
Contents

1 Introduction 1

1.1 Research Motivation . 1

1.2 Thesis Organization . 2

2 Trellis Based Decoding 4

2.1 Decoding Algorithm for Turbo Code . 4

2.1.1 The MAP Algorithm . 4

2.1.2 The Log-MAP Algorithm . 8

2.1.3 The Max-Log-MAP Algorithm . 10

2.2 Sliding Window Approach . 11

3 Turbo Code 13

3.1 Structure of Turbo code . 13

3.1.1 Turbo Encoding . 14

3.1.2 Turbo Interleaver . 15

3.1.3 Turbo Decoding . 17

3.1.4 Error floor effect . 19

3.2 Fixed Point Analysis of Turbo Decoder . 19

4 The High-Speed MAP Decoder Design 22

4.1 High-Speed ACS with Retiming Technique 23

4.1.1 Two-dimensional ACS unit . 23

4.1.2 The Retiming Approach . 25

4.2 Proposed MAP Decoder Architecture . 27

4.2.1 Modified Max-Log-MAP Algorithm 27

i

4.2.2 Compare-Select Operation Circuit 30

4.3 Chip Implementation Result . 31

5 The High-Speed Turbo Decoder Design 34

5.1 The Inter-Block permutation interleaver 34

5.2 Proposed Turbo Decoder Design . 36

5.2.1 IBPI with Butterfly Structure . 36

5.2.2 SISO decoder . 39

5.2.3 Memory unit . 42

5.3 Chip Implementation . 43

6 Conclusion 48

ii

List of Figures

1.1 The block diagram of digital communication system 2

2.1 A (2,1,2) RSC encoder and its state transition diagram 5

2.2 The decoding trellis diagram of the (2,1,2) RSC encoder 6

2.3 The process diagram of sliding window algorithm 11

3.1 The structure of turbo encoder . 14

3.2 Trellis termination for component RSC encoder 15

3.3 The graph representation of the interleaver process 16

3.4 The structure of turbo decoding . 18

3.5 An example of four-state trellis diagram 20

4.1 A block diagram of MAP decoder . 23

4.2 The radix-4 × 4 two-dimensional ACS unit 24

4.3 Retiming of registers . 25

4.4 Retiming of adders . 26

4.5 The retiming result of conventional radix-2 ACS unit 26

4.6 Comparison of critical path delay for original and retiming ACS 27

4.7 Conventional radix-4 × 4 ACS . 28

4.8 Retimed radix-4 × 4 ACS . 29

4.9 The decoding process of the modified MAP algorithm 30

4.10 The selection circuit for the max operation in (4.6) 31

4.11 Fixed point simulation of the input symbol 32

4.12 The die micrograph of the MAP decoder chip 33

5.1 Graph representation of the IBP interleaver 35

iii

5.2 Message passing of the IBP intereleaver . 35

5.3 Block diagram of Turbo decoder . 36

5.4 The butterfly network structure . 37

5.5 Graph representation of the IBP process 37

5.6 The overall procedure of the IBP interleaver 38

5.7 The graphical representation of the processing with the two input buffers . 39

5.8 The block diagram of the radix-2x2 Max-Log-MAP decoder 40

5.9 The decoding process for tail-biting trellis 41

5.10 The cyclic shifted input sequence order of the SISO decoder 41

5.11 The final input sequence order of the SISO decoder 41

5.12 The memory unit . 42

5.13 The decoding schedule diagram . 43

5.14 The block diagram of the proposed IBP turbo decoder 44

5.15 The iteration number simulation . 45

5.16 Comparison with 3GPP standard turbo code 46

5.17 Layout view of the proposed Turbo code decoder 47

iv

List of Tables

3.1 Standard specifications for turbo coding 13

4.1 MAP Decoder Specification . 31

4.2 Summary of fixed representation in MAP decoder 32

4.3 Summary of the MAP Decoder Chip . 33

5.1 Turbo Decoder Specification . 45

5.2 Summary of fixed representation in Turbo decoder 45

5.3 Summary of the Turbo decoder chip . 46

v

Chapter 1

Introduction

1.1 Research Motivation

A communication system conveys a information source to a destination through a

channel. Fig. 1.1 shows a fundamental block diagram of traditional digital communica-

tion system. Generally, the system can be divided into transmitter and receiver via a

channel. The main task of transmitter, including source encoder, channel encoder and

modulator, is to transform the information into a form that can withstand the effect of

noise over the transmission media. And the receiver will reverse the signal transformation

by demodulator, channel decoder and source decoder. Since the channel impairments

such as noise, interference and distortion may cause the error in the received signal, the

channel encoder is incorporated in the system to add certain structural redundancy to

the source codeword to minimize the transmission errors. Although these redundant bits

may lowered data transmission rate, the channel coding eliminate the effects of noise

disturbances and thus improve the performance, relative to an uncoded system.

There are two most frequently used types of channel codes, the block codes and the

convolutional codes. The main different between the two of these codes is memory of

the encoder. For the block code, the encoded codewords are only depend on the current

input message and not on any previous messages. That is, the block code is memoryless.

In contrast, the encoding procedure in the convolutional code depends not only on the

current input message but also on certain past message blocks.

Turbo code, which belongs to the convolutional code, is one of the most popular

1

Information

Source

Source

Encoder

Channel

Encoder
Modulator

Information

destination

Source

Decoder

Channel

Decoder
Demodulator

Channel

Figure 1.1: The block diagram of digital communication system

coding technique for the modern digital communication systems in the last decade. It

is attractive by its excellent error correction ability resulted from soft iterative decoding.

The main problem of turbo codes is that a long interleaver is able to support exceptional

performance, but also introduces a long decoding latency and huge memory requirement.

In the Third Generation Partnership Projects 3GPP [1] and 3GPP2 [2] defined detail

standard, they provide maximum data rate of about 2 Mb/s and 3Mb/s, respectively.

However, several communication application in the future may demand for a higher speed

channel coding scheme. And it may become a obstacle for the turbo code in the hardware

implementation.

In this thesis, our work is motivated to design a high-throughput turbo decoder. We

attempt to achieve the target from two aspects: First one is to speed up the SISO decoder

used in the whole turbo decoder by shortening its critical data path. Second, we employ

a new interleaver to reduce the latency caused by the interleaver and propose a practical

hardware architecture for the whole turbo decoder. Finally, we will propose a high speed

turbo decoder with the modest hardware cost.

1.2 Thesis Organization

This thesis consists of 6 chapter. In chapter 2, several iterative decoding algorithm

used for the turbo code and its relative practical techniques will be introduced. In chap-

ter 3, we will review the structure of turbo code including its encoder, interleaver and

decoder. Furthermore, the fixed point analysis about turbo code is also involved in this

2

chapter. Chapter 4 presents a high-speed Max-Log-MAP decoder, which utilize the re-

timing technique and two-dimensional ACS structure to reduce the critical path delay in

the high-radix design under the efficient area cost. And the chip implementation results

will also be reported in the end of this chapter. In Chapter 5, we further proposed a

complete high-speed turbo decoder. Beside using the proposed Max-Log-MAP decoder

as its component decoder, a new interleaver called inter-block permutation interleaver will

be introduced and employed in our turbo decoder. Similarly, the implementation result

will also be reported. Finally, the conclusion are given in chapter 6.

3

Chapter 2

Trellis Based Decoding

2.1 Decoding Algorithm for Turbo Code

The turbo code is composed of two soft-input soft-output (SISO) constituent codes

that communicate iteratively through an interleaver. And the maximum a posteriori prob-

ability (MAP) [3] algorithm and soft-output Viterbi algorithm (SOVA) [4] are commonly

employed for the SISO decoders. Unlike the SOVA which exploits maximum likelihood

(ML) algorithm to minimize the word error probability, the MAP algorithm minimizes

the symbol (or bit) error probability. In this section, we will focus on introducing the

turbo decoding based on MAP algorithm, because it has been proved that the MAP al-

gorithm is the optimal decoding method for turbo code while comparing with SOVA [5].

Furthermore, the Log MAP and Max-Log MAP algorithms will also be introduced, which

reduce the hardware complexity and are widely used for implementation.

