Let (X, K, ) be an irreducible Markov chain and X be the spectral

gap of K. One has
Vo €&, dpalHi(x, ), T8 < m(x) e N,

and

Ve,ye X, [Hi(w,y) —n(y)| < Va(y)/m(z)e™.

Proof. Let H} be the adjoint operator of H; and set §,(y) = n(z)™' if z = y
and 6,(y) = 0 otherwise. Since A(K) = A(K*), we have, by letting f = J, in

Proposition 1.11,
dro(Hy(z, "), 7)* = ||Hf 6, — 7(8,)||3 < e *MVarg(6,) = (w(z) ™ — 1) e

This proves the first identity.

For the second one, note that
d7T72(H1;k(x7 ')7 7T) < W(x)_1/2€_>\t.
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This implies that, for z,y € X,

|Hy(z,t) — 7(y)| = 7(y)

< w(Y)dr2(Hyijo(w, ), 7)dr2(Hyjo(y, ), )

< Vr(y)/m(z)e™,

where the first inequality applies the Cauchy-Schwartz inequality. O]

To relate the spectral gap and the spectrum of K, we define another quantity

as follows.

w=w(K)=min{Ref : § #0, §is an eigenvalue of I — K}. (1.8)

t(I-K) —tw

Since H; = e~ , it follows that the spectral radius of H; — 7 in ¢*(7) is e

This implies, for all 1 < p <.00,
| = x|,z e s Vi>0. (1.9)
In particular, we have, by applying the operator theory,

tll>r£> HHt - W“;}ﬁq = eiwa V1 S b, q S Q.

The next theorem summarizes the above fact.

Theorem 1.2. Let (X, K, m) be an irreducible Markov chain, A be the spectral gap

of K and w be the quantity defined in (1.8). For all 1 < p < oo,

.o —1
lim Tlog (I;lea/\})( drp(Hi(, -),71')) =

t—o0

In particular, A < w.

Proof. Immediate from Proposition 1.8, Remark 1.6 and the discussion in the

paragraph before this theorem. Il
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As a consequence of Theorem 1.2, the rate of the exponential convergence of
the maximum ¢P-distance is asymptotically w, not the spectral gap A. However, if
an irreducible Markov kernel K is normal, that is, K*K = K K™, then A\ = w. This
implies that the asymptotical rate of the exponential convergence is the spectral
gap. From this discussion, one can see that the spectral gap is closely related to
the long-term behavior of a Markov chain. To reflect the finite-time behavior of
the convergence and the notion of “time to equilibrium”, we consider the following

quantity.

Definition 1.6. Let (X, K,7) be an irreducible Markov chain and H; be the
associated continuous-time semigroup. For 1 < p < oo, the fP-mixing time is

denoted by T}, = T,(K) and defined by
T, = inf {t >0: meg(d,r,p(Ht(:v, ), ) < 1/6} :
Te
By (1.9) and Theorem 1z, we may‘bound. the (P-mixing time as follows.

Theorem 1.3. Let (X, Kim) be aniirredicible Markov kernel and set w, = min{m(x) :

xe X} Forl1<p<2,

and, for 2 < p < o0,
1 1 1
—<T, <—-[|1+log—|.
w p_)\( +Og7r*>
Proof. The lower bound is obtained from (1.9) and Proposition 1.8. For the upper

bounds, note that, by Proposition 1.6, the identities in Theorem 1.1 imply that

Vi<p<2, max Ao p(Hy(z,-),m) < /2™
xe

and

V1l <p< o0, ma;(dmp(Ht(a:, N,m) < m e,
re
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This is sufficient to prove the desired upper bounds. Il

For an illustration of the above theorem, we consider the following example.

Example 1.1. Fix n > 1 and let K,, be a Markov kernel given by
Ky(zx,z+1)=K,(z,z — 1) =1/2, Vax € Z,,

where Z, is the n-cycle. It is an easy exercise that K, is irreducible and the
stationary distribution 7, is a uniform distribution on Z,. By a method in Feller

[13, p.353], the following functions
Gni(j) = cos(2mij/n), Y0O<j<n-—1, 0<i<|(n—1)/2],
and
Onn—i(j) =sin(2mij/n)yy¥0.< j <n—1, 1 <i<[(n—1)/2],

are eigenfunctions of K, and thelcorresponding eigenvalues 3,0, 3.1, ., Bnn—1 are

given by
671,0 = 17 ﬁn,i = Bn,n—i — COS(27T’i/TL), V1 S l S Rn - 1)/2—|

Since K, is reversible, the spectral gap is A(K,,) = w(K,) = 1 — cos(27/n).
Let H,; be the continuous-time semigroup associated to K. Applying Theo-

rem 1.1 and Theorem 1.3 and using (1.9) derives
6—t(1—cos(27r/n)) < dﬂz(Hnt(ZE, _)7 7'(') < \/ﬁe—t(l—cos(%r/n))’ Vn > 1.

and, for 1 < p < o0,

n? 1 1 n%logn

~ <T(K) < ————(1+1logn) ~
272 1—cos(2n/n) — p(FKn) = 1—cos(27r/n)( +logn) 272

This means that, for 1 < p < oo, the P-distance of continuous-time Markov chains

asymptotically cannot be too small before the time of order n? but is close to 0
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after the time C'n?logn for large C. It is worthwhile noting that the correct order

for the /P-mixing time is n=2.
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Chapter 2
Hypercontractivity and the logarithmic

Sobolev constant

Since Gross introduced the notions of the logarithmic Sobolev constant and of
the hypercontractivity, many techniques are developed to compute the logarithmic
Sobolev constant. The hypercontractivity is proved useful in bounding the conver-
gence rate of Markov chains to their stationarity. An informative account of the
development of logarithmic Sobolev inequalities can be found in the survey paper
[14].

In Section 2.1, we define the logarithmic Sobolev constant and use it to bound
the entropy of a Markov chaifi. "'ITn Section’2.2, we introduce how the hypercontrac-
tivity can be used to bound the ¢Pidistance and the /P-mixing time. In Section 2.3,
diverse techniques for the-estimation of the logarithmic Sobolev constant are intro-
duced. In Section 2.4, we determine the explicit value of the logarithmic Sobolev

constant for some examples.

2.1 The logarithmic Sobolev constant

The definition of the logarithmic Sobolev constant is very similar to that of the
spectral gap. For a motive of why we concern such a constant, let’s start by looking
at the relative entropy of the continuous-time Markov chain. Let (X, K, ) be an
irreducible Markov chain, H; be the associated continuous-time semigroup of K

and & be the Dirichlet form. Recall that the entropy of a probability measure u

24



with respect to 7 is defined by

Ent,(u) = w(hlogh),

where = hm. Here we abuse the usage of Ent by letting

Ent,(f) = (flog f),

if f is a any nonnegative function but not a probability measure. A simple com-

putation shows that, for any probability measure p, Y p(z)/7(z) # 1 and

Ent, (uH,) = Ent, (Z W(y)Hf(y’ ) “(y)> — Ent, (H'h),

yeX

where h = /7. In the above setting, we have

Vit >0, %Entﬂ(Ht*h) — SEHM M og (H! 1)) < —26(\/Hih, JHR),  (2.1)

where the inequality is proved by Diacenis and Saloff-Coste in [11, Lemma 2.7] and
has an improved coefficient 4 instead-ef-2 if J is assumed reversible. By (2.1), one
can see that a bound on the ragio Ent+(H;h)/E(\/H;h, /H;h) suffices to give a
bound the rate of the convergence. To define the logarithmic Sobolev constant, we

need to replace the variance by the following entropy-like quantity.

L) = L) = 3 1) log ('f <"”)'2) (o). (2.2)

2
2 HE

Since u — ulogu is convex, Jensen’s inequality implies that £(f) is nonnegative.
Furthermore, if 7 is positive everywhere, then £(f) = 0 if and only if f is constant.
Note that if ||f|ls = 1, that is, f? is the probability density of u = f?*r with
respective to m, then

L(f) = Entr ().

25



Definition 2.1. Let (X, K, 7) be an irreducible Markov chain and £ be the func-
tional defined in (2.2). The logarithmic Sobolev constant o = «(K) is defined

by

a—inf{g<f’f) :c(f)¢o}.

By definition, it is clear that a(K) = a(K™*). Obviously, one has L(f) = L(]f|)
and E(|f|,If]) < E(f, f). By these facts, the logarithmic Sobolev constant can
be obtained by taking the infimum of the ratio E(f, f)/L(f) over all nonnegative

functions f.

Definition 2.2. Let (X, K, 7) be an irreducible Markov chain and € be the Dirich-

let form. A logarithmic Sobolev inequality is an inequality of the following type.
CL(f) s2ECf; f)ys for all function f,

where C' is a nonnegative ¢onstant.

By the above definition; if the logarithmic Sobolev inequality holds for some
constant C' > 0, then o > C"“Inother words, « is the largest constant C' such
that the logarithmic Sobolev inequality holds. One may think of the existence of
a function f such that the ratio E(f, f)/L(f) is equal to 0, which means that the
logarithmic Sobolev inequality never holds unless C' = 0. It has been proved that
the irreducibility eliminates such a possibility. Thus, one needs to consider only the
case C' > 0 in Definition 2.2. For a proof of the fact a > 0, please see Proposition
2.3. By (2.1), the entropy of a continuous-time Markov chain is bounded from

above as follows.

Proposition 2.1. Let (X, K,7) be an irreducible Markov chain, H; be the asso-

ciated semigroup and « be the logarithmic Sobolev constant. Let p be a probability
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measure on X. Then one has
e ?“Ent, (1) in general
Ent,(uH;) <
e~ Ent, (u) if K is reversible.

In particular, for v € X,

e 2 Jog ﬁ in general
Ent, (Hy(z,-)) <

e~ og % if K is reversible.

Proof. Let h = pu/m. By (2.1), one can easily prove that for ¢ > 0,
Ent,(puH,) = Ent.(Hh) < e **Ent,(h) = Ent.(u).
The same proof as above works for the reversible cases. The second part is followed
by letting o = d,, where d,(y) = 1 if y = x and 9, (y) = 0 otherwise. O]
By applying Propositiond:9 and Proposition 2.1, one may give an upper bound
on the total variation distance.

Corollary 2.1. Let (X,'K, 7). be_an_irreducible Markov chain and « be the loga-

rithmic Sobolev constant of K. Then, forit > 0,

dra(Hy(w, ), ) < /2log(1/m(x))e,
and, if K is reversible,

dry (Hy(,-),m) < /2log(1/m(x))e ",

In particular, one has

1
T < o <3+10g+10gﬂ—*),

and, for reversible chains,

1 1
T1§E<3+10g+10g7r—*>,

where 7, = min, 7(x) and log, t = max{0,logt}.
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2.2 Hypercontractivity

In the previous section, the entropy and the ¢!-distance of a continuous-time
Markov chain are proved to converge exponentially with rate at least the loga-
rithmic Sobolev constant. It is natural to consider using the logarithmic Sobolev
constant to bound the (P-distance. The following theorem is the well-known hy-
percontractivity introduced in [14], which is sufficient to derive a bound on the

/P-distance.

