Contents

1 Introduction 1
1.1 Research Motivation o 1
1.2 Thesis Organization 2

2 Trellis Based Decoding 4
2.1 Decoding Algorithm for Turbo Code 4

2.1.1 The MAP Algorithm 4
2.1.2 The Log-MAP Algoriphm‘ WBgy, e 8
213 The Max-Log-MARAIgorighma <G - . . o oo oot 10
2.2 Sliding Window Approaciq- ‘ s ! J n::', .lf‘l 11

3 Turbo Code A Yer 4 | 13

3.1 Structure of Turbo code Pl 13
3.1.1 Turbo Encoding 14
3.1.2 Turbo Interleaver 15
3.1.3 Turbo Decoding 17
3.1.4 Error floor effect 19

3.2 Fixed Point Analysis of Turbo Decoder 19

4 The High-Speed M AP Decoder Design 22

4.1 High-Speed ACS with Retiming Technique 23
4.1.1 Two-dimensional ACS unit 23
4.1.2 The Retiming Approach 25

4.2 Proposed MAP Decoder Architecture 27
4.2.1 Modified Max-Log-MAP Algorithm 27

4.2.2 Compare-Select Operation Circuit 30

4.3 Chip Implementation Result 31

5 The High-Speed Turbo Decoder Design 34
5.1 The Inter-Block permutation interleaver 34
5.2 Proposed Turbo Decoder Design 36
5.2.1 IBPI with Butterfly Structure 36

5.2.2 SISO decoder 39

5.2.3 Memory unito 42

5.3 Chip Implementation 43

6 Conclusion 48

i

List of Figures

1.1 The block diagram of digital communication system 2
2.1 A (2,1,2) RSC encoder and its state transition diagram 5
2.2 The decoding trellis diagram of the (2,1,2) RSC encoder 6
2.3 The process diagram of sliding window algorithm 11
3.1 The structure of turbo encodero 14
3.2 Trellis termination for component RSC encoder 15
3.3 The graph representation of the lnterleaver process 16
3.4 The structure of turbo decodmg s .‘ foo - 18
3.5 An example of four-state: trelhs dialgt’am x “.?. 20
4.1 A block diagram of MAP decoder 45 S 23
4.2 The radix-4 x 4 two—dlmen81pnal ACS umt" 24
4.3 Retiming of registers L 25
4.4 Retiming of adders 26
4.5 The retiming result of conventional radix-2 ACS unit 26
4.6 Comparison of critical path delay for original and retiming ACS 27
4.7 Conventional radix-4 x 4 ACS 28
4.8 Retimed radix-4 x 4 ACS. 29
4.9 The decoding process of the modified MAP algorithm 30
4.10 The selection circuit for the max operation in (4.6) 31
4.11 Fixed point simulation of the input symbol 32
4.12 The die micrograph of the MAP decoder chip 33

5.1 Graph representation of the IBP interleaver 35

11

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Message passing of the IBP intereleaver
Block diagram of Turbo decoder
The butterfly network structure
Graph representation of the IBP process
The overall procedure of the IBP interleaver
The graphical representation of the processing with the two input buffers .
The block diagram of the radix-2x2 Max-Log-MAP decoder
The decoding process for tail-biting trellis
The cyclic shifted input sequence order of the SISO decoder
The final input sequence order of the SISO decoder
The memory unit
The decoding schedule diagram
The block diagram of the proposed IBP turbo decoder

The iteration number simulation

v

39

List of Tables

3.1

4.1
4.2
4.3

5.1
5.2
5.3

Standard specifications for turbo coding 13
MAP Decoder Specification 31
Summary of fixed representation in MAP decoder 32
Summary of the MAP Decoder Chip 33
Turbo Decoder Specification 0. 45
Summary of fixed representation in Turbo decoder 45

Summary of the Turbo decoder ¢hip. 46

Chapter 1

Introduction

1.1 Research Motivation

A communication system conveys a information source to a destination through a
channel. Fig. 1.1 shows a fundamental block diagram of traditional digital communica-
tion system. Generally, the system cany be divided into transmitter and receiver via a
channel. The main task of transmltter mG:ludlng Source encoder, channel encoder and
modulator, is to transform the 1nformatloil‘1nto a form that can withstand the effect of
noise over the transmission medias And ‘the wver Wﬂl reverse the signal transformation
by demodulator, channel decoder and Source decoder Since the channel impairments
such as noise, interference and dlstortlon may cause the error in the received signal, the
channel encoder is incorporated in the system to add certain structural redundancy to
the source codeword to minimize the transmission errors. Although these redundant bits
may lowered data transmission rate, the channel coding eliminate the effects of noise
disturbances and thus improve the performance, relative to an uncoded system.

There are two most frequently used types of channel codes, the block codes and the
convolutional codes. The main different between the two of these codes is memory of
the encoder. For the block code, the encoded codewords are only depend on the current
input message and not on any previous messages. That is, the block code is memoryless.
In contrast, the encoding procedure in the convolutional code depends not only on the
current input message but also on certain past message blocks.

Turbo code, which belongs to the convolutional code, is one of the most popular

Information | Source .| Channel > Modulator
Source "| Encoder "| Encoder "
\
Channel
\
Information | Source | Channel | Demodulator
destination | Decoder | Decoder |

Figure 1.1: The block diagram of digital communication system

coding technique for the modern digital communication systems in the last decade. It
is attractive by its excellent error correction ability resulted from soft iterative decoding.
The main problem of turbo codes is that a long interleaver is able to support exceptional
performance, but also introduces a long decoding latency and huge memory requirement.
In the Third Generation Partnership Projects 3GPP [1] and 3GPP2 [2] defined detail
standard, they provide maximum data rate of abgut 2 Mb/s and 3Mb/s, respectively.
However, several communication applicatiqﬁ mn fhe fﬁture may demand for a higher speed
channel coding scheme. And it may become “a:dbstacle‘?for the turbo code in the hardware
implementation. : S |

In this thesis, our work is motivabefito desighi+a high—throughput turbo decoder. We
attempt to achieve the target from two aépects; First one is to speed up the SISO decoder
used in the whole turbo decoder by shortening its critical data path. Second, we employ
a new interleaver to reduce the latency caused by the interleaver and propose a practical
hardware architecture for the whole turbo decoder. Finally, we will propose a high speed

turbo decoder with the modest hardware cost.

1.2 Thesis Organization

This thesis consists of 6 chapter. In chapter 2, several iterative decoding algorithm
used for the turbo code and its relative practical techniques will be introduced. In chap-
ter 3, we will review the structure of turbo code including its encoder, interleaver and

decoder. Furthermore, the fixed point analysis about turbo code is also involved in this

chapter. Chapter 4 presents a high-speed Max-Log-MAP decoder, which utilize the re-
timing technique and two-dimensional ACS structure to reduce the critical path delay in
the high-radix design under the efficient area cost. And the chip implementation results
will also be reported in the end of this chapter. In Chapter 5, we further proposed a
complete high-speed turbo decoder. Beside using the proposed Max-Log-MAP decoder
as its component decoder, a new interleaver called inter-block permutation interleaver will
be introduced and employed in our turbo decoder. Similarly, the implementation result

will also be reported. Finally, the conclusion are given in chapter 6.

Chapter 2

Trellis Based Decoding

2.1 Decoding Algorithm for Turbo Code

The turbo code is composed of two soft-input soft-output (SISO) constituent codes
that communicate iteratively through an interleaver. And the maximum a posteriori prob-
ability (MAP) [3] algorithm and soft- output Viterbi algorithm (SOVA) [4] are commonly
employed for the SISO decoders. Unhke the SOVA which exploits maximum likelihood
(ML) algorithm to minimize the word errof probablhty, the MAP algorithm minimizes

the symbol (or bit) error probablhty Ins thls SeCtIOIlJ we will focus on introducing the

turbo decoding based on MAP algorlthm because lt has been proved that the MAP al-
gorithm is the optimal decoding method for turbo code while comparing with SOVA [5].
Furthermore, the Log MAP and Max-Log MAP algorithms will also be introduced, which

reduce the hardware complexity and are widely used for implementation.

2.1.1 The MAP Algorithm

The MAP decoding algorithm, termed as BCJR algorithm, is developed by Bahl,
Cocke, Jelinek, and Raviv [3] in 1974. For each transmitted information bit u,, the
MAP algorithm estimates the a posteriori probabilities (APP) based on the received code

sequence r over a discrete memoryless channel (DMC). It computes the log-likelihood ratio

(LLR)
_ P(uy = +1]r)
= Plus = —1Jr) (2.1)

\

Y

w1
UV

\/

N > >
u NV > >
A
Y
M
U™

Figure 2.1: A (2,1,2) RSC encoder and its state transition diagram

for 1 <t < N, where N is the received sequence length, and compares this value to a

zero threshold to determine the hard estimate u; as

" — +1, if L(a,) >0 (2.2)
—1, otherwise

As an example, a rate 1/2 memory order 2 RSC encoder and its state transition are
illustrated in Fig. 2.1. And its decodmg tgeglhs dlagram is shown in Fig. 2.2. Note that
the solid lines represent the state tran81t10ns correspondmg to an information bit u; of
—1, while the dotted lines represer;t the state tgansmons corresponding to an information
bit u; of +1. From Fig. 2.2, the APP’S in (2.1) ¢ah be computed by the summation of

state transition probabilities. Therefore, the eduation can be further expressed as

P(Ut = +1|r)

L(ty) = m

; o

where P(S;_1 =m’, Sy = m,r) represents the joint probability for the existing transition
from S;_; at time ¢ to S; at time ¢ + 1. B! and B/ is the sets of (m’,m), denoted the
state transitions which are due to input bit u; = +1 and u; = —1 respectively.

