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ABSTRACT

H.264/AVC is the new video coding standard ef ITU-T Video Coding Experts Group
(VCEQG) and the ISO/IEC Moving Picture Experts Group (MEPG). H.264 is most popular
video standard due to high compréess.rate and better quality. In particular, the baseline profile
of H.264/AVC has been accomplished progressively. In recently year, digital TV is widely
adopted so that H.264’s Main Profile focus on quality of video will be attended gradually.
Therefore, the improvement of resolution and quality for large frame will become important
issue. Motion compensation always is important module and kernel of system in video
standard. For enhancing quality of video, H.264’s main profile adopts new features such as
Bi-prediction, weighted prediction and direct mode coding. In this thesis, a
bandwidth-efficient motion compensation system is proposed for high definition resolution
supported by main profile in H.264/AVC. Presently, we provide a novel structure of motion
compensation system in main profile to improve system throughput. Furthermore, we propose
Combined Luma/Chroma interpolator architecture in motion compensation and a novel

data-reuse technique: Ectended-2D Column Major Approach. Both Luma and Chroma MB



can be interpolated by combined Luma/Chroma interpolator. A combined Luma/Chroma
interpolator is proposed in order to save area, which achieves approximately 44% cost
reduction. Additionally, an Extend-2D column major approach is presented, which improves
50% ~ 60% required bandwidth within decoder.

The video decoder should deal with large amount of data from external memory due to a
real-time high-quality decoding demand. Therefore, both limited access time and bandwidth
of memory access on BUS is bottleneck of entire video decoder. However, general memory
controller may be not design for multimedia applications. In this thesis, the
bandwidth-efficient memory controller architecture is proposed for H.264 decoder to increase
limited bandwidth over external bus. The memory controller can support all module of H.264
decoder such as motion compensation and de-blocking filter, etc. Besides, the multiple
reference pictures technique can be: supported byrour proposed memory controller, and can
employ unique memory to store -all required data for video decoder. About simulation results,
the bus utilization can be improvedup-1t0.-90% for-our proposed memory controller. The
bandwidth of memory access may ‘be.improved-to 50% ~ 60% for entire video decoder
adopting our proposed bandwidth-efficient motion compensation memory organization.
Finally, the system throughput that is proposed by our proposed architecture can meet with

specification with HDTV standard at high bit-rate.
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Chapter 1
Introduction

1.1 Motivation

The early video technology such as MPEG-1, mainly approach targets on CD-ROM
based video storage. Afterward, MPEG-2 standard is published, which can be backward
compatible with MPEG-1, serves .a wider range of application including video-on-demand
(VOD), DVD and high definition TV. Up to now, H:264/AVC [1] is the newest generation
video coding standard developed by the Joint Video-Team (JVT), which consists of experts
from ITU-T VCEG and ISO/IEC MPEG. The H:264/AVC can save about 25-45% bit-rate
compared to MPEG-4 Advanced Simple Profile (ASP). Recently, digital video processing
technologies have been widely applied in the many video systems, such as videophone, digital
TV and VCR, multimedia, etc. In the future, a high-quality HDTV system would integrate the
functions of a computer, the internet, and entertainment, so it should become a popular
product in the market. Furthermore, digital TV is widely adopted by the next-generation
digital video broadcasting (DVB) technology. However, the amount of video data is very
huge for these applications. For example, high-quality HDTV system with 1080HD format
produces 1,504Mbits/s when the frame rate is 30Hz at level 4 in a real-time system. Therefore,
H.264/AVC provides Main profile which supports many efficient coding tools to obtain
enormous compression rate. The ultra high coding efficiency comes from many new features,

including sub-pixel inter prediction with variable block size (VBS) and multiple reference
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frames, intra prediction, bi-prediction, weighted prediction, and entropy coding—CAVLC and
CABAC. According to the runtime analysis of H.264/AVC decoder software, the motion
compensation can use up to 55% of total decoding time. Thus, motion compensation can
dominate performance of entire H.264/AVC decoder. Furthermore, the bandwidth
requirement of decoder is extremely high and a bandwidth-efficient design is necessary to
achieve high-quality real-time decoding processes for high definition approach.

For motion compensation, we need to refer the previous frame data from memory for
motion compensations. Generally, the coding performance becomes better using more
temporal information by motion compensation. High definition TV requires enormous data
transmission particular in frame memory, and the memory overhead becomes high over bus.
For real-time operation, the memory data must be accessed during a limited processing time.
The memory design and its addressing become a bottleneck for entire video decoder. Because
the multiple reference pictures is supported by H.264/AVC’s main profile, the block data
controlling and addressing become mote.complex. How to access the frame memory for
real-time operation is an important:issue, particular for HDTV systems. Thus, a memory
access controller that efficiently communicates with external memory is essentially provided

over the entire video decoder to manage data transfer and access conflict.

1.2  Thesis Organization

The thesis is organized as follows. The algorithm description and analysis of
H.264/AVC’s main profile is introduced and discussed in Chapter 2. In Chapter 3, the
proposed bandwidth-efficient motion compensation architecture for H.264/AVC video
decoder is described first. Then, the motion compensation engine for supporting H.264/AVC’s
main profile specification is illustrated. We also propose the novel data-reuse technique to

reduce the required bandwidth particularly in H.264/AVC fractional motion compensation.
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Chapter 4 presents frame and motion vector memory organization including memory access
controller for external SDRAM. We apply a memory scheduling technique to reduce the
access latency under external BUS and provide a flexible data arrangement method to
improve data hit rate. The CHIP implementation is given in Chapter 5. Finally, conclusion is

shown in Chapter 6.



Chapter 2
Motion Compensation Algorithm of

H.264/AVC’s Main Profile

Similar to previous video standard, motion compensation is an important part in a video
decoder system. The feature is that the current picture is predicted by previous decoded
pictures without requiring extra bit-streams. Thus, the transmission bandwidth can be reduced
efficiently without degrading visual quality. Henee, H.264/AVC is used in a wide range of
applications due to its better coding efficiency:.

In this Chapter, we will introduee-a-basic_structure and concept of H.264/AVC coding
standard in Section 2.2. In H.264/AVC; The main profile is almost a superset of the baseline
profile. Specifically, additional tools provided by main profile are Bi-directional predictions,
direct mode coding, multiple reference frames and weighted prediction for motion
compensation part. The detailed algorithms of features related to motion compensation are
described in the following sections. Finally, we will list differences among video coding

standards such as MPEG-2, MPEG-4, etc in Section 2.6.

2.1 Profiling

Figure.2.1 shows the profiling of H.264/AVC’s main profile on ARM-7 processor. The
reference software we adopt is JM 9.2 [3]. Specifically, inter prediction related modules,

which occupy 51 % of the entire video decoder, include motion compensation, reconstruction,
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and reference frame copy. If we improve this part efficiently, total performance of the decoder
system will be increased as well. This dominated part can be greatly reduced by parallel

processing, data-reuse scheme, or pipeline processing on the ASIC design.

[Q/IDCT Profiling
9%

De-blocking Filter
9% Ref. Frame Copy
8%
N
NR Computation
7% Reconstruction
11%
Write File
9% o
Motion
Compensation
Others 32%

Figure 2.1 H.264 software (JM 9.2) profiling on ARM 7 processor

2.2 Motion Compensation Process Flow

The score of motion compensation process flow has been explained as Figure 2.2. Data
relating to inter prediction are received from syntax parser. It is processed to pixels through

several functional units consist of MV prediction, Interpolation and Weighted Prediction.

Synta_>x MV — Interpolation —| Welgh‘Fed
prediction

- p Pixel
Prediction

Figure 2.2 The general score of motion compensation for H.264/AVC’s main profile
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Figure 2.3 shows the basic block diagram of H.264/AVC encoding block diagram. The
block diagram of decoder is shown in Figure 2.4. With the exception of the de-blocking filter,
we can find that most of the basic functional components (prediction, transform, quantization,
entropy coding, etc) exist in previous standards such as MPEG-1, MPEG-2, MPEG-4, H.263
but important changes of H.264 occur in the details of each functional block. Because the
decoder is our research topic, we will focus on decoder process flow. The decoder receives a
compressed bitstream from channel receiver side and thereby entropy decodes the data
elements to produce a set of quantized coefficients X. These coefficients are scaled and
inverse transformed to D',. The motion compensation (MC block) reconstructs the PRED

according to previous decoded data. The PRED adds D', to produce uF', prior to the

deblocking filter.
. Entropy
it Pict . .
Current Picture Transform [ Scﬂff ﬂ“q —T ™  Recoder |—» Encodingand — Bitstream
storage ‘ Quantization Lol
Multiplexing
Inter mode
Motion Motion
Estimation —¥%| Compensation
process process
Multiple Picture| | 4
storage
Intra
Intra mode——— Compensation
process
A
F'n . Inverse Scan
Reconstructed | De-blocking | and Inverse

Picture storage filter Transform

Quantization

Figure 2.3 General structure of H.264 encoder.
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Motion
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process

Multiple Picture
storage

A

A

P—Intra mode L

Intra .
Current Picture

storage

-

Compensation |«
process

Intra/Inter

F'l'l

Entropy Inverse Scan
Buffer — Decoding and —» and —»
Demultiplexing Quantization

Bitstream Inverse De-blocking

! I—» Reconstructed data
Transform D' filter
n

Figure 2.4 General structure of H.264 decoder

2.3 Inter Prediction Algorithm for H.264/AVC’s Main

Profile

The inter prediction of H.264/AV.C’s main profile includes tree-structured hierarchical
macroblock partitions and more “flexible block size selection called as variable block size
(VBS) compared with previous standards [1][2][4]. In case of motion compensated prediction,
macroblocks are predicted from the image signal of transmitted reference images. For this
purpose, each macroblock can be divided into smaller partitions such as 16x16, 16x8, and 8x8.
The corresponding 8x8 sub-macroblock is further divided into partitions with block sizes of
8x4, 4x8 or 4x4. For each sub-macroblock partition, a motion vector may be independently
selected and coded, but the reference picture index and prediction type of the sub-macroblock
is used for all sub-macroblock partitions. Chroma components use the same partition as luma
components. The smallest block size selection could reach as small as 4x4 and 2x2 for luma
and chroma component respectively. For each macroblock partition, a reference picture index,
prediction type (list-0, list-1, bi-pred), and a motion vector may be independently selected and

coded. Figure 2.5 illustrates all types of partitions.



0 0 1
Macroblock 0 0 1
partitions 1 2 | 3
16x16 16x8 8x16 8x8
Sub-macroblock 0 0 1
partitions 0 0 1
1 2 3
8x8 8x4 4x8 4x4

Figure 2.5 Macroblock partitions and sub-macroblock partitions

2.3.1 Bi-directional Prediction

A bi-directional prediction is main sfeature provided by H.264/AVC main profile.
Bi-prediction uses two lists of previeusly decoded reference pictures, list-1 and list-0. The
reference picture is previous or-future decoded pictures for B-slices. Each macroblock of B
slices may be predicted from previous.reference picture (list-1) and future reference picture
(list-0). In P slices, only single directional ‘prediction is used, and the allowable reference
pictures are list-0. In B slices, list-0 and list-1 of reference pictures are considered. For
B-slices, single directional prediction using either list 0 or list 1 is allowed, or bi-prediction
using both list 0 and list 1 is allowed. Figure 2.6 gives three examples to illustrate
Bi-prediction: (a) one previous and one future reference (similar to B-picture prediction in

previous MPEG video standard), (b) two past references and (c) two future references.



(a)

One previous, one future picture

TN

Previous frame LO Current frame Future frame L1

TIME
Two previous picture Two future picture
(b) ()

Figure 2.6 Example using Bi-prediction: (a) previous/future (b) previous (c) future

In the bi-prediction, a reference block is“created from list-0 and list-1 reference pictures.
Two motion compensated reference areas’are obtained from a list-0 and list-1 picture
respectively, and two separate motion vectors are required. Each sample of the prediction
block is calculated as an average of motion vector of the list-0 and list-1 prediction sample.

Except when using Weighted Prediction, the following equation is used:
Pred(i, j) = (Pred 0, j)+Pred1(i, j)+1) > 1 (2.2)

Where PredO(i, j) and Predl(i, j) are prediction samples derived from the list-0 and
list-1 reference pictures and Pred(i, j) is a bi-predictive sample. After calculating each
prediction sample, the reconstructed samples are a summation of residual and predicted data
that is decoded by entropy decoding and intra/inter prediction respectively. The list-0 and
list-1 motion vectors in bi-predictive macroblocks or blocks are predicted from neighboring
motion vectors that have the same temporal direction. For instance, a motion vector for the
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current macroblock pointing to a previous picture is predicted from other neighboring motion
vectors that also point to previous pictures. It is illustrated as Figure 2.7. The prediction of

motion vector is introduced as next section.

