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Abstract

This thesis is divided into two types of networks: computer networks and
switching networks used in communication. In_particular, we will study a class of
computer networks called the ttiplerloop: network,; and a class of switching networks
called Logx(N, m, p). We first introduce the former.

A multi-loop network, denoted by ML(N;.sy, ..., s7), can be represented by a
digraph on N nodes, 0, 1, ..., N — 1 and IN'links of / types: i »> i+ s1,i > i+ 582, ..., 10
— i+ s, (mod N),i=0,1, ..., N —1. The integers sy, ..., s; are called the steps of the
multi-loop network. When / is specified, we can also call it an /-loop network. In
particular, when / = 2, the multi-loop network is usually called the double-loop network
and is denoted by DL(A; s1, s2). When [ = 3, the multi-loop network is usually called
the triple-loop network and is denoted by TL(N; sy, 52, 53).

Several triple-loop networks have been recently proposed and their efficiency
studied. However, the number of cases for which one of these networks exist is sparse.
In this thesis, we extend these networks to larger classes to enhance their realizability.
We also give a heuristic method to optimize the network parameters to increase their
efficiency.

In this thesis, we study the k-diameters of three specific triple-loop networks. In

particular, we construct three node-disjoint shortest paths no longer than the diameter
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plus 2 for any pair of nodes.

Next we introduce the Logy(N, m, p) network.

Lea and Shyy [32] first proposed the Log,(N, m, p) network with N = 2" inputs
(outputs), which consists of a vertical stacking of p copies of BY'(n, m), 0 < m < n—1,
sandwiched between and connected to an input stage and an output stage, each with N 1
x p (or p x 1) crossbars. Later, Hwang [24] extended the Logx(N, m, p) network to
Log4(N, m, p) network by replacing the 2 x 2 crossbars with d x d crossbars.

A network is wide-sense nonblocking (WSNB) if the connection of the current
request is assured only when all connections are routed according to a given algorithm.
Traffic can be classified as point-to-point, like 2-party phone calls, or broadcast, which
is one to all. If there is a restriction on the maximum number of receivers per request,
then broadcast is called multicast (one to many), or f-cast, if that number is specified to
be f.

Tscha and Lee [44] proposed a fixed-size window algorithm for the multicast
Logyx(N, 0, p) network and exptessed a desire to see-its extension to the Logx(N, m, p)
network. Later, Kabacinski and-Danilewicz-{29] generalized the fixed-size window to
variable size to improve the results. In this thesis, we further extend the variable-size

results from the Logy(, 0, p) network to Logx(N, m, p).
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Chapter 1 Introduction

1.1 Motivation

This thesis is divided into two types of networks: computer networks and
switching networks used in communication. In particular, we will study a class of
computer networks called the triple-loop network, and a class of switching
networks called Logy(N, m, p). We first introduce the former.

A fundamental limitation of high-performance computer systems is the low
rate at which data can be accessed and restored in the high-speed memory. To
overcome this limitation, it is current practice to increase the parallelism of
operation of the high-speed memory by incorporating several independent
memory modules into the memory system. In [45], Stone describes a particular
organization of a multimodule. memory, designed to facilitate parallel block
transfers. A device called the:memory:circulator is utilized. It consists of a bank of
interconnected register, one-for each memory, and control circuitry. Each register
is connected to / other registets; and the connection pattern has cyclical symmetry.
A pattern is completely determined: by' the selection of / different links. The
problem is to select a set of links that will minimize the maximum and/or average
number of register-to-register transfers required to achieve an arbitrary circulation.
One can assume that one of the / links always connects the original register to an
adjacent register. (See [41].)

A multi-loop network, denoted by ML(¥; s, ..., 57), can be represented by a
digraph on N nodes, 0, 1, ..., N — 1 and /N links of / types: i —» i +s1,i > i+
§2, ..., I = 1+ 5, (mod N), i =0,1, ..., N —1. The integers sy, ..., 5; are called the
steps of the multi-loop network. When / is specified, we can also call it an /-loop
network. In particular, when / = 2, the network is usually called the double-loop
network. When / = 3, the multi-loop network is usually called the triple-loop
network. The double-loop network has been extensively studied in the literature

(see [25] for a recent survey) as an interconnecting network for either processors
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or memories in parallel computing [20], or as a local area computer networks [38],
or as a large area communication network like SONET [39].

It is known that if gcd(W, s, ..., s;) = 1, then an /-loop network is /-connected,
hence (/ — 1)-fault tolerant, has relatively short diameter and other desirable
properties (to be described in chapter 2). Several triple-loop networks have been
recently proposed and their efficiency studied. However, they exist only under
very restrictive conditions on network parameters. In this thesis, we extend these
networks to larger classes to enhance their realizability. We also give a heuristic
method to optimize the network parameters to increase their efficiency.

Traditionally, connectivity and diameter were studied separately. Then
various approaches have been proposed to study these two parameters together.
One such approach led to the notion of k-diameter which was formalized and
popularized in Hsu [21] and Hsu_andiLuczak [22]. The k-diameter of a digraph is
the minimum length / such that theré"eXist £ node-disjoint paths no longer than /.
In this thesis, we will study the k-diameters of these networks. In particular, we
construct three node-disjoint-shortest paths no longer than the diameter plus 2 for
any pair of nodes.

Next we introduce the Logx(N, m, p) network.

In an s-stage network, crossbars are lined up into s columns, each called a
stage. Switching networks composed of log,N stages are of great interest in both
high-speed electronics and photonic switching. Define the states of a network as
the set of all possible routings of all legitimate frames, legitimate means the load
generated by each input and output terminal does not exceed its capacity; a frame
means all requests are in a given session. A set of requests is routable if there
exists a set of link-disjoint paths connecting the requests. A state is blocking if
there exists a legitimate new request not routable in the current state, and is
nonblocking otherwise. To obtain nonblocking characteristics, two methods have
been proposed: horizontal cascading (HC) and vertical stacking (VS) [5, 31].

The HC method results in greater number of stages between each inlet—outlet



pair. More stages in a switching network induce greater signal attenuation in the
case of photonic switching or greater delay in the case of electronic switching. For
the VS method the question is how many copies of Log,N switching networks are
to be connected in parallel to obtain nonblocking operation of the whole switching
network. The number of copies needed in the case of space-division switching
networks and point-to-point connections was given in [32, 40].

Lea and Shyy [32] first proposed the Logy(N, m, p) network (when m = 0, we
denote it as a multi-Logy N network) with N = 2" inputs (outputs), which consists
of a vertical stacking of p copies of BY'(n, m), 0 < m < n—1, sandwiched between
and connected to an input stage and an output stage, each with N 1 x p (or p x 1)
crossbars.

Apart from point-to-point connections, many services, for instance
video-conference, video-distribution, multi-party communications, etc., will
require connections from one input to. many or even all outputs [35, 33, 23].
Nonblocking multicast multi-Log, N networks were first considered in [43]. Later,
this result was improved in.[44], where nonblocking operation of multi-Logo N
switching networks was given, ‘provided ‘a special control algorithm, called a
window algorithm, is used.

Tscha and Lee [44] stated in conclusion that whether their approach could be
extended to Logy(N, m, p) (to be defined in chapter 4) was unclear. Kabacinski
and Danilewicz [29] generalized the window algorithm from fixed size to variable
sizes. Danilewicz and Kabacinski [13, 14] also made an attempt to extend their
results to Logyx(N, m, p), but encountered some difficulties. In this thesis, we will
give such an extension for the variable window-size algorithm by adopting a
channel graph blockage analysis first used by Shyy and Lea [40] on a single-cast
network. We also determine the optimal window size for given m, and then

compare the performance among different m.



1.2 Overview of the thesis

In chapter 2, we will give the architecture of multi-loop networks. Some most
studied topics of multi-loop networks: minimum distance diagram (MDD) and the
tesselatibility of MDD shapes are also introduced. Later, we present some known
classical results of existence conditions between L-shape (hyper-L) tile and
double-loop (triple-loop) networks, respectively.

In chapter 3, we first generalize the three classes of triple-loop networks
studied in the literature to larger classes. Later, we construct the wide-diameters
for each of these enlarged classes.

In chapter 4, we first give the architecture of Logs(N, m, p) networks. Then
the blockingness and channel graph are introduced. Next, we present the classical
WSNB results for multicast Logi(NV, m, p) networks. Later, we provide a new
result using window algorithim which-was first proposed by Tscha and Lee [44].
At last, we determine the optimal window size and the optimal number of extra

stages.



Chapter 2 Preliminaries and Classical Results of Multi-loop Networks

2.1 Architecture

Multi-loop networks were first proposed by Wong and Coppersmith [47] for
organizing multimodule memory services. Fiol et al. [20] slightly extended its
definition in their study of the data alignment problem in SIMD processors.
Nowadays, it is used for both local area computer networks [36, 38] and large area
communication networks like SONET [15, 39]. Multi-loop network architectures
present an attractive topology for local networks [18, 36, 37], since they require
simple control software and interfaces. They permit effective operation at higher
data rates and over larger distances than broadcast busses since they do not suffer
from carrier sense limitations.

In a unidirectional single ledp network' with N nodes, (see Fig. 2.1.1) the host
computers are connected to the networks via loop. interface hardware. Each node i is
connected to node i + 1 (mod N) to form'a completer loop, and messages are passed
from node to node along unidirectional lTinks. There are no routing decisions to be
made and there is thus no need foricentral control. A node simply transmits its
message to the next node in the loop, and the message circulates around the network
until it reaches the destination node. The interface hardware must be able to identify

messages intended for its host.

Fig. 2.1.1 Single Loop Network.



An important issue in loop networks is the control mechanism used for
message transmission. This mechanism can be centralized or distributed. A
distributed control mechanism seems to be more advantageous in terms of
performance and reliability as there is no single central node responsible for
networks operation. Newhall loop [18] and Pierce loop [37] are two access control
mechanisms in common use for loop networks, and the delay insertion register
mechanism [36, 45, 46] combines the best features of the first two schemes.

There are several important issues to be studied in the design and analysis of
loop networks architectures. The important characteristics of loop networks include
the maximum delay for any message, the average delay, reliability, node processing
overhead, and the saturation throughput. These performance measures are all
interdependent and are related to the network topology. In particular, the three
performance measures: reliabilitysidelay, and nodal processing limitation, are
affected by network size. There are two approaches to improve reliability. One is to
bring all the interfaces to a central point:“The othér is to introduce link redundancy,
1.e. there exist several alternate paths for communication between a pair of nodes.

Raghavendra and Silvester [38] studied various loop networks architectures.
Here, we take two architectures for 2-loop and 3-loop networks, respectively, for
example. Distributed Double Loop Computer Network (DDLCN) was proposed by
Liu [36], and is the topology of the SONET ring (see Fig. 2.1.2). In this network
with N nodes, each node i is connected to i + 1 (mod N) and i — 1 (mod N) nodes.

With these redundant links, the network can sustain single interface failures.



P

Fig. 2.1.2 Distributed Double Loop Computer Network-DDLCN.

In terms of mathematical form, a multi-loop network, denoted by ML(N; s, ...,
s1), can be represented by a digraph on N nodes, 0, 1, ..., N — 1 and /N links of /
types: i > i+s;,i > i+sy, ...,i —>i+s,(modN),i=0,1,..., N—1. The integers
s1, ..., sy are called the steps of the multisloop network. When / is specified, we can
also call it an /-loop network. In particular, when / = 2, the multi-loop network is
usually called the double-loop network and is denoted by DL(N; si, s2). Thus,
DDLCN is denoted by DLV; 1, N = 1)1 When / = 3, the multi-loop network is

usually called the triple-loop network-and is denoted by TL(N; s1, s2, 53).



2.2 Minimum Distance Diagram

A minimum distance diagram MDD(v) for DL(N; s1, s2) 1s a two-dimensional
array which gives the shortest paths from node v to every other node. Since DL(N;
s1, 82) 1s node-symmetric, we need only study MDD(0), or simply, MDD. Let node
0 occupies cell (0, 0) in an MDD. Then node v occupies cell (i, j) (i is the column
index and j the row index) if and only if is; + js, = v (mod N) and i + j is the
minimum among all (7', j') satisfying the congruence, equality is broken by
minimizing i. Namely, a shortest path from 0 to v is through taking i s;-steps and j
so-steps (in any order). Fig. 2.2.1 gives the MDD of DL(16; 1, 7).

Wong and Coppersmith [47] gave an O(N) time construction of MDD by
sequentially adding nodes to the diagram which can be reached from node 0 in &
steps for £ = 0, 1, ..., until every'node appears exactly once. They also proved that
an MDD for a double-loopmetwork 1s.an L-shape which includes the degenerate
form of a rectangle. It can be charactetized by six parameters /, 4, m, n, p, q (4 of
them independent) (see Fig. 2.2.2)./Thus, we denote it by L(/, 4, n, p). This L-shape

plays a crucial role in proving many desirable properties for DL(W; s1, 7).

m
12| 13
5 6 n
14| 15 h p
70 8 9] 10| 11
of 1| 2[ 3] 4 1
/
Fig. 2.2.1 An MDD(0) of DL(16; 1, 7). Fig. 2.2.2 An L-shape.