Theorem 2.1. (Theorem 3.5 in [11])Let (X, K,7) be an irreducible Markov

chain and o be the logarithmic Sobolev constant of K.

(1) Assume that there exists 3 > 0 such that ||Hy||s—q < 1 for all t > 0 and
2 < q < oo satisfying e*PLB gk Then BL(f) < E(f, f) for all f, and thus

a > 3.

(2) Assume that (K,m) is reversible. Then ||Hi|o—q < 1 for allt > 0 and

2 < g < oo satisfying €*2t > q — 1.

(3) For non-reversible chains, we have ||H||o—q <1 forallt >0 and 2 < ¢ < o0

satisfying e**t > q — 1.
Proof. See the proof given in [11]. O

Remark 2.1. Note that if (K, ) is reversible, then the first two assertions in The-

orem 2.1 characterize the logarithmic Sobolev constant as follows.
a =max{f : ||Hi|2—q < 1,Vt > ﬁlog(q —1),2<¢g < o0}

To point out a surprising observation from the hypercontractivity, we recall the

following fact in [23].
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Lemma 2.1. Assume that K is a normal operator on (*(7) and Sy = 1, B, ..., Bxj—1
are the eigenvalues of K with corresponding eigenvectors ¢g = 1,¢1, ..., Pjx|-1.

Then, for all x € X, one has

|1

|He(z, )/l = ) e 0 Mgy ()

i=0

It follows from the above lemma that ||H;||2—oc > 1 if K is normal. Since
H, is a contraction in ¢? and has eigenvalue 1 with corresponding eigenvector 1,
we have ||Hq||s—o = 1. A nontrivial observation, even in the discrete setting of a
state space, from the hypercontractivity is the existence of 0 < ¢, < oo, for any
2 < g < 00, such that ||Hy||a—, = 1 when ¢ > .

By Theorem 2.1, we may bound the ¢P-distance from above by using the loga-

rithmic Sobolev constant.

Theorem 2.2. Let (X, I, ) be an drreducible Markov chain and \ and « be the
spectral gap and the logarithmie Sebolev constant of K. Then, for e,0,0 > 0 and

t=€e+60+ o0,

|He(z,-)/m ||2/ 1+e4a0) if K is reversible
deo(Hi(x,-),m) < )
|He(z,-)/™ ”2/ (142 e % in general

In particular, for ¢ > 0, one has
dTl’,Q(Ht(x7 ')7 7T) S 61_07

as

. (4a)~tlog, log(1/m(z)) + cA™t if K is reversible

(2a)log, log(1/m(x)) + At in general

where log, t = max{0,logt}.
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Proof. We consider only the reversible case by using Theorem 2.1(2), while the
general case can be proved by applying Theorem 2.1(3). Let # > 0 and ¢(0) =
1+ e*?. By Theorem 2.1(2), it is clear that ||Hg|la—qe) < 1, and by the duality
given in Lemma A.1, it follows that || Hj||y9)—2 < 1, where ¢(0) '+ (¢'(#)) ! = 1.
For convenience, let hf denote the density of Hy(x,-) with respect to 7. Note that

hi o = Hfhy. This implies
158 = o = |(Hy = m)(Hghe)ll2

* * T —Xo||nx(2/q(0
< HG = 7llaall H ll 2 192 L0y < €77 1015,
where the last inequality uses Remark 1.6 and the following Holder inequality.

1-2 2
e < IFI 13,

for all 1 < ¢ <2 and ¢! + (¢)*¥="1.This proves the first inequality.

For the second part, note fthat||hf[z:= m(x) /2 for € X. By letting € = 0,
we obtain
1 1/ (14-e4e9)

> e .

||htz £ET 1”2 < (m

Let o = cA™!. To get the desired upper bound for the £2-distance, we let o = cA ™!,
choose § = 0 if 7(z) > e~ !, and put

1 1
0 = — loglog ——
da °® Ogﬂ(x)’

if m(x) <e b O
Using the Cauchy-Schwartz inequality, the ¢*°-distance can be bounded from

above by the ¢2-distance. In fact, for ¢ > 0, one has

(e, y) = 1) = | (heja(w, 2) = 1)(hya(y, 2) — ()

zeX

< () = 2llhie(y, ) = 1l2-
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This implies the following corollary.

Corollary 2.2. Let (X, K,7) be an irreducible Markov chain and X and « be the

spectral gap and logarithmic Sobolev constant of K. Then, for ¢ > 0, one has

|[Hy(z,y)/m(y) — 1] < 7,

. i <10g+ log ﬁ + log, log @) +ceX7t if K is reversible

o (logJr log % + log, log @) +cA7t in general

where log, t = max{0,logt}.
Summing up Theorem 2.2 and Corollary 2.2, we may bound the /P-mixing time

by using the logarithmic Sobolev constant.

Corollary 2.3. Let K be a reversible andrirreducible Markov chain with stationary
distribution ™ and o be the logarithmic Sobolev constant. For 1 < p < oo, let T,

be the (P-mizing time of K. Thenjfor1 < p < 2,

1 1
<1, < — {4+ log, log—
2mya T ( log log 7r*>

p

and for 2 < p < o0,
1 1 1
— <T,<— log, log —
200 — P T 20 <3+ o8+ ng*)
where log, t = max{0,logt}, m, = min, 7(z) and m, =14 [(2—p)/(2p —2)].

Proof. The upper bounds are obtained immediately from Theorem 2.2 and Corol-
lary 2.2. For the lower bound, Theorem 3.9 in [11] proves the case 2 < p < oo.

For 1 < p <2, we use the fact

T, <m,T,, V1<p<2.
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Remark 2.2. For general cases, Theorem 2.2 and Corollary 2.2 derive an upper

bound of the /P-mixing time which is twice of that in Corollary 2.3.

Remark 2.3. Comparing Corollary 2.3 with Theorem 1.3, one may find that to
bound the /P-mixing time of a reversible continuous-time Markov chain, the loga-

rithmic Sobolev constant is more closely related to 7, than the spectral gap.

2.3 Tools to compute the logarithmic Sobolev constant

It follows from Theorem 1.3 and Corollary 2.3 that the logarithmic Sobolev con-
stant provides a tighter bound(in the sense of order) for the time to equilibrium
T, than the spectral gap. Based on Corollary 2.3, to bound the (P-mixing time by
using the logarithmic Sobolev constant, we need to determine its value. For this
view point, it is natural to,ask: can one eompute explicitly or estimate the con-
stant a? In this section, we introduce several established tools to help determine

the logarithmic Sobolev eonstant:

1. Bounding o from above by using the spectral gap A. The following
proposition establishes a relation between the spectral gap and the logarithmic

Sobolev constant.

Proposition 2.2. (Lemma 2.2.2 in [23]) Let (X, K, ) be an irreducible Markov

chain. Then the spectral gap A and the logarithmic Sobolev constant o of K satisfy
a < \/2. Furthermore, let ¢ be an eigenvector of the matrix %(K + K*) whose

corresponding eigenvalue is (1 — \). If w(¢®) # 0, then o < \/2.

Proof. We show by following the proof in [23] whose original idea comes from [22].

Let g be a real function on A and set f = 1 4+ eg. Then for small enough €, we
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have

fAlog 2 = (1 4 2¢q + €29°) (2eg — €*¢* + 3°9° + O(e"))

= 2eq + 3€°g° + 26°g° + O(€),
and

Flog |If 12 = (1 +2eq + €2¢%) [2em(g) + X(n(g?) — 2n(9)?)
+ & (3(9)* — 2n(g)m(g%)) + O(eY)]
= 2er(g) + (49 (g) + 7(g%) — 27(g)%)
+ & [En(9)* — 27 (g)7(g%) + 297 (g°)

—4gm(9)* + 2¢°7(g)] + O(e*)

Thus,

2

f?log . 2¢lg= w(g)] =€ [397 = 497 (g) — 7(g*) + 27 (g)?]

and

L(f) = 2¢Vare(g) + € [2n(g”) + 37(9)° — 2m(g)7(g%)] + O(€"),

where O(-) depends only on ||¢||c-
To finish the proof, note that £(f, f) = €2€(g,g). Let ¢ be an eigenfunction
of %(K + K*) whose eigenvalue is 1 — \. By definition, it is clear that (¢, ¢) =

AVar,(¢) and 7(¢) = 0. Letting g = ¢ implies

a <

e f) AVar(¢)
)

L(f) — 2Var(9) + Zen(¢?) + O(e)
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The first inequality is obtained by letting ¢ — 0. For the second part, since
m(¢*) # 0, we may choose |¢| > 0 such that em(¢®) > 0 and 2em(¢®) > O(€?). This

proves the second inequality. O]

2. One sufficient condition for a = \/2. As a consequence of Proposition 2.2,
the logarithmic Sobolev constant « is bounded from above by \/2. Furthermore,
a sufficient condition for the case 2a < A is also given in that proposition. In the

following, we give a necessary condition for the situation 2a < A to happen.

Proposition 2.3. (Theorem 2.2.3 in [23]) Let (X, K, ) be an irreducible
Markov chain and A and « be the spectral gap and the logarithmic Sobolev con-
stant of K. Then either o = \/2 or there ezists a positive non-constant function

u which is a solution of

Lir— K=o, (2.3)

2ulogw'="2ulog ||ulls’= —
o'

where o = E(u, uw)/L(w).=In particular; o> 0-

Proof. We prove by considering, the-minimizer of the infimum in Definition 2.1.
Note that we may restrict ourselves to non-negative vectors with mean 1(under
7). By definition, either « is attained by a nonnegative non-constant vector, say
u, or the infimum is attained at the constant vector 1. In the latter case, one may

choose a minimizing sequence (1 + €,¢,)7° satisfying
e¢n — 0 and 7w(g,) =0, [[gnlo =1, Vn>1.

This implies that the sequence {||gn|/s} is bounded from above and below by
positive numbers. Then, by the proof of Proposition 2.2, we get

a = lim

E(Gns gn) A h\

000 2Var, (gn) + O(6n) = moso 24 Ofen) 2
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This proves o = \/2.
If o is attained by a nonnegative non-constant vector f, then by viewing
E(f, f)/L(f) as a function defined on RI*! we have the following Euler-Lagrange

equation

(8] o

which is identical to (2.3). To show the positiveness of u, observe that if u(z) =0
for some x € X, then (2.3) implies that Ku(z) = 0, or equivalently, u(y) = 0 if
K(z,y) > 0. Thus, by the irreducibility of K, one has u = 0, which contradicts

the assumption that u is not constant. Il
Remark 2.4. Note that a constant function is always a solution of (2.3).

