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摘要 

 

在共用匯流排的單晶片系統中，當不同的矽智產同時提出匯流排存取的需求

時，便會發生匯流排衝突的情形。因此，必需設計仲裁器來強制處理匯流排衝突

的情形。在不同的應用中，矽智產可能有即時或是頻寬的需求(或是兩者都有)。

設計一個仲裁器演算法同時滿足即時與頻寬的兩種不同的需求是一件很困難的

事。在這篇論文中，我們提出了一個名為 RB_lottery 的仲裁器演算法，用來同

時解決即時通訊與頻寬分配的需求。除了滿足即時通訊的需求，新提出的演算法

提供更佳的頻寬分配能力。在我們的實驗結果中也可以發現，相較於其它已經提

出的系統單晶片仲裁器演算法，在滿足即時與頻寬的需求上，我們所提出的演算

法有更好的表現。 
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Abstract

On an SoC bus, contentions occur while different IP cores request the bus

access at the same time. Hence an arbiter is mandatory to deal with the contention

issue on a shared bus system. In different applications, IPs may have real-time

and/or bandwidth requirements. It is very difficult to design an arbitration algo-

rithm to simultaneously meet these two requirements. In this thesis, we propose an

innovative arbitration algorithm, RB lottery, to meet both of the requirements. It

can provide not only the hard real-time guarantee but also the precise bandwidth

controllability. The experimental results show that RB lottery outperforms several

well-known existing arbitration algorithms.
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Chapter 1

Introduction

1.1 Introduction

In SoC systems, intellectual properties (IPs) often communicate with each

other to complete the functions. For example, the CPU accesses data from the

memory and other I/O devices. Such communication is commonly built through

the same media called bus. The shared buses act as the communication channels

between those IPs. There are two major components, masters and slaves, in this

shared bus architecture. Those IPs who initiate requests to access the shared buses

are called the masters. These requests could be either read or write transactions.

Unlike the masters, slaves have no controllability over the shared buses. The CPUs

and the memories, for instance, are masters and slaves, respectively. An example

of shared bus architecture is shown in Figure 1.1. There are three masters and

two slaves in the system. These masters can initiate requests to the bus and the

corresponding slave responses them with the proper data transferred through the

shared bus [1–8].

Since masters on the same shared bus may initiate requests at the same

time, an arbiter is required to decide which master is the current owner without bus

conflicts. The arbiter could be implemented in a centralized or a distributed fashion.

Besides, distinct arbitration algorithms may lead to different system performance.

Therefore, the arbiter should be designed carefully in high performance systems [7,9].

1
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Figure 1.1: An example of shared bus architecture

The two major advantages of the shared bus architecture are high scalability

and low hardware cost. In the configuration, a new IP with the same interface can

be easily added into an SoC platform. Since the communication channel is shared,

the hardware cost can be relatively low [9,10].

However, a shared bus architecture may limit the communication bandwidth.

The maximum communication bandwidth of a bus is defined as the bus width mul-

tiplied by the bus clock frequency. It restricts the communication data amount

within a fixed period. The major difficulty to design an arbiter is to meet different

requirements simultaneously. A master has the bandwidth requirement if it requires

at least a certain amount of bus bandwidth. In addition, some masters with the

real-time requirement demand their requests accomplished within a fixed number

of clock cycles. Most arbitration algorithms target at either real-time requirements

or bandwidth requirements, but few of them deal with both of requirements well.

It is a tough challenge to design an arbiter for a real-time system with bandwidth

requirements.
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1.2 Our contribution

In this thesis, we first explore the difficult of meeting the real-time and

bandwidth requirements simultaneously and then propose an innovative arbitra-

tion algorithm, called RB lottery, to provide the hard real-time guarantee and the

fine-grained bandwidth control. RB lottery is a three-level arbitration algorithm.

It handles the real-time requirements in the first level and allocates the bandwidth

according to the requirements with precision less than 2% error in the following

levels. Our experimental results also demonstrate that it outperforms other existing

arbitration algorithms.

1.3 Organization of the thesis

The remainder of this thesis is organized as follow. Several existing arbitra-

tion algorithms are briefly introduced in Chapter 2. Chapter 3 presents the detail of

the proposed arbitration algorithm, RB lottery. Experimental results are reported

in Chapter 4. Finally, we conclude this thesis in Chapter 5.