The MDD for a triple-loop network is a three-dimensional array with each step
in the x;-axis signifying an s;-step. Unfortunately, the MDD does not have a uniform

nice shape like the L-shape (see Fig. 2.2.4, Fig. 2.2.6, Fig. 2.2.8) and this fact has



hampered the study of triple-loop networks. Aguilé et al. [3] overcame this
difficulty by skipping the triple-loop network and going directly to a nice
three-dimensional shape which they called hyper-L tile. Later, Aguilo-Gost [4]
identified two other shapes which she named H; and H; (see Fig. 2.2.5 and Fig.
2.2.7). For convenience, we use Hy (see Fig. 2.2.3) to denote the hyper-L shape.
Note that Hy is characterized by three parameters /, m, n, and is highly
structured and symmetrical, where /, m, n are integers, m > n >0 and / > m + n. H;
and H; are characterized by three parameters {, m, n} and {I/, m, n}, respectively,
where [, h, m, n are positive integers. Thus, we also use Ho(/, m, n), Hi(h, m, n) and

Hx(/, m, n) to denote Hy, H; and H,, respectively.

Fig. 2.2.3 Ho(/, m, n). Fig. 2.2.4 MDD of TL(134; 33, 15, 19).
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Fig. 2.2.5 Hy(h, m, n). Fig. 2.2.6 MDD of TL(2277; 12, —250, 51).
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Fig. 2.2.7 Hy({, m, n). Fig. 2.2.8 MDD of TL(4097; =59, —110, 256).

Besides, suppose that R’ is divided into unit hypercubes and a shape is a
connected set of hypercubes. A shape is said to tessellate R if any number of it can
be fitted together with neither, gaps nor feyerlapping (rotation or reflection not
allowed). Fiol et al. [20] - '" pe always tessellates the plane (see
Fig. 2.2.9) regardless of the , or not. Agulio-Gost [4] showed

the 3D tessellation of hyper-L

Fig. 2.2.9 L-shape tessellates the plane.

Fig. 2.2.10 Generical 3D tessellation of Hy.
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Chen et al. [11] gave a sufficient condition for a shape to tessellate. The

following result follows as a special case.
Theorem 2.2.1 Every MDD tessellates R°.

For Ho(/, m, n), Aguil6 et al. [3] used the tesselatibility of the MDD shape to
yield an 3 x 3 matrix which characterizes the interrelation among the locations of
the same node (say, node 0) in several adjacent copies of the MDD. We use M, to

denote this characterizing matrix.

M,=| —n [ —m
-m —n /
Namely, each row vector represents the steps to go from one node 0 to another.
For example, the first row represents that after we use / si-steps, —m sp-steps (—
denotes the opposite direction) and —#u s3-steps, we can go from one node 0 to
another.
By the same way, we define'the characterizing matrices of H, (4, m, n) and Ha(/,

m, n) as follows:

n n 2h 204n I+m [+n
M,=|-m n+m h ,M,=| 3l+n 2] [
-m -m h+m—n —2l—n / [+m+2n

The diameter of a triple-loop network is the maximum distance among pairs of
nodes in the network. Let N(D) denote the maximum number of nodes in a
triple-loop network with diameter D. Hyper-L tiles were proven to be an effective
tool to obtain lower bounds for N(D). In particular, Aguil6 et al. [3] used the Hj to

obtain
ND)> %(D+3)" ~0.074D".

Agulié-Gost [4] used the H; to obtain

11



ND) > ¥5D° ~0.075D",

and used the H; to obtain

ND)> D* ~0.08D’.

For convenience of comparison, the efficiency of a triple-loop network TL is

defined [4] as

12



2.3 Existence Conditions

Unfortunately, not every L-shape (hyper-L) tile has a double-loop (triple-loop)
network realizing it; see [10] for examples. Thus it becomes important to determine
when a L-shape (hyper-L) tile has a double-loop (triple-loop) network realizing it.

Fiol et al. [20] (also see Chen and Hwang [9]) proved

Theorem 2.3.1 Necessary and sufficient conditions that L(/, 4, n, p) can be

implemented is that / > n, h > p and ged(/, A, n, p) = 1.

By noting the locations of cells containing node 0 (as specified by M), they
obtained the following equations:
Is1 — ns, =0 (mod N), — ps; + hs, = 0 (mod N). (2.3.1)

Note that (2.3.1) can also be written as

s B )

for some integers o, S. Fiol etal. [2, 17] proposed the Smith normalization method

to solve for s; and s,. They proved:

Theorem 2.3.2 There exists unimodular, integral 2 % 2 matrices L and R such that

[ -p 1 0 .
L R=S§= (the Smith normal form).
-n  h 0 N

Furthermore, let

Then DL(N, y, z) implements L(/, A, n, p) and (y, z) is unique up to
isomorphism.
The computation of L and R involves solving for ¢qi, g2 in qiu — q,v = 1 for

various pairs of (u, v).
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For general L(/, h, n, p), Chen and Hwang [9] gave the following method to
find s; and s5.
Fork=0,1, ..., defines

8, =h+kn, S, =p+kl.
Let F denote the set of prime factors of ged (s, ,s, ) and F the set of prime

factors of N. They used the sieve method in number theory to show the existence of

aksuch thatf'¢ F forall f € F. Then (s, ,s,) isasolution of (2.3.1). For L(6, 4,

3, 2), we easily find the solution s; =4 =4 and s, = p =3.

Next, we discuss the existence conditions for some triple-loop networks. A
triple-loop network with a hyper-L shape is called a hyper-L triple-loop. Fiol [19]
proposed two necessary conditions for the existence of an Hoy(/, m, n) triple-loop:

(1) ged (N, l,m,n)=1, and
(i1) ged (2 x 2 minors of.My) = 1.
Chen et al. [10] showed that (ii) implies (i) for Hy and gave a necessary and

sufficient condition.

Theorem 2.3.3 A necessary and sufficient condition for the existence of an Hy(Z, m,

n) triple-loop network is ged(i* — mn, m* + In, n* + Im) = 1.

Furthermore, for a TL(N; s1, 52, s3) with Ho(/, m, n) shape, if it satisfies the
conditions of Theorem 2.3.3, then the solution of (s, 52, 53) is (12— mn, m*+ In, n* +
/m) unique up to the equivalence defined by a permutation of (si, s2, s3) or a

multiplication of (sy, 52, 53) by a scalar.

Let M be a 3 x 3 integral matrix with |[det(M)| = N > 0. Fiol [19] defined G(M)
as the Cayley diagraph of the group Z’/MZ’ with the generator set {e|, e, e3},
where e; = (1, 0, 0)", e, =(0, 1, 0)", e3 = (0, 0, 1)". Chen and Hung [8] used Cayley
diagraph to derive the necessary and sufficient conditions for the existence of H;(#,
m, n) and Hax(/, m, n) triple-loops as follows.

14



Lemma 2.3.4 G(M) is isomorphic to a triple-loop network TL(N; sy, 52, 53) with

Sy
M| s, |=0 (modN)

S3

if and only if gcd(all the 2 x 2 minors of M) = 1.
Apply Lemma 2.3.4 to H; and H», they obtained

Theorem 2.3.5 A necessary and sufficient condition for the existence of an H;(%, m,

n) triple-loop is gcd(m, n) = 1 and 3 Y m—n.

Theorem 2.3.6 A necessary and sufficient condition for the existence of an Hy(Z, m,

n) triple-loop is ged(/, m, n) = 1.
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Chapter 3 Further Research on Triple-loop Networks

3.1 Generalizing and Fine Tuning Hyand H;

Aguilo, Fiol and Garcia [3] used the computer search to find some good MDDs
for /-loop networks. Of course, the computer search works only for very small N.
Then they looked at those good MDDs and tried to identify their shapes to grow it
to larger N but keeping the shape. The method of growing is to use the tesselatibility
of the MDD shape to yield an / x [ matrix M which characterizes the interrelations
of the locations of the same node in several adjacent copies of the MDD. For a
given shape S, we define F(S) as a family of all shapes obtained from S by varying
the parameters of S.

Such an approach encounters three,problems. The first is that although the
original shape is derived from:a triple-leopmetwork, there is no guarantee a member
of F(S) also corresponds to-atriple loop: Thus one has to check the existence of
such a triple-loop. Necessary and. sufficient.conditions for existence were given in
section 2.4 in principle.

The second problem is that there are not many known good shapes to work with,
and the existence of a given shape is sparse.

The third problem is that there is no systematic way to optimize the parameters
of a given shape.

In this section, we [34] propose ways to alleviate problems 2 and 3. We will
represent H; and H, each by a 6-parameter family, thus significantly enhancing the
chance of finding H; or H; in the neighborhood of a given N. We also propose a
method for sub-optimal selection of parameters. The price we pay is that the
necessary and sufficiency condition for the existence of a corresponding triple-loop
network becomes messy.

We generalize H; and H, to H," and H,'" by allowing some line segments which

have the same length to have different lengths. We mark the new parameters in Fig.
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3.1.1. Note that all parameters of H," and H,' are larger than or equal to 1. For H’,

m>nand m' >n'.

Hy' H,'

It can be verified that H;

H, is the special case of H;' by setting m' =m, n'=n=h'.
We apply the necessary and sufficient conditions given in [8] for the existence
of a triple-loop network to H;":
gcd (determinants of the nine minors of M;")
=gcd (" +2mYh + (' + mh', (n' + 2m"h + n'h', (n' + 2m")h, mh', (n' + 2m")h
+nh', (n+2m)h, (n' + 2m"Ym, nm' — n'm, (n' + m")n + mn")

=ged (m'h', n'h', (n' + 2m")h, mh', nh', (n + 2m)h, (n' + 2m"ym, nm' — n'm, (n' +

=1
= ged (m', n',m,n) =1, (3.1.2)
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ged (B, 7, m, n) = 1, (3.1.3)

(3.1.1) is reduced to
ged (W', (n' +2m"h, (n + 2m)h, (n" + 2m"Yym, nm' — n'm, (n' + 2m")n) by (2)
=gcd (W', n'+2m', (n +2m)h, nm' —n'm)=1 by (3.1.3) (3.1.4)

The farthest nodes from the base node of H;" must be at one of the circled node.
Their distances are:

dA)=n+n"+3h+h,

dB)=n+m-+n"+2h+H,

dC)y=n+m-+m'+2h,

dD)=m+n"+m'+2h,

dE)=n+n"+m'+2h+ ',

dF)=2m+n+m'+h,

d(G)=m+2m'+n'+ h:

Our heuristic method sets all these distances equal. Thus

d(A)=dB)=>h=m,

dB)=d(C)=h'=m"—n',

dC)=dD)=n=n',

dD)=dE)=h"=m—n.

Summarizing, we have

h=m=m',n=n"and h' =m — n.

Therefore in the suboptimal setting ﬁl , there are only two independent
parameters m and n, and the diameter is 4m + n.

Note that for this suboptimal version, necessary and sufficient conditions for the
existence of a corresponding triple-loop network is induced from (3.1.2), (3.1.3),
(3.1.4) to ged (m, n) = 1.

Efficiency of H, is
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N 4m® +6m*n—n’

E(H)=—
() D’ (4m+n)3

Setting m = kn, then n can be canceled out and

N Ak +6k° -1
D (4k+1)

d (Nj_l2k(k+l) (4K° +6k ~1)-12

dk\ D) (ak+1) (4k+1)"
s k(k +1)(4k +1) = 4K +6k> —1
=K"= 1+2\/§ ~1.5

Hence we choose n =2 and m = 3 for integrality,
E(H,)= 26 0.07580.
343

Setting n = 3 and m = 5 yields a slightly better efficiency 923/ 23’ ~0.07856.

Recall that the efficiency of H) is 1485/27% %.0.075 .

It can be verified that H,' tessellates R’ with

2[+n' I'+m' m+2n
M,'=| 3l+n'" 21" m+n
—2[—-n' [' 2m+3n
H, is the special case of Hy' by setting m'=m, n' =n,and [ =1'=m' + n'.
Again, we apply the necessary and sufficient conditions given in [8] for the
existence of a triple-loop network to H,":
gcd (determinants of the nine minors of My")
= gcd (—(8m" + 11n")l' — Bm' + 4n")n, 2I' + n)(3m' + 5n'), m'l' + 4n'l' + nn',
—(5m' + Tn"), —(n' + m")[ — 2m' + 3n"Ym, Bm' + 5n")[+ (n' + m"Yym, (n + I')l, (n
+21"(m + 20), 7lI' + 3nl + 3ml' + nm)
=gcd ((8m' + 11n")' + Bm' + 4n")n, 2I' + n)(3m' + 5n"), m'l' + 4n'l' + nn', (Sm’

+ 7o), (n' + m") + 2m' + 3n"Yym, Bm' + 5n")[ + (n' + m"Ym, (n + I, (n +
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20(m + 21), 71I' + 3nl + 3ml' + nm)

= gcd Bnm' — 5n'l' + 4m'l', 3nm" — 14n'l' — nn', m'l' + 4n'l' + nn', Tn'l + Sm'l,
4n'l + 2m'l — mm' — 2mn’, 4n'l + Smm' + Smn’, nl + 1I', nl + 31" + ml', 41" +
3ml' + mn)

=gcd Bnm' — 5n'l' + 4m'l', 3nm' + m'l' — 10n'l', m'l' + 4n'l' + nn', Tn'l + Sm'l,
6n'l —Smm' — 10mn’, 4n'l + Smm' + Smn', nl + ', 21I' + ml', 3nl + 51I' — mn)

=ged ((5n' + 3m")l', 3nm" + m'l' — 100'l', m'l' + 4n'l' + nn', (Tn' + Sm")l, 10n'l —
Smn', 4n'l + Smm' + Smn', (n + '), (21 + m)!', 2nl + mn)

=ged ((5n' + 3m")', Bn + 71m', (7' + 3n)n', (Tn' + Sm")l, 521 — m)n', 5(7n" +
Sm"ym, (n+1)l, 21+ m)l', (2] + m)n) (3.1.5)

=1

The farthest nodes from the basernode.of H," must be at one of the circled node.
Their distances are:

dA)=1"+1+6n+ 5m,

dB)=1"+2l+3n+3m,

dlC)y=1'+31+n"+3n+3m;

dD)=10'+3l+n"+3n+m'+2m,

dE)=2I"+2l+n"+3n+m'+2m,

dF)=3I'"+1+n"+3n+m'+2m,

dG)=2I'+3l+n"+2n+m'+m,

dH)=51+2n"+n+m'+m,

dD)=1I'+4l+2n"+n+m' +m,

d)=2I'+3[+2n"+n+m' +m,

dK)=5I'+1+n"+n+m'

Our heuristic method sets all these distances equal except d(B). Thus

dA)=d(C)=3n+2m=2l+n',

d(C)=dD)=>m'=m',

dD)=dE)=>1'=1,
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dF)=dG)=I=n+m.
Summarizing, we have
[=I'=m+nn=n"andm=m'.