In order to compute joint probability required for calculation of L(u;) in (2.3), we

define the following metrics:

Forward Direction for Backward Direction for
computing g computing f3

\ 4
A

C\ ;C\ >0 O« /Ci /O
\ \ / /
\ \ / /
\ \ / /
\ \ / /
o . © \ A° Ox_ o o
\ /
\ \ ‘ c /
o ‘o o o
N 7
N 7
N 7
N < _ 7
o) o 40 o* o o

M(m',m) = P(S,_y =m/, S, = m,r) (2.4)
a(m) = P{S, = m,rh} (2.5)
Bi(m) = P{ri;'|S; = m} (2.6)

(' m) =P8 g | S, = m'} (2.7)

Since we assume the code sequenee after énbddiﬁg is transmitted through discrete mem-

oryless channel, the joint probability can.be expr‘essedf as

Ai(m',m) = P(Si1 =m/, S, = m, I'o LT ri\j—ll)
(rtJrl |S;_1 =m/, Sy =m, rf) L)
P(St — m,Tt|St 1 = m 1‘6 1) (28)

P(St_l = m I'g 1)

(rtHl]St m) - P(Sy = m,]Sy =m') - P(S;_1 = m/, x5 ™)

Here ri" represents the received code sequence from time instance 0 to ¢ — 1, while 12, e

is from time instance ¢t + 1 to the end of sequence. Note that the second equation of (2.8)
comes from Bayes’ rule, and the third equation is due to the Markov process in the state
transitions. Therefore, compared with the definition of (2.5), (2.6) and (2.7), the joint

probability defined in (2.4) can be rewritten as

Ae(m/,m) = g1 (m') -y (m, m) - By(m) (2.9)

Now we will derive the equations (2.5), (2.6) and (2.7) as follow:

a;(m) = P(S; =m,ry)

= Z (S;o1=m', Sy =m,ri)

m’eS
= > P(Sy=m,r1|S1 =m/ x5 %) - P(Si = m/ xf 2
mlzes(tmﬂ”tﬂtl mro) (tl mro) (2.10)
= Z P(St = m,Tt,I‘St,1 = m’) . P(St 1= m 1‘6 2)
m’eS
= aa(m') - y(m’,m)
m’eS
Similarly, we have
Bi(m) = (rt+11|8t m)
= Z P(Sps1 = m/,xl7' S, = m)
m/'eS
= Z P(S;11 = m’,rtﬂ,rﬁgl, Sy =m) | P(S; =m)
m/eS
SRALE s, 2.11
= Z P(r5 S = mis Tt+1,5t & M), P(Sp1 = m', re|Sp = m) 24y
m’eS S] I-_i - b
: (8 S,
=Y PSS = m) (St+1 m’ Tt+1!5t m)
m’/eS i | "‘,:_ . 'u
= Z Ver1(m,m') - ﬁt+1()
m’'eS

where S represent the set of all states. Note that the forward metric v in (2.10) and the
backward metric 5 in (2.11) are computed recursively in opposite direction. If the trellis
of encoding diverges from zero state at ¢ = 0 and converges to zero state at t = N — 1, as

shown in Fig. 2.2, the following initial conditions are satisfied:

ap(0) =1, ag(m)=0 form #0
Bn(0)=1, PBn(m)=0 form#0

(2.12)

Furthermore, for any existing transitions from state m’ to m, the branch transition prob-

ability ~;(m’,m) can be decomposed as

%(m’,m) = P(St = m7Tt|5t—1 = m/)
P(St_l == m’, St =1m, Tt)

P(St,1 = TTI,/)
P(St—l = ml, St = m)) P(St—l = ml, St =1m, Tt) (213)
P(S;_1 =m/) P(S;_1 =m/,S; =m)

= P(St = m|St_1 = m/) . P(’r’t|St_1 = m/, St = m)

= P(uy) - P(re|ve)
where P(uy) is well-known as a prior probability of u; and vy is the codeword associated
with the transition S;_; = m’ to S; = m corresponding to encoder input ;.

As a summary of the MAP algorithm, with computation of v, (m/, m) in (2.13), we can
derive o and 3 for each state at different time instances. As a result, the joint probability
in (2.9) is also available for t = 0,1,--- ;N — 1. And we can calculate the log-likelihood
ratio L(u;) by
> myest Qu—1(m') -y (m',m) - Gy(m)
S rqgph at:l-cmf) Sl m) - Bu(m)

L(u) = log (2.14)

2.1.2 The Log-MAP Algorlthlm

The MAP algorithm requires large Hiemorgum.d a léirge number of operations involving
exponentiation and multlphcatlon And the hardWare realization of MAP decoder will
be quite complex and difficult. Thelrefore7 the Log—MAP algorithm is proposed to solve
this problem. First, we transfer the branch metrics defined in the MAP algorithm to the

logarithmic domain; that is
ﬁt(mcm) = logfyt(mlam) (215>
Referring to (2.10) and (2.11), the forward path metric a; can be expressed as

Ge(m) = log ar(m)

—log 3 -1 elm'm) (2.16)
m/’eS
and the backward path metric 3, can be expressed as
Bi(m) = log Bi(m)
(2.17)

= log Z et (mm) 4By (m)

m/eS

Note that the initial conditions of path metrics also have changed, since all computations

work with the logarithm domain.

ap(0) =0, ay(m)=—oo form#0

Bn(0) =0, By(m)=—0co form#0

(2.18)

After substituting (2.15), (2.16) and (2.17), the APP information L(u;) in (2.14) can be
rewritten as

L(u;) = log

A _ (2.19)
Considering the following Jocobian algorithm [6]

10g<€61 + 662) — max((sl’ 52) +].Og(]. + 6_|652—e51|)
= max(01,02) + fe(|02 — d1])

(2.20)

where f.(-) is a correction function and thus the performance can be improved. By a
recursive procedure of (2.20), the expression log(e® + €% + --- + ¢%) can be computed

exactly, as follows

log(e® + €% 4 -+ 4 ¢') = log(A ﬁqf‘s") WA= . p e =

= max(logA o .—Lfcc\logA 5a]) (2.21)
—maX(é 5'7_f(|<5)

Now we can use (2.20) to represent forward me’crlcs in (2.16) and backward metrics in

(2.17) as

)

ar(m) = max™{@, (m’) + 3 (m’, m)} (2.22)
and
Bi(m) = max” {Jp41 (m,m’) + Brr(m')} (2.23)

where the max*(-) operation is defined as
max”(-) = max(dy, d2) + fe(|0a — 01]) (2.24)
Therefore, the (2.27) can be expressed as

i) = masc (G (m') + 5u(m'sm) + i (m)

(2.25)

— max*{@_1(m’) +F(m',m) + By(m)}

(m/,m)

The performance of the Log-MAP algorithm is equivalent to the performance of the
MAP algorithm but the complexity has been reduced considerately.. However, some
difficulty for hardware implementation still exists since computing f.(-) also involves ex-
ponentiations and multiplications. For simplified the computation of correction function,
it is usually stored in a pre-computed table. And this table is only one dimensional
due to the correction only depends on |03 — d;|. Thus, the Log-MAP algorithm can be

implemented with max function as well as a lookup table.

2.1.3 The Max-Log-MAP Algorithm

In order to further simplify the complexity, another approximation of MAP algorithm
termed Max-Log-MAP algorithm is derived. Now, considering the following approxima-

tion formula max function

log(eél 4% 44 e‘sn) ~ ie?llg)-(n} 0; (2.26)

Note that the term f.(-) is ignored in comparison with (2.21). Then we can simplify the

equation (2.19) as follows: R
L(us) = mag {ap(m) + e (e, m) + Bi(m)}

(' m)eB! -

(2.27)

e () ' m) + (m)}

o
(m/,m)eB; % 5

Similarly, the forward recursive and backward recursive metrics in (2.16) and (2.17) can

be individually expressed as
ay(m) = max{a,, (m’) +3(m’, m)} (2.28)

and
Bi(m) = max{Yp4 (m,m’) + Brra(m')} (2.29)

Here we can see that the computations of & and 3 are reduced to simple add-compare-
select operations, which are equivalent to the path metric updating of Viterbi algorithm.
Therefore, compared with the MAP algorithm, the Max-Log-MAP algorithm utilizes addi-
tions to replace the multiplications and avoids the complicated exponentiations. However,

the performance would degrade because of the information loss in (2.26).