Chapter 2

Preliminaries

In this section, we briefly introduce the purpose of arbiter in Section 2.1. And then

several existing arbitration algorithms [11–13] are presented in Section 2.2. The

characteristics of each arbitration algorithm are summaried in Section 2.3.

2.1 The purpose of arbiter

The most important coordination circuit in SoC shared bus systems is the

arbiter. An arbiter acts as a traffic officer standing at an intersection who decides

which car may pass through next. When a request is initiated, the arbiter promptly

grants the corresponding action, delaying any other requests until the current one

is completed. While two requests are initiated at the same time, the arbiter de-

cides which one should be granted first and then the other. The arbiter guarantees

that there are no two actions under way contemporaries, just like the traffic officer

prevents accidents by ensuring no two cars passing through the intersection on a

collision course [14–17].

An arbiter not only needs to ensure that only one master accesses the shared

bus, but also schedules the requests with requirements satisfyingly and efficiently.

There are various requirements in different applications. For example, in real-time

systems each transactions should be accomplished within a fixed number of clock cy-

4
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Figure 2.1: An example of fixed priority based shared bus architecture

cles which is the maximum response latency constraints. And in multimedia systems

some masters with bandwidth constraints desire a fraction of total bandwidth. It is

a challenge to design an arbiter for a real-time system with bandwidth requirements.

2.2 Previous works

2.2.1 Fixed priority algorithm

The fixed priority algorithm is one of the most commonly used on-chip com-

munication architecture in modern SoC systems [1]. Each master is statically as-

signed an unique priority [18]. Whenever the contending requests come from differ-

ent masters, the arbiter makes a decision of permitting the buses controllability to

the highest-priority master.

As shows in Figure 2.1, there are four masters in a shred bus architecture.

The priority of Master 1 is statically assigned to 1, Master 2 is 2, and so on1. While

bus contentions, the arbiter simply grants the master with the highest priority among

the contending requests.

1We use a convention in which lower numeric value indicate higher priority. The master with
priority 1 is of the highest importance. The master of priority 2 is of next highest importance as
well.
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Because of its simplicity and low hardware cost, the fixed priority algorithm

is still widely used in today’s design. However, the masters with lower priority could

be completely starved by higher parity ones.

An example system shows the relationship between bandwidth allocation and

priority assignment in Figure 2.2. The four masters with the same traffic behavior

are assigned a unique value as the priority from 1 to 4. All of the possible bandwidth

combinations are experimented to measure the fraction of bus bandwidth allocation

under different priority assignments. The notation “1:2:3:4” means that master

1 has the highest priority, master 2 is the second, and master 4 is the lowest. For

example, as the priority of master 1 decreases from 1 to 4, the fraction of bandwidth

is step-wise decreased from left to right in Figure 2.2. The results show that the

fraction of bandwidth is extremely sensitive to the assigned priority and the low

priority traffic starves as pending requests in higher priority traffic.

Figure 2.2: Bandwidth allocation under a fixed priority based architecture
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2.2.2 TDMA algorithm

In the time division multiplexed access (TDMA) algorithm, the execution

time is divided into equal-sized time slots, such as clock cycles, and each slot is stat-

ically assigned to a particular master [6]. If the master associated with the current

time slot has a pending request, the arbiter permits the transaction immediately,

and the time wheel is rotated by one slot. While there is no pending requests in the

current slot owner, the slot will be wasted. In order to alleviate the wasted slots, a

second level arbitration algorithm is usually adopted to permit bus granted to the

other requesting masters.

It is an example of two-level TDMA scheme in Figure 2.3. The time wheel

is divided into eight time slots which statically assign to an unique master. For

example, if the current time slot is reserved to M1, the pending request of M1 is

granted immediately. Otherwise, the second level arbitration algorithm is used to

eliminate the waste slots. The second level arbitration algorithm can adopt any

other algorithms depending on the applications.

Figure 2.3: An example of two-level TDMA shared bus architecture

Because of every master is allocated a certain amount of time slots, TDMA

guarantees not only a minimum bandwidth allocation but also the worst-case re-

sponse latency. As shown in Figure 2.4, the reservation time slots are designed in
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Figure 2.4: An example of the maximum response latency in TDMA based architecture

the time wheel at the first line. The second line shows the requesting pattern. If

M1 initiates a request just after the owned time slot, the request remains pending

until the next owned time slot. It is the worst case of the response latency for M1.