Therefore in the suboptimal setting H,, there are only two independent
parameters m and n, and the diameter is 8z + 7m.

Note that for this suboptimal version, necessary and sufficient conditions for the
existence of a corresponding triple-loop network is induced from (3.1.5) to ged (m,
n)=1.

Efficiency of H, is

~ N 40n° +110n°m +96nm* +27m’
EH,)=—= )

D’ (8n + 7m)3

Setting m = kn, then n can be canceled out and

N 27k* +96k* +110k +40

D (Tk+8)

2 3 2 .
d (Nj:(églk +192/c+110) A27k>+ 96k* +110k +40) 2

dk\ D (Tk+8)"0 (7k+8)"
= 6k*+k-10=0

14241

12

=k’ 1.2
Hence we choose n = 5 and m = 6 for integrality,

= >0.08091.
551368

E(f{z) 44612

Recall that the efficiency of H, is 860/22° ~0.08 .
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3.2 Wide-Diameter of Hg

Traditionally, connectivity and diameter were studied separately. Then various
approaches have been proposed to study these two parameters together. One such
approach led to the notion of k-diameter which was formalized and popularized in
Hsu [21] and Hsu and Luczak [22]. The k-diameter of a digraph is the minimum
length / such that there exist £ node-disjoint paths non longer than /. Clearly, the
1-diameter is just the usual diameter D. Note that the k-diameters give a complete
description of the interplay between the connectivity and the diameter. It also
automatically provides the information if f faults occur for 1 < f < k, then the
diameter of the surviving graph, the fault-tolerant diameter, does not exceed the
k-diameter.

In this section, we [27] will prove that-H, is 3-connected by constructing 3
node-disjoint paths from any node i to any other.node j. A set P of k node-disjoint
paths from i to j with lengths /, <IL<"..0 < [} is-called a minimum-k-routing if for
any such set of paths with lengths /;' < L' <...< [’ wehave /;<// fori=1,...,k P
is called a weak minimum-k-routing if (1, L, ..., l;) 1s lexicographically shorter than
', L', ..., Ii"). Further, P is oblivious if the routing from i to j depends only on i
and j. In this paper we give an oblivious weak minimum-3-routing for an arbitrary
pair (i, j) and show that a minimum-3-routing does not exist. From the weak
minimum-4-routing, we derive an upper bound of the A-diameter. In particular, the
3-diameter is at most D + 2.

For convenient, let Hy(A; s1, 52, 53) denote the TL(N; 51, 52, s3) with Ho(/, m, n)
shape. Let Hy(0) denote the MDD(0) of Ho(N; s1, s2, s3). By Theorem 2.3.1, we have
known that every MDD(0) of triple-loop networks always tessellates R°. One
consequence is that there exists another shape Ho*(0) with base 0 located at cell (/ —
m—n,l —m—n,l —m— n), which is adjacent to Hy(0) in the tessellation (see Fig.

3.2.1).
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Ho*(0)

Ho(0)

Fig. 3.2.1 Ho(0) and Hy*(0).

A dimension routing from node u to node v means first taking all steps in one
dimension (same s;), then all steps in a second dimension, then all steps in a third
dimension. For example, a dimgnsion routing from node 0 to a node at (xj, x2, x3)
with the dimension order (3,:1, 2) tal‘cejs‘the‘ x3‘S3-‘steps first, then the x; s;-steps and
finally the x; s,-steps. Note that a dimer;ls‘ioh routirig always yields a shortest path.

Since TL(N; s1, 52, 53) 18 hode?transitive‘, it'suffices to consider paths from node

0 to an arbitrary node v with coordinates (vi, vz,‘ v3) in Hy(0).

Theorem 3.2.1 There exists an oblivious weak minimum-3-routing from node 0 to

an arbitrary node v in Hy.

Proof. Suppose v occupies cell (v, v, v3) in Ho(0). We consider three cases:
(1) vi > 0 for i = 1, 2, 3. We use dimension routing. The dimension order for
path 1 is (1, 2, 3), for path 2 is (2, 3, 1) and for path 3 is (3, 1, 2) (see Fig.
3.2.2). Then clearly, the three paths are node-disjoint and each has length v,
+ v, + v3 which is the distance from O to v.
Since the lengths of these 3 paths are equal to the distance from 0 to v,

it’s obvious that the paths we construct constitute a minimum-3-routing.
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(i)

Fig. 3.2.2 Dimension routing for v; > 0, v,> 0, v3> 0.

Exactly one v; = 0 (say v3;). We use dimension routing in the x; = 0 plane
(where v lines) with orders (1, 2) and (2, 1), respectively, to obtain two
node-disjoint paths to v. Thé third path will be routed through the node u = v
— 53 (mod N) as a penultimate node; Suppose u is not in the x3 = 0 plane.
Then path 3 is obtained by a dimension routing from node 0 to u starting
with s3-steps. Since path 3-uses‘only nodes not in the x3 = 0 plane in Hy(0), it
1s node-disjoint from paths'l and 2.

Call a node x occupying cell (x;, x2, x3) in Ho(0) /-maximal if cell (x;+1,
X2, x3) is not in Hy(0). Similarly we can define 2-maximal and 3-maximal.
Then u must be 3-maximal in Hy(0) or v would lie in a plane x3 = £ > 0 in
Ho(0), contradicting our assumption that v = 0.

Suppose u is in the x3 = 0 plane. From the fat that » is 3-maximal,
necessarily, / — m — n = 1. Hence v occupies cell (vi+ 1, v+ 1, v3+ 1) in
Ho*(0).

Path 3 starts with an s3-steps and enter cell (0, 0, 1), which can be
treated as the base of Ho(s3). It is easily verified that Hy(s3) can be obtained
from Ho(0) by moving nodes on the boundary of the x; = 0 and x, = 0 planes
(see Fig. 3.2.3).

It uis not in the x3 = 1 plane (the floor plane in Fig. 3.2.3 (b)), implying
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uis a boundary node of the x3 = 0 plane, then path 3 uses only nodes not in
the x3 = 0 plane, except u, which is not on paths 1 or 2. Hence path 3 is

node-disjoint from paths 1 and 2.

X
n3 X3
y N
16
15 b1 22
14 9o o Y
19 55 |
8

(a) (b)
Fig. 3.2.3 (a) and (b) are Hp(0) and H(26), respectively, for /| —m —n=1,

where N=31,51=6,55=-1,s53=-5,/=4, m=2,n=1.

Suppose u is in the xz = 1 plane. Since v occupies cell (vi+ 1, va+ 1, v3
+ 1), u must occupy cell (vi+ 1, v, + 1, v3) in Hy(0) and hence also cell (v; +
2, v»+ 2, v+ 1) in Hp*(0), which is also in Ho(s3). Note that paths 1 and 2
enclose a rectangle 1 <x; <v;+1, 1 <x; <vy+ 1 in Hy(s3), and u is outside of
it. Hence a path from s3 to u using either the (1, 2) or the (2, 1) dimension
routing bypasses the rectangle and consequently is node-disjoint with paths
1 and 2. Path 3 is completed by adding the steps from 0 to s3 and from u to
V.

Since the lengths of paths 1 and 2 are equal to the distance from 0 to v,
these two paths are shortest. Further, all shortest paths must start and end
either with an s;-step or an s,-step (any combination allowed). Therefore a
third disjoint path must start and end with an s3-step, i.e., the second node of

the path is s3 and the penultimate node is u. Since our proposed third path
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(iii)

uses dimension routing from s3 to u, it is shortest among the set of third
disjoint paths given that the first second paths are shortest. Hence the

proposed routing is a weak minimum-3-routing.

Exactly two v; = 0 (say, vs = v, = 0). Path 1 is the unique shortest path from
node 0 to v along the x;-axis. Let u = v — 53 (mod N) and w = v — s, (mod N).
We will show that in Hy(0) one of u and w has x, > 0 and the other x3 > 0.
Then we let path 2 go from 0 to 52, followed by a dimension routing to the
node in {u, w} with x, > 0 (in fact, the dimension routing starts with
dimension 2, hence is also a dimension routing from 0). Similarly, path 3
goes from 0 to s3 followed by a dimension routing (starting from dimension
3) to the other node in {u, w}. Let L;, i € {2, 3} denote the set of paths
whose last step is a s;-step. Then'a weak minimum-3-routing must have one
path from L, and one from L3; But our proposed paths constitute a shortest
pair from L, and L3 since they use dimension routing. This proves weak
minimum-3-routing.

To prove the existence of the desirable u and w, we first prove a lemma
which locates ©# and w in Hy(0). Among the six permutations of (si, 52, 53)
mentioned in Theorem 3.2.1, call (s;=a, s, =b, s3=1¢), (s1=b, 57 =1c, 53 =
a), (s1=c, s = a, s3 = b) type 1 and the other three permutations type 2,

whereaZIZ—mn,meerln,c=n2+lm.

Lemma 3.2.2 Let v=(v;, 0, 0).

(1)

(if)

Suppose 0 <vi<m+n.Thenu=w+/-m—-n,l—-m—-n,l—-m—-n—-1),w
=wt+tl-m-nl-m-n—-1,1—m—n).

Suppose m + n<vy<landn>0. Thenu=(wvi—-m—-n,l—n,l—m—1) and
w=Wi—-m—-n,l—n—1,1—m)if (s1, 52, s3) 1s of the first type. Otherwise, u

=vi—-m-n,l-m,l-n—1)andw=Wvi—-m—-n,l—m—1,1—n)
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(i) Supposem +n<vi<l,n=0and/-m—-n=1.Thenu=(0,0,/—-1)and w
=(0,1-1, 1) if (s1, 52, s3) 1s of type 1. Otherwise, u = (0, 1, /— 1) and w = (0,
[-1,0).

Proof.

(1) v also occupies (vi+/—m —n, | —m —n, | — m — n) in Hy*(0). So u occupies
wv+l-m—-nl—-m—-n,l—m-n-1)and woccupies (vi+Il—-m—n,[—m
—n—1,1—m—n). Since vi < m + n, the above two locations of u and w are

in Ho(0).

(i1) We first check v = vis; (mod N) also occupies (vi—m —n, [ — n, [ —m) if (51,
52, 83) 1s of type 1.
(—m — n)(I* — mn) + (I — n)(m* + In) + (I — m)(n* + Im) = 0,
(=m — m)(m?+ In) + (I <3)(n” + Im) + (- m)(P>— mn)
=P —m’—n’ - 3Ilmn= 0 (mod N),
(=m — n)(n*+ Im) + @ — n)(E=mn)~+ (I = in)(m*+ In)
=P —m’—n’—3Ilmn=0(mod N).
It is easily checked that u = (vi—m —n,[—n,[—m—1)and w = (v; —
m—n,l —n—1,1—m) are in Hy(0). The proof is similar if (si, 52, 53) is of

type 2.

(iii) By the given conditions, we have vi=m = [ — 1. Therefore a = I*, b= (I — 1),
c=1[(/-1). Note that
(!l =a=lc=1b+c(modN),
(I -1b=la=Ic+ a(modN),
(! =1)c=1b=la+ b (modN).
If (s1, 52, 53) 1s of type 1, then v, which occupies cell (/ — 1, 0, 0) in

Hy(0), also occupies (0, 0, /) and (0, /, 1). Therefore u occupies (0, 0, / — 1)
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and w occupies (0, / — 1, 1) in Hyp(0). The proof is similar if (s, s2, 53) is of

type 2. H

We now prove that paths 2 and 3 are node-disjoint (their disjointness
from path 1 is obvious). We consider three cases:

l. 0<vi<m+norm+n<v <land n> 0. The locations of # and w in
Hy(0) are given in Lemma 3.2.2. Since x, > 0 for u and x3 > 0 for w, a (2,
1, 3) dimension routing exists from 0 to «# and a (3, 1, 2) from 0 to w.
Node-disjointness is easily verified.