2.1.1 The MAP Algorithm

The MAP decoding algorithm, termed as BCJR algorithm, is developed by Bahl,

Cocke, Jelinek, and Raviv [3] in 1974. For each transmitted information bit ut, the

MAP algorithm estimates the a posteriori probabilities (APP) based on the received code

sequence r over a discrete memoryless channel (DMC). It computes the log-likelihood ratio

(LLR)

L(ut) =
P (ut = +1|r)
P (ut = −1|r) (2.1)

4

u

00 01

10 11

1/11

1/10

1/10

1/11

0/00

0/00

0/01

0/01

Figure 2.1: A (2,1,2) RSC encoder and its state transition diagram

for 1 ≤ t ≤ N , where N is the received sequence length, and compares this value to a

zero threshold to determine the hard estimate ut as

ut =

+1, if L(ût) ≥ 0

−1, otherwise
(2.2)

As an example, a rate 1/2 memory order 2 RSC encoder and its state transition are

illustrated in Fig. 2.1. And its decoding trellis diagram is shown in Fig. 2.2. Note that

the solid lines represent the state transitions corresponding to an information bit ut of

−1, while the dotted lines represent the state transitions corresponding to an information

bit ut of +1. From Fig. 2.2, the APP’s in (2.1) can be computed by the summation of

state transition probabilities. Therefore, the equation can be further expressed as

L(ût) =
P (ut = +1|r)
P (ut = −1|r)

=

∑

(m′,m)∈B
+1
t

P (St−1 = m′, St = m|r)
∑

(m′,m)∈B
−1
t

P (St−1 = m′, St = m|r)

=

∑

(m′,m)∈B
+1
t

P (St−1 = m′, St = m, r)
∑

(m′,m)∈B
−1
t

P (St−1 = m′, St = m, r)
(2.3)

where P (St−1 = m′, St = m, r) represents the joint probability for the existing transition

from St−1 at time t to St at time t + 1. B+1
t and B+1

t is the sets of (m′,m), denoted the

state transitions which are due to input bit ut = +1 and ut = −1 respectively.

In order to compute joint probability required for calculation of L(ut) in (2.3), we

define the following metrics:

5

Forward Direction for

computing

Backward Direction for

computing

ut =
_ 1

ut = +1

α β
St St+1
00

01

10

11

Figure 2.2: The decoding trellis diagram of the (2,1,2) RSC encoder

λt(m
′,m) = P (St−1 = m′, St = m, r) (2.4)

αt(m) = P{St = m, rt
0} (2.5)

βt(m) = P{rN−1
t+1 |St = m} (2.6)

γt(m
′,m) = P{St = m, rt|St−1 = m′} (2.7)

Since we assume the code sequence after encoding is transmitted through discrete mem-

oryless channel, the joint probability can be expressed as

λt(m
′,m) = P (St−1 = m′, St = m, rt−1

0 , rt, r
N−1
t+1)

= P (rN−1
t+1 |St−1 = m′, St = m, rt−1

0 , rt)

· P (St = m, rt|St−1 = m′, rt−1
0)

· P (St−1 = m′, rt−1
0)

= P (rN−1
t+1 |St = m) · P (St = m, rt|St−1 = m′) · P (St−1 = m′, rt−1

0)

(2.8)

Here rt−1
0 represents the received code sequence from time instance 0 to t− 1, while rN−1

t+1

is from time instance t + 1 to the end of sequence. Note that the second equation of (2.8)

comes from Bayes’ rule, and the third equation is due to the Markov process in the state

transitions. Therefore, compared with the definition of (2.5), (2.6) and (2.7), the joint

probability defined in (2.4) can be rewritten as

λt(m
′,m) = αt−1(m

′) · γt(m
′,m) · βt(m) (2.9)

6

Now we will derive the equations (2.5), (2.6) and (2.7) as follow:

αt(m) = P (St = m, rt−1
0)

=
∑

m′∈S

P (St−1 = m′, St = m, rt−1
0)

=
∑

m′∈S

P (St = m, rt−1|St−1 = m′, rt−2
0) · P (St−1 = m′, rt−2

0)

=
∑

m′∈S

P (St = m, rt−1|St−1 = m′) · P (St−1 = m′, rt−2
0)

=
∑

m′∈S

αt−1(m
′) · γt(m

′,m)

(2.10)

Similarly, we have

βt(m) = P (rN−1
t+1 |St = m)

=
∑

m′∈S

P (St+1 = m′, rN−1
t+1 |St = m)

=
∑

m′∈S

P (St+1 = m′, rt+1, r
N−1
t+2 , St = m) / P (St = m)

=
∑

m′∈S

P (rN−1
t+2 |St+1 = m′, rt+1, St = m) · P (St+1 = m′, rt+1|St = m)

=
∑

m′∈S

P (rN−1
t+2 |St+1 = m′) · P (St+1 = m′, rt+1|St = m)

=
∑

m′∈S

γt+1(m,m′) · βt+1(m
′)

(2.11)

where S represent the set of all states. Note that the forward metric α in (2.10) and the

backward metric β in (2.11) are computed recursively in opposite direction. If the trellis

of encoding diverges from zero state at t = 0 and converges to zero state at t = N − 1, as

shown in Fig. 2.2, the following initial conditions are satisfied:

α0(0) = 1, α0(m) = 0 for m 6= 0

βN(0) = 1, βN(m) = 0 for m 6= 0
(2.12)

Furthermore, for any existing transitions from state m′ to m, the branch transition prob-

7

ability γt(m
′,m) can be decomposed as

γt(m
′,m) = P (St = m, rt|St−1 = m′)

=
P (St−1 = m′, St = m, rt)

P (St−1 = m′)

=
P (St−1 = m′, St = m)

P (St−1 = m′)
· P (St−1 = m′, St = m, rt)

P (St−1 = m′, St = m)

= P (St = m|St−1 = m′) · P (rt|St−1 = m′, St = m)

= P (ut) · P (rt|vt)

(2.13)

where P (uk) is well-known as a prior probability of uk and vt is the codeword associated

with the transition St−1 = m′ to St = m corresponding to encoder input ut.

As a summary of the MAP algorithm, with computation of γt(m
′,m) in (2.13), we can

derive α and β for each state at different time instances. As a result, the joint probability

in (2.9) is also available for t = 0, 1, · · · , N − 1. And we can calculate the log-likelihood

ratio L(ut) by

L(ut) = log

∑

(m′,m)∈B
+1
t

αt−1(m
′) · γt(m

′,m) · βt(m)
∑

(m′,m)∈B
−1
t

αt−1(m′) · γt(m′,m) · βt(m)
(2.14)

2.1.2 The Log-MAP Algorithm

The MAP algorithm requires large memory and a large number of operations involving

exponentiation and multiplication. And the hardware realization of MAP decoder will

be quite complex and difficult. Therefore, the Log-MAP algorithm is proposed to solve

this problem. First, we transfer the branch metrics defined in the MAP algorithm to the

logarithmic domain; that is

γ̄t(m
′,m) = log γt(m

′,m) (2.15)

Referring to (2.10) and (2.11), the forward path metric ᾱt can be expressed as

ᾱt(m) = log αt(m)

= log
∑

m′∈S

eᾱt−1(m′)+γ̄t(m′,m)
(2.16)

and the backward path metric β̄t can be expressed as

β̄t(m) = log βt(m)

= log
∑

m′∈S

eγ̄t+1(m,m′)+β̄t+1(m′)
(2.17)

8

Note that the initial conditions of path metrics also have changed, since all computations

work with the logarithm domain.

ᾱ0(0) = 0, ᾱ0(m) = −∞ for m 6= 0

β̄N(0) = 0, β̄N(m) = −∞ for m 6= 0
(2.18)

After substituting (2.15), (2.16) and (2.17), the APP information L(ût) in (2.14) can be

rewritten as

L(ut) = log

∑

(m′,m)∈B
+1
t

eᾱt−1(m′)+γ̄t(m′,m)+β̄t(m)

∑

(m′,m)∈B
−1
t

eᾱt−1(m′)+γ̄t(m′,m)+β̄t(m)
(2.19)

Considering the following Jocobian algorithm [6]

log(eδ1 + eδ2) = max(δ1, δ2) + log(1 + e−|eδ2−eδ1|)

= max(δ1, δ2) + fc(|δ2 − δ1|)
(2.20)

where fc(·) is a correction function and thus the performance can be improved. By a

recursive procedure of (2.20), the expression log(eδ1 + eδ2 + · · · + eδn) can be computed

exactly, as follows

log(eδ1 + eδ2 + · · · + eδn) = log(∆ + eδn), ∆ = eδ1 + · · · + eδn−1 = eδ

= max(log ∆, δn) + fc(|log ∆ − δn|)

= max(δ, δn) + fc(|δ − δn|)

(2.21)

Now we can use (2.20) to represent forward metrics in (2.16) and backward metrics in

(2.17) as

ᾱt(m) = max
m′∈S

∗{ᾱt−1(m
′) + γ̄t(m

′,m)} (2.22)

and

β̄t(m) = max
m′∈S

∗{γ̄t+1(m,m′) + β̄t+1(m
′)} (2.23)

where the max∗(·) operation is defined as

max∗(·) = max(δ1, δ2) + fc(|δ2 − δ1|) (2.24)

Therefore, the (2.27) can be expressed as

L(ût) = max
(m′,m)

∗{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}

− max
(m′,m)

∗{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}
(2.25)

9

The performance of the Log-MAP algorithm is equivalent to the performance of the

MAP algorithm but the complexity has been reduced considerately.. However, some

difficulty for hardware implementation still exists since computing fc(·) also involves ex-

ponentiations and multiplications. For simplified the computation of correction function,

it is usually stored in a pre-computed table. And this table is only one dimensional

due to the correction only depends on |δ2 − δ1|. Thus, the Log-MAP algorithm can be

implemented with max function as well as a lookup table.

