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有限馬可夫鏈的對數索柏列夫常數 

學生：陳冠宇 指導教授：許元春 教授 

國立交通大學應用數學系博士班 

摘 要       

一副撲克牌要洗牌幾次其機率分佈才會接近均勻分佈。數學上，這個

問題是屬於有限馬可夫鏈收斂速度的計量分析。在其他的領域裡也有相似

的問題，其中包含了統計物理學、計算機科學和生物學。在這篇論文裡，

我們討論lP距離和超皺縮性之間的關係，並介紹兩個與收斂速度相關的常

數－譜間隙和對數索柏列夫常數。 
我們的目標是要準確地計算出對數索柏列夫常數，其中最主要的結果

就是在循環體上簡單隨機運動的對數索柏列夫常數。另外，透過馬可夫鏈

的崩塌，我們也得到兩種在直線上隨機運動的對數索柏列夫常數。最後，

我們考慮狀態空間為三個點的馬可夫鏈並求得部分的對數索柏列夫常數。 
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ABSTRACT 

How many times a deck of cards needed to be shuffled in order to get close 
to the uniform distribution. Mathematically, this question falls in the realm of 
the quantitative study of the convergence of finite Markov chains. Similar 
convergence rate questions for finite Markov chains are important in many 
fields including statistical physics, computer science, biology and more. In this 
dissertation, we discuss the relation between the lP-distance and the 
hypercontractivity. To bound the convergence rate, we introduced two 
well-known constants, the spectral gap and the logarithmic Sobolev constant. 
 

Our goal is to compute the logarithmic Sobolev constant for nontrivial 
models. Diverse tricks in use include the comparison technique and the collapse 
of Markov chains. One of the main work concerns the simple random walk on 
the n cycle. For n even, the obtained logarithmic Sobolev constant is equal to 
half the spectral gap. For n odd, the ratio between the logarithmic Sobolev 
constant and the spectral gap is not uniform. 

 
Ideally, if the collapse of a chain preserves the spectral gap and the original 

chain has the logarithmic Sobolev constant equal to a half of the spectral gap, 
then the logarithmic Sobolev constant of the collapsed chain is known and equal 
to half the spectral gap. We successfully apply this idea to collapsing even 
cycles to two different sticks. Throughout this thesis, examples are introduced to 
illustrate theoretical results. In the last section, we study some three-point 
Markov chains with introduced techniques. 
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Chapter 1

Introduction
How many times a deck of cards needed to be shuffled in order to get close to

the uniform distribution. Mathematically, this question falls in the realm of the

quantitative study of the convergence of finite Markov chains. Similar convergence

rate questions for finite Markov chains are important in many fields including

statistical physics, computer science, biology and more. Many questions posted in

these fields are to estimate the average of a function f defined on a finite set Ω with

respect to a probability measure π on Ω. From the view point of Markov Chain

Monte Carlo method, this is achieved by simulating a Markov chains with limiting

distribution π and selecting a state at a random time T as a random sample.

Knowing the qualitative behavior of convergence is not enough to determine the

sampling time T . A quantitative understanding of the mixing time is essential for

theoretical results. In practice, various heuristics are used to choose T .

Diverse techniques have been introduced to estimate the mixing time. Coupling

and strong uniform time are discussed by Aldous and Diaconis in [1, 2]. Jerrum

and Sinclair use conductance to bound mixing time in [17]. Application of rep-

resentation theory appears in [8] and Diaconis and Saloff-Coste used comparison

techniques in [9, 10]. For lower bound, important techniques are described in [7]

and in more recent work of Wilson [27].

In this dissertation, we introduce two well-known constants, the spectral gap

and the logarithmic Sobolev constant. Applying fundamental result in calculus and

linear algebra, we are able to determine both constants for some specific models.
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1.1 Preliminaries

Let X be a finite set. A discrete time Markov chain is a sequence of X -valued

random variables (Xn)∞0 satisfying

P{Xn+1 = xn+1|Xi = xi,∀0 ≤ i ≤ n} = P{Xn+1 = xn+1|Xn = xn}

for all xi ∈ X with 0 ≤ i ≤ n and n ≥ 0. A Markov chain is time homogeneous if

the quantity in the right hand side of the above identity is independent of n. In this

case, such a Markov chains is specified by the initial distribution (the distribution

of X0) and the one-step transition kernel K : X×X → [0, 1](also called the Markov

kernel) which is defined by

∀x, y ∈ X , K(x, y) = P{Xn+1 = y|Xn = x}.

An immediate observation on the Markov kernel K is that
∑

y∈X K(x, y) = 1 for

all x ∈ X . Throughout this thesis, all Markov chains are assumed to be time

homogeneous. For any Markov chain (Xn)∞0 with transition matrix K and initial

distribution µ, that is, P{X0 = x} = µ(x) for all x ∈ X , the distribution of Xn is

given by

∀x ∈ X , P{Xn = x} = (µKn)(x) =
∑
y∈X

µ(y)Kn(y, x),

where Kn is a matrix defined iteratively by

∀x, y ∈ X , Kn(x, y) =
∑
z∈X

Kn−1(x, z)K(z, y).

In a similar way, one may also consider a continuous-time Markov process.

Here we consider only the following specific type. For any Markov kernel K,

let (Xt)t≥0 be a Markov process with infinitesimal generator K − I(the Q-matrix

defined in [19]). One way to realize this process is to stay in a state for an ex-

ponential(1) time and then move to another state according to the Markov kernel
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K. In other words, the law of Xt is determined by the initial distribution µ

and the continuous-time semigroup Ht = e−t(I−K)(a matrix defined formally by

Ht(x, y) = e−t
∑∞

n=0
tn

n!
Kn(x, y) for x, y ∈ X and t ≥ 0, where K0 = I) through

the following formula

∀x ∈ X , t ≥ 0, P{Xt = x} =
∑
y∈X

µ(y)Ht(y, x).

Note that if (Yn)∞0 is a Markov chain with transition matrix K and Nt is a Pois-

son process with intensity 1 and independent of (Yn)∞0 , then the Markov process

(Xt)t≥0 with infinitesimal generator K − I satisfies Xt
d
= YNt(in distribution) for

t ≥ 0. This is because

∀x, y ∈ X , Ht(x, y) = E[KNt(x, y)] = P{YNt = y|Y0 = x}.

For any finite Markov process (Yt)t≥0, we may find a constant c > 0, a Markov

chain (Xn)∞1 and a Poisson(1) process independent of (Xn)∞1 such that Yt = XNct

in distribution, or equivalently

P{Yt = y|Y0 = x} = e−ct(I−K)(x, y), ∀x, y ∈ X ,

where K is the Markov kernel of (Xn)∞1 . To see the details, let Q be the infinites-

imal generator of (Yt)t≥0, which is a |X | × |X | matrix satisfying

Q(x, y) ≥ 0, ∀x 6= y, x, y ∈ X ,

and
∑
y∈X

Q(x, y) = 0, ∀x ∈ X .

Then, for t ≥ 0, the law of Yt is given by

P{Yt = y|Y0 = x} = etQ(x, y) =
∞∑

n=0

tnQn(x, y)

n!
.
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By letting q = max{−Q(x, x) : x ∈ X}, where we assume its positivity, and

K = q−1Q + I, one may check K(x, y) ≥ 0 and
∑

y K(x, y) = 1 for all x, y ∈ X .

Then the distribution of Yt starting from x can be expressed by

P{Yt = y|Y0 = x} = etQ(x, y) = e−(tq)(I−K)(x, y), ∀x, y ∈ X .

Another view point on the continuous-time semigroup Ht is the following. For

any Markov kernel K, let L = LK be a linear operator on R|X | defined by

∀x ∈ X , Lf(x) = (K − I)f(x) =
∑
y∈X

K(x, y)f(y)− f(x). (1.1)

The operator L can be viewed intuitively as a Laplacian operator on X . A di-

rect computation shows that, for any real-valued function f on X , the function

u(t, x) = Htf(x) is a solution for the initial value problem of the discrete-version

heat equation, i.e.,





(∂t + L)u = 0 u : R+ ×X → R

u(0, x) = f(x) ∀x ∈ X .

For any Markov kernel K, a measure π on X is called invariant(with respect

to K) if πK = π or equivalently

∀x ∈ X ,
∑
y∈X

π(y)K(y, x) = π(x). (1.2)

A measure π on X is called reversible if the following identity holds

∀x, y ∈ X , π(x)K(x, y) = π(y)K(y, x).

In this case, K is said to be reversible with respect to π. From these definitions,

it is obvious that a reversible measure is an invariant measure. Besides, if π

is invariant(resp. reversible) with respect to K, then, for all t ≥ 0, πHt = π

4



or equivalently
∑

y∈X π(y)Ht(y, x) = π(x) for all x ∈ X (resp. π(x)Ht(x, y) =

π(y)Ht(y, x) for all x, y ∈ X ).

Note that, for any Markov kernel K on X , a constant vector on X is a right

eigenvector of K with eigenvalue 1. This implies the existence of a real-valued

function f on X satisfying f = fK, or equivalently f(x) =
∑

y f(y)K(y, x) for all

x ∈ X . By the following computation,

∑
x∈X

|f(x)| =
∑
x∈X

∣∣∣∣∣
∑
y∈X

f(y)K(y, x)

∣∣∣∣∣ ≤
∑

x,y∈X
|f(y)|K(y, x) =

∑
y∈X

|f(y)|,

one can find that |f | is also a left eigenvector of K with eigenvalue 1. Hence, for

any Markov kernel, there exists a probability measure π, which is invariant with

respect to K. In that case, π is called a stationary distribution for K.

A Markov kernel K is called irreducible if, for any x, y ∈ X , there exists n =

n(x, y) such that Kn(x, y) > 0. A state x ∈ X is called aperiodic if Kn(x, x) > 0

for sufficiently large n, and K is called aperiodic if all states are aperiodic. It

is known that under the assumption of irreducibility of K, there exists a unique

stationary distribution π. In particular, the distribution π is positive everywhere.

In addition, if K is irreducible, then K is aperiodic if and only if X has an aperiodic

state.

Proposition 1.1. Let K be an irreducible Markov kernel on a finite set X with

the stationary distribution π. Then

∀x, y ∈ X , lim
t→∞

Ht(x, y) = π(y).

If K is irreducible and aperiodic, then

∀x, y ∈ X , lim
n→∞

Kn(x, y) = π(y).

5



Under mild assumptions —irreducibility for continuous-time Markov processes

and irreducibility and aperiodicity for discrete-time Markov chains— Proposition

1.1 shows the qualitative result that Markov chains converge to their stationarity

as time tends to infinity. If such a convergence happens, the Markov kernel is

called ergodic.

Note that the irreducibility of a Markov chain is sufficient, by Proposition 1.1,

but not necessary for the ergodicity. A counterexample for the necessity is to

consider a Markov chain on a two point space {0, 1} whose kernel is given by

K(0, 0) = 1, K(0, 1) = 0, K(1, 0) = 1− p, K(1, 1) = p,

where p ∈ (0, 1). In this example, K is not irreducible because Kn(0, 1) = 0 for

n ≥ 0. A few computations show that for n ≥ 1 and t > 0,

Kn =




1 0

1− pn pn


 , Ht =




1 0

1− e(p−1)t e(p−1)t


 .

By the above formulas, the distribution of the Markov chain starting from any

fixed state converges to (1, 0).

Proposition 1.2. Let K be a Markov kernel on a finite set X and π is a positive

probability measure on X . If, for all x, y ∈ X ,

lim
t→∞

Ht(x, y) = π(y),

then K is irreducible. If the following holds

lim
n→∞

Kn(x, y) = π(y), ∀x, y ∈ X ,

then K is irreducible and aperiodic.

6



By Proposition 1.1 and 1.2, if the limiting distribution is assumed positive, then,

in continuous-time cases, K is ergodic if and only if K is irreducible, whereas, in

discrete-time cases, ergodicity is equivalent to irreducibility and aperiodicity.

In many cases, the state space X is equipped with a group structure and the

Markov kernel K is driven by a probability measure p on X in the following way.

K(x, y) = p(x−1y), ∀x, y ∈ X .

Let E be the support of p and, for n ≥ 1, En denote the set

En = {x1x2 · · · xn : xi ∈ E, ∀1 ≤ i ≤ n}.

In the above setting, it is clear that the irreducibility of K is equivalent to the

existence of a positive integer n such that

X =
n⋃

i=1

Ei.

Under the assumption of irreducibility of K, the Markov kernel K is aperiodic if

and only if there exists a positive integer n such that X = En.

The following proposition characterizes the irreducibility and the aperiodicity

of finite Markov chains introduced in the previous paragraph, which has been

proved many times by many authors. See [25, 26] for references.

Proposition 1.3 (Proposition 2.3 in [24]). Let X be a finite group and p be a

probability measure on X with support E = {x ∈ X : p(x) > 0}. Let K be a

Markov kernel given by K(x, y) = p(x−1y) for x, y ∈ X . Then

(1) K is irreducible if and only if E generates X , that is, any element of X can

be expressed as a product of finitely many elements of E.

(2) Assume that K is irreducible. Then K is aperiodic if and only if E is not

contained in a coset of any proper normal subgroup of X .
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In particular, if X is simple and K is irreducible on X , then K is aperiodic.

To determine the reversibility of a Markov chain, by definition, one always

needs to compute the stationary distribution first. In the following, we introduce

a criterion to inspect the reversibility of a Markov chain without the computation

of its stationary distribution.

Proposition 1.4. Let K be an irreducible Markov kernel on a finite set X with

stationary distribution π. Then (K,π) is reversible if and only if for any sequence

{x0, ..., xn} with x0 = xn,

K(x0, x1)K(x1, x2) · · ·K(xn−1, xn)

= K(xn, xn−1)K(xn−1, xn−2) · · ·K(x1, x0).

(1.3)

Proof. Assume first that K is reversible with respect to π, that is, π(x)K(x, y) =

π(y)K(y, x) for all x, y ∈ X . Let {x0, ..., xn} be a sequence with x0 = xn. Then

n−1∏
i=0

K(xi, xi+1) =
n−1∏
i=0

π(xi+1)K(xi+1, xi)

π(xi)
=

n−1∏
i=0

K(xi+1, xi).

For the other direction, we assume that (1.3) holds for any sequence {x0, ..., xn}
satisfying x0 = xn. This implies that for x, y ∈ X and n ≥ 1,

Kn(x, y)K(y, x)

=
∑

x1,...,xn−1

K(x, x1)
n−2∏
i=1

K(xi, xi+1)K(xn−1, y)K(y, x)

=
∑

x1,...,xn−1

K(x, y)K(y, xn−1)
n−2∏
i=1

K(xi+1, xi)K(x1, x)

= K(x, y)Kn(y, x).

Applying the above identity to the expansion formula of the continuous-time semi-

group, we get

Ht(x, y)K(y, x) = Ht(y, x)K(x, y), ∀x, y ∈ X .

8



Letting t →∞, the reversibility of K is then proved by Proposition 1.1.

The following is an application of the above proposition to random walks on

finite trees.

Corollary 1.1. Let K be an irreducible Markov kernel on a finite set X and

G = (X , E) be an undirected graph induced from K whose vertex set is X and the

edge set E is given by

E = {{x, y} ∈ X × X : x 6= y, K(x, y) + K(y, x) > 0}.

If G is a tree, then K is reversible.

Remark 1.1. In Corollary 1.1, the induced graph G is connected if and only if K

is irreducible. In particular, if G is a tree, we have

∀x, y ∈ X , K(x, y) > 0 ⇐⇒ K(y, x) > 0.

Proof of Corollary 1.1. For convenience, any finite sequence of states in X is called

a path. For any path (x0, ..., xn), we let
∏n−1

i=0 K(xi, xi+1) denote its “weight”. By

the above remark, it suffices to prove the identity (1.3) with paths of positive

weight. To show this fact, we define D to be the set of all paths in G and, for all

x, y ∈ X , let f(x,y) be a function on D defined by

∀γ = (x0, ..., xn) ∈ D, f(x,y)(γ) =
n−1∑
i=0

δ(x,y)((xi, xi+1))− δ(y,x)((xi, xi+1)).