2. m+t+nsvi<ln=0,l-m—-n>1.Since/—m—n>1, uis 3-maximal
and w 2-maximal in Hy(0). Hence x; > 0 for w and x3 > 0 for u. Use the
(2, 1, 3) dimension routing from 0 to w, and the (3, 1, 2) dimension
routing from 0 to uiNode-disjointness holds just as the previous two
cases.

3. m+n<vi<l,n=0,l—m=n="1.Suppose (si, 52, 53) is of type 1. By
Lemma 3.3.2, u =10, 0,7/ — 1) andw= (0, / — 1, 1) in Hy(0). Since x3 > 0
for u and x, > 0 for w, a (3, 1, 2) dimension routing (which degenerates
into a dimension routing of (3)) exists from 0 to u, and a (2, 1, 3)
dimension routing (which degenerates into a dimension routing of (2, 3))
exists from O to w. It is easily seen that the two paths are node-disjoint.
Suppose (s1, 52, §3) is of type 2. Then we switch he dimension routings
between u and w.

Obliviousness is clear from the construction. 0

We give an example that a minimum-3-routing does not exist. For Hy(31; 9, 8,
14) and v = 26, the proposed routing yields length (3, 3, 7) while the routing: P,":
0-9-17-26, P,": 0-8-16-25-3-12-26, P5": 0-14-23-1-10-18-26 yields length (3, 6, 6).

Since /5 > [3', (P, P2, P3) is not a minimum-3-routing. On the other hand, it is easily
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seen that if a minimum-3-routing exists, then (P;, P, P3), a weak

minimum-3-routing, must be it.

Corollary 3.2.3 The connectivity of Hy is 3.

Theorem 3.2.4 The k-diameter of Hy is at most D+ k—1 for k=1, 2, 3.

Proof. That the k-diameter for £ = 1, 2, 3 does not exceed D + k — 1 is easily
verified by our construction. It is also easily checked that the 1-diameter is indeed D
since only dimension routing is used for path 1. For k£ = 2, the worst case is case (iii)
in which a path may take D + 1 steps. We take Ho(7; 2, 1, 4) (see Fig. 3.2.4) with v
= 2 for example to show that D + 1 is realizable. Here path 2 is (0, 4, 5, 2) of length
3=D+ 1. For k= 3, the worst case is case (i1) in which a path may take D + 2 steps.
We take Ho(31; 6, 30, 26) (see Fig, 3.2:3) with v =4 for example to show that D + 2
is realizable. Here path 3 is (0526, 2156541, 10, 9, 4) of length 7= D + 2.

X3
4
5 6
A/\/g\z\A
X1

X2

Fig. 3.2.4 Hy(7; 2, 1, 4) withv=2, where u =5, w=1.

Corollary 3.2.5 The 3-diameter of Hy is at most D + 2.

Corollary 3.2.6 The diameter of Hy is at most D + 2 after two arbitrary failures

(nodes or links).
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3.3 Wide-Diameter of H{’

In section 3.1, we have generalized H; and H, to H," and H,' by allowing some
line segments which have the same length to have different lengths. In this section,
we also use oblivious weak minimum-3-routing to prove that H;’ is 3-connected by
constructing 3 node-disjoint paths from any node i to any other node j. For
3-diameter of H,', we will prove it in next section 3.4 by similar method.

For convenient, let H,'(0) (H2'(0)) denote the MDD(0) of H;'(H,"). We define
Hi', », ¢(0) as the copy of H;'(0), which is obtained by adding the a(n, n’, 2h) +
b(—m, n' +m', h) + c(—m, —m', h + h') vector, to each nodes of H,’(0), where a, b, ¢
€ Z.(See Fig. 3.3.1) Similarly, we define Hy'(,, 5, (0) as the copy of H,'(0), which is
obtained by adding the a(2/ + n', I' + m', m + 2n) + b(3l + n', =2I', m + n) + c(—2/
—n', I', 2m + 3n) vector, to each n0d¢§ of Hz , where a, b, ¢c € Z.(See Fig. 3.4.1) We

call a node x occupying cell (gs;, xz, x;)I:l HL’(O) -or H,'(0) I-maximal if cell (x;+1, x,

E
x3) is not in H,'(0) or Hz'(O) Snlmllarly we can def ine 2-maximal and 3-maximal.

Hi',0,1)(0)

Hi't1,0,0/(0)

H/'(0)

1'0,0,-17y(0)
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Hi'(,0,2)(0)

Hi',0,1y(0)
Hi'1,0,-1y(0)
H,'(0)

Hi'(,0,-17y(0)

Fig. 3.3.1 H,'(0) and its copies.

Theorem 3.3.1 There exists an oblivious weak minimum-3-routing from node 0 to an

arbitrary node v in H,'. Suppose 4 occupies cell. (vi,-v2, v3) in H,'(0). Let /[, [, /5 be the

distances from 0 to ¢, w, u in H/(0), respectively. The }engths of the three paths are

(1) vit vyt v, vit v, tvsand vitvs £y, whenv; > 0 fori=1, 2, 3.

(i1) vit+ vi, vi+ v and [; + 2, when'exactly one v; = 0 for i € {1, 2, 3}, where j, k €
{vi, va, v3} / {v;} and j # k.

(1) v, +1land/;+1, whenv;=v;=0fori,j e {1, 2, 3}, and i #j, where k = {vi,

V2, v3} / {vi, v}

Proof. We consider three cases:

(1) v; >0 fori=1, 2, 3. We use dimension routing. The dimension order for path 1
is (1, 2, 3), for path 2 is (2, 3, 1) and for path 3 is (3, 1, 2). Then clearly, the
three paths are node-disjoint and each has length v + v» + v3 which is the
distance from 0 to v.

Since the lengths of these 3 paths are equal to the distance from 0 to v, it’s

obvious that the paths we construct constitute a minimum-3-routing.
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(if)

Exactly one v; = 0. We consider three cases:

a. v; = 0. We use dimension routing in the x; = 0 plane (where v lies) with orders
(2, 3) and (3, 2), respectively, to obtain two node-disjoint paths to v. The third
path will be routed through node ¢ as a penultimate node. Suppose ¢ is not in
the x; = 0 plane. Then path 3 is obtained by a dimension routing from node 0
to ¢ starting with s,-steps. Since path 3 uses only nodes not in the x; = 0 plane
in H,(0), it is node-disjoint from paths 1 and 2.

Besides, we know that ¢ is 1-maximal in H,'(0) or v would lie in a plane
x1 =k >0 in H,'(0), contradicting our assumption that v; = 0.

Suppose ¢ is in the x; = 0 plane. From the fact that ¢ is 1-maximal,
necessarily, n = 1 or m = 1. For n = 1, we only need to consider the condition
that ¢ is located in the following two regions R; and R»:

1. Ri:x1=0,0<x,<n,2hetW'Sxz<3h+ h'.

It occurs when vy =10, 2m' < vr< 2m' + n', 0 < vz < h for v also
occupies cell (n, vo— 2m’, vs+2h +h') in H,'1 1, 1y(0). Thus we have that ¢
occupies cell (0, v, =2m'; . v3+2h+ h').in H,'(0). Since ¢ also occupies cell
(m, vo— m', v3+ h) in Hi!0,0,21)(0). Therefore, ¢ occupies cell (m — 1, v, —
m', v3+ h) in H,'(0), and v occupies cell (m + 1, v, — m', v+ h) in H'q, 1,
0)(0). Path 3 starts with an s;-step and enter cell (1, 0, 0), followed by a
dimension routing to ' in H;'(0), and then add an s;-step to ¢ in Hi', o,
-1(0). Path 3 is completed by an s;-step to v in Hi'(1, -1, 0)(0).

2. Riuxi=0,n"<xo<n' +m',2h<x3<2h+h.

It occurs when vy =0, 0 < v, <m', 0 <v3 <h' for v also occupies cell
(n, va+ n', v3+ 2h) in Hi'(1,0,0)(0). Thus we have that ¢ occupies cell (0, v,
+ n', vs+ 2h) in H;'(0). Since ¢ also occupies cell (m, vo+n' +m', vi+ h —
h") in Hi'(, 0,-1)(0). Therefore, ¢ occupies cell (m — 1, va+ n" + m', vi+ h —
h") in H,'(0), and v occupies cell (m + 1, v, + n' + m', vs+ h—h') in Hi'q, o,

~1(0). Path 3 starts with an s;-step and enter cell (1, 0, 0), followed by a
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dimension routing to ' in H;'(0), and then add an s;-step to ¢ in Hi', o,

~1(0). Path 3 is completed by an s;-step to v in Hi'(1, 9, -1)(0).

Hence, path 3 is node-disjoint from paths 1 and 2, and it has length at

most D + 2.

For m = 1, we only need to consider the condition that 7 is located in the
following four regions R;, Ry, R3and Ry:
. Rux1=0,m'<x,<m'"+n', h + h' <x3<2h. G(f h' < h)

It occurs when vi =0, 0 < v, <n', 2h + 2h' <v3 <3h + 2k’ for v also
occupies cell (m, vo+m', vs—h — h') in Hi'(0,0,-1)(0). Thus we have that ¢
occupies cell (0, vo+ m', vs— h — k") in H,'(0). Since ¢ also occupies cell
(m, vo+ 2m', vy — 2h — 2h")in'Hi’e,0,-1)(0). Therefore v occupies cell (m +
1, vo+ 2m', v — 2h=="2h") in-Hy'. 0,-2)(0). Path 3 starts with an s,-step and
enter cell (1, 0, 0), followed by a dimension routing to ¢ in Hi'(, o, -1)(0).
Path 3 is completed by an’s;-step to v Hy'(o, 0, -2)(0).

2. Ruxi=0,m<x;<m'"+n,h<xs<h+n.

It occurs when vi =0, 0 < v, <n', 2h + h' <v3 <2h + 2h', because of
the same reason for R;. Since ¢ also occupies cell (n + m, v2, v — A') in
Hi'(1,-1,0)(0). Therefore v occupies cell (n + m + 1, v,, vs— A') in Hi', 1,
~1(0). Path 3 starts with an s;-step and enter cell (1, 0, 0), followed by a
dimension routing to ¢ in H;'(1, -1, 0(0). Path 3 is completed by an s;-step to
vin Hy'q, -1, -1)(0).

3. Ryix1 =0, m' <x, <2m',0<x35<h.

It is the same as the proof for Ry, except that it occurs when v, = 0, n’
<wvy<m'(ifn'<m'),h+h"<vi<2h+h'

4. Ryx1=0,2m"+n'<x;<2m'+n',0<x3<h.

It occurs whenvi =0, m'<v,<n'+m', h + h' <v3<2h+ h', because
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of the same reason for R;. Since ¢ also occupies cell (n, v — m', vs+ h) in
Hi'(1,-1,1)(0). Therefore v occupies cell (n + 1, v, — m', v3+ h) in Hi'(y, 1,
0)(0). Path 3 starts with an s;-step and enter cell (1, 0, 0), followed by a
dimension routing to ¢ in H;'(j, -1, 11(0). Path 3 is completed by an s;-step to

v in Hll(l,—l,O)(O)-

Hence, path 3 is node-disjoint from paths 1 and 2, and it has length at

most D + 2.

Since the lengths of paths 1 and 2 are equal to the distance from 0 to v,
these two paths are shortest. Further, all shortest paths must start and end
either with an s,-step or an s3-step (any combination allowed). Therefore a
third disjoint path must start'and endwith an s;-step, i.e., the second node of
the path is s; and the penultimate node.is £.-Since our proposed third path uses
dimension routing from s1 to £ it is shortest among the set of third disjoint
paths given that the fitst and.second paths are shortest. Hence the proposed

routing is a weak minimum-3-routing.

Since the proofs of the two cases, v, = 0 and v = 0, are analogous to v; =
0, we only consider the conditions different from v; = 0.

b. v; = 0. Suppose w is in the x, = 0 plane. From the fact that w is 2-maximal,
necessarily, n’ = 1 or m" = 1. For n" = 1, we only need to consider the
condition that w is located in the following two regions R; and R;:

1. R:0<x1<n,x=0,2h+h" <x3<3h+h.

It occurs when 2m < vy <2m + n, v, =0, 0 < v3 < h for v also
occupies cell (vi — 2m, n’, v+ 2h + h") in H{'(0, 1, 1y(0). Thus we have that w
occupies cell (v; — 2m, 0, v3+ 2h + h") in H,'(0). Since w also occupies cell
(vi—m, m', vs+ h) in Hi'(,0,-1)(0). Therefore, w' occupies cell (vi — m, m'
— 1, v3+ h) in H,'(0), and v occupies cell (vi —m, m'+ 1, v3+ h) in Hi'(g, 1,
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0(0).
2. Ronsxi<n+m,x=0,2h<x3<2h+h'.

It occurs when 0 <v; <m, v, =0, 0 < v3 <A’ for v also occupies cell
(vi+n, 1, v+ 2h) in Hi'q,0,0)(0). Thus we have that w occupies cell (v; +
n, 0, v3+ 2h) in H,'(0). Since w also occupies cell (vi +n +m, m', vi+ h —
h") in Hi'«, 0,-1)(0). Therefore, w' occupies cell (vi+n +m, m" — 1, v+ h
— /") in Hy'(0), and v occupies cell (vi + n +m, m'+ 1, vs+h — h") in H/'q,
0,-1)(0).

