

國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

適用於 H.264 HDTV 解碼器之有效率動作補償記憶體架構

A Bandwidth-Efficient Motion Compensation Memory

Organization for H.264 HDTV Decoder

學生 ： 侯 康 正

指導教授 ： 李 鎮 宜 教授

中華民國 九十五 年 七 月

適用於 H.264 HDTV 解碼器之有效率動作補償記憶體架構

A Bandwidth-Efficient Motion Compensation Memory

Organization for H.264 HDTV Decoder

研 究 生：侯康正 Student：Kang-Cheng Hou

指導教授：李鎮宜 Advisor：Chen-Yi Lee

國 立 交 通 大 學
電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Electronics Engineering

July 2006

Hsinchu, Taiwan, Republic of China

中華民國 九十五 年 七 月

適用於 H.264 HDTV 視訊標準之動作補償記憶體架構

學生：侯康正 指導教授：李鎮宜 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘要

在視訊解碼的領域中，H.264/AVC 是由 ITU-T/ISO 所提出新的視訊標準。由於

H.264/AVC 高壓縮率以及視訊品質的提昇，使得 H.264/AVC 是目前最受歡迎的標準。由

於數位電視的風行，而主要著重於視訊資料品質的 H.264 Main Profile 規格也漸漸被重

視。因此對於高畫面的解析度上高速解碼及畫面品質的提昇是最重要的挑戰。而視訊解

碼標準中，動作補償（Motion Compensation）架構一向是最重要的部份也是整個系統的

核心所在。在 Main Profile 規格裡面為了加強視訊品質而加入新的功能，例如：雙向預

測、加權預測、直接預測編碼。在本論文中，針對支援 Main Profile 規格設計動態補償

架構以符合高速的規格以及高品質的解析度。對於 H.264 解碼器中我們提出了有效的動

作補償模組來提昇速度。此外，對於動作補償中小數點內插器的架構，我們提出了 2D

擴充行列式方法（Extended-2D Column Major Approach）以及新的架構來有效率的降低

解碼器所需要的頻寬以及降低整個小數點內插器的複雜度。新的架構也合併了兩種

block 格式(Luma 以及 Chroma) 的小數點內插器，使得這兩種格式都可以使用相同的

架構。我們所提出的小數點內插器架構比起其他的架構可以有效降低複雜度 20%，而且

所需要的頻寬可以降低約 50%~60%來提昇動作補償的速度。

此外，動作補償系統需要從外部記憶體 SDRAM 存取大量資料，因此對於外部記憶

體的存取是影響整個解碼器系統的關鍵。增加外部 BUS 上的頻寬將會提昇動作補償的

效能以及支援更大畫面的解析度。一般的記憶體控制器並沒有對於多媒體方面的各個模

組作設計。在本篇論文中將會對於存取外部記憶體提出適用於 HDTV H.264 解碼器有效

率的記憶體控制器。將可以支援解碼器中的模組對於外部存取的需求，例如：動態補償

及去方塊效應濾波器(De-blocking filter)。實現彈性、高速的動態補償系統架構設計。

另一方面，我們所提出的記憶體控制器可以支援 H.264 多重參考圖片的技術，並且可以

有效率的利用單一記憶體即可存取所需要的參考圖片資料。我們所提出的記憶體架構可

以提昇 BUS 利用率(Bus Utilization) 至 90%以上。透過我們所提出的動作補償架構以及

記憶體架構，整個系統對於記憶體讀取的頻寬將會改善 40% ~ 50％。最後，我們解碼器

系統 Throughput 在高位元率的壓縮比下可以也可以符合標準所訂定的 HDTV 規格。

A Bandwidth-Efficient Motion Compensation Memory

Organization for H.264 HDTV Decoder

Student : Kang-Cheng Hou Advisor : Dr. Chen-Yi Lee

Department of Electronics Engineering

Institute of Electronics
National Chiao Tung University

ABSTRACT

H.264/AVC is the new video coding standard of ITU-T Video Coding Experts Group

(VCEG) and the ISO/IEC Moving Picture Experts Group (MEPG). H.264 is most popular

video standard due to high compress rate and better quality. In particular, the baseline profile

of H.264/AVC has been accomplished progressively. In recently year, digital TV is widely

adopted so that H.264’s Main Profile focus on quality of video will be attended gradually.

Therefore, the improvement of resolution and quality for large frame will become important

issue. Motion compensation always is important module and kernel of system in video

standard. For enhancing quality of video, H.264’s main profile adopts new features such as

Bi-prediction, weighted prediction and direct mode coding. In this thesis, a

bandwidth-efficient motion compensation system is proposed for high definition resolution

supported by main profile in H.264/AVC. Presently, we provide a novel structure of motion

compensation system in main profile to improve system throughput. Furthermore, we propose

Combined Luma/Chroma interpolator architecture in motion compensation and a novel

data-reuse technique: Ectended-2D Column Major Approach. Both Luma and Chroma MB

can be interpolated by combined Luma/Chroma interpolator. A combined Luma/Chroma

interpolator is proposed in order to save area, which achieves approximately 44% cost

reduction. Additionally, an Extend-2D column major approach is presented, which improves

50% ~ 60% required bandwidth within decoder.

The video decoder should deal with large amount of data from external memory due to a

real-time high-quality decoding demand. Therefore, both limited access time and bandwidth

of memory access on BUS is bottleneck of entire video decoder. However, general memory

controller may be not design for multimedia applications. In this thesis, the

bandwidth-efficient memory controller architecture is proposed for H.264 decoder to increase

limited bandwidth over external bus. The memory controller can support all module of H.264

decoder such as motion compensation and de-blocking filter, etc. Besides, the multiple

reference pictures technique can be supported by our proposed memory controller, and can

employ unique memory to store all required data for video decoder. About simulation results,

the bus utilization can be improved up to 90% for our proposed memory controller. The

bandwidth of memory access may be improved to 50% ~ 60% for entire video decoder

adopting our proposed bandwidth-efficient motion compensation memory organization.

Finally, the system throughput that is proposed by our proposed architecture can meet with

specification with HDTV standard at high bit-rate.

Acknowledgements

I would like to express my deepest gratitude to my advisor Dr. Chen-Yi Lee for his

sophomore enthusiastic guidance and encouragement to overcome many difficulties

throughout the research, and wholeheartedly give him and his family my best wishes.

Moreover, I would like to appreciate NSC for their financial support, my senior Si2

multimedia group mates for their discussions and comments during my research, especially

for Yi-Hong Huang, and Jiun-Yan Yang. In addition, I would like to thank all members of Si2

group of NCTU for plenty of fruitful assistance and all engineers of CIC for their CAD

supporting.

Finally, I give the greatest respect and love to my family and all my friends for their

support and encouragement, and I want to express my highest appreciation. Sincerely, I hope

them happy and happy forever.

 I

Contents

Chapter 1 Introduction…………………………………...1

1.1 Motivation.. 1

1.2 Thesis Organization ... 2

Chapter 2 Motion Compensation Algorithm of

H.264/AVC’s Main Profile................................. 4

2.1 Profiling ... 4

2.2 Motion Compensation Process Flow 5

2.3 Inter Prediction Algorithm for H.264/AVC’s Main Profile

... 7

2.3.1 Bi-directional Prediction ... 8

2.3.2 Multiple Reference Frames.. 10

2.4 Motion Vector Prediction ... 12

2.4.1 Traditional MV Prediction... 12

2.4.2 Direct Mode Coding .. 14

2.5 Fractional Interpolation.. 15

2.6 Weighted Prediction ... 17

 II

2.6.1 Explicit Mode... 18

2.6.2 Implicit Mode... 20

2.7 Analysis.. 22

2.8 Comparison for MC of Previous Standards 26

2.9 Summary .. 27

Chapter 3 A Bandwidth-efficient Motion Compensation

Architecture Design ... 29

3.1 Motion Compensation Engine for H.264/AVC’s Main

Profile... 30

3.2 Motion Vector Predictor Design..................................... 32

3.2.1 MVp Prediction Module... 33

3.2.2 Direct Mode Coding Design.. 36

3.3 Bandwidth-Efficient Factional Interpolator Design....... 38

3.3.1 Data Reuse Technique ... 39

3.3.2 Combined Luma/Chroma Interpolation Architecture.............. 44

3.3.3 Simulation Results ... 53

3.4 Weighted Prediction ... 55

3.5 Summary .. 56

 III

Chapter 4 Bandwidth-Efficient SDRAM Memory

Controller.. 58

4.1 SDRAM Module Characteristics 59

4.1.1 Basic Concept of SDRAM.. 59

4.1.2 Access Latency Analysis .. 64

4.2 Memory Controller Organization................................... 67

4.2.1 Memory Access Scheduling ... 68

4.2.2 Memory Arrangement .. 70

4.2.3 Multiple Reference Prediction ... 74

4.2.4 Architecture of bandwidth-efficient Memory Controller 76

4.3 Simulation Results ... 82

4.4 Summary .. 89

Chapter 5 Chip Implementation... 90

5.1 Chip Specification.. 90

Chapter 6 Conclusion .. 93

Bibliography ... 95

 IV

List of Figures

Figure 2.1 H.264 software (JM 9.2) profiling on ARM 7 processor5

Figure 2.2 The general score of motion compensation for H.264/AVC’s main profile..........5

Figure 2.3 General structure of H.264 encoder. ...6

Figure 2.4 General structure of H.264 decoder ..7

Figure 2.5 Macroblock partitions and sub-macroblock partitions..8

Figure 2.6 Example using Bi-prediction: (a) previous/future (b) previous (c) future9

Figure 2.7 The current block is predicted by MVL0 and MVL1 motion vector using
Bi-prediction ...10

Figure 2.8 Bi-prediction with multiple reference pictures ... 11

Figure 2.9 (a) directional prediction for 8 x 16 block size, (b) directional prediction for 16 x
8 block size, (c) median prediction ...13

Figure 2.10 Direct mode prediction for B slices ..14

Figure 2.11 (a) luma half sample with 6-tap FIR, (b) luma horizontal/vertical quarter
sample with bilinear filter, (c) luma diagonal quarter sample with bilinear filter,
(d) chroma sample with bilinear filter. Upper-case letters indicate the full
samples and lower-case letter indicates the interpolated fractional samples17

Figure 2.12 Bit rate value between baseline and main profile ...23

Figure 2.13 PSNR between Baseline and Main profile..24

Figure 2.14 The proportion of integer/fraction motion vector for luma component in
H.264/AVC main profile ...25

Figure 2.15 The proportion of integer/fraction motion vector for chroma component in
H.264/AVC main profile ...25

Figure 3.1 The block diagram of H.264/AVC main profile decoder system........................30

 V

Figure 3.2 Motion compensation architecture for HDTV H.264/AVC main profile decoder
...31

Figure 3.3 MV in shaded and oblique line region must be stored in row-FIFO.32

Figure 3.4 Motion vector generator..33

Figure 3.5 Neighboring motion vectors required for decoding all motion vectors in current
macroblock..34

Figure 3.6 (a) block size position index, (b) directional prediction table (16x8, 8x16), (c)
median prediction table (16x16, 8x8), (d) median prediction table (4x4)35

Figure 3.7 Pre-scalefactor generator design ..37

Figure 3.8 (a) Division free replacement (b) Multiplication-free replacement37

Figure 3.9 (a) 4x4-block and 9x9 interpolation search windows for luma component
interpolation (b) overlap region between neighboring blocks38

Figure 3.10 (a) 2x2-block and 3x3 interpolation search windows for chroma component
interpolation (b) overlap region between neighboring blocks38

Figure 3.11 (a) row-major interpolating order (b) column-major interpolating order39

Figure 3.12: Luma component interpolation: (a) Interpolating block 4 and (b) Interpolating
block 3 (c) Interpolating block 6...42

Figure 3.13 Chroma component interpolation: (a) Interpolating 2x2-block 0 (b)
Interpolation 2x2-block 1..42

Figure 3.14 (a) Adder-chain based [23] (b) Adder-tree based [24] 1-D linear interpolator
design ..45

Figure 3.15 Separate 1-D interpolator design (no parallel) ..46

Figure 3.16 4-parallel separate 1-D luma interpolator with content buffer..........................48

Figure 3.17 Combined luma/chroma interpolator architecture ..50

Figure 3.18 Combined luma/chroma interpolator unit ...51

Figure 3.19 Combined luma/chroma FIR...52

Figure 3.20 (a)Process path for luma component interpolation (b) Process path for chroma
component interpolation ...52

Figure 3.21 Required bandwidth for different data-reuse approach.....................................54

 VI

Figure 3.22 A weighted prediction block diagram ...56

Figure 4.1 Modern SDRAM architecture ...59

Figure 4.2 SDRAM resource utilization of several commands: (a) PRECHARGE (b)
ACTIVE (c) WRITE (d) READ ...62

Figure 4.3 Simplified bank state diagram...62

Figure 4.4 Burst read operation with CasLatency=3 and BurstLength=4............................63

Figure 4.5 Burst write operation with CasLatency=3 and BurstLength=4.64

Figure 4.6 Access latency for CL=2 (a) read access latency, (b) write access latency.........65

Figure 4.7 (a) READ command with auto precharge, in the precharge period (tRP),
SDRAM cannot issue another command in the same bank (ex: bank 0). (b)
READ command without auto precharge, another command can be issued until
the tRP is met. ...66

Figure 4.8 Two un-scheduling and scheduling read memory accesses for bank-miss and
row-hit...69

Figure 4.9 Luma block (a) one 16 x 16 block arrangement (b) one 4 x 4 block-0
arrangement for MB-0 ..71

Figure 4.10 Chroma block (a) one 8 x 8 block arrangement (b) one 4 x 4 block consist of
block 0-3 arrangement ..71

Figure 4.11 (a) Co-located motion vector allocation in frame (b) corresponding bank for
each 8x8 sub block..72

Figure 4.12 The pixels arrangement of one frame are stored of SDRAM. The arrangement
of other banks is the same as bank0..72

Figure 4.13 The motion vector arrangement of one frame are stored of SDRAM. The
arrangement of other banks is the same as bank0...73

Figure 4.14 Data amount of one decoding frame for different picture format.75

Figure 4.15 Architecture of bandwidth-efficient memory controller for H.264/AVC..........76

Figure 4.16 Multi-channel address generator ...77

Figure 4.17 Command and address queue and access status detection................................79

Figure 4.18 The structure of bank controllers, master bank controller and timing unit.80

 VII

Figure 4.19 System level analysis relation ...82

Figure 4.20 Fetching windows of 4x4 block between different burst length84

Figure 4.21 Unscheduled Bus utilization, Data usage and Data utilization for different burst
length in memory ..84

Figure 4.22 Scheduled Bus utilization, Data usage and Data utilization for different burst
length in memory. ...85

Figure 4.23 The data utilization between un-scheduling and scheduling.............................85

Figure 4.24 Average access cycles per MB between different burst length for access under
BUS...86

Figure 4.25 The bandwidth of memory access under external BUS among different bit-rate
...88

Figure 4.26 The throughput of motion compensation for different data-reuse approach when
operating frequency is 100Mhz. ...88

Figure 5.1 CHIP photo for H.264/AVC main profile decoder..92

 VIII

List of Tables

Table 2.1 comparison with different standard ..27

Table 3.1 Analysis for different interpolating approach ...44

Table 3.2 Comparison of execution cycles for different architectures46

Table 3.3 Simulation results of required memory bandwidth (MByte/s) per MB by using
extend-2D column-major approach. ...53

Table 3.4 Comparison of interpolator architecture with other designs.................................55

Table 4.1 CAS latency ..65

Table 4.2 Characteristics of READ/WRITE access ...70

Table 4.3 Required memory size for different picture format supporting multiple reference
pictures set 16. ..75

Table 5.1 H.264/AVC main profile decoder specification for motion compensation90

Table 5.2 Synthesis results of H.264/AVC’s main profile decoder including SRAM..........91

Table 5.3 On/Off-Chip memory size for different module in H.264 main profile decoder..92

 1

Chapter 1
Introduction

1.1 Motivation

The early video technology such as MPEG-1, mainly approach targets on CD-ROM

based video storage. Afterward, MPEG-2 standard is published, which can be backward

compatible with MPEG-1, serves a wider range of application including video-on-demand

(VOD), DVD and high definition TV. Up to now, H.264/AVC [1] is the newest generation

video coding standard developed by the Joint Video Team (JVT), which consists of experts

from ITU-T VCEG and ISO/IEC MPEG. The H.264/AVC can save about 25-45% bit-rate

compared to MPEG-4 Advanced Simple Profile (ASP). Recently, digital video processing

technologies have been widely applied in the many video systems, such as videophone, digital

TV and VCR, multimedia, etc. In the future, a high-quality HDTV system would integrate the

functions of a computer, the internet, and entertainment, so it should become a popular

product in the market. Furthermore, digital TV is widely adopted by the next-generation

digital video broadcasting (DVB) technology. However, the amount of video data is very

huge for these applications. For example, high-quality HDTV system with 1080HD format

produces 1,504Mbits/s when the frame rate is 30Hz at level 4 in a real-time system. Therefore,

H.264/AVC provides Main profile which supports many efficient coding tools to obtain

enormous compression rate. The ultra high coding efficiency comes from many new features,

including sub-pixel inter prediction with variable block size (VBS) and multiple reference

 2

frames, intra prediction, bi-prediction, weighted prediction, and entropy coding—CAVLC and

CABAC. According to the runtime analysis of H.264/AVC decoder software, the motion

compensation can use up to 55% of total decoding time. Thus, motion compensation can

dominate performance of entire H.264/AVC decoder. Furthermore, the bandwidth

requirement of decoder is extremely high and a bandwidth-efficient design is necessary to

achieve high-quality real-time decoding processes for high definition approach.