2.1.3 The Max-Log-MAP Algorithm

In order to further simplify the complexity, another approximation of MAP algorithm

termed Max-Log-MAP algorithm is derived. Now, considering the following approxima-

tion formula max function

log(eδ1 + eδ2 + · · · + eδn) ≈ max
i∈{1,2,·,n}

δi (2.26)

Note that the term fc(·) is ignored in comparison with (2.21). Then we can simplify the

equation (2.19) as follows:

L(ut) = max
(m′,m)∈B

+1
t

{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}

− max
(m′,m)∈B

−1
t

{ᾱt−1(m
′) + γ̄t(m

′,m) + β̄t(m)}
(2.27)

Similarly, the forward recursive and backward recursive metrics in (2.16) and (2.17) can

be individually expressed as

ᾱt(m) = max
m′∈S

{ᾱt−1(m
′) + γ̄t(m

′,m)} (2.28)

and

β̄t(m) = max
m′∈S

{γ̄t+1(m,m′) + β̄t+1(m
′)} (2.29)

Here we can see that the computations of ᾱ and β̄ are reduced to simple add-compare-

select operations, which are equivalent to the path metric updating of Viterbi algorithm.

Therefore, compared with the MAP algorithm, the Max-Log-MAP algorithm utilizes addi-

tions to replace the multiplications and avoids the complicated exponentiations. However,

the performance would degrade because of the information loss in (2.26).

10

2.2 Sliding Window Approach

In the conventional MAP-series decoding algorithm(including MAP algorithm, Max-

Log MAP algorithm and Log-MAP algorithm), the LLR computation requires the path

metric values generated by the forward and backward processes. Furthermore, since the

backward recursive computation initials from the end of decoding trellis, as shown in Fig.

2.2, the decoding process can be started after the entire block message to be received.

If the sequence length is large, it will lead to long output latency and huge memory

requirement for hardware implementation. For example, the maximum block length of

3GPP2 standard is 20730, which means 20730 metrics should be stored. And it is the

main disadvantage of turbo code for real application.

The main problem is that long block length can not divided into several short sub-block

immediately, since the unknow initial condition of backward recursive metrics computa-

tions will damage the performance of turbo codes. Therefore, the sliding window approach

was proposed [7] to overcome it. This algorithm utilizes the fact that the backward met-

rics can be highly reliable even without the initial condition if the backward recursion

goes long enough. Fig. 2.3 shows the process of the sliding window algorithm and will be

further illustrated as follows. First, the received codeword sequence is divided into several

sub-blocks of length of W . W is called the convergence length, which normally is set to

be five times constraint length of component encoder in turbo code to ensure the reliable

i i+1 i+2 i+3

L(ut)

L(ut)

L(ut)

t1

t2

t3

t4

W

α 1
β

2
β

1
β

1
β

2
β

1
β

2
β

α2
β

α

α

Figure 2.3: The process diagram of sliding window algorithm

11

initialization. In the sliding window approach, the end of sub-block is the initial of next

sub-block whether the forward or backward recursive operation. Thus, the initial metric

values are inherited from the last metrics calculated in the previous sub-block. Note that

the dummy backward recursion β1 is employed to establish the initial condition for the

true backward recursion β2. Although the initial condition for the β1 is unknow except

the last sub-block, we utilize the equally likely condition for the β1 values at time instance

(i + 1) · W :

β1(m) =
1

M
, for all m ∈ S (2.30)

where S represents all possible state and M is equal to the total state number. During the

forward recursion α proceeds in the i-th sub-block and stores these values into memory, the

dummy backward recursion β1 is performed in the i + 1 sub-block concurrently. As soon

as the β1 computation is finished, the initial metrics in the i-th sub-block are available for

the β2 recursion. And L(ût) can be calculated based on the α metrics in the memory, the

β2 metrics in computation, and the corresponding branches metrics in the i-th sub-block.

12

Chapter 3

Turbo Code

3.1 Structure of Turbo code

Turbo Codes, first introduced by C. Berrou, A. Glavieux and P. Thitimajshima in

1993, are impressive with the near Shannon limit performance. It exploits a similar idea

of connecting two RSC (Recursive Systematic Convolutional) codes and separating them

by a random interleaver. Moreover, they are concatenated in parallel. The primary reason

for using a interleaver is to ensure that, each component codes get independent estimates

on the information symbols from the other one at each iteration.

The turbo codes have found applications in several standards listed in Table 3.1 due

Table 3.1: Standard specifications for turbo coding

Standard Application Iterative Code Max. Throughput

DVB-RCS
Digital Parallel conc. of

68 Mb/s (rate 7/8)
video broadcast 8-state conv. codes

IEEE 802.16
Wireless networking Turbo

25 Mb/s (rate 5/6)
(MAN) product code

3GPP UMTS Wireless cellular
Parallel conc. of

2 Mb/s (rate 1/3)
8-state conv. codes

3GPP2
Wireless cellular

Parallel conc. of
3.09 Mb/s (rate 1/5)

CDMA2000 8-state conv. codes

CCSD Space telemetry
Parallel conc. of

384 kb/s (rate 1/2)
16-state conv. codes

13

to its outstanding error correction ability. And in the following, we will describe the

structure of turbo coding in detail.

3.1.1 Turbo Encoding

A turbo encoder is formed by two parallel recursive systematic convolutional (RSC)

encoders and separated by a turbo interleaver, and the interleaver is a process of rear-

ranging the ordering of a data sequence in a one-to-one deterministic format. Therefore,

the information is encoded by the first component encoder, interleaved and encoded by

the second one simultaneously. In other words, the same set of information sequence is

encoded twice but in a different order. Thus, the turbo codes are also referred to as

parallel concatenated convolutional codes (PCCC). A block diagram of a turbo encoder,

based on a (2,1,4) RSC code is shown in Fig. 3.1. The generator matrix G(D) for this

component RSC code can be written in the so-called systematic form:

G(D) =

[

1
g1(D)

g0(D)

]

=

[

1
1 + D + D3

1 + D2

]

(3.1)

where g0(D) and g1(D) are feedback and feedforward polynomial, respectively

Note that each input bit is encoded as one systematic bit and one parity check bit in a

rate 1/2 RSC encoder. However, in order to increase the code rate of turbo code, only the

parity check sequence of the second encoder, denoted by Z’k, is transmitted. Therefore,

Input

Xk

Zk

Z'k

Interleaver

X'k

1st constituent encoder

2nd constituent encoder

Figure 3.1: The structure of turbo encoder

14

the overall code rate is 1/3 and output encoded sequence should be {Xk,Zk,Z’k}.
After encoding all input messages, transmission of some tail bits, which forces the en-

coder to finish encoding one block in the all-zero state, is required. The trellis termination

makes sure that the initial state for the next block is the all-zero state. However, this

operation would lead to two kinds of overhead. First, an extra amount of bits has to be

sent through the encoder, decreasing the whole code rate. Second, extra circuitry in the

turbo encoder is introduced. Since the component encoders are recursive, it is impossible

to terminate the trellis to all-zero state only by inserting dummy zeros directly.

Input

Systematic part

A

B

Parity-check part

Figure 3.2: Trellis termination for component RSC encoder

To consider the latter problem, a simple solution is provided in Fig. 3.2. A switch in

each parallel component encoder is set to position ”A” for the first N input symbol and

in position ”B” for 3 tail bits in our example of Fig. 3.2, which shows a rate 1/2 RSC

encoder with memory order 3. This trellis termination will flush all registers with zeros

and thus the trellis return to all zero state.

3.1.2 Turbo Interleaver

For the turbo code, the interleaver plays an important role to achieve good perfor-

mance. Its function is to rearrange the ordering of a data sequence in a one-to-one

deterministic format. Fig. 3.3 shows a graph representation of interleaver process, where

u is the input sequence as well as the systematic part of the codeword and ũ is the per-

muted sequence for the input of the second component encoder. Thus we can construct

a long block code from small memory component convolutional codes via a interleaver.

Moreover, it spreads out the burst errors and further eliminates the correlation of the

input of two RSC encoders so that the iterative decoding algorithm based on exchanging

15

State sequence

in encoder 1

State sequence

in encoder 2

1

2

0

uɶ

Figure 3.3: The graph representation of the interleaver process

the ”un-correlated” information between two component decoders can be applied. Lastly,

the interleaver can break low weight codewords to improve the coding gain.

The error performance of the turbo code is determined by the code distance spectrum.

In [8], it points out a process of the interleaver called spectral thinning can reduce the

error coefficients of low weight codewords. This effect leads to a bit error probability

reduction by a factor 1/N , where N is the interleaver size. And the factor 1/N is also

referred to the interleaver gain. Under the analysis, the error performance at low SNR’s is

mainly dominated by the interleaver size. However, the low weight codewords produced by

certain low weight input sequences dominate the turbo code performance at high SNR’s.

Consequently, a interleaver structure is desirable to break these input patterns. In such

case, the input sequence to the second encoder ,which is generated by the interleaver, will

most likely produce a high weight parity check sequence and further increase the whole

turbo codeword weight. As a result, the interleaver size and structure will both affect the

turbo code error performance considerately.