10

2.2 Sliding Window Approach

In the conventional MAP-series decoding algorithm(including MAP algorithm, Max-
Log MAP algorithm and Log-MAP algorithm), the LLR computation requires the path
metric values generated by the forward and backward processes. Furthermore, since the
backward recursive computation initials from the end of decoding trellis, as shown in Fig.
2.2, the decoding process can be started after the entire block message to be received.
If the sequence length is large, it will lead to long output latency and huge memory
requirement for hardware implementation. For example, the maximum block length of
3GPP2 standard is 20730, which means 20730 metrics should be stored. And it is the
main disadvantage of turbo code for real application.

The main problem is that long block length can not divided into several short sub-block
immediately, since the unknow initial condition of backward recursive metrics computa-
tions will damage the performance of turbo codes. Therefore, the sliding window approach
was proposed [7] to overcome it. This algorithm utilizes the fact that the backward met-
rics can be highly reliable even without!the ‘initia‘l condition if the backward recursion
goes long enough. Fig. 2.3 shows the progess ‘(‘)f the sliding window algorithm and will be
further illustrated as follows. First, the recIeiIv‘ed‘codeword sequence is divided into several
sub-blocks of length of W. W is Qélled‘the convergenée length, which normally is set to

be five times constraint length of compenent encoder in turbo code to ensure the reliable

«—W—>

i i+1 i+2 i+3
t — :<; P : ;' > :<1'81: ; : : :
I I , a | . | |
b g p > | b . |
t— | | La,) | < @ | B | e I I
I I I I | | |
ts — | | I L(uy) | < ﬂZ | a > | q..-gl..-. |
I I | | @ | | |
Yy | | | | L@) | | |

Figure 2.3: The process diagram of sliding window algorithm

11

initialization. In the sliding window approach, the end of sub-block is the initial of next
sub-block whether the forward or backward recursive operation. Thus, the initial metric
values are inherited from the last metrics calculated in the previous sub-block. Note that
the dummy backward recursion (3; is employed to establish the initial condition for the
true backward recursion 5. Although the initial condition for the §; is unknow except
the last sub-block, we utilize the equally likely condition for the (3; values at time instance
(t+1)-W:

fi(m) =—, forallmeS (2.30)

where S represents all possible state and M is equal to the total state number. During the
forward recursion « proceeds in the i-th sub-block and stores these values into memory, the
dummy backward recursion [3; is performed in the i 4+ 1 sub-block concurrently. As soon
as the 31 computation is finished, the initial metrics in the i-th sub-block are available for
the B9 recursion. And L(u,) can be calculated based on the a metrics in the memory, the

(> metrics in computation, and the corresponding branches metrics in the i-th sub-block.

12

Chapter 3

Turbo Code

3.1 Structure of Turbo code

Turbo Codes, first introduced by C. Berrou, A. Glavieux and P. Thitimajshima in
1993, are impressive with the near Shannon limit performance. It exploits a similar idea
of connecting two RSC (Recursive Systematic Convolutional) codes and separating them
by a random interleaver. Moreover they are‘concatenated in parallel. The primary reason

for using a interleaver is to ensure- that each component codes get independent estimates

on the information symbols from+the gthet-oneat each iteration.

The turbo codes have found aiﬁplicéflibﬁs.iﬁ-seyéral standards listed in Table 3.1 due

Table 3.1: Standard speciﬁéations for turbo coding

Standard Application Iterative Code Max. Throughput
Digital Parallel conc. of
DVB-RCS video broadcast 8-state conv. codes 68 Mb/s (rate 7/8)
Wireless networking Turbo
[EEE 802.16 (MAN) prodict code 25 Mb/s (rate 5/6)

Parallel conc. of

3GPP UMTS Wireless cellular 2 Mb/s (rate 1/3)

8-state conv. codes

3GPP2 Parallel conc. of

Wireless cellular

CDMA2000 8-state conv. codes 3.09 Mb/s (rate 1/5)

Parallel conc. of

CCSD Space telemetry 384 kb/s (rate 1/2)

16-state conv. codes

13

to its outstanding error correction ability. And in the following, we will describe the

structure of turbo coding in detail.

3.1.1 Turbo Encoding

A turbo encoder is formed by two parallel recursive systematic convolutional (RSC)
encoders and separated by a turbo interleaver, and the interleaver is a process of rear-
ranging the ordering of a data sequence in a one-to-one deterministic format. Therefore,
the information is encoded by the first component encoder, interleaved and encoded by
the second one simultaneously. In other words, the same set of information sequence is
encoded twice but in a different order. Thus, the turbo codes are also referred to as
parallel concatenated convolutional codes (PCCC). A block diagram of a turbo encoder,
based on a (2,1,4) RSC code is shown in Fig. 3.1. The generator matrix G(D) for this
component RSC code can be written in the so-called systematic form:

a3 []

where go(D) and g, (D) are feedbatk andféedforwatd polynomial, respectively

G(D) = {1 (3.1)

Note that each input bit is encoded as one systematic bit and one parity check bit in a
rate 1/2 RSC encoder. However, intorderto increase/the code rate of turbo code, only the

parity check sequence of the second’encoder, denoted by Z’, is transmitted. Therefore,

.
1st constituent encoder
4AY D o 7
U U T £k
A A
Input —o——o oL (D1 > >
] A
| X
-- == o
Interleaver 2nd constituent encoder
a D 7'
U —U 7 k
A A
’ A
| x
I._ -——- \NZa
L—————— - - - ————— = - X',

Figure 3.1: The structure of turbo encoder

14

the overall code rate is 1/3 and output encoded sequence should be {Xy, Zy, Z’}.

After encoding all input messages, transmission of some tail bits, which forces the en-
coder to finish encoding one block in the all-zero state, is required. The trellis termination
makes sure that the initial state for the next block is the all-zero state. However, this
operation would lead to two kinds of overhead. First, an extra amount of bits has to be
sent through the encoder, decreasing the whole code rate. Second, extra circuitry in the
turbo encoder is introduced. Since the component encoders are recursive, it is impossible

to terminate the trellis to all-zero state only by inserting dummy zeros directly.

» Systematic part

:() :() » Parity-check part
A A

A -

77 . JanY » » »

Input _."‘/' \‘{ » > >
BY 4

i ,,
M
AN

Figure 3.2: Trellis termination for component RSC encoder

To consider the latter problem“,. a Simpléﬁj s"olpfion.i_s provided in Fig. 3.2. A switch in
each parallel component encoder_is‘: set to pOéi’;ion 7 A%’ for the first N input symbol and
in position ”"B” for 3 tail bits in 'oﬁr e?gai&lpl?ﬁw Fig. 3.2, which shows a rate 1/2 RSC
encoder with memory order 3. This‘t‘r‘el‘lis tegmina‘;ion will flush all registers with zeros

and thus the trellis return to all zero state.

3.1.2 Turbo Interleaver

For the turbo code, the interleaver plays an important role to achieve good perfor-
mance. Its function is to rearrange the ordering of a data sequence in a one-to-one
deterministic format. Fig. 3.3 shows a graph representation of interleaver process, where
u is the input sequence as well as the systematic part of the codeword and u is the per-
muted sequence for the input of the second component encoder. Thus we can construct
a long block code from small memory component convolutional codes via a interleaver.
Moreover, it spreads out the burst errors and further eliminates the correlation of the

input of two RSC encoders so that the iterative decoding algorithm based on exchanging

15

Vi

State sequence

in encoder 1
U= v
Interleaver
u

State sequence
in encoder 2

V2
Figure 3.3: The graph representation of the interleaver process

the "un-correlated” information between tho component decoders can be applied. Lastly,
the interleaver can break low weight codeW(;)rds]‘to improve the coding gain.

The error performance of the tufbo code is determined by the code distance spectrum.
In [8], it points out a process of the juterleavericalled spectral thinning can reduce the
error coefficients of low weight codewords. This effect leads to a bit error probability
reduction by a factor 1/N, where N is the interleaver size. And the factor 1/N is also
referred to the interleaver gain. Under the analysis, the error performance at low SNR’s is
mainly dominated by the interleaver size. However, the low weight codewords produced by
certain low weight input sequences dominate the turbo code performance at high SNR’s.
Consequently, a interleaver structure is desirable to break these input patterns. In such
case, the input sequence to the second encoder ,which is generated by the interleaver, will
most likely produce a high weight parity check sequence and further increase the whole
turbo codeword weight. As a result, the interleaver size and structure will both affect the

turbo code error performance considerately.

16

3.1.3 Turbo Decoding

The main idea for iterative turbo decoding is to exchange soft information among
SISO decoders to calculate a posteriori probabilities of each information bit u;. And the
turbo decoding process based on the MAP algorithm will be examine as follows.