For motion compensation, we need to refer the previous frame data from memory for

motion compensations. Generally, the coding performance becomes better using more

temporal information by motion compensation. High definition TV requires enormous data

transmission particular in frame memory, and the memory overhead becomes high over bus.

For real-time operation, the memory data must be accessed during a limited processing time.

The memory design and its addressing become a bottleneck for entire video decoder. Because

the multiple reference pictures is supported by H.264/AVC’s main profile, the block data

controlling and addressing become more complex. How to access the frame memory for

real-time operation is an important issue, particular for HDTV systems. Thus, a memory

access controller that efficiently communicates with external memory is essentially provided

over the entire video decoder to manage data transfer and access conflict.

1.2 Thesis Organization

The thesis is organized as follows. The algorithm description and analysis of

H.264/AVC’s main profile is introduced and discussed in Chapter 2. In Chapter 3, the

proposed bandwidth-efficient motion compensation architecture for H.264/AVC video

decoder is described first. Then, the motion compensation engine for supporting H.264/AVC’s

main profile specification is illustrated. We also propose the novel data-reuse technique to

reduce the required bandwidth particularly in H.264/AVC fractional motion compensation.

 3

Chapter 4 presents frame and motion vector memory organization including memory access

controller for external SDRAM. We apply a memory scheduling technique to reduce the

access latency under external BUS and provide a flexible data arrangement method to

improve data hit rate. The CHIP implementation is given in Chapter 5. Finally, conclusion is

shown in Chapter 6.

 4

Chapter 2
Motion Compensation Algorithm of
H.264/AVC’s Main Profile

Similar to previous video standard, motion compensation is an important part in a video

decoder system. The feature is that the current picture is predicted by previous decoded

pictures without requiring extra bit-streams. Thus, the transmission bandwidth can be reduced

efficiently without degrading visual quality. Hence, H.264/AVC is used in a wide range of

applications due to its better coding efficiency.

In this Chapter, we will introduce a basic structure and concept of H.264/AVC coding

standard in Section 2.2. In H.264/AVC, The main profile is almost a superset of the baseline

profile. Specifically, additional tools provided by main profile are Bi-directional predictions,

direct mode coding, multiple reference frames and weighted prediction for motion

compensation part. The detailed algorithms of features related to motion compensation are

described in the following sections. Finally, we will list differences among video coding

standards such as MPEG-2, MPEG-4, etc in Section 2.6.

2.1 Profiling

Figure.2.1 shows the profiling of H.264/AVC’s main profile on ARM-7 processor. The

reference software we adopt is JM 9.2 [3]. Specifically, inter prediction related modules,

which occupy 51 % of the entire video decoder, include motion compensation, reconstruction,

 5

and reference frame copy. If we improve this part efficiently, total performance of the decoder

system will be increased as well. This dominated part can be greatly reduced by parallel

processing, data-reuse scheme, or pipeline processing on the ASIC design.

Profiling

CAVLC

7%

Others

8%

Write File

9%

SNR Computation

7%

De-blocking Filter

9%

IQ/IDCT

9%

Ref. Frame Copy

8%

Reconstruction

11%

Motion

Compensation

32%

inter prediction

related

51%

Figure 2.1 H.264 software (JM 9.2) profiling on ARM 7 processor

2.2 Motion Compensation Process Flow

The score of motion compensation process flow has been explained as Figure 2.2. Data

relating to inter prediction are received from syntax parser. It is processed to pixels through

several functional units consist of MV prediction, Interpolation and Weighted Prediction.

Figure 2.2 The general score of motion compensation for H.264/AVC’s main profile

 6

Figure 2.3 shows the basic block diagram of H.264/AVC encoding block diagram. The

block diagram of decoder is shown in Figure 2.4. With the exception of the de-blocking filter,

we can find that most of the basic functional components (prediction, transform, quantization,

entropy coding, etc) exist in previous standards such as MPEG-1, MPEG-2, MPEG-4, H.263

but important changes of H.264 occur in the details of each functional block. Because the

decoder is our research topic, we will focus on decoder process flow. The decoder receives a

compressed bitstream from channel receiver side and thereby entropy decodes the data

elements to produce a set of quantized coefficients X. These coefficients are scaled and

inverse transformed to D' n. The motion compensation (MC block) reconstructs the PRED

according to previous decoded data. The PRED adds D' n to produce uF' n prior to the

deblocking filter.

Entropy
Encoding and
Multiplexing

Scan and
QuantizationTransform

De-blocking
filter

Current Picture
storage

SW

Multiple Picture
storage

Motion
Compensation

process

Intra
Compensation

process

Inter mode

Intra mode

Intra/Inter

BitstreamRecoder

Inverse Scan
and

Quantization

Inverse
Transform

Motion
Estimation

process

Reconstructed
 Picture storage

+
+

+

-

Figure 2.3 General structure of H.264 encoder.

 7

Buffer
Entropy

Decoding and
Demultiplexing

Inverse Scan
and

Quantization

Inverse
Transform + De-blocking

filter Reconstructed data

Current Picture
storage

SW

Multiple Picture
storage

Motion
Compensation

process

Intra
Compensation

process

Inter mode

Intra mode

Intra/Inter

Bitstream

Figure 2.4 General structure of H.264 decoder

2.3 Inter Prediction Algorithm for H.264/AVC’s Main

Profile

The inter prediction of H.264/AVC’s main profile includes tree-structured hierarchical

macroblock partitions and more flexible block size selection called as variable block size

(VBS) compared with previous standards [1][2][4]. In case of motion compensated prediction,

macroblocks are predicted from the image signal of transmitted reference images. For this

purpose, each macroblock can be divided into smaller partitions such as 16x16, 16x8, and 8x8.

The corresponding 8x8 sub-macroblock is further divided into partitions with block sizes of

8×4, 4×8 or 4×4. For each sub-macroblock partition, a motion vector may be independently

selected and coded, but the reference picture index and prediction type of the sub-macroblock

is used for all sub-macroblock partitions. Chroma components use the same partition as luma

components. The smallest block size selection could reach as small as 4x4 and 2x2 for luma

and chroma component respectively. For each macroblock partition, a reference picture index,

prediction type (list-0, list-1, bi-pred), and a motion vector may be independently selected and

coded. Figure 2.5 illustrates all types of partitions.

 8

Figure 2.5 Macroblock partitions and sub-macroblock partitions

2.3.1 Bi-directional Prediction

A bi-directional prediction is main feature provided by H.264/AVC main profile.

Bi-prediction uses two lists of previously decoded reference pictures, list-1 and list-0. The

reference picture is previous or future decoded pictures for B-slices. Each macroblock of B

slices may be predicted from previous reference picture (list-1) and future reference picture

(list-0). In P slices, only single directional prediction is used, and the allowable reference

pictures are list-0. In B slices, list-0 and list-1 of reference pictures are considered. For

B-slices, single directional prediction using either list 0 or list 1 is allowed, or bi-prediction

using both list 0 and list 1 is allowed. Figure 2.6 gives three examples to illustrate

Bi-prediction: (a) one previous and one future reference (similar to B-picture prediction in

previous MPEG video standard), (b) two past references and (c) two future references.

 9

Previous frame L0 Future frame L1Current frame

Two future pictureTwo previous picture

One previous, one future picture

TIME

(b) (c)

(a)

Figure 2.6 Example using Bi-prediction: (a) previous/future (b) previous (c) future

In the bi-prediction, a reference block is created from list-0 and list-1 reference pictures.

Two motion compensated reference areas are obtained from a list-0 and list-1 picture

respectively, and two separate motion vectors are required. Each sample of the prediction

block is calculated as an average of motion vector of the list-0 and list-1 prediction sample.

Except when using Weighted Prediction, the following equation is used:

(,) (0(,) 1(,) 1) 1Pred i j Pred i j Pred i j= + + (2.2)

Where 0(,)Pred i j and 1(,)Pred i j are prediction samples derived from the list-0 and

list-1 reference pictures and (,)Pred i j is a bi-predictive sample. After calculating each

prediction sample, the reconstructed samples are a summation of residual and predicted data

that is decoded by entropy decoding and intra/inter prediction respectively. The list-0 and

list-1 motion vectors in bi-predictive macroblocks or blocks are predicted from neighboring

motion vectors that have the same temporal direction. For instance, a motion vector for the

 10

current macroblock pointing to a previous picture is predicted from other neighboring motion

vectors that also point to previous pictures. It is illustrated as Figure 2.7. The prediction of

motion vector is introduced as next section.

1LMV0LMV

Figure 2.7 The current block is predicted by MVL0 and MVL1 motion vector using

Bi-prediction

2.3.2 Multiple Reference Frames

In H.264/AVC, multiple reference frames may be used for inter-prediction [4], with a

reference frame index coded to indicate which multiple reference frames are used. When

bi-prediction is used by applying weighted prediction, the list 0 and the list 1 predictors are

averaged together to form a final predictor. For each sub-macroblock partition, a motion

vector may be independently selected and coded, but the reference frame index and prediction

type of the sub-macroblock is used for all of the sub-macroblock partitions. Figure 2.8 shows

the bi-prediction with multiple reference frames. An index is a reference frame parameter. An

additional picture reference parameter has to be transmitted together with the motion vector in

 11

bitstream. H.264 uses picture order count (POC) to indicate relative distances between coded

pictures and reference pictures. POC is used for scaling motion vectors in direct modes, and

for weighting factor derivation in WP implicit mode that will be introduced in the following

sections. Adopting multiple reference frames increases the access frequency according to a

linear model: 25% complexity increase for each added frame. A negligible gain (less than 2%)

in bit rate is observed for low and medium bit rates, but more significant savings can be

achieved for high bit rate sequences (up to 14%) [4].

Figure 2.8 Bi-prediction with multiple reference pictures

Up to five different reference frames can be used for inter-picture coding resulting in

better subjective video quality and more efficient coding. Providing multiple reference frames

can also help make the H.264 bitstream more error resilient. The error resilient tools are

supported by extended profile in H.264/AVC, which will not be discussed in this thesis. Note

that this feature leads to increased memory requirement for both the encoder and the decoder

since previously decoded and reconstructed multiple reference frames must be maintained in

 12

memory. For storing large pixels of several reconstructed reference frames, the huge memory

size is required such as SDRAM. Therefore, we will propose an efficient memory allocation

method and SDRAM controller architecture so that remained decoded pictures can be

efficiently stored in single external memory. The related concept will be introduced in

Chapter 4.

2.4 Motion Vector Prediction

The prediction for the decoded macroblock is determined by the set of motion vectors

(MV) that are associated with that macroblock. The motion vectors indicate the position

within the set of previously decoded frames from which each block of pixels will be predicted.

A motion vector is generated by motion vector prediction. In baseline profile, motion vector is

only generated by traditional MV prediction that includes median and directional prediction.

Motion vector prediction of H.264/AVC’s main profile supports new predictable method in

Bi-predictive slices: direct mode, which except for traditional MV prediction. We introduce

these motion vector generations in the following sub-sections.

2.4.1 Traditional MV Prediction

The Motion vector is generated from motion vector difference (MVD) and motion vector

prediction (MVP). The associated equations are expressed by (2. 1).

MVPyMVDyMVy
MVPxMVDxMVx

+=
+=

 (2 . 1)

MVD is decoded from universal variable length decoder (UVLD) and MVP is predicted

according to neighboring motion vectors. MVP algorithm, of which concept is similar to that

for MPEG-4, contains directional prediction for 16 x 8 or 8 x 16 block size and median

prediction for other block sizes. The detail of MVP decision is shown in Figure 2.9. Equation

 13

of median prediction is expressed by (2. 2). The location of MVA, MVB, MVC, MVD which

neighboring current block is depends on different block sizes. For example, MVA is a left

neighboring block and MVC is a right-upper neighboring block when block size is 8x16 as

Figure 2.9 (a) shows. The definition of neighboring motion vector is illustrated as Figure 2.9

for different block sizes. In addition, some boundary conditions or exceptions have to be

handled carefully. For instance, when MVC is not available, its value is replaced by MVD.

We do not go into details of those trivial boundary conditions over here.

),,(MVCMVBMVAmedianMVP = (2.2)

Figure 2.9 (a) directional prediction for 8 x 16 block size, (b) directional prediction for 16

x 8 block size, (c) median prediction

In addition to the motion-compensated block size described in Figure 2.5, a P

macroblock can also be coded to P_SKIP mode. For this coding mode, neither residual signal

nor motion information is transmitted. That is, motion vectors are only decided according to

MVP. The reconstructed data is obtained similar to that of macroblock type P_16x16.

Macroblocks coded in P_SKIP are often located in large area with no scene change or slow

motion. Besides the above techniques, H.264/AVC also supports multiple reference frames,

weighted prediction and direct mode for B slice. These tools greatly improve coding

efficiency. Application of de-blocking filter is a well-known method to improve image quality

 14

by alleviating blocking artifacts. The de-blocking design in H.264/AVC is brought within

motion-compensated prediction loop and the improvement in quality becomes more

conspicuous.

2.4.2 Direct Mode Coding

1LMV
0LMV

CMV

Figure 2.10 Direct mode prediction for B slices

Direct mode is another method for motion vector prediction. The direct-mode

macroblock does not require such side information but derives reference frame, block size,

and motion vector data from the subsequent inter pictures. Figure 2.10 is shown to illustrate

the process of direct mode coding. This mode superimposes two prediction signals. One

prediction signal is derived from the future inter picture and the other comes from a previous

picture. The direct mode uses bidirectional prediction and allows residual coding of the

prediction error. The forward and backward motion vectors 0LMV and 1LMV of this mode are

derived from the motion vectors CMV used in the co-located macroblock of the future picture

Ref. list-1. Note that the direct-mode macroblock uses the same partition as the co-located

 15

macroblock. The prediction signal is calculated by a linear combination of two blocks that are

determined by the forward and backward motion vectors pointing to two reference pictures

list-0 and list-1. When using multiple reference picture prediction, the forward reference

picture for the direct mode Ref. list-1 is chosen to be the future inter picture with the

co-located macroblock. The forward and backward motion vectors for direct-mode blocks are

calculated as following equation:

16384 abs
2

D

D

TD

X
TD

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= (2 . 3)

()()1024,1023, 32 6BScaleFactor Clip TD X= − × + (2 . 4)

()0 128 8LMV ScaleFactor MV= × + (2 . 5)

1 0L LMV MV MV= − (2 . 6)

 Where 0LMV is the forward motion vector, 1LMV is the backward motion vector, and

CMV represents the motion vector of the co-located block in the future inter picture. For B

pictures, TDD is the temporal distance between the previous and the future inter picture, and

TDB is the distance between the current B picture and the previous inter picture. In that case,

the actual reference picture Ref. list-0 (which is also a reference picture for the co-located

macroblock of the following picture) is used for the calculation of the temporal distances TDD

and TDB. And when both the current macroblock and its co-located are in frame mode, TDB is

the temporal distance between the current B frame and the reference frame Ref. list-0, and

TDD is the temporal distance between the future reference frame Ref. list-0 and Ref. list-1.