16

3.1.3 Turbo Decoding

The main idea for iterative turbo decoding is to exchange soft information among

SISO decoders to calculate a posteriori probabilities of each information bit ut. And the

turbo decoding process based on the MAP algorithm will be examine as follows.

For a rate 1/n RSC encoder, each codeword consists of one systematic bit v
(0)
t and

(n − 1) parity bit v
(1)
t ∼ v

(n)
t . Similarly, the decoder will receive codeword including one

systematic symbol r
(0)
t and parity symbols r

(1)
t ∼ r

(n)
t . Thus, considering the AWGN

channel with 2σ2 = N0/Es, the branch metric in (2.13) can be expressed as

γt(m
′,m) = P (ut) · P (rt|vt) = P (ut) · e−

n−1
i=0

(r
(i)
t

−v
(i)
t

)2

2σ2 (3.2)

Note that the expression for P (rt|vt) is normalized by multiplying a factor (
√

2πσ)n. By

substituting (3.2), the log-likelihood ratio in the MAP algorithm in (2.14) can be further

represented as

L(ut) = log

∑

(m′,m)∈B
+1
t

αt−1(m
′) · P (ut = +1) · e−

n−1
i=0

(r
(i)
t

−v
(i)
t

)2

2σ2 · βt(m)

∑

(m′,m)∈B
−1
t

αt−1(m′) · P (ut = −1) · e−
n−1
i=0

(r
(i)
t

−v
(i)
t

)2

2σ2 · βt(m)

(3.3)

where P (ut = +1) and P (ut = −1) are the a priori probabilities corresponding to the

information bit 0 and 1, respectively. Now, we rewrite L(ut) by extracting the common

term as

L(ut) = log
P (ut = +1)

P (ut = −1)
+ log

e−
(r

(0)
t

−(+1))2

2σ2

e−
(r

(0)
t

−(−1))2

2σ2

+ log

∑

(m′,m)∈B
+1
t

αt−1(m
′) · e−

n−1
i=1

(r
(i)
t

−v
(i)
t

)2

2σ2 · βt(m)

∑

(m′,m)∈B
−1
t

αt−1(m′) · e−
n−1
i=1

(r
(i)
t

−v
(i)
t

)2

2σ2 · βt(m)

(3.4)

Note that the systematic bits are independent of the state transition (m,m′). That is,

v
(0)
t in the numerator and denominator of the (3.3) must be +1 and −1. And L(ut) could

be further decomposed into

L(ut) = La(ut) +
2

σ2
r
(0)
t + Le(ut) (3.5)

The term La(ut) is defined as the log-likelihood ratio of the a priori probabilities and

Le(ut) is called the extrinsic information.

17

De-

Interleaver

Interleaver

Interleaver

SISO

Decoder

1

SISO

Decoder

2

r
(0)

r
(1)

r
(2)

1()e t
L u

2 ()e t
L uɶ

1()a t
L u

2 ()a t
L uɶ

1()tL u 2 ()tL uɶ

Figure 3.4: The structure of turbo decoding

Fig. 3.4 shows a general structure of turbo decoder, which consists of two component

decoders via an interleaver as well as the one in the encoder. In the turbo decoding

process, we first set the a priori information La1(ut) for the first SISO decoder to zero

and calculate L1(ut) base on the MAP algorithm. And we can get the extrinsic information

Le1(ut) from (3.5)

Le1(ut) = L1(ut) −
2

σ2
r
(0)
t − La1(ut) (3.6)

Here, we can observe that the Le1(ut) is a function of the redundant information that

introduced by the encoder but removes the contribution due to systematic input and a

priori information from L1(ut). Therefore, it can be used as the a priori probability for

the second decoding stage. Beside the parity sequence r(2), the SISO decoder 2 will also

receive r̃(0) and La2(ũt) which come from r(0) and Le1(ut) after permutation, respectively.

Under these input information, the SISO decoder 2 can also evaluate the a posteriori

output L1(ũt) and the extrinsic information Le2(ũt) by

Le2(ũt) = L2(ũt) −
2

σ2
r̃
(0)
t − La2(ũt) (3.7)

Similarly, the information Le2(ũt) can be regarded as the a priori information La1(ut)

for SISO decoder 1 after being reordered via the de-interleaver. For the turbo code, the

decoding performance can be improved as the number of its decoding iteration increases.

18

However, the correlation between two component decoder will also be more apparent

and further limit the performance improvements. Then the iterative turbo decoding

process will stop after a certain number of iterations and makes hard decision using APP

information L2(ũt) through the de-interleaver.

3.1.4 Error floor effect

Although the turbo code provides an excellent performance, the bit-error-rate (BER)

will decrease quite slowly at high signal-to-noise ration (SNR). This phenomenon, called

”error floor” region, is determined by the minimum free distance of turbo codes which is

related to the interleaver. To consider the relation between the minimum free distance

and the bit error probability in turbo coding, which can be expressed by

Pb ∝ Q(

√

2dfreeR
Eb

N0

) (3.8)

where dfree is the code minimum free distance, R is the code rate, and Eb/N0 is the SNR.

3.2 Fixed Point Analysis of Turbo Decoder

Since this quantization will be the trade-off between coding performance and hardware

cost, the fix-point analysis should be considered to minimize error performance loss. In

general, the bit-width of input information is determined via simulations, and then the

range of internal variables can be derived according to the bounded input [9].

Now we define the notation (ni, nf) to represent the symbol quantization, where ni

bits are integer part and nf are floating parts. After quantizing, the maximum absolute

value of the input symbols r
(i)
t and a priori information La(ut), denoted by Bin and Ba

respectively, are given. Therefore, the maximum difference of branch metrics, which is

decided from (3.2), can be derived by

∆γt ≤ n × Bin + Ba (3.9)

Here we assume that the decoder will receive n input symbols in each time instance based

on a rate 1/n RSC encoder and all the received symbols are equally quantized.

For a RSC encoder with memory order m, the paths merging each state at time

instance t originate from all states at time instance t − m. As a result, the difference of

19

tt-1t-2

Figure 3.5: An example of four-state trellis diagram

any two path metrics at time instance t is only dependent on the branch metrics from

time instance t−m to t. Fig. 3.5 shows an example with m = 2. Therefore, we can derive

the upper bounds for the difference of the forward path metrics α as

∆αt ≤ dm × Bin + m × Ba (3.10)

where the value dm represents the maximum Hamming distance between any two paths

across m trellis sections. Similarly, the backward path metrics β is bounded by

∆βt ≤ dm × Bin + m × Ba (3.11)

In order to derive the upper bound of the L(ut), we can extend the equation (2.19) as

follows:

L(ut) ≤ log

∑

(m′,m)∈B
+1
t

emax(αt−1)+max(γt)+βt(m)

∑

(m′,m)∈B
−1
t

emin(αt−1)+min(γt)+βt(m)

= [max(αt−1) + max(γt)] − [min(αt−1) + min(γt)]

+

log
∑

(m′,m)∈B
+1
t

βt(m)

 −

log
∑

(m′,m)∈B
−1
t

βt(m)

(3.12)

Since each state at time instance t originates from two branches corresponding to the

information bits ut = +1 and ut = −1. As a result

log
∑

(m′,m)∈B
+1
t

βt(m) = log
∑

(m′,m)∈B
−1
t

βt(m) (3.13)

And the bound in (3.12) can be further simplified as

L(ut) ≤ ∆αt + ∆γt (3.14)

20

Similarly, the lower bound can be obtained

L(ut) ≥ −(∆αt + ∆γt) (3.15)

As a conclusion, given the bound of the difference of the forward path metric ∆αt and

the bound of the difference of the branch metric ∆γt, the magnitude of the output LLR

is bounded by

|L(ut)| ≤ ∆αt + ∆γt (3.16)

Finally, the bound for the magnitude of the extrinsic information Le(ut) can be derived

from the (3.6), where

Le(ut) = L(ut) −
2

σ2
r
(0)
t − La(ut) (3.17)

Hence, the bound can be obtained by

|Le(ut)| ≤
∣

∣

∣

∣

L(ut) −
2

σ2
r
(0)
t − La(ut)

∣

∣

∣

∣

(3.18)

21

Chapter 4

The High-Speed MAP Decoder

Design

As mentioned in Chapter 2, the component decoders for the Turbo codes perform iter-

ative decoding based on maximum a posterior (MAP) probability algorithm. Considering

the implementation complexity, the MAP algorithm is approximated to Max-Log-MAP

algorithm with less complicated arithmetic. Fig. 4.1 illustrates the block diagram of the

proposed MAP decoder, which consists of branch metric unit (BMU), add-compare-select

(ACS) unit, log-likelihood-ratio (LLR) unit, and buffers. The first three units calculate

the metrics and LLRs, while the buffers store the input symbols and forward path met-

rics. For a conventional MAP decoder, the computation time is dominated by the ACS

operation, in which many studies on decoder architectures have been presented to reduce

the critical path delay. Inkyu [10] proposed the double-state technique which enables

addition and comparison to execute concurrently. However, this approach would lead

to a large overhead because there are forward and backward path metric calculations in

MAP algorithm. In [11], although the normalization operation is moved from ACS unit

to BMU for higher speed, only radix-2 structure is considered.

