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In this article, a novel on-line genetic algorithm-based fuzzy-neural sliding mode controller trained by an
improved adaptive bound reduced-form genetic algorithm is developed to guarantee robust stability and good
tracking performance for a robot manipulator with uncertainties and external disturbances. A general sliding
manifold, which can be non-linear or time varying, is used to construct a sliding surface and reduce control law
chattering. In this article, the sliding surface is used to derive a genetic algorithm-based fuzzy-neural sliding mode
controller. To identify structured system dynamics, a B-spline membership function fuzzy-neural network,
which is trained by the improved genetic algorithm, is used to approximate the regressor of the robot
manipulator. The sliding mode control with a general sliding surface plays the role of a compensator when the
fuzzy-neural network does not approximate the dynamics regressor of the robot manipulator well in the transient
period. The adjustable parameters of the fuzzy-neural network are tuned by the improved genetic algorithm,
which, with the use of the sequential-search-based crossover point method and the single gene crossover,
converges quickly to near-optimal parameter values. Simulation results show that the proposed genetic
algorithm-based fuzzy-neural sliding mode controller is effective and yields superior tracking performance for
robot manipulators.

Keywords: fuzzy-neural sliding mode controller; adaptive bound reduced-form genetic algorithm; robot
manipulator; on-line genetic algorithm-based controller

1. Introduction

Recently, fuzzy-neural network theory has been a topic

of interest to those involved in dealing with the

imprecision, uncertainty and non-linearity in control

systems. Fuzzy-neural networks have been trained

using various learning algorithms (Meng 1993; Wang

1994; Marra and Walcott 1996; Leu and Lee 2000;

Wang, Chien, Leu, and Lee 2008; Leu, Wang, and Lee

2005). In many studies (Meng 1993; Wang 1994; Marra

and Walcott 1996; Leu and Lee 2000; Wang et al. 2008;

Leu et al. 2005), fuzzy logic systems and/or neural

networks were successfully applied to adaptive control

systems. In fuzzy set theory, the construction and

range of membership functions play a critical role. We

apply B-spline membership functions (Wang, Wang,

Lee, and Tseng 1995; Wang and Li 2003) to construct

the fuzzy membership functions. B-spline membership

functions possess the property of local control and

have been successfully applied to fuzzy-neural control

(Leu, Wang, and Lee 1999).
Genetic algorithms have been intensively studied

during the past three decades. Control researchers have

become increasingly interested in the use of genetic
algorithms as a means to control various classes
of systems. Genetic algorithms (Goldberg 1989;
Marra and Walcott 1996; Michalewicz 1996; Yang,
Hachino and Tsuji 1996; Gen and Cheng 1997;
Ferreira, Lopes, and Saraiva 2000) are a stochastic
search technique that guides a population of solutions
towards a global optimum using the principles of
evolution and natural genetics. Thanks to this prob-
abilistic search procedure, genetic algorithms are
highly effective and robust over a broad spectrum of
problems (Lawrence 1991; Kristinsson and Dumont
1992; Gonzalez and Perez 2001). This motivates the use
of genetic algorithms to overcome the problems
encountered by conventional learning methods for
fuzzy-neural networks (Caponetto, Fortuna, Graziani,
and Xibilia 1993; Farag, Quintana and Germano 1998;
Lin and Jou 2000; Wang, Liu, and Lin 2001; Wang and
Li 2003). In Wang and Li (2003), a genetic algorithm is
used to automatically tune the adjustable parameters
(control points and weights) of a B-spline membership
function fuzzy-neural network to approximate non-
linear functions.
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However, it is not easy to determine the bounds

of the parameters of genetic algorithms, which may

affect the speed of the convergence of the learning

algorithms when we apply the genetic algorithm to

train parameters. To address this problem, Wang,

Tao, and Chang (2004) use an adaptive bound

algorithm to aid and speed up search in the reduced-

form genetic algorithm (Wang and Li 2003). The two

simulation examples in Wang et al. (2004) show that

the searching speed of the adaptive bound algorithm is

superior to that of the reduced-form genetic algorithm

with fixed bounds. Nevertheless, the enlarging condi-

tion and operating rules of the adaptive bound

algorithm in Wang et al. (2004) are not complete.

Hence, in this article, we propose the improved

adaptive bound algorithm to enhance the ability of

the original adaptive bound algorithm. With the use

of the sequential-search-based crossover point method

and the improved adaptive bound algorithm, an

improved adaptive bound reduced-form genetic algo-

rithm, called Modified Adaptive bound Reduced-form

Genetic algorithm (MARG), is proposed. The proper

bounds of the adjustable parameters can be obtained

automatically in the training process by applying

MARG. It has a fast convergence speed in searching

for near-optimal solutions.
In previous studies (Meng 1993; Leu and Lee 2000),

fuzzy and/or neural network adaptive controllers

were proposed for robot manipulators with unknown

dynamics to identify structured system dynamics.

These approaches take advantage of the regressor

dynamics of robot manipulators to design adaptive

controllers. However, adaptive fuzzy-neural control is

traditionally trained by using gradient-based methods,

which may fall into a local minimum during the

learning process. In addition, sliding mode control or

so-called variable structure system control (Young

1978; Yeung and Chen 1988; Pei and Zhou 1991;

Su and Stepanenko 1993; Hsu 1998; Leu et al. 2005)

has been frequently used for robust control systems

due to its fast response, and insensitivity to plant

parameter variation and/or external disturbances.

The variable structure system control of robot

manipulators has been the subject of considerable

interest (Young 1978; Yeung and Chen 1988; Pei and

Zhou 1991; Su and Stepanenko 1993). In particular,

Su and Stepanenko (1993) uses a general sliding

surface, which can be non-linear or time varying, for

a robot manipulator. However, the studies (Young

1978; Yeung and Chen 1988; Pei and Zhou 1991;

Su and Stepanenko 1993) do not consider robot

manipulators with unknown dynamics. Using the

proposed MARG, in this article, we propose a novel

on-line genetic algorithm-based fuzzy-neural sliding
mode controller for a robot manipulator with uncer-
tainties and external disturbances. Our controller not
only can deal with robot manipulators with unknown
dynamics, but can also overcome the problem of
traditional adaptive fuzzy-neural control. Moreover,
unlike many genetic algorithm-based controllers, ours
is on-line. Additionally, our sliding mode controller
with a general sliding surface is like a supervisory
controller. It plays the role of a compensator when the
B-spline membership function fuzzy-neural network
does not approximate the regressor dynamics of the
robot manipulator well in the transient period.
Consequently, the proposed controller tuned by
MARG can guarantee robust stability and good
tracking performance of the robot manipulator despite
uncertainties and external disturbances. The proper
bounds of the adjustable parameters can be obtained
automatically in the training process by applying
MARG. Pre-determining the initial (non-zero)
bounds of the adjustable parameters is unnecessary.