2.5 Fractional Interpolation

H.264/AVC main profile standard also supports high motion resolution that reaches

quarter motion accuracy for luma component and eighth one for chroma component. This can

 16

be found firstly in advances profile of MPEG-4 Visual standard; however, H.264/AVC

reduces the complexity of interpolation processing comparison with MPEG-4 standard. Luma

half sample interpolation is generated from integer-position samples using a 6-tap

symmetrical Finite Impulse Response (FIR) filter with weights (1, -5, 20, 20, -5, 1). Once all

the half-pel samples are available, the quarter samples are produced by linear interpolation

using bilinear filter. Luma samples interpolation is shown in Figure 2.11(a)-(c). Quarter-pel

resolution motion vectors in the luma component require eighth-sample resolution vectors in

the chroma component assuming 4:2:0 chrominance format. Interpolated samples at

eighth-sample intervals in chroma component are generated using bilinear interpolator

illustrated in Figure 2.10 (d), and the displacement can achieve one-eighth accuracy. Each

sub-sample position i is a linear combination of the neighboring integer sample positions A, B,

C and D.

 17

Figure 2.11 (a) luma half sample with 6-tap FIR, (b) luma horizontal/vertical quarter

sample with bilinear filter, (c) luma diagonal quarter sample with bilinear filter, (d)

chroma sample with bilinear filter. Upper-case letters indicate the full samples and

lower-case letter indicates the interpolated fractional samples

From mathematical equations, they are both 2-D interpolation for luma and chroma

interpolation. However, based on hardware implementation, these equations can be separated

into two 1-D to reduce hardware cost, namely, horizontal filter first and than vertical one, or

vice verse. In chapter 3, we will propose a novel architecture of interpolation to combine luma

and chroma interpolation so that cost and complexity can be improved in ASIC design.

2.6 Weighted Prediction

The weighted prediction (WP) tool has been adopted in the H.264/AVC Main and

Extended profiles to improve coding efficiency by applying a multiplicative weighting factor

and an additive offset to the motion compensated prediction [5] [6]. While the concept of

applying a weighting factor to a reference picture prediction is not new, the inclusion of the

WP tool in the H.264 standard marks the first time such a feature has been incorporated into

an international video compression standard. Weighted prediction also compensates the

brightness difference so that the reference frame is more strongly correlated to the current

frame. The WP allows arbitrary multiplicative weighting factors and additive offsets to be

applied to reference picture predictions in both P and B pictures. The WP tool is particularly

effective for coding fading sequences. When applying to a single prediction, as in P pictures,

WP is similar to a leaky prediction, which has been previously proposed for error resiliency.

Leaky prediction becomes a special case of WP, with the scaling factor limited to the

range 0 1a≤ ≤ . The WP also allows negative scaling factors, and scaling factors greater than

 18

one. A key difference of H.264’s WP tool from previous proposals involving weighted

prediction for compression efficiency is the association of the reference picture index with the

weighting factor parameters, which allows for efficient signaling of these parameters.

Use of weighted prediction is indicated in the sequence parameter set for P slices using

the weighted_pred_flag field, and for B slices using the weighted_bipred_idc field. There

are two WP modes -- explicit mode, which is supported in P and B slices, and implicit mode,

which is supported in B slices only. A single weighting factor and offset are associated with

each reference picture index for each color component in each slice. In explicit mode, these

WP parameters may be coded in the slice header. In implicit mode, these parameters are

derived based on relative distance of the current picture and its reference pictures. For each

macroblock or macroblock partition, the weighting parameters are based on the reference

picture index (or indices in the case of bi-prediction) of the current macroblock or macroblock

partition. The reference picture indices are either coded in the bitstream or may be derived,

e.g., for skipped or direct mode macroblocks. The use of the reference picture index to signal

which weighting parameters to apply is bit-rate efficient, as compared to requiring a

weighting parameter index in the bitstream, because the reference index is already available

based on other required bitstream fields.

2.6.1 Explicit Mode

Use of explicit mode WP is indicated by weighted_pred_flag equal to 1 in the picture

parameter set of P slices, or by weighted_bipred_idc equal to 1 in B slices. In explicit mode,

the WP parameters are coded in the slice header for each coded slice. A multiplicative

weighting factor and additive offset for each color component may be coded for each of the

allowable reference picture in list 0 for P slices and B slices. The number of allowable

reference pictures in list 0 is indicated in the picture parameter set by

num_ref_idx_l0_active_minus1, and for list 1 for B slices is indicated by

 19

num_ref_idx_l1_-active_minus1. The weighting factors and offsets used in a particular slice

are included in the slice header when explicit mode WP is used. The allowable range of

parameter values is constrained to 16-bit arithmetic operations in the inter prediction process.

The dynamic range and precision of the weighting factors can be adjusted using the

luma_log_weight_denom and chroma_log_- weight_denom fields, which are the binary

logarithm of the denominator of the luma and chroma weighting factors, respectively. Higher

values of the log weight denominator allow more fine-grained weighting factors but require

additional bits for coding the weighting factors and limit the range of the effective scaling.

For each allowable reference picture index in list 0, and for B slices also in list 1, flags are

coded which indicate whether or not weighting parameters are present in the slice header for

that reference picture index, separately for the luma and chroma components. If the weighting

parameters are not present in the slice header for a given reference picture index and color

component, a default weighting factor equivalent to a scaling factor of 1 and a zero offset are

used. The multiplicative weighting factors are coded as luma_weight_l0, luma_weight_l1,

chroma_weight_l0, and chroma_weight_l1. The additive offsets are coded as

luma_offset_l0, luma_offset_l1, chroma_offset_l0, and chroma_offset_l1, respectively. For

fades that are uniformly applied across the entire picture, a single weighting factor and offset

are sufficient to efficiently code all macroblocks in a picture that are predicted from the same

reference picture. When multiple reference pictures are used, the best weighting factor and

offsets generally differ during a fade for the different reference pictures, as brightness levels

are more different for more temporally distant pictures. Use of the reference picture index in

the selection of the weighting parameters allows the coding efficiency gain of multiple

reference picture prediction to be added to the coding efficiency gain of weighted prediction.

For fades that are non-uniformly applied spatially across an image sequence, e.g. for lighting

changes or camera flashes, more than one reference picture index can be associated with a

particular reference picture are stored by using reference picture reordering commands. This

 20

allows different macroblocks in the same picture to use different weighting factors even when

predicted from the same reference picture store. In explicit mode, the same weighting

parameters that are used for single prediction are used together for bi-prediction. The final

inter prediction is formed for the pixels of each macroblock or macroblock partition, based on

the prediction type used as follows.

Single directional prediction from list-0:

1
0 0SampleP Clip1(((SampleP0 2)))LWDW LWD O−= × + + (2.7)

Single directional prediction from list-1:

1
1 1SampleP Clip1(((SampleP1 2)))LWDW LWD O−= × + + (2.8)

Bi-prediction from list-0 and list-1:

0 1 0 1SampleP Clip1(((SampleP0 SampleP1 2) (1)) (1) 1)LWDW W LWD O O= × + × + + + + + (2 . 9)

Where Clip1 operation is an operator that clips to the range [0, 255], W0 and O0 are the

list 0 reference picture weighting factor and offset, and W1 and O1 are the list 1 reference

picture weighting factor and offset, and LWD is the log weight denominator rounding factor.

SampleP0 and SampleP1 are the list 0 and list 1 initial predictors, and SampleP is the

weighted predictor.

2.6.2 Implicit Mode

Use of implicit mode is indicated by weighted_bipred_idc equal to 2 in B slices. In WP

implicit mode, weighting factors are not explicitly transmitted in the slice header, but are

derived based on relative distances between the current picture and the reference pictures,

based on POC. Implicit mode is used only for bi-prediction coded macroblocks and

macroblock partitions in B slices, including those using direct mode. The same formula for

 21

bi-prediction as given in the preceding explicit mode section for bi-prediction is used, except

that the offset values O0 and O1 are equal to zero, and the weighting factors W0 and W1 are

derived using the formulas below:

(16384 (1)) /D DX TD TD= + (2.10)

Clip3(1024,1023, (32) 6)BZ TD X= − × + (2.11)

1 2W Z= (2.12)

0 164W W= − (2.13)

where TDB is difference in the POC values between the list 1 reference picture and the

list 0 reference picture, clipped to the range [-128, 127] and TDD is difference in the POC

values of the current picture and the list 0 reference picture, clipped to the range [-128, 127].

Macroblocks using single prediction (list 0 or list 1) do not use implicit mode WP. Implicit

mode is most useful for low bit-rate applications, or for pictures that are broken into many

slices for error resiliency, where the bits needed to code the WP parameters in explicit mode

become significant contributors to overall bit-rate. For Bi-prediction macroblocks where the

two predictors are from opposite temporal directions, as in traditional B pictures, the implicit

mode WP formula becomes an interpolation formula. For example, with a traditional PBB

picture pattern, weighting factors of (2/3, 1/3) are used in the first B picture and (1/3, 2/3) are

used in the second B picture. For Bi-prediction macroblocks where the two predictors are both

in the same temporal direction, the implicit mode WP formula becomes an extrapolation

formula. For example if one predictor is from the immediately preceding picture and the other

predictor is from two pictures preceding, weighting factors of (2,-1) are used. In our design,

we implement division-free hardware with WP implicit mode according to equation

(2.2)-(2.4). The detailed architecture is shown in the following sections.

For the PBB picture sequence, implicit and explicit mode performed similarly for the

linear fade-out pattern, both with an average coding gain of 46.2%. For a non-linear S-curve

 22

fade-out pattern with the PBB picture sequences, explicit mode outperformed implicit mode

slightly, averaging a 41.3% gain vs. a 40.9% gain. The gains were lower for the fade-ins, with

explicit mode outperforming implicit mode from 28.9% to 28.4% for the linear fade-in, and

from 29.1% to 26.9% for S-Curve fade-in. Besides, a simple method for determining

weighting factors has been described that achieves bit-rate reductions up to 67% for

fade-to-black sequences.

2.7 Analysis

H.264/AVC main profile supports new features to improve performance such as PSNR,

bit rate, and quality, etc. Analysis is performed for these features to show the improvement.

For analyzed environment, a test sequence with CIF format is employed at 30fps. The frame

orders are I-P-P and I-B-B-P-B-B-P-B-B for baseline and main profile, respectively. Figure

2.12 shows the bit rate of baseline and main profile using different Quantization Parameter

(QP). From Figure 2.12, reduction of bit rate can be observed, and bit rate of main profile may

save approximately 40% compared with that of baseline profile. Thus, main profile is suitable

for high bit-rate system such as HDTV, HD-DVD devices.

 23

0

100

200

300

400

500

600

700

800

900

1000

28 32 36 40 44 48

QP

B
it

 r
at

e(
K

bi
ts

/s
)

Baseline Profile

Main Profile temporal mode

Main Profile spatipl mode

Figure 2.12 Bit rate value between baseline and main profile

Besides, the rate-distortion of main profile is depicted as Figure 2.13. The PSNR of main

profile with WP and main profile without WP are shown in the same Figure. At 200Kbps, the

PSNR of the main profile is 31.8, which higher than PSNR of baseline is 28.4. Furthermore,

performance of direct mode coding within main profile is illustrated as the same Figure. We

can find that performance of spatial mode is a bit better than that of temporal mode in direct

mode coding.

 24

22

24

26

28

30

32

34

36

38

0 50 100 150 200 250 300 350 400 450

Bit rate(Kbits/s)

P
S

N
R

Baseline Profile

Main Profile temporal mode

Main Profile spatial mode

Figure 2.13 PSNR between Baseline and Main profile

Figure 2.14 and Figure 2.15 show proportion of integer/fraction motion vector for luma

and chroma component, respectively. In order to simulate the proportion, we select a general

sequence with CIF format. The picture order is I-B-B-P-B-B-P-B-B. In high bit rate

applications (384 kbps), the fractional motion vector occupies about 80 % and even in low bit

rate (48 kbps) fractional part has a certain proportion (30 %). The higher fractional motion

vector proportion means that the longer execution time is required to read pixels from external

frame memory. This gap may become more obvious especially when SDRAM is used as

frame memory. To reduce requisite fetching pixels from frame memory, the efficient

data-reuse technique for fractional motion compensation will be proposed in Chapter 3.

 25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

624 384 232 144 96 64
Bits rate (Kbit/s)

P
ro

po
rt

io
n

fraction
integer

Figure 2.14 The proportion of integer/fraction motion vector for luma component in

H.264/AVC main profile

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

624 384 232 144 96 64

Bits rate (Kbit/s)

P
ro

po
rt

io
n

fraction
integer

Figure 2.15 The proportion of integer/fraction motion vector for chroma component in

H.264/AVC main profile

 26

2.8 Comparison for MC of Previous Standards

Considering the frame coding, Table 2.1 lists all fractional motion compensation features

between different standards. Up to now, we can find fractional interpolation issue becomes

more and more important in the state-of-the-art video coding. The interpolation window

becomes larger for the same block size; namely, it requires much more cycles to interpolate

each macroblock. For example, it requires 9 x 9 pixels window to interpolate luma 4 x

4-block for H.264/AVC; however, the identical size of interpolation window can be used to

filter 8 x 8-block for MPEG-2 video decoder. Therefore, it’s requires 1,296 pixels to

interpolate 16 4 x 4-blocks. Especially note that luma and chroma interpolation for

H.264/AVC are different compared with previous standards. That is, no matter what on

algorithm level or hardware level, the interpolated computation sources can not be shared.

Hence, the combination of luma and chroma parts could be improved to reduce gate count and

we will give the discussion and implementation in Chapter 3. In addition, H.264/AVC

supports direct mode coding and weighted prediction which will be not adopted by previous

video standard. Therefore, novel structures of direct mode coding and weighted prediction are

proposed in the same chapter.

 27

Table 2.1 comparison with different standard

2.9 Summary

From the H.264/AVC profiling on ARM processor, we can find that an efficient hardware

accelerator or ASIC design for motion compensation is crucial. For HDTV application,

H.264/AVC main profile has provided several coding tools to deal with high-quality

resolution. Bi-prediction and quarter-pel interpolation are proposed to improve coding

efficiency. Weighted prediction is first adopted by video standard, and is a powerful tool for

efficiently coding fading sequences. Bitstream size is reduced by direct mode coding which is

adopted by H.264/AVC main profile for B-slices. In B-slices, inter prediction is performed by

 28

using two frames so that motion compensation hardware are more complex. Furthermore,

multiple reference frames is proposed so that memory requirement may be extremely

increased. For above discussion, not only hardware accelerator but also bandwidth-efficient

hardware is required to develop for high-definition system. Finally, the inter prediction for

H.264/AVC and the comparison among different standards are also illustrated in this Chapter.

 29

Chapter 3
A Bandwidth-efficient Motion
Compensation Architecture Design

In video standards, such as MPEG-1/2, MPEG-4 and H.264/AVC, motion compensation

is an important part of entire decoder system, and always dominates system performance due

to high computing power. Furthermore, the hardware design of motion compensation is more

complex than other modules such as CAVLC, DCT, intra-prediction and De-blocking filter,

etc. For HDTV application, motion compensation adopts new features which are supported by

H.264/AVC main profile so that procedure and hardware of motion compensation are more

and more complex in ASIC designs. Besides, inter-prediction requires large pixels of previous

decoded reference frame to predict current frame, and external memory is decided as frame

memory in our on-chip design. Moreover, multiple reference frames are employed to lead that

more memory may be used to store pixels of several previous decoded reference frames. Thus,

memory bandwidth which is data traffic under external BUS will be a bottleneck of motion

compensation. A bandwidth-efficient motion compensation hardware accelerator has to be

designed, which can be integrated into simplex architecture.