Since G is a tree, it is obvious that, for all x, y ∈ X , f(x,y)(γ) ∈ {1, 0,−1} for any

positively weighted path γ ∈ D. If x0 = xn is assumed further, then f(x,y)(γ) = 0

for all x, y ∈ X . This implies that, for such a path γ, the multiplicity of the

directed edge (x, y) in γ is the same as that of (y, x). Thus, for all x, y ∈ X , the

multiplicity of (x, y) in γ is the same as that in the inverse path of γ, (xn, ..., x0),

and hence γ and (xn, ..., x0) have the weight.

9



1.2 The `p-distance and the submultiplicativity

As a consequence of Proposition 1.1, irreducible and aperiodic Markov chains con-

verge in distribution to their stationarity. From the view point of the quantitative

study, one may arise the following question: How fast the convergence can be? To

answer this question, we need to specify the function used to measure the distance

between the law of a Markov chain and its stationary distribution. In this section,

we will introduce some frequently used distances or functions for measuring and

give some basic results.

Definition 1.1. Let µ and ν be probability measures on a set X . The total

variation distance between µ and ν is denoted and defined by

dTV(µ, ν) = ‖µ− ν‖TV = max
A⊂X

{µ(A)− ν(A)}.

Let π be a positive probability measure on X . For 1 ≤ p ≤ ∞ and any

(complex-valued) function f on X , the `p(π)-norm(or briefly the `p-norm) of f is

defined by

‖f‖p = ‖f‖`p(π) =





( ∑
x∈X

|f(x)|pπ(x)

)1/p

if 1 ≤ p < ∞

max
x∈X

|f(x)| if p = ∞
.

Definition 1.2. Let µ, ν and π be finite probability measures on X and assume

that π is positive everywhere. The `p(π)-distance(or briefly the `p-distance) be-

tween µ and ν is defined to be

dπ,p(µ, ν) = ‖f − g‖`p(π),

where f and g are densities of µ and ν with respect to π, that is, µ = fπ and

ν = gπ.

10



Remark 1.2. From the above two definitions, it is easy to see that, for any proba-

bility measures µ and ν,

∀π > 0, dπ,1(µ, ν) = 2dTV(µ, ν).

Let (X , µ) be a measure space. It is well-known that, for 1 ≤ p ≤ ∞, if f is

`p-integrable, then

‖f‖p = sup
‖g‖q≤1

∫

X
f(x)g(x)dµ(x),

where p−1 + q−1 = 1. By this fact, we may characterize the `p-distance in the

following way.

Proposition 1.5. Let π, µ, ν, f, g be the same as in Definition 1.2. Then, for

1 ≤ p ≤ ∞,

dπ,p(µ, ν) = sup
‖h‖q≤1

‖(f − g)h‖1,

where p−1 + q−1 = 1.

By Jensen’s inequality, if π is a positive probability measure, then

‖f‖p ≤ ‖f‖q, ∀1 ≤ p < q ≤ ∞.

With this fact, we may compare the `p and `q distances.

Proposition 1.6. Let π be a positive probability measure on X . For any two

probability measures µ, ν on X , one has

dπ,p(µ, ν) ≤ dπ,q(µ, ν), ∀1 ≤ p ≤ q ≤ ∞.

The following fact shows that, for fixed 1 ≤ p ≤ ∞, the `p-distance of Markov

chains to their stationarity decays exponentially.
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Proposition 1.7. Let K be an irreducible Markov kernel with stationary distrib-

ution π. Then, for 1 ≤ p ≤ ∞, the maps

n 7→ max
x∈X

dπ,p(K
n(x, ·), π) and t 7→ max

x∈X
dπ,p(Ht(x, ·), π)

are non-increasing and submultiplicative. In particular, if there exists β > 0 such

that

max
x∈X

dπ,p(K
m(x, ·), π) ≤ β (resp. max

x∈X
dπ,p(Hs(x, ·), π) ≤ β),

then for n ≥ m(resp. t ≥ s),

max
x∈X

dπ,p(K
n(x, ·), π) ≤ βbn/mc (resp. max

x∈X
dπ,p(Ht(x, ·), π) ≤ βbt/sc).

Remark 1.3. By Proposition 1.7, if β ∈ (0, 1), then the exponential convergence of

`p-distance has rate at least m−1 log(1/β) in discrete-time cases and rate s−1 log(1/β)

in continuous-time cases.

For any Markov kernel K, we may associate it with a linear operator which is

also denoted by K and defined by

Kf(x) =
∑
y∈X

K(x, y)f(y), ∀x ∈ X , f ∈ C|X |.

In a similar way, we can view Ht and π as linear operators on C|X | by setting

Htf(x) =
∑
y∈X

Ht(x, y)f(y), π(f) =
∑
x∈X

f(x)π(x).

To a standard usage, we let L∗ denote the adjoint operator of L. The follow-

ing proposition equates the maximum `p-distance and the operator norm of the

associated linear operator.

Proposition 1.8. Let K be an irreducible Markov operator with stationary distri-

bution π. For 1 ≤ p ≤ ∞,

max
x∈X

dπ,p(K
n(x, ·), π) = ‖Kn − π‖q→∞, for n ≥ 0,
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and

max
x∈X

dπ,p(Ht(x, ·), π) = ‖Ht − π‖q→∞, for t ≥ 0,

where p−1 + q−1 = 1 and for any linear operator L : `r(π) → `s(π),

‖L‖r→s = sup
‖f‖`r(π)≤1

‖Lf‖`s(π). (1.4)

Remark 1.4. By Jensen’s inequality, for 1 ≤ p ≤ ∞, the linear operators Kn and

Ht are contractions in `p, which means that

‖Kn‖p→p ≤ 1, ‖Ht‖p→p ≤ 1.

This fact implies

‖Ht+s − π‖p→∞ ≤ ‖Ht‖p→p‖Hs − π‖p→∞ ≤ ‖Hs − π‖p→∞

and

‖Ht+s − π‖p→∞ ≤ ‖Ht − π‖p→p‖Hs − π‖p→∞

≤ ‖Ht − π‖p→∞‖Hs − π‖p→∞.

By Proposition 1.8, these are the monotonicity and the submultiplicativity of the

map t 7→ maxx dπ,q(Ht(x, ·), π), where p−1 + q−1 = 1. The same line of reasoning

also applies for the discrete-time cases.

Besides the `p-distance, there are many other functions of interest in measuring

how close a Markov chain to its stationarity. We end this section by introducing

two other well-known functions which are frequently used in probability theory

and statistical physics. Let π be a positive probability measure on a finite set X .

For any probability measure µ on X , let h be the density of µ with respect to π.

The separation of µ with respect to π is defined by

dsep(µ, π) = max
x∈X

{1− h(x)},

13



and the (relative) entropy of µ with respect to π is defined by

dent(µ, π) = Entπ(µ) =
∑
x∈X

[h(x) log h(x)]π(x).

(Generally, the entropy of any nonnegative function f on X with respect to any

measure π is defined by Entπ(f) = π[f log(f/π(f))].) The following proposition

connects the `p-distance and the functions introduced above.

Proposition 1.9. Let π and µ be probability measures on a finite set X and π is

positive everywhere. Then one has

1

2
dπ,1(µ, π) ≤ dsep(µ, π) ≤ dπ,∞(µ, π)

and

1

2
dπ,1(µ, π)2 ≤ dent(µ, π) ≤ 1

2
[dπ,1(µ, π) + dπ,2(µ, π)2].

Proof. Let h = µ/π. For the first part, it is obvious that maxx{1 − h(x)} ≤
‖h− 1‖∞. For the lower bound, setting A = {x ∈ X : h(x) < 1} implies that

max
x∈X

{1− h(x)} = max
x∈A

{1− h(x)} ≥
∑
x∈A

{1− h(x)}π(x) = ‖µ− π‖TV.

For the second part, the upper bound is obtained by bounding the positive

terms in the summation of the entropy though the following inequality.

∀u > 0, (1 + u) log(1 + u) ≤ u +
u2

2
.

For the lower bound, applying the fact

∀u > 0,
√

3|u− 1| ≤
√

(4u + 2)(u log u− u + 1)

and Cauchy-Schwartz inequality implies that

3‖h− 1‖2
1 ≤ ‖4 + 2h‖1‖h log h− h + 1‖1 = 6π(h log h).
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As in Proposition 1.7, if the distance between a Markov chain and its station-

arity is measured by the maximum separation and the maximum entropy, then it

is decreasing in time.

Proposition 1.10. Let (X , K, π) be a finite Markov chain and Ht be the continuous-

time semigroup associated to K. Then the following maps

n 7→ max
x∈X

dsep(K
n(x, ·), π), t 7→ max

x∈X
dsep(Ht(x, ·), π), (1.5)

and

n 7→ max
x∈X

dent(K
n(x, ·), π), t 7→ max

x∈X
dent(Ht(x, ·), π). (1.6)

are non-increasing. Furthermore, the maps in (1.5) are submultiplicative.

Remark 1.5. By definition, if (X , K, π) an irreducible Markov chain, then

max
x∈X

dsep(K(x, ·), π) = max
x∈X

dsep(K
∗(x, ·), π).

Proof of Proposition 1.10. Let A1 and A2 be two stochastic matrices satisfying

π = πA1 = πA2 and set A = A1A2. For the first part, it suffices to prove that

max
x∈X

dsep(A(x, ·), π) ≤ max
x∈X

dsep(A1(x, ·), π)

and

max
x∈X

dent(A(x, ·), π) ≤ max
x∈X

dent(A1(x, ·), π).

The first inequality can be easily obtained by the following computation.

(
1− A(x, y)

π(y)

)
=

∑
z∈X

(
1− A1(x, z)

π(z)

)(
π(z)A2(z, y)

π(y)

)

≤ max
z∈X

{
1− A1(x, z)

π(z)

}
, ∀x, y ∈ X .

For the second one, note that

∀x, y ∈ X ,
A(x, y)

π(y)
=

∑
z∈X

(
A1(x, z)

π(z)

)(
π(z)A2(z, y)

π(y)

)
.
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Since the function u 7→ u log u is convex, by Jensen’s inequality, one has

A(x, y)

π(y)
log

(
A(x, y)

π(y)

)
≤

∑
z∈X

A1(x, z)

π(z)
log

(
A1(x, z)

π(z)

)
π(z)A2(z, y)

π(y)
.

Multiplying π(y) on both sides, summing up all entries y in X and taking the

maximum with respect to x implies the desired inequality.

For the submultiplicativity of the maximum separation, let A1, A2, A be the

same as in the previous paragraph. We prove this property by following the proof

in [3]. Let c1 = maxx dsep(A1(x, ·), π) and c2 = maxx dsep(A2(x, ·), π). By definition,

we may express A1 and A2 as follows.

A1(x, y) = (1− c1)π(y) + c1B1(x, y), ∀x, y ∈ X ,

and

A2(x, y) = (1− c2)π(y) + c2B2(x, y), ∀x, y ∈ X ,

where B1 and B2 are stochastic matrices. Furthermore, one may check that πB1 =

πB2 = π. A simple calculation gives

A(x, y) =
∑
z∈X

A1(x, z)A2(z, y) = (1− c1c2)π(y) + c1c2

∑
z∈X

B1(x, y)B2(x, y)

≥ (1− c1c2)π(y), ∀x, y ∈ X .

This proves the submultiplicativity of the maximum separation.

1.3 Poincaré inequality and the spectral gap

In this section, we introduce classical tools(the spectral gap of the transition ma-

trix) to bound the `2-distance of continuous-time Markov chains to their stationary

distributions. The following definition fits the classical notion of Dirichlet form if

a Markov chain (X , K, π) is reversible.
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Definition 1.3. Let (X , K, π) be an irreducible Markov chain. The quadratic

form

E(f, g) = EK(f, g) = Re〈(I −K)f, g〉π, ∀f, g ∈ C|X |,

is called the Dirichlet form associated to the semigroup Ht = e−t(I−K), where 〈·, ·〉π
is the inner product in the complex space `2(π).

By definition, if f = g, one can rewrite the Dirichlet form as follows.

Lemma 1.1. Let (X , K, π) be an irreducible Markov chain and E be the Dirichlet

form associated to the semigroup Ht. Then, for f ∈ C|X |,

E(f, f) = 〈(I − 1
2
(K + K∗))f, f〉π = ‖f‖2

2 − Re〈Kf, f〉π

=
1

2

∑
x,y∈X

|f(x)− f(y)|2K(x, y)π(x).

In particular, one has

∂

∂t
‖Htf‖2

2 = −2E(Htf, Htf), ∀t > 0. (1.7)

From (1.7), one can see that a bound of the ratio E(Htf,Htf)/‖Htf‖2
2 will give

a bound on the `2-norm of Htf . The following quantity is useful in bounding the

rate of the exponential convergence of the `2-distance.

Definition 1.4. Let (X , K, π) be a Markov chain with Dirichlet form E . The

spectral gap denoted by λ = λ(K) is defined by

λ = inf

{ E(f, f)

Varπ(f)
: Varπ(f) 6= 0

}
,

where Varπ(f) is the variance of f , that is, Varπ(f) = π(f − π(f))2.

By definition, λ(K) = λ(K∗). Generally, the spectral gap is not an eigenvalue

of I −K. Note that λ can be characterized by

λ = inf {E(f, f) : π(f) = 0, ‖f‖2 = 1} .
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If K is irreducible, the first equality in Lemma 1.1 and the minmax theorem in

matrix analysis imply that the spectral gap is the smallest non-zero eigenvalue of

I − 1
2
(K + K∗). In particular, if K is reversible, or equivalently, the operator K

is self-adjoint in `2(π), then λ is the smallest non-zero eigenvalue of I −K. Since

the operator K + K∗ is self-adjoint, the spectral gap can be obtained by taking

the infimum of the ratio in Definition 1.4 over all real-valued functions f .

Definition 1.5. Let (X , K, π) be an irreducible Markov chain. A Poincaré in-

equality is an inequality of the following type

‖f − π(f)‖2
2 ≤ CE(f, f), ∀f ∈ `2(π),

where C is a positive constant in dependent of f .

From the above definition, if the Poincaré inequality holds for a Markov kernel

K with constant C, then λ(K) ≥ C−1. In other words, the spectral gap is the

inverse of the smallest C such that the Poincaré inequality holds.

By applying (1.7), we may bound the operator norm ‖Ht − π‖2→2 from above

by using the spectral gap.

Proposition 1.11. Let (X , K, π) be an irreducible Markov chain and λ be the

spectral gap of K. Then the continuous-time semigroup Ht satisfies

∀f ∈ `2(π), ‖Htf − π(f)‖2
2 ≤ e−2λtVarπ(f).

Proof. Let g = f − π(f). By Lemma 1.1, one has

∂

∂t
‖Htg‖2

2 = −2E(Htg, Htg) ≤ −2λVarπ(Htg) = −2‖Htg‖2
2.

This implies that

‖Htf − π(f)‖2
2 = ‖Htg‖2

2 ≤ e−2λt‖H0g‖2
2 = e−2λtVarπ(f).
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Remark 1.6. Since the Dirichlet form and the variance are invariant under the

addition of a constant vector, the conclusion in Proposition 1.11 is equivalent to

saying that

‖Ht − π‖2→2 ≤ e−λt, ∀t > 0.

By considering the spectrum of a Markov kernel, if K is reversible, we have ‖Ht−
π‖2→2 = e−λt for all t > 0. In general, this identity does not hold for all t > 0.

However, it is proved in [12] that λ is the largest value β such that ‖Ht− π‖2→2 ≤
e−βt for all t > 0.

By Proposition 1.11, we may derive an upper bound on the `2-distance for

continuous-time Markov chains.

Theorem 1.1. Let (X , K, π) be an irreducible Markov chain and λ be the spectral

gap of K. One has

∀x ∈ X , dπ,2(Ht(x, ·), π) ≤ π(x)−1/2e−λt,

and

∀x, y ∈ X , |Ht(x, y)− π(y)| ≤
√

π(y)/π(x)e−λt.

Proof. Let H∗
t be the adjoint operator of Ht and set δx(y) = π(x)−1 if x = y

and δx(y) = 0 otherwise. Since λ(K) = λ(K∗), we have, by letting f = δx in

Proposition 1.11,

dπ,2(Ht(x, ·), π)2 = ‖H∗
t δx − π(δx)‖2

2 ≤ e−2λtVarπ(δx) =
(
π(x)−1 − 1

)
e−2λt.