For a rate 1/n RSC encoder, each codeword consists of one systematic bit vt(o) and
(n — 1) parity bit vt(~ vt . Similarly, the decoder will receive codeword including one
systematic symbol rt) and parity symbols 7“()~ rt("). Thus, considering the AWGN

channel with 20 = Ny/Fj, the branch metric in (2.13) can be expressed as

n (1))
- Ol(rz (z)2

ve(m!/,m) = P(u,) - P(r|ve) = Plug) e~ 27 (32)
Note that the expression for P(r;|v¢) is normalized by multiplying a factor (v/2mo)"™. By
substituting (3.2), the log-likelihood ratio in the MAP algorithm in (2.14) can be further
represented as

1,0 _,0)2

Z m/,m)eB}! at—1<m,) ‘P(ut: +1) e 202 : 6t(m)
L) = log =< bl GO (3.3)
< _ =0Tt 7Y
Z(m/,m)eB;l Q— (m’) :]T(iut I')_.- e 202 - B¢(m)
CEISpr N2
where P(u; = +1) and P(u;, = —1) are the U prwm probablhtles corresponding to the

information bit 0 and 1, respectlvely Now—w:e-rewrlte L(uy) by extracting the common

term as
P() - e {9 —)2
up = +1 e T
L(uy) = log 5 ————= +log —5——
() =108 i, ——1) T8
e 2052 (3 4)
Z(m/,m)ijl a1 (m’) - e o . B,(m)
+ log n 11(1“(1) (Z))z
Z(m',m)eBgl a1 (m’) - G_T - By(m)

Note that the systematic bits are independent of the state transition (m,m’). That is,

! in the numerator and denominator of the (3.3) must be +1 and —1. And L(u;) could

be further decomposed into
2
L(ut) =L () + T + Le(ut) (35)

The term L,(u;) is defined as the log-likelihood ratio of the a priori probabilities and

Le(uy) is called the extrinsic information.

17

Lal (ut) De- P LeZ (izt)
Interleaver |
. L,(u) L,@,)

(0) > SISO > Interleaver P> SISO
r » Decoder Decoder ~

(1) 1 Li(u,) N L,(u,)
r > ——> > —

» Interleaver

r(2)

Figure 3.4: The structure of turbo decoding

Fig. 3.4 shows a general structure of turbo decoder, which consists of two component
decoders via an interleaver as well asithie ‘onérin the encoder. In the turbo decoding
process, we first set the a priori i"nformatéQn qu (ut) for the first SISO decoder to zero
and calculate L (u;) base on the MAR algofiﬁﬁﬁi! And we can get the extrinsic information
Lei(uy) from (3.5) |

g (3.6)

Les(ue)) — —l® — L ()
Here, we can observe that the L. (u;) is a function of the redundant information that
introduced by the encoder but removes the contribution due to systematic input and a
priori information from Lj(u;). Therefore, it can be used as the a priori probability for
the second decoding stage. Beside the parity sequence r?), the SISO decoder 2 will also
receive 79 and L,y () which come from 7(®) and L. (u;) after permutation, respectively.

Under these input information, the SISO decoder 2 can also evaluate the a posteriori

output L;(@;) and the extrinsic information Lo () by

2 0

Leo(t) = Lo(t) — 2 T (3.7)

Similarly, the information L.s(@;) can be regarded as the a priori information Lgj(uy)
for SISO decoder 1 after being reordered via the de-interleaver. For the turbo code, the

decoding performance can be improved as the number of its decoding iteration increases.

18

However, the correlation between two component decoder will also be more apparent
and further limit the performance improvements. Then the iterative turbo decoding
process will stop after a certain number of iterations and makes hard decision using APP

information Ly(;) through the de-interleaver.

3.1.4 Error floor effect

Although the turbo code provides an excellent performance, the bit-error-rate (BER)
will decrease quite slowly at high signal-to-noise ration (SNR). This phenomenon, called
"error floor” region, is determined by the minimum free distance of turbo codes which is
related to the interleaver. To consider the relation between the minimum free distance
and the bit error probability in turbo coding, which can be expressed by

E
Py o Q(1/2dee R=2) (3.8)
No

where dy,. is the code minimum free distance, R is the code rate, and £,/ Ny is the SNR.

3.2 Fixed Point Anlafllysiﬁof n'i‘illrbo Decoder

Since this quantization will beint'he trz@cﬁlgfﬂ(”‘)f.f betWeeqﬂ coding performance and hardware

cost, the fix-point analysis shoulcf"benéoﬁrs,id"éféd tdfqminimize error performance loss. In
general, the bit-width of input infor;hétion is“,dét'(;fmined via simulations, and then the
range of internal variables can be derived according to the bounded input [9)].

Now we define the notation (n;,ns) to represent the symbol quantization, where n,
bits are integer part and ny are floating parts. After quantizing, the maximum absolute

) and a priori information L,(u;), denoted by B;, and B,

value of the input symbols ry
respectively, are given. Therefore, the maximum difference of branch metrics, which is

decided from (3.2), can be derived by
Av; <n x By, + B, (3.9)

Here we assume that the decoder will receive n input symbols in each time instance based
on a rate 1/n RSC encoder and all the received symbols are equally quantized.
For a RSC encoder with memory order m, the paths merging each state at time

instance t originate from all states at time instance t — m. As a result, the difference of

19

O

O~/ O
o7 0

t-2

-0 0O

Figure 3.5: An example of four-state trellis diagram

any two path metrics at time instance ¢ is only dependent on the branch metrics from
time instance t —m to t. Fig. 3.5 shows an example with m = 2. Therefore, we can derive

the upper bounds for the difference of the forward path metrics « as
Aoy < d,, X B, + m x B, (3.10)

where the value d,,, represents the maximum Hamming distance between any two paths

across m trellis sections. Similarly, the backward path metrics 5 is bounded by

Aﬂt < dm*}B@n +m X B, (311)
In order to derive the upper beund,of-the L(w,), Wwe can extend the equation (2.19) as
follows: C i .

Z - - emax(atgl‘)—l—max(%)—&-,@t(m)
L(u;) < log (! m)€B;

Z(/)EB_l emin(atfl)—i-min(%)_kgt(m)
m/m ;

— [max(ap-1) + max(y,)] — min(ay_1) + min(,)] (3.12)
+ | log Z Bi(m) | — [log Z Bi(m)
(m’;m)eB;! (m/;m)eB; !
Since each state at time instance ¢ originates from two branches corresponding to the

information bits u; = +1 and u; = —1. As a result

log Z Bi(m) = log Z Br(m) (3.13)

(m/;m)eB/! (m/;m)eB; !

And the bound in (3.12) can be further simplified as

20

Similarly, the lower bound can be obtained

As a conclusion, given the bound of the difference of the forward path metric Aa; and
the bound of the difference of the branch metric A~;, the magnitude of the output LLR
is bounded by

|L(u)| < Aag + Ay (3.16)

Finally, the bound for the magnitude of the extrinsic information L. (u;) can be derived
from the (3.6), where

Le(us) = L{ug) — % r© _ L () (3.17)

Hence, the bound can be obtained by

(3.18)

2
et < | £lu) = 2 = Lutw)

21

Chapter 4

The High-Speed M AP Decoder
Design

As mentioned in Chapter 2, the component decoders for the Turbo codes perform iter-
ative decoding based on maximum a posterior (MAP) probability algorithm. Considering
the implementation complexity, the MAP algorithm is approximated to Max-Log-MAP
algorithm with less complicated arlthmetlc Ty 4 1 illustrates the block diagram of the
proposed MAP decoder, which cons1sts of bfa.noh metrlc unit (BMU), add-compare-select
(ACS) unit, log-likelihood-ratio (LLR) unit, and buffers The first three units calculate

the metrics and LLRs, while the buffers store the mput symbols and forward path met-
rics. For a conventional MAP decoder the cornputatlon time is dominated by the ACS
operation, in which many studies on decoder architectures have been presented to reduce
the critical path delay. Inkyu [10] proposed the double-state technique which enables
addition and comparison to execute concurrently. However, this approach would lead
to a large overhead because there are forward and backward path metric calculations in
MAP algorithm. In [11], although the normalization operation is moved from ACS unit
to BMU for higher speed, only radix-2 structure is considered.

In this chapter, we introduce a two-dimensional ACS structure to reduce the com-
plexity of high-radix design and a retimed ACS unit to increase the operating frequency.
From the implementation results, the present MAP decoder can facilitate high throughput

designs with area efficiency.

22

IBUF
block

BMU
block

| ACs
| block

4.1 High-Speed ACS with Retiming Technique

For the Max-Log MAP algorithm implementation, the decoder throughput is limited
by the critical path delay of ACS unit due to the recursive computations. Even with the
high-radix design, the performance is still dominated by the large critical path because
of the exponentially increasing branches. In this section, we refer to a structured two-

dimensional ACS unit with retiming technique to speed up high-radix architectures while

\4 A A
Input Input Input
Buffer Buffer Buffer
.
BMU BMU BMU
¥ v 3 l v ¥
a - ACS B,-ACS |« B, - ACS
I
Y
{ - buffer

keeping the least cost increase.

4.1.1 Two-dimensional ACS unit

In general, the radix-16 design can provide a speed-up by 4 as compared to the radix-2
structure. Nevertheless, the complexity and the branch number increase exponentially,

resulting in large critical path delay and huge hardware cost. It also limits the feasibility

Figure 4.1: Afblock diagram of. MAP decoder

to achieve a high speed ACS unit through the high-radix approach.

23

,,,

@)
$|
a~!