The time slots are designed depending on the requirements either real-time

or bandwidth. However, it is difficult to design the time slot sequence for an non-

periodic system. Moreover, the masters allocated more time slots also got more

bandwidth allocation. The more allocated time slots mean the higher possibility

to get granted which results allocating more bandwidth. If the communication

behaviors are complex and irregular, the analysis of time slots design is very difficult

in order to get a high performance system. In addition, TDMA hardly handles

the real-time and bandwidth requirements simultaneously. A master with more

time slots results in short response latencies and more bandwidth allocation. It is

difficult to separately control latency and bandwidth. For example, how to design

a master with low bandwidth requirement and short response latency. Similarly, a

master which needs high bandwidth without short response latency is also difficult

to design.

2.2.3 Lottery algorithm

Another communication architecture, LOTTERYBUS, is proposed in [19]. It

stochastically grants one of the contending masters according to the ticket assigned

to them either statically or dynamically [20–22]. The lottery tickets acted as the
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weight are accumulated through the lottery manager while bus contentions occur.

A master is stochastically selected to get the bus access. In other words, it is a

weighted random arbitration mechanism to grant a master while contention.

As shown in Figure 2.5, there are three masters on the bus and each of them

has a number of “lottery tickets” as the probability of bus granted. First, the lottery

manager accumulates the possessive tickets from one or more requesting masters in

the shared bus. And then a master granted to access system bus is probabilistically

chosen by the lottery manager from all contending masters.

Figure 2.5: The Lottery communication architecture

While there are a set of bus masters, M1, M2, ..., Mn, and each of them

hold t1, t2, ..., tn tickets. The corresponding requests are represented by a set of

boolean variables, r1, r2, ..., rn. If there are pending requests in master Mi, the

corresponding boolean variable ri is 1, otherwise it is 0. Equation 2.1 shows the

probability for each master in a shared bus.
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P (Mi) =
riti

∑n
j=1 rjtj

=
riti

T
(2.1)

In the first step, the lottery manager accumulates the total number of tickets

possessed by the contending masters, given by T =
∑n

j=1 rjtj. In the second step, a

random number is generated from the range [0, T ) 2 to determine which master is

granted. For example, while the random number falls in the range [0, r1t1), the bus

is granted to master M1. In other words, master M2 is granted when the random

number is in the range [r1t1, r2t2). Generally, the bus is granted to master Mi+1, if

the random number lies in the range [
∑i

k=1 rktk,
∑i+1

k=1 rktk).

For example, as shown in Figure 2.6, there are four masters Master 1, Master

2, Master 3 and Master 4 in the system. Each of them is assigned 1, 2, 3, and 4

tickets, respectively. If Master 1, Master 3 and Master 4 have pending requests,

the lottery manager sums up the current tickets
∑n

j=1 rjtj = 1 + 3 + 4 = 8. And it

generates a random number, e.g. 5, from the range [0, 8) uniformly. As a result, the

number lies between r1t1 + r2t2 + r3t3 = 4 and r1t1 + r2t2 + r3t3 + r4t4 = 8, the bus

is granted to Master 4.

One of the main concerns is the worst case of response latencies while the

master is starved by the higher ones during designing a communication architecture.

For the Lottery architecture, the probability, P , that a component with t tickets is

able to access the bus within n drawings is given by the expression 1 − (1 −
t
T
)n.

It indicates the probability of obtaining access the bus converges rapidly to one. In

other words, no master is starved even when it has few ticket assignment.

Next, we analyze the ability of bandwidth allocation for each master in Lot-

tery. We define the maximum bandwidth as the greatest possible communication

2The set [a, b) includes all the integers between a and b, inclusive of a but not b.
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Figure 2.6: An example of Lottery shared bus architecture

amount of a master and the allocated bandwidth as the bandwidth allocation of

a master after simulation. If all masters have the same maximum bandwidth in a

shared bus, Equation 2.2 shows the percentage of bandwidth allocated to master

Mi.

P ′(Mi) =
ti

∑n
j=1 tj

=
ti

T ′
(2.2)

Clearly, Lottery ensures a fraction of bandwidth allocation for each master

under the assumption of similar maximum bandwidth of each master. Because of

the unrealistic assumption, it could not be directly used in SoC communication

architecture.