In this chapter, we will focus on motion compensation for high throughput and low cost

designs. We propose a bandwidth-efficient motion compensation architecture which is

suitable for high-quality system. Firstly, we will introduce whole bandwidth-efficient motion

compensation architecture for H.264/AVC main profile. The hardware of detail module such

as motion vector generation, interpolator, and weighted prediction will be discussed in

 30

sub-section 3.2-3.4, respectively. Finally, simulation and summary are given in section 3.5.

3.1 Motion Compensation Engine for H.264/AVC’s Main

Profile

The H.264/AVC main profile decoder system is illustrated as Figure 3.1. First, the frame

information in bitstream is decoded by entropy coding module includes CABAD and CAVLD.

According macroblock type, the frame pixels can be decoded by intra-prediction and

inter-prediction. The bus traffic is treated by memory controller which can be supported for

module of video decoder. Figure 3.2 illustrates the entire bandwidth-efficient motion

compensation architecture for H.264/AVC main profile. In H.264/AVC, a 4x4 block is the

smallest element of the prediction block types in variable block size (VBS) and each 16x16

block can be decomposed into several 4x4 blocks. We adopt a 4x4 block-based pipeline to

implement this motion compensation design in this design, because the 4x4 block is the

smallest processing unit of pixels that the H.264/AVC adopts and 4x4 block-based pipeline

can save the cost of storage buffer and the associated power reduction.

Figure 3.1 The block diagram of H.264/AVC main profile decoder system

 31

Figure 3.2 Motion compensation architecture for HDTV H.264/AVC main profile

decoder

Excluding the memory controller, the proposed motion compensation architecture is

presented in gray dotted area of Figure 3.2. The detailed discussion of frame memory access

controller is shown in Chapter 4. The motion compensation architecture consists of three

major parts that are motion vector generator (MVG), interpolator and weighted prediction.

The decoded information is firstly loaded from bitstream into MVG. A MVG generates

motion vector to predict current macroblock. In H264/AVC’s main profile, motion vector is

generated by two predicted methods: motion vector prediction (MVP) and direct mode coding.

The details of MVG are described in the sub-section 3.2. According to motion vectors which

are produced by MVG, corresponding reference pixels are loaded from external frame

memory. In this chapter, we will not discuss memory such as memory controller and address

generator, etc. Interpolators are invoked to produce fractional samples for both luma and

chroma components. In this design, we employ two interpolators to simultaneously process

 32

pixels of list-0 and list-1 because two motion vectors will point to two search areas in list-0

frame and list-1 frame in B-slices, respectively. When the motion vector is an integer value,

corresponding reference pixels without interpolation directly feeds through weighted

prediction. In the end of motion compensation processes, weighted prediction (WP) is

performed by applying a multiplicative weighting factor and an additive offset in bitstream.

These pixels obtained by weighted prediction add with residual data to create the unfiltered

pixels. Finally, the de-blocking filter loads these pixels, and restores correct pixels into

external memory after performing filter operations. Because the data bus of external frame

memory is defined as 32bit, pixels which are loaded into interpolator are limited.

3.2 Motion Vector Predictor Design

To facilitate a spatial prediction, we store motion vector for one row stripe of 4x4 blocks,

four left neighboring 4x4 blocks and current 4x4 blocks into Row stored buffer. Figure 3.3

illustrates that shaded regions have to be stored for predicting oblique region.

Figure 3.3 MV in shaded and oblique line region must be stored in row-FIFO.

Firstly, motion vector generator is shown in Figure 3.4. Motion vector is obtained in two

 33

predicted methods: MVP and direct mode coding. Note that direct mode coding is supported

in B-slice. According to MB types, the motion vector is obtained by different predicted

methods and stored into current motion vector buffer.

Figure 3.4 Motion vector generator

3.2.1 MVp Prediction Module

In the MVP generation method, the motion vector is generated by summing predicted

motion vector (MVp) and MVD. For calculating MVp, we employ directional segmentation

prediction in 8x16 or 16x8 block types and median prediction in other block types. These

predictions are integrated into MVp generator. The MVp generator calculates MVp according

to the motion vectors of the neighboring blocks in current frame. Thus the decoded motion

vectors are required to be stored into FIFO buffer for the subsequent decoding. FIFO buffer

stores the decoded motion vector pair (MVX, MVY). The depth and width of MV FIFO are

dependent on the decoded frame width and search range respectively. For instance, for

supporting 1080HD format, the total size of FIFO buffer is 968 x 10 bits (((120 blocks x 4 + 4)

 34

x 2) = 968 4x4-block). Therefore, SRAM is selected as a FIFO buffer to store required

decoded motion vectors in our design. Once the content of FIFO buffer will not be used in the

future, the restored motion vector pair in FIFO buffer can be discarded. Furthermore, the 4 x 4

size of MV buffers is required because the maximum number of motion vectors per MB is 16.

The motion vectors for current MB decoding store in this 4 x 4 MV buffers. Due to a

Bi-prediction, two 4 x 4 MV buffers are required to store current two motion vectors for

predicting motion vectors of list-0 frame and list-1 frame.

Figure 3.5 Neighboring motion vectors required for decoding all motion vectors in

current macroblock

When decoding current macroblock, the detail of required neighboring motion vectors is

shown in Figure 3.5. To involve all kinds of VBS conditions, storages element is based on 4 x

4-block size that is the smallest element for H.264/AVC video decoder. Each square indicates

one motion vector pair. To predict MV0-MV15 in current MB, it requires neighboring motion

vectors in left-upper corner (MVLU), right-upper corner (MVRU), upper (MVU0-3) and left

(MVL0-MVL3) positions., Neighboring motion vectors are shifted and stored into MV FIFO

except for current MV.

 35

16x16

8x8_0 8x8_1

8x8_2 8x8_3
4x4_10 4x4_11 4x4_14 4x4_15

4x4_12 4x4_134x4_8 4x4_9

4x4_1

4x4_3 4x4_6 4x4_7

4x4_4 4x4_54x4_0

4x4_2

16x8_0

16x8_1

8x16_0 8x16_1

(a)

Figure 3.6 (a) block size position index, (b) directional prediction table (16x8, 8x16), (c)

median prediction table (16x16, 8x8), (d) median prediction table (4x4)

MVp is calculated according to MVA, MVB, MVC and MVD which are obtained from

neighboring motion vectors according to block size position index for different macroblock

types. The block size position index in one macroblock is illustrated in Figure 3.6 (a). MVA,

MVB, MVC and MVD indicate the motion vectors located at left, upper, right-upper,

left-upper neighboring macroblock/partition/block respectively as shown in Figure 2.8 (c).

Figure 3.6 (b)-(d) lists all MVA, MVB, MVC and MVD for different block size position index.

When MB_type of current macroblock is 16x8 or 8x16, MVp can derived by directional

 36

prediction, otherwise median prediction is involved. Furthermore, the above loop-up table

(LUT) is required for motion vector prediction, many trivial boundary conditions and

exceptions have to be handled. Here, we do not describe them for simplicity.

3.2.2 Direct Mode Coding Design

Except for MVp prediction, other way to predict current motion vectors is direct mode

coding. In the direct mode coding, there are two types: spatial and temporal types [7] [8].

These types are user-defined in encoding processes. From above discussion, the PSNR of

spatial mode is better than that of temporal mode. In our design, we implement both temporal

and spatial modes and integrate it into MVG module. When a temporal mode is invoked, a

temporal direct mode coding module calculates motion vector according to the picture order

counts and co-located motion vectors in first list-1 frame. From above introduction of direct

mode coding with temporal mode, we have to calculate the scalefactor value by equation 2.4.

From Equation 2.5 and 2.6, two motion vectors from list-0 and list-1 frame are computed with

scalefactor. Therefore, the scalefactor must be computed in advance. Figure 3.7 depicts

hardware by which scalefactor is computed. We implement division-free and

multiplication-free design to reduce hardware complexity. We employ some multiplexer and

shifters to replace division and multiplication in gray dotted area and it is shown in Figure 3.8

 37

CurrPoc

List0Poc

List1Poc

CLIP

CLIP

20H

>>6 CLIP

TDD

>>1
tp_1

ScaleFactor

X

X1

X2

4000H

TDB

Figure 3.7 Pre-scalefactor generator design

Figure 3.8 (a) Division free replacement (b) Multiplication-free replacement

Where CLIP operation is used to restrict TDB , TDD and scalefactor within range

between -128 and 127. The CLIP operation is expanded as Equation 3.1. The complexity of

this module is reduced efficiently by division-free and multiplication-free.

CLIP (128,127, _)input value= − (3.1)

What is more, the process which produces motion vectors by spatial mode is the same as

 38

median method for MVp prediction. Therefore, the hardware of MVp prediction module and

spatial direct mode coding predictor can be shared. When the spatial mode is chosen, the

predicted process acts as the MVp prediction, which needs motion vectors of the neighboring

blocks to generate motion vector. Hence, we can employ MVp generator to generate motion

vector without adding MVD.

3.3 Bandwidth-Efficient Factional Interpolator Design

Figure 3.9 (a) 4x4-block and 9x9 interpolation search windows for luma component

interpolation (b) overlap region between neighboring blocks

Figure 3.10 (a) 2x2-block and 3x3 interpolation search windows for chroma component

interpolation (b) overlap region between neighboring blocks

 39

Interpolator design always dominates the throughput of H.264/AVC decoder. To

interpolate each fractional sample value for each 4x4 block of luma component, it needs 9 x 9

interpolation window illustrated in Figure 3.9 (a). If two motion vectors of neighboring 4 x 4

blocks are the same, 5 x 9 overlapped region between two interpolation windows can be data

reused. The overlapped region between neighboring blocks is shown in Figure 3.9 (b). We can

find that maximum overlapped region is 65 pixels for luma search windows. For each 2 x 2

block of chroma component is shown in Figure 3.10, the size of interpolating search windows

is 3 x 3 and 5 pixels can be reused between neighboring blocks. For above property, when

interpolating current block, overlapped region cannot be fetched again. We will introduce the

proposed data-reuse approach and give some examples in sub-section 3.3.1.

3.3.1 Data Reuse Technique

The scanning order of residual decoding for each macroblock is row-major interpolating

order as shown in Figure 3.11 (a), and column-major interpolating order illustrated in Figure

3.11 (b). A dotted line indicates transition between interpolating processes. In comparison of

row-major interpolating order and column-major interpolating order, we adopt a

column-major interpolating order because the transition of column-major interpolating order

is 5 times less than row-major order. Each transition causes that the overlap region could not

be reused. Therefore, column-major one is the better selection because of less number of

transitions.

Figure 3.11 (a) row-major interpolating order (b) column-major interpolating order

 40

For a data-reuse approach, Wang’s design [10] proposed an extended 2 x 2 raster

scanning order approach to increase throughput. Although 30% reduction of access cycle for

motion compensation is derived by this approach, the improvement is not high enough for

high-definition resolution. Therefore, based on the column-major interpolating order, we

propose an extend-2D column-major approach (E2CMA) to reduce read access times from

external memory and thereby achieve approximately 60% reduction of access cycles.

E2CMA exploits horizontal and vertical common region in interpolation search window

between neighboring blocks to execute data-reuse operation. Because each 4x4 block needs

9x9 search windows to interpolate fractional pixels and word length is limited to 32 bits under

data bus, it requires three cycles to load nine pixels of one column into entry. Therefore, it

needs 27 cycles (3 x 9) to accomplish one 4x4 block interpolated in the worst case. The worst

case means that MB type is decoded as 4x4.

(a)

 41

C2 C6

C0

C1

C4

C5

C3 C7

Cycle 6

C2 C6 C10 C14

C0

C1

C4

C5

C8

C9

C12

C13

C3 C7 C11 C15

Cycle 8

(b)

(c)

 42

Figure 3.12: Luma component interpolation: (a) Interpolating block 4 and (b)

Interpolating block 3 (c) Interpolating block 6

(a)

Cycle 0

C0

C1

C2

C3

Cycle 1

C0

C1

(b)

Figure 3.13 Chroma component interpolation: (a) Interpolating 2x2-block 0 (b)

Interpolation 2x2-block 1

Some examples are given in Figure 3.12 (a)-(c) to illustrate the vertical and horizontal

data-reuse approach by E2CMA. The charcoal-gray circle indicates pixels have been stored in

buffer, and the light gray means pixels must be loaded from external frame memory. Figure

3.12 (a)-(c) depict three data-reuse cases: (a) horizontal data-reuse approach (b) vertical

data-reuse approach (c) horizontal and vertical data-reuse approach. The MB type assumes

16x16 in these cases. Firstly, the horizontal data-reuse approach is given for interpolating

block 4 in Figure 3.12 (a). The horizontal data-reuse approach is applied to content buffers for

 43

executing a content-switch operation. Pixels in columns 0-4 have been stored in content

buffers. Therefore, we only need to load pixels from external memory in column 5. After 12

cycles, 16 interpolated pixels in block 4 have been produced. The vertical data-reuse approach

is illustrated in Figure 3.12(b) for interpolating block 2. In block 2, upper six pixels in each

column have been shifted into Reuse-Register-File. Therefore, three lower pixels in each

column must be fetched from external memory. We require one cycle to fetch three lower

pixels from external memory and load upper six pixels from reused registers at the same time.

Nine cycles are needed in this case. Last case is that horizontal-vertical data-reuse approach is

shown in Figure 3.12(c). The least interpolating cycle for one block is 4 cycles for

horizontal-vertical data-reuse approach. Because all pixels in column 0-4 and upper six pixels

in column 6-9 is stored in content buffer and Reuse-Register File respectively, 4x4 block

interpolated can be accomplished after four cycles. All MB types can be applied by E2CMA

so that data-reuse utilization is increased excepting for MB type is 4 x 4,

Because of 4:2:0 chroma component and quarter precision of luma inter prediction,

chroma inter prediction can achieve eighth motion resolution. E2CMA can be applied for

chroma component interpolation as well. Similarly, for chroma component interpolation,

some examples are given as Figure 3.13 (a)-(b). Chroma inter prediction must process based

on 2 x 2 block and chroma interpolation search windows requires 3 x 3 pixels for each 2 x 2

block as shown in Figure 3.10 (b). For chroma component interpolation, block 0 of chroma

component is interpolated is shown as Figure 3.13 (a). In this case, data-reuse approach can

be not applied so that three cycles are required. Other case is shown in Figure 3.13 (b),

E2CMA is used so that two interpolation cycles are needed. From Figure 2.12 (d), for chroma

2 x 2 block including A, B, C and D, the fractional sample i whose precision is eighth point. A

reduction of required access cycles is 33% using E2CMA.

 44

Table 3.1 Analysis for different interpolating approach

To give more generic and platform independent analysis, we analyze requisite pixels per

MB for each interpolating approach. Table 3.1 lists required pixels per luma MB and chroma

MB for different interpolating approach. Assuming that each motion vector contains fractional

part, the best case has one motion vector and worst case has 16 motion vectors for one

macroblock. Although requisite pixels of each approach are the same in worst case, requisite

pixels of column major related approach are smaller than that of row major approach.

Although column major related approach takes the best effect than row major approach, it

requires additional synchronization buffer and degrades throughput due to different scan order

approach with that of residual decoder. As for Wang’s approach, few MB types can be

data-reuse such as direct, skip, 16x16 and 16x8. Although larger block size (skip, 16x16, 16x8)

occupies up to approximately 50% ~ 90% proportion depends on bit rate. For higher bit rate,

improvement of Wang’s method is limited. Oppositely, E2CMA can be applied all MB type

except for MB type is 4x4. Therefore, the performance is better than previous approach.