The rest of this article is organised as follows.
Section 2 provides a brief overview of the structure of
the robot dynamic system. Section 3 provides a brief
description of fuzzy-neural networks. Section 4 des-
cribes the improved adaptive bound reduced-form
genetic algorithm, which tunes the control points and
weights of the B-spline membership function fuzzy-
neural networks. Details of the sequential-search-based
crossover point method, single-gene crossover and the
reduced-form genetic algorithm are also given in this
section. Section 5 gives details of the on-line genetic
algorithm-based fuzzy-neural sliding mode controller
design. The simulation results are shown in Section 6.
Finally, conclusions are drawn in Section 7.

2. System description

The model of robot dynamics can be found in the
literature (Yeung and Chen 1988), which is written as

H €�þ C _�þ G ¼ uþ�d ð1Þ

where H(�)2Rm�m is a symmetric positive matrix of
the manipulator inertial, Cð�, _�Þ _� 2 Rm�1 is a vector
of centripetal and Coriolis torques, G(�)2Rm�1 is
a vector of gravitational torques, u2Rm�1 is a vector
of applied joint torques, �d¼ [�d1,�d2, . . . ,�dm]2
Rm�1 is an unknown vector of uncertainties, torque
disturbances, etc. and �¼ [q1, q2, . . . , qm]

T
2Rm�1,

_� and €� are vectors of joint positions, velocities and
accelerations, respectively.

The dynamic structure (1) has two important
properties. One property is that the matrix ð _H� 2C Þ
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is skew-symmetric theoretically. The other property is
that the robot dynamic structure is linear in terms
of a suitably selected set of its parameters.

Since the matrices H, C and G are linear in terms
of robot manipulator parameters and �d¼

[q1d, q2d, . . . , qmd]
T
2Rm�1, _�d and €�d are vectors of

desired joint positions, velocities and accelerations,
respectively, there exists a vector � with components
depending on manipulator parameters, such that

H _�þ C�þ G ¼ �� ð2Þ

where �ð�, _�,�, _�Þ 2 Rm�h is called the regressor
(Kelly, Carelli, and Ortega 1989; Lu and Meng 1993),
which is independent of the unknown dynamic
parameters, �2Rh�1 is a vector of unknown manip-
ulator and load parameters, and �ð�,�d, _�d, tÞ 2
Rm�1 is a vector of smooth functions to be chosen by
the designer.

Since � is a vector of unknown manipulator and
load parameters, we define the outputs of the inverse
robot system dynamics as

Y� ¼ H _�þ C�þ G ð3Þ

where Y� ¼ ½y�1, y
�
2, . . . , y�m� is the torque vector com-

puted from the set of trial data of the robot dynamics
in (2).

Now, we can use a matrix W and a vector ’ to
calculate the value of W’ to approximate the value
of Y*. The estimated model of robot dynamics can be
rewritten as

Ĥ _�þ Ĉ�þ Ĝ ¼W’ ð4Þ

where W¼ [w1 w2 . . . wm]
T
2Rm�h is a matrix of

adjustable parameters, wi2R
h�1, ’2Rh�1 is a vector

of specified functions, and Ĥ, Ĉ and Ĝ are auxiliary
matrices of the robot manipulator parameters. For the
purpose of using W and ’ to approximate Y*, we use
a B-spline membership function fuzzy-neural network
as an approximator, and an improved adaptive bound
reduced-form genetic algorithm to adjust the control
points and weightings of the B-spline membership
function fuzzy-neural network. Then we can obtain
the outputs, W’, of the B-spline membership function
fuzzy neural network, such that Y* is approximated by
W’ as close as possible.

Since the robot dynamics in (1) includes unknown
uncertainties and torque disturbances �d, designing
the controller u becomes difficult. To solve this
problem, a universal approximator (B-spline member-
ship function fuzzy-neural network) is used to approx-
imate the robot dynamics. Equation (4) is the
estimated model. Therefore, instead of (1), using (4)
to design the controller becomes easier. In addition,

to overcome the problem of traditional adaptive fuzzy-
neural controllers, a novel on-line genetic algorithm-
based fuzzy-neural sliding mode controller is proposed.
Unlike many genetic algorithm-based controllers, ours
is on-line. Also, our sliding mode controller with
a general sliding surface is like a supervisory controller.
It plays the role of a compensator when the B-spline
membership function fuzzy-neural network does not
approximate the regressor dynamics of the robot
manipulator well in the transient period.
Consequently, the proposed controller tuned by
MARG can guarantee robust stability and good
tracking performance of the robot manipulator despite
uncertainties and external disturbances. The proper
bounds of the adjustable parameters can be obtained
automatically in the training process by applying
MARG. Pre-determining the initial (non-zero)
bounds of the adjustable parameters is unnecessary.

In order to derive the on-line genetic algorithm-
based fuzzy-neural sliding mode controller, the follow-
ing assumptions are required.

Assumption 1: The effects of uncertainties and torque
disturbances are assumed to satisfy j�dij ��i and �i4 0,
i¼ 1, . . . ,m.

Assumption 2: Since H, G and C are bounded in � and
C is linear in _�, we assume that there exist positive
constants �1, �2 and �3, such that k ~Hk � �1, k ~Ck �
�2k _�k and k ~Gk � �3, where ~H ¼ H� L2Ĥ, ~C ¼ C�
L2Ĉ, ~G ¼ G� L2Ĝ and L2¼ diag[‘21, ‘22, . . . , ‘2m],
0� ‘2i� 1.