Corollary 2.4. Let (X, K, 7) be,ansirreducible Markov chain and X and « be the
spectral gap and logarithmie Sobolewconstant of K. If a non-constant function u

on X and a positive number B satisfy -the following system of equations
(I = K)u = 26(ulogu — ulog ||ull2), (2.4)

then 5 = E(u,u)/L(u). In particular, (2.4) has no non-constant solution for 3 €
(0,). Moreover, if (2.4) has no non-constant solution for B € (0,\/2), then

a=M\/2.

3. Comparison technique. In many cases, the model of interest is complicated
but can be replaced by a simpler one. In that case, the tradeoff of the replacement
can be the loss of the accuracy of a(up to a constant) but the advantage is the
simplicity of the new chain and, mostly, « is of the same order as the logarithmic

Sobolev constant of the new Markov chain.
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Proposition 2.4. (Lemma 2.2.12 in [23]) Let (X}, K1,m) and (Xs, K, 7)) be
irreducible Markov chains and & and &y be respective Dirichlet forms. Assume

that there exists a linear map
T : (*(my) — (*(m)
and constant A > 0, B > 0,a > 0 such that, for all f € (*(m,),

SQ(Tfa Tf) S Agl(fa f)? &Varm(f) S Varﬂ'g(Tf) + Bgl(fa f)
Then the spectral gaps Ay = A(K7) and Ay = A(K3) satisfy

CL)\Q
272
A+ Bl — 1

Similarly, if
52<Tf7 Tf) < Agl(fv f)a aﬁm(f) < ‘CWQ(Tf> + Bgl(fv f)?

then the logarithmic Sobolev constants e, =/a(K7) and oy = a(K3) satisfy

acy

A+BOC2 -

7.
In particular, if X1 = Xy, € < A&, and amy < 7y, then

< =
A <A A

Proof. The proof follows from the variational definitions of the spectral gap and

the logarithmic Sobolev constant. For the spectral gap, we have

EQ(va Tf)

aVary, (f) < Var, (Tf) + BE(f, f) £ 25
2

+Bgl(f7f)
g(%+B)&UJ)

The proof for the logarithmic Soboloev constant goes in the same way.
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To show the last part, consider the following characterizations of A and a.

Vars(f) = min ||/ = el3 = min Y[ (x) - Pr(a) (2.5)

zeX

and

Lo(f) =) [ (@)log f(x) — f(x)log | fII3 — f2(x) + || ]3] =(x)

zeX (26)
=min » [f*(z)log f*(z) — f*(z)logc — f*(z) + ] n(z).
c>0 e
Letting T' = I implies that
aVarg, (f) < Vary, (f), alq (f) < L, (f),
where the second one use the fact, tlogt —tlogs —t+ s> 0 for t,s > 0. O

The following is a simple butruseful tool which involves collapsing a chain to

that with a smaller state space.

Corollary 2.5. Let (X, Ky, m ) and (Xs, Ky,75) be irreducible Markov chains and
&1 and &y be respective Dirichlet forms. Assume that there exists a surjective map

p: Xo — Xy such that

EQ(fOp,fOp) S Agl(faf)? \V/f e]R|X1|7

and
ami(f) < m(fop), Vf=>0.

Then the spectral gaps A\ = A(K1), Ao = AN(K3) and the logarithmic Sobolev con-

stants a; = a(K7), as = a(Ks) satisfy

In particular, if a = A =1, ag = X\y/2 and \; = Ay, then a; = A\ /2.
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Proof. Let T : £*(my) — (*(my) be a linear map defined by T'f = f o p. In this

setting, the assumption becomes
E(TF.T) < A&(f.f), VfeR™M

and
am(f) < m(Tf), Yf=0.

By (2.5) and (2.6), the second inequality implies
aVary, (f) < Vare,(Tf),  ale (f) < Lay(Tf), Vf € RV
The desired identity is then proved by Proposition 2.4. O]

Remark 2.5. Note that, in Corollary 2.5, if m; is a pushforward of 75, that is,

Z To(y) =mi(z), Vr e X,

y:p(y) ==

then 7, (f) = mo(f o p) for all f € RIFik,

The following is a further corollary of Corollary 2.5 and the above remark which

gives a sufficient condition on a*='A'=1 in Corollary 2.5.

Corollary 2.6. Let (X1, K1, 1) and (X, Ka, 1) be irreducible Markov chains and

p: Xy — X be a surjective map. Assume that, for all x,y € X,

Z Ta(2) Ka(z, w) = m1(2) K1 (2, ). (2.7)

zip(z)=x
w:p(w)=y

Let A\, Ao and aq, oo be respectively the spectral gaps and logarithmic Sobolev con-

stants of K1 and K. Then
Ay <A1, ag < ag.
In particular, if Ay = Ay and ag = \y/2, then ag = A1 /2.
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Proof. Tt suffices to show that both constants a, A in Corollary 2.5 are equal to 1.
Let & and & be the Dirichlet forms of (X}, K, m) and (X5, Ko, 7). By Lemma

1.1, a simple computation shows

5 @)~ F@)Pm (@)K ()

T,yeX1

=2 Y Y 1Fonle) — fopw)Pm(2) Koz, )

$y€X1 zip(z)=z
wip(w)=y

- % > 1fop(z) = fop(w)’m(2)Ka(z,w) = E(f op, f o p).

Z,WEXo

By the definition of a stationary distribution in (1.2), summing up each side of
(2.7) over all x € X} implies

Z mo(w) = m(y), Yy € Xy.

w:p(w)=y

By Remark 2.5, m1(f) = ma(f o p)for all téal f. Thus, by Corollary 2.5, Ay < A

and oy < . O

In some models, we may. “collapse”™the'state space into a smaller one by par-
titioning the state space into several subsets and viewing each of them as a new
state. In the induced state space, the stationary distribution of the new Markov
chain is a lumped probability of the original one in the sense of Remark 2.5. The

following proposition provides a sufficient condition for collapsing Markov chains.

Proposition 2.5. Let (X, Ks, m5) be an irreducible Markov chain and p : Xy — X3

be a surjective map. Assume that

Ky(fop)(x) = Ka(fop)(y), Vplz)=np(y), feRM. (2.8)

Set, for z,w € A&},

Ki(z,w) := Z Ks(s,t),

t:p(t)=w
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where p(s) = z. Then K is irreducible and the stationary distribution m is given
by

m(z) = Z m2(y)-

y:p(y)=x

Furthermore, if A1, Ao and «q, s are respectively the spectral gaps and logarithmic

Sobolev constants of K1, Ky. Then Ay < A1 and as < ay.

Remark 2.6. Note that (2.8) is equivalent to
Z K2($az) = KQ(Z/,Z)
z:p(z)=w zip(z)=w

for all z,y € X, satisfying p(z) = p(y) and w € Aj.

Proof of Proposition 2.5. By choosing f = d,,(the function taking value 1 at w and
0 otherwise) in (2.8), the quantityi#i(z, w) is well-defined for all z,w € X;. It is
clear that the irreducibility of /& is obtained immediately from that of K,. By a
simple computation, we have
> m)Ka(5B= Y ks Ki(z,w) = m(2)Ki(z,w).

t:p(t)=w sip(s)=z

s:ip(s)=z
Summing up both sides over all z € &) implies that 7 is the stationary distribution

of K7 and the remaining part is implied by Corollary 2.6. [

4. The product chains. In the following, we consider the logarithmic Sobolev
constant of a product chain. For 1 < ¢ < n, let (X}, K;, ;) be an irreducible Markov
chain. Let u be a probability measure on {0, 1,2,...,n} and K be a Markov kernel

on the product space X = [[\_, &; defined by

K, (z,y) = K(z,y) = u(0)d(z,y) + Zu(i)&(% y) Ki(wi, yi) (2.9)
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where x = (21, ..., 2,), y = (y1, ..., Yn) and

di(z,y) = H(;(Ii;yi)a 6(s,t) =

J=1 i
Yo 0 otherwise
In the above setting, it is obvious that K is irreducible and the stationary distri-

bution is 7 = @ m;, where
n(z) = [[milz:), Vo= (z1,...,2,) € X. (2.10)
i=1

Proposition 2.6. (Lemma 2.2.11 in [23]) Let {(X;, K;,m;)}} be a sequence of
irreducible Markov chains and (X\;)} and («;)} be their spectral gaps and logarith-
mic Sobolev constants. Let p be a probability measure on the set {0,1,...,n} and
(X, K,7) be a product chain, where X =[]} X; and K and © are defined in (2.9)

and (2.10). Then A = \(K) and o = () are given by
A =mindu(i)N}, o= min{u(i)o;}.

Proof. See P.339 in [23]. O

2.4 Some examples

Since the logarithmic Sobolev constant was introduced in 1975, many people dedi-
cate to estimating its value. Their experiences show that it is not an easy job even
though the computation of the logarithmic Sobolev constant is to find its correct
order. As one can see in [11, Theorem A.2|, the computation of the logarithmic
Sobolev constant for asymmetric Markov kernels on a two point space is tough and
complicated. Up to now, the explicit computation of the logarithmic Sobolev con-
stant is still restricted to very simple examples and few of them are determined. By

Proposition 2.6, the computation of the logarithmic Sobolev constants for Markov
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chains with small state spaces is not futile. In this section, we introduce some

examples whose exact logarithmic Sobolev constants are known.

1. Random walk on a two point space. We first consider the simplest case
where the state space has only two points, say 0 and 1. Let & = {0,1} and K
be a Markov kernel on X’ defined by K(0,0) = p;, K(0,1) = ¢, K(1,0) = py and
K(1,1)ge, where p; +q1 = p2+ g2 = 1. Equivalently, the matrix form of K is given
by

1 @

K= . (2.11)
P2 Q2

The following theorem treats the case p; = ps.

Theorem 2.3 ([11, Theorem A.2]). Fizp,q € (0,1), p+q = 1. For the two-point

space X = {0,1} equipped with'the chain
K(0,0) = K(1,0) =g, f8(0,1) =K(L 1) = p, 7(0) = ¢, 7(1) =p.  (2.12)

we have A =1 and o = 1/24f p'=q=1/2 and

_p—aq .
“ " log(p/q) Vr7e

Proof. The fact A = 1 is an easy exercise. We prove the statement concerning «
using Corollary 2.4. Setting ¢(0) = b, ¢(1) = a and normalizing ¢b* + pa® = 1, we

look for triplets (3, a,b) of positive numbers that are solutions of (2.4), that is,

p(b—a) =20blogb
gla—0b) =20aloga
pa® +qgb?> = 1.