This proves the first identity.

For the second one, note that

dπ,2(H
∗
t (x, ·), π) ≤ π(x)−1/2e−λt.
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This implies that, for x, y ∈ X ,

|Ht(x, t)− π(y)| = π(y)

∣∣∣∣∣
∑
z∈X

(
Ht/2(x, z)

π(z)
− 1

) (
H∗

t/2(y, z)

π(z)
− 1

)
π(z)

∣∣∣∣∣

≤ π(y)dπ,2(Ht/2(x, ·), π)dπ,2(H
∗
t/2(y, ·), π)

≤
√

π(y)/π(x)e−λt,

where the first inequality applies the Cauchy-Schwartz inequality.

To relate the spectral gap and the spectrum of K, we define another quantity

as follows.

ω = ω(K) = min{Reβ : β 6= 0, β is an eigenvalue of I −K}. (1.8)

Since Ht = e−t(I−K), it follows that the spectral radius of Ht − π in `2(π) is e−tω.

This implies, for all 1 ≤ p ≤ ∞,

‖Ht − π‖p→p ≥ e−ωt, ∀t > 0. (1.9)

In particular, we have, by applying the operator theory,

lim
t→∞

‖Ht − π‖1/t
p→q = e−ω, ∀1 ≤ p, q ≤ ∞.

The next theorem summarizes the above fact.

Theorem 1.2. Let (X , K, π) be an irreducible Markov chain, λ be the spectral gap

of K and ω be the quantity defined in (1.8). For all 1 ≤ p ≤ ∞,

lim
t→∞

−1

t
log

(
max
x∈X

dπ,p(Ht(x, ·), π)

)
= ω.

In particular, λ ≤ ω.

Proof. Immediate from Proposition 1.8, Remark 1.6 and the discussion in the

paragraph before this theorem.
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As a consequence of Theorem 1.2, the rate of the exponential convergence of

the maximum `p-distance is asymptotically ω, not the spectral gap λ. However, if

an irreducible Markov kernel K is normal, that is, K∗K = KK∗, then λ = ω. This

implies that the asymptotical rate of the exponential convergence is the spectral

gap. From this discussion, one can see that the spectral gap is closely related to

the long-term behavior of a Markov chain. To reflect the finite-time behavior of

the convergence and the notion of “time to equilibrium”, we consider the following

quantity.

Definition 1.6. Let (X , K, π) be an irreducible Markov chain and Ht be the

associated continuous-time semigroup. For 1 ≤ p ≤ ∞, the `p-mixing time is

denoted by Tp = Tp(K) and defined by

Tp = inf

{
t > 0 : max

x∈X
dπ,p(Ht(x, ·), π) ≤ 1/e

}
.

By (1.9) and Theorem 1.1, we may bound the `p-mixing time as follows.

Theorem 1.3. Let (X , K, π) be an irreducible Markov kernel and set π∗ = min{π(x) :

x ∈ X}. For 1 ≤ p ≤ 2,

1

ω
≤ Tp ≤ 1

λ

(
1 +

1

2
log

1

π∗

)
,

and, for 2 < p ≤ ∞,

1

ω
≤ Tp ≤ 1

λ

(
1 + log

1

π∗

)
.

Proof. The lower bound is obtained from (1.9) and Proposition 1.8. For the upper

bounds, note that, by Proposition 1.6, the identities in Theorem 1.1 imply that

∀1 ≤ p ≤ 2, max
x∈X

dπ,p(Ht(x, ·), π) ≤ π−1/2
∗ e−λt

and

∀1 ≤ p ≤ ∞, max
x∈X

dπ,p(Ht(x, ·), π) ≤ π−1
∗ e−λt.
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This is sufficient to prove the desired upper bounds.

For an illustration of the above theorem, we consider the following example.

Example 1.1. Fix n > 1 and let Kn be a Markov kernel given by

Kn(x, x + 1) = Kn(x, x− 1) = 1/2, ∀x ∈ Zn,

where Zn is the n-cycle. It is an easy exercise that Kn is irreducible and the

stationary distribution πn is a uniform distribution on Zn. By a method in Feller

[13, p.353], the following functions

φn,i(j) = cos(2πij/n), ∀0 ≤ j ≤ n− 1, 0 ≤ i ≤ b(n− 1)/2c,

and

φn,n−i(j) = sin(2πij/n), ∀0 ≤ j ≤ n− 1, 1 ≤ i ≤ d(n− 1)/2e,

are eigenfunctions of Kn and the corresponding eigenvalues βn,0, βn,1, ..., βn,n−1 are

given by

βn,0 = 1, βn,i = βn,n−i = cos(2πi/n), ∀1 ≤ i ≤ d(n− 1)/2e.

Since Kn is reversible, the spectral gap is λ(Kn) = ω(Kn) = 1− cos(2π/n).

Let Hn,t be the continuous-time semigroup associated to Kn. Applying Theo-

rem 1.1 and Theorem 1.3 and using (1.9) derives

e−t(1−cos(2π/n)) ≤ dπ,2(Hn,t(x, ·), π) ≤ √
ne−t(1−cos(2π/n)), ∀n ≥ 1.

and, for 1 ≤ p ≤ ∞,

n2

2π2
∼ 1

1− cos(2π/n)
≤ Tp(Kn) ≤ 1

1− cos(2π/n)
(1 + log n) ∼ n2 log n

2π2
.

This means that, for 1 ≤ p ≤ ∞, the `p-distance of continuous-time Markov chains

asymptotically cannot be too small before the time of order n2 but is close to 0
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after the time Cn2 log n for large C. It is worthwhile noting that the correct order

for the `p-mixing time is n−2.
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Chapter 2

Hypercontractivity and the logarithmic

Sobolev constant
Since Gross introduced the notions of the logarithmic Sobolev constant and of

the hypercontractivity, many techniques are developed to compute the logarithmic

Sobolev constant. The hypercontractivity is proved useful in bounding the conver-

gence rate of Markov chains to their stationarity. An informative account of the

development of logarithmic Sobolev inequalities can be found in the survey paper

[14].

In Section 2.1, we define the logarithmic Sobolev constant and use it to bound

the entropy of a Markov chain. In Section 2.2, we introduce how the hypercontrac-

tivity can be used to bound the `p-distance and the `p-mixing time. In Section 2.3,

diverse techniques for the estimation of the logarithmic Sobolev constant are intro-

duced. In Section 2.4, we determine the explicit value of the logarithmic Sobolev

constant for some examples.

2.1 The logarithmic Sobolev constant

The definition of the logarithmic Sobolev constant is very similar to that of the

spectral gap. For a motive of why we concern such a constant, let’s start by looking

at the relative entropy of the continuous-time Markov chain. Let (X , K, π) be an

irreducible Markov chain, Ht be the associated continuous-time semigroup of K

and E be the Dirichlet form. Recall that the entropy of a probability measure µ
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with respect to π is defined by

Entπ(µ) = π(h log h),

where µ = hπ. Here we abuse the usage of Ent by letting

Entπ(f) = π(f log f),

if f is a any nonnegative function but not a probability measure. A simple com-

putation shows that, for any probability measure µ,
∑

x µ(x)/π(x) 6= 1 and

Entπ(µHt) = Entπ

(∑
y∈X

π(y)Ht(y, ·)
π(·)

µ(y)

π(y)

)
= Entπ(H∗

t h),

where h = µ/π. In the above setting, we have

∀t > 0,
∂

∂t
Entπ(H∗

t h) = −E(H∗
t h, log(H∗

t h)) ≤ −2E(
√

H∗
t h,

√
H∗

t h), (2.1)

where the inequality is proved by Diaconis and Saloff-Coste in [11, Lemma 2.7] and

has an improved coefficient 4 instead of 2 if K is assumed reversible. By (2.1), one

can see that a bound on the ratio Entπ(H∗
t h)/E(

√
H∗

t h,
√

H∗
t h) suffices to give a

bound the rate of the convergence. To define the logarithmic Sobolev constant, we

need to replace the variance by the following entropy-like quantity.

L(f) = Lπ(f) =
∑
x∈X

|f(x)|2 log

( |f(x)|2
‖f‖2

2

)
π(x). (2.2)

Since u 7→ u log u is convex, Jensen’s inequality implies that L(f) is nonnegative.

Furthermore, if π is positive everywhere, then L(f) = 0 if and only if f is constant.

Note that if ‖f‖2 = 1, that is, f 2 is the probability density of µ = f 2π with

respective to π, then

L(f) = Entπ(µ).
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Definition 2.1. Let (X , K, π) be an irreducible Markov chain and L be the func-

tional defined in (2.2). The logarithmic Sobolev constant α = α(K) is defined

by

α = inf

{E(f, f)

L(f)
: L(f) 6= 0

}
.

By definition, it is clear that α(K) = α(K∗). Obviously, one has L(f) = L(|f |)
and E(|f |, |f |) ≤ E(f, f). By these facts, the logarithmic Sobolev constant can

be obtained by taking the infimum of the ratio E(f, f)/L(f) over all nonnegative

functions f .

Definition 2.2. Let (X , K, π) be an irreducible Markov chain and E be the Dirich-

let form. A logarithmic Sobolev inequality is an inequality of the following type.

CL(f) ≤ E(f, f), for all function f,

where C is a nonnegative constant.

By the above definition, if the logarithmic Sobolev inequality holds for some

constant C ≥ 0, then α ≥ C. In other words, α is the largest constant C such

that the logarithmic Sobolev inequality holds. One may think of the existence of

a function f such that the ratio E(f, f)/L(f) is equal to 0, which means that the

logarithmic Sobolev inequality never holds unless C = 0. It has been proved that

the irreducibility eliminates such a possibility. Thus, one needs to consider only the

case C > 0 in Definition 2.2. For a proof of the fact α > 0, please see Proposition

2.3. By (2.1), the entropy of a continuous-time Markov chain is bounded from

above as follows.

Proposition 2.1. Let (X , K, π) be an irreducible Markov chain, Ht be the asso-

ciated semigroup and α be the logarithmic Sobolev constant. Let µ be a probability
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measure on X . Then one has

Entπ(µHt) ≤





e−2αtEntπ(µ) in general

e−4αtEntπ(µ) if K is reversible.

In particular, for x ∈ X ,

Entπ(Ht(x, ·)) ≤





e−2αt log 1
π(x)

in general

e−4αt log 1
π(x)

if K is reversible.

Proof. Let h = µ/π. By (2.1), one can easily prove that for t > 0,

Entπ(µHt) = Entπ(H∗
t h) ≤ e−2αtEntπ(h) = Entπ(µ).

The same proof as above works for the reversible cases. The second part is followed

by letting µ = δx, where δx(y) = 1 if y = x and δx(y) = 0 otherwise.

By applying Proposition 1.9 and Proposition 2.1, one may give an upper bound

on the total variation distance.

Corollary 2.1. Let (X , K, π) be an irreducible Markov chain and α be the loga-

rithmic Sobolev constant of K. Then, for t > 0,

dπ,1(Ht(x, ·), π) ≤
√

2 log(1/π(x))e−αt,

and, if K is reversible,

dπ,1(Ht(x, ·), π) ≤
√

2 log(1/π(x))e−2αt.

In particular, one has

T1 ≤ 1

2α

(
3 + log+ log

1

π∗

)
,

and, for reversible chains,

T1 ≤ 1

4α

(
3 + log+ log

1

π∗

)
,

where π∗ = minx π(x) and log+ t = max{0, log t}.
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2.2 Hypercontractivity

In the previous section, the entropy and the `1-distance of a continuous-time

Markov chain are proved to converge exponentially with rate at least the loga-

rithmic Sobolev constant. It is natural to consider using the logarithmic Sobolev

constant to bound the `p-distance. The following theorem is the well-known hy-

percontractivity introduced in [14], which is sufficient to derive a bound on the

`p-distance.

Theorem 2.1. (Theorem 3.5 in [11])Let (X , K, π) be an irreducible Markov

chain and α be the logarithmic Sobolev constant of K.

(1) Assume that there exists β > 0 such that ‖Ht‖2→q ≤ 1 for all t > 0 and

2 ≤ q < ∞ satisfying e4βt ≥ q− 1. Then βL(f) ≤ E(f, f) for all f , and thus

α ≥ β.

(2) Assume that (K, π) is reversible. Then ‖Ht‖2→q ≤ 1 for all t > 0 and

2 ≤ q < ∞ satisfying e4αt ≥ q − 1.

(3) For non-reversible chains, we have ‖Ht‖2→q ≤ 1 for all t > 0 and 2 ≤ q < ∞
satisfying e2αt ≥ q − 1.

Proof. See the proof given in [11].

Remark 2.1. Note that if (K, π) is reversible, then the first two assertions in The-

orem 2.1 characterize the logarithmic Sobolev constant as follows.

α = max{β : ‖Ht‖2→q ≤ 1, ∀t ≥ 1
4β

log(q − 1), 2 ≤ q < ∞}.

To point out a surprising observation from the hypercontractivity, we recall the

following fact in [23].
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Lemma 2.1. Assume that K is a normal operator on `2(π) and β0 = 1, β1, ..., β|X |−1

are the eigenvalues of K with corresponding eigenvectors φ0 ≡ 1, φ1, ..., φ|X |−1.

Then, for all x ∈ X , one has

‖Ht(x, ·)/π‖2
2 =

|X |−1∑
i=0

e−2t(1−Reβi)|φi(x)|2.

It follows from the above lemma that ‖Ht‖2→∞ > 1 if K is normal. Since

Ht is a contraction in `2 and has eigenvalue 1 with corresponding eigenvector 1,

we have ‖Ht‖2→2 = 1. A nontrivial observation, even in the discrete setting of a

state space, from the hypercontractivity is the existence of 0 < tq < ∞, for any

2 < q < ∞, such that ‖Ht‖2→q = 1 when t ≥ tq.

By Theorem 2.1, we may bound the `p-distance from above by using the loga-

rithmic Sobolev constant.

Theorem 2.2. Let (X , K, π) be an irreducible Markov chain and λ and α be the

spectral gap and the logarithmic Sobolev constant of K. Then, for ε, θ, σ ≥ 0 and

t = ε + θ + σ,

dπ,2(Ht(x, ·), π) ≤





‖Hε(x, ·)/π‖2/(1+e4αθ)
2 e−λσ if K is reversible

‖Hε(x, ·)/π‖2/(1+e2αθ)
2 e−λσ in general

.

In particular, for c ≥ 0, one has

dπ,2(Ht(x, ·), π) ≤ e1−c,

as

t =





(4α)−1 log+ log(1/π(x)) + cλ−1 if K is reversible

(2α)−1 log+ log(1/π(x)) + cλ−1 in general

,

where log+ t = max{0, log t}.

29



Proof. We consider only the reversible case by using Theorem 2.1(2), while the

general case can be proved by applying Theorem 2.1(3). Let θ > 0 and q(θ) =

1 + e4αθ. By Theorem 2.1(2), it is clear that ‖Hθ‖2→q(θ) ≤ 1, and by the duality

given in Lemma A.1, it follows that ‖H∗
θ‖q′(θ)→2 ≤ 1, where q(θ)−1 +(q′(θ))−1 = 1.

For convenience, let hx
t denote the density of Ht(x, ·) with respect to π. Note that

hx
t+s = H∗

t hx
s . This implies

‖hx
t − 1‖2 = ‖(H∗

σ − π)(H∗
θ hx

ε )‖2

≤ ‖H∗
σ − π‖2→2‖H∗

θ‖q′(θ)→2‖hx
ε ‖q′(θ) ≤ e−λσ‖hx

ε ‖2/q(θ)
2 ,

where the last inequality uses Remark 1.6 and the following Hölder inequality.

‖f‖q′ ≤ ‖f‖1−2/q
1 ‖f‖2/q

2 ,

for all 1 ≤ q′ ≤ 2 and q−1 + (q′)−1 = 1. This proves the first inequality.

For the second part, note that ‖hx
0‖2 = π(x)−1/2 for x ∈ X . By letting ε = 0,

we obtain

‖hx
t − 1‖2 ≤

(
1

π(x)

)1/(1+e4αθ)

e−λσ.