Ref. List-0 Current B picture Ref. List-1

_—

" e
H ;\M" MV |e”
10t ‘

‘ead

e

The same j The same
location block Current block location block

Figure 2.7 The current blocK'is predicted by MV, and MV motion vector using

Bi-prediction

2.3.2 Multiple Reference Frames

In H.264/AVC, multiple reference frames may be used for inter-prediction [4], with a
reference frame index coded to indicate which multiple reference frames are used. When
bi-prediction is used by applying weighted prediction, the list 0 and the list 1 predictors are
averaged together to form a final predictor. For each sub-macroblock partition, a motion
vector may be independently selected and coded, but the reference frame index and prediction
type of the sub-macroblock is used for all of the sub-macroblock partitions. Figure 2.8 shows
the bi-prediction with multiple reference frames. An index is a reference frame parameter. An

additional picture reference parameter has to be transmitted together with the motion vector in
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bitstream. H.264 uses picture order count (POC) to indicate relative distances between coded
pictures and reference pictures. POC is used for scaling motion vectors in direct modes, and
for weighting factor derivation in WP implicit mode that will be introduced in the following
sections. Adopting multiple reference frames increases the access frequency according to a
linear model: 25% complexity increase for each added frame. A negligible gain (less than 2%)
in bit rate is observed for low and medium bit rates, but more significant savings can be

achieved for high bit rate sequences (up to 14%) [4].

previous decoded reference picture

( A w Current picture

Index0

g Index1
e :

Figure 2.8 Bi-prediction with multiple reference pictures

Up to five different reference frames can be used for inter-picture coding resulting in
better subjective video quality and more efficient coding. Providing multiple reference frames
can also help make the H.264 bitstream more error resilient. The error resilient tools are
supported by extended profile in H.264/AVC, which will not be discussed in this thesis. Note
that this feature leads to increased memory requirement for both the encoder and the decoder

since previously decoded and reconstructed multiple reference frames must be maintained in
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memory. For storing large pixels of several reconstructed reference frames, the huge memory
size is required such as SDRAM. Therefore, we will propose an efficient memory allocation
method and SDRAM controller architecture so that remained decoded pictures can be
efficiently stored in single external memory. The related concept will be introduced in

Chapter 4.

2.4  Motion Vector Prediction

The prediction for the decoded macroblock is determined by the set of motion vectors
(MV) that are associated with that macroblock. The motion vectors indicate the position
within the set of previously decoded frames from which each block of pixels will be predicted.
A motion vector is generated by mation vector prediction. In baseline profile, motion vector is
only generated by traditional MV prediction that includes median and directional prediction.
Motion vector prediction of H.264/AVEC’s.main_profile supports new predictable method in
Bi-predictive slices: direct mode, which except for traditional MV prediction. We introduce

these motion vector generations in the following sub-sections.

2.4.1 Traditional MV Prediction

The Motion vector is generated from motion vector difference (MVD) and motion vector

prediction (MVP). The associated equations are expressed by (2. 1).

MVx = MVDx + MVPx

(2.1)
MVy = MVDy + MVPy

MVD is decoded from universal variable length decoder (UVLD) and MVP is predicted
according to neighboring motion vectors. MVP algorithm, of which concept is similar to that
for MPEG-4, contains directional prediction for 16 x 8 or 8 x 16 block size and median

prediction for other block sizes. The detail of MVP decision is shown in Figure 2.9. Equation
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of median prediction is expressed by (2. 2). The location of MVA, MVB, MVC, MVD which
neighboring current block is depends on different block sizes. For example, MVA is a left
neighboring block and MVC is a right-upper neighboring block when block size is 8x16 as
Figure 2.9 (a) shows. The definition of neighboring motion vector is illustrated as Figure 2.9
for different block sizes. In addition, some boundary conditions or exceptions have to be
handled carefully. For instance, when MVC is not available, its value is replaced by MVD.

We do not go into details of those trivial boundary conditions over here.

MVP = median(MVA, MVB, MVC) (2.2)
C I|3 |
| | B |
16\1)/(8 I D | I / CI
8x16 | 8x16 — =7 et
A—l> 16xs A block/
(a) (b) (c)

Figure 2.9 (a) directional prediction for 8 x 16 block size, (b) directional prediction for 16

x 8 block size, (¢c) median prediction

In addition to the motion-compensated block size described in Figure 2.5, a P
macroblock can also be coded to P_SKIP mode. For this coding mode, neither residual signal
nor motion information is transmitted. That is, motion vectors are only decided according to
MVP. The reconstructed data is obtained similar to that of macroblock type P 16x16.
Macroblocks coded in P_SKIP are often located in large area with no scene change or slow
motion. Besides the above techniques, H.264/AVC also supports multiple reference frames,
weighted prediction and direct mode for B slice. These tools greatly improve coding

efficiency. Application of de-blocking filter is a well-known method to improve image quality
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by alleviating blocking artifacts. The de-blocking design in H.264/AVC is brought within
motion-compensated prediction loop and the improvement in quality becomes more

conspicuous.

2.4.2 Direct Mode Coding

Ref. List-0 Current B picture Ref. List-1

\ WC

—\/ \ .
LO

T

[
“\l‘a
[
5

v

Current direct-mode block -—J Co-located block
- TDg .
- TDp >

Figure 2.10 Direct mode prediction for B slices

Direct mode is another method for motion vector prediction. The direct-mode
macroblock does not require such side information but derives reference frame, block size,
and motion vector data from the subsequent inter pictures. Figure 2.10 is shown to illustrate
the process of direct mode coding. This mode superimposes two prediction signals. One
prediction signal is derived from the future inter picture and the other comes from a previous
picture. The direct mode uses bidirectional prediction and allows residual coding of the
prediction error. The forward and backward motion vectors mMv,, and mvof this mode are
derived from the motion vectors Mv. used in the co-located macroblock of the future picture

Ref. list-1. Note that the direct-mode macroblock uses the same partition as the co-located
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macroblock. The prediction signal is calculated by a linear combination of two blocks that are
determined by the forward and backward motion vectors pointing to two reference pictures
list-0 and list-1. When using multiple reference picture prediction, the forward reference
picture for the direct mode Ref. list-1 is chosen to be the future inter picture with the
co-located macroblock. The forward and backward motion vectors for direct-mode blocks are

calculated as following equation:

(16384 + abs(-l-[z)D D

X = 2.3
TD, (2.3)
ScaleFactor = Clip(~1024,1023,(TD, x X +32) > 6) (2.4)
MV Lo =(Sca|eFactoer+128)>>8 (2.5)
MV L1 =MV Lo — MV (2.6)

Where MV, is the forward motion vector,. Mvi., is the backward motion vector, and
MV represents the motion vector ofithe co-located block in the future inter picture. For B
pictures, TDp is the temporal distance betweenthe previous and the future inter picture, and
TDg is the distance between the current B picture and the previous inter picture. In that case,
the actual reference picture Ref. list-0 (which is also a reference picture for the co-located
macroblock of the following picture) is used for the calculation of the temporal distances TDp
and TDg. And when both the current macroblock and its co-located are in frame mode, TDg is
the temporal distance between the current B frame and the reference frame Ref. list-0, and

TDp is the temporal distance between the future reference frame Ref. list-0 and Ref. list-1.

2.5 Fractional Interpolation

H.264/AVC main profile standard also supports high motion resolution that reaches

quarter motion accuracy for luma component and eighth one for chroma component. This can
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be found firstly in advances profile of MPEG-4 Visual standard; however, H.264/AVC
reduces the complexity of interpolation processing comparison with MPEG-4 standard. Luma
half sample interpolation is generated from integer-position samples using a 6-tap
symmetrical Finite Impulse Response (FIR) filter with weights (1, -5, 20, 20, -5, 1). Once all
the half-pel samples are available, the quarter samples are produced by linear interpolation
using bilinear filter. Luma samples interpolation is shown in Figure 2.11(a)-(c). Quarter-pel
resolution motion vectors in the luma component require eighth-sample resolution vectors in
the chroma component assuming 4:2:0 chrominance format. Interpolated samples at
eighth-sample intervals in chroma component are generated using bilinear interpolator
illustrated in Figure 2.10 (d), and the displacement can achieve one-eighth accuracy. Each

sub-sample position i is a linear combination of the neighboring integer sample positions A, B,

C and D.
[] [] L] U - erd] [ [ [
:: q € 9
i i hbi k@ h ] m
L S 1
M M s N

d=(G+h+1)>>1 e=(G+j+1)>>1
a=(G+b+1)>>1 g=(b+m+1)>>1

: 0] (©
A @ MW @
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ih idi|lk|m
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i | |
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|
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|:| |:| |:| |:| i=((8-xFrac)*(8-yFrac)*A+xFrac*(8-yFrac)*B+(8-

xFrac)*yFrac*C+xFrac*yFrac*D+32)>>6

b=((E-5xF+20xG+20xH-5xI+J)+16)>>5 (d)
h=((A-5xC+20xG+20xM-5xR+T)+16)>>5
j=((aa-5xbb+20xh+20xs-5xgg+hh)+16)>>5

(a)
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Figure 2.11 (a) luma half sample with 6-tap FIR, (b) luma horizontal/vertical quarter
sample with bilinear filter, (c) luma diagonal quarter sample with bilinear filter, (d)
chroma sample with bilinear filter. Upper-case letters indicate the full samples and

lower-case letter indicates the interpolated fractional samples

From mathematical equations, they are both 2-D interpolation for luma and chroma
interpolation. However, based on hardware implementation, these equations can be separated
into two 1-D to reduce hardware cost, namely, horizontal filter first and than vertical one, or
vice verse. In chapter 3, we will propose a novel architecture of interpolation to combine luma

and chroma interpolation so that cost and complexity can be improved in ASIC design.

2.6 Weighted Prediction

The weighted prediction (WP) tool-has been adopted in the H.264/AVC Main and
Extended profiles to improve codmg efficiency by applying a multiplicative weighting factor
and an additive offset to the motion compensated prediction [5] [6]. While the concept of
applying a weighting factor to a reference picture prediction is not new, the inclusion of the
WP tool in the H.264 standard marks the first time such a feature has been incorporated into
an international video compression standard. Weighted prediction also compensates the
brightness difference so that the reference frame is more strongly correlated to the current
frame. The WP allows arbitrary multiplicative weighting factors and additive offsets to be
applied to reference picture predictions in both P and B pictures. The WP tool is particularly
effective for coding fading sequences. When applying to a single prediction, as in P pictures,
WP is similar to a leaky prediction, which has been previously proposed for error resiliency.
Leaky prediction becomes a special case of WP, with the scaling factor limited to the

range0 <a <1. The WP also allows negative scaling factors, and scaling factors greater than
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one. A key difference of H.264’s WP tool from previous proposals involving weighted
prediction for compression efficiency is the association of the reference picture index with the
weighting factor parameters, which allows for efficient signaling of these parameters.

Use of weighted prediction is indicated in the sequence parameter set for P slices using
the weighted pred_flag field, and for B slices using the weighted_bipred_idc field. There
are two WP modes -- explicit mode, which is supported in P and B slices, and implicit mode,
which is supported in B slices only. A single weighting factor and offset are associated with
each reference picture index for each color component in each slice. In explicit mode, these
WP parameters may be coded in the slice header. In implicit mode, these parameters are
derived based on relative distance of the current picture and its reference pictures. For each
macroblock or macroblock partition, the weighting parameters are based on the reference
picture index (or indices in the case.of bi-prediction) of the current macroblock or macroblock
partition. The reference picture indices are either coded in the bitstream or may be derived,
e.g., for skipped or direct mode macroblocks.. The use of the reference picture index to signal
which weighting parameters to apply. is bit-rate efficient, as compared to requiring a
weighting parameter index in the bitstream, because the reference index is already available

based on other required bitstream fields.

2.6.1 Explicit Mode

Use of explicit mode WP is indicated by weighted_pred_flag equal to 1 in the picture
parameter set of P slices, or by weighted_bipred_idc equal to 1 in B slices. In explicit mode,
the WP parameters are coded in the slice header for each coded slice. A multiplicative
weighting factor and additive offset for each color component may be coded for each of the
allowable reference picture in list 0 for P slices and B slices. The number of allowable
reference pictures in list O is indicated in the picture parameter set by

num_ref idx 10 active_minusl, and for list 1 for B slices is indicated by
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num_ref _idx_I1_-active_minusl. The weighting factors and offsets used in a particular slice
are included in the slice header when explicit mode WP is used. The allowable range of
parameter values is constrained to 16-bit arithmetic operations in the inter prediction process.
The dynamic range and precision of the weighting factors can be adjusted using the
luma log weight denom and chroma log - weight denom fields, which are the binary
logarithm of the denominator of the luma and chroma weighting factors, respectively. Higher
values of the log weight denominator allow more fine-grained weighting factors but require
additional bits for coding the weighting factors and limit the range of the effective scaling.
For each allowable reference picture index in list 0, and for B slices also in list 1, flags are
coded which indicate whether or not weighting parameters are present in the slice header for
that reference picture index, separately for the luma and chroma components. If the weighting
parameters are not present in the slice header for-a given reference picture index and color
component, a default weighting factor equivalent to a-scaling factor of 1 and a zero offset are
used. The multiplicative weighting factors.are.coded as luma_weight 10, luma_weight 11,
chroma_weight 10, and chroma weight II. * The additive offsets are coded as
luma_offset 10, luma_offset 11, chroma_offset 10, and chroma_offset 11, respectively. For
fades that are uniformly applied across the entire picture, a single weighting factor and offset
are sufficient to efficiently code all macroblocks in a picture that are predicted from the same
reference picture. When multiple reference pictures are used, the best weighting factor and
offsets generally differ during a fade for the different reference pictures, as brightness levels
are more different for more temporally distant pictures. Use of the reference picture index in
the selection of the weighting parameters allows the coding efficiency gain of multiple
reference picture prediction to be added to the coding efficiency gain of weighted prediction.
For fades that are non-uniformly applied spatially across an image sequence, e.g. for lighting
changes or camera flashes, more than one reference picture index can be associated with a

particular reference picture are stored by using reference picture reordering commands. This
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allows different macroblocks in the same picture to use different weighting factors even when
predicted from the same reference picture store. In explicit mode, the same weighting
parameters that are used for single prediction are used together for bi-prediction. The final
inter prediction is formed for the pixels of each macroblock or macroblock partition, based on
the prediction type used as follows.