—>
>
>
>
>
>

y

\ 4

\4

DODD

a
$|
=

\ 4

>
>
>

—>

(1) 3
> >
) R
> > CMP
) R
,@ > N Tuuu
Y . >(+ >
|y v
»ll »
[cvP]— G >
ALK »(< >
) T N
D J D .
»l-L >
> >
»l-L >
> >
»f1l »
U 1l 4
CMP
A A A
>@® 1 >
>(-4 >
>(-4 >
»f-l »
U >V
» <= -
1st level 2nd level

Figure 4.2: Thezadix-4 x 4 two-dimensional ACS unit

Therefore, we introduce a radix-4.x.4 structuréd*ACS unit to decompose the compare
operation among 16 branches into two levels. As shown in Fig. 4.2, the radix-4 x 4 ACS
unit, referred to the two-dimensional structure, consists of two consecutive radix-4 ACS
units. The survivors among four branches selected from each radix-4 ACS unit in first
level will be the four candidates in the second radix-4 ACS unit.

The throughput of radix-4 x 4 structure is equivalent to the radix-16 approach. Ad-
ditionally, the exponential increase of complexity has been restricted due to the multiple
lower-radix ACS units instead of one single high-radix ACS unit. The number of branches
between time instances ¢ and ¢ 4+ 4 can be reduced from 16 x N to (4 +4) x N where N
is the state number. However, the critical path of a radix-4 x 4 ACS unit through two

levels of ACS units is longer than that of a radix-16 ACS unit.

24

BM(1,1)

Figure 4.3: Retiming of registers

4.1.2 The Retiming Approach

The speed of the two-dimensional ACS unit can be further enhanced through the
retiming approach. In order to illustrate clearly, the radix-2 architecture is employed as
example. ,

In the radix-2 Max-Log-MAP algerithm, the fdrward and the backward recursions can
be expressed by =¥ 1 I %

ou(se) = mgX{at—‘l(ngl) Hye1 (51, 50)} (4.1)

Bi-1(8i-1) = mg»x‘{:}/tfl(StAly‘st“)‘ + Bi(se)} (4.2)

where t is the time instance, S is the set of transitions from state s;_; to s; and a, § and
represent the forward state, backward state and branch metric values, respectively. From
(4.1) and (4.2), we find that pipelining is inapplicable because of the data dependency
between the state and the branch metrics. And, the retiming approach can be exploited
to break this dependency and increase the parallelism.

Fig. 4.3 illustrates the retiming procedure which moves registers from time instance
t to the branches between ¢t and t — 1. Furthermore, the adders are relocated in order
to concurrently perform addition and comparison as shown in Fig. 4.4. Note that the
metric values being stored and compared are no longer associated with the results after
additions.

The retimed radix-2 ACS architecture with parallelism of two is shown in Fig. 4.5.

We assume that the delay time of comparators is larger than that of additions, thus, the

25

BM(0,0)

S
=L

BM(1,0)

BM(0,0)

Bt Sy
=L

BM(1,0)

BM(0,1) BM(0,1)

S~ [~~~
\/}M(l,l) UM(I,I)

Figure 4.4: Retiming of adders

critical path delay will only be dominated by a single compare operation. Nevertheless,
the number of registers, adders and multiplexers are doubled as compared to the original
ACS unit in Fig. 4.3.

With combining the retiming technique and the radix-4 x4 ACS unit, we can overcome

the timing bottleneck in high-radix stracture. " Fig. 4.6 shows the delay time of three

[orl—— | e

W 7 W \
BM(0,0) BM(0,0)

— N ~__) N —
+ \ >(+ |
]
u—»(?—» o—»(%)—»
LAl | (| Al |/ LA
BM(0,0) BM(0,0)
BM(0,1) BM(0,1)
_ N — N —
+H)—] (+H)—]
N @' / N @ A
BM(0,1) BM(0,1)
A A
BM(1,0) M(1,0)
(H— >(+)—
>

N (’@ > t '@ ’ N
BM(1,0) BM(1,0)
BM(1,1) BM(1,1)
(+H)— (+H)—

N W+ +)—> N

BM(1,1)

w
=
=

Figure 4.5: The retiming result of conventional radix-2 ACS unit

26

ACS-16 ACS-16
ACS-4x4 ACS-4 ACS-LEl
ACS-4x4 | CS4 | CS4 i i
withRT [Add] [Add] | | |
t!1 t:2 t!3 » Delay

Figure 4.6: Comparison of critical path delay for original and retiming ACS

architectures. It is evident that the retimed ACS has the shortest path delay among
all. Since area overhead resulted from retiming is less than the reduction from the two-
dimensional ACS unit, the optimization method mentioned above can accomplish not only
high-speed but area-efficient solutions based on two-dimensional structure with retiming

technique.

4.2 Proposed MAP:Decodér Afchitecture

4.2.1 Modified MaX-Log-MAP Algorithm

In this section, we employ the retimed radix-4 x 4 ACS architecture into the MAP
decoder. Since the retiming technique relocates the registers, the log-likelihood ratio
(LLR) calculations in the Max-Log MAP algorithm have to be modified. The trellis
diagrams in Fig. 4.7 and Fig. 4.8 illustrate the differences after applying retimed two-
dimensional ACS unit. First, the critical path of the ACS unit has been reduced because
adders and comparators operate in parallel. Note that the dotted blocks in Fig. 4.7
represent the dependency within each pair of add and compare operations and they are
broken in Fig. 4.8. Second, the registers are moved to the second level branches of the
radix-4 x 4 ACS unit, leading to different values stored in the registers, instead of the

conventional path metrics.

27

Retiming /\

________ r________l

9@l o9 @] |dies brie o]]

_______ L L __ L __

®
/)
7

NS
- SRS ST
~ SO XSRS
40 b SSCXEE SIS
3 K CRRES
'O - STA% STV
: RS L2 Zo S
- >
1O ~EL £ LS

t+1 -

t
|<71st 1eve14>|<—2nd 1eve14>|<71 st 16V€14>|<—2nd 1eve14>|
Figure 4.7: Conventional radix-4 x 4 ACS

For the retimed radix-4 x 4 architecture, we define another forward and backward path

metrics, denoted by & and B respectively,

Qr(si—2, St) = au-5(5r=2) + Y2a(Sr—2, S51) + Ye—1(St—1, St) (4.3)

Bi(St, St42) = BryoSi2) FAVrilBer1481+2) + Ve(St, Stv1) (4.4)

For a radix-16 MAP decoder, the log-likelihood (LL) corresponding to the a zero input

(bit) at time instant ¢ can be represented by the following equation :
LLj(s) = mgx{ ai(st) + 7/ (s, 5041)

A Vo1 (Se415 Seg2) + Vera(Sev2, Se43)

+ Vit3(St43, St4a) + Bega(Sita) } (4.5)

where 7} (s, s;41) corresponds to the branches when information bit is 0 at time ¢. Sis the
set of transition combinations emerging from state s;; to the all possible states at time
t+4. Note that the path metrics o and (3 are only available at time instants ¢ and t+4 due
to the radix-16 design. And, the LLs are calculated by selecting a different combination
of branches [12]. In our proposed design in this chapter, the radix-16 decoder will be

composed of two level retimed radix-4 x 4 ACS units, and (4.5) can be also simplified to

28

/

:%
O
0«%

)
V'~

()
0

’«
K
9

»«}
%

-

()()()()()()()(_)
C) oy g)y ty)y)yt)ty

LA LA

t+3 t+4 t+5 t+6 t+7

2nd 1eve14>|

Ist level =|:

t
|<7 Ist level =|:

2nd level =|:
Figure 4.8: Retimed radix-4 x 4 ACS

be

LLO(s) = max {Gyso(SenSien) + Brsa(Sira, Seea)} (4.6)

5(&),5(0)
Now S(&) is the set of dy o including thel domiponent 70 (s;, s,41), and S(3) denotes the
set of all ﬁt+2 originated from s;, 5. 'As a result; the LER for time ¢ (LLR;) can be derived
by

LLR; = I?E%X{LLg(s)} - r?eagc{LLtl(s)} (4.7)

where S represents the set of all states. Similarly, we can calculate LLR;,;, LLR,.o,
LLR; 3 with the same approach. Note that the number of addition has been reduced
from (4.6), resulting in less overhead caused by the retiming approach.

Finally, we use Fig. 4.9 as a simple example to illustrate the overall decoding process.
Since radix-4 x 4 design is involved, there are four LLR’s evaluated at one time instance
through the retimed forward recursion & and the retimed backward recursion ﬁ In
addition, we should pay more attention on the beginning and end of the whole trellis.
Since the value stored in the registers is different, the initial condition in (2.18) can be

written as

do(o, S/>

~

6]\7(37 0) = 07

=0,

~

(s, s)

29

=—o00 fors#0 (48)

Bn(s,s') = —oc0 for s #0

It indicates that the retimed forward recursions g corresponding to the branches orig-
inating from the zero state and backward recursions BAN corresponding to the branches
entering to the zero state will be set to be the maximum probability. From Fig. 4.9, we
can further notice that the computation of the first ay will only consider two branches
caused by the information bit wy and wu;. Therefore, the initial condition in (4.8) will
be bypassed from first level retimed ACS unit to the second level. As a result, a extra
bypass circuit will be introduced between two levels of the two-dimensional retimed ACS
structure. However, the bypass circuit is composed by the simple logic gate and only one

gate level delay will be introduced to the critical data path.