Luckily, § can be eliminated by using the first two equations. This yields the
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system
paloga + gblogb =0
pla? = 1)+ q(b* =1) =0.
Setting aside the solution a = b = 1, we can assume a,b € (0,1) U (1,+00) and
write this system as
paloga + gblogh =0

a—a~1 _ b—b"1
loga =~ logh °

Calculus shows that the function z — (z — z71)/log x is decreasing on (0, 1) and
increasing on (1,00). As it obviously satisfies f(z) = f(1/z), it follows that the
second equation can only be satisfied if b = 1/a. Reporting in the first equation
yields pa —q/a = 0, that is, a = \/m It follows that the solutions of our original

system are the triplets (3,1, 1) (8 arbitrary) and, when p # ¢,

<log (/a)’ e \/_>

As < 1/2 when p # ¢, we conclude from Corollary 2.4 that the logarithmic

log(p/ q)

Sobolev constant of the asymmetric two-point space at (2.12) is

=Pl p#g
log(p/q)’
and that, in the symmetric case p = ¢ = 1/2, we have 2a = A = 1. Il

Remark 2.7. The proof of Theorem 2.3 given above is outlined without details in
[4]. It is much simpler than the two different proofs given in [11, 23]. Here, we have
been careful to treat both the symmetric and the asymmetric cases at once. In
fact, the proof in [23] is incorrect (it can however be corrected with additional pain
but without changing the main ideas). On the one hand, in the case p = ¢ =1/2,
the proof above consists in showing that no nonconstant minimizers exist, leading

to the conclusion that & = A/2. This is the main line of reasoning that will be used
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in this work to treat other examples. On the other hand, in the case p # ¢, we
were able to find a unique normalized nonconstant solution of (2.3) with a@ < A\/2
leading to the explicit computation of a. To the best of our knowledge, this is the
only case with o« < A\/2 where a has been computed by solving (2.3). Our study of
other small examples indicate that such computation is typically extremely difficult

if not impossible.

Remark 2.8. As a consequence of Theorem 2.3 and Definition 2.1, we have

. pq(z —y)
= inf
f(p) =in {px2 log 22 + qy? log 42

2

cx £y, px2+qy2=1}

where

2p—1 .
f(p) _ 1ogp—11?og(1—p) ifp # 1/2 '
1/2 if p= 1/2

Let K be the Markov kernel in (2.11). A computation shows that the stationary

distribution is equal to = (SE=, =) and, for any function f = (z, y) satisfying
[fll2 =1,

[} 2 2 2 2
p2qi(x — Yy pox”log x” + q1y“logy
E(f,f) = PIT ZV Ty oy = .
P2+ q1 P2+ q1

By the above identities and Remark 2.8, the logarithmic Sobolev constant of a

general two point Markov chain is then a corollary of Theorem 2.3.

Corollary 2.7. Let ({0,1}, K, ) be an irreducible Markov chain where K is given
by K(0,0) =p1, K(0,1) = q1, K(1,0) = p and K(1,1) = qo with poq1 # 0. Then

the spectral gap A and the logarithmic Sobolev constant v are given by

p2—q1 '
—p2mdi__ o, +
log p2—log g1 fpa 7 @

A=pr+q, a=
D2 if p2 = q1
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Remark 2.9. Let K be the Markov kernel given by (2.11). By Corollary 2.7,

a = \/2if and only if K(0,1) = K(1,0), that is, K is symmetric.

2. Finite Markov chain with kernel K(xz,-) = m. Let X be a finite set and
7 be a positive probability measure on X. Consider a Markov kernel K, where
K(z,y) = n(y) for z,y = X. In this setting, such a chain perfectly reaches its
stationarity once the transition starts. Clearly, the spectral gap A is 1 and the
stationary distribution of K is m. To determine the logarithmic Sobolev constant
a, we need the following computation.

Assume that |X| > 2. Let m, = min, m(x) < 1/2 and 2y € X be such that
7(zg) = m.. Consider the projection p : X — {0, 1} where p(zo) = 0 and p(z) =1
for # € X \ {0} Let K be a Markov kernel on {0,1} obtained by collapsing K

through the map p, that is,

= Tl ]-_7T>k
ST

7 1 —m,
and a be the logarithmic Sohelev._constant of K. Then, by Proposition 2.5 and
Theorem 2.3, one has

B 1—2m,
~ log[(1 - m.)/m])

Theorem 2.4. ([11, Theorem A.1]) Let X' be a finite set with cardinality at least

a<a < A2, (2.13)

3 and m be a positive probability measure on X. Let K be a Markov kernel given
by K(z,y) = n(y) for x,y € X. Then the spectral gap is 1 and the logarithmic

Sobolev constant « is equal to

o — 1 —2m,
~ log[(1 —m.)/m)’

where T, = min, m(x).
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Proof. The upper bound of « is given by (2.13) and it remains to prove its lower
bound. By (2.13) and Proposition 2.3, there exists a non-constant positive function
won X satisfying (2.3). Without loss of generality, we assume that ||u|ls = 1. Then

the Euler-Lagrange equation becomes
Ve € X, 2cu(x)logu(x) = u(x) — m(u).

Since the map t — 2atlogt — t is convex, the function u has exactly two values,
say s and t. Let A ={x € X : u(z) = s}. By Corollary 2.4, we get

_ E(u,u) _ m(A)(1 —7w(A))(s —1)?
L(u) m(A)s?log s? + (1 — w(A))t?log t?

where 7(A)s® + (1 — 7(A))t? = 1. Thus, by Remark 2.8,

1—2n(A) 1—2m,
« Z Z )
log[(1 —m(A))/m(A)] ~ log[(1 — m.) /m.]
where the last inequality comés from the monotonicity of the function t — ﬁ
on the interval [0,1/2] and the fact w(A) > ', O

3. Simple random walk on the-3-eycle. Let (Zs, K, 7) be a simple random
walk on the 3-cycle, where the Markov.kernel K is defined by K (i,i+1) = K(i,i—
1) = 1/2 for i € Z3 and the addition and substraction are understood modulo 3.
A calculation shows that the spectral gap is 3/2. We compute the logarithmic

Sobolev constant of K by considering a general case.

Corollary 2.8. ([11, Corollary A.5]) Let (X, K, x) be a finite Markov chain,

where |X| > 3 and K(z,y) = \X|1—1 if v #vy and K(x,x) =0 forx € X. Let a be
the logarithmic Sobolev constant of K. Then

x| — 2
(|X] = 1) log(]X| - 1)

o =
In particular, the logarithmic Sobolev constant for the simple random walk on the
3-cycle is 57— .

2log 2
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Proof. Let K be a Markov kernel on X where K(z,y) = |X|™. Let & and &€

be the Dirichlet forms of K and K. Then, for any function f on X, one has

E(f, )= | /,,‘;'(_'15 (f, f). Since K and K have the same stationary distribution, the

logarithmic Sobolev constants a, & of K and K are related by

| Xla X -2
o = = s
(Xl =1 (J&] = 1)log(]X] —1)
where the last equality applies Theorem 2.4. O]

4. Simple random walk on the 4-cycle.

Theorem 2.5. Let (Z4, K, ) be a simple random walk on a 4-cycle, where K (i,i+
1) = K(i,i — 1) = 1/2 for i € Zy. Then the spectral gap is 1 and the logarithmic

Sobolev constant is 1/2.
Proof. Let K1, Ky be two independént Markov chains on {0, 1}, where
K;(0,1) = K;(1,0) = 1,7 K;(0,0) = K;(1,1) =0, Vi=1,2.

Consider a uniform probability measure ; on {1,2} and the product chain with

kernel K, given by (2.9). Let p: {0,1}*> — Z, be a bijective map defined by

p(0,0) =0, p(0,1) =1, p(1,1) =2, p(1,0) = 3.

Then for z,y € {0,1}?, we have K,(z,y) = K(p(z),p(y)). This implies that
K and K, share the same spectral gap and logarithmic Sobolev constant. By
Corollary 2.7, the spectral gap and logarithmic Sobolev constant of K; are 2 and
1. By Proposition 2.6, the spectral gap and logarithmic Sobolev constant are 1

and 1/2. O
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Chapter 3
Logarithmic Sobolev constants for some

finite Markov chains

From the computation of the logarithmic Sobolev constants in Section 2.4, one can
see that different models need different tricks. In this chapter, we concentrate on
the calculation of the logarithmic Sobolev constant for the simple random walks on
the n-cycle. In Section 3.1, we focus on the even cycles and explicitly determine
their logarithmic Sobolev constants. Thereafter, an application for collapsing a
cycle is introduced. In Section 3.2, we implement another trick to determine the

logarithmic Sobolev constant of the 5-cycle.

3.1 The simple randem-walk on an even cycle

For n > 2, consider a simple randomrwalk on the n-cycle Z,, = {1,2,...,n}. Clearly,
the corresponding Markov kernel /i, is given by K, (z,x+1) = % and the uniform
distribution on Z, is its unique stationary distribution.(For n = 2, we consider
the case K(1,2) = K(2,1) = 1 and K(1,1) = K(2,2) = 0. By Corollary 2.7,
a = % = 1.) Throughout this section, we assume that n > 3.

Let A, and «,, be the spectral gap and logarithmic Sobolev constant of K,,. It
has been shown in Example 1.1 that A\, = 1 — cos(27/n) and in Corollary 2.8 and

Theorem 2.5 that

< 3
a f— —_— = — a = —_———
3 4 ; 4

2log?2 2
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3.1.1 The main result

The following is the main result of this section. This is a joint work with Yuan-

Chung Sheu and has been polished in [6].

Theorem 3.1. Forn > 2, let K,, be the Markov kernel of the simple random walk
on the n-cycle. Assume that n is even. Then the spectral gap N, = \(K,,) and the

logarithmic Sobolev constant a, = a(K,) satisfy cv, = Ap/2 = (1 — cos ).
The following is a simple application of the above theorem.

Corollary 3.1. Forn > 3, let K,, be a Markov kernel on Z,, defined by K, (i,i —
1) =p, K,(i,i) =r and K, (i,i+ 1) = q fori € Z,, where p+q+1r = 1. Then
the spectral gap X\, and the logarithmic Sobolev constant o, satisfy o, = \,/2 =

=)

n

1(1 — cos

Proof. Let I?n be the Markov of -the simple random walk on 7Z, and £ and £
be the Dirichlet forms 6f K, and I?n. Obviously, both K, and IN(n have the
same stationary distribution; the uniform distribution on Z,,. By Lemma 1.1, one
has E(f, f) = (1 — r)E(f, f) for any function f on Z, and then, by definition,

A= (1=7) A, and o, = (1 — 7). O

We will prove this theorem in the next subsection. Here, we consider first the
ratio E(f, f)/L(f) and, by studying the Dirichlet form, restrict the minimizer, if
any, for the logarithmic Sobolev constant to a specific class of functions. For any

function f = (f(1),..., f(n)) = (x4, ..., x,), we have
) =13 2o (3.)
n /113
and

1
E(f,f) = %(\371 — 2o’ + |wo — 3P 4 F o — P F 2, — 1)), (32)
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It is obvious that the uniformity of the stationary distribution m, of K, implies
the invariance of £(f) under the permutation of the components of f. We now
investigate the extreme value of £ over all permutations on the components of f.