3.3.2 Combined Luma/Chroma Interpolation Architecture

In this subsection, several different works related to interpolator designs of which have

been published will be introduced. From above discussion, reviewing the fractional

 45

interpolation for H.264/AVC in Figure 2.11, 6-tap FIR with (1, -5, 20, 20, -5, 1) coefficient

and bilinear filter are needed for half and quarter precision of luma component interpolation

in H.264/AVC video decoder. For cost and PSNR loss acceptable consideration, Lie’s 4-tap

diagonal FIR filter and three-stage recursive algorithm is proposed in [21], and Chen’s HVBi,

bilinear filter in both horizontal and vertical direction, and VBi, vertical bilinear horizontal

FIR, schemes are also introduced in [22]. However, when frame sequence is very long for

supporting B-slices, such as I + 9 P +4B, the propagation of PSNR loss may cause the heavy

degradation of video quality, especially in high definition frame format such as 1080HD.

Oppositely, considering PSNR losses and standard-compatible design, Chien’s [23] and He’s

[24] have proposed adder-chain and adder-tree based design respectively. These two types

which depicted in Figure 3.14 are categorized into 1-D linear filter design. For cost

consideration, multipliers can be simplified to adders and shifters. 1-D linear interpolator is

suitable for Q-CIF video sequence in mobile applications; however, as for HDTV video

sequence, throughput is a very important issue and long execution cycles in 1-D linear design

may lead to poor throughput. As for another choice, Chien’s [23] also proposed separate 1-D

design that separates horizontal and vertical interpolation and processes in parallel based on 4

x 4 block size. This design induces better throughput, although it may need more storages.

Figure 3.15 shows separate 1-D interpolator design without processing in a parallel way.

Adder network

Adder network

Adder tree

(a) (b)

Figure 3.14 (a) Adder-chain based [23] (b) Adder-tree based [24] 1-D linear interpolator

design

 46

Table 3.2 Comparison of execution cycles for different architectures

Adder-chain based 1-D[10]

Adder-tree based 1-D[10]

Separate 1-D (no parallel) [10]

Separate 1-D (2 parallels)

Separate 1-D (4 parallels) [10]

57

Interpolation Architecture Interpolating cycles

52

36

18

9

FI
R

F IR

FIR

FIR

Figure 3.15 Separate 1-D interpolator design (no parallel)

Assuming that all 9 x 9 interpolated data for each 4 x 4 block are ready and they can be

accessed randomly, Table 3.2 lists the execution cycles for different architectures. For

adder-chain based 1-D design, the first result outputs after the 6th clock cycle. Two

adder-networks are used to overlap each row inputs and eliminate the latency overhead except

the first one. The total number of cycles required is 57 (5 + 4 x 9 + 4 x 4) whose detailed

 47

operation is described in Chien’s. For adder-tree based 1-D design, the row data can be loaded

in a parallel fashion without shift one-by-one, hence the latency overhead does not exist and

total numbers of cycles are 52 (4 x 9 + 4 x 4). As for separate 1-D design, the first data

outputs at the 6th clock cycle and the following 3 data generates after 3 clock cycles.

Therefore, the separate 1-D design without using parallel architectures needs 36 ((6 + 3) x 4)

cycles to complete interpolation of one 4 x 4 block. Wang’s [10] presented a separate 1-D

with 4 parallel designs and the required content buffers are 6 x 9 pixels for 4-parallel design

shown in Figure 3.16. Similarly, separate 1-D design with 2 and 4 parallel requires 18 ((6 + 3)

x 2) and 9 (6 + 3) cycles respectively. In addition, 4-parallel separate 1-D architecture is best

selection due to smaller required execution cycles that can be hidden below data-read cycles

from frame memory. Wang’s architecture which uses separate 1-D with 4-parallel can obtain

smaller execution cycles for one 4 x 4-block, but the architecture can be simplified to obtain

interpolating pixels by smaller cycles for reducing required bandwidth.

 48

Figure 3.16 4-parallel separate 1-D luma interpolator with content buffer

From previous discussion, we propose a combined luma/chroma interpolator (CLCI)

architecture for reducing cost and complexity of interpolator, which can support E2CMA. The

proposed CLCI is based on separated 1-D with 4-parallel interpolator architecture. We

decompose 2-D FIR interpolator into vertical and horizontal 1-D FIR interpolators. For the

luma interpolation, the half samples are interpolated by performing a 6-tap filter, and quarter

samples are produced by using a bilinear filter. Considering the chroma interpolation, 1/8

samples are obtained by CLCI without requiring additional interpolators. The CLCI shown in

Figure 3.17 consists of four CLCI units, bilinear, Reused-Register-File and input entry units.

According to the data-reuse status, input entry unit selects and packs the pixels loaded from

 49

input buffers or Reused-Register-File to CLCI units.

Not only luma but also chroma interpolation can be processed by the proposed CLCI.

When a luma block is interpolated, all CLCI units are invoked; otherwise, CLCI unit 0-1 is

applied and transmits to pixels output without bilinear filter. Because CLCI unit 0-1 is needed

to interpolate chroma component, Combined FIRs (C-FIRs) of CLCI unit 2-3 are replaced by

FIR. The sizes of Reused-Register-File for vertical data-reuse are 21x48 bits. Pixels are

loaded from input buffers to transmit into input entry units and are shifted into

Reuse-Register-File at the same time. For horizontal data-reuse approach, content buffers of

CLCI only are 48 (6 x 8) less than Wang’ design so as to save gate count.

Furthermore, each CLCI unit is shown in Figure 3.18. CLCI unit 0-1 includes 6 entries, 3

Combined FIRs(C-FIR), 6 integral elements and 6 fractional elements. CLCI unit 2-3 includes

the same elements as CLCI unit 0-1 excepting for C-FIRs are replaced by FIR. Each element

consists of a shift buffer and a content buffer that stores pixels for horizontal data-reuse

approach.

 50

In
pu

t e
nt

ry
 u

ni
t *

8

32
 b

its

Figure 3.17 Combined luma/chroma interpolator architecture

Considering the horizontal data-reuse approach, shift buffers and content buffers are

exchanged each other by one cycle for content switch operations. Input of integer element is

selected by the multiplexer according to quarter fractions of motion vectors. For the luma

interpolation, half samples are derived from C-FIR after 6 shifting cycles. For the chroma

interpolation, 1/8 samples are obtained after 2 cycles due to 2x2 interpolation search regions

in one chroma pixel.

 51

Figure 3.18 Combined luma/chroma interpolator unit

As for luma and chroma interpolator for H.264/AVC described as above, the adder of

luma and chroma component interpolation can be shared as well. Figure 3.19 shows the

proposed Combined FIR filter (C-FIR) which can combine luma with chroma interpolating

data paths. Because the chroma interpolation is based on 2x2 block processes, only two

combined FIR filters are required to obtain 1/8 samples in CLCI units 0-1 respectively. By the

CLCI architecture, the chroma interpolator can be combined into the luma interpolator,

reducing additional hardware cost. The cost penalty of C-FIR design is MUX x 2, shifter x 3

and bitwise AND x 6 when compared with the FIR design proposed in Chen’s [22]. The

decoding path of luma FIR filter and chroma filter are illustrated in Figure 3.20.

 52

<< 2

<< 1

<< 2

<< 3

Chroma
Output

Luma
Output

Bitwise
AND

Figure 3.19 Combined luma/chroma FIR.

Figure 3.20 (a)Process path for luma component interpolation (b) Process path for

chroma component interpolation

 53

3.3.3 Simulation Results

We use five CIF resolution videos as our test sequence and adopt main profile as the

simulated platform. The decoding order is fixed at I-B-B-P-B-B-P-B-B sequences. We assume

all MB are fractional, which means that all MB need to be interpolated. The proposed

bandwidth-efficient motion compensation architecture reduces the data refresh probability. In

other words, data-reuse probability can be increased. Only a 4x4-block which occupies 4%

can not be reused by using our proposal. Table 3.3 lists simulation results at 100MHz using

E2CMA at 30fps, and the bit rate is 512Kbps. The improvement of our proposal is up to 60%.

Besides, the required bandwidth is painted in Figure 3.21. From Figure 3.21, the E2CMA may

obtain smaller required bandwidth so as to reduce bandwidth over external BUS.

Table 3.3 Simulation results of required memory bandwidth (MByte/s) per MB by using

extend-2D column-major approach.

 54

53.22 53.22 53.22 53.22 53.22

43.2 42.6 42.7 43.6 41.9

28.7
25.5

27.4
31.2

21.2

0

10

20

30

40

50

60

70

80

bus foreman carphone football akiyo

Test sequence

re
qu

ir
ed

 b
an

dw
id

th
 (

M
B

yt
es

/s
)

row-major approach

column-major approach

E2CMA

Figure 3.21 Required bandwidth for different data-reuse approach

Furthermore, we have implemented and synthesized the CLCI hardware using Cadence’s

RTL Compiler with UMC 0.18um cell library. Gate count of the proposed CLCI architecture

is 44.6% less than Wang’s design which includes 6-tap separate-1D luma filter and 1/8

chroma filter. We only use 4 C-FIR’s, 8 FIR’s and 8 input entries to perform luma and chroma

interpolations.

Total gate counts of the proposed motion compensator are 83.5K. The gate count

contains motion vector generator with direct mode coding, interpolator with

Reuse-Register-File, and weighted prediction module. Considering an interpolator part, a

comparison with other previous designs is shown in Table 3.4. The reuse-register file can be

replaced by SRAM to reduce gate count. The gate count of interpolator core without

reuse-register-file is 12.5k as table 3.4. The gate count of proposed combined luma/chroma

interpolator can be reduced about 38% comparing with related work. In 30fps 1080HD

 55

(1920x1088) format, proposed design can be operated at 100MHz for a real-time system.

Table 3.4 Comparison of interpolator architecture with other designs.

3.4 Weighted Prediction

A weighted prediction (WP) is supported in the Main profile of the H.264 standard. The

weighted prediction locates the sequence parameter set for P and B slices. There are two WP

modes: an explicit mode is supported in P and B slices, and an implicit mode only supports B

slices. In the explicit mode, these WP parameters may be coded in the slice header. In implicit

modes, these parameters are derived based on the relative distance of the current picture and

its reference pictures.

We implement a division-free WP module in our motion compensation architecture. We

need one cycle to perform WP operations. The WP architecture is shown in Figure 3.22.

When the WP is enabled, interpolated pixels are loaded into explicit weighted or implicit

prediction. After applying the weighted prediction, pixels are derived by adding residual data.

 56

Figure 3.22 A weighted prediction block diagram

3.5 Summary

In this chapter, we present bandwidth-efficient motion compensation architecture for

HDTV H.264 decoder and support 1080HD 30fps@level4.0 format. To overcome the

tremendous data access from external frame memories, the proposed data reuse technique for

fractional motion compensation can efficiently reduce the requisite reference data in the high

motion precision for the advanced video standard, H.264/AVC. An Extend-2D column major

approach is presented, which reduces 50%-60% bandwidth with B-slices under external data

BUS. The proposal implements all advanced features including MV generators with direct

modes, combined luma/chroma interpolator, and weighted prediction of H.264/AVC main

 57

profile. As for sharing design issue for luma and chroma component, proposed CLCI

architecture saves 44 % gate count compared with luma and chroma separate design. Besides,

the CLCI architecture is also suitable for high throughput HDTV video decoder. Altogether,

memory usage and bandwidth are optimized by our proposed design.

 58

Chapter 4
Bandwidth-Efficient SDRAM Memory
Controller

In genera, video decoder should deal with large amount of data due to a real-time

high-quality decoding demand. Specifically, bi-prediction requires more data size than

single-prediction to store several decoded reference frames. In addition, motion compensation

which supports direct mode coding has to store motion vector of fist list-1frame called as

co-located motion vector to predict motion vector of current macroblock. Therefore, not only

reference frame pixels but also co-located motion vectors need large storage. The off-chip

memory is required to store large data including reference frame pixels and co-located motion

vectors, but the speed of memory is slow. Thus, the decoder system performance strongly

depends on the memory bandwidth between motion compensation module and external

memory. To meet this requirement, high bandwidth and large size memory are its penalties.

In order to improve memory bandwidth, DRAM families such as synchronous DRAM

(SDRAM) is now widely used in high-performance video systems. For example, SDRAM has

two key and special features: burst access mode and multiple bank architecture. The burst

access mode makes it possible to access a number of data by changing only column addresses,

and the multiple bank architecture can hide memory cycles needed for row-activations and

precharge by accessing different banks alternatively. Since the number of additional cycles

needed for row changes is considerable, we have to reduce the number of row changes or hide

these cycles by using the high-performance features of SDRAM. This observation motivated

 59

us to research an array address-translation technique to minimize the number of overheads

cycles needed for row changes. For system requirement equip high performance, SDRAM is

suitable prior to store large amount of video data in HDTV system. SDRAM has advantage

that is large size, but memory overhead become high. Therefore, data would be transmitted

during limited access time under external BUS. Hence, we can focus on reduction of memory

access latency to obtain less execution cycles. Besides, limited access time and bandwidth is

bottleneck of real-time system as HDTV system. For improving bandwidth and access time in

HDTV system, we propose bandwidth-efficient memory controller in this paper.

In this chapter, we propose SDRAM memory-controller for HDTV H.264 main profile

decoder to increase efficiency of data transmission. Firstly, we briefly introduce the modern

SDRAM architecture and basic operations in section 4.1.

4.1 SDRAM Module Characteristics

In this section, we first introduce the SDRAM module characteristics and its basic

concept.

4.1.1 Basic Concept of SDRAM

Figure 4.1 Modern SDRAM architecture

 60

A simplified architecture of a 4-bank modern SDRAM is shown in Figure 4.1. It is

basically a three-dimensional architecture with dimensions of bank, row, and column. Four

banks share the address and command buses, and each bank has individual row decoder, sense

amplifier, and column decoder, while data and address buses of SDRAM are shared by all

banks. The mode register stores several SDRAM operation modes by user-configured process,

which includes burst length (BL), Column address strobe (CAS) Latency (CL) or burst type

(sequential / interleave). The content of mode register updates according to command issued

from address buses. A complete memory access operation contains three steps including row

activation, column access, and pre-charge. These commands are briefly introduced as follows.

 PRECHARGE COMMAND

The precharge command is used to deactivate the open row in a particular bank or the

open row in all banks. The precharge command requires the use of SDRAM address bus to

indicate which bank shall be precharged. In address bus, input A10 determines whether one or

all banks are to be precharged, and in the case where only one bank is to be precharged, inputs

BA0 and BA1 select the required bank. When all banks are to be precharged, inputs BA0 and

BA1 are treated as “Don’t Care”. While processing the precharge command, the addressed

bank is not allowed to accept any other commands. Bank(s) will be available after

PRECHARGE command. The command latency is called tRP. Figure 4.2 (a) indicates

SDRAM resource utilization while a precharge command is issued.

 ACTIVE COMMAND

The active command is used to open (or activate) a row in a particular bank for the

subsequent column access. The value on the BA0 and BA1 inputs selects the bank, and the

address provided on inputs A0 -A11 selects the row. This row remains active (or open) for

accesses until a precharge command is issued to the indicated bank. To issue an active

command, the address bus must be used to select the bank and the row which will be activated.

After accepting the active command, SDRAM needs a latency called tRCD to accomplish the

 61

command and no other banks are permissible due to the parallel processing capability of each

bank. Figure 4.2(b) indicates SDRAM resource utilization while an active command is issued.

 COLUMN ACCESS COMMAND (READ or WRITE)

The column access command is used to initiate a burst read/write access from/to an

active row. The value on the BA0 and BA1 inputs selects the bank, and the address provided

on inputs A0-A8 selects the starting column location for read/write command. The value on

inputs A10 determines whether or not auto precharge is used. If auto precharge is not selected,

the row will remain open for subsequent accesses. Once a row of a particular bank has been

activated, the column access command can be issued to read/write data from/to SDRAM.