X X Up up 185) Us Uy Us Ug Uy Ug Ug Ui Upg X X

a a a

: D == D = D R
Decode Decode Decode

< > |« — | < >

Figure 4.9: The decoding process-"(')f‘. the mbdified MAP algorithm

|]

4.2.2 Compare-Select Opéfétion-"(jircuit

We adopt the modulo normalization scheme [13] to avoid path metric overflow. The
overhead is the extra bit required for each ACS unit and metric storage.

Since only differences are meaningful in modulo normalization, the operation in (4.6)
should be modified. The final LLR calculation in (4.7) is also the difference. Hence the
original operation in Fig. 4.10(a) is modified to Fig. 4.10(b) where the v and (§ with larger
(o + B) are selected without additions. After these selections, the LLR can be modified

to
LLR, = (dgmaz - d{}nax) + (A??laa: - Brlnaa:) (49)
where (a2, 3%) and (&L ., 3%) both are obtained from all possible states with

Fig. 4.10(b). The modification in Fig. 4.10(b) guarantees the correctness of the func-

tion and causes no extra critical path delay, but introduces an additional multiplexer.

30

a) Original (b) Modified

Figure 4.10: The selection circuit for the max operation in (4.6)

4.3 Chip Implementation Result

As discuss before, the fixed point representation of the internal variable in the MAP
decoder is determined from the received symbol quantization. Fig. 4.11 shows the simu-
lation result with the different input symibél 'quantization under the BPSK modulation.
And the primary specifications of, the MAP decoder are given in Table 4.1, where the
code polynomial is followed 3GPP2 system |2 [‘]M We cali observe that the quantized format
(3, 3) is suitable scheme for our case FurtheLmore the range of the Aa, AS3, and Ay can
be derived and we summarize the ﬁxed representatlons in Table. 4.2.

The chip is fabricated with 1.2V, 0.13um 1P8M CMOS technology, and the die photo
is shown in Fig. 4.12. A delay lock loop (DLL) circuit is applied to generate internal clock
whose frequency is four times the external frequency. Because of the large bandwidth, the
chip use registers as storage elements instead of SRAM. The total core size is 1.96mm?,

where the DLL contains 0.063mm?. The MAP decoder has 220K gates, and the chip
density is 69.4%. After static timing analysis and post layout simulation, the decoder

Table 4.1: MAP Decoder Specification

[1 1+D+D3 1+D+D?*4+D3]

code polynomial 1D D° 11D D°

code rate 1/3

sliding window size 20

31

—/— floating
> —8— 33
10 °F
—h— 3.2
—B—4.2
o 10°F
S
04
s
g 10°F
=
10°F
10°F
1 1 1 1 |
0 1 2 3 4 5 6 7

Eb/No (dB)

Figure 4.11: Fixed point simulation of the input symbol

Table 4.2: Summary of fixed representation in MAP decoder

quantities || input sylﬁbdls” LTy 154 v
width “6(3:3) 1862 | 8(6.2) | 8(6.2)

achieves 952MS /s throughput un@ér 1,08"&2@161 sgpfi)ly and the worst case corner. The
estimation also includes the crosst;inlk_"é;ﬁ.ﬂalysﬂis-Iifbr_s.i-gnal wires that cause coupling noise.
The power consumption is evaluated with 1.32V éupply and with the switching activities
generated at 952MS /s. We list the summary of simulation results and make a comparison
with a MAP decoder proposed by Lee [14] in Table 4.3. The chip is still under mea-
surement and there is an obstacle to examine the internal clock generated by the DLL.
The measurement result until now is 15 MHz for the external clock rate when the DLL is
working. However, if the clock signal bypass the DLL, the chip can work on the 100 MHz
which is the maximum frequency that testing board can provide. The possible reasons
leading to this problem are discussed as follows: First it the unknow loading of the testing
board. Second, if external clock is not stable enough, it may cause the incorrect internal
clock through the DLL. Finally, we do not consider the driving ability about the output
of the DLL and hence the cad tools may generate a wrong clock tree originating from the

DLL.

32

DL

Table 4.3: Sumniaryamhe:MAP Decoder Chip

Proposed [14]
Technology 0.13pum 0.18pm
Operating Frequency 238MHz 285MHz
Date Rate 952(MS/s) 285(MS/s)

Average Power

528mW (1.32V)

330mW (1.8V)

Core Area 1.96 (mm?) 8.7 (mm?)
Gate Count 220K N/A
Algorithm Max-Log-MAP Log-MAP

33

Chapter 5

The High-Speed Turbo Decoder
Design

For a turbo decoder implementation, the whole decoding throughput is not only re-
stricted by the computation time of its component decoder but also the interleaver (data
block) size. Moreover, the effect of the latten factor will be critical under a long interleaver
size design. It is due to the iterathel‘decodingnaﬁ('i‘n interleaver structure, leading to the

SISO decoders will not start decoding befbfé:,the end=of the previous iteration. In order

to reduce the decoding delay, a shorter, interleaver size'may be used but at the expense of
performance degradation.) .

In the following section, we will inffoduce a ‘ne\;v interleaver design, termed inter-block
permutation (IBP) interleaver [15], which provides a short decoding delay and impressive
performance. Then, a high speed turbo decoder implementation, involving the IBP con-

cept and the Max-Log MAP decoders referred in chapter 4, will be proposed. There are

further some modification for the IBP interleaver under the hardware considerations.

5.1 The Inter-Block permutation interleaver

The IBP interleaver (IBPI) [15] is composed of two permutations: the first permuta-
tion, called intra-block permutation, is performed on the symbol sequence within a data
block; while the second one, called inter-block permutation, is to interchange symbols

in a block with neighboring blocks. Fig. 5.1 presents an example of the IBP interleaver

34

Permutation

/ Intra-Block

Inter-Block

y Permutation
% 0 113210 1 % 210

IT IT

come from come from
the previous block the next block

—
w
N

Figure 5.1: Graph representation of the IBP interleaver

process, where the permuted block not only associates with the original block but also
the previous one and next one blocks. Note that the intra-block permutation can be built
upon any existing block interleaver and hence the inter-block permutation interleaver is
named from its characterized secondspeérmutation.

Since the IBP interleaver maps:the symbols ina block to other blocks, we can consider
its behavior as a class of message passing. Asshown in:Fig. 5.2, each circle is a data block
and the colored ones represent message passing-between different blocks. We can observe
that the range of information transniissions-is proportional to the iteration number and
leading to performance improvement. As a result, if a simple extra inter-block permu-

tation properly designed, the IBP turbo codes will render significant performance gain.

O O O O O O
O O O O Iteration 1.
O Q Iteration 2.

Figure 5.2: Message passing of the IBP intereleaver

35

5.2 Proposed Turbo Decoder Design

As described in previous section, the inter-block permutation interleaver interchange
the information between each blocks to improve the performance. Therefore, we can
adopt short block size and decoding several blocks in parallel to reduce the large decoding
latency. Fig. 5.3 shows a simple block diagram of the proposed turbo decoder. This
architecture consist of three main units: SISO decoders, memory units, and network.
Each SISO decoder is based on the Max-Log MAP algorithm and structured as the radix-
2 x 2 retiming ACS, while the memory units are used to store the input and output
data corresponding to the SISO decoders. Note that the number of the SISO decoders
and memory units is the same, as the power of 2, which is estimated for the trade-off
between area and throughput. Finally, the network is a permutation architecture which
interchanges the input symbols and extrinsic informations between each data blocks. And
it realize the main concept of the IBP algorithm. In the following subsections, we will

describe each part of the proposed turbo decoder in detail.

SISO Output
Decoder

Intput

Figure 5.3: Block diagram of Turbo decoder

5.2.1 IBPI with Butterfly Structure

For the IBPI referred to in the section 5.1, the massage passing span, means the range
of the information interchange, will be extended more widely as the decoding iteration
increasing and further improve the performance. However, the routing congestion problem
in the physical layer will be the obstacle for the hardware implementation and the circuit

to control the connection between SISO decoders and memory blocks may also be complex.

36

So

S

MEM DEC
1 1
MEM DEC
2 2
MEM DEC
3 3
MEM DEC
4 4

Figure 5.4: The butterfly network structure

Thus, we utilize a network as our inter-block permutation structure to simplify hard-
ware complexity and provide a more feasible hardware implementation solution. A pro-
posed network, termed butterfly structure, is presented in Fig. 5.4. Now considering the
number of SISO decoders as well as miemory unit§«defined as N, where N is equal to 2,
the butterfly network well be divided intol=M! level. 'And each level is composed with N
switches controlled by the same single-bit signal. ‘"We=can see that Fig. 5.4 is a example
for M = 4 and N = 2 and controlled“by the-signals (sg, s;). Consequently, the control
logic of the butterfly network is quite simple-and this connection may be more acceptable
for chip implementation, since each node in the network only associates with two nodes.