Single directional prediction from list-0:

SampleP = Clip1(((SamplePOxW, +2-"°") > LWD) +0,) (2.7)

Single directional prediction from list-1:

SampleP = Clip1(((SampleP1xW, +2"°") > LWD)+0O,) (2.8)

Bi-prediction from list-0 and list-1:

SampleP = Clipl(((SamplePOxW, +SampleP15\W +2"")>> (LWD+1))+(O, +O, +)>1)  (2.9)

Where Clipl operation is an operator that-¢lips to the range [0, 255], WO and OO are the
list 0 reference picture weighting factor and offset, and W1 and O1 are the list 1 reference
picture weighting factor and offset, and LWD is the log weight denominator rounding factor.
SampleP0O and SampleP1 are the list 0 and list 1 initial predictors, and SampleP is the

weighted predictor.

2.6.2 Implicit Mode

Use of implicit mode is indicated by weighted_bipred_idc equal to 2 in B slices. In WP
implicit mode, weighting factors are not explicitly transmitted in the slice header, but are
derived based on relative distances between the current picture and the reference pictures,
based on POC. Implicit mode is used only for bi-prediction coded macroblocks and

macroblock partitions in B slices, including those using direct mode. The same formula for
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bi-prediction as given in the preceding explicit mode section for bi-prediction is used, except
that the offset values OO0 and O1 are equal to zero, and the weighting factors W0 and W1 are

derived using the formulas below:

X = (16384 +(TD, > 1))/TD, (2.10)
Z = Clip3(-1024,1023,(TD, x X +32)>> 6) (2.11)
W, =2>2 (2.12)
W, = 64-W, (2.13)

where TDg is difference in the POC values between the list 1 reference picture and the
list 0 reference picture, clipped to the range [-128, 127] and TDp is difference in the POC
values of the current picture and the list O reference picture, clipped to the range [-128, 127].
Macroblocks using single prediction, (list-0-or'list 1) do not use implicit mode WP. Implicit
mode is most useful for low bit-rate applications, or for pictures that are broken into many
slices for error resiliency, where-the bits neéeded to code the WP parameters in explicit mode
become significant contributors to.overall bit-rate; For Bi-prediction macroblocks where the
two predictors are from opposite temporal directions, as in traditional B pictures, the implicit
mode WP formula becomes an interpolation formula. For example, with a traditional PBB
picture pattern, weighting factors of (2/3, 1/3) are used in the first B picture and (1/3, 2/3) are
used in the second B picture. For Bi-prediction macroblocks where the two predictors are both
in the same temporal direction, the implicit mode WP formula becomes an extrapolation
formula. For example if one predictor is from the immediately preceding picture and the other
predictor is from two pictures preceding, weighting factors of (2,-1) are used. In our design,
we implement division-free hardware with WP implicit mode according to equation
(2.2)-(2.4). The detailed architecture is shown in the following sections.

For the PBB picture sequence, implicit and explicit mode performed similarly for the

linear fade-out pattern, both with an average coding gain of 46.2%. For a non-linear S-curve
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fade-out pattern with the PBB picture sequences, explicit mode outperformed implicit mode
slightly, averaging a 41.3% gain vs. a 40.9% gain. The gains were lower for the fade-ins, with
explicit mode outperforming implicit mode from 28.9% to 28.4% for the linear fade-in, and
from 29.1% to 26.9% for S-Curve fade-in. Besides, a simple method for determining
weighting factors has been described that achieves bit-rate reductions up to 67% for

fade-to-black sequences.

2.7 Analysis

H.264/AVC main profile supports new features to improve performance such as PSNR,
bit rate, and quality, etc. Analysis is performed for these features to show the improvement.
For analyzed environment, a test sequence with CIF format is employed at 30fps. The frame
orders are I-P-P and I-B-B-P-B-B-P-B-B for baseline and main profile, respectively. Figure
2.12 shows the bit rate of baseline and“main_profile-using different Quantization Parameter
(QP). From Figure 2.12, reduction of'bit.rate can'be observed, and bit rate of main profile may
save approximately 40% compared with that of baseline profile. Thus, main profile is suitable

for high bit-rate system such as HDTV, HD-DVD devices.
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PSNR of the main profile is 31.8, f than PSNR of baseline is 28.4. Furthermore,
performance of direct mode coding within main profile is illustrated as the same Figure. We

can find that performance of spatial mode is a bit better than that of temporal mode in direct

mode coding.
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Figure 2.13 PSNR between Baseline and Main profile

Figure 2.14 and Figure 2.15 sl ; ‘ofinteger/fraction motion vector for luma
and chroma component, respectiv | ulate the proportion, we select a general
sequence with CIF format. The I-B-B-P-B-B-P-B-B. In high bit rate
applications (384 kbps), the fractional rﬁotion vector occupies about 80 % and even in low bit
rate (48 kbps) fractional part has a certain proportion (30 %). The higher fractional motion
vector proportion means that the longer execution time is required to read pixels from external
frame memory. This gap may become more obvious especially when SDRAM is used as

frame memory. To reduce requisite fetching pixels from frame memory, the efficient

data-reuse technique for fractional motion compensation will be proposed in Chapter 3.
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Figure 2.14 The proportion of integer/fraction motion vector for luma component in

H.264/AVC main profile
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Figure 2.15 The proportion of integer/fraction motion vector for chroma component in

H.264/AVC main profile
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2.8 Comparison for MC of Previous Standards

Considering the frame coding, Table 2.1 lists all fractional motion compensation features
between different standards. Up to now, we can find fractional interpolation issue becomes
more and more important in the state-of-the-art video coding. The interpolation window
becomes larger for the same block size; namely, it requires much more cycles to interpolate
each macroblock. For example, it requires 9 x 9 pixels window to interpolate luma 4 x
4-block for H.264/AVC; however, the identical size of interpolation window can be used to
filter 8 x 8-block for MPEG-2 video decoder. Therefore, it’s requires 1,296 pixels to
interpolate 16 4 x 4-blocks. Especially note that luma and chroma interpolation for
H.264/AVC are different compared with previous standards. That is, no matter what on
algorithm level or hardware level; the interpolated’computation sources can not be shared.
Hence, the combination of luma and chroma parts could be improved to reduce gate count and
we will give the discussion and implementation ih Chapter 3. In addition, H.264/AVC
supports direct mode coding and weighted prediction which will be not adopted by previous
video standard. Therefore, novel structures of direct mode coding and weighted prediction are

proposed in the same chapter.
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Table 2.1 comparison with different standard

Standard MPEG-1/2 MPEG-4 H.264@Main
Update from Median prediction
MVp prediction previous PMV Median prediction Directional prediction
value Direct mode prediction
Luma block unit 16x 16 8x8 4x4
Luma motion accuracy Half Half, Quarter Half, Quarter
Half sample mode
Bilinear
Half: 6-tap FIR
Luma filter Bilinear Quarter sample mode | (Qyarter: 6-tap FIR and
Half: 8-tap FIR bilinear
Quarter: 8-tap FIR and
bilinear
Luma interpolation window 17x 17 15x 15 9x9
Chroma block unit 8x 8 4x4 2x2
Chorma motion accuracy Half Half, Quarter Eighth
Half sample mode
Bilinear
Chorma filter Bilinear Quarter sample mode Bilinear

Half: 8-tap FIR
Quarter: 8-tap FIR and
bilinear

Chorma interpolation window 9x9 5x5 3x3

2.9 Summary

From the H.264/AVC profiling on ARM processor, we can find that an efficient hardware
accelerator or ASIC design for motion compensation is crucial. For HDTV application,
H.264/AVC main profile has provided several coding tools to deal with high-quality
resolution. Bi-prediction and quarter-pel interpolation are proposed to improve coding
efficiency. Weighted prediction is first adopted by video standard, and is a powerful tool for
efficiently coding fading sequences. Bitstream size is reduced by direct mode coding which is

adopted by H.264/AVC main profile for B-slices. In B-slices, inter prediction is performed by
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using two frames so that motion compensation hardware are more complex. Furthermore,
multiple reference frames is proposed so that memory requirement may be extremely
increased. For above discussion, not only hardware accelerator but also bandwidth-efficient
hardware is required to develop for high-definition system. Finally, the inter prediction for

H.264/AVC and the comparison among different standards are also illustrated in this Chapter.
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Chapter 3
A Bandwidth-efficient Motion
Compensation Architecture Design

In video standards, such as MPEG-1/2, MPEG-4 and H.264/AVC, motion compensation
is an important part of entire decoder system, and always dominates system performance due
to high computing power. Furthermore, the hardware design of motion compensation is more
complex than other modules such as CAVLC, DET, intra-prediction and De-blocking filter,
etc. For HDTV application, motion compensation adopts new features which are supported by
H.264/AVC main profile so that-procedurc_and hardware of motion compensation are more
and more complex in ASIC designs."Besides, inter-prediction requires large pixels of previous
decoded reference frame to predict current frame, and external memory is decided as frame
memory in our on-chip design. Moreover, multiple reference frames are employed to lead that
more memory may be used to store pixels of several previous decoded reference frames. Thus,
memory bandwidth which is data traffic under external BUS will be a bottleneck of motion
compensation. A bandwidth-efficient motion compensation hardware accelerator has to be
designed, which can be integrated into simplex architecture.

In this chapter, we will focus on motion compensation for high throughput and low cost
designs. We propose a bandwidth-efficient motion compensation architecture which is
suitable for high-quality system. Firstly, we will introduce whole bandwidth-efficient motion
compensation architecture for H.264/AVC main profile. The hardware of detail module such

as motion vector generation, interpolator, and weighted prediction will be discussed in
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sub-section 3.2-3.4, respectively. Finally, simulation and summary are given in section 3.5.

3.1 Motion Compensation Engine for H.264/AVC’s Main

Profile

The H.264/AVC main profile decoder system is illustrated as Figure 3.1. First, the frame
information in bitstream is decoded by entropy coding module includes CABAD and CAVLD.
According macroblock type, the frame pixels can be decoded by intra-prediction and
inter-prediction. The bus traffic is treated by memory controller which can be supported for
module of video decoder. Figure 3.2 illustrates the entire bandwidth-efficient motion
compensation architecture for H.264/AVC_main profile. In H.264/AVC, a 4x4 block is the
smallest element of the prediction:block types<in variable block size (VBS) and each 16x16
block can be decomposed into several 4x4 blocks. We adopt a 4x4 block-based pipeline to
implement this motion compensation design-in this design, because the 4x4 block is the
smallest processing unit of pixels that the H.264/AVC adopts and 4x4 block-based pipeline

can save the cost of storage buffer and the associated power reduction.
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Figure 3.1 The block diagram of H.264/AVC main profile decoder system
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Figure 3.2 Motion compensation architecture for HDTV H.264/AVC main profile

decoder

Excluding the memory controller, the propesed motion compensation architecture is
presented in gray dotted area of Figure 3.2. The detailed discussion of frame memory access
controller is shown in Chapter 4. The motion compensation architecture consists of three
major parts that are motion vector generator (MVG), interpolator and weighted prediction.
The decoded information is firstly loaded from bitstream into MVG. A MVG generates
motion vector to predict current macroblock. In H264/AVC’s main profile, motion vector is
generated by two predicted methods: motion vector prediction (MVP) and direct mode coding.
The details of MVG are described in the sub-section 3.2. According to motion vectors which
are produced by MVG, corresponding reference pixels are loaded from external frame
memory. In this chapter, we will not discuss memory such as memory controller and address
generator, etc. Interpolators are invoked to produce fractional samples for both luma and
chroma components. In this design, we employ two interpolators to simultaneously process
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pixels of list-0 and list-1 because two motion vectors will point to two search areas in list-0
frame and list-1 frame in B-slices, respectively. When the motion vector is an integer value,
corresponding reference pixels without interpolation directly feeds through weighted
prediction. In the end of motion compensation processes, weighted prediction (WP) is
performed by applying a multiplicative weighting factor and an additive offset in bitstream.
These pixels obtained by weighted prediction add with residual data to create the unfiltered
pixels. Finally, the de-blocking filter loads these pixels, and restores correct pixels into
external memory after performing filter operations. Because the data bus of external frame

memory is defined as 32bit, pixels which are loaded into interpolator are limited.