For m' = 1, we only need to consider the condition that w is located in
the following four regions R;, R», Rz and Ry4:
I. Rim<xi<m+n,x=0,h+h <x3<2h.(ifh' <h)

It occurs when 0 < vy <m, v, =0, 2h + 2h' <v3 < 3h + 2Ah' for v also
occupies cell (vi + m, m'jv3="h = k') in Hy',0,-1y(0). Thus we have that w
occupies cell (v;+ a1, 0, vs—= h = k') 1 H,'(0). Since w also occupies cell
(vi+2m, m', vs— 2h —2h") 1 Hy'(0, 0, -1(0). Therefore v occupies cell (v; +
2m,m'+ 1, v3 — 2h < 20an Hi' (5,0, 22)(0).

2. Rom<xi<m+nx=0hsxs<h+h.

It occurs when 0 < v, <mn, v, =0, 2h + h' <v3<2h + 2h', because of
the same reason for R;. Since w also occupies cell (vi, n' + m', v — h') in
Hi'(0,1,0)(0). Therefore v occupies cell (vi, n' +m" + 1, vs— A") in Hi'(o, 1,
-1»(0).

3. Reem<x1<2m,x,=0,0<x3<h.

It is the same as the proof for R,, except that it occurs when n < v, <

m@{fn<m),v,=0,h+h' <v;<2h+h
4, Ra2m+n<x1<2m+n,x=0,0<x3<h.

It occurs when m <vi<n+m, v, =0, h+ h' <v3<2h+ h' because

of the same reason for R;. Since w also occupies cell (vi — m, n', v;+ h) in

Hi'(0, 1, 1)(0). Therefore v occupies cell (vi — m, n' + 1, vs+ h) in Hi'(, 1,
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0)(0).

c. v3 = 0. Suppose u is in the x3 = 0 plane. From the fact that u is 3-maximal,
necessarily, # = 1. Hence we only need to consider the condition that u is
located in the following four regions Rj, Ry, R; and Ry:

1. Ri:0<x1<m,n"+m' <x,<2m’,x3=0.

It occurs when m < vy <2m, 0 < v, <m' — n', vs = 0 for v also
occupies cell (vi — m, vo+ n' + m’, h) in Hi'«,1,0)(0). Thus we have that u
occupies cell (vi — m, v+ n' + m’, 0) in H,'(0). Since u also occupies cell
(vi+n, va+n', h) in Hi'q, -1, 0)(0). Therefore, u' occupies cell (v + n, vo+ n',
h — 1) in H,'(0), and v occupies cell (vi+n, vo+n', h+ 1) in Hi'(1, 0, 0)(0).

2. Ry:0<x1<m,2m'<xp,<n'+2m',x3=0.

It occurs when m <wy'<2am’' — n' <v, <m', v = 0. That’s the same
reason for R;. Since-u alsoyoccupies cell (vi+ n, v, — 2m’, 2h + ') in Hy'¢,
~1,1(0). Therefore;u' occupies cell (vi +n, v, — 2m’, 2h + h' — 1) in H/'(0),
and v occupies cell (v tmyvo=2m', 2h-+ h' + 1) in Hi'(y, o, 1)(0).

3. Reontm<x1<2m,0<x;<m',x3=0.

It occurs when 0 < vi<m — n, m' < v, <2m', vs = 0 for v also
occupies cell (vi + n+ m, v, — m', h) in Hi'q,-1,0)(0). Thus we have that u
occupies cell (v + n + m, v, — m’, 0) in H,'(0). Since u also occupies cell
(vi + n, va+ ', h) in Hi', 1,0/(0). Therefore, u" occupies cell (vi + n, v, +
n', h — 1) in H,'(0), and v occupies cell (vi + n, v+ n', h + 1) in Hi'¢1, o,
0)(0).

4. Ru2m<x1<n+2m,0<x,<m’', x3=0.

It occurs when m — n < vy <m, m' <v, <2m’', v; = 0. That’s the same
reason for Rs. Since u also occupies cell (vi — 2m, v, + n', 2h + h'") in Hy'(q,
1, 1)(0). Therefore, u" occupies cell (vi — 2m, v, + n', 2h + ' — 1) in H,'(0),
and v occupies cell (vi — 2m, v, + n', 2h + ' + 1) in Hi'1 o, 1)(0). Path 3
starts with an s3-step and enter cell (0, 0, 1), followed by a dimension
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routing to ' in H;'(0), and then add an s3-step to u in Hy'(o, 1, 1(0).

(111)  Exactly two v; = 0. We consider three cases:

a. v, = v3 = 0. Path 1 is the unique shortest path from node 0 to v along the
x1-axis. We will show that in H;'(0) one of u and w has x, > 0 and the other x3
> (. Then we let path 2 go from 0 to s;, followed by a dimension routing to
the node in {u, w} with x, > 0 (in fact, the dimension routing starts with
dimension 2, hence is also a dimension routing from 0). Similarly, path 3
goes from 0 to s3 followed by a dimension routing (starting from dimension 3)
to the other node in {u, w}. Then a weak minimum-3-routing must have one
path starting from s, and one from s3. But our proposed paths constitute a
shortest pair from s, and s3 since they use dimension routing. This proves
weak minimum-3-routing,

To prove the existénce of the desirable u and w, we first prove a lemma

which is located u and:w in H;'(0);

Lemma 3.3.2 Let v= (v, 0, 0).

(1) Suppose 0 <v; <m. Thenu=(vi+n,n',2h—1)and w=(vi+n,n' — 1, 2h).

(i)  Suppose m <v; <2m. Thenu=w,—m,n"+m',h—1)andw=(v,—m,n"+ m' —
1, h).

(ii1))  Suppose 2m <v; <2m + n. Thenu = (vi—2m, n', 2h + h' — 1) and w = (v; — 2m,
n'—1,2h+h).

Proof.

(1) Since v also occupies (vi + n, n', 2h) in Hi'(1,0,0)(0), u occupies (vi+ n, n', 2h — 1)
and w occupies (v + n, n' — 1, 2h). Since v; < m, the above two locations of u
and w are in H;'(0).

(i1) Since v also occupies (vi—m, n' + m', h) in Hi'(, 1,0)(0), u occupies (vi—m, n' +

m', h — 1) and w occupies (vi—m, n' + m' — 1, h). Since m < v; < 2m, the above
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(ii1)

two locations of # and w are in H;'(0).
Since v also occupies (vi—2m, n', 2h + h") in Hy' (o, 1,1)(0), u# occupies (v; — 2m, n’,
2h + h' — 1) and w occupies (vi— 2m, n' — 1, 2h + h'). Since 2m < vy < 2m + n,
the above two locations of # and w are in H,'(0). O

By lemma 3.3.2, we get that x, > 0 for # and x3 > 0 for w. Thus a (2, 1, 3)
dimension routing exists from 0 to # and a (3, 1, 2) from 0 to w. Hence, paths 2
and 3 are node-disjoint (their disjointness from path 1 is obvious), and they have
lengths at most D + 1.

Obliviousness is clear from the construction.

Since the proofs of two cases, v = v3 = 0 and v, = v, = 0, are analogous to
v, = v3 =0, we only consider the conditions different from v, = v3 =0.
b. vi = v3 = 0. We will show that in H{’(0) one of # and u has x; > 0 and the other

X3>0.

Lemma 3.3.3 Let v = (0, v,, 0).

(1)
(if)

(iii)

Proof.

(1)

(if)

(iii)

Suppose 0 <v, <m'. Thent=mn—1,v,+n',2h)and u = (n, vo+n', 2h — 1).
Suppose m' < v, <2m'. Thent=mn+m—1,vo—m', h)yandu=n+m, v,—m', h
-1).

Suppose 2m' < v, <2m'+n'. Thent=(n — 1, vo—2m', 2h + h') and u = (n, vo—

2m', 2k + k' — 1),

Since v also occupies (n, vo+ n’, 2h) in Hi'(1,0,0)(0), t occupies (n — 1, v, + n', 2h)
and u occupies (n, v, +n', 2h — 1).

Since v also occupies (n + m, v,— m', h) in Hy'1, -1,0)(0), ¢ occupies (n + m — 1,
v, —m', h) and u occupies (n + m, v,—m', h — 1).

Since v also occupies (n, vo— 2m’', 2h + h") in H'(1,-1,1)(0), t occupies (n — 1, v»
—2m',2h + h'") and u occupies (n, vo—2m', 2h + h' - 1). O
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c. vi = v, = 0. We will show that in H;'(0) one of # and w has x; > 0 and the other

xy > 0.

Lemma 3.3.4 Let v= (0, 0, v3).

(1) Suppose 0 <vs <h'.Thent=(n—1,n',v;+2h)and w= (n,n' — 1, v3+ 2h).
(i1) Suppose i’ <vs<h+h'.Thent=(n+2m—-1,0,vs—h')and w= (0, n’' +2m' —
1, V3— h')

(1)) Suppose h+ h'<vi<3h+h'.Thent=m—-1,m',vs;—h—h")and w=(m, m" —

1, vs—h—h).

Proof.

(1) Since v also occupies (n, n', v3+ 2h) in Hi'(1,0,0)(0), t occupies (n — 1, n', v3+ 2h)
and w occupies (n, n' — 1, y3+ 2h).

(i1) Since v also occupies (n+ 2m, 0, v3—4") in Hi'(1, -1, -1y(0), ¢ occupies (n +2m — 1,

0, v3— A"). Since v also-occupies-(0s-#~+ 2m', vs— h') in Hy'«, 1,-1)(0), thus w
occupies (0, n' +2m' — 1, vi=h').

(1)  Since v also occupies (m, m', vo— h — h') in H'«, 0,-1Y(0), ¢ occupies (m — 1, n?’,

v3—h —h") and w occupies (m, m' — 1, vs—h —h'). O

[

We give an example that a minimum-3-routing does not exist in H,". For

H,'(161; 117, 2, 7) and v = 26 with coordinates (0, 6, 2), the proposed routing yields

lengths (8, 8, 12), the proposed routing yields lengths (8, 8, 12) while the routing:

Py': 0-2-4-6-8-10-17-24-26, P,": 0-7-14-21-28-35-42-49-56-63-70-26, P5": 0-117-

124-131-138-145-152-159-5-12-19-26 yields length (8, 11, 11). Since /5 > /5', (P,

P», P3) is not a minimum-3-routing.

Corollary 3.3.5 The connectivity of H;' is 3.
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Theorem 3.3.6 The k-diameter of Hy' isat most D+ k-1 fork=1, 2, 3.

Proof. It’s the same as Theorem 3.2.4. 0

Corollary 3.3.7 The 3-diameter of H' is at most D + 2.

Corollary 3.3.8 The diameter of H;' is at most D + 2 after two arbitrary failures (nodes

or links).
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3.4 Wide-Diameter of H,'

Similar to the previous section, we use oblivious weak minimum-3-routing to
prove that H,' is 3-connected by constructing 3 node-disjoint paths from any node i

to any other node ; in this section.

Hy'(o,1,1)(0) , ’
Hy'-1,1,2(0) | Hy'-1,2,15(0)
Hy'(0, 0, 1)(0)

H2 ,(0, i 0)(0)

Hy'(0,0,-1)(0)

Hy't1,0,0)(0)

Hy't1,-1,2(0)

Hy't1,-1,0)(0)
Hy't1,0,-1)(0)

Hy'¢1,-1,-19(0)

Fig. 3.4.1 H,'(0) and its copies.

Theorem 3.4.1 There exists an oblivious weak minimum-3-routing from node 0 to an
arbitrary node v in Hy'. Suppose v occupies cell (v, v2, v3) in Hy'(0). Let [y, L, I5 be the
distances from O to ¢, w, u in H,'(0), respectively. The lengths of the three paths are

(1) vitvt+v, vitwtvsand vi+ v, + v, whenv; >0 fori=1, 2, 3.

(i1) vit+ vi, vi+ v and [; + 2, when exactly one v; = 0 for i € {1, 2, 3}, where j, k
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(iif)

{vi, va, v3} / {v;} and j # k.
vi, i+ 1and /; + 1, whenv;,=v;=0fori,j € {1, 2, 3}, and i #j, where k = {vi,

v, v3} / {vi, Vj}-

Proof. Since this proof is similar to Theorem 3.3.1, we only consider the following two

conditions different from Theorem 3.3.1.