As mentioned before, the overall IBPI consists of intra-block permutation and inter-block

MEM .| DEC MEM DEC MEM DEC MEM DEC
1 g I 1 1 1 1 1 1
MEM .| DEC MEM DEC MEM DEC MEM DEC
2 ”l 2 2 2 2 2 2 2
MEM .| bEC MEM DEC MEM DEC MEM DEC
3 > 3 3 3 3 3 3 3
MEM .| DEC MEM DEC MEM DEC MEM DEC
4 g I 4 4 4 4 4 4

I 11 111 IV

Figure 5.5: Graph representation of the IBP process

37

permutation. The former can be realized through the addressing of each memory units and
the latter is through the proposed butterfly network, which will be illustrated as follows.
Fig. 5.5 shows a graph representation of the all kinds of the connections corresponding
to the network in Fig. 5.4. Here, we assume the switches pass the data forward with the
control signal valued as 0 and turn on with the control signal valued as 1. As a result,
there are four types of connection: Type I for (sg, s1) = (0,0), Type I for (so,s1) = (0, 1),
Type I for (sg,s1) = (1,0), and Type IV for (sg,s1) = (1,1). And we can use these
connections to perform several different inter-block permutation. Finally, using a flow di-
agram to illustrate the overall procedure of the proposed IBP interleaver architecture. As
shown In Fig. 5.6, we have four data block denoted by the A, B, C and D respectively and
each block size is equal to 8. The whole IBPI will first perform a intra-block permutation
to rearrange the order within each block and in turn a inter-block permutation through

the butterfly network referred to the connections in Fig. 5.5.

I T OUrIv 1 11 mr v

[O 0 0 o o o e 3 2 I S 3 e - I B
EEEEEEEE | FEE R | R e
e Y el T ERr R
EEEEEEEE —EEEEEEEE —EEEEEE

-.‘Aftelll‘"I.'Iltl'a.-ilitélfleiiyé After Inter-interleave

e

Figure 5.6: The overall procedure of the IBP interleaver

Note that the inter-block permutation in this example is according to a sequence | I
II TII TV | repeatedly, which indicates the order of which connection type is used. This
sequence, called as IBP sequence, will be an input signal in our design, which represents
that we can control the inter-block permutation of the interleaver outside the whole turbo
codec. Moreover, the IBP sequence can also be a security key for the communication
between the encoder the the decoder.

Instead of developing a control mechanism to handle the complicated connections be-
tween component decoders and memory units, our proposed IBPI architecture is based on
a simple butterfly network and utilize its hardware structure to implement the behavior

of inter-block permutation. However, note that in this architecture the message passing

38

span is not depends on the decoding iteration but the number of SISO decoders (mem-
ory units). It represents that fewer component decoders may lead to the performance
degradation. Since the turbo decoder in this thesis is considered for the high speed issue,
several SISO decoders, up to 16 or 32, will be used for parallel process and provide a
large enough message passing span. Therefore, our proposed decoder can achieve high

throughput and good performance under modest hardware cost.

5.2.2 SISO decoder

Since several SISO decoders is involved in the inter-block permutation turbo decoder,
the Max-Log-MAP decoder with retimed radix-2 x 2 ACS structure, as described in
chapter 4, will be a compromise between throughput and area cost. Moreover, there are
some modification introduced to further reduce its complexity. To consider the sliding
window approach shown in Fig. 2.3, the backward metrics 3 evaluation can be started
until the required window of data have been stored. However, if we reverse the order

of input sequence within a sub-block, therinput buffer of the (3, computation can be

EISA
modified architecture. The black dashed linei‘rgpresents.the writing input sequence into the

saved [16]. Fig. 5.7 is a graphical, fépresent tion which illustrate the processing of this

input buffer. Note that at the sanie timeé the g\rayjdash&ad line, means the (3; computation,

can be also executed immediately Sitice the sequenee is in the reversed order. Then the

« recursion, denoted by the black solid line,'is performed on the previous stored data
Block

flow
A

/
2 4
e—M—

» Time

Figure 5.7: The graphical representation of the processing with the two input buffers

39

IBUF Input Input
block Buffer Buffer
:

v + v
BMU
block BMU BMU BMU
ACS <
bloek Q- ACs B,-ACS [« B, - ACS
|
Y
QA - buffer
v ¥ v v
LLR

block LLR, LLR

Figure 5.8: The block diagram of thé radix-2x2 Max-Log-MAP decoder

and the second window data will bé& written into the other input buffer. Finally, the first
window data will be read for backward metrics J, calculation and the third window data
will be written into the same input buffer simultaneously. As a result, The block diagram
of the modified Max-Log-MAP decoder is shown in Fig. 5.8. Note that it only requires
two input buffer, which output the data to the o and 35 computation units by turns via
multiplexers. Furthermore, the radix-2 x 2 design is included.

As described before, utilizing the dummy tail bits to terminate the decoding trellis may
decrease the code rate. Since in our proposed IBP turbo decoder the shorter block length
is adopted, the drawback resulted from tail bits will be more serious. Thus, the tail-biting
idea [17], which avoids the rate loss without suffering from performance degradation due
to the end of the block, is considered. A valid codeword in the tail-biting trellis will
cause the encoder to start and end in the same any possible state, instead of zero state

only. Therefore, a dummy sub-block, as well as the last sub-block, will be calculated in

40

Dummy sub-block 1st sub-block last sub-block

LW, ...,L2,L-1 | 0,1,..., W2, W-1 |-« L-W,...,L2,L-1

The initial a for The initial B, for
1st sub-block last sub-block

Y
A

Figure 5.9: The decoding process for tail-biting trellis

Dummy sub-block 1st sub-block last sub-block

L-W-1, ..., L-1,0 L2,...,W-I,W |- L-W-1, ..., L-1,0

—_——— e ——_— — —_ — =

Figure 5.10: The cyclic shifted input sequence order of the SISO decoder

advance to estimate the unknow initial condition of the forward metrics « in the first sub-
block. Similarly, the g computation of the first sub-block can also be a estimation for the
initial condition of the backward metrics‘ inythe last sub-block. The decoding process for
the tail-biting trellis mentioned above is shown in Flg 5.9, where W is defined as sliding
window size and L is defined as block length Note that the estimation is based on the
trellis which starts and ends at the same state

In addition, the tail-biting can®.also s1mp11fy some hardware complexity within the
retimed two-dimensional ACS structure ‘and farther reduce its critical path delay. In the
section 4.2.1, a extra logic should be introduced to bypass the initial condition. However,
it may lead to some additional routing difficulty and increase the path delay. In Fig. 5.10,
we perform a cyclic shift on the input sequence order to improve this problem. Here the
dummy sub-block is still equivalent to the last sub-block. Note that we only shift one
symbol, instead of two, since radix-2 x 2 design is considered. Therefore, the Oth symbol
is moved to the end of the dummy sub-block.

As a summary, to associate with the modification described in the beginning of this

Dummy sub-block Ist sub-block last sub-block

0,L-1,...,L-W-1 | W,W-1,...,2,1 |-« 0,L-1,...,L-W-1

Figure 5.11: The final input sequence order of the SISO decoder

41

—

Buffers used to stored the input symbols

L

in next N blocks

L

Systematic
Information

Systematic
Information

Systematic
Information

Systematic
Information

Two-port Pre-permutation = Pre-permutation Pre-permutation = Pre-permutation
RF parity parity parity parity
Post-permutation Post-permutation | | [Post-permutation Post-permutation
parity parity parity parity
Extrinsic Extrinsic
Information Information
. Pre Pre
Single-port (Pre) (Pre)
RF
Extrinsic Extrinsic
Information Information
(Post) (Post)

fe—L2—> i,
L —mpe

Figure 5.12; The memory unit

subsection, the final input Sequenéé Qrder trangmitted from memory units to SISO de-
coders is represented in the Fig. 5.11. These modification can be achieved easily through

the addressing of memory unit and no extra hardware control need to be involved.

5.2.3 Memory unit

Under the area cost consideration, the memory unit is composed of several register files,
which store different input and output information for the SISO decoders. In a memory
unit, we use three two-port register files (TP-RFs) for storing the encoded codeword,
including systematic information, parity check corresponding to the original sequence
and parity check corresponding to the interleaved sequence. In addition, there are two
single-port register files (SP-RFs) for storing the extrinsic informations obtained from
the SISO decoders in the pre-permutation round and post-permutation decoding round

respectively.

42

Since the radix-2 x 2 Max-Log-MAP decoder is used as the SISO decoder in our design,
the data bandwidth of the each memory unit will be doubled. Therefore, each register
file referred to before is partitioned into two parts. The final memory unit allocation, as
shown in Fig. 5.12, consists of six TP-RFs with depth of L. and four SP-RF's with depth
of L/2, where L is defined as the data block size. Note that the TP-RFs in all N memory
units are also served as buffers to store the input symbols of next N block in advance,
which leads to depth of each TP-RF is twice as that of the SP-RF. We can illustrate it
using the decoding schedule diagram in Fig. 5.13. During the data of the current N blocks
are read out from TR-RF's for decoding, the input symbols of the next N blocks will also
be written into TR-RF's simultaneously. Consequently, only the latency at the beginning
of the decoding process will be introduced and the decoding latency due to re-fetching

the input symbols between every N data blocks can be saved.