3.2 Motion Vector Predictor Design

To facilitate a spatial prediction, we store motion-vector for one row stripe of 4x4 blocks,
four left neighboring 4x4 blocks andicurrent-4x4 blocks into Row stored buffer. Figure 3.3

illustrates that shaded regions have to be stored-for predicting oblique region.

Frame boundary Frame boundary

.

Current MB

Figure 3.3 MV in shaded and oblique line region must be stored in row-FIFO.

Firstly, motion vector generator is shown in Figure 3.4. Motion vector is obtained in two

32



predicted methods: MVP and direct mode coding. Note that direct mode coding is supported
in B-slice. According to MB types, the motion vector is obtained by different predicted

methods and stored into current motion vector buffer.
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Figure 3.4 Motion vector generator

3.2.1 MVp Prediction Module

In the MVP generation method, the motion vector is generated by summing predicted
motion vector (MVp) and MVD. For calculating MVp, we employ directional segmentation
prediction in 8x16 or 16x8 block types and median prediction in other block types. These
predictions are integrated into MVp generator. The MVp generator calculates MVp according
to the motion vectors of the neighboring blocks in current frame. Thus the decoded motion
vectors are required to be stored into FIFO buffer for the subsequent decoding. FIFO bufter
stores the decoded motion vector pair (MVX, MVY). The depth and width of MV FIFO are
dependent on the decoded frame width and search range respectively. For instance, for

supporting 1080HD format, the total size of FIFO buffer is 968 x 10 bits (((120 blocks x 4 + 4)
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x 2) = 968 4x4-block). Therefore, SRAM is selected as a FIFO buffer to store required
decoded motion vectors in our design. Once the content of FIFO buffer will not be used in the
future, the restored motion vector pair in FIFO buffer can be discarded. Furthermore, the 4 x 4
size of MV buffers is required because the maximum number of motion vectors per MB is 16.
The motion vectors for current MB decoding store in this 4 x 4 MV buffers. Due to a
Bi-prediction, two 4 x 4 MV buffers are required to store current two motion vectors for

predicting motion vectors of list-0 frame and list-1 frame.

MVLU | MVUO | MVU1 | MVU2 | MVU3 | MVRU

MVLO | MVO MvV1i Mv4 MV5

MVL1 | MV2 MV3 MVé6 Mv7

MVL2 | MV8 MV9 | MV12 | MV13

MVL3 | MV10 | MV11l | MV14 | MV15

Figure 3.5 Neighboring motion vectors required for decoding all motion vectors in

current macroblock

When decoding current macroblock, the detail of required neighboring motion vectors is
shown in Figure 3.5. To involve all kinds of VBS conditions, storages element is based on 4 x
4-block size that is the smallest element for H.264/AVC video decoder. Each square indicates
one motion vector pair. To predict MV0-MV 15 in current MB, it requires neighboring motion
vectors in left-upper corner (MVLU), right-upper corner (MVRU), upper (MVUO0-3) and left
(MVLO0-MVL3) positions., Neighboring motion vectors are shifted and stored into MV FIFO

except for current MV.
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Figure 3.6 (a) block size position index, (b) directional prediction table (16x8, 8x16), (c)

median prediction table (16x16, 8x8), (d) median prediction table (4x4)

MVp is calculated according to MVA, MVB, MVC and MVD which are obtained from
neighboring motion vectors according to block size position index for different macroblock
types. The block size position index in one macroblock is illustrated in Figure 3.6 (a). MVA,
MVB, MVC and MVD indicate the motion vectors located at left, upper, right-upper,
left-upper neighboring macroblock/partition/block respectively as shown in Figure 2.8 (c).
Figure 3.6 (b)-(d) lists all MVA, MVB, MVC and MVD for different block size position index.

When MB type of current macroblock is 16x8 or 8x16, MVp can derived by directional
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prediction, otherwise median prediction is involved. Furthermore, the above loop-up table
(LUT) is required for motion vector prediction, many trivial boundary conditions and

exceptions have to be handled. Here, we do not describe them for simplicity.

3.2.2 Direct Mode Coding Design

Except for MVp prediction, other way to predict current motion vectors is direct mode
coding. In the direct mode coding, there are two types: spatial and temporal types [7] [8].
These types are user-defined in encoding processes. From above discussion, the PSNR of
spatial mode is better than that of temporal mode. In our design, we implement both temporal
and spatial modes and integrate it into MVG module. When a temporal mode is invoked, a
temporal direct mode coding module calculates motion vector according to the picture order
counts and co-located motion vectors.in first list-1 frame. From above introduction of direct
mode coding with temporal mode, we have to calculate the scalefactor value by equation 2.4.
From Equation 2.5 and 2.6, two motion vectors from list-0 and list-1 frame are computed with
scalefactor. Therefore, the scalefactor must be.computed in advance. Figure 3.7 depicts
hardware by which scalefactor is computed. We implement division-free and
multiplication-free design to reduce hardware complexity. We employ some multiplexer and

shifters to replace division and multiplication in gray dotted area and it is shown in Figure 3.8
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Figure 3.8 (a) Division free replacement (b) Multiplication-free replacement

Where CLIP operation is used to restrict TDB , TDD and scalefactor within range
between -128 and 127. The CLIP operation is expanded as Equation 3.1. The complexity of

this module is reduced efficiently by division-free and multiplication-free.
CLIP = (-128,127,input _ value) (3.1)
What is more, the process which produces motion vectors by spatial mode is the same as
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median method for MVp prediction. Therefore, the hardware of MVp prediction module and
spatial direct mode coding predictor can be shared. When the spatial mode is chosen, the
predicted process acts as the MVp prediction, which needs motion vectors of the neighboring
blocks to generate motion vector. Hence, we can employ MVp generator to generate motion

vector without adding MVD.

3.3 Bandwidth-Efficient Factional Interpolator Design
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Figure 3.10 (a) 2x2-block and 3x3 interpolation search windows for chroma component
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Interpolator design always dominates the throughput of H.264/AVC decoder. To
interpolate each fractional sample value for each 4x4 block of luma component, it needs 9 x 9
interpolation window illustrated in Figure 3.9 (a). If two motion vectors of neighboring 4 x 4
blocks are the same, 5 x 9 overlapped region between two interpolation windows can be data
reused. The overlapped region between neighboring blocks is shown in Figure 3.9 (b). We can
find that maximum overlapped region is 65 pixels for luma search windows. For each 2 x 2
block of chroma component is shown in Figure 3.10, the size of interpolating search windows
is 3 x 3 and 5 pixels can be reused between neighboring blocks. For above property, when
interpolating current block, overlapped region cannot be fetched again. We will introduce the

proposed data-reuse approach and give some examples in sub-section 3.3.1.

3.3.1 Data Reuse Technique

The scanning order of residual decoding for.each macroblock is row-major interpolating
order as shown in Figure 3.11 (a), and column-major:interpolating order illustrated in Figure
3.11 (b). A dotted line indicates transition between interpolating processes. In comparison of
row-major interpolating order and column-major interpolating order, we adopt a
column-major interpolating order because the transition of column-major interpolating order
is 5 times less than row-major order. Each transition causes that the overlap region could not
be reused. Therefore, column-major one is the better selection because of less number of

transitions.
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Figure 3.11 (a) row-major interpolating order (b) column-major interpolating order
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For a data-reuse approach, Wang’s design [10] proposed an extended 2 x 2 raster
scanning order approach to increase throughput. Although 30% reduction of access cycle for
motion compensation is derived by this approach, the improvement is not high enough for
high-definition resolution. Therefore, based on the column-major interpolating order, we
propose an extend-2D column-major approach (E2CMA) to reduce read access times from
external memory and thereby achieve approximately 60% reduction of access cycles.

E2CMA exploits horizontal and vertical common region in interpolation search window
between neighboring blocks to execute data-reuse operation. Because each 4x4 block needs
9x9 search windows to interpolate fractional pixels and word length is limited to 32 bits under
data bus, it requires three cycles to load nine pixels of one column into entry. Therefore, it
needs 27 cycles (3 x 9) to accomplish one 4x4 block interpolated in the worst case. The worst

case means that MB type is decoded '}aré"4x4ﬁ
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Figure 3.12: Luma component interpolation: (a) Interpolating block 4 and (b)

Interpolating block 3 (c) Interpolating block 6
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Figure 3.13 Chroma component interpolation: (a) Interpolating 2x2-block 0 (b)

Interpolation 2x2-block 1

Some examples are given in Figure 3.12 (a)-(c) to illustrate the vertical and horizontal
data-reuse approach by E2ZCMA. The charcoal-gray circle indicates pixels have been stored in
buffer, and the light gray means pixels must be loaded from external frame memory. Figure
3.12 (a)-(c) depict three data-reuse cases: (a) horizontal data-reuse approach (b) vertical
data-reuse approach (c) horizontal and vertical data-reuse approach. The MB type assumes
16x16 in these cases. Firstly, the horizontal data-reuse approach is given for interpolating

block 4 in Figure 3.12 (a). The horizontal data-reuse approach is applied to content buffers for
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executing a content-switch operation. Pixels in columns 0-4 have been stored in content
buffers. Therefore, we only need to load pixels from external memory in column 5. After 12
cycles, 16 interpolated pixels in block 4 have been produced. The vertical data-reuse approach
is illustrated in Figure 3.12(b) for interpolating block 2. In block 2, upper six pixels in each
column have been shifted into Reuse-Register-File. Therefore, three lower pixels in each
column must be fetched from external memory. We require one cycle to fetch three lower
pixels from external memory and load upper six pixels from reused registers at the same time.
Nine cycles are needed in this case. Last case is that horizontal-vertical data-reuse approach is
shown in Figure 3.12(c). The least interpolating cycle for one block is 4 cycles for
horizontal-vertical data-reuse approach. Because all pixels in column 0-4 and upper six pixels
in column 6-9 is stored in content buffer and Reuse-Register File respectively, 4x4 block
interpolated can be accomplished after four cycles:.All MB types can be applied by E2CMA
so that data-reuse utilization is increased excepting for-MB type is 4 x 4,

Because of 4:2:0 chroma compenent_and.quarter precision of luma inter prediction,
chroma inter prediction can achieve eighth motion resolution. E2CMA can be applied for
chroma component interpolation as well. Similarly, for chroma component interpolation,
some examples are given as Figure 3.13 (a)-(b). Chroma inter prediction must process based
on 2 x 2 block and chroma interpolation search windows requires 3 x 3 pixels for each 2 x 2
block as shown in Figure 3.10 (b). For chroma component interpolation, block 0 of chroma
component is interpolated is shown as Figure 3.13 (a). In this case, data-reuse approach can
be not applied so that three cycles are required. Other case is shown in Figure 3.13 (b),
E2CMA is used so that two interpolation cycles are needed. From Figure 2.12 (d), for chroma
2 x 2 block including A, B, C and D, the fractional sample i whose precision is eighth point. A

reduction of required access cycles is 33% using E2CMA.
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Table 3.1 Analysis for different interpolating approach

Interpolating Required pixels per luma MB | Required pixels per chroma MB MB._ type for data-reuse
approach Worse case Best case Worse case Best case approach
Row major 1296 1296 144 144 All
approach
Column major 1296 936 144 144 direct, skip, 16x16, 16x8
approach
Wang s 1296 756 + 6CS 144 144 direct, skip, 16x16, 16x8
approach
E2CMA 1296 126 + 6CS 144 108 + 6CS | All MB Except for 4x4 MB,

To give more generic and platform independent analysis, we analyze requisite pixels per
MB for each interpolating approach. Table 3.1 lists required pixels per luma MB and chroma
MB for different interpolating approach. Assuming.that each motion vector contains fractional
part, the best case has one motion vector and: worst case has 16 motion vectors for one
macroblock. Although requisite pixels of‘each approach are the same in worst case, requisite
pixels of column major related dpproach are smaller than that of row major approach.
Although column major related approach takes the best effect than row major approach, it
requires additional synchronization buffer and degrades throughput due to different scan order
approach with that of residual decoder. As for Wang’s approach, few MB types can be
data-reuse such as direct, skip, 16x16 and 16x8. Although larger block size (skip, 16x16, 16x8)
occupies up to approximately 50% ~ 90% proportion depends on bit rate. For higher bit rate,
improvement of Wang’s method is limited. Oppositely, E2ZCMA can be applied all MB type

except for MB type is 4x4. Therefore, the performance is better than previous approach.