3. B-spline membership function

fuzzy-neural networks

Fuzzy-neural networks are typically fuzzy inference
systems constructed from a neural network structure.
Learning algorithms are used to adjust the weights
of the fuzzy inference system. Figure 1 shows the
configuration of the B-spline membership function
fuzzy-neural network, which has a total of four layers.
Nodes at layer I are input nodes (linguistic nodes) that
represent input linguistic variables. Nodes at layer II
are term nodes which act as membership functions
to represent the terms of the respective linguistic
variables. Each node at layer III is a fuzzy rule.
Layer IV is the output layer.

3.1. B-spline membership functions

For � order and r control points, the B-spline basis
functions have the knot vector {�i, i¼ 1, 2, . . . , rþ �}
with �1 5 �2 5 � � � 5 �rþ�. We choose that the order
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is three or above, and that the type of the knot vector

is set to open uniform. An element �i of the knot

vector is defined as

�i ¼

x1 if i � �

�i�1 þ
xn � x1
r� �þ 2

if �5 i � r

xn if i4 r

8><
>: ð5Þ

where x¼ {xq, q¼ 1, 2, . . . , n; n4 r} is the data vector

of input. For r control points, {c1, c2, . . . , cr}, the i-th

B-spline blending function of � order is denoted by

Ni,�ðxÞ. Hence, the B-spline curve B(x) is defined as

follows:

BðxqÞ ¼
Xr
i¼1

ciNi,�ðxqÞ, 1 � � � r,

and

Ni,1ðxqÞ ¼
1, if �i � xq 5 �iþ1

0, otherwise

�

Ni,�ðxqÞ ¼
xq � �i

�iþ��1 � �i

� �
Ni,��1ðxqÞ

þ
�iþ� � xq

�iþ� � �iþ1

� �
Niþ1,��1ðxqÞ:

ð6Þ

In this article, the B-spline membership function

�A(xq) introduced in the papers of Wang et al. (1995)

and Wang, Lee and Liu (1997) is modified to satisfy

the condition 0��A� 1, as follows:

�AðxqÞ ¼ S
Xr
i¼1

ciNi,�ðxqÞ

" #
, ð7Þ

where A is a fuzzy set, and

Sð�Þ ¼

1; if �4 1;

�; if 0 � � � 1;

0; if �5 0:

8><
>:

We adopt B-spline membership functions as the fuzzy

membership functions and use the reduced-form

genetic algorithm with improved adaptive bounds

(to be introduced in Section 4) to obtain a set of

near-optimal control points for the B-spline member-

ship functions. To avoid excessive numbers of control

points, we use B-spline membership functions having

a fixed number of control points.

3.2. Fuzzy inference and formulisation

Given the input data xq, q¼ 1, 2, . . . , n, and the output

data yp, p¼ 1, 2, . . . ,m, the i-th fuzzy rule has the

following form:

Ri: if x1 isA
i
1 and � � � xn is Ai

n

then y1 ¼ wi
1 and � � � ym ¼ wi

m

ð8Þ

where i is a rule number, Ai
q are the fuzzy sets of

the antecedent part and wi
p are real numbers of the

consequent part. When the inputs x¼ [x1 x2 � � � xn]
T

are given, the output yp of the fuzzy inference can be

derived from

ypðxÞ ¼

Ph
i¼1 w

i
p

Qn
q¼1 �Ai

q
ðxqÞ

� �
Ph

i¼1

Qn
q¼1 �Ai

q
ðxqÞ

� � ¼ ’TwP ð9Þ

where �Ai
q
ðxqÞ is the B-spline membership function

of Ai
q, h is the number of fuzzy rules and

wp ¼ ½w
1
p w2

p � � � wh
p�
T is a weighting vector related to

the p-th output yp(x). ’¼ [’1 ’2 � � � ’h]T is a set of

fuzzy basis functions defined as:

’iðxÞ ¼

Qn
q¼1 �Ai

q
ðxqÞPh

i¼1

Qn
q¼1 �Ai

q
ðxqÞ

� � , i ¼ 1, 2, . . . , h: ð10Þ

Assume that each input has z fuzzy sets (B-spline

membership functions). If there are h rules in the fuzzy

rule base, then the adjustable set of all the control

points is defined as

c ¼ c1
T

1 c2
T

1 � � � c
zT

1 c1
T

2 c2
T

2 � � � c
zT

2 � � � c
zT

n

h iT
¼
�
cfq, j1 jf ¼ 1, 2, . . . , z, q ¼ 1, 2, . . . , n,

j1 ¼ 1, 2, . . . , r
�
:

ð11Þ

By adjusting the weighting values wi
p and control

points cfq ¼ ½c
f
q,1c

f
q,2 � � � c

f
q,r�

T of the B-spline member-

ship function fuzzy-neural network, a learning

Figure 1. Configuration of the fuzzy-neural network.

574 P.-Z. Lin et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
34

 2
5 

A
pr

il 
20

14
 



algorithm can be derived to minimise the error
function:

epðwp, cÞ ¼
1

2
yp � y�p

� �2
¼

1

2
’Twp � y�p

� �2
,

p ¼ 1, 2, . . . ,m: ð12Þ

For fuzzy-neural networks with multiple outputs,
where

Y ¼ ½y1 y2 � � � ym� ð13Þ

and

Y
�

¼ y�1 y�2 � � � y�m
	 


represent the m-dimensional vector of the actual
outputs and the desired outputs from the B-spline
membership function fuzzy neural network, respec-
tively, the error function can be defined as

EðW, cÞ ¼
1

2
kY� Y�k2 ð14Þ

where W¼ [w1w2 . . .wm]
T is defined in (4). Moreover,

we define a new vector including all weights and
control points of the B-spline membership function
fuzzy-neural network adjusted by MARG as

$ ¼ wT
1 wT

2 � � � w
T
m c1

T

1 c2
T

1 � � � c
zT

1 c1
T

2 c2
T

2

h
� � � cz

T

2 � � � c
zT

n

i
2R1� �� ð15Þ

with a length of �� ¼ m� hþ ðn� rÞ � z for a fuzzy-
neural network of m outputs.

4. Improved adaptive bound reduced-form genetic

algorithm (MARG)

Basically, genetic algorithms are probabilistic algo-
rithms which maintain a population of individuals
(chromosomes), �ðtÞ ¼ f	1ðtÞ,	2ðtÞ, . . . ,	kðtÞg, for itera-
tion t. Each chromosome ’‘ represents a potential
solution to the problem at hand, and is evaluated to
give some measure of its ‘‘fitness’’. Then, a new popu-
lation is formed by selecting the more fit individuals.
Some members of the new population undergo
transformations by means of genetic operators to
form new solutions. After some number of generations,
it is hoped that the system converges to a near-optimal
solution.