Consider the function
F(z)=|z1 — o> + |z — 23 + - + |20y — 2p|* + |20 — 71)? (3.3)

where x = (z1, 29, ...,x,) € R". To every x = (21,22, ...,x,) with 0 < 27 < xy <

-+ < x,, there corresponds an element z € R" given by the formula

_ ($1,$37ZE5,...,$2k+1,l'2k,...,1'4,$2) 1fn:2k‘—|—1
= (3.4)

($1,$3,l’5,...,(’,Egkfl,xzk,...,]};hiﬂg) if n = 2k.

Denote by S, the set of all permutations on {1, 2, ...,n} and write 0z = (zgq), Zo(2), .-

for 8 € S, and z € R".

Proposition 3.1. For every & = (xy,&a,...,T,) with 0 < x; < x5 < -+ < x,, we

have F(0x) > F(T) for all 0 &Sy

Proof. We prove this by induction" on n. There is nothing to prove in the case
n = 2. Assume that it is also true for n = k. We consider the case n = k + 1 and
fix x = (21,29, ..., xk41) Where 0 < 1 <29 < -+ < gy,
Stepl. Set y = (x1, 2, ..., 2x) and consider the corresponding vector y given
by (3.4). For every i = 1,2,....k — 2, set
(X1, T3y oy Tjy Ty 1, Tiga, ..., Ta, To)  if 7 is 0dd

Yijiv2 = (3.5)
(1,3, ooy Tigo, Tpi1, Tiy -.ry Ta, To)  if 4 18 even.

Thus y; ;42 is obtained by inserting z441 in y between z; and z;45. We also set

Y12 = (371, X3y .eey Ty, Ta, xk-f—l)
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and

N (X1, T3y ooy Thy Tl 1, Th1, -, Ta, Tg) if k is 0odd
Yk—1 = (3.6)

(1,3, ooy T 1, Th 1, Ty -, Ty, To)  if Kk 1S even.
We claim that
F(y12) 2 F(Yr-1) (3.7)
and

F(@/Z"iJ’,Q) 2 F(lekfl’k) for all = 1, 2, ceny ]ﬂ — 2. (38)

Note that for 1 <¢ < k — 2, a simple computation shows

F(@ii2) = F@) + (2 — 2541)" + (Tr41 — Tig2)” — (1 — 2042)% (3.9)
Therefore for 1 < i < k — 4, we get

F(Uiiv2) — F(Uivo,ira) =T —2pp1)” Tl Tha1 — Tig2)? — (2 — 2i40)7)
== [(a:i+2 s fL‘k+1>2 - ($k+1 - $i+4)2 - ($i+2 - 1'@'+4)2]

= 2T =T ) (s — ;) > 0.
(3.10)

Besides, we also have
F(@r-2k) = FUr-14) = [(@h11 — 2r2)? + (Trp1 — 24)® — (vh2 — 24)7]
— (g1 — $k71)2 + (T — l‘k)2 — (zp, — $k71)2] (3.11)
= 2(zpp1 — 2p)(@p—1 — Tp—2) > 0
and
F(Ur—s-1) — F(Ur-1k) = 2(p11 — Tp—1) (2 — 24—3) > 0. (3.12)

Combining (3.10), (3.11) and (3.12) gives (3.8). To prove (3.7), it suffices to show
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that F'(y12) > F(y13), whereas this follows easily from the following computation.

F(ih2) — F(i13) = [(#1 — 2611)” + (g1 — 22)° — (21 — 22)?]
— [(x1 = 2p41)® + (Tps1 — 23)° — (21 — 23)7]

= 2($k+1 — 1'1)(1'3 — 372) 2 0.
Step2. We prove that for every 6 € S, 1,
F(0r) > F(fers) = F(T). (3.13)

Fix 6 € S,4+1 and set ¢ = fz. It loses no generality to write ¢ = (..., z;, Tp11, Tj, -..)
for some i < j and let z = (...,x;,2,...) € R™ be obtained by removing the

component x;,1 from the vector ¢. Then, for 1 < j < k — 2, we have

F(e) = F(yjj42)
= [F(2) + (v what) A2 % Bg1)” — (21 — 7))
(3.14)
— [F(0) + (@ et H o= 2j42)" — () — 2542)]
= P(2) = F(7) #2gies —aileso — 21) > 0.
(The last inequality applies the inductive assumption that F(z) > F(y).) For

7 =k —1, we have
F(c) — F@k—1,k)
= [F(2) + (i — 2ps1)? + (2p-1 — 21)” — (25 — 2521)7]
— [F@) + (x5 — Tp41)” + (Ts1 — 2p-1)” — (26 — 231) ]

=F(2) — F(y) + 2(z, — ;) (g1 — 1) > 0.
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For 7 = k, we have

F(e) = F(Yr-1.x)

= [F(2) + (zx — 2e1)” + (2 — 2e1)” — (21 — 2)?)

(3.15)
— [F(§) + (2 — 2p1)” + (211 — 25-1) = (24 — 231)°]
=F(2) — F(y) + 2(z—1 — ;) (Tg41 — x) > 0.
Therefore (3.13) follows from (3.14)-(3.15) and (3.8). O

The following is a consequence of Proposition 3.1 and is critical in computing

the logarithmic Sobolev constant of the simple random walk on the n-cycle.

Corollary 3.2. Forn > 3, let «,, be the logarithmic Sobolev constant of the simple
random walk on the n cycle. Assume that there exists a positive mon-constant
function f such that o, =-ECf, [)/LOf)e Let 0 < 21 < xg < -+ < m, be the
components of f and ]7 = (21, @35 Ty, o). Then the Euler-Lagrange equation

(2.3) is satisfied with o =, andaw= f. Furthermore, o, = E(f, [)/L(f).

3.1.2 Proof of Theorem 3.1

In this subsection, we dedicate in proving Theorem 3.1. Throughout this section, n
is even and n > 4. The way we prove Theorem 3.1 is first to verify by contradiction
that there is no positive non-constant function v and o < )‘2—" satisfying the Euler-
Lagrange equation (2.3). Our main result then follows from Corollary 2.4. Before
starting to prove the main result, we derive a series of lemmas using combinatorial
arguments.

Define the shifting operator ¢ by

o(x1, Ty ooy ) = (T, X1, Ty ooy T1), (3.16)
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where = (z1, %9, ..., 7,) € R™. Set o’(x) = o(c?"!(x)) for j > 2 and write o7

for the inverse of 7.

Lemma 3.1. Consider a vector of the form

u = (1'1,3:3, ey L2k—15 L2k, ---71'4,1'2)

where 11 < 19 < ... < xop and write o’ (u) = ((67(u))1, (67 (u))a, ..., (67 (u))a)-

Then for every 1 < j <k — 1, we have
(07 (u); < (07 (u)oh—iz1, fori=1,...k (3.17)
and
(077 (u)); > (677 (u))opiz1, fori=1,.., k. (3.18)

Proof. Assume 1 < j < k —4. Then we have

;

T2(j—i+1)s if 1 <i<y;

(07 ()i ="Swai2 1, ifj4+1<i<j+k;

| Pok—2li-(itktn)], TR+ <0< 2k

Case 1: 1 <i<jA(k—j). Sincei < (k—j),weget2k—i+1>k+j+1

and (07(u))ak—i+1 = T2(3i+j), which implies

(07 (u))s = @ai-iv1) < Ta(ing) = (07 (W))2h—i1-

Case 2: jV (k—j) <i < k. Note that (k —j) < i < k implies £k + 1 <

(2k —i+1) < (k+j). Hence, we have
(Uj(u))i = T2(i—j)—1; (Uj(u))Qk—i—i-l = T2(2k—i—j)+1-
Since 2(2k — i —j) +1>2(i — 7) — 1, we get (07 (u)); < (079 (u))og—it1-
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Case 3: jA(k—j) <i<jV(k—j). It is obvious that only the situation
J # k—j is needed to be considered. On one hand, if j < k—7j, then j <i < (k—7)

and 2k —1+1>j—k+2k+1=k+ 7+ 1. This implies
(07 ()i = Tagi—jy—1 < Togity) = (07 (w))2h—is1.
On the other hand, if £k — j < j, then k — j < i < j. By this fact, we have
(Uj<u>>i = T2(j—i+1) < To(2k—i—j)+1 = (Uj(u))2k—z'+1.

Combining all above proves (3.17). The proof of (3.18) can be done by similar

arguments. O

Lemma 3.2. Let u = (uy, usg, ..., Ugg_1, Uog) be a vector with u; > 0 for all 1 <i <

2k. Assume that there exist two’ positivesconstants, ¢ and d, such that
20— (Ugeq +AUie) = cu;log du? (3.19)
for alli=1,...,2k.(Here we write wg="usy and usgy1 = uy.) Then:
(a) If u; < ugk_iy1 for all 1 < i <k, then we have

ui _ng“‘ui_uiﬂ > cf(uf + - +up) — (Uzﬂ 4 ud))

(b) If u; > ugg_it1 for all 1 <i <k, then we have

3y, _u%+ui+1 —uj, > C[<ui+1+"'+u§k) — (ui + -+ ud)l.

Proof. For (a), assume that u; < ug,_;41 for all 1 < i < k. For every 1 < i <k,

we rewrite (3.19) as
U1 Ui
U;

2 = clog du;.
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Then a simple computation implies

Ugk—; + Ugk—it2  Ui—1 T Ujp1

U2k —i+1 Ug
_ Wi (Ugk—i + Ugk—ita) — Uok—it1(Uim1 + Uit1) (3.20)
Ui U2k —i+1
= ¢(2log ——) > (—— — ),
U2k—i+1 U2k —i+1 U;

where the last inequality uses the fact that 2logt > t — % for every 0 < t < 1.

Hence, by (3.20), we have

(Uiu2k4+2 - ui71u2k71+1) + (uiu2k7’i - Ui+1u2k4+1) > C(Uf - u%k—i-‘,—l)

for all ¢ = 1, ..., k. The desired identity is obtained by summing up both sides of
the above inequality over all 1 <7 < k.
For (b), assume that u; > ugsiiifor.all 1 < i < k. For every i, set v; = Ugg—i11.

Then our result follows by-applying (&) to the vector v = (vy, vg, ..., Vo). ]

Lemma 3.3. Consider the following k x k matrices:

(2 1 0" .- .. 0
1 2 1
0 1
A=
2 1 0
1 2 1
0 0o 2 2
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and

2 1 0 0
1 2 1
0 1
B—
2 1 0
1 2 1
0 0 1 1

Then:
(a) Ift <2(1 —cos5;), then Py(t) = det(A —tI) > 0.