(i)

Exactly one v; = 0. We consider three cases:

a. vi = 0. Suppose ¢ is in the x; = 0 plane. From the fact that ¢ is 1-maximal,
necessarily, / = 1. Hence we only need to consider the condition that 7 is
located in the following two regions R; and R;:

1. Rux1=0,0<x, <!, 4n+3m <x3 < 5n + 4m.

It occurs when v =0, [ <v, <2/, 0 <v3 <n + m for v also occupies
cell (1, vo—1I', v3s+ 4n + 3m) in Hy' (0, 1,1)(0). Thus we have that ¢ occupies
cell (0, v, — I', v3+ 4n +.3m) in Hs/(0). Since ¢ also occupies cell (I + n’, v,
+ '+ m', v3+ 2n +m) in Hy'q <1, -1)(0) Therefore, ¢ occupies cell (n', v+
I'+m', v3+ 2n + m) in Hy'(0),and v occupies cell ({+n"+ 1, v+ 1"+ m', v3
+2n + m) in Hy'q1, 0,0)(0):

2. Rix1=0,0<x, </, 5n=4m<x3<6n+ Sm.

It occurs when vi =0, [ < v, <2, n + m <v; <2n + 2m for the same
reason of the above case. Since ¢ also occupies cell (3/ + 2n', v, + m', v3—
n —m) in Hy'(1,—1, 2)(0). Therefore, ¢ occupies cell (2/ + 2n', vo + m', vi—n
— m) in Hy'(0), and v occupies cell (3/ +2n" + 1, v, + m', vi— n — m) in

Hy't1,0,-1)(0).

b. v, = 0. Suppose w is in the x, = 0 plane. From the fact that w is 2-maximal,
necessarily, I’=1 or m" = 1. For I' = 1, we only need to consider the condition
that w is located in the following five regions Rj, Ry, R3, Rsand Rs:

1. Ri: 0<x1<Lx,=0,5n+4m < x3 < 6n + Sm.

It occurs when 2/ +n' <vi; <31+ n',v,=0,2n+2m <v3;<3n+ 3m
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for v also occupies cell (vi — 21 — #', I', v3+ 3n + 2m) in Hy'(, 0, 1)(0). Thus
we have that w occupies cell (vi — 2/ — n', 0, v3+ 3n + 2m) in H,'(0). Since
w also occupies cell (vi+ [+ n', I' + m', vs— 2n — 2m) in Hy'(1, -1, -2)(0).
Therefore, w' occupies cell (vi+ [/ + n', m', vi— 2n — 2m) in H,'(0), and v
occupies cell (vi+ 1+ n',I'+m'+1,v3—2n — 2m) in Hy'(1, -1, -1)(0).

2. Ru0<x1<,x=0,3n+2m<x3<5n+4m.

It occurs when 2/ +n' <vi <3/+n', v, =0, 0 <v3<2n+ 2m for the
same reason for R;. Since w also occupies cell (vi — /, 2/" + m', v3+ n) in
Hy'(1,-1,-1y(0). Therefore, w'" occupies cell (vi — [, I' + m’, v3+ n) in Hy'(0),
and v occupies cell (vi — 1, 2"+ m' + 1, v3+ n) in Hy'1, -1, 0)(0).

3. Ry: I<x1<2L,x=0,3n+2m <x3 <4n+ 3m.

It is the same as the proof for R,, except that it occurs when 3/ + n’ <
w<4l+n,v,=0,0<v<n+m.

4, Ry:2l1<x1 <2l +n5x=0,3n+t2m<x3<3n+3m

It is the same:as the proof for R, except that it occurs when 4/ + n’ <
w <4l+2n', v, = 0;0<va<m:

5. R: 2l +n' <x1 <3l +n'x:50,3n +2m<x3<3n+3m.

It occurs when 4/ + 2n' < vy <51+ 2n', v, =0, 0 < v3 < m for the same
reason for R;. Since w also occupies cell (vi — 4] — 2n', I', v+ 6n + 4m) in
H>'(0,0,1)(0). Therefore, w' occupies cell (vi — 4/ — 2n’, 0, v3+ 6n + 4m) in
H,'(0), and v occupies cell (vi — 4/ — 2n', I' + 1, v3+ 6n + 4m) in Hy'(o, o,

2)(0).

For m' = 1, we only need to consider the condition that w is located in the
following two regions Rg and R7:
1. Re: 4l +2n" <x1 <51+ 2n",x,=0,0<v; <m.
It occurs when 0 < vi <[, v, =0, n+m <x3 <n+ 2m for v also
occupies cell (vi+ 2/ +n', I' + m', v+ 2n + m) in Hy'(1, 0, 0(0). Thus we
have that w occupies cell (vi+ 2/ + n', I', vs+ 2n + m) in H,'(0). Since w
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also occupies cell (vi, 2/, vs+ 5n + 3m) in Hy'(o, 0, 1)(0). Therefore, w'
occupies cell (vi, 2/" — 1, v3+ 5n + 3m) in Hy'(0), and v occupies cell (vi,
20"+ 1, v3+ 5n+3m) in Ha'(1, 0, 0)(0).
2. R4l +2n <x1 <50+ 2n',%=0,m<x;<n+m.
It occurs when 0 <v; <[, v, =0, n + 2m < x3 < 2n + 2m for the same
reason for Re. Since w also occupies cell (vi — 27, 6/' + m', v3+ 2n) in Hy',
-2,0)(0). Therefore, w' occupies cell (vi — 2/, 6/', v3+ 2n) in H,'(0), and v

occupies cell (vi =2/, 60"+ m'+ 1, v3+2n) in Hy'o, -2, -1)(0).

c. v3 = 0. Suppose u is in the x3 = 0 plane. From the fact that u is 3-maximal,
necessarily, » = 1. Hence we only need to consider the condition that u is
located in the following three regions R; and Ry:

1. Ri: 0<x1<n, 3]+ m' <xp =24t m’, x3=0.

It occurs when! < v, <IHn', 0 <w, <!, v3 = 0 for v also occupies cell
(vi = I, vo+ 30" + m", n) in Hy';<1,0)(0). Thus we have that u occupies cell
(vi — I, va+ 30" + m", 0) in- Hy'(0).. Since u also occupies cell (vi+ 2/ + n', v,
+ 1"+ m', m + n) in Hy'(0,1,0)(0): Therefore, u' occupies cell (vi+ 2/ +n’, v,
+ '+ m', m) in Hy'(0), and v occupies cell (vi+2[+n",vi+ '+ m',m+n+
1) in Ha'(1, 0, 0)(0).

2. Ren'<xi1<l+n,3l+m'<x,<4l+m', x3=0.

It occurs when [ +n' <vi <2/ +n', 0 <v, <[, v3 =0 for the same
reason for R;. Since u also occupies cell (vi — [ — n', v2, 6n + 5m) in Hy',
2,2)(0). Therefore, u’ occupies cell (vi — [ — n’, v2, 5n + 5m) in H,'(0), and v
occupies cell (vi =1 —n', vy, 6n + 5m + 1) in Hy' 0, 1,2)(0).

3. R:0<x 1 <I+n,4l+m' <x,<5l+m', x3=0.

It occurs when [ < vy <2/ +n', I' < v, <2[', v3 = 0 for the same reason
for R;. Since u also occupies cell (vi + [, vo— ', 3n + 3m) in Hy'(_1, 2, 1)(0).
Therefore, u" occupies cell (v; + 1, v, — I, 2n) in H,'(0), and v occupies cell
(vi+Lva=10,3n+3m+ 1)in Hy' o, 1, 11(0).
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(iii)

Exactly two v; = 0. We consider three cases:
a. v, = v3 = 0. We will show that in H,'(0) one of u and w has x, > 0 and the
other x3 > 0. To prove the existence of the desirable u and w, we first prove a

lemma which is located # and w in H,'(0).

Lemma 3.4.2 Letv=(vy, 0, 0).

(1)

(i)

(iii)

Proof.

(1)

(if)

(iii)

Suppose 0 < vy <[. Thenw=(vi+2l+n',m',m+2n)andu=(vi+2[+n',I' +
m',m+2n—1).

Suppose / <v; <2/+n". Thenw=(—-L2I'+m',n)andu= (-1, 3' + m', n—
1).

Suppose 2/ +n' <v; <5/ +2n'. Thenw = (vi—2[—n', 0,2m + 3n) and u = (v; —

2l —n',l',2m+3n—1).

Since v also occupies (vi+ 2/ 4+ w'; 1"+ m', m + 2n) in Hy'(1,0,0)(0), w occupies (v,
+2/+n',m', m+ 2n) and v occupies (vi+21+n', '+ m',m+2n—1).

Since v also occupies (vi — 1, 3I' + m’, n) in Hy'(, -1,1)(0), w occupies (vi — 1, 2/' +
m', n) and u occupies (vi— 1, 3"+ m', n—1).

Since v also occupies (vi— 2/ —n', I', 2m + 3n) in Hy'(, 0, 1)(0), w occupies (vi —

2] —n',0,2m + 3n) and u occupies(vi— 2/ —n', I',2m + 3n —1). O

b. vi = v3 = 0. We will show that in H,'(0) one of # and u has x; > 0 and the other

X3>0.

Lemma 3.4.3 Let v = (0, v,, 0).

(1)

Suppose 0 <v, <l Thent=Q2/+n'— 1,vy+I'+m',m~+2n)and u= 2l +n', v,

+I'+m',m+2n—-1).
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(i)

(iif)

(iv)

Proof.

(1)

(if)

(iii)

(iv)

Suppose I'<v, <2l'. Thent=(—-1,v,—!',4n+3m)andu =, v,— ', 4n + 3m
-1).

Suppose 2I'<v, <4l'+m'. Thent=@l+n'— 1, v,—2l',n+m)and u= 3]+ n',
w=2ln+m-1).

Suppose 4" + m' <v, <5I'+m'. Thent=Q2/ - 1,v,—4l' —m’, 3n +3m) and u =

QLv,—4l' —m',3n+3m—1).

Since v also occupies (2/ + n', vo+ '+ m', m + 2n) in Hy'(1,¢,0)(0), ¢ occupies (2/
+n' — 1, v+ 1I'+m', m+2n) and u occupies (2[ +n', v+ 1I'+m',m+2n—1).
Since v also occupies (I, vo— ', 4n + 3m) in Hy' (0, 1,1y(0), ¢ occupies (/ — 1, v,— /',
4n + 3m) and u occupies ([, v,— ', 4n+3m — 1).

Since v also occupies (3] + n', vo— 2/', n + m) in Hy'(0, 1,0)(0), ¢ occupies (3] + n'
—1,v,—2l', n +m) and u oecupies 3/ t nsvo—2l',n+m—1).

Since v also occupies (24 va— 4l' = m'y3n + 3m) in Hy'1, 2, 1)(0), ¢ occupies (2/ -

1, v,—4l' —m', 3n + 3m)-and uwoccupies(2L,vo—4l' —m',3n +3m — 1). 0

c. vi = v, = 0. We will show that in H;'(0) one of # and w has x; > 0 and the other

X2>0.

Lemma 3.4.4 Let v=(0, 0, v3).

(i)

(if)

(iii)

(iv)

Suppose 0 <v3<n+m. Thent=Q2l+n" - 1,I'"+m', vs+ m+2n)and w= 2/ +
n',I'+m'—1,vi+m+2n).

Suppose n + m < v3 <2n+2m. Thent=(4/+2n'— 1, m', vi—m —n) and w = (4/
+2n',m'—1,v3—m—n).

Suppose 2n +2m <vis<5Sn+4m. Thent=(+n"—1,20' + m', v;—2m — 2n) and
w=({+n 20 +m'—1,v3—2m —2n).

Suppose 5n + 4m < v3 < 6n + Sm. Then t = (3/ + 2n' — 1, I' + m', vs— 4m — 5n)
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Proof.

(1)

(i)

(iif)

(iv)

andw=@3l+2n", '+ m'—1,vs—4m — 5n).

Since v also occupies (2/ + n', I' + m', v3+ m + 2n) in Hy'(1,¢,0)(0), ¢ occupies (2/
+n' —1,I'"+m', vi+m+ 2n) and w occupies (2 +n', I' + m' — 1, vi+ m + 2n).
Since v also occupies (4/ + 2n', m', vs— m — n) in Hi'(1,0,-1)(0), ¢ occupies (4/ +
2n' — 1, m', vs— m — n). Since v also occupies (0, n" + 2m’, v3— h') in Hy'(, 1,
-17(0), thus w occupies (4] + 2n', m' — 1, vs— m — n).
Since v also occupies (/ + n', 2I' + m', vs— 2m — 2n) in Hy'(1, -1, -1y(0), ¢ occupies
(I+n—-1,2'+m', v;—2m — 2n) and w occupies (/ + n', 2I' + m' — 1, vs—2m —
2n).
Since v also occupies (3/+ 2n', I' + m', vs— 4m — 5n) in Hy'(1, -1, -2)(0), ¢ occupies
(3l1+2n" = 1,I'"+m', vi—4m — 5n) and w occupies (3/+ 2n', ' + m' — 1, v3— 4m
— 5n). 0
J

We give an example that a minimum-3-routing does not exist in H,', For

H,'(273; 255, 262, 41) and v =226 with coetdinates (2, 1, 0), the proposed routing

yields lengths (3, 3, 14) while the routing: P,": 0-255-244-226, P,": 0-262-

251-240-229-218-207-196-185-226, P5'": 0-41-30-19-8-270-259-248-237-226 yields

lengths (3, 9, 9). Since /3 > [5', (Py, P>, P3) is not a minimum-3-routing.

Corollary 3.4.5 The connectivity of Hy' is 3.

Theorem 3.4.6 The k-diameter of Hy' isat most D+ k-1 fork=1, 2, 3.

Proof. It’s the same as Theorem 3.2.4. O

Corollary 3.4.7 The 3-diameter of Hy' is at most D + 2.