Let σ = cλ−1. To get the desired upper bound for the `2-distance, we let σ = cλ−1,

choose θ = 0 if π(x) > e−1, and put

θ =
1

4α
log log

1

π(x)
,

if π(x) < e−1.

Using the Cauchy-Schwartz inequality, the `∞-distance can be bounded from

above by the `2-distance. In fact, for t > 0, one has

|ht(x, y)− 1| =
∣∣∣∣∣
∑
z∈X

(ht/2(x, z)− 1)(h∗t/2(y, z)− 1)π(z)

∣∣∣∣∣

≤ ‖ht/2(x.·)− 1‖2‖h∗t/2(y, ·)− 1‖2.
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This implies the following corollary.

Corollary 2.2. Let (X , K, π) be an irreducible Markov chain and λ and α be the

spectral gap and logarithmic Sobolev constant of K. Then, for c > 0, one has

|Ht(x, y)/π(y)− 1| ≤ e2−c,

if

t =





1
4α

(
log+ log 1

π(x)
+ log+ log 1

π(y)

)
+ cλ−1 if K is reversible

1
2α

(
log+ log 1

π(x)
+ log+ log 1

π(y)

)
+ cλ−1 in general

,

where log+ t = max{0, log t}.

Summing up Theorem 2.2 and Corollary 2.2, we may bound the `p-mixing time

by using the logarithmic Sobolev constant.

Corollary 2.3. Let K be a reversible and irreducible Markov chain with stationary

distribution π and α be the logarithmic Sobolev constant. For 1 ≤ p ≤ ∞, let Tp

be the `p-mixing time of K. Then, for 1 < p ≤ 2,

1

2mpα
≤ Tp ≤ 1

4α

(
4 + log+ log

1

π∗

)

and for 2 < p ≤ ∞,

1

2α
≤ Tp ≤ 1

2α

(
3 + log+ log

1

π∗

)

where log+ t = max{0, log t}, π∗ = minx π(x) and mp = 1 + d(2− p)/(2p− 2)e.

Proof. The upper bounds are obtained immediately from Theorem 2.2 and Corol-

lary 2.2. For the lower bound, Theorem 3.9 in [11] proves the case 2 < p ≤ ∞.

For 1 < p ≤ 2, we use the fact

T2 ≤ mpTp, ∀1 < p ≤ 2.
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Remark 2.2. For general cases, Theorem 2.2 and Corollary 2.2 derive an upper

bound of the `p-mixing time which is twice of that in Corollary 2.3.

Remark 2.3. Comparing Corollary 2.3 with Theorem 1.3, one may find that to

bound the `p-mixing time of a reversible continuous-time Markov chain, the loga-

rithmic Sobolev constant is more closely related to Tp than the spectral gap.

2.3 Tools to compute the logarithmic Sobolev constant

It follows from Theorem 1.3 and Corollary 2.3 that the logarithmic Sobolev con-

stant provides a tighter bound(in the sense of order) for the time to equilibrium

Tp than the spectral gap. Based on Corollary 2.3, to bound the `p-mixing time by

using the logarithmic Sobolev constant, we need to determine its value. For this

view point, it is natural to ask: can one compute explicitly or estimate the con-

stant α? In this section, we introduce several established tools to help determine

the logarithmic Sobolev constant.

1. Bounding α from above by using the spectral gap λ. The following

proposition establishes a relation between the spectral gap and the logarithmic

Sobolev constant.

Proposition 2.2. (Lemma 2.2.2 in [23]) Let (X , K, π) be an irreducible Markov

chain. Then the spectral gap λ and the logarithmic Sobolev constant α of K satisfy

α ≤ λ/2. Furthermore, let φ be an eigenvector of the matrix 1
2
(K + K∗) whose

corresponding eigenvalue is (1− λ). If π(φ3) 6= 0, then α < λ/2.

Proof. We show by following the proof in [23] whose original idea comes from [22].

Let g be a real function on X and set f = 1 + εg. Then for small enough ε, we
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have

f 2 log f 2 = (1 + 2εg + ε2g2)
(
2εg − ε2g2 + 2

3
ε3g3 + O(ε4)

)

= 2εg + 3ε2g2 + 2
3
ε3g3 + O(ε4),

and

f 2 log ‖f‖2
2 = (1 + 2εg + ε2g2)

[
2επ(g) + ε2(π(g2)− 2π(g)2)

+ ε3
(

8
3
π(g)3 − 2π(g)π(g2)

)
+ O(ε4)

]

= 2επ(g) + ε2(4gπ(g) + π(g2)− 2π(g)2)

+ ε3
[

8
3
π(g)3 − 2π(g)π(g2) + 2gπ(g2)

− 4gπ(g)2 + 2g2π(g)
]
+ O(ε4)

Thus,

f 2 log
f 2

‖f‖2
2

= 2ε [g − π(g)] + ε2
[
3g2 − 4gπ(g)− π(g2) + 2π(g)2

]

+ ε3
[

2
3
g3 − 8

3
π(g)3 + 2π(g)π(g2)− 2gπ(g2)

+ 4gπ(g)2 − 2g2π(g)
]
+ O(ε4)

and

L(f) = 2ε2Varπ(g) + ε3
[

2
3
π(g3) + 4

3
π(g)3 − 2π(g)π(g2)

]
+ O(ε4),

where O(·) depends only on ‖g‖∞.

To finish the proof, note that E(f, f) = ε2E(g, g). Let φ be an eigenfunction

of 1
2
(K + K∗) whose eigenvalue is 1 − λ. By definition, it is clear that E(φ, φ) =

λVarπ(φ) and π(φ) = 0. Letting g = φ implies

α ≤ E(f, f)

L(f)
=

λVarπ(φ)

2Varπ(φ) + 2
3
επ(φ3) + O(ε2)

33



The first inequality is obtained by letting ε → 0. For the second part, since

π(φ3) 6= 0, we may choose |ε| > 0 such that επ(φ3) > 0 and 2
3
επ(φ3) > O(ε2). This

proves the second inequality.

2. One sufficient condition for α = λ/2. As a consequence of Proposition 2.2,

the logarithmic Sobolev constant α is bounded from above by λ/2. Furthermore,

a sufficient condition for the case 2α < λ is also given in that proposition. In the

following, we give a necessary condition for the situation 2α < λ to happen.

Proposition 2.3. (Theorem 2.2.3 in [23]) Let (X , K, π) be an irreducible

Markov chain and λ and α be the spectral gap and the logarithmic Sobolev con-

stant of K. Then either α = λ/2 or there exists a positive non-constant function

u which is a solution of

2u log u− 2u log ‖u‖2 =
1

α
(I −K)u = 0, (2.3)

where α = E(u, u)/L(u). In particular, α > 0.

Proof. We prove by considering the minimizer of the infimum in Definition 2.1.

Note that we may restrict ourselves to non-negative vectors with mean 1(under

π). By definition, either α is attained by a nonnegative non-constant vector, say

u, or the infimum is attained at the constant vector 1. In the latter case, one may

choose a minimizing sequence (1 + εngn)∞1 satisfying

εn → 0 and π(gn) = 0, ‖gn‖2 = 1, ∀n ≥ 1.

This implies that the sequence {‖gn‖∞} is bounded from above and below by

positive numbers. Then, by the proof of Proposition 2.2, we get

α = lim
n→∞

E(1 + εngn,1 + εngn)

L(1 + εngn)

= lim
n→∞

E(gn, gn)

2Varπ(gn) + O(εn)
≥ lim inf

n→∞
λ

2 + O(εn)
=

λ

2

34



This proves α = λ/2.

If α is attained by a nonnegative non-constant vector f , then by viewing

E(f, f)/L(f) as a function defined on R|X |, we have the following Euler-Lagrange

equation

∇
(E(f, f)

L(f)

) ∣∣∣∣
f=u

= 0,

which is identical to (2.3). To show the positiveness of u, observe that if u(x) = 0

for some x ∈ X , then (2.3) implies that Ku(x) = 0, or equivalently, u(y) = 0 if

K(x, y) > 0. Thus, by the irreducibility of K, one has u ≡ 0, which contradicts

the assumption that u is not constant.

Remark 2.4. Note that a constant function is always a solution of (2.3).

Corollary 2.4. Let (X , K, π) be an irreducible Markov chain and λ and α be the

spectral gap and logarithmic Sobolev constant of K. If a non-constant function u

on X and a positive number β satisfy the following system of equations

(I −K)u = 2β(u log u− u log ‖u‖2), (2.4)

then β = E(u, u)/L(u). In particular, (2.4) has no non-constant solution for β ∈
(0, α). Moreover, if (2.4) has no non-constant solution for β ∈ (0, λ/2), then

α = λ/2.

3. Comparison technique. In many cases, the model of interest is complicated

but can be replaced by a simpler one. In that case, the tradeoff of the replacement

can be the loss of the accuracy of α(up to a constant) but the advantage is the

simplicity of the new chain and, mostly, α is of the same order as the logarithmic

Sobolev constant of the new Markov chain.
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Proposition 2.4. (Lemma 2.2.12 in [23]) Let (X1, K1, π1) and (X2, K2, π2) be

irreducible Markov chains and E1 and E2 be respective Dirichlet forms. Assume

that there exists a linear map

T : `2(π1) → `2(π2)

and constant A > 0, B ≥ 0, a > 0 such that, for all f ∈ `2(π1),

E2(Tf, Tf) ≤ AE1(f, f), aVarπ1(f) ≤ Varπ2(Tf) + BE1(f, f).

Then the spectral gaps λ1 = λ(K1) and λ2 = λ(K2) satisfy

aλ2

A + Bλ2

≤ λ1.

Similarly, if

E2(Tf, Tf) ≤ AE1(f, f), aLπ1(f) ≤ Lπ2(Tf) + BE1(f, f),

then the logarithmic Sobolev constants α1 = α(K1) and α2 = α(K2) satisfy

aα2

A + Bα2

≤ α1.

In particular, if X1 = X2, E2 ≤ AE1 and aπ1 ≤ π2, then

aλ2

A
≤ λ1,

aα2

A
≤ α1.

Proof. The proof follows from the variational definitions of the spectral gap and

the logarithmic Sobolev constant. For the spectral gap, we have

aVarπ1(f) ≤ Varπ2(Tf) + BE1(f, f) ≤ E2(Tf, Tf)

λ2

+ BE1(f, f)

≤
(

A

λ2

+ B

)
E1(f, f).

The proof for the logarithmic Soboloev constant goes in the same way.
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To show the last part, consider the following characterizations of λ and α.

Varπ(f) = min
c∈R

‖f − c‖2
2 = min

c∈R

∑
x∈X

[f(x)− c]2π(x), (2.5)

and

Lπ(f) =
∑
x∈X

[
f 2(x) log f 2(x)− f 2(x) log ‖f‖2

2 − f 2(x) + ‖f‖2
2

]
π(x)

= min
c>0

∑
x∈X

[
f 2(x) log f 2(x)− f 2(x) log c− f 2(x) + c

]
π(x).

(2.6)

Letting T = I implies that

aVarπ1(f) ≤ Varπ2(f), aLπ1(f) ≤ Lπ2(f),

where the second one use the fact, t log t− t log s− t + s ≥ 0 for t, s ≥ 0.

The following is a simple but useful tool which involves collapsing a chain to

that with a smaller state space.

Corollary 2.5. Let (X1, K1, π1) and (X2, K2, π2) be irreducible Markov chains and

E1 and E2 be respective Dirichlet forms. Assume that there exists a surjective map

p : X2 → X1 such that

E2(f ◦ p, f ◦ p) ≤ AE1(f, f), ∀f ∈ R|X1|,

and

aπ1(f) ≤ π2(f ◦ p), ∀f ≥ 0.

Then the spectral gaps λ1 = λ(K1), λ2 = λ(K2) and the logarithmic Sobolev con-

stants α1 = α(K1), α2 = α(K2) satisfy

aλ2

A
≤ λ1,

aα2

A
≤ α1.

In particular, if a = A = 1, α2 = λ2/2 and λ1 = λ2, then α1 = λ1/2.
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Proof. Let T : `2(π1) → `2(π2) be a linear map defined by Tf = f ◦ p. In this

setting, the assumption becomes

E2(Tf, Tf) ≤ AE1(f, f), ∀f ∈ R|X1|,

and

aπ1(f) ≤ π2(Tf), ∀f ≥ 0.

By (2.5) and (2.6), the second inequality implies

aVarπ1(f) ≤ Varπ2(Tf), aLπ1(f) ≤ Lπ2(Tf), ∀f ∈ R|X1|.

The desired identity is then proved by Proposition 2.4.

Remark 2.5. Note that, in Corollary 2.5, if π1 is a pushforward of π2, that is,

∑

y:p(y)=x

π2(y) = π1(x), ∀x ∈ X1,

then π1(f) = π2(f ◦ p) for all f ∈ R|X1|.

The following is a further corollary of Corollary 2.5 and the above remark which

gives a sufficient condition on a = A = 1 in Corollary 2.5.

Corollary 2.6. Let (X1, K1, π1) and (X2, K2, π2) be irreducible Markov chains and

p : X2 → X1 be a surjective map. Assume that, for all x, y ∈ X1,

∑

z:p(z)=x
w:p(w)=y

π2(z)K2(z, w) = π1(x)K1(x, y). (2.7)

Let λ1, λ2 and α1, α2 be respectively the spectral gaps and logarithmic Sobolev con-

stants of K1 and K2. Then

λ2 ≤ λ1, α2 ≤ α1.

In particular, if λ1 = λ2 and α2 = λ2/2, then α1 = λ1/2.
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Proof. It suffices to show that both constants a,A in Corollary 2.5 are equal to 1.

Let E1 and E2 be the Dirichlet forms of (X1, K1, π1) and (X2, K2, π2). By Lemma

1.1, a simple computation shows

E1(f, f) =
1

2

∑
x,y∈X1

|f(x)− f(y)|2π1(x)K1(x, y)

=
1

2

∑
x,y∈X1

∑

z:p(z)=x
w:p(w)=y

|f ◦ p(z)− f ◦ p(w)|2π2(z)K2(z, w)

=
1

2

∑
z,w∈X2

|f ◦ p(z)− f ◦ p(w)|2π2(z)K2(z, w) = E2(f ◦ p, f ◦ p).

By the definition of a stationary distribution in (1.2), summing up each side of

(2.7) over all x ∈ X1 implies

∑

w:p(w)=y

π2(w) = π1(y), ∀y ∈ X1.

By Remark 2.5, π1(f) = π2(f ◦ p) for all real f . Thus, by Corollary 2.5, λ2 ≤ λ1

and α2 ≤ α1.

In some models, we may “collapse” the state space into a smaller one by par-

titioning the state space into several subsets and viewing each of them as a new

state. In the induced state space, the stationary distribution of the new Markov

chain is a lumped probability of the original one in the sense of Remark 2.5. The

following proposition provides a sufficient condition for collapsing Markov chains.

Proposition 2.5. Let (X2, K2, π2) be an irreducible Markov chain and p : X2 → X1

be a surjective map. Assume that

K2(f ◦ p)(x) = K2(f ◦ p)(y), ∀p(x) = p(y), f ∈ R|X1|. (2.8)

Set, for z, w ∈ X1,

K1(z, w) :=
∑

t:p(t)=w

K2(s, t),
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where p(s) = z. Then K1 is irreducible and the stationary distribution π1 is given

by

π1(x) =
∑

y:p(y)=x

π2(y).

Furthermore, if λ1, λ2 and α1, α2 are respectively the spectral gaps and logarithmic

Sobolev constants of K1, K2. Then λ2 ≤ λ1 and α2 ≤ α1.

Remark 2.6. Note that (2.8) is equivalent to

∑

z:p(z)=w

K2(x, z) =
∑

z:p(z)=w

K2(y, z)

for all x, y ∈ X2 satisfying p(x) = p(y) and w ∈ X1.

Proof of Proposition 2.5. By choosing f = δw(the function taking value 1 at w and

0 otherwise) in (2.8), the quantity K1(z, w) is well-defined for all z, w ∈ X1. It is

clear that the irreducibility of K1 is obtained immediately from that of K2. By a

simple computation, we have

∑

t:p(t)=w
s:p(s)=z

π2(s)K2(s, t) =
∑

s:p(s)=z

π2(s)K1(z, w) = π1(z)K1(z, w).