3.3.2 Combined Luma/Chroma Interpolation Architecture

In this subsection, several different works related to interpolator designs of which have

been published will be introduced. From above discussion, reviewing the fractional
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interpolation for H.264/AVC in Figure 2.11, 6-tap FIR with (1, -5, 20, 20, -5, 1) coefficient
and bilinear filter are needed for half and quarter precision of luma component interpolation
in H.264/AVC video decoder. For cost and PSNR loss acceptable consideration, Lie’s 4-tap
diagonal FIR filter and three-stage recursive algorithm is proposed in [21], and Chen’s HVBI,
bilinear filter in both horizontal and vertical direction, and VBi, vertical bilinear horizontal
FIR, schemes are also introduced in [22]. However, when frame sequence is very long for
supporting B-slices, such as [ + 9 P +4B, the propagation of PSNR loss may cause the heavy
degradation of video quality, especially in high definition frame format such as 1080HD.
Oppositely, considering PSNR losses and standard-compatible design, Chien’s [23] and He’s
[24] have proposed adder-chain and adder-tree based design respectively. These two types
which depicted in Figure 3.14 are categorized into 1-D linear filter design. For cost
consideration, multipliers can be simplified to adders and shifters. 1-D linear interpolator is
suitable for Q-CIF video sequence.in mobile applications; however, as for HDTV video
sequence, throughput is a very important.issue.and long execution cycles in 1-D linear design
may lead to poor throughput. As for-anether choiee, Chien’s [23] also proposed separate 1-D
design that separates horizontal and vertical interpolation and processes in parallel based on 4
x 4 block size. This design induces better throughput, although it may need more storages.

Figure 3.15 shows separate 1-D interpolator design without processing in a parallel way.

| Adder network |

| Adder netjvork |

| Adder tree

@ (b)
Figure 3.14 (a) Adder-chain based [23] (b) Adder-tree based [24] 1-D linear interpolator

design
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Table 3.2 Comparison of execution cycles for different architectures

Interpolation Architecture Interpolating cycles
Adder-chain based 1-D[10] 57
Adder-tree based 1-D[10] 52
Separate 1-D (no parallel) [10] 36
Separate 1-D (2 parallels) 18
Separate 1-D (4 parallels) [10] 9

FIR

FIR

Figure 3.15 Separate 1-D interpolator design (no parallel)

Assuming that all 9 x 9 interpolated data for each 4 x 4 block are ready and they can be
accessed randomly, Table 3.2 lists the execution cycles for different architectures. For
adder-chain based 1-D design, the first result outputs after the 6™ clock cycle. Two
adder-networks are used to overlap each row inputs and eliminate the latency overhead except

the first one. The total number of cycles required is 57 (5 + 4 x 9 + 4 x 4) whose detailed
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operation is described in Chien’s. For adder-tree based 1-D design, the row data can be loaded
in a parallel fashion without shift one-by-one, hence the latency overhead does not exist and
total numbers of cycles are 52 (4 x 9 + 4 x 4). As for separate 1-D design, the first data
outputs at the 6™ clock cycle and the following 3 data generates after 3 clock cycles.
Therefore, the separate 1-D design without using parallel architectures needs 36 ((6 + 3) x 4)
cycles to complete interpolation of one 4 x 4 block. Wang’s [10] presented a separate 1-D
with 4 parallel designs and the required content buffers are 6 x 9 pixels for 4-parallel design
shown in Figure 3.16. Similarly, separate 1-D design with 2 and 4 parallel requires 18 ((6 + 3)
x 2) and 9 (6 + 3) cycles respectively. In addition, 4-parallel separate 1-D architecture is best
selection due to smaller required execution cycles that can be hidden below data-read cycles
from frame memory. Wang’s architecture which uses separate 1-D with 4-parallel can obtain
smaller execution cycles for one 4 x 4-block, but the architecture can be simplified to obtain

interpolating pixels by smaller cycles for reducing required bandwidth.
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Figure 3.16 4-parallel separate 1-D luma interpolator with content buffer

From previous discussion, we propose a combined luma/chroma interpolator (CLCI)
architecture for reducing cost and complexity of interpolator, which can support E2CMA. The
proposed CLCI is based on separated 1-D with 4-parallel interpolator architecture. We
decompose 2-D FIR interpolator into vertical and horizontal 1-D FIR interpolators. For the
luma interpolation, the half samples are interpolated by performing a 6-tap filter, and quarter
samples are produced by using a bilinear filter. Considering the chroma interpolation, 1/8
samples are obtained by CLCI without requiring additional interpolators. The CLCI shown in
Figure 3.17 consists of four CLCI units, bilinear, Reused-Register-File and input entry units.

According to the data-reuse status, input entry unit selects and packs the pixels loaded from
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input buffers or Reused-Register-File to CLCI units.

Not only luma but also chroma interpolation can be processed by the proposed CLCI.
When a luma block is interpolated, all CLCI units are invoked; otherwise, CLCI unit 0-1 is
applied and transmits to pixels output without bilinear filter. Because CLCI unit 0-1 is needed
to interpolate chroma component, Combined FIRs (C-FIRs) of CLCI unit 2-3 are replaced by
FIR. The sizes of Reused-Register-File for vertical data-reuse are 21x48 bits. Pixels are
loaded from input buffers to transmit into input entry units and are shifted into
Reuse-Register-File at the same time. For horizontal data-reuse approach, content buffers of
CLCI only are 48 (6 x 8) less than Wang’ design so as to save gate count.

Furthermore, each CLCI unit is shown in Figure 3.18. CLCI unit 0-1 includes 6 entries, 3
Combined FIRs(C-FIR), 6 integral elements and 6 fractional elements. CLCI unit 2-3 includes
the same elements as CLCI unit 0-1:excepting forC-FIRs are replaced by FIR. Each element
consists of a shift buffer and a-content buffer that stores pixels for horizontal data-reuse

approach.
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Figure 3.17 Combined luma/chroma interpolator architecture

Considering the horizontal data-reuse approach, shift buffers and content buffers are
exchanged each other by one cycle for content switch operations. Input of integer element is
selected by the multiplexer according to quarter fractions of motion vectors. For the luma
interpolation, half samples are derived from C-FIR after 6 shifting cycles. For the chroma
interpolation, 1/8 samples are obtained after 2 cycles due to 2x2 interpolation search regions

in one chroma pixel.
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Figure 3.18 Combined luma/chroma interpolator unit

As for luma and chroma interpolatof for H.264/AVC described as above, the adder of
luma and chroma component intetpelation can be shared as well. Figure 3.19 shows the
proposed Combined FIR filter (C-FIR) which can combine luma with chroma interpolating
data paths. Because the chroma interpolation is based on 2x2 block processes, only two
combined FIR filters are required to obtain 1/8 samples in CLCI units 0-1 respectively. By the
CLCI architecture, the chroma interpolator can be combined into the luma interpolator,
reducing additional hardware cost. The cost penalty of C-FIR design is MUX x 2, shifter x 3
and bitwise AND x 6 when compared with the FIR design proposed in Chen’s [22]. The

decoding path of luma FIR filter and chroma filter are illustrated in Figure 3.20.
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Figure 3.20 (a)Process path for luma component interpolation (b) Process path for

chroma component interpolation
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3.3.3 Simulation Results

We use five CIF resolution videos as our test sequence and adopt main profile as the
simulated platform. The decoding order is fixed at I-B-B-P-B-B-P-B-B sequences. We assume
all MB are fractional, which means that all MB need to be interpolated. The proposed
bandwidth-efficient motion compensation architecture reduces the data refresh probability. In
other words, data-reuse probability can be increased. Only a 4x4-block which occupies 4%
can not be reused by using our proposal. Table 3.3 lists simulation results at 100MHz using
E2CMA at 301ps, and the bit rate is 512Kbps. The improvement of our proposal is up to 60%.

Besides, the required bandwidth is painted in Figure 3.21. From Figure 3.21, the E2CMA may

obtain smaller required bandwidth so as to reduce bandwidth over external BUS.

Table 3.3 Simulation results of required memory bandwidth (MByte/s) per MB by using

exterid-2D column-major approach.

Test Row-major column-major | Extend 2D column-
. . . . . Improvement(%)
sequence | interpolating order | interpolating order| major approach
Bus 53.22 43.2 27.7 47.95
Foreman 53.22 42.6 25.5 52.09
Carphone 53.22 42.7 27.3 48.7
Football 53.22 43.6 27.2 48.89
Akiyo 53.22 41.9 21.2 60.17
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Figure 3.21 Required bandwidth for different data-reuse approach

Furthermore, we have implemented and-synthesized the CLCI hardware using Cadence’s
RTL Compiler with UMC 0.18um cell library. ‘Gate count of the proposed CLCI architecture
is 44.6% less than Wang’s design which includes 6-tap separate-1D luma filter and 1/8
chroma filter. We only use 4 C-FIR’s, 8 FIR’s and 8 input entries to perform luma and chroma
interpolations.

Total gate counts of the proposed motion compensator are 83.5K. The gate count
contains motion vector generator with direct mode coding, interpolator with
Reuse-Register-File, and weighted prediction module. Considering an interpolator part, a
comparison with other previous designs is shown in Table 3.4. The reuse-register file can be
replaced by SRAM to reduce gate count. The gate count of interpolator core without
reuse-register-file is 12.5k as table 3.4. The gate count of proposed combined luma/chroma

interpolator can be reduced about 38% comparing with related work. In 30fps 1080HD
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(1920x1088) format, proposed design can be operated at 100MHz for a real-time system.

Table 3.4 Comparison of interpolator architecture with other designs.

Ref. [2] Ref. [5] Ref. [6] Proposed
Combined
Architecture Separate 1-D Separate 1-D Separate 1-D LUMA/CHROMA
Separate 1-D
Slice type P slices P slices P slices P, B slices

Horizontal FIR x 9 | Horizontal FIR x 5| Horizontal FIR x 8 | Combined FIR x 4

Component . . . Horizontal/Vertical
(LUMA) Vertical FIR x 4 Vertical FIR x 11 Vertical FIR x 4 FIR x 8
Bilinear x 4 Bilinear Bilinear x 4 Bilinear x 4
Component | /g grier x 2 1/8 filter x 3 NA
(CHROMA)

Interpolator | 20,686 (0.18 um) | 23,872 (0.18 um) | 21,506 (0.18 um) | 12,580 (0.18 um)
Gate Count | (Interpolator core) | (Interpolator core) | (Interpolator core) | (Interpolator core)

3.4 Weighted Prediction

A weighted prediction (WP) is supported in the Main profile of the H.264 standard. The
weighted prediction locates the sequence parameter set for P and B slices. There are two WP
modes: an explicit mode is supported in P and B slices, and an implicit mode only supports B
slices. In the explicit mode, these WP parameters may be coded in the slice header. In implicit
modes, these parameters are derived based on the relative distance of the current picture and
its reference pictures.

We implement a division-free WP module in our motion compensation architecture. We
need one cycle to perform WP operations. The WP architecture is shown in Figure 3.22.
When the WP is enabled, interpolated pixels are loaded into explicit weighted or implicit

prediction. After applying the weighted prediction, pixels are derived by adding residual data.
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Figure 3.22 A weighted prediction block diagram

3.5 Summary

In this chapter, we present bandwidth-efficient motion compensation architecture for
HDTV H.264 decoder and support 1080HD 30fps@level4.0 format. To overcome the
tremendous data access from external frame memories, the proposed data reuse technique for
fractional motion compensation can efficiently reduce the requisite reference data in the high
motion precision for the advanced video standard, H.264/AVC. An Extend-2D column major
approach is presented, which reduces 50%-60% bandwidth with B-slices under external data
BUS. The proposal implements all advanced features including MV generators with direct

modes, combined luma/chroma interpolator, and weighted prediction of H.264/AVC main
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profile. As for sharing design issue for luma and chroma component, proposed CLCI
architecture saves 44 % gate count compared with luma and chroma separate design. Besides,
the CLCI architecture is also suitable for high throughput HDTV video decoder. Altogether,

memory usage and bandwidth are optimized by our proposed design.
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Chapter 4
Bandwidth-Efficient SDRAM Memory
Controller

In genera, video decoder should deal with large amount of data due to a real-time
high-quality decoding demand. Specifically, bi-prediction requires more data size than
single-prediction to store several decoded reference frames. In addition, motion compensation
which supports direct mode coding has to store motion vector of fist list-1frame called as
co-located motion vector to predict motion vector of eurrent macroblock. Therefore, not only
reference frame pixels but also ‘co-located motion vectors need large storage. The off-chip
memory is required to store large data including teference frame pixels and co-located motion
vectors, but the speed of memory is slow. Thus, the decoder system performance strongly
depends on the memory bandwidth between motion compensation module and external
memory. To meet this requirement, high bandwidth and large size memory are its penalties.

In order to improve memory bandwidth, DRAM families such as synchronous DRAM
(SDRAM) is now widely used in high-performance video systems. For example, SDRAM has
two key and special features: burst access mode and multiple bank architecture. The burst
access mode makes it possible to access a number of data by changing only column addresses,
and the multiple bank architecture can hide memory cycles needed for row-activations and
precharge by accessing different banks alternatively. Since the number of additional cycles
needed for row changes is considerable, we have to reduce the number of row changes or hide

these cycles by using the high-performance features of SDRAM. This observation motivated
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us to research an array address-translation technique to minimize the number of overheads
cycles needed for row changes. For system requirement equip high performance, SDRAM is
suitable prior to store large amount of video data in HDTV system. SDRAM has advantage
that is large size, but memory overhead become high. Therefore, data would be transmitted
during limited access time under external BUS. Hence, we can focus on reduction of memory
access latency to obtain less execution cycles. Besides, limited access time and bandwidth is
bottleneck of real-time system as HDTV system. For improving bandwidth and access time in
HDTV system, we propose bandwidth-efficient memory controller in this paper.