(b) If t <2(1 —cos 5%7), then Pp(t) = det(B —tI) > 0.

Proof. For (a), let 6, = (2l2_k1)7r for 1 <1<k and

sin 91

sin 26;

vy

\ sin k6,

Routine calculation shows that Av; = 2(1 4 cos@;)v, for 1 < [ < k. Therefore
{2(14cosb;)|1 <1 < k} is the set of all real roots of the characteristic polynomial
Pa(t). Note that (—t)* is the highest order term of P4(¢). This implies that

limy_,_o Pa(t) = oo. Since 2(1 — cos 57) is the smallest real root of P4(t), we

observe that P4(t) > 0 for all ¢+ < 2(1 — cos ;).

The proof of (b) is the same as that of (a) except the replacement of 6, with

2l
2k+1° u
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Lemma 3.4. (a) Consider the following system of inequalities:

Aj—Ajp 24t (A +--+ Ay), =1, k=1
(3.21)

A > 2t(Ar + -+ Ayp).

Ift < (1 —cos &), then the system (3.21) has no solution (A1, As, ..., Ax) with

A1<0.

(b) Consider the following system of inequalities:

(3.22)
Ap = 4t(AL + -+ Ay).

If t < 5(1 = cos 5755, then the system (3.22) has no solution (Ay, Ag, ..., Ay) with

A <0.
Proof. For (a), let fi(t) =2 —+4ttand ¢,(t) = 4¢t. For every 1 <[ <k — 1, put
ety ={1=41)f(t) — g.(t) (3.23)
and
g1 (t) = 4Lfilt) + au(1). (3.24)
Clearly, (3.23) and (3.24) imply

G (t) —ai(t) = 4L fi(t) = fi(t) — au(t) — fira(2).

Hence we have fi(t) = gi11(t) + fis1(t) for 1 <1 <k — 1. By this fact, we obtain,

for2<i<k-1,

frn(t) = (2= 4) fult) — (fi(t) + au(t))
= (2—=4t)fi(t) — fi-a(2).
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Note that

flt)=2—4t, fo(t) = (1= 4t)fi(t) — i(t) = (2 - 48)* = 2,

and, therefore,

fi(t) = det(M; —4tD), 1<I1<k (3.25)

where [; is the [ x [ identity matrix and M, is the [ x [ matrix of the same form as
that in Lemma 3.3(a).

Assume that ¢ < (1 — cos Z-) and (A, Ay, ..., Ay,) satisfies the system of in-
equalities (3.21). Since t < (1 —cos %) for 1 <1 < k, Lemma 3.3(a) and (3.25)
imply that f;(t) > 0 for all [ =1,2,... k.

For 1 <i <k — 1, we have, by (3.21),
Apei =3 Z 0 >4 A + -+ Asi).
We claim that
[i(O)Ap_jit.2 git (AT s+ Ap_;), V1I<j<k. (3.26)

Clearly (3.26) holds for j = 1. Suppose that it also holds for some ¢ with 1 < <

k — 1. Since f;(t) > 0, we get

[i@)Ap—i = fiQ)(Ar—i = Ap—iv1) + [ilt) Apivr = (48fi(t) + 9:(0)) (A1 + -+ + Ap—y)

= git1(t) (A1 + -+ Ap—i1) + (4L fi(t) + gi(t)) Ap—i.

The above inequality implies that (3.26) also holds for j =i+ 1 and hence is true
for 1 < j < k. Plugging j = k into (3.26) gives fx(t)A; > 0. Since fi(t) > 0, we
have A; > 0. This proves part (a).

The same line of reasoning as above applies for part (b) and the proof goes

word for word except the replacement of fi(¢) with 1 — 4t. ]
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Proof of Theorem 3.1. By Corollary 2.4, it suffices to show that there is no positive
non-constant function v and 0 < § < A,/2 satisfying (2.4). We prove this fact
by contradiction. Suppose the inverse, that is, (2.4) is satisfied for some < % =
(1 — cos 2Z) and a positive non-constant function u. Without loss of generality,
we assume y_,(u(i))®> = 1. By Corollary 3.2, we may assume further that u =

(X1, T3y eeey Tp—1, Tnyy ooy Ty, T2), Where 0 < 27 < 29 < --+ <, and x; < x,,. In this

case, the Euler-Lagrange equation in (2.4) is given by

2x; — (xgl) + xZ@)) = 20x;lognz?, 1<i<n.

(1

where z; ) and :1:52) are the two nearest neighbors of x;.

Recall the shifting operator ¢ defined in (3.16) and o7/ = o(0?™!) for j > 2.

Note that we may write n = 4k or n = 4k 4+ 2. For j = 1,..., k, we have
ol(f) = (@2, .o, Vo T, . GBS 13 Lpr—2 415 s Tn—1s Tryy -vs T2j42)
and
O I(f) = (Tojuts - Bt Triy ooy TheDjr2s T2y ooy T2y T1y oeey Taj_1)-
By Lemma 3.1 and Lemma 3.2(a), we get

(xgj - ng+2 + %2172]‘71 - 373172#1)
>20[(a3 +af + - ay tal Fai 4+ an o)
— (T gy T gt T AT S 2]
Similarly Lemma 3.1 and Lemma 3.2(b) imply that
(Igjfl - x§j+1 + IifQj - x72172j+2)
>20((a] + a5+ g+ F A+ an_y)

2 2 2 2 2 2
SR COTRRIR S SIS SR S VI SR i VRIS S i PP SR o |
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Note that n —2j —1>2j+1andn—2j > 27+ 2 for 1 <j < k. Summing up
the above two inequalities gives

2 2 2 2 2 2 2 2
(932]‘—1 + Xy — Ty — $2j+2) + (-’En—2j—1 + X, _9j — Tp_gjy1 — xn—2j+2)

> 45[@% + x% +oeeet 1’33) - (xi—2j+1 + Ii—2j+2 +eot xi)]

Letting A; = 3, + a3, — 22_o; 11 — ¥2_4, 5 for 1 < i < k implies, for n = 4k,

(

Aj— A > 4B(A + Ag 4+ A), j=1,... k-1
| Ar 2 260(A0+ A 4o+ Ay)

and for n = 4k + 2,

/

A — A >40(A + A+ 4+ A)), j=1,.., k-1

| Ax Z40(AL+ As + -+ Ay)
Note that § < (1 — cos 2%) andy Ay = 27 + 23 —22_; — 22 < 2} — 22 < 0. This

contradicts Lemma 3.4. O

3.1.3 An application: -collapse of cycles and product of

sticks

In this section, we discuss some applications of Theorem 3.1. This is a joint work
with Laurent Saloff-Coste and Wai-Wai Liu in [5]. We first consider the following

two ways of collapsing even cycles.

1. Collapsing the 2n-cycle to the n-stick with loops at the ends. Fix

n > 2 and let K; and K5 be Markov kernels on Z,, and Z, defined by
Ki1(0,0) =Ki(n—1,n—1)=Ky(i,i+ 1) = Ky(i + 1,7) = 1/2,
forall 7 =0,...,n — 2, and
Ky(i,i+1)=Ky(i,i—1)=1/2, Vi=0,...2n— 1.

61



Let p : Zo, — Z, be a surjective map defined by p(i) = p(2n — 1 — i) = i for
i =0,..,n—1. A simple computation(checking the requirement in Proposition

2.5) shows that the Markov kernel K5 collapses to K via the projection p. See

Figure 3.1.

Figure 3.1: The 14-cycle collapses to the 7-stick with loops at the ends. All edges

have weight 1/2.

Let A\ and Ay be the speéctral gaps of Ki, and K5. By Proposition 2.5, Ay < Aq.
It has been shown in Example 1.1 that“As = L.~ cos =. To see A1, note that K, has
eigenvalue 1 — Ay with multiplicity-2-and thetwo dimensional eigenspace contains
the function f(z) = cos(Z(z'43)), whichhas the property f(z) = f(2n — 1 — z).

By letting g(z) = f(x) for 0 < x <n — 1, one has
E(f, f) =&l(gop,gop) =&y, 9),
and Varg, (f) = Varg, (¢). Then, by the minmax theorem, A; < Xs.

Proposition 3.2. Fizn > 2. Let K be a Markov kernel on Z,, given by K(0,0) =
Kn—1n—-1)=K(Ui+1)=K(@+1,i)=1/2 for all0 <i <n—2. Then the

spectral gap A and the logarithmic Sobolev constant o satisfy 2ac = A =1 — cos 7.

2. Collapsing the 2n-cycle to the n + 1-stick with reflecting barriers. Fix

n > 2 and let K5 be the simple random walk on Z,,,. Consider a Markov kernel K;
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on Zn41 given by K1(0,1) = Ky(n,n—1) =1 and K,(i,i+1) = Ky(i,1 —1) =1/2
forall 1 <i<mn-—1. Let p: Zy, — Zy,y1 be a map defined by p(i) = p(2n —i) =i
for 0 < ¢ < n. Then K is obtained by collapsing K, through the projection p.

See Figure 3.2.

Figure 3.2: The 14-cycle collapses to a 8-stick with reflecting barriers. All edges

have weight 1/2 except those marked which have weight 1.

It is easy to check that f(#) = cos = isan eigenvector of Ky with corresponding
eigenvalue cos . The same line of reasoning as in case 1 implies that both K and
K5 have the same spectral gap:Then.-by Proposition 2.5 and Theorem 3.1, we

have the following proposition;

Proposition 3.3. Let n > 2 and K be a Markov kernel on Z,, defined by K(0,1) =
Kn—1,n—-2)=1and K(i,i+1) = K(i,i—1) =1/2 forall1 <i <n—2. Then
the spectral gap A and the logarithmic Sobolev constant o are given by 2a = A =

1 — cos Z-.
n—1

Proof. Note that the case n = 2 is part of the result in Corollary 2.7 and the case

n > 2 is given by the discussion in front of this proposition. O]

3. Product of sticks. In this case, we consider an application of Proposition

3.2. Fixd > 1 and let b = (by,...,bg) be an integer vector, where b; > 2 for all
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1 <i<d. In Z* with basis {ey, ..., eq}, consider a rectangular box
Ry={x = (v1,..,24) € Z%: 2; € {1,....,b;}, 1 <i < d}. (3.27)
The first application deals with a Markov kernel K on R,, where

Vi,y € Ry, x#y, K(z,y)= (3.28)

ZF

and
Ve € Rg, K(z,z)=1- dz (x,x+e)+ K(z,x—e)), (3.29)

where, in the summation, K(z,y) = 0 if y ¢ R,. See Figure 3.3 for an example

with d = 2 and (bl, bg) = (47 5)

Figure 3.3: The box R, with its Dirichlet form structure, b = (by,by) = (4,5).
All edges have weight 1/4 ex@ept the corner loops which have weight 1/2. The

stationary measure is uniform.