Summing up both sides over all z ∈ X1 implies that π1 is the stationary distribution

of K1 and the remaining part is implied by Corollary 2.6.

4. The product chains. In the following, we consider the logarithmic Sobolev

constant of a product chain. For 1 ≤ i ≤ n, let (Xi, Ki, πi) be an irreducible Markov

chain. Let µ be a probability measure on {0, 1, 2, ..., n} and K be a Markov kernel

on the product space X =
∏n

i=1Xi defined by

Kµ(x, y) = K(x, y) = µ(0)δ(x, y) +
n∑

i=1

µ(i)δi(x, y)Ki(xi, yi) (2.9)
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where x = (x1, ..., xn), y = (y1, ..., yn) and

δi(x, y) =
n∏

j=1
j 6=i

δ(xi, yi), δ(s, t) =





1 if s = t

0 otherwise

.

In the above setting, it is obvious that K is irreducible and the stationary distri-

bution is π =
⊗n

1 πi, where

π(x) =
n∏

i=1

πi(xi), ∀x = (x1, ..., xn) ∈ X . (2.10)

Proposition 2.6. (Lemma 2.2.11 in [23]) Let {(Xi, Ki, πi)}n
1 be a sequence of

irreducible Markov chains and (λi)
n
1 and (αi)

n
1 be their spectral gaps and logarith-

mic Sobolev constants. Let µ be a probability measure on the set {0, 1, ..., n} and

(X , K, π) be a product chain, where X =
∏n

1 Xi and K and π are defined in (2.9)

and (2.10). Then λ = λ(K) and α = α(K) are given by

λ = min{µ(i)λi}, α = min{µ(i)αi}.

Proof. See P.339 in [23].

2.4 Some examples

Since the logarithmic Sobolev constant was introduced in 1975, many people dedi-

cate to estimating its value. Their experiences show that it is not an easy job even

though the computation of the logarithmic Sobolev constant is to find its correct

order. As one can see in [11, Theorem A.2], the computation of the logarithmic

Sobolev constant for asymmetric Markov kernels on a two point space is tough and

complicated. Up to now, the explicit computation of the logarithmic Sobolev con-

stant is still restricted to very simple examples and few of them are determined. By

Proposition 2.6, the computation of the logarithmic Sobolev constants for Markov
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chains with small state spaces is not futile. In this section, we introduce some

examples whose exact logarithmic Sobolev constants are known.

1. Random walk on a two point space. We first consider the simplest case

where the state space has only two points, say 0 and 1. Let X = {0, 1} and K

be a Markov kernel on X defined by K(0, 0) = p1, K(0, 1) = q1, K(1, 0) = p2 and

K(1, 1)q2, where p1 + q1 = p2 + q2 = 1. Equivalently, the matrix form of K is given

by

K =




p1 q1

p2 q2


 . (2.11)

The following theorem treats the case p1 = p2.

Theorem 2.3 ([11, Theorem A.2]). Fix p, q ∈ (0, 1), p + q = 1. For the two-point

space X = {0, 1} equipped with the chain

K(0, 0) = K(1, 0) = q, K(0, 1) = K(1, 1) = p, π(0) = q, π(1) = p. (2.12)

we have λ = 1 and α = 1/2 if p = q = 1/2 and

α =
p− q

log(p/q)
if p 6= q.

Proof. The fact λ = 1 is an easy exercise. We prove the statement concerning α

using Corollary 2.4. Setting φ(0) = b, φ(1) = a and normalizing qb2 + pa2 = 1, we

look for triplets (β, a, b) of positive numbers that are solutions of (2.4), that is,





p(b− a) = 2βb log b

q(a− b) = 2βa log a

pa2 + qb2 = 1.

Luckily, β can be eliminated by using the first two equations. This yields the
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system 



pa log a + qb log b = 0

p(a2 − 1) + q(b2 − 1) = 0.

Setting aside the solution a = b = 1, we can assume a, b ∈ (0, 1) ∪ (1, +∞) and

write this system as 



pa log a + qb log b = 0

a−a−1

log a
= b−b−1

log b
.

Calculus shows that the function x 7→ (x− x−1)/ log x is decreasing on (0, 1) and

increasing on (1,∞). As it obviously satisfies f(x) = f(1/x), it follows that the

second equation can only be satisfied if b = 1/a. Reporting in the first equation

yields pa− q/a = 0, that is, a =
√

q/p. It follows that the solutions of our original

system are the triplets (β, 1, 1) (β arbitrary) and, when p 6= q,

(
p− q

log(p/q)
,
√

q/p,
√

p/q

)
.

As p−q
log(p/q)

< 1/2 when p 6= q, we conclude from Corollary 2.4 that the logarithmic

Sobolev constant of the asymmetric two-point space at (2.12) is

α =
p− q

log(p/q)
, p 6= q

and that, in the symmetric case p = q = 1/2, we have 2α = λ = 1.

Remark 2.7. The proof of Theorem 2.3 given above is outlined without details in

[4]. It is much simpler than the two different proofs given in [11, 23]. Here, we have

been careful to treat both the symmetric and the asymmetric cases at once. In

fact, the proof in [23] is incorrect (it can however be corrected with additional pain

but without changing the main ideas). On the one hand, in the case p = q = 1/2,

the proof above consists in showing that no nonconstant minimizers exist, leading

to the conclusion that α = λ/2. This is the main line of reasoning that will be used
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in this work to treat other examples. On the other hand, in the case p 6= q, we

were able to find a unique normalized nonconstant solution of (2.3) with α < λ/2

leading to the explicit computation of α. To the best of our knowledge, this is the

only case with α < λ/2 where α has been computed by solving (2.3). Our study of

other small examples indicate that such computation is typically extremely difficult

if not impossible.

Remark 2.8. As a consequence of Theorem 2.3 and Definition 2.1, we have

f(p) = inf

{
pq(x− y)2

px2 log x2 + qy2 log y2
: x 6= y, px2 + qy2 = 1

}

where

f(p) =





2p−1
log p−log(1−p)

if p 6= 1/2

1/2 if p = 1/2

.

Let K be the Markov kernel in (2.11). A computation shows that the stationary

distribution is equal to π = ( p2

p2+q1
, q1

p2+q1
) and, for any function f = (x, y) satisfying

‖f‖2 = 1,

E(f, f) =
p2q1(x− y)2

p2 + q1

, Lπ(f) =
p2x

2 log x2 + q1y
2 log y2

p2 + q1

.

By the above identities and Remark 2.8, the logarithmic Sobolev constant of a

general two point Markov chain is then a corollary of Theorem 2.3.

Corollary 2.7. Let ({0, 1}, K, π) be an irreducible Markov chain where K is given

by K(0, 0) = p1, K(0, 1) = q1, K(1, 0) = p2 and K(1, 1) = q2 with p2q1 6= 0. Then

the spectral gap λ and the logarithmic Sobolev constant α are given by

λ = p2 + q1, α =





p2−q1

log p2−log q1
if p2 6= q1

p2 if p2 = q1
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Remark 2.9. Let K be the Markov kernel given by (2.11). By Corollary 2.7,

α = λ/2 if and only if K(0, 1) = K(1, 0), that is, K is symmetric.

2. Finite Markov chain with kernel K(x, ·) ≡ π. Let X be a finite set and

π be a positive probability measure on X . Consider a Markov kernel K, where

K(x, y) = π(y) for x, y = X . In this setting, such a chain perfectly reaches its

stationarity once the transition starts. Clearly, the spectral gap λ is 1 and the

stationary distribution of K is π. To determine the logarithmic Sobolev constant

α, we need the following computation.

Assume that |X | > 2. Let π∗ = minx π(x) < 1/2 and x0 ∈ X be such that

π(x0) = π∗. Consider the projection p : X 7→ {0, 1} where p(x0) = 0 and p(x) = 1

for x ∈ X \ {x0}. Let K̃ be a Markov kernel on {0, 1} obtained by collapsing K

through the map p, that is,

K̃ =




π∗ 1− π∗

π∗ 1− π∗


 ,

and α̃ be the logarithmic Sobolev constant of K̃. Then, by Proposition 2.5 and

Theorem 2.3, one has

α ≤ α̃ =
1− 2π∗

log[(1− π∗)/π∗])
< λ/2. (2.13)

Theorem 2.4. ([11, Theorem A.1]) Let X be a finite set with cardinality at least

3 and π be a positive probability measure on X . Let K be a Markov kernel given

by K(x, y) = π(y) for x, y ∈ X . Then the spectral gap is 1 and the logarithmic

Sobolev constant α is equal to

α =
1− 2π∗

log[(1− π∗)/π∗]
,

where π∗ = minx π(x).
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Proof. The upper bound of α is given by (2.13) and it remains to prove its lower

bound. By (2.13) and Proposition 2.3, there exists a non-constant positive function

u on X satisfying (2.3). Without loss of generality, we assume that ‖u‖2 = 1. Then

the Euler-Lagrange equation becomes

∀x ∈ X , 2αu(x) log u(x) = u(x)− π(u).

Since the map t 7→ 2αt log t − t is convex, the function u has exactly two values,

say s and t. Let A = {x ∈ X : u(x) = s}. By Corollary 2.4, we get

α =
E(u, u)

L(u)
=

π(A)(1− π(A))(s− t)2

π(A)s2 log s2 + (1− π(A))t2 log t2

where π(A)s2 + (1− π(A))t2 = 1. Thus, by Remark 2.8,

α ≥ 1− 2π(A)

log[(1− π(A))/π(A)]
≥ 1− 2π∗

log[(1− π∗)/π∗]
,

where the last inequality comes from the monotonicity of the function t 7→ 1−2t
log(1/t−1)

on the interval [0, 1/2] and the fact π(A) ≥ π∗.

3. Simple random walk on the 3-cycle. Let (Z3, K, π) be a simple random

walk on the 3-cycle, where the Markov kernel K is defined by K(i, i+1) = K(i, i−
1) = 1/2 for i ∈ Z3 and the addition and substraction are understood modulo 3.

A calculation shows that the spectral gap is 3/2. We compute the logarithmic

Sobolev constant of K by considering a general case.

Corollary 2.8. ([11, Corollary A.5]) Let (X , K, π) be a finite Markov chain,

where |X | ≥ 3 and K(x, y) = 1
|X |−1

if x 6= y and K(x, x) = 0 for x ∈ X . Let α be

the logarithmic Sobolev constant of K. Then

α =
|X | − 2

(|X | − 1) log(|X | − 1)
.

In particular, the logarithmic Sobolev constant for the simple random walk on the

3-cycle is 1
2 log 2

.
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Proof. Let K̃ be a Markov kernel on X where K̃(x, y) ≡ |X |−1. Let E and Ẽ
be the Dirichlet forms of K and K̃. Then, for any function f on X , one has

E(f, f) = |X |
|X |−1

Ẽ(f, f). Since K and K̃ have the same stationary distribution, the

logarithmic Sobolev constants α, α̃ of K and K̃ are related by

α =
|X |α̃
|X | − 1

=
|X | − 2

(|X | − 1) log(|X | − 1)
,

where the last equality applies Theorem 2.4.

4. Simple random walk on the 4-cycle.

Theorem 2.5. Let (Z4, K, π) be a simple random walk on a 4-cycle, where K(i, i+

1) = K(i, i − 1) = 1/2 for i ∈ Z4. Then the spectral gap is 1 and the logarithmic

Sobolev constant is 1/2.

Proof. Let K1, K2 be two independent Markov chains on {0, 1}, where

Ki(0, 1) = Ki(1, 0) = 1, Ki(0, 0) = Ki(1, 1) = 0, ∀i = 1, 2.

Consider a uniform probability measure µ on {1, 2} and the product chain with

kernel Kµ given by (2.9). Let p : {0, 1}2 → Z4 be a bijective map defined by

p(0, 0) = 0, p(0, 1) = 1, p(1, 1) = 2, p(1, 0) = 3.

Then for x, y ∈ {0, 1}2, we have Kµ(x, y) = K(p(x), p(y)). This implies that

K and Kµ share the same spectral gap and logarithmic Sobolev constant. By

Corollary 2.7, the spectral gap and logarithmic Sobolev constant of K1 are 2 and

1. By Proposition 2.6, the spectral gap and logarithmic Sobolev constant are 1

and 1/2.
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Chapter 3

Logarithmic Sobolev constants for some

finite Markov chains
From the computation of the logarithmic Sobolev constants in Section 2.4, one can

see that different models need different tricks. In this chapter, we concentrate on

the calculation of the logarithmic Sobolev constant for the simple random walks on

the n-cycle. In Section 3.1, we focus on the even cycles and explicitly determine

their logarithmic Sobolev constants. Thereafter, an application for collapsing a

cycle is introduced. In Section 3.2, we implement another trick to determine the

logarithmic Sobolev constant of the 5-cycle.

3.1 The simple random walk on an even cycle

For n ≥ 2, consider a simple random walk on the n-cycle Zn = {1, 2, ..., n}. Clearly,

the corresponding Markov kernel Kn is given by Kn(x, x± 1) = 1
2

and the uniform

distribution on Zn is its unique stationary distribution.(For n = 2, we consider

the case K(1, 2) = K(2, 1) = 1 and K(1, 1) = K(2, 2) = 0. By Corollary 2.7,

α = λ
2

= 1.) Throughout this section, we assume that n ≥ 3.

Let λn and αn be the spectral gap and logarithmic Sobolev constant of Kn. It

has been shown in Example 1.1 that λn = 1− cos(2π/n) and in Corollary 2.8 and

Theorem 2.5 that

α3 =
1

2 log 2
<

λ3

2
=

3

4
, α4 =

λ4

2
=

1

2
.
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3.1.1 The main result

The following is the main result of this section. This is a joint work with Yuan-

Chung Sheu and has been polished in [6].

Theorem 3.1. For n > 2, let Kn be the Markov kernel of the simple random walk

on the n-cycle. Assume that n is even. Then the spectral gap λn = λ(Kn) and the

logarithmic Sobolev constant αn = α(Kn) satisfy αn = λn/2 = 1
2
(1− cos 2π

n
).

The following is a simple application of the above theorem.

Corollary 3.1. For n ≥ 3, let Kn be a Markov kernel on Zn defined by Kn(i, i−
1) = p, Kn(i, i) = r and Kn(i, i + 1) = q for i ∈ Zn, where p + q + r = 1. Then

the spectral gap λn and the logarithmic Sobolev constant αn satisfy αn = λn/2 =

1−r
2

(1− cos 2π
n

)

Proof. Let K̃n be the Markov of the simple random walk on Zn and E and Ẽ
be the Dirichlet forms of Kn and K̃n. Obviously, both Kn and K̃n have the

same stationary distribution, the uniform distribution on Zn. By Lemma 1.1, one

has E(f, f) = (1 − r)Ẽ(f, f) for any function f on Zn and then, by definition,

λn = (1− r)λ̃n and αn = (1− r)α̃n.

We will prove this theorem in the next subsection. Here, we consider first the

ratio E(f, f)/L(f) and, by studying the Dirichlet form, restrict the minimizer, if

any, for the logarithmic Sobolev constant to a specific class of functions. For any

function f = (f(1), ..., f(n)) = (x1, ..., xn), we have

L(f) =
1

n

n∑
i=1

x2
i log

x2
i

‖f‖2
2

(3.1)

and

E(f, f) =
1

2n
(|x1 − x2|2 + |x2 − x3|2 + · · ·+ |xn−1 − xn|2 + |xn − x1|2). (3.2)
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It is obvious that the uniformity of the stationary distribution πn of Kn implies

the invariance of L(f) under the permutation of the components of f . We now

investigate the extreme value of E over all permutations on the components of f .

Consider the function

F (x) = |x1 − x2|2 + |x2 − x3|2 + · · ·+ |xn−1 − xn|2 + |xn − x1|2 (3.3)

where x = (x1, x2, ..., xn) ∈ Rn. To every x = (x1, x2, ..., xn) with 0 ≤ x1 ≤ x2 ≤
· · · ≤ xn, there corresponds an element x̃ ∈ Rn given by the formula

x̃ =





(x1, x3, x5, ..., x2k+1, x2k, ..., x4, x2) if n = 2k + 1

(x1, x3, x5, ..., x2k−1, x2k, ..., x4, x2) if n = 2k.