In this chapter, we introduce a two-dimensional ACS structure to reduce the com-

plexity of high-radix design and a retimed ACS unit to increase the operating frequency.

From the implementation results, the present MAP decoder can facilitate high throughput

designs with area efficiency.

22

LLRt LLRt+1

- ACS

BMU

Input

Buffer

BMU BMU

α

α

- ACS - ACS

- buffer

β2 1
β

Input

Buffer

BMU

block

ACS

block

LLR

block

IBUF

block

Input

Buffer

LLRt+2 LLRt+3

Figure 4.1: A block diagram of MAP decoder

4.1 High-Speed ACS with Retiming Technique

For the Max-Log MAP algorithm implementation, the decoder throughput is limited

by the critical path delay of ACS unit due to the recursive computations. Even with the

high-radix design, the performance is still dominated by the large critical path because

of the exponentially increasing branches. In this section, we refer to a structured two-

dimensional ACS unit with retiming technique to speed up high-radix architectures while

keeping the least cost increase.

4.1.1 Two-dimensional ACS unit

In general, the radix-16 design can provide a speed-up by 4 as compared to the radix-2

structure. Nevertheless, the complexity and the branch number increase exponentially,

resulting in large critical path delay and huge hardware cost. It also limits the feasibility

to achieve a high speed ACS unit through the high-radix approach.

23

Figure 4.2: The radix-4 × 4 two-dimensional ACS unit

Therefore, we introduce a radix-4× 4 structured ACS unit to decompose the compare

operation among 16 branches into two levels. As shown in Fig. 4.2, the radix-4 × 4 ACS

unit, referred to the two-dimensional structure, consists of two consecutive radix-4 ACS

units. The survivors among four branches selected from each radix-4 ACS unit in first

level will be the four candidates in the second radix-4 ACS unit.

The throughput of radix-4 × 4 structure is equivalent to the radix-16 approach. Ad-

ditionally, the exponential increase of complexity has been restricted due to the multiple

lower-radix ACS units instead of one single high-radix ACS unit. The number of branches

between time instances t and t + 4 can be reduced from 16 × N to (4 + 4) × N where N

is the state number. However, the critical path of a radix-4 × 4 ACS unit through two

levels of ACS units is longer than that of a radix-16 ACS unit.

24

CMP

CMP

CMP

CMP

BM(0,0)

BM(1,0)

BM(0,0)

BM(1,0)

BM(0,1)

BM(1,1)

BM(0,1)

BM(1,1)

Figure 4.3: Retiming of registers

4.1.2 The Retiming Approach

The speed of the two-dimensional ACS unit can be further enhanced through the

retiming approach. In order to illustrate clearly, the radix-2 architecture is employed as

example.

In the radix-2 Max-Log-MAP algorithm, the forward and the backward recursions can

be expressed by

αt(st) = max
S

{αt−1(st−1) + γt−1(st−1, st)} (4.1)

βt−1(st−1) = max
S

{γt−1(st−1, st) + βt(st)} (4.2)

where t is the time instance, S is the set of transitions from state st−1 to st and α, β and γ

represent the forward state, backward state and branch metric values, respectively. From

(4.1) and (4.2), we find that pipelining is inapplicable because of the data dependency

between the state and the branch metrics. And, the retiming approach can be exploited

to break this dependency and increase the parallelism.

Fig. 4.3 illustrates the retiming procedure which moves registers from time instance

t to the branches between t and t − 1. Furthermore, the adders are relocated in order

to concurrently perform addition and comparison as shown in Fig. 4.4. Note that the

metric values being stored and compared are no longer associated with the results after

additions.

The retimed radix-2 ACS architecture with parallelism of two is shown in Fig. 4.5.

We assume that the delay time of comparators is larger than that of additions, thus, the

25

BM(0,0)

BM(1,0)

BM(0,1)

BM(1,1)

CMP

CMP

BM(0,0)

BM(1,0)

BM(0,1)

BM(1,1)

CMP

CMP

Figure 4.4: Retiming of adders

critical path delay will only be dominated by a single compare operation. Nevertheless,

the number of registers, adders and multiplexers are doubled as compared to the original

ACS unit in Fig. 4.3.

With combining the retiming technique and the radix-4×4 ACS unit, we can overcome

the timing bottleneck in high-radix structure. Fig. 4.6 shows the delay time of three

BM(0,0)

BM(0,0)

BM(0,1)

BM(0,1)

CMP

BM(1,0)

BM(1,0)

BM(1,1)

BM(1,1)

CMP

BM(0,0)

BM(0,0)

BM(0,1)

BM(0,1)

CMP

BM(1,0)

BM(1,0)

BM(1,1)

BM(1,1)

CMP

Figure 4.5: The retiming result of conventional radix-2 ACS unit

26

ACS-16ACS-16

ACS-4x4

ACS-4x4

with RT

ACS-4

CS-4 CS-4

Add Add

ACS-4

t1 t2 t3
Delay

Figure 4.6: Comparison of critical path delay for original and retiming ACS

architectures. It is evident that the retimed ACS has the shortest path delay among

all. Since area overhead resulted from retiming is less than the reduction from the two-

dimensional ACS unit, the optimization method mentioned above can accomplish not only

high-speed but area-efficient solutions based on two-dimensional structure with retiming

technique.

4.2 Proposed MAP Decoder Architecture

4.2.1 Modified Max-Log-MAP Algorithm

In this section, we employ the retimed radix-4 × 4 ACS architecture into the MAP

decoder. Since the retiming technique relocates the registers, the log-likelihood ratio

(LLR) calculations in the Max-Log MAP algorithm have to be modified. The trellis

diagrams in Fig. 4.7 and Fig. 4.8 illustrate the differences after applying retimed two-

dimensional ACS unit. First, the critical path of the ACS unit has been reduced because

adders and comparators operate in parallel. Note that the dotted blocks in Fig. 4.7

represent the dependency within each pair of add and compare operations and they are

broken in Fig. 4.8. Second, the registers are moved to the second level branches of the

radix-4 × 4 ACS unit, leading to different values stored in the registers, instead of the

conventional path metrics.

27

1

2

3

4

5

6

7

0
t+1 t+2 t+3t t+4 t+5 t+6 t+7

Retiming

CMP CMP CMPCMP

Retiming

1st level 2nd level1st level 2nd level

Figure 4.7: Conventional radix-4 × 4 ACS

For the retimed radix-4×4 architecture, we define another forward and backward path

metrics, denoted by α̂ and β̂ respectively,

α̂t(st−2, st) = αt−2(st−2) + γt−2(st−2, st−1) + γt−1(st−1, st) (4.3)

β̂t(st, st+2) = βt+2(st+2) + γt+1(st+1, st+2) + γt(st, st+1) (4.4)

For a radix-16 MAP decoder, the log-likelihood (LL) corresponding to the a zero input

(bit) at time instant t can be represented by the following equation :

LL0
t (s) = max

Ŝ

{ αt(st) + γ0
t (st, st+1)

+ γt+1(st+1, st+2) + γt+2(st+2, st+3)

+ γt+3(st+3, st+4) + βt+4(st+4) } (4.5)

where γ0
t (st, st+1) corresponds to the branches when information bit is 0 at time t. Ŝ is the

set of transition combinations emerging from state st+1 to the all possible states at time

t+4. Note that the path metrics α and β are only available at time instants t and t+4 due

to the radix-16 design. And, the LLs are calculated by selecting a different combination

of branches [12]. In our proposed design in this chapter, the radix-16 decoder will be

composed of two level retimed radix-4 × 4 ACS units, and (4.5) can be also simplified to

28

1

2

3

4

5

6

7

0

t+1 t+2 t+3t t+4 t+5 t+6 t+7

CMP

1st level 2nd level1st level 2nd level

CMPCMPCMP

Figure 4.8: Retimed radix-4 × 4 ACS

be

LL0
t (s) = max

S(α̂),S(β̂)
{α̂t+2(st, st+2) + β̂t+2(st+2, st+4)} (4.6)

Now S(α̂) is the set of α̂t+2 including the component γ0
t (st, st+1), and S(β̂) denotes the

set of all β̂t+2 originated from st+2. As a result, the LLR for time t (LLRt) can be derived

by

LLRt = max
s∈S̄

{LL0
t (s)} − max

s∈S̄
{LL1

t (s)} (4.7)

where S̄ represents the set of all states. Similarly, we can calculate LLRt+1, LLRt+2,

LLRt+3 with the same approach. Note that the number of addition has been reduced

from (4.6), resulting in less overhead caused by the retiming approach.

Finally, we use Fig. 4.9 as a simple example to illustrate the overall decoding process.

Since radix-4 × 4 design is involved, there are four LLR’s evaluated at one time instance

through the retimed forward recursion α̂ and the retimed backward recursion β̂. In

addition, we should pay more attention on the beginning and end of the whole trellis.