Corollary 3.4.8 The diameter of H,' is at most D + 2 after two arbitrary failures (nodes

or links).
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Chapter 4 WSNB on Log,(N, m, p) Networks

4.1 Architecture

For computer networks, delays more than polylog time are generally
unacceptable. Therefore centralized routing algorithms which usually require O(N
logN) time are out. Instead, a bunch of log,N-stage networks with self-routing
property have been invented; here, self~routing, first proposed by Lawrie [30] for
the Omega network, means that a request can be routed by only knowing its input
and output, and nothing about other requests. These networks are usually
recognized as the banyan-type by the following features.

(1) The network is an n-stage binary network (n = log,N).

(i1) Each input has a unique path to each output.

Dais and Jump [16] introduced-the "buddy" notation: Let v and V' be two
crossbars in stage i and let ¥, and V;, be two sets-of crossbars in stage j that v and
V' can reach, respectively. Then the network is a*buddy network if for any i and j =
i+ 1,either V,=V,or V, NV, =4

Agrawal [1] called a buddy network a strict buddy network if the buddy
condition also holds for j = i + 2. Chen et al. [12] further generalize the strict

buddy network to the universal buddy network by allowing j to be arbitrary.

Some well known self-routing networks which have the buddy property, are

shown in Fig. 4.1.1.
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001

LT

(a) Omega (OM) (b) Banyan (BY) (c) Baseline (BL)

Fig. 4.1.1 Some self-routing networks.

The above class of binary networks with N inputs and M outputs can be
extended to d-nary by replacing (i) with (') N= M = d". The network consists of
stages of crossbars of size d x d.

An (n + 1)-stage buddy network was first proposed by Siegal-Smith [41] for
increasing the connection power and forfault tolerance. Shyy and Lea [40]
considered adding m extra stagés to BY " and specified that the extra m stages
should be identical to the mirror image of the first m stages. Represent a
m-extra-stage buddy network by«B(n, m) or-B(N, m). The specified way of
addition has the advantage that BY "(n) m) can be sequentially decomposed m
times, 1 <j < m, namely the subnetwork of BY ™ '(n, m) from stage j + 1 to stage n
+ m —j decomposed into 2 BY '(n —j, m — j) such that each input (output) switch
of the BY '(n, m) has a unique path to each BY '(n —j, m — j) (see Fig. 4.1.2 in
which the external terminals are not drawn). Denote this way of adding extra
stages by F'. Hwang [26]observed that there are three other natural ways of

addition.
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Fig. 4.1.2 Decomposition of BY ™ '(4, 2).

(1) F: The extra m stages are identical to the first m stages.

(i1)) L: The extra m stages are identical to the last m stages.

(iii) L™': The extra m stagesidre identical to the mirror image of the last m

stages.

The various ways of-addition result in different networks with different
connection capabilities in general. Extra-stage/Omega networks are known as
shuffle exchange (SE) networks. Hwang-Liaw-Yeh determined the equivalence
classes among the m-extra-stage networks SE(m), SE'(m), BY(m), BY '(m),
BL(m), BL™'(m) for all m and under each of F, F', L, L™".

A network is strictly nonblocking (SNB) if the current request can always be
connected regardless of how previous connections were routed. While BY '(n, m)
itself is not an SNB network, Lea and Shyy [32] first proposed the Logx(N, m, p)
network with N = 2" inputs (outputs), which consists of a vertical stacking of p
copies of BY'I(n, m), 0 < m < n—1, sandwiched between and connected to an input
stage and an output stage, each with N 1 x p (or p x 1) crossbars. As shown in Fig.
4.1.3, there are three copies of BY'(3, 1) sandwiched between the input and
output stages. Later, Hwang [24] extended the Logy(NV, m, p) network to Logu(N,

m, p) network by replacing the 2 x 2 crossbars with d x d crossbars.
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4.2 Blockingness

Traffic can be classified as point-to-point, like 2-party phone calls, or
broadcast, which is one to many. If there is a restriction on the maximum number
of receivers per request, then broadcast is called multicast, or f-cast, if that number
is specified to be f. Traffic can be further divided into two types according to
whether additional receivers can be added after a multicast request is already
connected. We will use open-end broadcasting (which allows additions) and
closed-end broadcasting (which does not allow) to differentiate the two types.

Traditionally, there are different levels of nonblockingness: strictly,
wide-sense and rearrangeable. In this thesis, we only consider the wide-sense
condition. A network is wide-sense nonblocking (WSNB) if the connection of the
current request is assured only_ when"all’connections are routed according to a
given algorithm.

Before providing the ¢lassical results of Logx(N, m, p) networks, we first
study the concept of channel.graph. The'channel graph CG(i, o) between an input
i and an output o is the union of all paths connecting them (see Fig. 4.2.1). In
BY'(n, m), all channel graphs are isomorphic with the following double-tree form
(two binary trees with their 2" leaves linked by paths in a one-to-one fashion).
The channel graph of a multicast call is simply the union of its point-to-point

channel graphs.
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Fig. 4.2.1 A channel graph of BY (1, m).

Note that whether a request can be connected depends only on the state of the
channel graph: a request is blocked if and only if every path in its channel graph
contains an occupied link.

Throughout this thesis,-a link connecting stage i and stage (i + 1) is called a
stage-i link. Note that the mputs (outputs) are the 0-th (n-th) link stage. We use
shell i to denote the i-th link“stage and the (1 = i)-th link stage for 0 < i <[ (n —
1)/2. An intersecting connection is one which contains a link in the channel graph
of the request. An intersecting connection is an i-intersecting connection if it first
(last) intersects the channel graph in a stage-i link when counted from the input

(output) side.
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4.3 Classical Multicast WSNB Results

Much less is known for WSNB; perhaps because it is not easy to come up

with intelligent routing algorithms which can make a difference. Suppose that

Log«(N, m, p) is constructed by vertically stacking p copies of BY,'(n,m),

denoted by M;, My, ..., M,. We show five evident routing algorithms in the
following.
1. Save-the-unused (STU). Do not route through an empty M; unless there is no

choice, wherej =1, 2, ..., p.

2. Packing (P). Route through anyone of the busiest M)’s, where j =1, 2, ..., p.
3. Minimum index (MI). Route through the M; with the smallest index if

possible, where j =1, 2, ..., p.

4. Cyclic dynamic (CD). If«M; is used inr routing the last request, try M.y,

M;io, ..., in that cyclic order.

5. Cyclic static (CS). Same as CD.except startiig from M;, where j =1, 2, ..., p.

Note that STU includes P,

Chang et al. [6] showed that the number of copy networks required for
WSNB under each of the above five routing strategies in the LogiN, 0, p)
network is same as required for SNB, thus dashing any hope of saving hardware
while retaining the nonblocking property.

Tscha and Lee [44] proposed a multicast WSNB algorithm, denoted by
window algorithm, for Logy(N, 0, p) network. Define 6 = o], They partitioned
the N outputs of BY'(n, m) into N /& windows, each containing the & outputs
reachable from the same crossbar at stage n + m — | n/2] + 1. In other words, if the
outputs are labeled by binary n sequences, then a &-window consists of those
outputs, which have the same » — @ most significant bits. Although an output can
be reached by 277! crossbars at stage n + m — 6+ 1, each such crossbar reaches

the same window due to the well-known “buddy” property of banyan type
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networks. Fig. 4.3.1 shows that the outputs {0,1,8,9}, reachable from the first
crossbar at stage five, form a 2-window of BY'(4, 2).

By window algorithm, an f-cast request will be split to several f-cast
subrequests each consisting of outputs in a given &window. Two rules are
observed in this &window routing :

1. Each subrequest uses one path up to n — @ stage (for a n-stage network).
2. The subrequests from the same request are treated as independent requests,

i.e., they cannot share any link.

stage: I 2 3 4 5 &

i
i

e
2-window Lr

Fig-4.3:1 A 2-window of BY'(4, 2).

Tscha and Lee [44] proved

Theorem 4.3.1 Logy(N, 0, p) is multicast WSNB under the window algorithm if

p2|n/2 202,

At first, they stated Theorem 4.3.1 as an SNB result. However, Kabacinski
and Danilewicz [29] pointed out that their proof using “windows” to split a
multicast call implies a routing algorithm, hence, their result is WSNB instead of

strictly nonblocking. Note that Theorem 4.3.1 was proved by setting 6= Ln/2..

Kabacinski and Danilewicz [29] extended the fixed window-size algorithm in

[40] to variable window size and proved



Theorem 4.3.2 Logy(N, 0, p) is multicast WSNB under the &-neighborhood

routing if

>

02" +[ 220, for1<0<|n/2],
2°+(n—0-2)2"""=2*"" 41, for|n/2|<6<n.

Besides, Tscha and Lee [44] stated in conclusion that whether their approach
could be extended to Logyx(N, m, p) was unclear. Danilewicz and Kabacinski [13,
14] made such an attempt but encountered some difficulties. They treated the
worst case as each request is point-to-point. Though in most cases the minimum p
is obtained for window-size equal to [ (n + m)/2 |, there are cases when this number
is obtained for window-size less than [ (n + m)/2|. At the end, they had no general
formula for WSNB switching networks for window-size larger than |—(n + m)/2_|.
In section 4.4, we will givessuch an extension for the variable window-size
algorithm by adopting a channel graph blockage-analysis first used by Shyy and
Lea [40] on a single-cast network:“The Log,(N, m, p) network is much more
difficult to analyze because of multipaths-in"the channel graph and each link
having a different impact on blockage. We also determine the optimal window
size for given m, and then compare the performance among different m in section

4.5.
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4.4 WSNB Logz(N, m, p)

In this section, we [28] further extended Theorem 4.3.2 to Log,(N, m, p).
Following Tscha and Lee [44], we split a multicast request into w multicast
subrequests if the involved outputs spread into w windows, while each subrequest
must be routed through the same copy of BY'(n, m). When we are discussing a
multicast request with respect to a given Gwindow, we refer to it as the
designated G-window. Further, a O-window 1is designated if it contains the
designated @-window. As Tscha and Lee [44] dealt only with BY'(n), the
connection from an input to an output is unique, and whether two connections
intersect is determined. Therefore, an intersection graph among the connections
within a designated [ n/2J-window can be defined, and its maximum degree plus
one becomes the number of copies of BY ' (n) sufficient for nonblocking. Besides,
we assume < n to avoid trivial cases:

For BY'(n, m), the analysis is much more: complicated as the connection
between an input and an output'is not-umque: First of all, we have to be more
specific about the window algorithm. We propose the delayed-splitting 6-window
algorithm, which prescribes that a multicast connection to outputs in the same
G-window cannot be split before stage (n + m — €+ 1). Note that further delay is
not always possible, since stage n + m — @+ 1 is the last stage where all outputs in
the same window have common reachable crossbars. Also note that such an
algorithm fixes only the relative routing of two outputs in the same 8-window, 6’
< 6, but not the absolute routing to an output. Thus, whether two connections
intersect is uncertain and the notion of an intersection graph used by Tscha and
Lee [47] is not applicable. Instead, we adopt the method of channel graph
blockage analysis.

Recall that a link connecting stage i and stage (i + 1) is called a stage-i-link.
Consider a k-cast request in a -window. An intersecting connection is one which

contains a link in the channel graph of the request. We can count an intersecting
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connection either from its input end or its output end. An intersecting connection
is an i-intersecting connection if it first (last) intersects the channel graph in a
stage-i link when counted from the input (output) side.

We count all i-intersecting connections, n + m — < i <n+ m — 1, from the
output side. Note that the outputs of these connections must all be in the
designated € -window. Thus, there are, at most, 2Y% — k of such connections.
Further, they have different impacts in blocking the paths in the channel graph,
depending on i. For example, for m > 2, an (n + m — 1)-intersecting connection
blocks a proportion of 1/2, since the channel graph has only two stage-(n + m — 1)
links, while an (n + m — 2)-intersecting connection blocks a proportion of 1/4,
since the channel graph has four stage-(n + m — 2) links.

On the other hand, we will count all i-intersecting connections, 1 <i<n+m
— @ — 1, from the input side. Again, an i-intérsecting connection has a greater (or
equality permitted) blocking impact than an (i +.1)-intersecting call for i < |_(n +
m)/ZJ. We will show that we never‘need to count from the input side over the
stage |_(n + m)/2J. Therefore,”we adopt the method used in [29] to count from
small 7 to large i to maximize the blocking impact.

In section 4.1, we have known that BY () and many other networks have
buddy property. Note that in a buddy network, the set of inputs which can
generate an intersecting connection to a multicast request is independent of the
size of that request. To see this, consider a 2-cast call from input i to two outputs o
and o'. Then an input i’ # i can generate a k-intersecting connection (at a crossbar
u') to the path from i to o’ if and only if it can generate a k-intersecting connection
(at a crossbar u) to the path from i to o, since the buddy property assures that if
i'can reach u', it can reach u. Hence, increasing the size of the request does not
increase the number of inputs which can generate intersecting connections, but the
fact that these outputs are in the request makes them unavailable as outputs to

generate intersecting connections (see Fig. 4.4.1, for example). Further, each
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intersecting connection blocks one copy, so it is the number of intersecting

connections that counts. Obviously, a 1-cast request maximizes that number.

at:ls.r.\r:n 1 2 '_}' 4 5 '_.*»| 4
1], P S I T S I R I S I
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(a) BY'(4,2) (b) BY'(4, 2)

Fig. 4.4.1 Input 4 generates a 3-intersecting connection (4, 4) to (a) a 1-cast

request (0, 0) and (b) a 2-cast request (0, {0, 8}).