(3.4)

Denote by Sn the set of all permutations on {1, 2, ..., n} and write θx = (xθ(1), xθ(2), ..., xθ(n))

for θ ∈ Sn and x ∈ Rn.

Proposition 3.1. For every x = (x1, x2, ..., xn) with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, we

have F (θx) ≥ F (x̃) for all θ ∈ Sn.

Proof. We prove this by induction on n. There is nothing to prove in the case

n = 2. Assume that it is also true for n = k. We consider the case n = k + 1 and

fix x = (x1, x2, ..., xk+1) where 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk+1.

Step1. Set y = (x1, x2, ..., xk) and consider the corresponding vector ỹ given

by (3.4). For every i = 1, 2, ..., k − 2, set

ỹi,i+2 =





(x1, x3, ..., xi, xk+1, xi+2, ..., x4, x2) if i is odd

(x1, x3, ..., xi+2, xk+1, xi, ..., x4, x2) if i is even.

(3.5)

Thus ỹi,i+2 is obtained by inserting xk+1 in ỹ between xi and xi+2. We also set

ỹ1,2 = (x1, x3, ..., x4, x2, xk+1)
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and

ỹk−1,k =





(x1, x3, ..., xk, xk+1, xk−1, ..., x4, x2) if k is odd

(x1, x3, ..., xk−1, xk+1, xk, ..., x4, x2) if k is even.

(3.6)

We claim that

F (ỹ1,2) ≥ F (ỹk−1,k) (3.7)

and

F (ỹi,i+2) ≥ F (ỹk−1,k) for all i = 1, 2, ..., k − 2. (3.8)

Note that for 1 ≤ i ≤ k − 2, a simple computation shows

F (ỹi,i+2) = F (ỹ) + (xi − xk+1)
2 + (xk+1 − xi+2)

2 − (xi − xi+2)
2. (3.9)

Therefore for 1 ≤ i ≤ k − 4, we get

F (ỹi,i+2)− F (ỹi+2,i+4) = [(xi − xk+1)
2 + (xk+1 − xi+2)

2 − (xi − xi+2)
2]

− [(xi+2 − xk+1)
2 + (xk+1 − xi+4)

2 − (xi+2 − xi+4)
2]

= 2(xk+1 − xi+2)(xi+4 − xi) ≥ 0.

(3.10)

Besides, we also have

F (ỹk−2,k)− F (ỹk−1,k) = [(xk+1 − xk−2)
2 + (xk+1 − xk)

2 − (xk−2 − xk)
2]

− [(xk+1 − xk−1)
2 + (xk+1 − xk)

2 − (xk − xk−1)
2]

= 2(xk+1 − xk)(xk−1 − xk−2) ≥ 0

(3.11)

and

F (ỹk−3,k−1)− F (ỹk−1,k) = 2(xk+1 − xk−1)(xk − xk−3) ≥ 0. (3.12)

Combining (3.10), (3.11) and (3.12) gives (3.8). To prove (3.7), it suffices to show
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that F (ỹ1,2) ≥ F (ỹ1,3), whereas this follows easily from the following computation.

F (ỹ1,2)− F (ỹ1,3) = [(x1 − xk+1)
2 + (xk+1 − x2)

2 − (x1 − x2)
2]

− [(x1 − xk+1)
2 + (xk+1 − x3)

2 − (x1 − x3)
2]

= 2(xk+1 − x1)(x3 − x2) ≥ 0.

Step2. We prove that for every θ ∈ Sn+1,

F (θx) ≥ F (ỹk−1,k) = F (x̃). (3.13)

Fix θ ∈ Sn+1 and set c = θx. It loses no generality to write c = (..., xi, xk+1, xj, ...)

for some i < j and let z = (..., xi, xj, ...) ∈ Rn be obtained by removing the

component xk+1 from the vector c. Then, for 1 ≤ j ≤ k − 2, we have

F (c)− F (ỹj,j+2)

= [F (z) + (xi − xk+1)
2 + (xj − xk+1)

2 − (xi − xj)
2]

− [F (ỹ) + (xj − xk+1)
2 + (xk+1 − xj+2)

2 − (xj − xj+2)
2]

= F (z)− F (ỹ) + 2(xk+1 − xj)(xj+2 − xi) ≥ 0.

(3.14)

(The last inequality applies the inductive assumption that F (z) ≥ F (ỹ).) For

j = k − 1, we have

F (c)− F (ỹk−1,k)

= [F (z) + (xi − xk+1)
2 + (xk−1 − xk+1)

2 − (xi − xk−1)
2]

− [F (ỹ) + (xk − xk+1)
2 + (xk+1 − xk−1)

2 − (xk − xk−1)
2]

= F (z)− F (ỹ) + 2(xk − xi)(xk+1 − xk−1) ≥ 0.
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For j = k, we have

F (c)− F (ỹk−1,k)

= [F (z) + (xk − xk+1)
2 + (xi − xk+1)

2 − (xi − xk)
2]

− [F (ỹ) + (xk − xk+1)
2 + (xk+1 − xk−1)

2 − (xk − xk−1)
2]

= F (z)− F (ỹ) + 2(xk−1 − xi)(xk+1 − xk) ≥ 0.

(3.15)

Therefore (3.13) follows from (3.14)-(3.15) and (3.8).

The following is a consequence of Proposition 3.1 and is critical in computing

the logarithmic Sobolev constant of the simple random walk on the n-cycle.

Corollary 3.2. For n ≥ 3, let αn be the logarithmic Sobolev constant of the simple

random walk on the n cycle. Assume that there exists a positive non-constant

function f such that αn = E(f, f)/L(f). Let 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn be the

components of f and f̃ = (x1, x3, ..., x4, x2). Then the Euler-Lagrange equation

(2.3) is satisfied with α = αn and u = f̃ . Furthermore, αn = E(f̃ , f̃)/L(f̃).

3.1.2 Proof of Theorem 3.1

In this subsection, we dedicate in proving Theorem 3.1. Throughout this section, n

is even and n ≥ 4. The way we prove Theorem 3.1 is first to verify by contradiction

that there is no positive non-constant function u and α < λn

2
satisfying the Euler-

Lagrange equation (2.3). Our main result then follows from Corollary 2.4. Before

starting to prove the main result, we derive a series of lemmas using combinatorial

arguments.

Define the shifting operator σ by

σ(x1, x2, ..., xn) = (xn, x1, x2, ..., xn−1), (3.16)
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where x = (x1, x2, ..., xn) ∈ Rn. Set σj(x) = σ(σj−1(x)) for j ≥ 2 and write σ−j

for the inverse of σj.

Lemma 3.1. Consider a vector of the form

u = (x1, x3, ..., x2k−1, x2k, ..., x4, x2)

where x1 ≤ x2 ≤ ... ≤ x2k and write σj(u) = ((σj(u))1, (σ
j(u))2, ..., (σ

j(u))2k).

Then for every 1 ≤ j ≤ k − 1, we have

(σj(u))i ≤ (σj(u))2k−i+1, for i = 1, ..., k (3.17)

and

(σ−j(u))i ≥ (σ−j(u))2k−i+1, for i = 1, ..., k. (3.18)

Proof. Assume 1 ≤ j ≤ k − 1. Then we have

(σj(u))i =





x2(j−i+1), if 1 ≤ i ≤ j;

x2(i−j)−1, if j + 1 ≤ i ≤ j + k;

x2k−2[i−(j+k+1)], if j + k + 1 ≤ i ≤ 2k.

Case 1: 1 ≤ i ≤ j ∧ (k − j). Since i ≤ (k − j), we get 2k − i + 1 ≥ k + j + 1

and (σj(u))2k−i+1 = x2(i+j), which implies

(σj(u))i = x2(j−i+1) ≤ x2(i+j) = (σj(u))2k−i+1.

Case 2: j ∨ (k − j) < i ≤ k. Note that (k − j) < i ≤ k implies k + 1 ≤
(2k − i + 1) ≤ (k + j). Hence, we have

(σj(u))i = x2(i−j)−1, (σj(u))2k−i+1 = x2(2k−i−j)+1.

Since 2(2k − i− j) + 1 ≥ 2(i− j)− 1, we get (σj(u))i ≤ (σj(u))2k−i+1.
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Case 3: j ∧ (k − j) < i ≤ j ∨ (k − j). It is obvious that only the situation

j 6= k−j is needed to be considered. On one hand, if j < k−j, then j < i ≤ (k−j)

and 2k − i + 1 ≥ j − k + 2k + 1 = k + j + 1. This implies

(σj(u))i = x2(i−j)−1 ≤ x2(i+j) = (σj(u))2k−i+1.

On the other hand, if k − j < j, then k − j < i ≤ j. By this fact, we have

(σj(u))i = x2(j−i+1) ≤ x2(2k−i−j)+1 = (σj(u))2k−i+1.

Combining all above proves (3.17). The proof of (3.18) can be done by similar

arguments.

Lemma 3.2. Let u = (u1, u2, ..., u2k−1, u2k) be a vector with ui > 0 for all 1 ≤ i ≤
2k. Assume that there exist two positive constants, c and d, such that

2ui − (ui−1 + ui+1) = cui log du2
i (3.19)

for all i = 1, ..., 2k.(Here we write u0 = u2k and u2k+1 = u1.) Then:

(a) If ui ≤ u2k−i+1 for all 1 ≤ i ≤ k, then we have

u2
1 − u2

2k + u2
k − u2

k+1 ≥ c[(u2
1 + · · ·+ u2

k)− (u2
k+1 + · · ·+ u2

2k)].

(b) If ui ≥ u2k−i+1 for all 1 ≤ i ≤ k, then we have

u2
2k − u2

1 + u2
k+1 − u2

k ≥ c[(u2
k+1 + · · ·+ u2

2k)− (u2
1 + · · ·+ u2

k)].

Proof. For (a), assume that ui ≤ u2k−i+1 for all 1 ≤ i ≤ k. For every 1 ≤ i ≤ k,

we rewrite (3.19) as

2− ui−1 + ui+1

ui

= c log du2
i .
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Then a simple computation implies

u2k−i + u2k−i+2

u2k−i+1

− ui−1 + ui+1

ui

=
ui(u2k−i + u2k−i+2)− u2k−i+1(ui−1 + ui+1)

uiu2k−i+1

= c(2 log
ui

u2k−i+1

) ≥ c(
ui

u2k−i+1

− u2k−i+1

ui

),

(3.20)

where the last inequality uses the fact that 2 log t ≥ t − 1
t

for every 0 < t ≤ 1.

Hence, by (3.20), we have

(uiu2k−i+2 − ui−1u2k−i+1) + (uiu2k−i − ui+1u2k−i+1) ≥ c(u2
i − u2

2k−i+1)

for all i = 1, ..., k. The desired identity is obtained by summing up both sides of

the above inequality over all 1 ≤ i ≤ k.

For (b), assume that ui ≥ u2k−i+1 for all 1 ≤ i ≤ k. For every i, set vi = u2k−i+1.

Then our result follows by applying (a) to the vector v = (v1, v2, ..., v2k).

Lemma 3.3. Consider the following k × k matrices:

A =




2 1 0 · · · · · · 0

1 2 1
. . .

...

0 1
. . . . . . . . .

...

...
. . . . . . 2 1 0

...
. . . 1 2 1

0 · · · · · · 0 2 2



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and

B =




2 1 0 · · · · · · 0

1 2 1
. . .

...

0 1
. . . . . . . . .

...

...
. . . . . . 2 1 0

...
. . . 1 2 1

0 · · · · · · 0 1 1




.

Then:

(a) If t < 2(1− cos π
2k

), then PA(t) = det(A− tI) > 0.

(b) If t < 2(1− cos π
2k+1

), then PB(t) = det(B − tI) > 0.

Proof. For (a), let θl = (2l−1)π
2k

for 1 ≤ l ≤ k and

vl =




sin θl

sin 2θl

...

sin kθl




.

Routine calculation shows that Avl = 2(1 + cos θl)vl for 1 ≤ l ≤ k. Therefore

{2(1+ cos θl)|1 ≤ l ≤ k} is the set of all real roots of the characteristic polynomial

PA(t). Note that (−t)k is the highest order term of PA(t). This implies that

limt→−∞ PA(t) = ∞. Since 2(1 − cos π
2k

) is the smallest real root of PA(t), we

observe that PA(t) > 0 for all t < 2(1− cos π
2k

).

The proof of (b) is the same as that of (a) except the replacement of θl with

2lπ
2k+1

.
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Lemma 3.4. (a) Consider the following system of inequalities:





Aj − Aj+1 ≥ 4t(A1 + · · ·+ Aj), j = 1, ..., k − 1

Ak ≥ 2t(A1 + · · ·+ Ak).

(3.21)

If t < 1
2
(1 − cos π

2k
), then the system (3.21) has no solution (A1, A2, ..., Ak) with

A1 < 0.

(b) Consider the following system of inequalities:





Aj − Aj+1 ≥ 4t(A1 + · · ·+ Aj), j = 1, ..., k − 1

Ak ≥ 4t(A1 + · · ·+ Ak).

(3.22)

If t < 1
2
(1− cos π

2k+1
), then the system (3.22) has no solution (A1, A2, ..., Ak) with

A1 < 0.

Proof. For (a), let f1(t) = 2− 4t and g1(t) = 4t. For every 1 ≤ l ≤ k − 1, put

fl+1(t) = (1− 4t)fl(t)− gl(t) (3.23)

and

gl+1(t) = 4tfl(t) + gl(t). (3.24)

Clearly, (3.23) and (3.24) imply

gl+1(t)− gl(t) = 4tfl(t) = fl(t)− gl(t)− fl+1(t).

Hence we have fl(t) = gl+1(t) + fl+1(t) for 1 ≤ l ≤ k − 1. By this fact, we obtain,

for 2 ≤ l ≤ k − 1,

fl+1(t) = (2− 4t)fl(t)− (fl(t) + gl(t))

= (2− 4t)fl(t)− fl−1(t).
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Note that

f1(t) = 2− 4t, f2(t) = (1− 4t)f1(t)− g1(t) = (2− 4t)2 − 2,

and, therefore,

fl(t) = det(Ml − 4tIl), 1 ≤ l ≤ k (3.25)

where Il is the l× l identity matrix and Ml is the l× l matrix of the same form as

that in Lemma 3.3(a).

Assume that t < 1
2
(1 − cos π

2k
) and (A1, A2, ..., Ak) satisfies the system of in-

equalities (3.21). Since t < 1
2
(1 − cos π

2l
) for 1 ≤ l ≤ k, Lemma 3.3(a) and (3.25)

imply that fl(t) > 0 for all l = 1, 2, ..., k.

For 1 ≤ i ≤ k − 1, we have, by (3.21),

Ak−i − Ak−i+1 ≥ 4t(A1 + · · ·+ Ak−i).

We claim that

fj(t)Ak−j+1 ≥ gj(t)(A1 + · · ·+ Ak−j), ∀1 ≤ j ≤ k. (3.26)

Clearly (3.26) holds for j = 1. Suppose that it also holds for some i with 1 ≤ i ≤
k − 1. Since fi(t) > 0, we get

fi(t)Ak−i = fi(t)(Ak−i − Ak−i+1) + fi(t)Ak−i+1 ≥ (4tfi(t) + gi(t))(A1 + · · ·+ Ak−i)

= gi+1(t)(A1 + · · ·+ Ak−i−1) + (4tfi(t) + gi(t))Ak−i.

The above inequality implies that (3.26) also holds for j = i + 1 and hence is true

for 1 ≤ j ≤ k. Plugging j = k into (3.26) gives fk(t)A1 ≥ 0. Since fk(t) > 0, we

have A1 ≥ 0. This proves part (a).

The same line of reasoning as above applies for part (b) and the proof goes

word for word except the replacement of f1(t) with 1− 4t.
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Proof of Theorem 3.1. By Corollary 2.4, it suffices to show that there is no positive

non-constant function u and 0 < β < λn/2 satisfying (2.4). We prove this fact

by contradiction. Suppose the inverse, that is, (2.4) is satisfied for some β < λ
2

=

1
2
(1 − cos 2π

n
) and a positive non-constant function u. Without loss of generality,

we assume
∑

i(u(i))2 = 1. By Corollary 3.2, we may assume further that u =

(x1, x3, ..., xn−1, xn, ..., x4, x2), where 0 < x1 ≤ x2 ≤ · · · ≤ xn and x1 < xn. In this

case, the Euler-Lagrange equation in (2.4) is given by

2xi − (x
(1)
i + x

(2)
i ) = 2βxi log nx2

i , 1 ≤ i ≤ n.

where x
(1)
i and x

(2)
i are the two nearest neighbors of xi.