In addition, since master Mi initiates a request, it has the probability ti
T ′

to

be granted and probability 1 −
ti
T ′

to be pended. Let N be the number of drawings

for master Mi to be able to access the bus. The expected time3 of drawings is equal

to T ′

ti
. It means that the average response latencies for master Mi with ti tickets

3The required number of trials with a probability p of being a success are performed until a
success occurs is a geometric random variable. And the expected value of a geometric random
variable is 1

p
.
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is T ′

ti
[23]. We find that the ticket assignment influence not only the bandwidth

allocation but also the average response latencies. The more lottery tickets are

assigned to a master, the higher granted probability and the fraction of bandwidth it

has. Besides, masters with more tickets also have shorter average response latencies.

However, the analysis is based on the assumption that all masters have equal

or similar maximum bandwidth in the system. In other words, it does not take the

traffic behavior of masters into consideration during ticket assignment. While there

are masters of greatly diverse traffic behaviors in a SoC system, Lottery fails to

control the bandwidth allocation, which is one of the announced main advantages.

For example, if there are three masters, Master 1, Master 2 and Master 3, in

a system, and each them requires at least 30% of total bandwidth. According to the

bandwidth requirements, the ratio of ticket assignment is 1:1:1 by intuition which

means equal granted probability while contention. As shown in Table 2.1, the sixth

column is the allocated bandwidth when the maximum bandwidth of each master

is 40%. All of the master meet the bandwidth requirement since they all get 33%

allocated bandwidth. As the maximum bandwidth of Master 1 increases to 60%

in the fourth column, the allocated bandwidth for each master is still very close to

the bandwidth requirements. However, when the maximum bandwidth of master 1

increases to 80% in the second column, the allocated bandwidth of Master 2 and

Master 3 misses the bandwidth requirements. As a result, the master’s maximum

bandwidth as well as the bandwidth requirement should be taken into consideration

simultaneously during ticket assignments.

As shown in Equation 2.2, the bus granted probability is t
T ′

and the average

response latencies is T ′

t
. The more lottery tickets are assigned to a master, the higher

granted probability and bandwidth allocation it has. In addition, masters with more

tickets will also have shorter average response latencies. The ticket assignment
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Table 2.1: The allocated bandwidth of each master under equal ticket assignment
the max. bandwidth of master 1, master 2 and master 3

80%:40%:40% 70%:40%:40% 60%:40%:40% 50%:40%:40% 40%:40%:40%

Master 1 49% 46% 42% 38% 33%
Master 2 24% 26% 28% 30% 33%
Master 3 24% 26% 28% 30% 33%

not only influences the bandwidth allocation but also change the average response

latencies.

As a result, how to assign the tickets assignment to a master without high

bandwidth requirement needed the low response latencies? We take three masters

with 60% maximum bandwidth into consideration in the following example. The

system works when all of them gets at least 30% of total bandwidth. However,

if Master 1 also requires the average response latencies less than 2 cycles. We

demonstrate the resultant latencies and bandwidth allocation under different ticket

assignment ratio from 1:1:1 to 10:1:1. The notation “10:1:1” means that there are

12 tickets in total. Master 1 has 10 tickets. Master 2 and Master 3 share out the

other two tickets.

As shown in Figure 2.7, we find that the average response latencies of Master

1 is 4 cycles when ticket assignment is 1:1:1. When the tickets of Master 1 become

10 times larger than others, the average latency is less then 2 cycles which meets

the latency constraint.

However, it leads Master 2 and Master 3 to violate the bandwidth require-

ments. As shown in Figure 2.8, all masters get about 30% bandwidth under equal

ticket assignment. When increasing the tickets of Master 1 to 10 times larger than

others, it receives more than 45% of total bandwidth. The bandwidth allocation

misses the bandwidth requirement when Master 1 meets the average response la-
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Figure 2.7: Average response latencies under different tickets assignment ratio

tencies requirements. In a word, the ticket assignment influences both response

latencies and bandwidth allocation.

Figure 2.8: Bandwidth allocation under different tickets assignment ratio

Lottery shows better performance in response latencies and bandwidth al-

location than the other conventional arbitration algorithms like fixed priority and

TDMA. It has the advantages of higher controllability over bandwidth allocation

and lower response latency for the high priority communication. However, Lottery

guarantees the quality-of-service under the assumption of similar or equal masters’s
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maximum bandwidth. If the behavior of each master varies a lot in a system, the

ticket assignment need to consider both traffic behavior and bandwidth requirement

simultaneously.