Since the value stored in the registers is different, the initial condition in (2.18) can be

written as

α̂0(0, s
′) = 0, α̂0(s, s

′) = −∞ for s 6= 0

β̂N(s, 0) = 0, β̂N(s, s′) = −∞ for s′ 6= 0
(4.8)

29

It indicates that the retimed forward recursions α̂0 corresponding to the branches orig-

inating from the zero state and backward recursions β̂N corresponding to the branches

entering to the zero state will be set to be the maximum probability. From Fig. 4.9, we

can further notice that the computation of the first α̂0 will only consider two branches

caused by the information bit u0 and u1. Therefore, the initial condition in (4.8) will

be bypassed from first level retimed ACS unit to the second level. As a result, a extra

bypass circuit will be introduced between two levels of the two-dimensional retimed ACS

structure. However, the bypass circuit is composed by the simple logic gate and only one

gate level delay will be introduced to the critical data path.

Decode Decode Decode

X X X Xu0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

α̂ α̂ α̂

β̂ β̂ β̂

Figure 4.9: The decoding process of the modified MAP algorithm

4.2.2 Compare-Select Operation Circuit

We adopt the modulo normalization scheme [13] to avoid path metric overflow. The

overhead is the extra bit required for each ACS unit and metric storage.

Since only differences are meaningful in modulo normalization, the operation in (4.6)

should be modified. The final LLR calculation in (4.7) is also the difference. Hence the

original operation in Fig. 4.10(a) is modified to Fig. 4.10(b) where the α and β with larger

(α + β) are selected without additions. After these selections, the LLR can be modified

to

LLRt = (α̂0
max − α̂1

max) + (β̂0
max − β̂1

max) (4.9)

where (α̂0
max, β̂

0
max) and (α̂1

max, β̂
1
max) both are obtained from all possible states with

Fig. 4.10(b). The modification in Fig. 4.10(b) guarantees the correctness of the func-

tion and causes no extra critical path delay, but introduces an additional multiplexer.

30

1
α

2
α

1
β

2
β

(a) Original

1
α̂

1
β̂

2
α̂

2
β̂

α̂∆ β̂∆

(b) Modified

Figure 4.10: The selection circuit for the max operation in (4.6)

4.3 Chip Implementation Result

As discuss before, the fixed point representation of the internal variable in the MAP

decoder is determined from the received symbol quantization. Fig. 4.11 shows the simu-

lation result with the different input symbol quantization under the BPSK modulation.

And the primary specifications of the MAP decoder are given in Table 4.1, where the

code polynomial is followed 3GPP2 system [2]. We can observe that the quantized format

(3, 3) is suitable scheme for our case. Furthermore, the range of the ∆α, ∆β, and ∆γ can

be derived and we summarize the fixed representations in Table. 4.2.

The chip is fabricated with 1.2V, 0.13µm 1P8M CMOS technology, and the die photo

is shown in Fig. 4.12. A delay lock loop (DLL) circuit is applied to generate internal clock

whose frequency is four times the external frequency. Because of the large bandwidth, the

chip use registers as storage elements instead of SRAM. The total core size is 1.96mm2,

where the DLL contains 0.063mm2. The MAP decoder has 220K gates, and the chip

density is 69.4%. After static timing analysis and post layout simulation, the decoder

Table 4.1: MAP Decoder Specification

code polynomial [1 1+D+D3

1+D2+D3
1+D+D2+D3

1+D2+D3]

code rate 1/3

sliding window size 20

31

0 1 2 3 4 5 6 7

10
−6

10
−5

10
−4

10
−3

10
−2

Eb/No (dB)

B
it

E
rr

or
 R

at
e

floating

3.3

3.2

4.2

Figure 4.11: Fixed point simulation of the input symbol

Table 4.2: Summary of fixed representation in MAP decoder

quantities input symbols α β γ

width 6(3.3) 8(6.2) 8(6.2) 8(6.2)

achieves 952MS/s throughput under 1.08V power supply and the worst case corner. The

estimation also includes the crosstalk analysis for signal wires that cause coupling noise.

The power consumption is evaluated with 1.32V supply and with the switching activities

generated at 952MS/s. We list the summary of simulation results and make a comparison

with a MAP decoder proposed by Lee [14] in Table 4.3. The chip is still under mea-

surement and there is an obstacle to examine the internal clock generated by the DLL.

The measurement result until now is 15 MHz for the external clock rate when the DLL is

working. However, if the clock signal bypass the DLL, the chip can work on the 100 MHz

which is the maximum frequency that testing board can provide. The possible reasons

leading to this problem are discussed as follows: First it the unknow loading of the testing

board. Second, if external clock is not stable enough, it may cause the incorrect internal

clock through the DLL. Finally, we do not consider the driving ability about the output

of the DLL and hence the cad tools may generate a wrong clock tree originating from the

DLL.

32

DLL
Input

buffer

buffer

ACS
LLR

BMU

Figure 4.12: The die micrograph of the MAP decoder chip

Table 4.3: Summary of the MAP Decoder Chip

Proposed [14]

Technology 0.13µm 0.18µm

Operating Frequency 238MHz 285MHz

Date Rate 952(MS/s) 285(MS/s)

Average Power 528mW (1.32V) 330mW (1.8V)

Core Area 1.96 (mm2) 8.7 (mm2)

Gate Count 220K N/A

Algorithm Max-Log-MAP Log-MAP

33

Chapter 5

The High-Speed Turbo Decoder

Design

For a turbo decoder implementation, the whole decoding throughput is not only re-

stricted by the computation time of its component decoder but also the interleaver (data

block) size. Moreover, the effect of the latter factor will be critical under a long interleaver

size design. It is due to the iterative decoding and interleaver structure, leading to the

SISO decoders will not start decoding before the end of the previous iteration. In order

to reduce the decoding delay, a shorter interleaver size may be used but at the expense of

performance degradation.

In the following section, we will introduce a new interleaver design, termed inter-block

permutation (IBP) interleaver [15], which provides a short decoding delay and impressive

performance. Then, a high speed turbo decoder implementation, involving the IBP con-

cept and the Max-Log MAP decoders referred in chapter 4, will be proposed. There are

further some modification for the IBP interleaver under the hardware considerations.

5.1 The Inter-Block permutation interleaver

The IBP interleaver (IBPI) [15] is composed of two permutations: the first permuta-

tion, called intra-block permutation, is performed on the symbol sequence within a data

block; while the second one, called inter-block permutation, is to interchange symbols

in a block with neighboring blocks. Fig. 5.1 presents an example of the IBP interleaver

34

Intra-Block

Permutation

Inter-Block

Permutation

come from

the previous block

come from

the next block

Figure 5.1: Graph representation of the IBP interleaver

process, where the permuted block not only associates with the original block but also

the previous one and next one blocks. Note that the intra-block permutation can be built

upon any existing block interleaver and hence the inter-block permutation interleaver is

named from its characterized second permutation.

Since the IBP interleaver maps the symbols in a block to other blocks, we can consider

its behavior as a class of message passing. As shown in Fig. 5.2, each circle is a data block

and the colored ones represent message passing between different blocks. We can observe

that the range of information transmission is proportional to the iteration number and

leading to performance improvement. As a result, if a simple extra inter-block permu-

tation properly designed, the IBP turbo codes will render significant performance gain.

Iteration 1.

Iteration 2.

Figure 5.2: Message passing of the IBP intereleaver

35

5.2 Proposed Turbo Decoder Design

As described in previous section, the inter-block permutation interleaver interchange

the information between each blocks to improve the performance. Therefore, we can

adopt short block size and decoding several blocks in parallel to reduce the large decoding

latency. Fig. 5.3 shows a simple block diagram of the proposed turbo decoder. This

architecture consist of three main units: SISO decoders, memory units, and network.

Each SISO decoder is based on the Max-Log MAP algorithm and structured as the radix-

2 × 2 retiming ACS, while the memory units are used to store the input and output

data corresponding to the SISO decoders. Note that the number of the SISO decoders

and memory units is the same, as the power of 2, which is estimated for the trade-off

between area and throughput. Finally, the network is a permutation architecture which

interchanges the input symbols and extrinsic informations between each data blocks. And

it realize the main concept of the IBP algorithm. In the following subsections, we will

describe each part of the proposed turbo decoder in detail.

fdsgdfg
Switch

Memory

unit

OutputIntput SISO

Decodernetwork

Figure 5.3: Block diagram of Turbo decoder

5.2.1 IBPI with Butterfly Structure

For the IBPI referred to in the section 5.1, the massage passing span, means the range

of the information interchange, will be extended more widely as the decoding iteration

increasing and further improve the performance. However, the routing congestion problem

in the physical layer will be the obstacle for the hardware implementation and the circuit

to control the connection between SISO decoders and memory blocks may also be complex.