Recently, a reduced-form genetic algorithm (Wang
and Li 2003) was proposed to evolutionarily obtain the
near-optimal weighting vector for a fuzzy-neural net-
work. It is characterised by three simplified processes.
First, the population size is fixed and can be reduced
to a minimum of 4. Second, the crossover
operator is simplified to be a single-gene crossover.

Finally, only one chromosome in a population is
selected for mutation. Furthermore, the search bounds
of the genes (which correspond to the adjustable
parameters in the B-spline membership function fuzzy-
neural network) are determined by an adaptive bound
method (Wang et al. 2004). We use the RGA and the
adaptive bound algorithm in this article, but modify
the enlarging condition and operating rules. Thus, the
proper bounds of the adjustable parameters can be
obtained automatically in the training process.
Pre-determining the initial (non-zero) bounds of the
adjustable parameters is unnecessary. Details are
discussed as follows.

4.1. Population initialisation

Assume that the adjustable vector $ in (15) of the
fuzzy-neural network is embedded in a chromosome
that represents a potential solution to the problem and
the ‘-th chromosome is defined as:

	‘ ¼ $	‘��þ1
	 


¼ wT
1 wT

2 � � � wT
m cT 	‘��þ1

	 

¼ 	‘1 	

‘
2 � � � 	

‘
�� 	

‘
��þ1

	 

2 R ��þ1

ð16Þ

where $ consists of all the weights and control points,
as defined in (15). The weights, wi, range over the
interval D1 ¼ ½wmin,wmax� � R, and the control point
set, c, ranges over the interval D2 ¼ ½cmin, cmax� � R.
Our hope is that E(W, c) in (14) is reduced to
a minimum by searching for the optimal solution.

In this paper, because the search bounds,D1 andD2,
are unknown beforehand, the initial bounds are all set
to zero at initialisation. The initial chromosomes are
also set to zero due to the zero bounds. A population
with k chromosomes as defined in (16) is represented as:

� ¼

	1

	2

..

.

	k

2
66664

3
77775 ¼

	11 	12 � � � 	1��
	21 	22 � � � 	2��

..

. ..
. . .

. ..
.

	k1 	k2 � � � 	k��

	1��þ1
	2��þ1

..

.

	k��þ1

2
666664

3
777775: ð17Þ

Each chromosome comprising an adjustable vector $
for the B-spline membership function fuzzy-neural
network has ��þ 1 elements and is a candidate solution
for the problem. As to be shown later in this section,
	‘��þ1 serves as a dummy gene for the single-gene
crossover operator (Wang and Li 2003) and has no
effect on fitness evaluation in the population. It is
expected that one of the candidate solutions, ’‘, can
be evolutionarily obtained to form a set of near-
optimal parameters for the fuzzy-neural network.
Note that the size of the population, k, needs to be
an even number and larger than 3 as required by the
single-gene crossover method (Wang and Li 2003).
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After initialisation, three genetic operations, crossover,
sorting and mutation are performed during procreation.

4.2. Fitness function

The performance of each chromosome is evaluated
according to its fitness. After generations of evolution,
it is expected that the genetic algorithm converges and
a best chromosome with largest fitness representing
the optimal solution to the problem is obtained. The
fitness function is chosen as follows:

fitness ¼
1

EðW, cÞ
ð18Þ

where E(W, c) is the estimation error function defined
in (14).

4.3. Single-gene crossover

In order to deal with the adjustable parameters, we use
the single-gene crossover (Wang and Li 2003). Figure 2
shows the difference between the traditional crossover
methods and the applied single-gene crossover method.
Figure 2(a) and (b) demonstrates the traditional
methods, which adopt one crossover point and two
crossover points, respectively. Although the applied
single-gene crossover shown in Figure 2(c) has two
crossover points, the distance between the two chosen
crossover points is only one gene (parameter). For each
generation, the crossover operator will act on parents
to give offspring. The single-gene crossover operator
is defined as:

�̂ ¼ Crsð�; jÞ ¼

	̂1jþ1

� 	̂2jþ1 �

..

.

	̂kjþ1

2
666664

3
777775 ¼

	̂1

	̂2

..

.

	̂k

2
66664

3
77775 ð19Þ

where j is the crossover point determined by
a sequential-search-based crossover point method

(Wang and Li 2003), � denotes the elements of

offspring which remain the same as those of their

parents, and

	̂ijþ1 ¼

	ijþ1 � ð1� aÞ þ 	iþðk=2Þjþ1 � a,

if i ¼ 1, 2, . . . , k=2,

	ijþ1 � ð1� aÞ þ 	i�ðk=2Þjþ1 � a,

if i ¼ ðk=2Þ þ 1, ðk=2Þ þ 2, . . . k

8>>>>><
>>>>>:

ð20Þ

The single-gene crossover operator Crs(.; .) generates
new genes, 	̂ijþ1, only at the position jþ 1 for all

chromosomes with a linear combination of 	ijþ1 and

	ðk=2Þþijþ1 . a is a constant between 0 and 1. �̂ is a new

population.
To determine a good crossover point j for the

single-gene crossover, we use the sequential-search-

based crossover point method (Wang and Li 2003).

The crossover point j is determined via a sequential-

search based on the fitness function (18) before the

single-gene crossover actually takes place. The search

algorithm is similar to the sequential search of

a database. If there is no satisfactory crossover point

in the current generation, then the crossover point is

designated as j ¼ ��, so that the single-gene crossover is

performed on the dummy gene, 	‘��þ1, and the fitness

values of chromosomes in the population will not be

affected (Caponetto et al. 1993).