For BY'(n, m), although the same analysis on the number of intersecting
connections applies, the i-intersecting cohnections block different fractions of a
copy, depending on i. Sincé more}outputs, in a2 multicast request induce more

i-intersecting calls for larger i, the worst case is ndt necessarily a 1-cast request.

We consider two cases.

A. 0<m<1
The number of stage-i links, 1 <i < n + m — 1, in the channel graph is
constant, one for m = 0, and two for m = 1. Therefore, each intersecting
connection has the same impact, regardless of which stage it intersects. The
worst case occurs when there is a maximum number of intersecting
connections, i.e., 29— 1 from the designated window, which cause a blocking

of (27— 1)/2™ copies.

B. 2<m
Let R denote the part of the new request which goes to a designated

¢-window. Suppose R is k-cast and a 1-window contains » outputs in R. Then
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it can block, at most
2 % 1 = 1 ifr=0

4 2

(only for the 1 - window which is in the designated 2 - window),
Ix—= l, ifr=1

2

=0, ifr=2.

For instance, in Fig. 4.4.2, the first output crossbar corresponds to the case » =

1, and the third output crossbar corresponds to the case » = 0.

2owindow

BY'(3,2)

Fig. 4.4.2 Assume 6= 2 and (05 0) is the request. » = 1 in the first output crossbar
and connection (6, 1) blocks 1/2 copy, while ¥ = 0 in the third output crossbar and
connections (4, 4) and (5, 5) each blocks 1/4 copy. Dotted lines indicate channel

graph between the first input and the first output crossbar.

Therefore, a 1-window can block, at most, 1/2 copy of the channel graph.
Consequently, a &window can block, at most, 202 copies, which is achieved
by having either k = 277! (each 1-window has r = 1) or k = 2772 (half of the

I-window has » = 1 and half has » = 0).

To count i-intersecting connections for 1 <i<n+ m — 6— 1 we consider two

casces.

A. 0<ln+mi2]-1
The argument for this part is a straightforward extension of the argument

in [29] for m = 0.
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There are 2’ ™' inputs which can generate an i-intersecting connection.
Further, an i -intersecting connection can reach all windows for i < m, and 2"~
O=i*m windows for i > m. In the worst-case scenario, an i-intersecting
connection is a multicast connection going to one output in each window it
can reach, except the designated window for 1 < i < 6. The reason for the
exception is that all outputs in the designated window are already counted in
the part concerning n + m — € < i < n + m — 1. Since an i-intersecting

connection blocks 2~ copies for i < m and 27 copies for m < i < L(n + m)/2],

the total blocking of up to stage @is

[
Z 2[71 (2n79 _ 1)271'
i=1

and

m [
Zzi—l (2n—5 - 1)2—1' + Zzi—l (2n—l9—[+m _ 1)2—m
i=1

i=m+1

— lezilgl _lezl + i 2)176’—1 _ izi—mfl

i=m+l i=m+l

— g0 —% —20" 41 for@>m.

Note that these i-intersecting connections, 1 <i < @, use up a maximum
[ i . . . .
of ZiZIZI ' =2% —1 outputs in a window. Therefore, one (€ + 1)-intersecting

connection can still fitinif @+ 1 <n+m— 6, or < |_(n + m)/2J — 1, which is
the case here. This (€+ 1)-intersecting connection reaches windows for €< m,

2"~20=1*m _ | windows for 8> m, while each path to a window blocks

and
27" copy.

To summarize, the number of blockings from the input side is
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0" - %) +2"0m 27" for@<m

62" _%—29_"1 +1+2"2 27" for 6 > m.

B. 0=ln+m/2]
Then 6> m. Note that i-intersecting connections forn +m — <i<n+m
— 1 are counted from the output side. So the input side counts only up to stage
n+ m — 6@— 1 (which is upper bounded by &). Thus, the number of blockings

from the input side is

n+m—6-1

221'—1 (2’1—6’ _1)2—1’ + z 2i—l (2n—9—i+m _1)2—m
i=1

i=m+1

=(n+m—0-1)2""" —%—2"*9*1 +1
=(n+m—0-2)24! —%+1.

Since each intersecting ¢connection counted from the output side blocks in
the worst-case scenarioil.e., k = 7951 or 29_2, at least 1/4 copy, there is no
reason for the counting from input side to go over stage n + m — 6, with one
exception.

For 6 > 2, we can increase the blocking by allowing the unique
l-intersecting connection from the input side to also go to the designated
window to reach an output blocking 1/4 copy (such an output exists when & =
2%7%). Then this intersecting connection blocks 1/2 copy if counted from the
input side, greater than its original value 1/4, as counted from the output side
(see Fig. 4.4.3, for example). Note that no other such reversal of counting will
bring any further increase, since the 1-intersecting connection is the only one
which blocks more than 1/4 copy when counted from the input side. On the
other hand, since all intersecting connections counted from the input side are
before the middle stage, reversing them to the output side will only decrease

their impact on blocking.
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-window

2

BY'(4,2)

Fig. 4.4.3 Connection (1, 8) blocks 1/2 copy if counted from the input side, but

only 1/4 copy from the output side. Dotted lines indicate channel graph between

the first input and the first output crossbar.

Combining the above, we have

Theorem 4.4.1 Logx(N, mi, p) is  WSNB for-multicast under the G-window

algorithm if and only if

H . 2}1—9—1 + 2n—26’—1 _ 1,

0 . 2n7971 + 27172971 _ l
2

2 +(n—-6-2)-2""",

2

2" (n—-6-1)-2"%",

29—2 + 0 . 2n—n9—1 _ g + 2)1—49—m

22 4 (n+m—-0-2)-2"%" -

202 L g.on 0t _M _noom  5n-20-1 _Hom +2,
2 4

—o +i(Oif¢9 =1),

m
2

5

5
_+_’
4

\%
3

\%
[\

for @ > [MJ
2

Results for m = 0 correspond to the results in [29]; results for m = 1, 2

correspond to the results in [13] and [14].
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Note that Log,(N, n — 1, p) is the Cantor network.

Corollary 4.4.2 The Cantor network is WSNB for multicast under the 6-window
algorithm if and only if p > 2972+ 9- 2"~ — 9/2+ 2" - 2""" +1/4 (0 if 6= 1),

forn > 3.
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4.5 Optimization

Let f{6, m) denote the maximum number of blockings required in Theorem
4.4.1 for given @ and m. In this section, we determine optimal 6 ° for given n and
m, and also compare the optimal solutions among different m.

(6, 0) is decreasing in &for 0<|n/2]- 1. Hence, 8° =|n/2] -1 in that range.

Since

n n
r(l3)o)-1((5) o)
_ {(LgJ _lj ] 2(;;/21 " 2n—2-Ln/2J+l _1} _{an/zJ n [lrg—‘ _2j ) 2[;1/2]—1} >0 forn>3,

we conclude for m = 0 and n > 3330 > 144/2.). It was shown in [29] that [n/2]is a
better choice than | #/2 . Since 6, 0) for' @2 Ln/2.] has a unique minimum, we can
start with [ 7/2 | and increase-the window:size until £ 6, 0) increases. In general, 6°
grows slowly with rate and can be quickly found.

f(6, 1) is decreasing in @ for < Ln/i2]-1.

(n+1) B B (n+1)
A2
— _[LMJ _ l] . 2’—(n—1)/2—| n 2,1—2-L(;1+1)/2j+1 _ l}
L 2 2

_|plenr2) ﬂ(n_z_l)—l — 1] ple=n/zh } >0 forn>3

Since

0° > | (n+1)/2]). Again, A6, 1) has a unique minimum, and [ /2] + 1 is a good
value to start the upward searching.

Finally, for m > 2, we note that {6, m) is increasing in m for all 8> m. Since
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a larger m implies more stages and larger cost, there is no reason to consider m > 2

when it costs more but performs worse. For > m =2

g.2m 0" 420 for @ < F J
£0.2)= | :
202 4 (n—)- 2" +o for0> bJH.

The first equation is decreasing in @in its range. Hence, 0° = Ln/2..

Since

(BSRHES

_|r 2l gn=dlnizbl _plei2fr n 1.2k _l>0 forn> 4
2 2 4

0° > n/2]+ 1. f(6, 2) has a uniqué minimuhvand | #/2] + 1 is a good value to start
the upward searching.
We next compare the optimalselutionssform = 0, 1, 2. We will only compare

the starting values in the search process.

f 2 0 :2!—;1/2—‘_'_ [EJ_z ‘2|_n/2J—l
20 2

f n +1.1 =2Ln/2j+ lrﬁ—l_z ‘2|—n/2-|—2
2] 2

f n +1,2 :2Ln/2J—l+ n _1 _2(;1/21—2_‘_1.
2] 2 4

Clearly, f(Ln/2]+ 1, 1) <f(n/21+0).

n n _ Aln/i2]1 [n/27]-2 1
L= A= ]+L2]=2 -2 ——>0.
Al ;

So m = 2 does better in minimizing the number of copies required. However,

Furthermore

we have to recall that a copy with m =0 or m = 1 costs less. For all three m values,

66



the number of crosspoints is about O (N *? log?N) .

According to the above result, we choose m = 2, and compute the best choice
of @and the corresponding value of p for each n in Table 4.5.1.

Note that for n = 17, two 8°’s yield the same m-value. For larger # in the table,
we show the p-values mainly for mathematical interest, not for practical use.

Table 4.5.1 Best choice of #and corresponding value of p for m = 2 and some n.

3 4 5 6 7 8 9 10 11 12| 13 14 15 16| 17

2 3] 4 4] 5| sel 6 7] 7 s 8] 9 9] 10[10,11

3 4 6 9 13| 21| 29| 45 65| 97| 145| 209| 321| 449| 705

18 19|  20f 21 22 23 241 25 26 27 28 29 30 31

11 12 12 13 13 14 14 15 15 16 16 17 17 18

961| 1473 2049| 3073| 4353| 64011:9217|1331.319457|27649|40961|57345|86017| 118785

32 33 34 35 36 37 38 39 40 41

18 19 19,20 20 21 21 22 22 23 23

180225| 245761| 376833| 507905| 770049]-1048577| 1572865|2162689|3211265| 4456449

42 43 44 45 46 47 48 49 50

24 24 25 25 26 26 27 27 28

6553601| 9175041 13369345| 18874369|27262977|38797313| 55574529|79691777| 113246209

Intuitively, one would expect the larger m is, the more connecting power the
Logy(N, m, p) is, and hence, the fewer copies are needed for nonblocking. One
would also expect the optimal m grows with N. We obtain the surprising result
that m = 2 is optimal universally. But this is a technical result, for which we have
no insight into why it is so. Nonetheless, it is a very valuable result, since
regardless of how large is N, we need only to use moderate-size Logx(N, m, p), i.e.,

Logx(N, 2, p), which are relatively inexpensive to construct.
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Like all routing algorithms, the delayed splitting algorithm restricts the scope
of ways in connecting a multicast call. But it also restricts the scope of
interference a multicast connection has on other requests. It is a tradeoff whose net
value we do not know for sure. However, the delayed splitting algorithm
simplifies routing to a degree that an analysis of the nonblocking condition

becomes tractable.
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Chapter 5 Conclusions

For the triple-loop networks, there are not many known good shapes, i.e., short
diameters with given N, to work with, and the existence of a given shape is sparse.
Besides, there is no systematic way to optimize the parameters of a given shape. In
the first part of this thesis, we greatly expanded the families of H; and H, to broaden
their applicability. We also proposed a method to choose better parameters of H;" and
H,', thus improving their efficiency. Finally, we gave 3-diameters of Hy, H," and H,’
by constructing three node-disjoint paths. It follows that after two arbitrary failures
(nodes or links) the diameters of these triple-loops are at most D + 2.

For the Logy(N, m, p) networks, Tscha and Lee [44] stated in their conclusion
that whether their approach to multicast WSNB problem could be extended to Loga(N,
m, p) was unclear. Danilewicz and Kabacinski [13, 14] also made an attempt to
extend their results to Logyx(N, m, p); but encountered some difficulties. In the second
part of this thesis, we extended the WSNB results of multicast Logx(N, 0, p) network
to multicast Logy(N, m, p) network. Then we compared our variable-size result for m
= 0 with Tscha and Lee’s result,-and"our result improves over Tscha and Lee’s result.
Finally, we obtained the surprising reésult'that m= 2 is optimal universally.

We propose the following topics for further research:

In chapter 3, we have proved that the triple-loops Hy, H;" and H," are 3-connected
by constructing 3 node-disjoint paths from any node i to any other node j. For another
family proposed by Chen and Gu [7] with a better efficiency 0.078, the
wide-diameters are not known yet.

By theorems 3.2.4, 3.3.6 and 3.4.6, we know that the k-diameters of Hy, H," and
H," are at most D + k — 1 for k = 1, 2, 3, respectively. Can we prove that the
k-diameter of every triple-loop is at most D + k — 1 fork=1, 2, 3?

In section 4.4, the WSNB result on the Logg(N, m, p) network for multicast under
the #-window algorithm is not known. Besides, the results on Logg(N, m, p) network

under other routing algorithms are unknown, too.
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