QuLu050. 0O

o700 07O

It is obvious that K is a direct product of Markov chains {(Zy,, K;, m;) }¢ through

the formula (2.9) with p(i) = % for 1 <i < d and
Ki(0,0) = Ki(bi = 1,b; = 1) = Ki(j,j + 1) = K;(j + 1,j) = 5

for all 0 < j < b; — 2. By Proposition 2.6, one may generalize Proposition 3.2 as

follows.

Theorem 3.2. Let d > 1 be an integer and b = (by,...,bg) be an integer vector

with 2 < by < -+ < by. Let Ry, be a subset of Z¢ defined in (3.27) and K be a
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Markov kernel on R, given by (3.28) and (3.29). Then the spectral gap A and the

logarithmic Sobolev constant o of K satisfy

9 = ) — 11— COZ(W/bd)-

3.2 The simple random walk on the 5-cycle

Referring to Theorem 3.1 and Corollary 2.7, the logarithmic Sobolev constant for
the simple random walk on an even cycle is a half of the spectral gap but this is
not true for the simple random walk on the 3-cycle. It is not sure how the spectral
gap and the logarithmic Sobolev constant are related if the simple random walk
is considered on an odd cycle. A numerical result for the cases n = 5,7 and 9,
where n denotes the n-cycle, shows that the logarithmic Sobolev constant should
be a half of the spectral gap: However, a mathematical proof is not available yet.
The goal of this section i§ to clarify the fact @ = \/2 for the case n = 5, whereas
a similar proof is proposed by. Wai=Wai-Liu, Laurent Saloff-Coste and the author

of this dissertation.

Theorem 3.3. Let K be the Markov kernel of the simple random walk on the
5-cycle and X and « be the spectral gap and the logarithmic Sobolev constant of K.

ThenQoz:)\zl—cos%”.

Remark 3.1. In the section, what will be proved is a stronger result than the above
theorem which says E(f, f) > 3L(f) for all functions f and the equality holds if

and only if f is constant.

Before proving this theorem, we consider the following application.
Corollary 3.3. Let K be a Markov kernel on Zs given by

K(0,0) = K(0,1) = K(1,2) = K(1,0) = 1/2, K(2,1) =1,
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and X and & be the spectral gap and logarithmic Sobolev constant of K. Then

2&:)\:1—008%”.

Proof. Let K be the Markov kernel of the simple random walk on the 5-cycle with
spectral gap A and logarithmic Sobolev constant «. Consider the map p : Zs — Zs
defined by p(i) = p(4 —i) =i for i = 0,1,2. It is clear that K collapses to K

through p. See Figure 3.4.

Figure 3.4: The 5 cycle collapses to the 3-point stick with a loop at one end. All

edges have weight 1/2 except marked otherwise.

0 1
2 - O
1

Note that f(z) = cos(Z(z ¢+ 4))is an eigenfunction of K corresponding to the
eigenvalue 1 — \. It is easy tosee that the fiinction f|fo 1,2 is also an eigenfunction
of K. Thus A = A = 1—cos %’T and the identity o = X/ 2 is then proved by Theorem

3.3 and Proposition 2.5. Il

To prove Theorem 3.3, we need the following two lemmas.

Lemma 3.5. Consider the function gg(t) = 2t —45tlogt fort > 0 and gz(0) = 0.

Assume that 8 > 0. Then for 0 < s <t < oo, one has

(0) = () > (1= ) |2 49 - 4105 (5]

66



Proof. Fix t >0, 8 > 0 and let h be a function on [0, ¢] defined by

h(s) = % {gﬁ(t) —9p(s) = (t =) [2 — 40— 4flog (tgs)]}

t
= slogs —tlogt — (s —t) {1+10g <%)}

Then the first derivative of h is given by

2s
s+t

2s
W(s)=1— log | =2 /
(s) + log (s—l—t) <0, Vse(0,t),

where the inequality uses the fact logu < v — 1 for u > 0 and u # 1. This implies

that h is strictly decreasing in [0, ¢] and hence proves this lemma since h(t) = 0. O

Lemma 3.6. For 3 > 0, let gg be the function defined in Lemma 3.5 and Dg be

the following region
Dg={(s,t) : 05085t s+t <2, 0 < gg(s) —t}. (3.30)
Consider the following fubiction
Fp(s,t) = 9s(9s() —8)=Galgals) =t) — (L —s), V(s,1) € Dp.

Assume that 0 < 3 < £(1 — cosZE)yptheén Fs(s,t) > 0 on Dg and the equality holds

if and only if s =t.

Remark 3.2. Note that F(3,t) is well-defined on Dy since one has, by Lemma 3.5,

(95(t) —s) — (gs(s) —t) = (t — s) [3—46—4ﬁlog (t‘gs)] >0,
forallt+s<2and 0<s <t

Proof. Obviously, Fs(t,t) = 0 for all t > 0 and § > 0. We now assume that

0 < B < 4(1—cos?) and the pair (s,t) € Dg satisfies s < ¢. It remains to show

Fjs(s,t) > 0. By Lemma 3.5, one has
(95(t) — ) — (ga(s) — 1) > (t = 5)[3 =48 — 4B f1(s,1)] > 0,
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where fi(s,t) = log (£5£). This implies, by using Lemma 3.5 twice,

Fy(s,t) > [95(t) — ga(s) + 1 = sl[2 =40 — 4B fa(s,t)] = (t — 5)

> (t=s){[3 =40 = 46/1(s,D)][2 =40 — 45 f>(s,1)] = 1},

(3.31)

where

fo(s,t) = log <96(t) ™ gﬂ(;) — (t+ s))

~log (t+s)— 4ﬁ(t210gt + slog s)'

Note that the second inequality in (3.31) uses the convexity of the map u +— wulogu

for u > 0 to get

fa(s,t) < log (H—TS> + log (1 — 43 1log (t ; S)) , (3.32)

and then applies the fact r=408rlogr.< e% forallr >0and 0 < § < %(1 —

cos %’r) A simple computation shows that
(2 — 4B)(3 =4B)=F=163" — 208 +5 > 0,
for 0 < 3 < 1(1 — cos 2%). To finish this proof, it suffices to show that
(2 —4P) fi(s,t) + [3— 48 — 46f1(s,1)] fa(s, 1) < 0.
Since (t + s)/2 < 1, it remains to prove, by using (3.32), that
h(z) =(2—40)x + (3 — 40 — 4Bx)[x + log(1 — 40x)] <0, Vz <O0.

Taking the first derivative of h, we get

4546 - 2)

Wiw) =5-120+ =

— 452z + log(1 — 40)]

>5— 1268+ 43(43 —2) = 165%> — 203 +5 > 0,
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where the first inequality is implies by the facts that the mapping = — % for

x < 0 is decreasing and
Vo <0, 2x+log(l—4pz) <2z(l—-205)<0.

Therefore, h is strictly increasing. In addition to the fact A(0) = 0, we get h(z) < 0

for z < 0. OJ

Proof of Theorem 3.3. By Proposition 2.2, one always has 0 < a < A = %(1 —
cos %’r) We prove this theorem by showing that there is no nonconstant solution

u for the Euler-Lagrange equation
2aulog(u/||ull2) = (I — K)u.

Assume the inverse, that is, the above equation is satisfied with nonconstant
whose entries are 0 < xg < < &' <, x5 < x4. There is not loss of generality
to assume that |jull; = L2or equivalently, 2 + 2? + --- + 23 = 5. By Corollary
3.2, we may assume further that w=(zq, 9,24, 3, 71). In the above setting, the
minimizing equation is equal to

1+ 22 = golT0), "ToH T3 = gu(T1), o+ x4 = ga(x2),

(3.33)

1+ 24 = gol(T3), T2+ T3 = ga(z4),

where g, () = 2z — 4axlog x.

Note that the assumption of nonconstant u derives xy < x4, and the nor-
malization of u implies zp < 1. Since g, is a concave function with derivative
gl (1) =2 —4a > 0, we have g,(z) € (0,2) for z € (0,1). On one hand, by this
observation, the equality x1 + 23 = go(x¢) implies 27 < 1 and then the identity
Zo+ 23 = go(z1) implies xg+x3 < 2. On the other hand, by (3.33), one can obtain

the following equation
Fo(@o, ©2) = ga(9a(22) — Z0) = gal(ga(@0) — 22) — (22 — 20) = 0.
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Since w is a solution of (3.33), it is clear that (xg,z2) € D,, the region defined in
(3.30). Thus, by Lemma 3.6, we have xqg = z; = x2 and, by the first equality of
(3.33), we get x; = 1. This contradicts zy < 1.

Since there is no nonconstant solution for the equation (2.3) with 0 < o < \/2,

Proposition 2.3 implies that 2a = A. O

3.3 Some other 3-points chains

By collapsing 4, 5 and 6 cycles, we have obtained in Sections 3.1.3 and 3.2 the
equality & = A/2 for the three chains on the 3-point stick described in figure

3.5. The first two theorems in this section concern the variants (depending on a

Figure 3.5: Three chains on the 3-point stick. All edges have weight 1/2 except

when marked otherwise. In‘all cases.a.= X/2.

parameter p € [0,1)) described in Figure 3.6.

Figure 3.6: The families of Theorems 3.4 and 3.5, p € [0,1).

1—p  1/2 1-p  1/2
p p p
/2 1-p 1/2 1
ap=>Ap/2 opF#Ap/2 unless p=0,1/2

Theorem 3.4. For 0 < p < 1, let K, be the Markov kernel on the 3-point space
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{1,2,3} defined by

p 1—p 0
K,=15 0 5
0O 1-p p

with stationary distribution p, = (452p, i:gz, 452p). Then o, = A\, /2 = (1 —p)/2.

Theorem 3.5. For 0 < p < 1, Let K, be the Markov kernel on the 3-point space

{1,2,3} defined by

0 1 0
K=|5 0 5
0 1—p p

with stationary measure ji, = (41:3’;, Z:gi, 453 ). Then the log Sobolev constant o,

satisfies a, = Ap/2 = 2(3 — p —afpPa=1) only when p=0 orp=1/2.
Remark 3.3. Both K, in<Theorem-3:4 and K;, in Theorem 3.5 are reversible with
respect to their stationary distributions.

To prove the above two“theorems, we'need the following elementary lemma.

Lemma 3.7. Consider the continuous function u : [0,00) — R defined by

0 if s =0
u(s) = / (3.34)

slogs if s € (0,00).

The function u has the following properties:

Vit e0,00), u(t)>t—1. (3.35)
Vs,t €[0,00) withs <t and s+t <2, u(t)—u(s)<t-—s. (3.36)
Vs,t€[l,00) with s <t, u(t)—u(s) >t—s. (3.37)
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Proof. The function s — slogs — s+ 1 has derivative s — log s on (0,00). Hence
it attains its minimum at s = 1. As the value at s = 1 is 0, (3.35) follows.