36

MEM

1

MEM

2

MEM

3

MEM

4

DEC

1

DEC

2

DEC

3

DEC

4

S0 S1

Figure 5.4: The butterfly network structure

Thus, we utilize a network as our inter-block permutation structure to simplify hard-

ware complexity and provide a more feasible hardware implementation solution. A pro-

posed network, termed butterfly structure, is presented in Fig. 5.4. Now considering the

number of SISO decoders as well as memory units defined as N , where N is equal to 2M ,

the butterfly network well be divided into M level. And each level is composed with N

switches controlled by the same single-bit signal. We can see that Fig. 5.4 is a example

for M = 4 and N = 2 and controlled by the signals (s0, s1). Consequently, the control

logic of the butterfly network is quite simple and this connection may be more acceptable

for chip implementation, since each node in the network only associates with two nodes.

As mentioned before, the overall IBPI consists of intra-block permutation and inter-block

MEM

1

MEM

2

MEM

3

MEM

4

DEC

1

DEC

2

DEC

3

DEC

4

MEM

1

MEM

2

MEM

3

MEM

4

MEM

1

MEM

2

MEM

3

MEM

4

MEM

1

MEM

2

MEM

3

MEM

4

DEC

1

DEC

2

DEC

3

DEC

4

DEC

1

DEC

2

DEC

3

DEC

4

DEC

1

DEC

2

DEC

3

DEC

4

Figure 5.5: Graph representation of the IBP process

37

permutation. The former can be realized through the addressing of each memory units and

the latter is through the proposed butterfly network, which will be illustrated as follows.

Fig. 5.5 shows a graph representation of the all kinds of the connections corresponding

to the network in Fig. 5.4. Here, we assume the switches pass the data forward with the

control signal valued as 0 and turn on with the control signal valued as 1. As a result,

there are four types of connection: Type I for (s0, s1) = (0, 0), Type II for (s0, s1) = (0, 1),

Type III for (s0, s1) = (1, 0), and Type IV for (s0, s1) = (1, 1). And we can use these

connections to perform several different inter-block permutation. Finally, using a flow di-

agram to illustrate the overall procedure of the proposed IBP interleaver architecture. As

shown In Fig. 5.6, we have four data block denoted by the A, B, C and D respectively and

each block size is equal to 8. The whole IBPI will first perform a intra-block permutation

to rearrange the order within each block and in turn a inter-block permutation through

the butterfly network referred to the connections in Fig. 5.5.

A1 A7A6A5A4A3A2

B1 B7B6B5B4B3B2

C1 C7C6C5C4C3C2

A0

B0

C0

D1 D7D6D5D4D3D2D0

A4 A3A5A1A6A2A7

B4 B3B5B1B6B2B7

C4 C3C5C1C6C2C7

A0

B0

C0

D4 D3D5D1D6D2D7D0

IV

A4

A3

A5

A1

A6

A2

A7

B4

B3

B5

B1

B6

B2

B7

C4

C3

C5

C1

C6

C2

C7

A0

B0

C0D4

D3

D5

D1

D6

D2

D7

D0

I II III IV I II III

After Intra-interleave After Inter-interleave

Figure 5.6: The overall procedure of the IBP interleaver

Note that the inter-block permutation in this example is according to a sequence [I

II III IV] repeatedly, which indicates the order of which connection type is used. This

sequence, called as IBP sequence, will be an input signal in our design, which represents

that we can control the inter-block permutation of the interleaver outside the whole turbo

codec. Moreover, the IBP sequence can also be a security key for the communication

between the encoder the the decoder.

Instead of developing a control mechanism to handle the complicated connections be-

tween component decoders and memory units, our proposed IBPI architecture is based on

a simple butterfly network and utilize its hardware structure to implement the behavior

of inter-block permutation. However, note that in this architecture the message passing

38

span is not depends on the decoding iteration but the number of SISO decoders (mem-

ory units). It represents that fewer component decoders may lead to the performance

degradation. Since the turbo decoder in this thesis is considered for the high speed issue,

several SISO decoders, up to 16 or 32, will be used for parallel process and provide a

large enough message passing span. Therefore, our proposed decoder can achieve high

throughput and good performance under modest hardware cost.

5.2.2 SISO decoder

Since several SISO decoders is involved in the inter-block permutation turbo decoder,

the Max-Log-MAP decoder with retimed radix-2 × 2 ACS structure, as described in

chapter 4, will be a compromise between throughput and area cost. Moreover, there are

some modification introduced to further reduce its complexity. To consider the sliding

window approach shown in Fig. 2.3, the backward metrics β evaluation can be started

until the required window of data have been stored. However, if we reverse the order

of input sequence within a sub-block, the input buffer of the β1 computation can be

saved [16]. Fig. 5.7 is a graphical representation which illustrate the processing of this

modified architecture. The black dashed line represents the writing input sequence into the

input buffer. Note that at the same time the gray dashed line, means the β1 computation,

can be also executed immediately since the sequence is in the reversed order. Then the

α recursion, denoted by the black solid line, is performed on the previous stored data

Figure 5.7: The graphical representation of the processing with the two input buffers

39

LLRt LLRt+1

- ACS

BMU

Input

Buffer

BMU BMU

α

α

- ACS - ACS

- buffer

β
2 1

β

Input

Buffer

BMU

block

ACS

block

LLR

block

IBUF

block

Figure 5.8: The block diagram of the radix-2x2 Max-Log-MAP decoder

and the second window data will be written into the other input buffer. Finally, the first

window data will be read for backward metrics β2 calculation and the third window data

will be written into the same input buffer simultaneously. As a result, The block diagram

of the modified Max-Log-MAP decoder is shown in Fig. 5.8. Note that it only requires

two input buffer, which output the data to the α and β2 computation units by turns via

multiplexers. Furthermore, the radix-2 × 2 design is included.

As described before, utilizing the dummy tail bits to terminate the decoding trellis may

decrease the code rate. Since in our proposed IBP turbo decoder the shorter block length

is adopted, the drawback resulted from tail bits will be more serious. Thus, the tail-biting

idea [17], which avoids the rate loss without suffering from performance degradation due

to the end of the block, is considered. A valid codeword in the tail-biting trellis will

cause the encoder to start and end in the same any possible state, instead of zero state

only. Therefore, a dummy sub-block, as well as the last sub-block, will be calculated in

40

1st sub-block last sub-block Dummy sub-block

0, 1, … , W-2, W-1L-W, … , L-2, L-1 L-W, … , L-2, L-1

The initial for

1st sub-block

The initial for

last sub-block

α 2β

Figure 5.9: The decoding process for tail-biting trellis

1st sub-block last sub-block Dummy sub-block

1, 2, … , W-1, WL-W-1, … , L-1, 0 L-W-1, … , L-1, 0

cyclic shift 1 symbol

Figure 5.10: The cyclic shifted input sequence order of the SISO decoder

advance to estimate the unknow initial condition of the forward metrics α in the first sub-

block. Similarly, the β computation of the first sub-block can also be a estimation for the

initial condition of the backward metrics in the last sub-block. The decoding process for

the tail-biting trellis mentioned above is shown in Fig. 5.9, where W is defined as sliding

window size and L is defined as block length. Note that the estimation is based on the

trellis which starts and ends at the same state.

In addition, the tail-biting can also simplify some hardware complexity within the

retimed two-dimensional ACS structure and further reduce its critical path delay. In the

section 4.2.1, a extra logic should be introduced to bypass the initial condition. However,

it may lead to some additional routing difficulty and increase the path delay. In Fig. 5.10,

we perform a cyclic shift on the input sequence order to improve this problem. Here the

dummy sub-block is still equivalent to the last sub-block. Note that we only shift one

symbol, instead of two, since radix-2 × 2 design is considered. Therefore, the 0th symbol

is moved to the end of the dummy sub-block.

As a summary, to associate with the modification described in the beginning of this

1st sub-block last sub-block Dummy sub-block

W, W-1, … , 2, 10, L-1, … , L-W-1 0, L-1, … , L-W-1

Figure 5.11: The final input sequence order of the SISO decoder

41

Extrinsic

Information

(Pre)

Extrinsic

Information

(Post)

Buffers used to stored the input symbols

in next N blocks

L/2

L

Pre-permutation

parity

Pre-permutation

parity

Post-permutation

parity

Post-permutation

parity

Systematic

Information

Systematic

Information

Single-port

RF

Two-port

RF

Extrinsic

Information

(Pre)

Extrinsic

Information

(Post)

Pre-permutation

parity

Pre-permutation

parity

Post-permutation

parity

Post-permutation

parity

Systematic

Information

Systematic

Information

Figure 5.12: The memory unit

subsection, the final input sequence order transmitted from memory units to SISO de-

coders is represented in the Fig. 5.11. These modification can be achieved easily through

the addressing of memory unit and no extra hardware control need to be involved.

5.2.3 Memory unit

Under the area cost consideration, the memory unit is composed of several register files,

which store different input and output information for the SISO decoders. In a memory

unit, we use three two-port register files (TP-RFs) for storing the encoded codeword,

including systematic information, parity check corresponding to the original sequence

and parity check corresponding to the interleaved sequence. In addition, there are two

single-port register files (SP-RFs) for storing the extrinsic informations obtained from

the SISO decoders in the pre-permutation round and post-permutation decoding round

respectively.