In this chapter, we propose SDRAM memory-controller for HDTV H.264 main profile
decoder to increase efficiency of data transmission. Firstly, we briefly introduce the modern

SDRAM architecture and basic operations in section 4.1.

4.1 SDRAM Module Characteristics

In this section, we first introduce the SDRAM module characteristics and its basic

concept.

4.1.1 Basic Concept of SDRAM

| BANK 3
| BANK 2
Control Logic I BANK 1

BANK O

CMD

Row Decoder

Mode
Register

Sense Amplifiers

with Row Buffer
Addr
E{D Reg Column decoder

Figure 4.1 Modern SDRAM architecture
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A simplified architecture of a 4-bank modern SDRAM is shown in Figure 4.1. It is
basically a three-dimensional architecture with dimensions of bank, row, and column. Four
banks share the address and command buses, and each bank has individual row decoder, sense
amplifier, and column decoder, while data and address buses of SDRAM are shared by all
banks. The mode register stores several SDRAM operation modes by user-configured process,
which includes burst length (BL), Column address strobe (CAS) Latency (CL) or burst type
(sequential / interleave). The content of mode register updates according to command issued
from address buses. A complete memory access operation contains three steps including row
activation, column access, and pre-charge. These commands are briefly introduced as follows.

» PRECHARGE COMMAND

The precharge command is used to deactivate the open row in a particular bank or the
open row in all banks. The precharge command requires the use of SDRAM address bus to
indicate which bank shall be precharged. In address bus, input A10 determines whether one or
all banks are to be precharged, and in the case-where ‘only one bank is to be precharged, inputs
BAO and BAL select the required bank::When all banks are to be precharged, inputs BAO and
BA1 are treated as “Don’t Care”. While processing the precharge command, the addressed
bank is not allowed to accept any other commands. Bank(s) will be available after
PRECHARGE command. The command latency is called tRP. Figure 4.2 (a) indicates
SDRAM resource utilization while a precharge command is issued.

» ACTIVE COMMAND

The active command is used to open (or activate) a row in a particular bank for the
subsequent column access. The value on the BAO and BAT1 inputs selects the bank, and the
address provided on inputs A0 -All selects the row. This row remains active (or open) for
accesses until a precharge command is issued to the indicated bank. To issue an active
command, the address bus must be used to select the bank and the row which will be activated.

After accepting the active command, SDRAM needs a latency called tRCD to accomplish the
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command and no other banks are permissible due to the parallel processing capability of each
bank. Figure 4.2(b) indicates SDRAM resource utilization while an active command is issued.

» COLUMN ACCESS COMMAND (READ or WRITE)

The column access command is used to initiate a burst read/write access from/to an
active row. The value on the BAO and BA1 inputs selects the bank, and the address provided
on inputs A0-AS selects the starting column location for read/write command. The value on
inputs A10 determines whether or not auto precharge is used. If auto precharge is not selected,
the row will remain open for subsequent accesses. Once a row of a particular bank has been
activated, the column access command can be issued to read/write data from/to SDRAM.
Figure 4.2 (c) and (d) indicate the SDRAM resource utilization while read and write column
accesses are issued. To issue either a read or write column access command, SDRAM address
bus is required to indicate the bank-‘and the column. of the open row in that bank. For a write
column access, SDRAM data bus_is needed . to transfer write data at the time where the
command is issued until whole burst:transfer is over. On the other hand, SDRAM data bus
occupied several cycles called CAS latency after the read column access is registered for the

same period as the write column access.
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Figure 4.3 Simplified bank state diagram

These number of commands issued depend on the addressed bank states. The simplified
bank state diagram is depicted in Figure 4.3. Precharge command must be issued in the initial

status. If an access is addressed to a particular bank in the IDLE state, a row activation
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command with the particular bank address is sent to open (or active) one row in a particular
bank firstly and the designated row address is issued from the address bus. The operation of
this command is transmitting the row data into the row buffer of the selected bank and row
active operation needs an active latency called tgcp (ACTIVE to READ or WRITE delay) to
accomplish this operation. Then, column access command is employed to access sequential
data or single data according to the defining burst length and burst type in the mode register.
The mode register is used to define the specific mode of operation of the SDRAM. This mode
includes the selection of a burst length, a burst type, CAS latency, operating mode, and a write
burst mode. The mode can be programmed by LOAD MODE REGISTER command in the
initial status and will retain the stored information until it is programmed again or the device
loses power. The read/write data are accessed thorough the same data bus. For read operation,
the valid data-out element from the starting column address will be available following the
CAS latency after the READ command, as shown in Figure 4.4. For write operation, the first
valid data-in element is coincident with-the. WRITE command, as shown in Figure 4.5. Finally,
a precharge command must be issued: before-opening a different row in the same bank,
whereas a precharge and active command need not to be issued if the following access still in
the same row and bank. After precharge command is issued, the selected bank cannot be

accessed during the precharge latency named tgp (PRECHARGE command period.)

TO TI T2 T3 T4 T5 T6 T7 T8 T9 TI10 TII

| | | | |
| | | | | | | | | | |
| | | | | | | | | | |

READ :
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I I I I I I I I I
Address | ROWO )| COLO ); I I I I I I
I I i I i I I I I I I I
Bank I I | | I I I I I I
I I BANKO)! BANKO)! I I I I I I
I I I I I I I I I I
I I I I I I I I
DQ | | | | | | | DATA Y DATA ) DATA { DATA ),
I I I I i i I
| |
T

CasLatency =3
BurstLength = 4

Figure 4.4 Burst read operation with CasLatency=3 and BurstLength=4.
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Figure 4.5 Burst write operation with CasLatency=3 and BurstLength=4.

4.1.2 Access Latency Analysis

Lee et al. discussed different access latencies of different access statuses in [30];
however, detailed classificationZis required for exquisite access command scheduling. The
memory behavior model used7in our -desitgnis/Micron’s MT48LC2M32B2P-5 512Mb
SDRAM [27]. Table 4.1 lists three different allowable maximum operating frequencies
provided in this SDRAM according to the CAS latency stored in mode registers. Obviously,
when setting CAS latency to 3, the SDRAM can provide higher operating frequency.
However, higher operating frequency induces more stall cycles which is demanded for each
read column access. Therefore, the CAS latency should be set carefully for different suitable
applications. For instance, 50 Mhz with CL=1 is enough for Q-CIF format in mobile device
while 166 Mhz with CL=3 is required for large frame size format such as SDTV or HDTV

format.
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Table 4.1 CAS latency

CAS Latency 1 2 3
Allowable operating
frequency (MHZ) 30 100 166

<4+—tRP—p»<«4¢—tRCD—p»«¢—CL—p»<«¢—BL—»

Row miss & Bank miss ( PRE X NOP XACTX NOP )(READ)( NOP X DATA )
Row miss & Bank hit ( PRE X NOP )(ACT)( NOP )(READ)( NOP )( DATA )

Row hit & Bank miss (ACTX NOP XREADX NOP X DATA )

Row hit & Bank hit (READ)( NOP X DATA )

(a)

-4—RP—p<4¢—tRCD—p4¢— BL—— P

Row miss & Bank miss ~ ((PRE)( Nop ((ACT) Nop (@RITE) DATA )
Row miss & Bank hit ( PRE X NOP XACTX NOP )@RJT@ DATA )

Row hit & Bank miss (ACTX NOP XWRIT@ DATA )

Row hit & Bank hit CWRITE) DATA )

()

Figure 4.6 Access latency for CL=2 (a) read access latency, (b) write access latency

Figure 4.6 illustrates read/write access latency under different statuses when CAS
latency equals 2. Bank-hit with row-miss status means that the activated row in selected bank
is not identical to the incoming issued access command and it requires additional latency
(PRECHARGE + ACTIVE + CAS + NOPs) for read access and (PRECHARGE + ACTIVE +
NOPs) latency for write access. Bank-miss with row-miss status means that incoming bank
address is different from bank address for previous command and the selected row for the
incoming bank address is not activated. For this status, required latency and issued command

is the same as that of row-miss status. Bank-miss with row-hit status indicates that the
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incoming row has been activated in the previous command although the incoming bank is not
equal to the previous one. Bank-hit with row-hit status means that incoming address is
identical to the address of previous issued command. For these statuses, the column access
can be directly issued for sequential access and only read access leads to CAS latency. Based
on the above discussion, memory scheduling method can overlap the sequential

column-access commands and hide full or partial latencies to reduce redundant cycles.
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Figure 4.7 (a) READ command with auto precharge, in the precharge period (tRP),

SDRAM cannot issue another command in the same bank (ex: bank 0). (b) READ

command without auto precharge, another command can be issued until the tRP is met.
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SDRAM also supports another precharge method called auto precharge without
requiring an explicit precharge command. A PRECHARGE command of bank/row together
with READ/WRITE command is automatically performed wupon completion of
READ/WRITE burst access. For the full-page burst mode, auto precharge does not apply.
Auto precharge ensures that the precharge is initiated at the earliest valid stage within a burst.
It is convenient for bank/row of the following data access is not the same as current data
access. Precharge command may be not issued by memory controller. As shown in Figure 4.7,
in the precharge period, it cannot issue another command to the same bank until the precharge
time (tRP) is completed. If the following command must active to the same bank, the overlap
scheduling is limited to this situation such that the following command can be issued only
until the completion of tRP period or reorder with the other command. For another
disadvantage induced by auto precharge, READ/WRITE command with auto precharge
indicates that SDRAM always de-active the selected bank at the end of a burst command
implicitly. If the following data access-still_issues the same bank, it must waste time to
re-active the same bank and lead to longer latency at the same time, and command issued is
flexible. Therefore, we select manual precharge (without auto precharge) rather than auto

precharge in our memory access interface design.

4.2  Memory Controller Organization

As the section 4.1, we introduced concept and limitation of SDRAM used. For most
multimedia application with external memory, data access may cause bottleneck of entire
video system. In H.264/AVC’s main profile specification, large data are accessed between
external memory and video core including pixels and motion vector. Pixels are accessed for
motion compensation, and motion vectors are transmitted for direct mode prediction. For

different data types, separate memory is applied by additional approach leading to lower
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memory utilization. In this section, we proposed bandwidth-efficient memory controller
organization to improve bandwidth under external bus efficiently. Our design can use unique
SDRAM to store all required data for supporting multiple reference pictures and data of
different type can be stored in same SDRAM. It is suitable to H.264/AVC main profile video
decoder. A suited data mapping is applied so that data arrangements in SDRAM are tight. In
section 4.2.1, we will show motion vector and frame pixels arrangement in SDRAM. For the
storage of multiple reference frames, we present a novel memory mapping to increase
memory utilization. Section 4.2.3 shows architecture of memory controller design, and will
introduce hardware of each module within proposed memory controller. Finally, a comparison

with previous designs related memory controller is made in section 4.2.4.

4.2.1 Memory Access Scheduling

The target of memory aceess scheduling: is overlapping or reordering consecutive
SDRAM commands (PRECHARGE, ACTIVE, CAS, and READ/WRITE) to improve
bandwidth utilization and reduce access latency. Because the external access of video decoder
is a bandwidth-sensitive channel [30], memory access scheduler must compress and even
reorder SDRAM commands to achieve high bandwidth utilization. Considering the
read-access and write-access respectively, the required frequency of write-access has high
correlated with the ability of residual decoder in H.264 and the property of decoding bitstream,
while the required frequency of read density is as tight as possible. For high bit-rate video
sequence, the decoded bitstream contains more coefficients and higher precision of decoding
token that may induce more requisite decoding cycles. In this situation, the write-access
becomes less bandwidth-sensitive and the density of write access is not necessary very tight.
The poor design of residual decoder, de-blocking filter also affects the bandwidth utilization
of write access. Unlike the limitation of write access described above, read access needs high

density of access scheduling because of its high bandwidth-sensitive channel. Read requests
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are only sent by motion compensation, hence the bandwidth utilization of read access is
influenced by the memory scheduler design, data arrangement in SDRAM and the handshake
command scheme of motion compensation. The characteristics of write/read-access discussed

above are summarized in Table 4.3.

TO TI T2 T3 T4 T5 T6 T7 T8 T9 TI0O TI1 TI2 TI3 TIi4 TI5 TIi6 T17 TI8 TI9

Un-scheduling
5 cycles latency
Scheduling a
DATA X DATA

Figure 4.8 Two un-scheduling and scheduling read memory accesses for bank-miss and

row-hit

Considering read/write access from/to frame methories, the requirement of write-access
is low or mediate density depend. on the capability of residual decoder, whereas motion
compensation requires high density of read-access. Therefore, we only concentrate on read
access and design a high-density scheduler for read-access and it must be also suitable for
write-access. Figure 4.9 shows an example of two unscheduled and scheduled read memory
accesses when occurring row miss at different banks. For the unscheduled read, We choose
(CL=2, BL=4) as an example, and then the unscheduled accesses takes 20 cycles to read eight
burst data, whereas the scheduled accesses only requires 14 cycles and eight burst data can be
sequential read. From the access latency discussion in section 4.1.2, the access command
without auto precharge can be classified into two types, one is long command (PRE + ACT +
CAS) and the other is short command (CAS), painted in Figure 4.5. Moreover, we consider
the latency after access scheduling under BL=1, 2, 4 situations illustrated in Figure 4.10 - 4.12

and summaries the induced latency under each situation in Table 4.2. Obviously, we can find
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that the worst latency is always located in row-miss situation. To reduce the access latency,
the command request ordering and data arrangement should follow the orientation of
minimizing the row-miss occurrence. The characteristics of READ and WRITE access are

summarized as Table 4.2.