4.4. Improved adaptive bound search for control

points and weights

The control points and weights of the B-spline fuzzy-

neural network trained by the RGA in Wang and Li

(2003) had fixed bounds. However, how do we know

these bounds are proper? These bounds will affect the

speed of the convergence of the learning algorithms

and the response of the system. For this reason, we use

a modified version of the adaptive bound method

Parents

Offspring 

(a) single crossover point. 
(traditional method) 

(b) two crossover points 
between multiple genes. 
(traditional method) 

(c) two crossover points 
between single gene. 
(the proposed method) 

The single point 
crossover 

Figure 2. Traditional crossover methods and the proposed single-gene crossover method.
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(Wang et al. 2004) to adjust the bounds of the control
points and weights. We can set the initial bounds to
zero for all cases and the modified method will enlarge
the bounds if some required conditions are satisfied.
This leads to a gradual increase of the bounds. Figure 3
shows the pseudo code for the modified adaptive
bound algorithm, where e is the exponential function,
the value of 
s is an inverse function of the error
function E in (14), and the multipliers, mw or mc, are
adaptive factors for weights or control points.

When do we enlarge the boundaries of the
adjustable parameters? There are two conditions
shown in Figure 4. First, if crossover does not improve
the fitness values of the population, i.e. the crossover
point j¼ ��, then we assume there is no solution within
these bounds at this generation, and so we enlarge
the boundaries. Second, if fitness (	̂1)� fitness (’1)
5"/t, where t is the iteration number and " is
a specified positive number, then we force the
boundaries to be enlarged. Since at initialisation, all
parameters and bounds are set zero, enlarging the
boundaries is necessary. As t (i.e. learning iteration
number) increases, the influence of this condition (i.e.
fitness (	̂1)� fitness (’1) 5"/t) on adjusting the
boundaries decreases. The bounds are enlarged by
e�
s as shown in Figure 3. As 
s approaches infinity

(error approaches zero), the bounds of the adjustable
parameters become fixed (e�
s! 0 as 
s!1). The
pseudo code for the bound adjustment sequential-
search-based crossover point method is shown in
Figure 4. The improved adaptive bound method has
advantages over the traditional one (Wang et al. 2004).
First, pre-determining the initial (non-zero) boundaries
is unnecessary. Second, the variable 
s (an arbitrary
constant in Wang et al. (2004)) is determinate now.
Third, the speed of convergence is faster.

4.5. Sorting

After crossover, the newly generated population is
sorted by fitness, resulting in Eð	̂1Þ � Eð	̂2Þ � � � � �
Eð	̂kÞ. Obviously, the first chromosome 	̂1 of the
sorted population �̂ ¼ ½	̂1 	̂2 � � � 	̂k�T has the smal-
lest error value.

4.6. Mutation

After sorting, the first chromosome, 	̂1, is the best
one in the population in terms of fitness. Genes within
the (k/2þ 1)-th chromosome are randomly selected for
mutation, according to the mutation rate pm. Note that
mutation on the selected genes is performed based on
the fittest chromosome, i.e. the first chromosome
	̂1 of the sorted population �̂. That is, genes 	̂ðk=2þ1Þj

selected for mutation within the (k/2þ 1)-th chromo-
some 	̂ðk=2þ1Þ are altered by the following mutation
operator as

	̂ðk=2þ1Þj ¼

	1j þ� t,wmax � 	
1
j

� �
if �4 0:5,

	1j �� t,	1j � wmin

� �
if � � 0:5,

8><
>: ð21Þ

�ðt, yÞ ¼ y���ð1� t=T Þ� , ð22Þ

where �2 [0, 1] is a random value, t is the current
iteration, � 2 [0, 1] is a random number, and T is the
maximal generation number. (1� t/T) is the degree of
dependency on an iteration number. The function
�(t, y) returns a value in the range of [0, y] such that
the probability �(t, y) being close to 0 increases as t
increases. Pseudo code for MARG is shown in
Figure 5.

The steps of the MARG are presented as follows:

Step 1: Set all genes (adjustable parameters) and
their boundaries to zero.

Step 2: Perform SSCP until the crossover point is
found.

Step 3: Perform crossover and compute the fitness
value.

Step 4: Perform the improved adaptive bound algo-
rithm to adjust the boundaries of genes.

Figure 4. Pseudo code for the bounds adjustable sequential-
search-based crossover point method and additional
conditions.

Figure 3. Pseudo code for the improved adaptive bounds of
adjustable parameters.
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Step 5: Perform sorting and mutation.
Step 6: Obtain the control signal using the currently

optimal chromosomes (solution).
Step 7: Go to [Step 2] for next iteration.

5. On-line GA-based fuzzy-neural sliding

mode controllers

Now, we choose a vector of general switching planes

ST
¼ [s1s2� � �sm]¼ 0T, which can be a non-linear or time-

varying manifold, defined as

S ¼ _��� ð23Þ

where �ð�,�d, _�d, tÞ is a design vector, �d represents

the vector of the desired positions, � ¼ _�d � #ðeÞ, and
e¼���d. #(e)¼ [�1(e1) �2(e2) � � � �m(em)]

T is a vector

of error functions designated by the designer. If ei is

zero, then we define �i to be zero. The aim of the

control is to force the motion of the system to be along

the intersection of the general switching planes S¼ 0.

In this section, an adaptive sliding mode controller

with an on-line MARG fuzzy neural approximator

is proposed. Based on the sliding manifold in (23),

the controller is chosen as

u ¼ �KSþ L1 L2

	 
 ueq1

ueq2

� �
� u� ð24Þ

where K is a pre-specified positive matrix,

L1¼ diag[‘11, ‘12, . . . , ‘1m], ‘1i¼ 1, L2¼diag[‘21,
‘22, . . . , ‘2m], 0� ‘2i� 1, ueq1 ¼ �½�̂1k _�k þ �̂2k _�k

k�k þ �̂3�sgnðS Þ, ueq2¼W’ (the output of the

B-spline membership function fuzzy-neural approxi-

mator), and u� ¼ f�̂isgnðsiÞ, i ¼ 1, 2, . . . ,mg.

�̂j, j ¼ 1, 2, 3 and �̂i, i ¼ 1, 2, . . . ,m are the estimations

of �j in Assumption 2 and �i in Assumption 1,

respectively. Therefore, the adaptive laws of �̂j and �̂i
are considered as

_̂�1 ¼ �1 Sk k _�


 

, ð25Þ

_̂�2 ¼ �2 �k k Sk k _�


 

, ð26Þ

_̂�3 ¼ �3 Sk k, ð27Þ

and

_̂
�i ¼ 
i sij j, i ¼ 1, . . . ,m: ð28Þ

Based on the above discussion, we have the following

main theorem.