Recall the shifting operator σ defined in (3.16) and σj = σ(σj−1) for j ≥ 2.

Note that we may write n = 4k or n = 4k + 2. For j = 1, ..., k, we have

σj(f) = (x2j, ..., x2, x1, ..., xn−2j−1, xn−2j+1, ..., xn−1, xn, ..., x2j+2)

and

σ−j(f) = (x2j+1, ..., xn−1, xn, ..., xn−2j+2, xn−2j, ..., x2, x1, ..., x2j−1).

By Lemma 3.1 and Lemma 3.2(a), we get

(x2
2j − x2

2j+2 + x2
n−2j−1 − x2

n−2j+1)

≥2β[(x2
2 + x2

4 + · · ·+ x2
2j + x2

1 + x2
3 + · · ·+ x2

n−2j−1)

− (x2
n−2j+1 + x2

n−2j+3 + · · ·+ x2
n−1 + x2

2j+2 + x2
2j+4 + · · ·+ x2

n)].

Similarly Lemma 3.1 and Lemma 3.2(b) imply that

(x2
2j−1 − x2

2j+1 + x2
n−2j − x2

n−2j+2)

≥2β[(x2
1 + x2

3 + · · ·+ x2
2j−1 + x2

2 + x2
4 + · · ·+ x2

n−2j)

− (x2
2j+1 + x2

2j+3 + · · ·+ x2
n−1 + x2

n−2j+2 + x2
n−2j+4 + · · ·+ x2

n)].
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Note that n − 2j − 1 ≥ 2j + 1 and n − 2j ≥ 2j + 2 for 1 ≤ j ≤ k. Summing up

the above two inequalities gives

(x2
2j−1 + x2

2j − x2
2j+1 − x2

2j+2) + (x2
n−2j−1 + x2

n−2j − x2
n−2j+1 − x2

n−2j+2)

≥ 4β[(x2
1 + x2

2 + · · ·+ x2
2j)− (x2

n−2j+1 + x2
n−2j+2 + · · ·+ x2

n)].

Letting Ai = x2
2i−1 + x2

2i − x2
n−2i+1 − x2

n−2i+2 for 1 ≤ i ≤ k implies, for n = 4k,




Aj − Aj+1 ≥ 4β(A1 + A2 + · · ·+ Aj), j = 1, ..., k − 1

Ak ≥ 2β(A1 + A2 + · · ·+ Ak)

and for n = 4k + 2,




Aj − Aj+1 ≥ 4β(A1 + A2 + · · ·+ Aj), j = 1, ..., k − 1

Ak ≥ 4β(A1 + A2 + · · ·+ Ak)

Note that β < 1
2
(1 − cos 2π

n
) and A1 = x2

1 + x2
2 − x2

n−1 − x2
n ≤ x2

1 − x2
n < 0. This

contradicts Lemma 3.4.

3.1.3 An application: collapse of cycles and product of

sticks

In this section, we discuss some applications of Theorem 3.1. This is a joint work

with Laurent Saloff-Coste and Wai-Wai Liu in [5]. We first consider the following

two ways of collapsing even cycles.

1. Collapsing the 2n-cycle to the n-stick with loops at the ends. Fix

n ≥ 2 and let K1 and K2 be Markov kernels on Zn and Z2n defined by

K1(0, 0) = K1(n− 1, n− 1) = K1(i, i + 1) = K1(i + 1, i) = 1/2,

for all i = 0, ..., n− 2, and

K2(i, i + 1) = K2(i, i− 1) = 1/2, ∀i = 0, ..., 2n− 1.
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Let p : Z2n → Zn be a surjective map defined by p(i) = p(2n − 1 − i) = i for

i = 0, ..., n − 1. A simple computation(checking the requirement in Proposition

2.5) shows that the Markov kernel K2 collapses to K1 via the projection p. See

Figure 3.1.

Figure 3.1: The 14-cycle collapses to the 7-stick with loops at the ends. All edges

have weight 1/2.

r r r r r r r

r r r r r r r

- - - - - -

- - - - - -¾ ¾ ¾ ¾ ¾ ¾

¾ ¾ ¾ ¾ ¾ ¾

?6 ?6

r r r r r r r¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦
¨
§

¥
¦i i- - - - - -

¾ ¾ ¾ ¾ ¾ ¾ ?6

?

Let λ1 and λ2 be the spectral gaps of K1 and K2. By Proposition 2.5, λ2 ≤ λ1.

It has been shown in Example 1.1 that λ2 = 1− cos π
n
. To see λ1, note that K2 has

eigenvalue 1− λ2 with multiplicity 2 and the two dimensional eigenspace contains

the function f(x) = cos(π
n
(x + 1

2
)), which has the property f(x) = f(2n− 1− x).

By letting g(x) = f(x) for 0 ≤ x ≤ n− 1, one has

E2(f, f) = E2(g ◦ p, g ◦ p) = E1(g, g),

and Varπ2(f) = Varπ1(g). Then, by the minmax theorem, λ1 ≤ λ2.

Proposition 3.2. Fix n ≥ 2. Let K be a Markov kernel on Zn given by K(0, 0) =

K(n− 1, n− 1) = K(i, i + 1) = K(i + 1, i) = 1/2 for all 0 ≤ i ≤ n− 2. Then the

spectral gap λ and the logarithmic Sobolev constant α satisfy 2α = λ = 1− cos π
n
.

2. Collapsing the 2n-cycle to the n + 1-stick with reflecting barriers. Fix

n ≥ 2 and let K2 be the simple random walk on Z2n. Consider a Markov kernel K1
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on Zn+1 given by K1(0, 1) = K1(n, n− 1) = 1 and K1(i, i + 1) = K1(i, i− 1) = 1/2

for all 1 ≤ i ≤ n− 1. Let p : Z2n → Zn+1 be a map defined by p(i) = p(2n− i) = i

for 0 ≤ i ≤ n. Then K1 is obtained by collapsing K2 through the projection p.

See Figure 3.2.

Figure 3.2: The 14-cycle collapses to a 8-stick with reflecting barriers. All edges

have weight 1/2 except those marked which have weight 1.
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It is easy to check that f(x) = cos πx
n

is an eigenvector of K2 with corresponding

eigenvalue cos π
n
. The same line of reasoning as in case 1 implies that both K1 and

K2 have the same spectral gap. Then, by Proposition 2.5 and Theorem 3.1, we

have the following proposition.

Proposition 3.3. Let n ≥ 2 and K be a Markov kernel on Zn defined by K(0, 1) =

K(n− 1, n− 2) = 1 and K(i, i+1) = K(i, i− 1) = 1/2 for all 1 ≤ i ≤ n− 2. Then

the spectral gap λ and the logarithmic Sobolev constant α are given by 2α = λ =

1− cos π
n−1

.

Proof. Note that the case n = 2 is part of the result in Corollary 2.7 and the case

n > 2 is given by the discussion in front of this proposition.

3. Product of sticks. In this case, we consider an application of Proposition

3.2. Fix d ≥ 1 and let b = (b1, ..., bd) be an integer vector, where bi ≥ 2 for all
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1 ≤ i ≤ d. In Zd with basis {e1, ..., ed}, consider a rectangular box

Rb = {x = (x1, ..., xd) ∈ Zd : xi ∈ {1, ..., bi}, 1 ≤ i ≤ d}. (3.27)

The first application deals with a Markov kernel K on Rb, where

∀x, y ∈ Rb, x 6= y, K(x, y) =
1

2d
, (3.28)

and

∀x ∈ Rd, K(x, x) = 1− 1

2d

d∑
i=1

(K(x, x + ei) + K(x, x− ei)) , (3.29)

where, in the summation, K(x, y) = 0 if y /∈ Rd. See Figure 3.3 for an example

with d = 2 and (b1, b2) = (4, 5).

Figure 3.3: The box Rb with its Dirichlet form structure, b = (b1, b2) = (4, 5).

All edges have weight 1/4 except the corner loops which have weight 1/2. The

stationary measure is uniform.
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It is obvious that K is a direct product of Markov chains {(Zbi
, Ki, πi)}d

1 through

the formula (2.9) with µ(i) = 1
d

for 1 ≤ i ≤ d and

Ki(0, 0) = Ki(bi − 1, bi − 1) = Ki(j, j + 1) = Ki(j + 1, j) =
1

2
,

for all 0 ≤ j ≤ bi − 2. By Proposition 2.6, one may generalize Proposition 3.2 as

follows.

Theorem 3.2. Let d ≥ 1 be an integer and b = (b1, ..., bd) be an integer vector

with 2 ≤ b1 ≤ · · · ≤ bd. Let Rb be a subset of Zd defined in (3.27) and K be a
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Markov kernel on Rb given by (3.28) and (3.29). Then the spectral gap λ and the

logarithmic Sobolev constant α of K satisfy

2α = λ =
1− cos(π/bd)

d
.

3.2 The simple random walk on the 5-cycle

Referring to Theorem 3.1 and Corollary 2.7, the logarithmic Sobolev constant for

the simple random walk on an even cycle is a half of the spectral gap but this is

not true for the simple random walk on the 3-cycle. It is not sure how the spectral

gap and the logarithmic Sobolev constant are related if the simple random walk

is considered on an odd cycle. A numerical result for the cases n = 5, 7 and 9,

where n denotes the n-cycle, shows that the logarithmic Sobolev constant should

be a half of the spectral gap. However, a mathematical proof is not available yet.

The goal of this section is to clarify the fact α = λ/2 for the case n = 5, whereas

a similar proof is proposed by Wai-Wai Liu, Laurent Saloff-Coste and the author

of this dissertation.

Theorem 3.3. Let K be the Markov kernel of the simple random walk on the

5-cycle and λ and α be the spectral gap and the logarithmic Sobolev constant of K.

Then 2α = λ = 1− cos 2π
5
.

Remark 3.1. In the section, what will be proved is a stronger result than the above

theorem which says E(f, f) ≥ λ
2
L(f) for all functions f and the equality holds if

and only if f is constant.

Before proving this theorem, we consider the following application.

Corollary 3.3. Let K̃ be a Markov kernel on Z3 given by

K̃(0, 0) = K̃(0, 1) = K̃(1, 2) = K̃(1, 0) = 1/2, K̃(2, 1) = 1,
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and λ̃ and α̃ be the spectral gap and logarithmic Sobolev constant of K̃. Then

2α̃ = λ̃ = 1− cos 2π
5
.

Proof. Let K be the Markov kernel of the simple random walk on the 5-cycle with

spectral gap λ and logarithmic Sobolev constant α. Consider the map p : Z5 → Z3

defined by p(i) = p(4 − i) = i for i = 0, 1, 2. It is clear that K collapses to K̃

through p. See Figure 3.4.

Figure 3.4: The 5 cycle collapses to the 3-point stick with a loop at one end. All

edges have weight 1/2 except marked otherwise.
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Note that f(x) = cos(π
n
(x + 1

2
)) is an eigenfunction of K corresponding to the

eigenvalue 1−λ. It is easy to see that the function f |{0,1,2} is also an eigenfunction

of K̃. Thus λ = λ̃ = 1−cos 2π
5

and the identity α̃ = λ̃/2 is then proved by Theorem

3.3 and Proposition 2.5.

To prove Theorem 3.3, we need the following two lemmas.

Lemma 3.5. Consider the function gβ(t) = 2t− 4βt log t for t > 0 and gβ(0) = 0.

Assume that β > 0. Then for 0 ≤ s < t < ∞, one has

gβ(t)− gβ(s) > (t− s)

[
2− 4β − 4β log

(
t + s

2

)]
.
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Proof. Fix t > 0, β ≥ 0 and let h be a function on [0, t] defined by

h(s) =
1

4β

{
gβ(t)− gβ(s)− (t− s)

[
2− 4β − 4β log

(
t + s

2

)]}

= s log s− t log t− (s− t)

[
1 + log

(
s + t

2

)]

Then the first derivative of h is given by

h′(s) = 1− 2s

s + t
+ log

(
2s

s + t

)
< 0, ∀s ∈ (0, t),

where the inequality uses the fact log u < u− 1 for u > 0 and u 6= 1. This implies

that h is strictly decreasing in [0, t] and hence proves this lemma since h(t) = 0.

Lemma 3.6. For β > 0, let gβ be the function defined in Lemma 3.5 and Dβ be

the following region

Dβ = {(s, t) : 0 ≤ s ≤ t, s + t ≤ 2, 0 ≤ gβ(s)− t}. (3.30)

Consider the following function

Fβ(s, t) = gβ(gβ(t)− s)− gβ(gβ(s)− t)− (t− s), ∀(s, t) ∈ Dβ.

Assume that 0 < β ≤ 1
2
(1− cos 2π

5
), then Fβ(s, t) ≥ 0 on Dβ and the equality holds

if and only if s = t.

Remark 3.2. Note that F (β, t) is well-defined on Dβ since one has, by Lemma 3.5,

(gβ(t)− s)− (gβ(s)− t) ≥ (t− s)

[
3− 4β − 4β log

(
t + s

2

)]
≥ 0,

for all t + s ≤ 2 and 0 ≤ s ≤ t.

Proof. Obviously, Fβ(t, t) = 0 for all t ≥ 0 and β > 0. We now assume that

0 < β ≤ 1
2
(1 − cos 2π

5
) and the pair (s, t) ∈ Dβ satisfies s < t. It remains to show

Fβ(s, t) > 0. By Lemma 3.5, one has

(gβ(t)− s)− (gβ(s)− t) > (t− s)[3− 4β − 4βf1(s, t)] > 0,
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where f1(s, t) = log
(

t+s
2

)
. This implies, by using Lemma 3.5 twice,

Fβ(s, t) > [gβ(t)− gβ(s) + t− s][2− 4β − 4βf2(s, t)]− (t− s)

> (t− s) {[3− 4β − 4βf1(s, t)][2− 4β − 4βf2(s, t)]− 1} ,

(3.31)

where

f2(s, t) = log

(
gβ(t) + gβ(s)− (t + s)

2

)

= log
(t + s)− 4β(t log t + s log s)

2
.

Note that the second inequality in (3.31) uses the convexity of the map u 7→ u log u

for u > 0 to get

f2(s, t) < log

(
t + s

2

)
+ log

(
1− 4β log

(
t + s

2

))
, (3.32)

and then applies the fact r − 4βr log r < e
1−2β
2β for all r > 0 and 0 < β ≤ 1

2
(1 −

cos 2π
5

). A simple computation shows that

(2− 4β)(3− 4β)− 1 = 16β2 − 20β + 5 ≥ 0,

for 0 ≤ β ≤ 1
2
(1− cos 2π

5
). To finish this proof, it suffices to show that

(2− 4β)f1(s, t) + [3− 4β − 4βf1(s, t)] f2(s, t) ≤ 0.

Since (t + s)/2 < 1, it remains to prove, by using (3.32), that

h(x) = (2− 4β)x + (3− 4β − 4βx)[x + log(1− 4βx)] < 0, ∀x < 0.

Taking the first derivative of h, we get

h′(x) = 5− 12β +
4β(4β − 2)

1− 4βx
− 4β[2x + log(1− 4βx)]

> 5− 12β + 4β(4β − 2) = 16β2 − 20β + 5 ≥ 0,
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where the first inequality is implies by the facts that the mapping x 7→ 4β(4β−2)
1−4βx

for

x < 0 is decreasing and

∀x < 0, 2x + log(1− 4βx) ≤ 2x(1− 2β) < 0.

Therefore, h is strictly increasing. In addition to the fact h(0) = 0, we get h(x) < 0

for x < 0.

Proof of Theorem 3.3. By Proposition 2.2, one always has 0 < α ≤ λ = 1
2
(1 −

cos 2π
5

). We prove this theorem by showing that there is no nonconstant solution

u for the Euler-Lagrange equation

2αu log(u/‖u‖2) = (I −K)u.