42

Since the radix-2×2 Max-Log-MAP decoder is used as the SISO decoder in our design,

the data bandwidth of the each memory unit will be doubled. Therefore, each register

file referred to before is partitioned into two parts. The final memory unit allocation, as

shown in Fig. 5.12, consists of six TP-RFs with depth of L and four SP-RFs with depth

of L/2, where L is defined as the data block size. Note that the TP-RFs in all N memory

units are also served as buffers to store the input symbols of next N block in advance,

which leads to depth of each TP-RF is twice as that of the SP-RF. We can illustrate it

using the decoding schedule diagram in Fig. 5.13. During the data of the current N blocks

are read out from TR-RFs for decoding, the input symbols of the next N blocks will also

be written into TR-RFs simultaneously. Consequently, only the latency at the beginning

of the decoding process will be introduced and the decoding latency due to re-fetching

the input symbols between every N data blocks can be saved.

Receiving

Data
1st N blocks 3rd N blocks

1st N blocks

Decoding

Output

Decision

4th N blocks

2nd N blocks 3rd N blocks

2nd N blocks

1st N blocks

2nd N blocks

Figure 5.13: The decoding schedule diagram

5.3 Chip Implementation

Based on the architectures described above, we proposed a high-throughput turbo

decoder based on the inter-block permutation interleaver. Fig. 5.14 shows the block di-

agram of our proposed turbo decoder. Consider the trade-off between the throughput

and hardware cost, we utilize 32 memory units and 32 SISO decoders based on the re-

timed radix-2 × 2 ACS structure. In addition, a delay lock loop (DLL) circuit is also

applied to generate internal clock whose frequency is four times the external frequency.

The primary specifications of the turbo decoder are given in Table 5.1 and the fixed point

representation is summarized in 5.2. The code polynomial we adopted is equal to the

3GPP standard and the quite short block length is used. After the simulation as shown

43

In
te
r-B
lo
c
k

 P
e
rm
u
ta
tio
n

 N
e
tw
o
rk

DLL

In
p
u
t
B
u
ff
e
r

APP_00

APP_01

APP_30

APP_31

MEM_00

MEM_01

MEM_30

MEM_31

Control

O
u
tp
u
t
B
u
ff
e
r

Figure 5.14: The block diagram of the proposed IBP turbo decoder

in Fig. 5.15, a appropriate decoding iteration number is decided for performance and de-

coding throughput. Note that the scaling factor approach [18] is applied as compensation

for the performance loss due to the sub-optimal Max-Log-MAP algorithm. Finally, we

compare the performance of the proposed turbo decoder with the 3GPP standard turbo

code in Fig. 5.16. Since we interchange information between 32 component decoders, it

represents that the message span range is equivalent to the 4096. Therefore, the block

length of 3GPP standard turbo code in Fig. 5.16 is 4096 for the fair comparison.

A test chip has been implemented in a 1.2V, 0.13µm 1P8M CMOS technology, and

the layout view is shown in Fig. 5.17. The chip size is 25 mm2 while the core occupies

17.808 mm2. The total gate count is 2.67M including memory units based on the the

RFs and the chip core density is about 91%. After static timing analysis and post layout

simulation, the turbo decoder achieves 1.06 Gb/s throughput with 8 iterations under

1.08V power supply and the worst case corner. The estimation also includes the crosstalk

analysis for signal wires that cause coupling noise. Table. 5.3 gives the characteristic

summary of the test chips.

44

Figure 5.15: The iteration number simulation

Table 5.1: Turbo Decoder Specification

code polynomial [1 1+D+D3

1+D2+D3]

block size 128

sliding window size 32

iteration number 8

scaling factor 0.75

SISO decoder algorithm Max-Log-MAP algorithm

Table 5.2: Summary of fixed representation in Turbo decoder

quantities input symbols La(ut) α β γ

width 6(3.3) 6(4.2) 8(6.2) 8(6.2) 8(6.2)

45

Figure 5.16: Comparison with 3GPP standard turbo code

Table 5.3: Summary of the Turbo decoder chip

Technology 0.13µm 1P8M CMOS

Operating Frequency 265MHz

Date Rate(8 iteration) 1.06(Gb/s)

Gate Count 2.67M

Core Size 17.808mm2

Area Memory 3.328mm2

DLL 0.054mm2

Power consumption 508mW (1.2V)

46

D
L
L

M
e
m
o
ry

M
e
m
o
ry

Figure 5.17: Layout view of the proposed Turbo code decoder

47

Chapter 6

Conclusion

In this thesis, the high throughput and area-efficient MAP decoder is first proposed.

The two-dimensional architecture is introduced for high-radix trellis structure, and the

retimed ACS units are applied for higher clock frequency, leading to much higher data

rate. The hardware overhead is minimized because of the two-dimensional ACS architec-

ture. After chip implementation in 0.13µm 1P8M technology, the 1.96mm2 core area can

support the maximum 952MS/s data rate.

Second, we propose a efficient hardware architecture for implementation of the inter-

block permutation turbo decoder and further combine with retimed radix-2 × 2 Max-

Log-MAP decoder as its component decoder. A butterfly structure is proposed as the

network to interchange the symbols between each block, which avoid too complex control

and reduce the hardware complexity considerably. Since the parallel decoding is feasi-

ble under IBP interleaver, several Max-Log-MAP decoder are included to achieve high

throughput under modest area cost. Finally, a turbo decoder implementation in 0.13µm

1P8M technology can achieve 1.06 Gb/s throughput with 8 decoding iterations.

48

Bibliography

[1] Technical Specification Group Radio Access Network; Multiplexing and channel coding

(FDD), 3GPP TS 25.212 Std. V3.11.0, 2002.

[2] Physical Layer Standard for cdma2000 Spread Spectrum Systems, 3GPP2 Std.

C.S0002-C, 2002.

[3] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes

for minimizing symbol,” IEEE Trans. Inform. Theory, no. IT-20, pp. 284–287, Mar.

1974.

[4] J. Hagenauer and P. Hoeher, “A viterbi algorithm with soft-decision output and its

applications,” in IEEE CLOBE-COM, Dallas, Nov. 1989, pp. 47.1.1–47.1.7.

[5] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-

optimal map decoding algorithms operating in the log domain,” in Proc. ICC’95,

Seattle, June 1995.

[6] J. A. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors

with parallel structures for isi channels,” IEEE Trans. Commun., vol. 42, no. 2/3/4,

pp. 1261–1271, Feb./Mar./Apr. 1994.

[7] S. A. Barbulescu, “Sliding window and interleaver design,” in IEEE Electronics let-

ters, vol. 37, no. 21, Oct. 2001, pp. 1299–1300.

[8] L. C. Perez, J. Seghers, D. Costello, and Jr., “A distance spectrum interpretation of

turbo codes,” IEEE Trans. Inform. Theory, vol. 42, no. 6, pp. 1698–1709, Nov. 1996.

49

[9] Y. Wu, B. D. Woener, and T. K. Blankenship, “Data width requirements in SISO

decoding with modulo normalization,” IEEE Trans. Commun., vol. 49, no. 11, pp.

1861–1868, Nov. 2001.

[10] I. Lee and J. L. Sonntag, “A new architecture for the fast Viterbi algorithm,” IEEE

Trans. Commun., vol. 51, no. 10, pp. 1624–1628, Oct. 2003.

[11] J. Han, A. Erdogan, and T. Arslan, “High speed Max-Log-MAP turbo SISO decoder

implementation using branch metric normalization,” in IEEE Computer Society An-

nual Symposium on VLSI, 2005, pp. 173–178.

[12] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A 24Mb/s radix-4

logMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in IEEE Int. Solid-State

Circuit Conf. (ISSCC) Dig. Tech. Papers, 2003, pp. 151–484.

[13] C. Shung, P. Siegel, G. Ungerboeck, and H. Thapar, “VLSI architertures for met-

ric normalization in the Viterbi algorithm,” in Int. Conf. Communications, vol. 4,

Atlanta, CA, Apr. 1990, pp. 1723–1728.

[14] S. Lee, N. Shanbhag, and A. Singer, “A 285-MHz pipelined MAP decoder in 0.18µm

CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1718–1725, Aug. 2005.

[15] Y.-X. Zheng and Y. T. Su, “A new interleaver design and its application to turbo

codes,” in Proc. VTC2002fall, vol. 3, Sep. 2002, pp. 1437–1441.

[16] G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni, “Architectural

strategies for low-power VLSI turbo decoders,” IEEE Trans. on VLSI Systems,

vol. 10, no. 3, pp. 279–285, June 2002.

[17] C.Weiss, C. Bettstetter, S. Riedel, and D. Costello, “Turbo decoding with tail-biting

trellises,” in Proc. IEEE Int. Symp. Signals, Syst., Electron., Pisa, Italy, Oct. 1998,

pp. 343–348.

[18] J. Vogt and A. Finger, “Improving the max-log-map turbo decoder,” Electronics

Letters, vol. 36, pp. 1937–1939, Nov. 2000.

50