Figure 4.2 (c) and (d) indicate the SDRAM resource utilization while read and write column

accesses are issued. To issue either a read or write column access command, SDRAM address

bus is required to indicate the bank and the column of the open row in that bank. For a write

column access, SDRAM data bus is needed to transfer write data at the time where the

command is issued until whole burst transfer is over. On the other hand, SDRAM data bus

occupied several cycles called CAS latency after the read column access is registered for the

same period as the write column access.

 62

NOP NOPNOPWRITE

DATA0 DATA1 DATA2 DATA3

COLUMN

BANK

BL = 4

NOP

Address
Bank

Command

Cycle

NOPPRE

tRP

A10

BANK

NOP

Address
Bank

Command

Cycle

NOPACT

tRCD

ROW

BANK

Data Data

Address

Bank

Command

Cycle

Data

NOP NOPNOPREAD

DATA0 DATA1 DATA2 DATA3

COLUMN

BANK

BL = 4

Address

Bank

Command

Cycle

Data

NOPNOP NOP

CL = 3

(a) (b)

(c) (d)

T2T1T0T2T1T0

T2T1 T6T5T4T3T0T2T1 T3T0

Figure 4.2 SDRAM resource utilization of several commands: (a) PRECHARGE (b)

ACTIVE (c) WRITE (d) READ

IDLE ACTIVE

precharge

row active

column
access

Figure 4.3 Simplified bank state diagram

These number of commands issued depend on the addressed bank states. The simplified

bank state diagram is depicted in Figure 4.3. Precharge command must be issued in the initial

status. If an access is addressed to a particular bank in the IDLE state, a row activation

 63

command with the particular bank address is sent to open (or active) one row in a particular

bank firstly and the designated row address is issued from the address bus. The operation of

this command is transmitting the row data into the row buffer of the selected bank and row

active operation needs an active latency called tRCD (ACTIVE to READ or WRITE delay) to

accomplish this operation. Then, column access command is employed to access sequential

data or single data according to the defining burst length and burst type in the mode register.

The mode register is used to define the specific mode of operation of the SDRAM. This mode

includes the selection of a burst length, a burst type, CAS latency, operating mode, and a write

burst mode. The mode can be programmed by LOAD MODE REGISTER command in the

initial status and will retain the stored information until it is programmed again or the device

loses power. The read/write data are accessed thorough the same data bus. For read operation,

the valid data-out element from the starting column address will be available following the

CAS latency after the READ command, as shown in Figure 4.4. For write operation, the first

valid data-in element is coincident with the WRITE command, as shown in Figure 4.5. Finally,

a precharge command must be issued before opening a different row in the same bank,

whereas a precharge and active command need not to be issued if the following access still in

the same row and bank. After precharge command is issued, the selected bank cannot be

accessed during the precharge latency named tRP (PRECHARGE command period.)

Figure 4.4 Burst read operation with CasLatency=3 and BurstLength=4.

 64

Figure 4.5 Burst write operation with CasLatency=3 and BurstLength=4.

4.1.2 Access Latency Analysis

Lee et al. discussed different access latencies of different access statuses in [30];

however, detailed classification is required for exquisite access command scheduling. The

memory behavior model used in our design is Micron’s MT48LC2M32B2P-5 512Mb

SDRAM [27]. Table 4.1 lists three different allowable maximum operating frequencies

provided in this SDRAM according to the CAS latency stored in mode registers. Obviously,

when setting CAS latency to 3, the SDRAM can provide higher operating frequency.

However, higher operating frequency induces more stall cycles which is demanded for each

read column access. Therefore, the CAS latency should be set carefully for different suitable

applications. For instance, 50 Mhz with CL=1 is enough for Q-CIF format in mobile device

while 166 Mhz with CL=3 is required for large frame size format such as SDTV or HDTV

format.

 65

Table 4.1 CAS latency

READ DATANOPACTNOPPRERow miss & Bank miss

READ DATANOPACTNOPPRERow miss & Bank hit

Row hit & Bank miss

Row hit & Bank hit READ

READNOPACT

NOP

NOP

NOP

NOP

DATANOPACTNOPPRERow miss & Bank miss

DATANOPACTNOPPRERow miss & Bank hit

Row hit & Bank miss

Row hit & Bank hit DATA

DATANOPACT

WRITE

WRITE

WRITE

WRITE

(a)

(b)

tRP tRCD CL BL

DATA

DATA

tRP tRCD BL

Figure 4.6 Access latency for CL=2 (a) read access latency, (b) write access latency

 Figure 4.6 illustrates read/write access latency under different statuses when CAS

latency equals 2. Bank-hit with row-miss status means that the activated row in selected bank

is not identical to the incoming issued access command and it requires additional latency

(PRECHARGE + ACTIVE + CAS + NOPs) for read access and (PRECHARGE + ACTIVE +

NOPs) latency for write access. Bank-miss with row-miss status means that incoming bank

address is different from bank address for previous command and the selected row for the

incoming bank address is not activated. For this status, required latency and issued command

is the same as that of row-miss status. Bank-miss with row-hit status indicates that the

 66

incoming row has been activated in the previous command although the incoming bank is not

equal to the previous one. Bank-hit with row-hit status means that incoming address is

identical to the address of previous issued command. For these statuses, the column access

can be directly issued for sequential access and only read access leads to CAS latency. Based

on the above discussion, memory scheduling method can overlap the sequential

column-access commands and hide full or partial latencies to reduce redundant cycles.

Figure 4.7 (a) READ command with auto precharge, in the precharge period (tRP),

SDRAM cannot issue another command in the same bank (ex: bank 0). (b) READ

command without auto precharge, another command can be issued until the tRP is met.

 67

 SDRAM also supports another precharge method called auto precharge without

requiring an explicit precharge command. A PRECHARGE command of bank/row together

with READ/WRITE command is automatically performed upon completion of

READ/WRITE burst access. For the full-page burst mode, auto precharge does not apply.

Auto precharge ensures that the precharge is initiated at the earliest valid stage within a burst.

It is convenient for bank/row of the following data access is not the same as current data

access. Precharge command may be not issued by memory controller. As shown in Figure 4.7,

in the precharge period, it cannot issue another command to the same bank until the precharge

time (tRP) is completed. If the following command must active to the same bank, the overlap

scheduling is limited to this situation such that the following command can be issued only

until the completion of tRP period or reorder with the other command. For another

disadvantage induced by auto precharge, READ/WRITE command with auto precharge

indicates that SDRAM always de-active the selected bank at the end of a burst command

implicitly. If the following data access still issues the same bank, it must waste time to

re-active the same bank and lead to longer latency at the same time, and command issued is

flexible. Therefore, we select manual precharge (without auto precharge) rather than auto

precharge in our memory access interface design.

4.2 Memory Controller Organization

As the section 4.1, we introduced concept and limitation of SDRAM used. For most

multimedia application with external memory, data access may cause bottleneck of entire

video system. In H.264/AVC’s main profile specification, large data are accessed between

external memory and video core including pixels and motion vector. Pixels are accessed for

motion compensation, and motion vectors are transmitted for direct mode prediction. For

different data types, separate memory is applied by additional approach leading to lower

 68

memory utilization. In this section, we proposed bandwidth-efficient memory controller

organization to improve bandwidth under external bus efficiently. Our design can use unique

SDRAM to store all required data for supporting multiple reference pictures and data of

different type can be stored in same SDRAM. It is suitable to H.264/AVC main profile video

decoder. A suited data mapping is applied so that data arrangements in SDRAM are tight. In

section 4.2.1, we will show motion vector and frame pixels arrangement in SDRAM. For the

storage of multiple reference frames, we present a novel memory mapping to increase

memory utilization. Section 4.2.3 shows architecture of memory controller design, and will

introduce hardware of each module within proposed memory controller. Finally, a comparison

with previous designs related memory controller is made in section 4.2.4.

4.2.1 Memory Access Scheduling

The target of memory access scheduling is overlapping or reordering consecutive

SDRAM commands (PRECHARGE, ACTIVE, CAS, and READ/WRITE) to improve

bandwidth utilization and reduce access latency. Because the external access of video decoder

is a bandwidth-sensitive channel [30], memory access scheduler must compress and even

reorder SDRAM commands to achieve high bandwidth utilization. Considering the

read-access and write-access respectively, the required frequency of write-access has high

correlated with the ability of residual decoder in H.264 and the property of decoding bitstream,

while the required frequency of read density is as tight as possible. For high bit-rate video

sequence, the decoded bitstream contains more coefficients and higher precision of decoding

token that may induce more requisite decoding cycles. In this situation, the write-access

becomes less bandwidth-sensitive and the density of write access is not necessary very tight.

The poor design of residual decoder, de-blocking filter also affects the bandwidth utilization

of write access. Unlike the limitation of write access described above, read access needs high

density of access scheduling because of its high bandwidth-sensitive channel. Read requests

 69

are only sent by motion compensation, hence the bandwidth utilization of read access is

influenced by the memory scheduler design, data arrangement in SDRAM and the handshake

command scheme of motion compensation. The characteristics of write/read-access discussed

above are summarized in Table 4.3.

Figure 4.8 Two un-scheduling and scheduling read memory accesses for bank-miss and

row-hit

Considering read/write access from/to frame memories, the requirement of write-access

is low or mediate density depend on the capability of residual decoder, whereas motion

compensation requires high density of read-access. Therefore, we only concentrate on read

access and design a high-density scheduler for read-access and it must be also suitable for

write-access. Figure 4.9 shows an example of two unscheduled and scheduled read memory

accesses when occurring row miss at different banks. For the unscheduled read, We choose

(CL=2, BL=4) as an example, and then the unscheduled accesses takes 20 cycles to read eight

burst data, whereas the scheduled accesses only requires 14 cycles and eight burst data can be

sequential read. From the access latency discussion in section 4.1.2, the access command

without auto precharge can be classified into two types, one is long command (PRE + ACT +

CAS) and the other is short command (CAS), painted in Figure 4.5. Moreover, we consider

the latency after access scheduling under BL=1, 2, 4 situations illustrated in Figure 4.10 - 4.12

and summaries the induced latency under each situation in Table 4.2. Obviously, we can find

 70

that the worst latency is always located in row-miss situation. To reduce the access latency,

the command request ordering and data arrangement should follow the orientation of

minimizing the row-miss occurrence. The characteristics of READ and WRITE access are

summarized as Table 4.2.

Table 4.2 Characteristics of READ/WRITE access

4.2.2 Memory Arrangement

From the above discussion, the data arrangement in SDRAM should tend to the

minimization of row miss at the same bank because row miss status has to pay the longest

latency. Based on this concept, row-major arrangement is adopted in our design. There are

two kinds of data types, two arrangements are provided for co-located motion vector and

pixels. Because YUV format is 4:2:0, luma and chroma component is 16 x 16 and 8 x 8 size,

respectively. Therefore, the memory size of one 16 x 16 block require 384 bytes((16+8)*16).

Figure 4.9 (a) illustrates that the luma MB partition is dispersed to four banks, and Figure 4.9

(b) shows that memory access is a column major approach for each 4 x 4 block. The data

arrangement of Chroma block is shown as Figure 4.10. Because chroma block is one quarter

with luma block, memory size of one 4 x 4 luma block can contain four 2 x 2 chroma block.

Similar to luma block, the chroma block is partitioned into four banks. As shown in Figure

4.10, the Cb block and Cr block are placed in four banks simultaneously. Besides, co-located

motion vector where direct mode coding requires is stored into SDRAM. The motion vector

arrangement is considered for reducing miss rate of access. The co-located motion vector of

one MB is illustrated in Figure 4.11. One MB has to store four co-located motion vectors, that

 71

is, four motion vectors in one 8x8 MB can be predicted by one co-located motion vector. Each

co-located motion vector contains 20 bits, one co-located motion vector occupies one column

in SDRAM. The co-located motion vector can be stored in different banks according to

corresponding positions.

C
ol

um
n

0
C

ol
um

n
1

C
ol

um
n

2
C

ol
um

n
3

Figure 4.9 Luma block (a) one 16 x 16 block arrangement (b) one 4 x 4 block-0

arrangement for MB-0

Figure 4.10 Chroma block (a) one 8 x 8 block arrangement (b) one 4 x 4 block consist of

block 0-3 arrangement

 72

Figure 4.11 (a) Co-located motion vector allocation in frame (b) corresponding bank for

each 8x8 sub block.

Figure 4.12 The pixels arrangement of one frame are stored of SDRAM. The

arrangement of other banks is the same as bank0.

 73

MV0MV Row 0 …………………………

512 Column

MV Row m
Un-usage

MB 0

One 16x 16 MB

Bank0

Bank1

Bank2

Bank3

MV0 MV1

MV3MV2

MB0 MB1

MV0 MV0 MV0

MB2 MB3

MV0

MB n-1

Pixels block partition

Motion vectors
block partition

Y0 Y1 Y4 Y5

MV1 MV1 MV1

MV2 MV2 MV2

MV3 MV3 MV3

Luma block starting

Pixels Row m+1

Figure 4.13 The motion vector arrangement of one frame are stored of SDRAM. The

arrangement of other banks is the same as bank0.

Figure 4.12 and Figure 4.13 show the pixels arrangement and the motion vector

arrangement respectively in SDRAM for one frame, and the first MB is allocated in SDRAM.

The first partition of memory is fixed to store co-located motion vector. Other partitions are

used to store pixels. Each Frame can be partitioned into several MB-based row. For adopted

SDRAM, each row contains 16 luma MBs or 32 chroma MBs. The Y0, Y1, Y4, Y5 and C0 of

each Macroblock have to be stored in the corresponding location. Similarly, remaining pixels

of macroblock are mapped in other corresponding banks. In Figure 4.12, the luma and chroma

blocks are allocated sequentially into SDRAM. Due to decoding orders, luma block has to be

stored in SDRAM firstly. When all luma blocks have been allocated in SDRAM, chroma

block including Cb and Cr is stored in order. When frame size is small, each row (page) of

SDRAM can store multiple MB-based rows of frame. Otherwise, for large frame size like

SDTV or HDTV, each MB-based row may occupy several rows (pages) of SDRAM. The

advantage of this arrangement is that address generator needs not be modified according to

 74

different frame sizes. For another reason, the probability of row-miss occurrence is

considerably low. Obviously, it only occurs when data are located in row (page) boundary. As

for physical analysis, it will be shown later. Row x indicates to last row of luma block, and

chroma blocks are allocated in Row x+1. Row x+y+1 means last row of one frame is stored in

SDRAM. The definition of row x and y are variable depending on macroblock number of

different picture formats. The memory mapping of multiple reference pictures will be

introduced in the next section. The space of each frame which is stored into memory may be

dynamically allocated by our memory controller. From above discussion, we can observe that

some memory spaces are not used due to different macroblock numbers. The waste of space is

not to avoid because memory arrangement must keep regular. Fortunately, the proportion of

un-used space in SDRAM is less so that utilization of space is efficient.

4.2.3 Multiple Reference Prediction

H.264/AVC can support multiple reference pictures to current decoding macroblock

which can be predicted from bi-directional and different frames. When multiple reference

pictures are activated, decoder may store multiple frames into frame memory. In Wang’s

design [10], one SDRAM only stores one frame leading to poor utilization of SDRAM. For

increasing the utilization of memory, we may store all frames into unique SDRAM and use

shared data bus to access data. The data amount of different picture formats is shown in

Figure 4.14. When decoding 1080HD picture, one frame produces 25.2 Mbits for pixels and

0.6 Mbits for motion vectors. Therefore, for 512MB SDRAM, maximum frame numbers

which are stored into memory are 20. In other words, multiple reference pictures support 16

reference pictures for list0 and list1 respectively in 512MB SDRAM. In small format such as

CIF format, 1.2 Mbits is produced and multiple reference pictures can support maximum 16

reference frames for bi-directional pictures. Table 4.3 lists required memory size and memory

space utilization for different picture formats. We can observe that memory space utilization

 75

can be improved in higher resolution format. In other words, limited memory space can store

more pictures in SDRAM for multiple reference picture predictions. For instance, 512 MB

SDRAM can contain maximum 20 1080HD pictures.