Assume the inverse, that is, the above equation is satisfied with nonconstant u

whose entries are 0 < x0 ≤ x1 ≤ x2 ≤ x3 ≤ x4. There is not loss of generality

to assume that ‖u‖2 = 1, or equivalently, x2
0 + x2

1 + · · · + x2
4 = 5. By Corollary

3.2, we may assume further that u = (x0, x2, x4, x3, x1). In the above setting, the

minimizing equation is equal to

x1 + x2 = gα(x0), x0 + x3 = gα(x1), x0 + x4 = gα(x2),

x1 + x4 = gα(x3), x2 + x3 = gα(x4),

(3.33)

where gα(x) = 2x− 4αx log x.

Note that the assumption of nonconstant u derives x0 < x4, and the nor-

malization of u implies x0 < 1. Since gα is a concave function with derivative

g′α(1) = 2 − 4α > 0, we have gα(x) ∈ (0, 2) for x ∈ (0, 1). On one hand, by this

observation, the equality x1 + x2 = gα(x0) implies x1 < 1 and then the identity

x0 +x3 = gα(x1) implies x0 +x3 ≤ 2. On the other hand, by (3.33), one can obtain

the following equation

Fα(x0, x2) = gα(gα(x2)− x0)− gα(gα(x0)− x2)− (x2 − x0) = 0.
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Since u is a solution of (3.33), it is clear that (x0, x2) ∈ Dα, the region defined in

(3.30). Thus, by Lemma 3.6, we have x0 = x1 = x2 and, by the first equality of

(3.33), we get x1 = 1. This contradicts x0 < 1.

Since there is no nonconstant solution for the equation (2.3) with 0 < α ≤ λ/2,

Proposition 2.3 implies that 2α = λ.

3.3 Some other 3-points chains

By collapsing 4, 5 and 6 cycles, we have obtained in Sections 3.1.3 and 3.2 the

equality α = λ/2 for the three chains on the 3-point stick described in figure

3.5. The first two theorems in this section concern the variants (depending on a

Figure 3.5: Three chains on the 3-point stick. All edges have weight 1/2 except

when marked otherwise. In all cases α = λ/2.
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parameter p ∈ [0, 1)) described in Figure 3.6.

Figure 3.6: The families of Theorems 3.4 and 3.5, p ∈ [0, 1).
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Theorem 3.4. For 0 ≤ p < 1, let Kp be the Markov kernel on the 3-point space
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{1, 2, 3} defined by

Kp =




p 1− p 0

.5 0 .5

0 1− p p




with stationary distribution µp = ( 1
4−2p

, 2−2p
4−2p

, 1
4−2p

). Then αp = λp/2 = (1− p)/2.

Theorem 3.5. For 0 ≤ p < 1, Let K ′
p be the Markov kernel on the 3-point space

{1, 2, 3} defined by

K ′
p =




0 1 0

.5 0 .5

0 1− p p




with stationary measure µ′p = ( 1−p
4−3p

, 2−2p
4−3p

, 1
4−3p

). Then the log Sobolev constant αp

satisfies αp = λp/2 = 1
4
(3− p−

√
p2 + 1) only when p = 0 or p = 1/2.

Remark 3.3. Both Kp in Theorem 3.4 and K ′
p in Theorem 3.5 are reversible with

respect to their stationary distributions.

To prove the above two theorems, we need the following elementary lemma.

Lemma 3.7. Consider the continuous function u : [0,∞) → R defined by

u(s) =





0 if s = 0

s log s if s ∈ (0,∞).
(3.34)

The function u has the following properties:

∀ t ∈ [0,∞), u(t) ≥ t− 1. (3.35)

∀ s, t ∈ [0,∞) with s ≤ t and s + t ≤ 2, u(t)− u(s) ≤ t− s. (3.36)

∀ s, t ∈ [1,∞) with s ≤ t, u(t)− u(s) ≥ t− s. (3.37)
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Proof. The function s 7→ s log s− s + 1 has derivative s 7→ log s on (0,∞). Hence

it attains its minimum at s = 1. As the value at s = 1 is 0, (3.35) follows.

To prove (3.36), fix s ≥ 0 and set, for t ≥ s,

g(t) = u(t)− u(s)− (t− s)u′((t + s)/2)

= t log t− s log s− (t− s)(1 + log((t + s)/2)).

Compute the derivatives

g′(t) = log

(
2t

t + s

)
− t− s

t + s
, g′′(t) =

s(s− t)

t(t + s)2
.

It follows that g is non-increasing on [s,∞). Hence g(t) ≤ g(s) = 0 on [s,∞), that

is,

u(t)− u(s) ≤ (t− s)(1 + log((t + s)/2)).

The inequality (3.36) obviously follows when s + t ≤ 2.

Finally, (3.37) follows from the Mean Value Theorem applied to the function u

since u′ ≥ 1 on [1,∞).

Proof of Theorem 3.4. First observe that an easy computation gives λp = 1 − p.

By Corollary 2.4, it suffices to show that for β < λp/2, the system (2.4) has no

non-constant positive solution u = (a, b, c). Suppose the contrary. By symmetry,

we can assume that a ≥ c. There is no loss of generality to assume further the

normalization

a2 + (2− 2p)b2 + c2 = 4− 2p. (3.38)

Then (2.4) is equivalent to (using the function u defined at (3.34))

2β

1− p
u(a) = a− b (3.39)

4βu(b) = 2b− a− c (3.40)

2β

1− p
u(c) = c− b. (3.41)
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We prove by considering two subcases, a > c and a = c.

Case 1: a > c. Subtract (3.41) from (3.39) to obtain

u(a)− u(c) =
1− p

2β
(a− c) > a− c.

By (3.36), it follows that a + c > 2. This implies

a2 + c2 > 2 (3.42)

and thus, by (3.38),

b < 1. (3.43)

Now, add (3.39) divided by a to (3.41) divided by c and subtract (3.40) divided

by b to obtain

2β

1− p
log ac− 4β log b =

a

b
− b

a
+

c

b
− b

c
.

Rearranging the terms yields

4pβ

1− p
log b =

(
a

b
− b

a
− 2β

1− p
log

a

b

)
−

(
b

c
− c

b
− 2β

1− p
log

b

c

)
. (3.44)

Consider the function h(t) = t − t−1 − k log t on (0,∞) and note that h′(t) =

t−2(t− 1)2 + t−1(2− k) is positive on (0,∞) if k < 2. In the present case, we take

k = 2β/(1 − p) which, by hypothesis, is less than 1. Hence h is increasing. The

left-hand side of (3.44) is negative since b < 1 by (3.43). Hence h(a/b)−h(b/c) < 0

and thus a/b < b/c or, equivalently,

ac < b2 < 1.

By (3.38) and (3.42), we have

4− 2p = a2 + 2(1− p)b2 + c2 > a2 + 2(1− p)ac + c2

= (a + c)2 − 2pac > 4− 2pac > 4− 2p,
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a contradiction. Hence, we must have αp = λp/2 = (1− p)/2.

Case 2: a = c. In the case, we may rewrite (3.44) as follows.

g(b) =
4pβ

1− p
log b +

(
b

a
− a

b
− 2β

1− p
log

b

a

)
−

(
a

b
− b

a
− 2β

1− p
log

a

b

)
= 0.

Note that g is strictly increasing on (0,∞). If a < 1, then b < 1 since g(1) > 0

and if a > 1, then b > 1 since g(1) < 0. Both cases contradict (3.38). If a = 1,

then b = 1, which contradicts the assumption that u is nonconstant.

Proof of Theorem 3.5. Referring to the family of chains in Theorem 3.5, the facts

that αp = λp/2 when p = 0 and p = 1/2 are contained respectively in Theorem

3.4 and in Corollary 3.3. To prove αp < λp/2 when p 6= 0, 1/2, we use the criteria

contained in Proposition 2.2. A simple computation yields

λp =
3− p−

√
1 + p2

2

with eigenfunction

φ =

(
1,

p−1+
√

1+p2

2
, (p− 1)(p +

√
1 + p2)

)
.

Thus, we compute

µ′p(φ
3) =

p(1− p)(p− 1/2)[3− 3p + 6p2 − 4p3 +
√

1 + p2(−1 + 6p− 4p2)]

4− 3p
.

On one hand, the map p 7→ 3 − 3p + 6p2 − 4p3 is (strictly) decreasing with value

2 at p = 1. This implies 3− 3p + 6p2 − 4p3 > 2 for p ∈ (0, 1). On the other hand,

the map p 7→
√

1 + p2(−1+6p−4p2) is (strictly) increasing on (0, 1/2) with value

−1 at p = 0 and the map p 7→ −1 + 6p − 4p2 is concave with value 1 at p = 1/2

and p = 1. This implies
√

1 + p2(−1 + 6p− 4p2) > −1 for p ∈ (0, 1). Combining

both observations, it is easy to see that

3− 3p + 6p2 − 4p3 +
√

1 + p2(−1 + 6p− 4p2) > 0, ∀p ∈ (0, 1),
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which implies µ′p(φ
3) 6= 0 unless p = 0 or p = 1/2. By Proposition 2.2, we must

have αp < λp/2 for p 6= 0, 1/2.

We end this section with the study of one of the most natural chain on a 3-point

stick where transitions are to the left with probability q = 1 − p and to the right

with probability p.

Theorem 3.6. For 0 < p < 1 and set q = 1 − p. Let Kp : {1, 2, 3} × {1, 2, 3} be

the Markov kernel defined by

Kp =




q p 0

q 0 p

0 q p




with stationary distribution

µp =
(
cp, cp(p/q), cp(p/q)

2
)
, cp =

(
1 + (p/q) + (p/q)2

)−1
.

Then the spectral gap λp and the logarithmic Sobolev constant αp are given by

λp = 1−√pq, αp =
p− q

2(log p− log q)
.

In particular, a minimizer of αp is ψ = (p/q, 1, q/p).

Remark 3.4. Let p ∈ (0, 1) and αp and λp be as in Theorem 3.6. Recall in Theorem

2.3 that αp ≤ 1/4 for p ∈ (0, 1) and the equality holds only if p = 1/2. A

simple computation shows that λp ≥ 1/2 and the equality holds only if p = 1/2.

Combining both bounds, we have αp ≤ λp/2 and the equality holds only if p = 1/2.

Proof of Theorem 3.6. Since Kp is reversible, the spectral gap is obtained by a

direct computation of the eigenvalues of Kp. For the logarithmic Sobolev constant,
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we compare this chain with another 3-point chain

K̃p =




q p 0

q/2 1/2 p/2

0 q p




with stationary distribution

µ̃p =
(
c̃p, 2c̃p(p/q), c̃p(p/q)

2
)
, c̃p =

(
1 + 2(p/q) + (p/q)2

)−1
.

The Dirichlet forms associated with (Kp, µp) and (K̃p, µ̃p) are respectively

Ep(u, u) = cpp
(
(u1 − u2)

2 + (p/q)(u2 − u3)
2
)

and

Ẽp(u, u) = c̃pp
(
(u1 − u2)

2 + (p/q)(u2 − u3)
2
)
.

Hence we have

Ẽp = (c̃p/cp)Ep and (c̃p/cp)µp ≤ µ̃p. (3.45)

By Proposition 2.4, it follows that

αp ≥ α̃p. (3.46)

Next, on {0, 1}2, we consider the product chain (with weights (1/2, 1/2)) of

two copies of 2-point asymmetric chain in Theorem 2.3. This product chain has

transitions given by

K((0, 0), (0, 0)) = q, K((1, 1), (1, 1)) = p,

K((0, 0), (0, 1)) = K((0, 0), (1, 0)) = p/2,

K((1, 0), (1, 1)) = K((0, 1), (1, 1)) = p/2,
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and

K((1, 1), (0, 1)) = K((1, 1), (1, 0)) = q/2,

K((0, 1), (0, 0)) = K((1, 0), (0, 0)) = q/2,

K((0, 1), (0, 1)) = K((1, 0), (1, 0)) = 1/2.

By Proposition 2.6 and Theorem 2.3, its logarithmic Sobolev constant is p−q
2 log(p/q)

.

This chain projects to the 3-point space {1, 2, 3} using the map

p : {0, 1}2 → {1, 2, 3}, (x, y) 7→ 1 + |x|+ |y|

and the projected chain is K̃p. Hence, by Proposition 2.5 and (3.46), we get

αp ≥ α̃p ≥ p− q

2(log p− log q)
. (3.47)

To show that this is in fact an equality, it suffices to find a good test function.

Letting ψ = (p/q, 1, q/p) derives

αp ≤ Ep(ψ, ψ)

Lµp(ψ)
=

p− q

2(log p− log q)
.

Thus αp = p−q
2(log p−log q)

.

Remark 3.5. Fix p ∈ (0, 1) and let K and Kp be the Markov kernels in the proof of

Theorem 3.6. As the proof shows, K collapses to Kp and the logarithmic Sobolev

constant of Kp is the same as that of K. However, the spectral gap of Kp, which

is equal to 1 − √pq, is not the same as the spectral gap of K, which is equal to

1/2. The main reason is that the eigenfunction of K corresponding to eigenvalue

1/2 has different values at (0, 1) and (1, 0) if p 6= 1/2. This makes the projection

p fail to collapse the eigenfunction onto the three point space {1, 2, 3}.

The following corollary is an observation based on the inequality (3.47) obtained

in the proof of Theorem 3.6.
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Corollary 3.4. Let p ∈ (0, 1) and set q = 1 − p. Consider the following Markov

kernels.

Kp =




q p 0

q 0 p

0 q p




, K̃p =




q p 0

q/2 1/2 p/2

0 q p




Let αp and α̃p be their logarithmic Sobolev constants. Then

αp = α̃p =
p− q

2 log(p/q)
.

In particular, ψ = (p/q, 1, q/p) is a minimizer for both constants.

Proof. By (3.47) and Theorem 3.6, it remains to show that ψ is a minimizer of α̃p.

By (2.6), the fact (3.45) derived in the proof of Theorem 3.6 implies

Ẽp(ψ, ψ) ≤ (c̃p/cp)Ep(ψ, ψ), (c̃p/cp)Lµp(ψ) ≤ Leµp(ψ).

Since ψ is not constant, taking the ratio the Dirichlet form to the entropy implies

αp = α̃p ≤ Ẽp(ψ, ψ)

Leµp(ψ)
≤ Ep(ψ, ψ)

Lµp(ψ)
= αp.

Remark 3.6. Both Kp and K̃p in Corollary 3.4 are reversible and the spectral gap

λ̃p of K̃p is equal to 1/2. Let α̃p be the logarithmic Sobolev constant of K̃p. By

Corollary 3.4 and Theorem 2.3, α̃p ≤ λ̃p/2 and the equality holds only if p = 1/2.
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Appendix A

Techniques and proofs

A.1 Fundamental results of analysis

Lemma A.1. Let (X , µ) and (Y , ν) be measure spaces and T : Lp(µ) → Lr(ν) be

a bounded linear operator with 1 ≤ p, r ≤ ∞. Let T ∗ : (Lr(ν))∗ → (Lp(µ))∗ be the

adjoint operator of T . Then the operator norms of T and T ∗, denoted by ‖T‖p→r

and ‖T ∗‖s→q with p−1 + q−1 = 1 and r−1 + s−1 = 1, satisfy

‖T ∗‖s→q = ‖T‖p→r.

Proof. Note that for f ∈ (Lr(ν))∗ and u ∈ Lp(µ),

|(T ∗f)(u)| = |f(Tu)| ≤ ‖T‖p→r‖f‖(Lr(ν))∗‖u‖p,

which implies ‖T ∗‖s→q ≤ ‖T‖p→r.

Conversely, for v ∈ Ls(ν), define Tv(w) =
∫
Y v(y)w(y)dν(y) for all w ∈ Lr(ν).

It is obvious that Tv ∈ (Lr(ν))∗, ‖Tv‖(Lr(ν))∗ = ‖v‖s and for u ∈ Lp(µ),

∫

Y
v(y)(Tu)(y)dν(y) = Tv(Tu) = (T ∗Tv)(u) ≤ ‖T ∗‖s→q‖v‖s‖u‖p,

which implies ‖T‖p→r ≤ ‖T ∗‖s→q.
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