Receiving < 1st N blocks >< 2nd N blocks >< 3rd N blocks >< 4th N blocks
Data
Decoding (fstNblocks X 2ndNblocks X 3rd N blocks
Quiput — =~ stNblocks X 2nd N blocks
Decision - A

Figure 5. 13‘".'-,N;Ihe‘ \gié'éoding 'schedule diagram

5.3 Chip Implementation

Based on the architectures described above, we proposed a high-throughput turbo
decoder based on the inter-block permutation interleaver. Fig. 5.14 shows the block di-
agram of our proposed turbo decoder. Consider the trade-off between the throughput
and hardware cost, we utilize 32 memory units and 32 SISO decoders based on the re-
timed radix-2 x 2 ACS structure. In addition, a delay lock loop (DLL) circuit is also
applied to generate internal clock whose frequency is four times the external frequency.
The primary specifications of the turbo decoder are given in Table 5.1 and the fixed point
representation is summarized in 5.2. The code polynomial we adopted is equal to the

3GPP standard and the quite short block length is used. After the simulation as shown

43

‘ DLL f-e-f Control
E A A
\ 4 — A 4
|
—{ MEM_00 |—m +— APP_ 00 [
|
| | | | | |
> MEM_01 |—m +— APP_01 [—»
| v— =
— | Q
3 | o 3= [an]
) c 25 S
3 l 985 | s
: %58 3
|
> MEM_30 |—m +— APP_30 |—
|
| | | | | |
L > MEM 31 |m +— APP 31 |l
L __

Figure 5.14: The block diagramof the proposed IBP turbo decoder

in Fig. 5.15, a appropriate decoding_iteration-nuimber-is decided for performance and de-
coding throughput. Note that théscaling factor approach [18] is applied as compensation
for the performance loss due to the sub-optimal Max-Log-MAP algorithm. Finally, we
compare the performance of the proposed turbo decoder with the 3GPP standard turbo
code in Fig. 5.16. Since we interchange information between 32 component decoders, it
represents that the message span range is equivalent to the 4096. Therefore, the block
length of 3GPP standard turbo code in Fig. 5.16 is 4096 for the fair comparison.

A test chip has been implemented in a 1.2V, 0.13um 1P8M CMOS technology, and
the layout view is shown in Fig. 5.17. The chip size is 25 mm? while the core occupies
17.808 mm?. The total gate count is 2.67M including memory units based on the the
RFs and the chip core density is about 91%. After static timing analysis and post layout
simulation, the turbo decoder achieves 1.06 Gb/s throughput with 8 iterations under
1.08V power supply and the worst case corner. The estimation also includes the crosstalk
analysis for signal wires that cause coupling noise. Table. 5.3 gives the characteristic

summary of the test chips.

44

Frame Error Rate

e . ’ e ed
Sk T
_“"-H-h__‘___ .‘Hi \\\\ ““-»,___h.
i e T~
A a5
™~ 3 \H\
0.1 4 N B B
3 " ™
% M 2
NN N\
\4 "
B-IBPTC \‘ ‘
0.01 - Fixed Point L
] MLM S=0.75 S \
—=— 4 |tes w, o
—e—6 Ites R \z
1E-3 4 —A— 8 ltes
: —w— 10 Ites
h |
1 E-4 L] I T l I T l T I T I
0.8 0.9 1.0 1.1 1.2 1.3 14
E,/N, (dB)

Figure 5.15: :The iteﬂéa‘ti:g)r‘_l_"number simulation

Table 5.1'2.,LTur]._3nQ'-Decodér Specification

code polynomizﬂ”‘ : | [1 %]
block size 128
sliding window size 32
iteration number 8
scaling factor 0.75
SISO decoder algorithm || Max-Log-MAP algorithm

Table 5.2: Summary of fixed representation in Turbo decoder

quantities || input symbols | L, (u;) a 16} v

width 6(3.3) 6(4.2) | 8(6.2) | 8(6.2) | 8(6.2)

45

Frame Error Rate

0.01

1E-3

1E-4

Fixed Point
—&— MLM S=0.75
1| —e— MLM S=0.875
1| —&—MLM
3GPP Turbo Code
Floating Point
4— MLM
1| Fixed Point
1| —8— MLM S=0.75
—a&— MLM S=0.875
1| —&— MLM
—

08 1.0 1.2 14 1.6

E/N, (dB)

Figure 5.16: Companison wiﬁhj-?}‘GPP standard turbo code

|

Table 5.3: Sumffldfy 0

1
]

f the Turbo decoder chip

Technology 0.13pm 1P8M CMOS
Operating Frequency 265MHz
Date Rate(8 iteration) 1.06(Gb/s)
Gate Count 2.67TM
Core Size 17.808mm?
Area Memory 3.328mm?>
DLL 0.054mm?>
Power consumption 508mW (1.2V)

46

1.8

32 MAP Decoders

Figure 5.17: Layout view of the proposed Turbo code decoder

47

Chapter 6

Conclusion

In this thesis, the high throughput and area-efficient MAP decoder is first proposed.
The two-dimensional architecture is introduced for high-radix trellis structure, and the
retimed ACS units are applied for higher clock frequency, leading to much higher data
rate. The hardware overhead is minimized because of the two-dimensional ACS architec-
ture. After chip implementation in 0. 13,[1.II1 1P8M technology, the 1.96mm? core area can
support the maximum 952MS /s data rate,, ;

Second, we propose a efficient hardwar*e:i‘filfcli'ifecfﬁre for implementation of the inter-

block permutation turbo decoder and ;further combme with retimed radix-2 x 2 Max-

Log-MAP decoder as its component decoder A butterﬂy structure is proposed as the
network to interchange the symbols betiwael each block, which avoid too complex control
and reduce the hardware complexity considerably. Since the parallel decoding is feasi-
ble under IBP interleaver, several Max-Log-MAP decoder are included to achieve high
throughput under modest area cost. Finally, a turbo decoder implementation in 0.13um

1P8M technology can achieve 1.06 Gb/s throughput with 8 decoding iterations.

48

Bibliography

1]

Technical Specification Group Radio Access Network; Multiplexing and channel coding
(FDD), 3GPP TS 25.212 Std. V3.11.0, 2002.

Physical Layer Standard for cdma2000 Spread Spectrum Systems, 3GPP2 Std.
C.S0002-C, 2002.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes
for minimizing symbol,” IEEE Trans. Inform. Theory, no. IT-20, pp. 284-287, Mar.
1974.

J. Hagenauer and P. Hoeher, “A Vlteth algorlthm with soft-decision output and its
applications,” in IEEE CLOBE-C’OM Dallas No'v 1989, pp. 47.1.1-47.1.7.

P. Robertson, E. Vlllebrun and P Hoeher “A comparison of optimal and sub-
optimal map decoding algorlthms operatmg in the log domain,” in Proc. ICC"9)5,
Seattle, June 1995.

J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors
with parallel structures for isi channels,” IEEE Trans. Commun., vol. 42, no. 2/3/4,

pp. 1261-1271, Feb./Mar./Apr. 1994.

S. A. Barbulescu, “Sliding window and interleaver design,” in IEEFE Electronics let-

ters, vol. 37, no. 21, Oct. 2001, pp. 1299-1300.

L. C. Perez, J. Seghers, D. Costello, and Jr., “A distance spectrum interpretation of
turbo codes,” IEEFE Trans. Inform. Theory, vol. 42, no. 6, pp. 1698-1709, Nov. 1996.

49

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[18]

Y. Wu, B. D. Woener, and T. K. Blankenship, “Data width requirements in SISO
decoding with modulo normalization,” IEEE Trans. Commun., vol. 49, no. 11, pp.

1861-1868, Nov. 2001.

I. Lee and J. L. Sonntag, “A new architecture for the fast Viterbi algorithm,” IEEFE
Trans. Commun., vol. 51, no. 10, pp. 1624-1628, Oct. 2003.

J. Han, A. Erdogan, and T. Arslan, “High speed Max-Log-MAP turbo SISO decoder
implementation using branch metric normalization,” in IEEE Computer Society An-

nual Symposium on VLSI, 2005, pp. 173-178.

M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s radix-4
logMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in IEEFE Int. Solid-State
Circuit Conf. (ISSCC) Dig. Tech. Papers, 2003, pp. 151-484.

C. Shung, P. Siegel, G. Ungerboeck, and H. Thapar, “VLSI architertures for met-
ric normalization in the Viterbi algorithm,” in Int. Conf. Communications, vol. 4,

Atlanta, CA, Apr. 1990, pp. 172351728

¥ EHIHNA %
S. Lee, N. Shanbhag, and A.=Singer, “A 285-MHz pipelined MAP decoder in 0.18pm
CMOS,” IEEFE J. Solid-State Circuits, vol. 40, no. 8, pp. 17181725, Aug. 2005.

Y.-X. Zheng and Y. T. Su, “ A “Hewi interleaver design and its application to turbo
codes,” in Proc. VTC2002fall, vol. 3, Sep. 2002, pp. 1437-1441.

G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, “Architectural
strategies for low-power VLSI turbo decoders,” IEEE Trans. on VLSI Systems,
vol. 10, no. 3, pp. 279-285, June 2002.

C.Weiss, C. Bettstetter, S. Riedel, and D. Costello, “Turbo decoding with tail-biting
trellises,” in Proc. IEEE Int. Symp. Signals, Syst., Electron., Pisa, Italy, Oct. 1998,
pp. 343-348.

2

J. Vogt and A. Finger, “Improving the max-log-map turbo decoder,” FElectronics

Letters, vol. 36, pp. 1937-1939, Nov. 2000.

20