0

5

10

15

20

25

30

QCIF CIF VGA 525SD 720p HD 1080HD

Picture format

D
at

a
am

ou
nt

 (
M

bi
ts

)

Figure 4.14 Data amount of one decoding frame for different picture format.

Table 4.3 Required memory size for different picture format supporting multiple

reference pictures set 16.

 76

4.2.4 Architecture of bandwidth-efficient Memory Controller

In this section, we show the block diagram of bandwidth-efficient memory controller

architecture for H.264/AVC in Figure 4.15. The dotted area between video decoder and

SDRAM is our proposed memory controller. The bandwidth-efficient memory controller

consists of the data buffer, command queue, bank controller, command arbiter, address

translator, and memory interface scheduler (MIS). Besides, a flexible address generator is

considered in our design, which prior to different modules of the video decoder. In

H.264/AVC, only motion compensation, de-blocking filter and direct coding units require

access data from/to external memory through memory controller. The direct coding unit reads

co-located motion vector to perform direct coding prediction. The motion compensation reads

pixels from SDRAM to interpolating current pixels. The de-blocking filter writes complete

pixels into SDRAM. Major units will be introduced sequentially as follows.

Figure 4.15 Architecture of bandwidth-efficient memory controller for H.264/AVC

 77

 Multiple-Channel Address Generator and scheduler

For H.264/AVC decoder in which more processing units (PUs) need to access SDRAM,

there are three main PUs to require memory read/write accesses. Generally, single channel

memory controller design is employed in most applications, the pressure of area and cost

leads to designing a single, shared off-chip SDRAM. The connection approach to sharing a

SDRAM has to carefully decide because it is highly related to SDRAM efficiency. Traditional

memory controllers are often connected by shared-buses. Although area and cost may be

economic, the shared-bus makes the SDRAM hard to provide sufficient SDRAM performance

for the increasingly complicated applications. Another issue is how to perform different

SDRAM requirements for latency and bandwidth of PUs in the decoder system. In addition to

offering better performance for H.264/AVC decoder compared to single-channel SDRAM

controller, multiple-channel SDRAM controllers also have the capability to schedule memory

accesses from different channels to bit system requirement for SDRAM performance.

Figure 4.16 Multi-channel address generator

 78

Since the memory controller can be applied to different modules in H.264/AVC decoder,

we proposed multiple channels address generator and scheduler (MCAGS) to connect

different PUs individually. The MCAGS can be used for several modules required. In

H.264/AVC decoder, the MCAGS enables 3 channels for motion compensation, de-blocking

filter, and direct mode coding module, which is shown in Figure 4.16. The MCAGS must to

be provided to produce logical address prior to the memory controller. Due to different data

types in motion compensation and direct mode coding, the MCAGS generates two kinds of

logical addresses including pixels and motion vector addresses. The individual address is

calculated according to the output ordering of the module. The output of address generator is

sent into dynamic logical to physical address translator in memory controller after scheduling.

 Dynamic Logical to Physical Address Translator

For dynamic logical to physical address translator, the goal is that logical address is

transferred to physical address (Row, Bank, Column) in SDRAM. The motion vector and the

frame pixels are placed in different allocations, and the motion vector always allocated in the

first partition. According to physical addresses, memory controller may read/write data in

corresponding location.

 Command and address Queue

Due to long latency of SDRAM accesses, the module which issues a request may waste

many cycles to wait data access. Therefore, a design avoids that decoder takes many cycles

for waiting. Considering this reason, we design command queue to store incoming command

including READ and WRITE commands from the decoder. The command queue can contain

7 READ or WRITE commands and sequential issue command into memory controller

depending on incoming priorities. The command queue is a first-in-first-out structure

according incoming priorities. The advantage of command queues is that the module needs

one cycle to issue commands. Then, the module can do other processes but don’t waste

additional cycles to wait data.

 79

R
ow

 a
dd

r

C
ol

um
n

 a
dd

r

B
an

k
ad

dr

op
er

at
io

n

M
od

e
re

se
t

Figure 4.17 Command and address queue and access status detection

Besides, the address queue is used to hold incoming addresses including (Bank, Row,

Column), while a command queue is used to hold incoming commands. The decoder sends

request and address to memory access controller when the status of read address queue is not

full. The “full” signals reflect the status of this queue. The proposed address queue must also

compare the incoming and the previous address command to check row-hit and bank-hit

situations.

 80

 Bank Controller

 To fully utilize the SDRAM bandwidth and apply memory scheduling, it is necessary

that the memory interface can process accesses addressed to different banks in a parallel way.

This work is performed by the bank controllers and the master bank controller together. The

bank controller is illustrated as Figure 4.18.

Bank-0
Controller

Bank-1
Controller

Bank-2
Controller

Bank-3
Controller

Scalable
Timing Setup

Unit

Master
Bank

Controller

Access
command

Access
command

Access
command

Access
command

Issued
command

into
scheduler

Command
below bank0

Command
below bank1

Command
below bank2

Command
below bank3

Figure 4.18 The structure of bank controllers, master bank controller and timing unit.

Each internal bank of the SDRAM is allocated an individual bank controller to process

accesses that are addressed to the bank. The master bank controller assigns the incoming

address commands to suitable bank controller according to the access status. Scalable timing

unit records all kinds of command latency such as burst length, tRP (precharge period), tRCD

(ACTIVE to READ or WRITE), and so on. The parameter of scalable timing unit is defined

by user in the initial setup. After accepting an access from the input port, the bank controllers

generate sequential access commands according to the burst length and latency defined in a

 81

scalable timing unit. These access commands are collected by master bank controller, which

can issue the proper command to SDRAM. Read data buffer is used to hold sequential

received read data for motion compensation. Write data buffer is used to hold the length of

burst data. The arbiter allocates write / read data and command flow to / from external

SDRAM memories according to the access operation.

Unlike traditional SDRAM access controller design containing various “WAIT” states,

Lee’s [30] proposed a configurable shared-state FSM Design. This design merges all

numerous “WAIT” state into single NOP stage. After applying NOP_count and NOP_code

status registers, the FSM becomes flexible to parameterize the command latency without

redesign FSM. We design our access FSM based on this concept. The interface connection

between memory scheduler and bank controller is depicted in Figure 4.17.

Each bank requires individual access FSM to control command process, and to wait until

the previous access command returns to IDLE state. As for bank-miss (at the same row or not)

situations, memory interface scheduler collects the access commands for the corresponding

bank controllers and then sends to arbiter at the suitable time. Besides the access FSM, each

bank controller needs a row address register to record the activated row. By comparing

incoming commands with row address registers for each bank controller, the bank-miss with

row-hit or bank-miss with row-miss status can be detected.

 Memory Interface Access Scheduler

The memory interface access scheduler allocates and overlaps successive commands

according to access status produced by status detection as Figure 4.17 shows. The memory

interface access scheduler can perform scheduling with READ and WRITE operation. In brief,

double access FSMs for individual bank controller can handle access conflict at the same

bank, while master bank controller is responsible for access overlapping between different

banks. After scheduling SDRAM access commands, the bus utilization can be raised

efficiently; meanwhile the throughput of the entire video decoder can be improved. The

 82

arbiter allocates write / read data and command flow to / from external SDRAM memories

according to the access operation. Due to multiple reference picture supported, field list index

controller is required to address frame start point.

4.3 Simulation Results

Considering system level analysis on decoder, memory controller, and external memory

depicted in Figure 4.19, because decoder and memory controller are both in operation and

data transmission only during the period of reading reference data, we only have to analyze

the data transfer in this period.

Figure 4.19 System level analysis relation

Before going into detail of the following analysis, we define the following equations to

measure the performance of data transfer on the bus.

of bus cycles required by Memory interface # of 4x4 sub block # of frame
4x4 sub block frame secBus Utilization # of bus cycles available # of 4x4 sub block # of frame
4x4 sub block frame sec

× ×
=

× ×

 (4.1)

 83

of data required by decoder # of 4x4 sub block # of frame
4x4 sub block frame secData Usage # of data available from Memory interface # of 4x4 sub block # of frame
4x4 sub block frame sec

× ×
=

× ×
 (4.2)

Data Utilization Bus Utilization Data Usage= × (4.3)

Based on the assumption of the data bus is only provided for unique frame and mv

memory, higher bus utilization induces better throughput for our video decoder. The data

usage is correlated to the burst length and required window size between decoder and memory

controller. Hence, data usage can be treated as the proportion of required data for decoder

over the available data from SDRAM controller. In other words, the data usage is related to

burst length in memory setup. To explain data usage clearly, considering 9 x 9 interpolation

window of a 4 x 4 block in H.264 fractional motion compensation, an example of the fetching

window for four different burst lengths is illustrated as Figure 4.20. Fetching window is the

total pixels that are required to be read from SDRAM controller. Since the data bus width is

limited as 4-pixel (32 bits), the height of fetching window must be 12-pixel that is a multiple

of 4-pixel when burst length is 4. Similarly, the width of other fetching window must be the

multiple number of the burst length. Accordingly, among these burst length modes, the data

usage is the poorest when the selected burst length is 4. From equation (4.3), data utilization

is the multiplication of bus utilization and data usage. Therefore, the data utilization can be

considered as the required data proportion in decoder over the allowable data transmission of

the external bus. Higher data utilization means that we can get better throughput and less

latency for the entire video decoder performance.

 84

1210

9 x 9

4x4

9 x 9 9 x 9

12 1212

9

Fetching window

9 x 9 Interpolation window

4 x 4 block

4x4 4x4

BL=1 BL=2 BL=4

Figure 4.20 Fetching windows of 4x4 block between different burst length

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4
Burst Length

P
er

ce
n

ta
g

e
(%

)

bus utilization data usage
data utilization

Figure 4.21 Unscheduled Bus utilization, Data usage and Data utilization for different

burst length in memory

 85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4
Burst Length

P
er

ce
n

ta
g

e
(%

)
bus utilization data usage
data utilization

Figure 4.22 Scheduled Bus utilization, Data usage and Data utilization for different

burst length in memory.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Un-scheduling Scheduling

P
er

ce
nt

ag
e

(%
)

bus utilization
data usage
data utilization

Figure 4.23 The data utilization between un-scheduling and scheduling

 86

0

100

200

300

400

500

600

700

1 2 4

Burst Length

A
v

er
ag

e
cy

cl
es

 p
er

 M
B

Column major ISSCC [9]

E2CMA E2CMA + Scheduling

Figure 4.24 Average access cycles per MB between different burst length for access

under BUS.

Figure 4.21 and 4.22 shows the unscheduled and scheduled system level analysis of the

criteria (4.1) ~ (4.3). Obviously, the longer burst length provides higher bus utilization

instinctively because the short access cycles are required for the more amount of fetching data.

After scheduling, since longer read burst cycles can provides long overlapping period for the

successive access commands, for instance, burst length = 4 has the highest bus utilization.

Although burst length = 4 reflects the highest bus utilization, the lowest data usage leads that

the data utilization become the lowest among these burst modes. The data usage is influenced

extremely due to different amount of fetching windows among different burst length modes.

Considering better data utilization for decoder, Burst length = 1 mode is the better choices on

the high-throughput video decoding system. The Figure 4.23 shows the data utilization

between un-scheduling and scheduling. Obviously, the bus utilization can be improved about

90% using memory scheduling. Therefore, the data utilization can be improved efficiently.

For H.264/AVC HDTV decoder, the average execution cycles per P_MB and B_MB

 87

within 1080HD sequence at bit rate is 614Kbit/s environment for comparing different

data-reuse approach is depicted in Figure 4.24. After inducing data reuse technique, E2CMA

method, mentioned in Chapter 3, the execution cycles can reaches 100 ~ 150 cycles

approximately. After memory scheduling, the execution cycles with E2CMA approach can be

reduced about 150 ~ 200 cycles again. Comparing ref [9], the execution cycles per P_MB and

B_MB can tremendously reduce up to 55 %. Based on our decoding system, the raise of bus

utilization and reduction of access latency reduce the required execution cycles per P_MB and

B_MB. Accordingly, it can improve throughput of the entire video decoder because the

computation time of motion compensation dominates the video decoder especially in

H.264/AVC decoder. The bandwidth of memory access among different bit rate is depicted as

Figure 4.25. The size of test sequence is 1080HD format, and the burst length within SDRAM

is defined as 4. The bandwidth which is proposed by our proposed data reuse approach is

better than other approach, especially at high bit-rate. Furthermore, E2CMA with memory

scheduling technique is applied so that bandwidth can be further improved. Therefore, the

bandwidth of memory access can be efficiently improved by out proposed data reuse

approach. Besides, the throughput of entire video decoder working at 100MHz is shown as

Figure 4.26. For supporting high resolution such as 1080HD, the system specification with

level 4.0 has to be supported by video decoder. The throughput of decoder which applies

E2CMA and memory scheduling is double than the one apply previous data-reuse approach.

The decoder which applies Column major or Ref. [9] may be not arrive specification at level

4.0 in H.264/AVC standard, especially in the high bit-rate environment. That is, sequences

with 1080HD format can be not decoded in a real-time system. For supporting higher

resolution sequence such as 1080HD, the E2CMA and memory scheduling technique is

suitable for HDTV decoder in real-time system.

 88

0

50

100

150

200

250

300

350

400

450

8.5 9.324 11.07 12.981 15.373 18.927 22.929
Bit Rate (Mbits/s)

B
an

dw
id

th
 (

M
B

yt
es

/s
)

Column Major Ref. [9]
E2CMA E2CMA + scheduling

Figure 4.25 The bandwidth of memory access under external BUS among different

bit-rate

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

0 10 20 30 40 50 60 70 80 90 100

Bit Rate (Mbits/s)

Throughput

(MB/s)

Column Major Level 4.0

Ref. [9] E2CMA + scheduling

Figure 4.26 The throughput of motion compensation for different data-reuse approach

when operating frequency is 100Mhz.

 89

4.4 Summary

In the applications requiring high performance SDRAM subsystem, any bandwidth loss

may result in a system failure. For H.264/AVC decoder with main profile, the effect is the

critical issue. Hence, the memory controller must be carefully designed to prevent any

possible bandwidth loss. For above reason, we proposed a bandwidth-efficient memory

controller that build-in device on a video decoder, and can be supported in different modules

of H.264/AVC decoder. The proposed memory controller can deals with dual data type:

motion vector and pixels. Allowing users to configure access mode for each SDRAM bank

also gives more flexibility. We not only use the memory interface scheduler to do scheduling

but also adopt the efficiently data arrangement to reduce the miss rate, and to increase

utilization of memory space. From a system level analysis, we can observe that the bus

utilization and access latency can be improved to 90%. The bandwidth of memory access

between decoder and external memory can be improved as 50% approximately. The

throughput of decoder can conform to system specification at level 4.0, especially working at

high bit-rate.

 90

Chapter 5
Chip Implementation

5.1 Chip Specification

Table 5.1 H.264/AVC main profile decoder specification for motion compensation

Table 5.1 lists the specification of our bandwidth-efficient motion compensation

architecture for H.264 HDTV decoder. After synthesis on Cadence RTL complier using UMC

0.13 um COMS technology, total gate count is 557730 (including embedded SRAM) and the

gate count of each component is listed for video decoder in table 5.2. The Die size of H.264

 91

decoder is 3100 mm x 3100mm. Table 5.3 lists on/off chip memory used on each module in

our design. The chip photo of H.264 decoder is illustrated as Figure 5.1. The average power

consumption of system is 50mW approximately. Furthermore, about synthesis results of our

proposed motion compensation and memory controller, the power consumption of motion

compensation is 9.53mW and the power consumption of memory controller is 3.9mW at

100MHz, the gate count is 83515 and 8584 for motion compensation and memory controller

respectively.