Theorem 1: Consider the dynamic Equation (1) and

that the Assumptions 1 and 2 are satisfied. If the vector

of applied joint torques u is designed as (24) and the

adaptive laws are chosen as (25)–(28), then the general

sliding mode S will asymptotically converge to zero as

time tends to infinity.

Proof: Consider the candidate Lyapunov function

v ¼
1

2
STHSþ

1

2
~AT� ~Aþ

1

2
~BT
 ~B ð29Þ

where

~A ¼ �1 � �̂1 �2 � �̂2 �3 � �̂3
	 
T

,

~B ¼ �1 � �̂1 �2 � �̂2 , . . . , �m � �̂m

h iT
,

� ¼ diag
1

�1
,
1

�2
,
1

�3

� �
, �i 4 0, i ¼ 1, 2, 3,

and


 ¼ diag
1


1
,
1


2
, . . . ,

1


m

� �
, 
i 4 0, i ¼ 1, . . . ,m:

Differentiating S with respect to time, we have

_S ¼ €�� _�: ð30Þ

Multiplying the matrix H by (30) and inserting (1) for

H €� and _� ¼ Sþ� yields

H _S ¼ H €��H _�

¼ uþ�d � CS� H _�þ C�þ G
� �

:
ð31Þ

Differentiating v with respect to time, we have

_v ¼ STH _Sþ
1

2
ST _HSþ

_~A
T
� ~Aþ

_~B
T

 ~B: ð32Þ

Inserting (31) in the above equation yields

_v ¼ ST uþ�d � H _�þ C�þ G
� �	 


þ ST 1

2
_H� C

� �
Sþ

_~A
T
� ~Aþ

_~B
T

 ~B:

ð33Þ

Figure 5. Pseudo code for the improved adaptive bound
reduced-form genetic algorithm with gene boundary
adjustment.
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Because ½12
_H� C� is a skew-symmetric matrix, the

above equation become

_v ¼ ST uþ�d � H _�þC�þG
	 
	 


þ
_~A
T
� ~Aþ

_~B
T

 ~B

¼ ST½uþ�d � ð ~H _�þ ~C�þ ~GÞ �L2ðĤ _�þ Ĉ�þ ĜÞ�

þ
_~A
T
� ~Aþ

_~B
T

 ~B: ð34Þ

Since the robot dynamic structure is linear in terms of

its parameters, the above equation can be expressed as

_v ¼ ST uþ�d � ~H _�þ ~C�þ ~G
j k

� L2W’
j k

þ
_~A
T
� ~Aþ

_~B
T

 ~B

ð35Þ

where Ĥ _�þ Ĉ�þ Ĝ ¼W’ in (4), and

_v � STuþ
Xn
i¼1

�i sij j

þ Sk k _�


 

 Sk k �k k _�



 

 Sk k
	 
 �1

�2

�3

2
664

3
775

� STL2W’þ
_~A
T
� ~Aþ

_~B
T

 ~B: ð36Þ

Inserting (24) in the above equation yields

_v � �STKSþ STL1ueq1 þ STL2ueq2 � STu�

þ
Xm
i¼1

�i sij j þ Sk k _�


 

 Sk k �k k _




 

 Sk k
	 
 �1

�2

�3

2
664

3
775

� STL2W’þ
_~A
T
� ~Aþ

_~B
T

 ~B: ð37Þ

We choose

�
_~BT
 ~B ¼

Xm
i�1

ð�i � �̂iÞjsij ð38Þ

and

�
_~A
T
� ~A ¼ Sk k _�



 

 Sk k �k k _�


 

 Sk k

	 
 ~�1

~�2

~�3

2
64

3
75
ð39Þ

where

�
_~B ¼ 
1 s1j j
2 s2j j � � � 
m smj j½ �

T ð40Þ

and

�
_~A ¼ �1 Sk k _�



 

 �2 Sk k � _�


 



 

 �3 Sk k

	 
T
: ð41Þ

Since
_~B ¼ �½ _̂�1

_̂
�2 � � �

_̂
�m�

T and
_~A ¼ �½ _̂�1 _̂�2 _̂�3�

T, we

obtain

_̂
�1

_̂
�2 � � �

_̂
�m

h i
¼ 
1 s1j j
2 s2j j � � � 
m smj j½ � ð42Þ

and

½ _̂�1 _̂�2 _̂�3� ¼ �1 Sk k _�


 

�2 Sk k �k k _�



 

�3 Sk k
	 


: ð43Þ

From (42) and (43), we obtain (25) to (28).
Thus, the resulting expression of _v is

_v � �STKS � 0: ð44Þ

Because K is a positive definite matrix, S approaches

zero asymptotically. This completes the proof. œ

6. Simulations

In this section, simulations of the proposed on-line

genetic algorithm-based fuzzy-neural sliding mode

control scheme trained by MARG for a two-link

robotic manipulator model are presented. Two exam-

ples are employed to illustrate the performance of the

control scheme. The two-link robotic manipulator is

shown in Figure 6.
The initial adaptation gains, initial conditions for

the robot, and design parameters are given by

�̂1ð0Þ ¼ 0:002, �̂2ð0Þ ¼ 0:005, �̂3ð0Þ ¼ 10:2, �1¼ 0.009,

�2¼ 0.005, �3¼ 3.2, and K¼ diag[12 12]. The external

disturbances are square waves with the amplitude 	0.1

and the period 2�.
For the two-link robotic manipulator, the sliding

manifold defined in (23) is � ¼ _�d � #, and

Figure 6. Two-link manipulator.
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# ¼ ½ �1 �2 �
T is chosen as

�iðeiÞ ¼

em
ð1=�mÞþKeem

þ�0ðei� emÞ, if em5ei

ei
ð1=�mÞþKeei

, if 05ei � em

0, if ei ¼ 0
ei

ð1=�mÞ�Keei
, if �em � ei50

�
em

ð1=�mÞþKeem
þ�0ðeiþ emÞ, if �em4ei

,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

for i¼ 1,2, where em ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�m=�0Þ

p
� 1�=ðKe�mÞ, �m4

�04 0, �m¼ 16, �0¼ 4, Ke¼ 0.2 and em¼ 1/3.2. The
torque vector Y� ¼ ½ y�1 y�2 �

T is given by

y�1 ¼ ½c2ð2 €q1d þ €q2dÞ � s2 _q2dð _q2d þ 2 _q1dÞ� �m2l1l2

þ ð €q1d þ €q2dÞ �m2l
2
2 þ gc12 �m2l2

þ gc1 � ðm1 þm2Þl1 þ €q1d � ðm1 þm2Þl
2
1,

y�2 ¼ ðc2 €q1d þ s2 _q21dÞ �m2l1l2 þ ð €q1d þ €q2dÞ �m2l
2
2

þ gc12 �m2l2,

where c1¼ cos q1d, c2¼ cos qd2, s2¼ sin qd2, and
c12¼ cos(qd1þ qd2). The parameters of the two-link
robotic manipulator are m1¼ 0.5 kg, m2¼ 0.5 kg, l1¼ 1
and l2¼ 0.8.