Table 4.2 Characteristics of READ/WRITE access

Operation | Using frequency Module for decoder Influence factors
READ High .MO'[IOH compgnsatlon, Bitstream, memory.schedulmg, data
Direct mode coding module arrangement in memory
WRITE Low and median De-blocking filter, Direct | Bitstream, capability of residual decoder
(only MB level) mode coding module (De-block filter only for H.264)

4.2.2 Memory Arrangement

From the above discussion, the data arrangement in SDRAM should tend to the
minimization of row miss at the:same bank because row miss status has to pay the longest
latency. Based on this concept, Tow-major arrangement is adopted in our design. There are
two kinds of data types, two arrangements are provided for co-located motion vector and
pixels. Because YUV format is 4:2:0, luma and chroma component is 16 x 16 and 8 x 8§ size,
respectively. Therefore, the memory size of one 16 x 16 block require 384 bytes((16+8)*16).
Figure 4.9 (a) illustrates that the luma MB partition is dispersed to four banks, and Figure 4.9
(b) shows that memory access is a column major approach for each 4 x 4 block. The data
arrangement of Chroma block is shown as Figure 4.10. Because chroma block is one quarter
with luma block, memory size of one 4 x 4 luma block can contain four 2 x 2 chroma block.
Similar to luma block, the chroma block is partitioned into four banks. As shown in Figure
4.10, the Cb block and Cr block are placed in four banks simultaneously. Besides, co-located
motion vector where direct mode coding requires is stored into SDRAM. The motion vector
arrangement is considered for reducing miss rate of access. The co-located motion vector of

one MB is illustrated in Figure 4.11. One MB has to store four co-located motion vectors, that
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is, four motion vectors in one 8x8 MB can be predicted by one co-located motion vector. Each
co-located motion vector contains 20 bits, one co-located motion vector occupies one column
in SDRAM. The co-located motion vector can be stored in different banks according to

corresponding positions.
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Figure 4.9 Luma block (a) one 16 x16 block arrangement (b) one 4 x 4 block-0
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Figure 4.11 (a) Co-located motion vector allocation in frame (b) corresponding bank for
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Figure 4.12 The pixels arrangement of one frame are stored of SDRAM. The

arrangement of other banks is the same as bank0.
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Figure 4.13 The motion vector arrangement of one frame are stored of SDRAM. The
arrangement of other banks:is the same as bankO.

Figure 4.12 and Figure 4:13 show" the ‘pixels arrangement and the motion vector
arrangement respectively in SDRAM for one frame, and the first MB is allocated in SDRAM.
The first partition of memory is fixed to store co-located motion vector. Other partitions are
used to store pixels. Each Frame can be partitioned into several MB-based row. For adopted
SDRAM, each row contains 16 luma MBs or 32 chroma MBs. The YO0, Y1, Y4, Y5 and CO of
each Macroblock have to be stored in the corresponding location. Similarly, remaining pixels
of macroblock are mapped in other corresponding banks. In Figure 4.12, the luma and chroma
blocks are allocated sequentially into SDRAM. Due to decoding orders, luma block has to be
stored in SDRAM firstly. When all luma blocks have been allocated in SDRAM, chroma
block including Cb and Cr is stored in order. When frame size is small, each row (page) of
SDRAM can store multiple MB-based rows of frame. Otherwise, for large frame size like
SDTV or HDTYV, each MB-based row may occupy several rows (pages) of SDRAM. The

advantage of this arrangement is that address generator needs not be modified according to
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different frame sizes. For another reason, the probability of row-miss occurrence is
considerably low. Obviously, it only occurs when data are located in row (page) boundary. As
for physical analysis, it will be shown later. Row x indicates to last row of luma block, and
chroma blocks are allocated in Row x+1. Row x+y+1 means last row of one frame is stored in
SDRAM. The definition of row x and y are variable depending on macroblock number of
different picture formats. The memory mapping of multiple reference pictures will be
introduced in the next section. The space of each frame which is stored into memory may be
dynamically allocated by our memory controller. From above discussion, we can observe that
some memory spaces are not used due to different macroblock numbers. The waste of space is
not to avoid because memory arrangement must keep regular. Fortunately, the proportion of

un-used space in SDRAM is less so that utilization of space is efficient.

4.2.3 Multiple Reference Prediction

H.264/AVC can support multiple reference pictures to current decoding macroblock
which can be predicted from bi-ditectional and different frames. When multiple reference
pictures are activated, decoder may store multiple frames into frame memory. In Wang’s
design [10], one SDRAM only stores one frame leading to poor utilization of SDRAM. For
increasing the utilization of memory, we may store all frames into unique SDRAM and use
shared data bus to access data. The data amount of different picture formats is shown in
Figure 4.14. When decoding 1080HD picture, one frame produces 25.2 Mbits for pixels and
0.6 Mbits for motion vectors. Therefore, for 512MB SDRAM, maximum frame numbers
which are stored into memory are 20. In other words, multiple reference pictures support 16
reference pictures for list0 and list] respectively in 512MB SDRAM. In small format such as
CIF format, 1.2 Mbits is produced and multiple reference pictures can support maximum 16
reference frames for bi-directional pictures. Table 4.3 lists required memory size and memory

space utilization for different picture formats. We can observe that memory space utilization
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can be improved in higher resolution format. In other words, limited memory space can store
more pictures in SDRAM for multiple reference picture predictions. For instance, 512 MB

SDRAM can contain maximum 20 1080HD pictures.

30
25
20
15

10

Data amount (Mbits)

525SD 720p HD  1080HD

Figure 4.14 Data amount of one"decodi'ng frame for different picture format.

Table 4.3 Required memory size for different picture format supporting multiple

reference pictures set 16.

Sequence format | Required memory size (Mbits) | Memory space utilization (%)
QCIF 4.87 77.34
CIF 19.46 92.84
VGA 58.98 98.68
525SD 66.35 98.98
720pHD 176.95 99.11
1080HD 401.08 99.61
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4.2.4 Architecture of bandwidth-efficient Memory Controller

In this section, we show the block diagram of bandwidth-efficient memory controller
architecture for H.264/AVC in Figure 4.15. The dotted area between video decoder and
SDRAM is our proposed memory controller. The bandwidth-efficient memory controller
consists of the data buffer, command queue, bank controller, command arbiter, address
translator, and memory interface scheduler (MIS). Besides, a flexible address generator is
considered in our design, which prior to different modules of the video decoder. In
H.264/AVC, only motion compensation, de-blocking filter and direct coding units require
access data from/to external memory through memory controller. The direct coding unit reads
co-located motion vector to perform direct coding prediction. The motion compensation reads
pixels from SDRAM to interpolating current pixels. The de-blocking filter writes complete

pixels into SDRAM. Major units will be introduced sequentially as follows.

BUS
_____ - — - BV Eehntaale M
| Address Command Field List-1 l
L, Queue queue Index
I I Dynamic Controller I
| Multiple- | logical to 4 g - : |
. channel o physical Field List-0
Motlon. | address | P address Index |
Comper}satlon - generator | translator Bank-0 Controller I
Engine | Controller |
™ Master Bank External
| | Bank-1 Controller I SDRAM for
Controller Memory <]‘:{> dual-type
I I Read-data <:| |::> Interface
| | buffer Scheduler
Bank-2 (MIS)
| | Controller |
De-blocking filter |_] Wrote-data Scalable I
units | buffer Bank-3 Timing Setup ﬁ |
| Controller Unit |
o i ‘ ********************* Command
irect .cto ing | Arbiter (BA) I
units .
[ T Sdram controller architecture |

Figure 4.15 Architecture of bandwidth-efficient memory controller for H.264/AVC
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» Multiple-Channel Address Generator and scheduler

For H.264/AVC decoder in which more processing units (PUs) need to access SDRAM,
there are three main PUs to require memory read/write accesses. Generally, single channel
memory controller design is employed in most applications, the pressure of area and cost
leads to designing a single, shared off-chip SDRAM. The connection approach to sharing a
SDRAM has to carefully decide because it is highly related to SDRAM efficiency. Traditional
memory controllers are often connected by shared-buses. Although area and cost may be
economic, the shared-bus makes the SDRAM hard to provide sufficient SDRAM performance
for the increasingly complicated applications. Another issue is how to perform different
SDRAM requirements for latency and bandwidth of PUs in the decoder system. In addition to
offering better performance for H.264/AVC decoder compared to single-channel SDRAM
controller, multiple-channel SDRAM controllers also have the capability to schedule memory

accesses from different channels-to bit system requirement for SDRAM performance.

Channel-0 Multi-

. channel | Physical address
Channel 1 address channel
> generator | Read request

and
Channel 2 | scheduler | Write request
Sy

?

SDRAM request \ Channel
arbiter

Channel 0: Direct coding channel (read/write)

Channel 1: Interpolation channel (read)

Channel 2: De-blocking channel (write)

Figure 4.16 Multi-channel address generator
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Since the memory controller can be applied to different modules in H.264/AVC decoder,
we proposed multiple channels address generator and scheduler (MCAGS) to connect
different PUs individually. The MCAGS can be used for several modules required. In
H.264/AVC decoder, the MCAGS enables 3 channels for motion compensation, de-blocking
filter, and direct mode coding module, which is shown in Figure 4.16. The MCAGS must to
be provided to produce logical address prior to the memory controller. Due to different data
types in motion compensation and direct mode coding, the MCAGS generates two kinds of
logical addresses including pixels and motion vector addresses. The individual address is
calculated according to the output ordering of the module. The output of address generator is
sent into dynamic logical to physical address translator in memory controller after scheduling.

» Dynamic Logical to Physical Address Translator

For dynamic logical to physical address translator, the goal is that logical address is
transferred to physical address (Row, Bank, Column)-in SDRAM. The motion vector and the
frame pixels are placed in different allocations,-and the motion vector always allocated in the
first partition. According to physical addresses, memory controller may read/write data in
corresponding location.

» Command and address Queue

Due to long latency of SDRAM accesses, the module which issues a request may waste
many cycles to wait data access. Therefore, a design avoids that decoder takes many cycles
for waiting. Considering this reason, we design command queue to store incoming command
including READ and WRITE commands from the decoder. The command queue can contain
7 READ or WRITE commands and sequential issue command into memory controller
depending on incoming priorities. The command queue is a first-in-first-out structure
according incoming priorities. The advantage of command queues is that the module needs
one cycle to issue commands. Then, the module can do other processes but don’t waste

additional cycles to wait data.
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Figure 4.17 Command and address queue and access status detection

Besides, the address queue is used to hold incoming addresses including (Bank, Row,
Column), while a command queue is used to hold incoming commands. The decoder sends
request and address to memory access controller when the status of read address queue is not
full. The “full” signals reflect the status of this queue. The proposed address queue must also
compare the incoming and the previous address command to check row-hit and bank-hit

situations.
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»> Bank Controller
To fully utilize the SDRAM bandwidth and apply memory scheduling, it is necessary
that the memory interface can process accesses addressed to different banks in a parallel way.
This work is performed by the bank controllers and the master bank controller together. The

bank controller is illustrated as Figure 4.18.

Access
Command Bank-0 command
below bankO: Controller
Access
Command Bank-1 command
I Issued
below bank1 é} Controller Master command
Access Bank into
Command l Bank-2 command | Controller scheduler
2 ——p
below bank?2 Controller
Access
Command l Bank-3 cominand
e P
below bank3 f Controller
Scalable
Timing Setup
Unit

Figure 4.18 The structure of bank controllers, master bank controller and timing unit.

Each internal bank of the SDRAM is allocated an individual bank controller to process
accesses that are addressed to the bank. The master bank controller assigns the incoming
address commands to suitable bank controller according to the access status. Scalable timing
unit records all kinds of command latency such as burst length, tRP (precharge period), tRCD
(ACTIVE to READ or WRITE), and so on. The parameter of scalable timing unit is defined
by user in the initial setup. After accepting an access from the input port, the bank controllers

generate sequential access commands according to the burst length and latency defined in a
80



scalable timing unit. These access commands are collected by master bank controller, which
can issue the proper command to SDRAM. Read data buffer is used to hold sequential
received read data for motion compensation. Write data buffer is used to hold the length of
burst data. The arbiter allocates write / read data and command flow to / from external
SDRAM memories according to the access operation.

Unlike traditional SDRAM access controller design containing various “WAIT” states,
Lee’s [30] proposed a configurable shared-state FSM Design. This design merges all
numerous “WAIT” state into single NOP stage. After applying NOP_count and NOP_code
status registers, the FSM becomes flexible to parameterize the command latency without
redesign FSM. We design our access FSM based on this concept. The interface connection
between memory scheduler and bank controller is depicted in Figure 4.17.