Table 5.2 Synthesis results of H.264/AVC’s main profile decoder including SRAM

 92

Table 5.3 On/Off-Chip memory size for different module in H.264 main profile decoder

C

A
V

L
C

Figure 5.1 CHIP photo for H.264/AVC main profile decoder

 93

Chapter 6
Conclusion

In this thesis, we present a bandwidth-efficient motion compensation memory controller

organization for H.264 HDTV decoder and support 1080HD 30fps@L4 high-quality format.

The proposed motion compensation engine realizes all advanced features including MV

generators with direct modes, combined luma/chroma interpolator, and weighted prediction of

H.264/AVC main profile. Concerning the design of interpolator, 4-parallel separate 1-D

architecture gives the most space on high throughput video decoder compared with other

architectures proposed. An Extend-2D column major approach is presented, and the proposed

data reuse technique for fraction motion compensation introduces content buffer,

content-swap operation and register-file shifting attached on our interpolator design. This

design improves 50%-60% bandwidth with B-slices under external data BUS. Additionally, a

combined luma/chroma interpolator is proposed in order to save area, which achieves

approximately 44% of cost reduction. Altogether, memory usage and bandwidth are optimized

by our proposed design.

Besides, the decoder system bottleneck resulted from the performance limitation of the

off-chip SDRAM subsystem leads system designers to put more efforts on SDRAM efficiency.

In conventional SDRAM controller designs, though different requirements for SDRAM

service of the heterogeneous system components are often considered, high bandwidth

utilization can be achieved for special applications such as high definition TV. For this reason,

the proposed memory controller can reduce bandwidth over external BUS using memory

 94

scheduling and improve data access hit rate using data arrangement. For reducing bus

utilization, the memory controller architecture is proposed and related approaches are

employed as well. This design target of interpolator and frame memory access controller is to

reduce external memory access and improve throughput of the entire video decoder. The

SDRAM memory access controller appended to video decoder is presented to overcome the

tremendous transfer of pixel data to/from external frame memories. To achieve efficient

memory access scheduling, we discuss not only memory scheduling but also data

arrangement within SDRAM. The proposed data arrangement in our scheduling scheme can

minimize the miss ratio (at the same bank) that contributes the maximum latency among all

scheduling cases. We create system level hardware-like C++ model and use data utilization to

analyze the system performance. Compared to unscheduled situation, the experimental result

shows that the access latency can be reduced by 50 % ~ 90 % and bandwidth utilization can

be improved up to 90%. In the meanwhile, the throughput of the overall video decoder

improves about 50 % ~ 60 % after combining extended RSO method and memory scheduling.

Besides, the gate count of motion compensation and memory controller is 83515 and 8584

respectively in synthesis results. The average power consumption of motion compensation

and memory controller is 9.45mW and 3.9mW approximately at 100MHz.

 95

Bibliography

[1] “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video
Specification,” Joint Video Team (JVT), Int. Telecommun. Union-Telecommun. (ITU-T)
and Int. Standards Org./Int. Electrotech. Comm. (ISO/IEC), ITU-T Recommendation
H.264 and ISO/IEC 14496-10 AVC, May 2003.

[2] “Information technology-generic coding of moving pictures and associated audio
information: Video,” ITU-T H.262, ISO/IEC 13818-2, 1994.

[3] Joint Video Term H.264/AVC Reference Software, Version JM 9.2.
http://iphome.hhi.de/suehring/tml/download/ .

[4] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of the H.264/AVC
video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol 13, no 7, pp. 560-
576, July, 2003.

[5] Peng Yin; Tourapis, A.M.; Boyce, J.” Localized weighted prediction for video coding”,
IEEE Trans. ISCAS Vol. 5, 23-26 May 2005 pp:4365 - 4368

[6] Boyce, J.M.; “Weighted prediction in the H.264/MPEG AVC video coding standard”,
IEEE Trans. ISCAS, Volume 3, 23-26 May 2004 pp. - 789-92

[7] Tourapis, A.M.; Feng Wu; Shipeng Li, “ Direct mode coding for bipredictive slices in the
H.264 standard”, IEEE Trans. Circuits and Systems for Video Technology,Volume
15, Issue 1, Jan. 2005 pp.119 - 126

[8] Tourapis, A.M.; Feng Wu; Shipeng Li, “ Direct mode coding for bipredictive slices in the
H.264 standard”, IEEE Trans. Circuits and Systems for Video Technology, vol 15, Jan.
2005, pp.119 - 126

[9] Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, Wen-Ping Lee, Kang-Cheng Hou,
Jiun-Yan Yang and Chen-Yi Lee, “A 125-μW, Fully Scalable MPEG-2 and H.264/AVC
Video Decoder for Mobile Applications”, ISSCC Dig. of Tech. Papers, Feb. 2006.pp.
402-403

 96

[10] S. Z. Wang, T. A. Lin T. M. Liu, C. Y. Lee “A New Motion Compensation Design for
H.264/AVC Decoder” in Proc. of Int. symposium on Circuits and Systems (ISCAS '05),
2005, pp. 4558-61

[11] P. C. Tseng, Y. C. Chang, Y. W. Huang, H. C. Fang, C. T. Huang, and L. G. Chen,
“Advances in hardware architectures for image and video coding - a survey,” in Proc.
IEEE, vol. 93, no. 1, pp. 184-197, Jan. 2005.

[12] T. W. Chen, Y. W. Huang, T. C. Chen, Y. H. Chen, C. Y. Tsai, and L. G. Chen,
“Architecture design of H.264/AVC decoder with hybrid task pipelining for high
definition videos,” in Proc. IEEE Int.Symp. Circuits and Systems, 2005, pp. 2931-2934.

[13] Y, Hu, A. Simpson, K. McAdoo, and J. Cush, “A high definition H.264/AVC hardware
video decoder core for multimedia SoC's,” in Proc. IEEE Int. Symp. Consumer Electron.,
Sept., 2004, pp. 385-389.

[14] T. A. Lin, S. Z. Wang, T. M. Liu, and C. Y. Lee, “An H.264/AVC decoder with 4x4 level
pipeline,” in Proc. IEEE Int. Symp.Circuits and Systems, 2005, pp. 1806-1809.

[15] T. A. Lin, T. M. Liu, and C. Y. Lee, “A low-power H.264/AVC decoder,” in Proc. IEEE
Int. Symp. VLSI-TSA, Apr. 2005, pp. 278-281.

[16] Azevedo, A.; Zatt, B.; Agostini, L.; Bampi, S.; ”Motion compensation sample processing
for HDTV H.264/AVC decoder”, Digital Object Identifier 10.1109/NORCHP, 2005,
Page(s):110 – 113

[17] Haung-Chun Tseng; Cheng-Ru Chang; Youn-Long Lin; ” A hardware accelerator for
H.264/AVC motion compensation”, Digital Object Identifier 10.1109/SIPS, 2005.
Page(s):214 – 219

[18] Chuan-Yung Tsai; Tung-Chien Chen; To-Wei Chen; Liang-Gee Chen; “Bandwidth
optimized motion compensation hardware design for H.264/AVC HDTV decoder”
Digital Object Identifier 10.1109/MWSCAS, 2005. Page(s):1199 – 1202

[19] H. Y. Kang, K. A. Jeong, J. Y. Bae, Y. S. Lee, and S. H. Lee, “MPEG4 AVC/H.264
decoder with scalable bus architecture and dual memory controller”, in Proc. IEEE
Int.Symp. Circuits and Systems, vol. 2, 2004, pp. II - 145-148.

 97

[20] V. Lappalainen, A. Hallapuro, and T. D. Hamalainen, “Complexity of optimized H.26L
video decoder implementation,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no.
7, pp. 717-725, July, 2003.

[21] W. N. Lie, H. C. Yeh, Tom C. I. Lin, and C. F. Chen, “Hardware-efficient computing
architecture for motion compensation interpolation in H.264 Video Coding,” ” in Proc.
IEEE Int. Symp.Circuits and Systems, 2005, pp. 2136-2139.

[22] T. C. Chen, Y. W. Huang, and L. G. Chen, “Fully utilized and reusable architecture for
fractional motion estimation of H.264/AVC,” in Proc. IEEE Int.Conf. Acoustics, Speech,
and Signal Processing, vol. 5, 2004, pp. V - 9-12.

[23] C. D. Chien, H. C. Chen, L. C. Huang, and J. I. Guo, “A Low-power motion
compensation IP core design for MPEG-1/2/4 video decoding,” in Proc. IEEE Int. Symp.
Circuits and Systems, 2005, pp. 4542-4545.

[24] W. F. He, Z. G. Mao, J. X. Wang, and D. F. Wang, “Design and implementation of
motion compensation for MPEG-4 AS profile streaming video decoding”, in Proc. IEEE
Int.Conf. ASIC, vol. 2, 2003, pp. 942-945.

[25] Tourapis, A.M.; Feng Wu; Shipeng Li, “ Direct mode coding for bipredictive slices in the
H.264 standard”, IEEE Trans. Circuits and Systems for Video Technology, vol 15, Jan.
2005, pp.119 - 126

[26] Micron Technology, Inc. product documents. [Online]. Available:
http://www.micron.com/products/

[27] Micron Technology, Inc. MT48LC2M32B2P-5 64Mb SDRAM (Jan. 2005). [Online].
Available: http://www.micron.com/products/dram/sdram/partlist.aspx?density=64Mb

[28] P. R. Panda, N. Dutt, and A. Nicolau, “Memory Issues in Embedded Systems-on-Chip:
Optimization and Exploration ”. Boston, MA: Kluwer Academic Publishers, 1999.

[29] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access
scheduling,” in Proc. IEEE Int. Symp. Computer Architecture, Vancouver, BC, Canada,
Jun. 2000, pp. 128-138.

 98

[30] S. Miura, and T. Watanabe, “A dynamic-SDRAM-mode-control scheme for low-power
systems with a 32-bit RISC CPU,” in Proc. IEEE Int. Symp. Low Power Electron. and
Design, Aug. 2001, pp. 358-363.

[31] K. B. Lee, T. C. Lin, and C. W. Jen, “An efficient quality-aware memory controller for
multimedia platform SoC,” IEEE Trans. Circuits Syst. Video Techno.,vol. 15, no. 5, pp.
620-633, May 2005.

[32] H. Kim, and I. C. Park, “High-performance and low-power memory-interface
architecture for video processing applications,” IEEE Trans. Circuits Syst. Video Techno.,
vol. 11, no. 11, pp. 1160-1170, Nov. 2001.

[33] S. I. Park, Y. Yongseok, and I. C. Park, “High performance memory mode control for
HDTV decoders,” IEEE Trans. Consumer Electron., vol. 49, no. 4, pp. 1348-1353, Nov.
2003.

[34] J. H. Li, and N. Ling, “Architecture and bus-arbitration schemes for MPEG-2 video
decoder,” IEEE Trans. Circuit Syst. Video Techno., vol. 9, no. 5, pp. 727-736, Aug.
1999.

[35] J. Zhu, L. Hou, R. Wang, C. Huang, and J. Li, “High performance synchronous DRAMs
controller in H.264 HDTV decoder,” in Proc. IEEE Int. Conf. Solid-State and Integrated
Circuits Technol., vol. 3, 2004, pp.1621-1624.

[36] J. Tajime, T. Takizawa, S. Nogaki, and H. Harasaki, “Memory compression method
considering memory bandwidth for HDTV decoder LSIs,” in Proc. IEEE Int. Conf.
Image Processing, vol. 2, 1999, pp. 779-782.

[37] T. Y. Lee, “A new frame-recompression algorithm and its hardware design for MPEG-2
video decoders” IEEE Trans. Circuit Syst. Video Techno., vol. 13, no. 6, pp. 529-534,
Jun. 2003.

[38] E. De Greef, F. Catthoor, and H. De Man, “Memory organization for video algorithms
on programmable signal processors,” in Proc. IEEE Computer Design: VLSI in
Computers & Processors, Oct. 1995, pp. 552-557.

[39] L. Nachtergaele, F. Catthoor, B. Kapoor, S. Janssens, and D. Moolenaar, “Low-power
data transfer and storage exploration for H.263 video decoder system,” IEEE J. Select.
Areas Commun., vol. 16, no. 1, pp. 120-129, Jan. 1998.

 99

[40] E. Brockmeyer, L. Nachtergaele, F. V. M. Catthoor, J. Bormans, H. J. De Man, “Low
power memory storage and transfer organization for the MPEG-4 full pel motion
estimation on a multimedia processor,” IEEE Trans. Multimedia, vol. 1, no. 2, pp.
202-216, June 1999.

[41] K. Denolf, C. De Vleeschouwer, R. Turney, G. Lafruit, and J. Bormans, “Memory
centric design of an MPEG-4 video encoder,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 15, no. 5, pp. 609-619, May 2005.

[42] Shih-Chang Hsia,” Efficient memory IP design for HDTV coding applications”, IEEE
Trans. Circuits and Systems for Video Technology, Volume 13, Issue 6, June 2003, pp.
465 – 471

[43] Takizawa, T.; Tajime, J.; Harasaki, H ,” High performance and cost effective memory
architecture for an HDTV decoder LSI”, IEEE Trans. ICASSP '99. Proceedings., Volume
4, 15-19 March 1999 pp.1981 – 1984

[44] Sinnathamby, M.; Manjikian, N.” A versatile memory-interface architecture for enhancing
performance of video applications”, IEEE-NEWCAS Conference, 2005. 19-22 June 2005
pp.91 - 94

[45] S. Wuytack, J. –P. Diguet, and F. V. M. Catthoor, “Formalized methodology for data
reuse exploration for low-power hierarchical memory mappings,” IEEE Trans VLSI Syst.,
vol. 6, no. 4, pp. 529-537, Dec. 1998.

 100

作 者 簡 歷

 姓 名 ： 侯康正

 出生地 ： 台灣省台北市

 出生日期： 1979. 12. 05

 學歷： 1985. 9 ~ 1991. 6 台北縣竹圍國民小學

 1991. 9 ~ 1994. 6 台北縣立淡水國民中學

 1994. 9 ~ 1999. 6 北台科學技術學院 電子工程科

 1999. 9 ~ 2001. 6 國立高雄應用科技大學 電子工程系 學士

 2004. 9 ~ 2006. 6 國立交通大學 電子研究所 系統組 碩士

得 獎 事 績

1999 春 教育部單晶片微處理器設計 佳作

 1999 秋 義隆盃單晶片微控制器設計組 特優

 2006 春 九十四學年度大學校院積體電路(IC)設計競賽 第四名

 101

發 表 論 文

Kang-Cheng Hou, Sheng-Zen Wang, Yi-Hong Huang, Tsu-Ming Liu, Chen-Yi Lee, “A

Bandwidth-Efficient Motion Compensation Architecture for H.264/AVC HDTV

Decoder”, in Proceedings of the 17th VLSI/CAD Symposium, August 2006.

Yi-Hong Huang, Ping-Chang Lin, Kang-Cheng Hou, Yueh-Chi Hung, Tsu-Ming Liu,

Chen-Yi Lee,” A High-Throughput SRAM-Based Context Adaptive Binary Arithmetic

Decoder (CABAD) for H.264/AVC”, in Proceedings of the 17th VLSI/CAD Symposium,

August 2006.

Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, Wen-Ping Lee, Kang-Cheng Hou,

Jiun-Yan Yang and Chen-Yi Lee, “A 125-μW, Fully Scalable MPEG-2 and H.264/AVC

Video Decoder for Mobile Applications”, is accepted by IEEE Journal of Solid-State

Circuits.

Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, Wen-Ping Lee, Kang-Cheng Hou,

Jiun-Yan Yang and Chen-Yi Lee, “A 125-μW, Fully Scalable MPEG-2 and H.264/AVC

Video Decoder for Mobile Applications”, ISSCC Dig. of Tech. Papers, pp. 402-403, San

Francisco, USA, Feb. 2006.

Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, Wen-Ping Lee, Kang-Cheng Hou,

Jiun-Yan Yang and Chen-Yi Lee, “An 865-μW H.264/AVC Video Decoder for Mobile

Applications”, IEEE Asian Solid-State Circuit Conference, 2005. pp. 301-304, HsinChu,

Taiwan, Nov. 2005.