To prove (3.36), fix s > 0 and set, for t > s,

g(t) = u(t) —uls) = (t = s)u'((t +5)/2)

= tlogt—slogs— (t —s)(1+log((t+ s)/2)).

Compute the derivatives

g'<t>=log( ! ) e LAY

i+s) t4s 07
It follows that g is non-increasing on [s, 00). Hence g(t) < g(s) = 0 on [s, 00), that
is,
u(t) —u(s) < (t—s)(1 +log((t + s)/2)).
The inequality (3.36) obviously follows ythen s + ¢ < 2.
Finally, (3.37) followsfrom the:Mean Value Theorem applied to the function u

since v’ > 1 on [1, 00). O

Proof of Theorem 3.4. First:observe that an easy computation gives A\, = 1 — p.
By Corollary 2.4, it suffices to show that for 8 < \,/2, the system (2.4) has no
non-constant positive solution u = (a, b, c). Suppose the contrary. By symmetry,
we can assume that a > c¢. There is no loss of generality to assume further the
normalization

a?+ (2 —=2p)b® +c* =4 —2p. (3.38)

Then (2.4) is equivalent to (using the function u defined at (3.34))

20
1Tpu(a) = a—>b (3.39)
4Bu(b) = 2b—a—c (3.40)

26
1Tpu(c) = c—0b. (3.41)
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We prove by considering two subcases, a > c and a = c.

Case 1: a > c¢. Subtract (3.41) from (3.39) to obtain

u(a) —u(c) = 1_p(a—c)>a—c.

20

By (3.36), it follows that a 4+ ¢ > 2. This implies
a’+c* > 2 (3.42)

and thus, by (3.38),

b< 1. (3.43)

Now, add (3.39) divided by a to (3.41) divided by ¢ and subtract (3.40) divided

by b to obtain

logac—4ﬁlogb:g—é+g—[2.
b a b c

L—p
Rearranging the terms yields

%logb:(g—é— 7 logg)—([—)—g— 25 log[3>. (3.44)
1—»p a

Consider the function h(t) = &=t~ klogt on (0,00) and note that h/(t) =
t72(t — 1)+t 12 — k) is positive on (0,00) if k¥ < 2. In the present case, we take
k = 28/(1 — p) which, by hypothesis, is less than 1. Hence h is increasing. The
left-hand side of (3.44) is negative since b < 1 by (3.43). Hence h(a/b)—h(b/c) <0

and thus a/b < b/c or, equivalently,
ac < b < 1.
By (3.38) and (3.42), we have

4-2p = a®+2(1 —p)b*+c* > a®>+2(1 - plac+ 2

= (a+c)* —2pac > 4 — 2pac > 4 — 2p,
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a contradiction. Hence, we must have a,, = \,/2 = (1 — p)/2.

Case 2: a = c. In the case, we may rewrite (3.44) as follows.

Note that ¢ is strictly increasing on (0,00). If a < 1, then b < 1 since g(1) > 0
and if @ > 1, then b > 1 since g(1) < 0. Both cases contradict (3.38). If a = 1,

then b = 1, which contradicts the assumption that u is nonconstant. Il

Proof of Theorem 3.5. Referring to the family of chains in Theorem 3.5, the facts
that a, = \,/2 when p = 0 and p = 1/2 are contained respectively in Theorem
3.4 and in Corollary 3.3. To prove a,, < \,/2 when p # 0,1/2, we use the criteria

contained in Proposition 2.2. A simple computation yields

R W p— /1 +p?
=
2

with eigenfunction

—1 1 2
¢ = (L TR D+ V1 +p2)) :
Thus, we compute

s p(L=p)(p—1/2)[3 = 3p+6p* — 4p* + /1 + p>(—1 + 6p — 4p?)]

On one hand, the map p +— 3 — 3p + 6p* — 4p? is (strictly) decreasing with value
2 at p = 1. This implies 3 — 3p + 6p> — 4p® > 2 for p € (0,1). On the other hand,
the map p +— /1 + p?(—1+6p —4p?) is (strictly) increasing on (0, 1/2) with value
—1 at p = 0 and the map p — —1 + 6p — 4p? is concave with value 1 at p = 1/2
and p = 1. This implies /1 + p%(—1 + 6p — 4p?) > —1 for p € (0,1). Combining

both observations, it is easy to see that
3 —3p+6p* —4p® + /1 +p2(—1+6p —4p*) >0, Vpe (0,1),
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which implies u;,(gb?’) # 0 unless p = 0 or p = 1/2. By Proposition 2.2, we must

have o, < A,/2 for p # 0,1/2. O

We end this section with the study of one of the most natural chain on a 3-point
stick where transitions are to the left with probability ¢ = 1 — p and to the right

with probability p.

Theorem 3.6. For 0 < p <1 and set ¢ =1—p. Let K, : {1,2,3} x {1,2,3} be

the Markov kernel defined by

q p 0

0 g p

with stationary distribution

1y = (cp, o (0), Ea(RID2) A 6 = (1+ (/0) + (p/0)) -

Then the spectral gap N\, and the logarithmie Sobolev constant oy, are given by

b—q
P VP 2(log p — log q)

In particular, a minimizer of o, is ¥ = (p/q,1,q/p).
Remark 3.4. Let p € (0,1) and o, and A, be as in Theorem 3.6. Recall in Theorem
2.3 that o, < 1/4 for p € (0,1) and the equality holds only if p = 1/2. A

simple computation shows that A, > 1/2 and the equality holds only if p = 1/2.

Combining both bounds, we have «,, < A, /2 and the equality holds only if p = 1/2.

Proof of Theorem 3.6. Since K, is reversible, the spectral gap is obtained by a

direct computation of the eigenvalues of K,. For the logarithmic Sobolev constant,
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we compare this chain with another 3-point chain

g p 0

Kp=1 q/2 1/2 p/2
0O q p

with stationary distribution

iy = (5, 26,(p/0). & (p/0)%) . & = (1+2(0/a) + (0/0)") -

The Dirichlet forms associated with (K, i,) and (K, j1,) are respectively

Ep(u,u) = epp (w1 — u2)® + (p/q)(ug — uz)?)

and

Ep(u, u) = Gp'((ur =a)? + (p/q) (us — u3)?) .
Hence we have
‘c/; = (Gplep)Ep and (G/cp)pp < fip. (3.45)

By Proposition 2.4, it follows that
a, > Q. (3.46)

Next, on {0,1}* we consider the product chain (with weights (1/2,1/2)) of
two copies of 2-point asymmetric chain in Theorem 2.3. This product chain has

transitions given by

K((()? 0)7 (07 0)) = 4q, K((17 1)7 (1’ 1)) =D,
K((()? 0)7 (07 1)) = K<<O= 0)7 (17 0)) = p/27

K((17 0)7 (17 1)) = K(<07 1)7 (17 1)) = p/27
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and
K((lv 1)’ (07 1)) = K((17 1)7 (17 O)) = Q/Qa
K<<07 1)7 (07 0)) = K((lv 0)7 (07 0)) = q/27

K((0,1),(0,1)) = K((1,0), (1,0)) = 1/2.

By Proposition 2.6 and Theorem 2.3, its logarithmic Sobolev constant is 55 (f; zg/q).

This chain projects to the 3-point space {1, 2,3} using the map
p:{0,1}* — {1,2,3}, (z,y) = 1+ |z +y|

and the projected chain is l~(p. Hence, by Proposition 2.5 and (3.46), we get

_ p—q
> > .
@ =% = 5logp — log q)

(3.47)

To show that this is in fact .an equality;, it suffices to find a good test function.
Letting ¢ = (p/q, 1, q/p) derives

Sp(¢a¢) L b—q
S L, (@Y1 2(logp —logq)’

— __p=q
Thus ap = 555" oa - [

Remark 3.5. Fix p € (0,1) and let K and K, be the Markov kernels in the proof of
Theorem 3.6. As the proof shows, K collapses to K, and the logarithmic Sobolev
constant of K, is the same as that of K. However, the spectral gap of K, which
is equal to 1 — /pg, is not the same as the spectral gap of K, which is equal to
1/2. The main reason is that the eigenfunction of K corresponding to eigenvalue
1/2 has different values at (0,1) and (1,0) if p # 1/2. This makes the projection

p fail to collapse the eigenfunction onto the three point space {1, 2, 3}.

The following corollary is an observation based on the inequality (3.47) obtained

in the proof of Theorem 3.6.
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Corollary 3.4. Let p € (0,1) and set ¢ = 1 — p. Consider the following Markov

kernels.
qp 0 g p O
Kp=14q 0 p | Ky=|q2 1/2 p2
0 g p 0O q p

Let o, and «, be their logarithmic Sobolev constants. Then

R et
PP 2log(p/a)

In particular, ¢ = (p/q,1,q/p) is a minimizer for both constants.

Proof. By (3.47) and Theorem 3.6, it remains to show that 1 is a minimizer of .

By (2.6), the fact (3.45) derived in the proof of Theorem 3.6 implies

Ep(10, 1) < (Cof @ VED, BNz (/o) Lo, () < Lo, (V).

Since v is not constant, taking the ratio the Birichlet form to the entropy implies

BGED) 1, (0.)
Eﬁp(w) T ‘Cﬂp(w)

o, =0 < = Q.

]

Remark 3.6. Both K, and }~{p in Corollary 3.4 are reversible and the spectral gap

Ap of [?p is equal to 1/2. Let a, be the logarithmic Sobolev constant of I?p. By

Corollary 3.4 and Theorem 2.3, &, < Xp /2 and the equality holds only if p = 1/2.
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Appendix A

Techniques and proofs

A.1 Fundamental results of analysis

Lemma A.1. Let (X, u) and (), v) be measure spaces and T : LP(u) — L"(v) be
a bounded linear operator with 1 < p,r < oco. Let T* : (L"(v))* — (LP(u))* be the
adjoint operator of T'. Then the operator norms of T and T*, denoted by ||T||p—r

and |T*||s—q withp™ ' +q7 ' =1 and r~' + s7! = 1, satisfy
1T |s—q = [T 1pr-
Proof. Note that for f € (L"(v))* and u € LP(p),

(T ) (b= |f @Eudles WEllp—r [l f1l 0y

u”p?

which implies ||T7*||s—q <|T'[[p=r-
Conversely, for v € L*(#); défine T,(w)= [}, v(y)w(y)dv(y) for all w € L"(v).

It is obvious that T, € (L"(v))*, | To||(rw))* = ||v]|s and for u € LP(p),

/yv(y)(TU)(y)dV(y) = To(Tu) = (T"T) (u) < T [lsmgllvllsllwllp,

which implies ||T||p—r < [|T%]|s—q- O
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