Each bank requires individual aceess FSM to control command process, and to wait until
the previous access command returns to IDLE state. As for bank-miss (at the same row or not)
situations, memory interface scheduler-collects_the access commands for the corresponding
bank controllers and then sends to arbiter at the suitable time. Besides the access FSM, each
bank controller needs a row address register to record the activated row. By comparing
incoming commands with row address registers for each bank controller, the bank-miss with
row-hit or bank-miss with row-miss status can be detected.

» Memory Interface Access Scheduler

The memory interface access scheduler allocates and overlaps successive commands
according to access status produced by status detection as Figure 4.17 shows. The memory
interface access scheduler can perform scheduling with READ and WRITE operation. In brief,
double access FSMs for individual bank controller can handle access conflict at the same
bank, while master bank controller is responsible for access overlapping between different
banks. After scheduling SDRAM access commands, the bus utilization can be raised

efficiently; meanwhile the throughput of the entire video decoder can be improved. The
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arbiter allocates write / read data and command flow to / from external SDRAM memories
according to the access operation. Due to multiple reference picture supported, field list index

controller is required to address frame start point.

4.3 Simulation Results

Considering system level analysis on decoder, memory controller, and external memory
depicted in Figure 4.19, because decoder and memory controller are both in operation and
data transmission only during the period of reading reference data, we only have to analyze

the data transfer in this period.

Memory External
Decoder <———> Interface <:> Memory

<«—Data Usage »€«—Bus Utilization—»
<—Data Utilization = Bus Utilization x Data Usage—»

Figure 4.19 System level analysis relation

Before going into detail of the following analysis, we define the following equations to

measure the performance of data transfer on the bus.

# of bus cycles required by Memory interface N # of 4x4 sub block o # of frame

T _ 4x4 sub block frame sec (4- 1)
Bus Utilization = # of bus cycles available " # of 4x4 sub block " # of frame
4x4 sub block frame sec
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# of data required by decoder y # of 4x4 sub block y # of frame

_ 4x4 sub block frame sec
Data Usage = # of data available from Memory interface “ # of 4x4 sub block 9 # of frame
4x4 sub block frame sec (4.2)
Data Utilization = Bus Utilizationx Data Usage (4.3)

Based on the assumption of the data bus is only provided for unique frame and mv
memory, higher bus utilization induces better throughput for our video decoder. The data
usage is correlated to the burst length and required window size between decoder and memory
controller. Hence, data usage can be treated as the proportion of required data for decoder
over the available data from SDRAM controller. In other words, the data usage is related to
burst length in memory setup. To explain data usage clearly, considering 9 x 9 interpolation
window of a 4 x 4 block in H.264 fractional motion compensation, an example of the fetching
window for four different burst lengths is illustrated as Figure 4.20. Fetching window is the
total pixels that are required to be read from SDRAM controller. Since the data bus width is
limited as 4-pixel (32 bits), the height.of fetching window must be 12-pixel that is a multiple
of 4-pixel when burst length is 4. Similarly, the width of other fetching window must be the
multiple number of the burst length. Accordingly, among these burst length modes, the data
usage is the poorest when the selected burst length is 4. From equation (4.3), data utilization
is the multiplication of bus utilization and data usage. Therefore, the data utilization can be
considered as the required data proportion in decoder over the allowable data transmission of
the external bus. Higher data utilization means that we can get better throughput and less

latency for the entire video decoder performance.
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Figure 4.20 Fetching windows of 4x4 block between different burst length
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Figure 4.21 Unscheduled Bus utilization, Data usage and Data utilization for different

burst length in memory
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Figure 4.24 Average access cycles per MB between different burst length for access

under BUS.

Figure 4.21 and 4.22 shows the unscheduled and-scheduled system level analysis of the
criteria (4.1) ~ (4.3). Obviously; .the “longer burst length provides higher bus utilization
instinctively because the short access cycles are required for the more amount of fetching data.
After scheduling, since longer read burst cycles can provides long overlapping period for the
successive access commands, for instance, burst length = 4 has the highest bus utilization.
Although burst length = 4 reflects the highest bus utilization, the lowest data usage leads that
the data utilization become the lowest among these burst modes. The data usage is influenced
extremely due to different amount of fetching windows among different burst length modes.
Considering better data utilization for decoder, Burst length = 1 mode is the better choices on
the high-throughput video decoding system. The Figure 4.23 shows the data utilization
between un-scheduling and scheduling. Obviously, the bus utilization can be improved about
90% using memory scheduling. Therefore, the data utilization can be improved efficiently.

For H.264/AVC HDTYV decoder, the average execution cycles per P MB and B MB
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within 1080HD sequence at bit rate is 614Kbit/s environment for comparing different
data-reuse approach is depicted in Figure 4.24. After inducing data reuse technique, E2CMA
method, mentioned in Chapter 3, the execution cycles can reaches 100 ~ 150 cycles
approximately. After memory scheduling, the execution cycles with E2CMA approach can be
reduced about 150 ~ 200 cycles again. Comparing ref [9], the execution cycles per P MB and
B_MB can tremendously reduce up to 55 %. Based on our decoding system, the raise of bus
utilization and reduction of access latency reduce the required execution cycles per P MB and
B_MB. Accordingly, it can improve throughput of the entire video decoder because the
computation time of motion compensation dominates the video decoder especially in
H.264/AVC decoder. The bandwidth of memory access among different bit rate is depicted as
Figure 4.25. The size of test sequence is 1080HD format, and the burst length within SDRAM
is defined as 4. The bandwidth which is proposed by our proposed data reuse approach is
better than other approach, especially at high-bit-rate. Furthermore, E2CMA with memory
scheduling technique is applied-so that'bandwidth can be further improved. Therefore, the
bandwidth of memory access can+be. efficiently improved by out proposed data reuse
approach. Besides, the throughput of entire video decoder working at 100MHz is shown as
Figure 4.26. For supporting high resolution such as 1080HD, the system specification with
level 4.0 has to be supported by video decoder. The throughput of decoder which applies
E2CMA and memory scheduling is double than the one apply previous data-reuse approach.
The decoder which applies Column major or Ref. [9] may be not arrive specification at level
4.0 in H.264/AVC standard, especially in the high bit-rate environment. That is, sequences
with 1080HD format can be not decoded in a real-time system. For supporting higher
resolution sequence such as 1080HD, the E2CMA and memory scheduling technique is

suitable for HDTV decoder in real-time system.

87



450
400
350
300
250
200
150
100

50

Bandwidth (MBytes/s)

8.5 9.324 11.07 12.981 15.373 18.927 22.929
Bit Rate (Mbits/s)

Throughput
(MB/s)
600000

550000
500000
450000
400000
350000
300000
250000
200000
150000
100000

y —+— Column Major = = -Level 4.0
.| —=—Ref.[9] —— E2CMA + scheduling

0 10 20 30 40 50 60 70 80 90 100
Bit Rate (Mbits/s)

Figure 4.26 The throughput of motion compensation for different data-reuse approach

when operating frequency is 100Mhz.
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4.4  Summary

In the applications requiring high performance SDRAM subsystem, any bandwidth loss
may result in a system failure. For H.264/AVC decoder with main profile, the effect is the
critical issue. Hence, the memory controller must be carefully designed to prevent any
possible bandwidth loss. For above reason, we proposed a bandwidth-efficient memory
controller that build-in device on a video decoder, and can be supported in different modules
of H.264/AVC decoder. The proposed memory controller can deals with dual data type:
motion vector and pixels. Allowing users to configure access mode for each SDRAM bank
also gives more flexibility. We not only use the memory interface scheduler to do scheduling
but also adopt the efficiently data arrangement to reduce the miss rate, and to increase
utilization of memory space. From a system<level, analysis, we can observe that the bus
utilization and access latency can be improved to 90%. The bandwidth of memory access
between decoder and external “memory -ecan-be: improved as 50% approximately. The
throughput of decoder can conform to systemispecification at level 4.0, especially working at

high bit-rate.
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Chapter 5
Chip Implementation

5.1 Chip Specification

Table 5.1 H.264/AVC main profile decoder specification for motion compensation

H.264/AVC Main Profile @ Level 4.0
Support Slice Type I,P,and B
Variable Block Size 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4
MVp Generation Direct m0d§ coding, Me.dian and
Directional prediction
Direct Mode Coding Temporal and spatial mode
Frame Prediction Single and bi-directional reference frame
Interpolating Search Range [-128, +127.75]
Interpolation accuracy Quarter for luma, 1/8 for chroma
Picture AFF Frame coding
Weighted Prediction Explicit and implicit mode
Multiple Reference Frame 16 frames
Entropy Coding CAVLC
Decoding Capability 1920 x 1088 HDTV, 30fps

Table 5.1 lists the specification of our bandwidth-efficient motion compensation
architecture for H.264 HDTV decoder. After synthesis on Cadence RTL complier using UMC
0.13 um COMS technology, total gate count is 557730 (including embedded SRAM) and the

gate count of each component is listed for video decoder in table 5.2. The Die size of H.264
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decoder is 3100 mm x 3100mm. Table 5.3 lists on/off chip memory used on each module in
our design. The chip photo of H.264 decoder is illustrated as Figure 5.1. The average power
consumption of system is 50mW approximately. Furthermore, about synthesis results of our
proposed motion compensation and memory controller, the power consumption of motion
compensation is 9.53mW and the power consumption of memory controller is 3.9mW at
100MHz, the gate count is 83515 and 8584 for motion compensation and memory controller

respectively.

Table 5.2 Synthesis results of H.264/AVC’s main profile decoder including SRAM

Component Gate count (including SRAM)
De-blocking Filter 120957
Motion Compensation 83515
Syntax Parser &
System Control 7625
Residual Adder &
VL-FIFO 27562
Memory Access Controller 8584
CABAC 163573
Intra Prediction 38864
Content Memory 24263
4 x 4 Inverse Quantization 10958
Integer / Hardmard 15346
Transfrom
IDCT 37483
CAVLC 7119
Total 557730
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Table 5.3 On/Off-Chip memory size for different module in H.264 main profile decoder

Motion Compensation 120x 24 Single-Port x8

2048 x 32 Single-Port x1

De-blocking Filter 1024 x 32 Single-Port x2

128x 11 Single-Port x1

Intra Prediction 1024 x 32 Single-Port x1

On-Chip Syntax Parser 128x 16 S%ngle-Port x1
Content Buffer 64 x 32 Single-Port x2

32x32 Single-Port x2

Residual unit 1024 x 5 Single-Port x1

736 x7 Dual-Port x1

CABAC 128x12 S%ngle-Port x2

128x14 Single-Port x1
128x16 Single-Port x10

Total 28884 Bytes

Off-Chip External Memory 512K x 32 x 4 banks x1

Figure 5.1 CHIP photo for H.264/AVC main profile decoder
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Chapter 6
Conclusion

In this thesis, we present a bandwidth-efficient motion compensation memory controller
organization for H.264 HDTV decoder and support 1080HD 30fps@L4 high-quality format.
The proposed motion compensation engine realizes all advanced features including MV
generators with direct modes, combined luma/chroma interpolator, and weighted prediction of
H.264/AVC main profile. Concerning'the désign of interpolator, 4-parallel separate 1-D
architecture gives the most spage on high throughput video decoder compared with other
architectures proposed. An Extend-2D column major approach is presented, and the proposed
data reuse technique for fraction “motion eOmpensation introduces content buffer,
content-swap operation and register-file shifting attached on our interpolator design. This
design improves 50%-60% bandwidth with B-slices under external data BUS. Additionally, a
combined luma/chroma interpolator is proposed in order to save area, which achieves
approximately 44% of cost reduction. Altogether, memory usage and bandwidth are optimized
by our proposed design.

Besides, the decoder system bottleneck resulted from the performance limitation of the
off-chip SDRAM subsystem leads system designers to put more efforts on SDRAM efficiency.
In conventional SDRAM controller designs, though different requirements for SDRAM
service of the heterogeneous system components are often considered, high bandwidth
utilization can be achieved for special applications such as high definition TV. For this reason,

the proposed memory controller can reduce bandwidth over external BUS using memory
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scheduling and improve data access hit rate using data arrangement. For reducing bus
utilization, the memory controller architecture is proposed and related approaches are
employed as well. This design target of interpolator and frame memory access controller is to
reduce external memory access and improve throughput of the entire video decoder. The
SDRAM memory access controller appended to video decoder is presented to overcome the
tremendous transfer of pixel data to/from external frame memories. To achieve efficient
memory access scheduling, we discuss not only memory scheduling but also data
arrangement within SDRAM. The proposed data arrangement in our scheduling scheme can
minimize the miss ratio (at the same bank) that contributes the maximum latency among all
scheduling cases. We create system level hardware-like C++ model and use data utilization to
analyze the system performance. Compared to unscheduled situation, the experimental result
shows that the access latency can be reduced by 50 % ~ 90 % and bandwidth utilization can
be improved up to 90%. In the meanwhile, .the throughput of the overall video decoder
improves about 50 % ~ 60 % after combining extended RSO method and memory scheduling.
Besides, the gate count of motion compensation and memory controller is 83515 and 8584
respectively in synthesis results. The average power consumption of motion compensation

and memory controller is 9.45mW and 3.9mW approximately at 100MHz.
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