There are 120 adjustable parameters, including
50 weighting factors of fuzzy neural network and 70
control points of B-spline membership functions.
Each input has five B-spline membership functions.
Each B-spline membership function has seven control
points. MARG, which is described in Section 4,
is applied to find the optimal values and bounds
of these parameters. The initial condition is set to be
½q1 _q1 q2 _q2� ¼ ½0:2618 0 0:2618 0�.

Example 1: In example 1, we refer to the trajectories
in Leu and Lee (2000). Our objective is to control the
outputs of the actual angles q1 and q2 of the system
to track the desired angle trajectories q1d¼�[1�
exp(�t/2)]/8 and q2d¼��[1� exp(�t/2)]/8, respec-
tively. An additional load (mL¼ 0.2 kg) is added to
m2 after 14 s. The additional load mL¼ 0.2 kg is used
to show that the two-link robotic manipulator is robust
while changing loads.

As previously discussed, if we do not use the
proposed MARG, we must guess the bounds of the
adjustable parameters (i.e. the bounds of the genes)
before beginning the simulation. Figure 7 shows the
tracking trajectories using the B-spline membership
function fuzzy-neural network and guessed bounds.
We set the bounds of all control points of the B-spline
membership functions to [�0.5, 0.5], and the bounds
of all weights of the fuzzy-neural network to [�2, 2].
y�1 and y�2 are the ideal outputs of the inverse robot

system dynamics, and W’1 and W’2 represent the
outputs of the B-spline membership function fuzzy-
neural network. We can see clearly that the fuzzy-
neural network doesn’t approximate the ideal outputs
of the inverse robot system dynamics, Y� ¼ ½ y�1 y�2 �

T,
well because the bounds we guessed are improper.

In Figure 8, we reset the bounds of all control
points of the B-spline membership functions to [�1, 1]
and the bounds of all weights to [�10, 10]. With these
new bounds, W’2 traces y

�
2 a little better but W’1 still

does not trace y�1 well. We have to keep adjusting these
bounds until the fuzzy-neural network approximates
the ideal trajectory well, a potentially time-consuming
procedure.

Figure 7. The tracking trajectories W’1 and W’2 by using
the fuzzy-neural networks with guessed bounds [�0.5, 0.5]
and [�2, 2] for Example 1.

Figure 8. The tracking trajectories W’1 and W’2 by using
the fuzzy-neural networks with guessed bounds [�1, 1] and
[�10, 10] for Example 1.
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To overcome the above problem, we use MARG
and redo the simulation. Pre-determining the initial
(non-zero) boundaries is unnecessary. At initialisation,
all parameters in (16) and bounds of the genes are set
to zero. Figure 9 shows that the outputs of the fuzzy
neural network, W’, approximate the ideal outputs
of the inverse robot system dynamics Y *. It shows
good approximating performance after 0.8 s in the
transient period. When the load is added to the system
at 14 s, it also shows good approximating performance
after 14.3 s. We can see this fact from the insets.

Although all parameters and bounds of the genes
are set to zero at initialisation, Figures 10 and 11
show that the final searched bounds using MARG
are [�115, 115] and [�1.56, 1.56] for the weights of

the fuzzy-neural network and the control points
of B-spline membership functions, respectively. This
example shows that MARG can overcome the prob-
lem of pre-determining parameter bounds in genetic
algorithms.

Figure 12 presents the simulation results of the
tracking control by MARG. The proposed controller
has good control capability over the exponential
waves, q1d and q2d. The simulation results in this case
demonstrate that the tracking trajectories of the actual
outputs q1 and q2 also follow the reference signals q1d
and q2d, respectively, very well even when an additional
load is added after 14 seconds. In order to specifically
demonstrate our proposed control scheme is still effec-
tive under the additional load, we magnify Figure 12

Figure 9. The tracking trajectories W’1 and W’2 by using
the fuzzy-neural networks with MARG for Example 1.

Figure 10. The final searched boundaries of the weights of
the fuzzy-neural network for Example 1.

Figure 11. The final searched boundaries of the control
points of B-spline membership function for Example 1.

Figure 12. The actual angles q1 and q2 and the desired angles
q1d and q2d using the proposed method for Example 1.
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around the 14 s region. We see clearly that the actual
trajectories q1 and q2 quickly track the desired
trajectories q1d and q2d after encountering the addi-
tional load. Our proposed controller demonstrates
good robust performance.

Figure 13 shows the control inputs. It shows that
using the general sliding manifold diminishes control
law chattering. Figure 14 shows the sliding surfaces.
The general sliding mode S will asymptotically
converge to zero as time tends to infinity except
immediately after encountering the extra load.
Although the trajectory S immediately moves away
from the convergence trajectory, it does not diverge
and recovers to convergence quickly. This result is
because of our proposed control scheme. From this
example, we can see that our presented theorem and

proof behave as expected and make for a practical
robot system.

We also compared our proposed controller with the

observer-based adaptive fuzzy-neural controller in
Leu and Lee (2000). In Figure 15, q1d and q2d are the

reference trajectories, q1 and q2 represent the trajec-
tories of our proposed method, and q01 and q02 represent
the trajectories of the reference paper’s method

(Leu and Lee 2000). It clearly shows that the
trajectories of our proposed method trace the reference

trajectories better than those of the reference paper’s
method (Leu and Lee 2000) in the transient period.

Even when the load is added to the system at 14
seconds, our proposed method still shows good robust

ability. We can see this fact from the insets of
Figure 15. Hence, our proposed controller is better
than the observer-based adaptive fuzzy-neural con-

troller in Leu and Lee (2000).

Example 2: In example 2, our objective is to control

the outputs of the actual angles q1 and q2q2 of the two-
link planar manipulator to track the desired angle

trajectories q1m¼ (�/30)sin (t) and q2m¼ (�/30)cos (t),
respectively. At initialisation, all parameters in (16)
and bounds of the genes for the improved adaptive

bound reduced-form genetic algorithm are also set to
zero. Figure 16 shows that the outputs of the fuzzy

neural network, W’, approximate the ideal outputs of
the inverse robot system dynamics Y*. We magnify the

transient part to demonstrate the action of the outputs
of the fuzzy neural network. It shows good approx-

imating performance after 0.5 s. It is unnecessary to
guess the bounds of the parameters. Although all
parameters and bounds of the genes are set to zero at

Figure 15. Compare the result of our proposed method with
the one of the reference paper method (Leu and Lee 2000)
for Example 1.

Figure 13. The control inputs for Example 1.

Figure 14. The sliding surfaces for Example 1.
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initialisation, Figures 17 and 18 show that the final
searched bounds are [�16.4, 16.4] and [�0.23, 0.23]
using MARG for the weights of the fuzzy-neural
network and the control points of B-spline membership
functions, respectively. Again, this example shows that
MARG can overcome the problem of pre-determining
parameter bounds in genetic algorithms.

Figure 19 presents the simulation results of the
tracking control by MARG. Like example 1, the
proposed controller also has good control capability
over the sine and cosine waves, q1m and q2m. The actual
trajectories trace the ideal trajectories well after 1.5 s.

Table 1 shows 25 (out of a total of 120) weights
of the B-spline membership function fuzzy-neural
network using fixed bounds and using the improved
adaptive bound algorithm. We also give Eo¼ jq� qdj

2,

which represents the square error of the system output,
and Ee¼ jY�Y*

j
2, which represents the square error

of the estimation of the torque vector. As we can see
in Table 1, the proposed improved adaptive bound
reduced-form genetic algorithm is more effective than
the traditional method using fixed bounds. If the
improper bounds for adjustable parameters are pre-
determined, some optimal parameters are not discov-
ered in the improper bounds. The proper bounds of the
adjustable parameters can be obtained automatically in
the training process by applying MARG. Therefore,
the tracking error can be, and is, reduced significantly.

In this article, an on-line evolutionary controller
is derived. In the papers of Leu et al. (1999, 2005), they
present fuzzy-neural controllers with adaptive learning
algorithms, but do not use genetic algorithms and so

Figure 19. The actual angles q1 and q2 and the desired angles
q1m and q2m using the proposed method for Example 2.

Figure 16. The tracking trajectories W’1 and W’2 by using
the fuzzy-neural networks with MARG for Example 2.

Figure 17. The final searched boundaries about the weights
of BMF fuzzy-neural network for Example 2.

Figure 18. The final searched boundaries about the control
points of B-spline membership function for Example 2.
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can fall into local minima. Our system uses genetic
algorithms to overcome this important problem.

Moreover, unlike many genetic algorithm-based con-

trollers, ours is on-line. In the previous studies (Wang

and Li 2003; Wang et al. 2004), Wang et al. present
genetic algorithms and an adjustable bounds algo-

rithm. However, the studies Wang and Li (2003) and

Wang et al. (2004) do not implement controllers, and

the adjustable bounds algorithm has been improved in
this article.

7. Conclusion

A novel on-line genetic algorithm-based fuzzy-neural
sliding mode controller trained by MARG is developed

for robot manipulators with uncertainties and external

disturbances. The general sliding manifold is employed

to construct the sliding surface and reduce control law

chattering; the sliding surface can be non-linear or

time-varying. The sliding mode controller can elim-
inate uncertainties and external disturbances. The
B-spline membership function fuzzy-neural network
with MARG can approximate the regressor well.
The proper bounds of the adjustable parameters can
be obtained automatically in the training process by
applying MARG. The proposed on-line genetic algo-
rithm-based fuzzy-neural sliding mode controller can
guarantee robust stability and good tracking perfor-
mance of a robot manipulator with uncertainties
and external disturbances. Results of the computer
simulation applied to a two-link robotic manipulator
following the desired trajectories demonstrate the
effectiveness of the proposed approach.
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Table 1. Twenty-five weights of the B-spline membership function fuzzy-neural network using fixed bounds and using the
improved adaptive bound algorithm.

Selected adjustable values
½w1

1 � � �w
25
1 � (remaining values

are omitted to save space)

Final adjustable values for
fixed bound algorithm with

D1 ¼ ½wmin,wmax� � R¼ [� 10, 10]

Final adjustable values for improved
adaptive bound algorithm. Final searched

bound is D1 ¼ ½wmin,wmax� � R¼ [� 16.4, 16.4]

w ¼ ½wT
1 wT

2 � � �w
T
m � 3.6331 �10.0428

w ¼ ½wT
1 wT

2 � � �w
T
m � 10.0000 �5.6908

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.0037 �2.0548

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.7692 9.6143

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.8252 14.6507

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.9272 0.3456

w ¼ ½wT
1 wT

2 � � �w
T
m � 10.0000 14.3441

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.8430 13.0843

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.7232 2.6597

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.4509 �1.3903

w ¼ ½wT
1 wT

2 � � �w
T
m � 10.0000 �7.8490

w ¼ ½wT
1 wT

2 � � �w
T
m � 10.0000 8.9022

w ¼ ½wT
1 wT

2 � � �w
T
m � 10.0000 11.1237

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.9968 15.4167

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.9993 14.8704

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.2926 14.0115

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.9978 14.3402

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.6344 15.0663

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.6993 5.4284

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.5565 �3.3603

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.5731 14.0449

w ¼ ½wT
1 wT

2 � � �w
T
m � 10.0000 14.5239

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.4595 12.5299

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.2363 5.7721

w ¼ ½wT
1 wT

2 � � �w
T
m � 9.8978 �2.1470

Eo¼ jq� qdj
2 8.3362e-005 2.1593e-011

Eðw, cÞ ¼ 1
2 kY� Y�k2 11.5904 (not converged) 6.2627e-008
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