2.2.4 RT lottery algorithm

A Lottery-based arbitration algorithm, RT lottery, is proposed in [21]. As

shown in Figure 2.9, it is a two-level arbitration algorithm including a real-time

handler and a Lottery with tuned weight. The real-time handler providing hard

real-time guarantees governs all requests with real-time requirements first. Then

the Lottery with tuned weight allocates the bandwidth according to the fine tuned

tickets to meet the bandwidth requirements.

Figure 2.9: The architecture of RT lottery

A set of real-time counters in the real-time handler record the interval from

the current request to corresponding deadline for each master with real-time re-

quirements in real-time handler. It decreases by one every cycle until the current

request is served. If there are still pending requests while the real-time counter is

zero, it is the real-time violation. The real-time handler also uses a warning line

mechanism which considers the worst contending case to provide hard real-time

guarantee [24–26]. If the request of a master is still pending and the corresponding

real-time counter is less than the warning line, the real-time handler assigns the

highest priority to the master and grants the bus access immediately.
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Ticket assignment which plays an important role in Lottery-based algorithms

should consider bandwidth requirement and the traffic behavior simultaneously. An

simulation-based tickets redistribution mechanism, weight tuning, is used to decide

the proper ticket assignment. It analyzes the simulation results and divides the

masters into three groups, Smore, Sless, and Smeet. Smore means that the simulate

bandwidth larger than the required bandwidth. While the masters’s simulate band-

width violate the minimum required bandwidth, it groups into Sless. And the others

just meet the bandwidth requirement belong to Smeet. As shown in Figure 2.10, in

order to meet all bandwidth requirement, weight tuning mechanism increases the

granted probability of Sless.

Figure 2.10: The weight tuning mechanism which redistributes the ticket assignment. It
moves part of tickets from Smore to Sless.

However, the weight tuning mechanism does not always successfully fulfill

the bandwidth requirements. While it is a highly loaded bus, the bandwidth allo-

cation still violates the requirements. For example, there are three masters, Master
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1, Master 2 and Master 3, which requires at least 30% of total bandwidth. The

maximum bandwidth of Master 1, Master 2 and Master 3 are 80%, 30% and 30%,

respectively. As shown in Table 2.2, each master has 100 tickets at the beginning

in the second column. After several iterations of weight tuning, Master 1 takes 53%

of total bandwidth even when it has only two tickets. Master 2 and Master 3 still

violate the bandwidth requirements since they have most of tickets.

Table 2.2: Weight tuning fails to meet the requirement
the ticket assignment of three masters

100:100:100 60:120:120 34:133:133 16:142:142 8:146:146 2:149:149

Master 1 60% 58% 56% 55% 54% 53%

Master 2 19% 20% 21% 22% 22% 23%

Master 3 19% 20% 21% 22% 22% 23%

RB lottery takes the advantages of Lottery but has better performance. It

provides hard real-time guarantee and better bandwidth control than Lottery. How-

ever, in the highly loaded bus, RB lottery fails to meet the requirements. Hence, a

more powerful arbitration scheme is surely demanded.
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2.3 Motivations

When there are real-time and bandwidth requirements in a system, the ex-

isting arbitration algorithms can not provide good solutions. Table 2.3 lists the

characteristics of the existing arbitration algorithms.

Table 2.3: The of existing arbitration algorithms

Pros. Cons.

fixed priority
simplicity
area efficiency

starvation for low latency traffic
no real-time consideration
no means for bandwidth control

TDMA
deterministic behaviors
time slot reserved bandwidth allocation

hard to design time slot sequences
no real-time guarantee
time slots influence latency and bandwidth

Lottery
average latencies guarantee
tickets reserved bandwidth allocation

similar requesting bandwidth assumption
no real-time consideration
tickets influence latency and bandwidth

RT lottery hard real-time guarantee fail in diverse masters’ requesting bandwidth

We have the following summaries:

• fixed priority algorithm:

Because of the simplicity and low hardware cost, the fixed priority algorithm is

still widely used in bus systems. However, a master with lower priority could

be completely starved by higher priority ones.

• TDMA algorithm:

The allocated time slots of each master in TDMA provides fixed and pre-

dictable bandwidth. It also guarantees the worse case of response latencies
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due to the time slot design. However, the design of time slot sequences is very

difficult in an unpredictable system. Moreover, TDMA could not separately

consider bandwidth allocation and real-time requirements.

• Lottery algorithm:

Lottery algorithm provides better control over bandwidth and guarantees the

average response latencies. But it assumes that each master has equal or

similar traffic behaviors. Moreover, it does not take real-time system into

consideration.

• RT lottery algorithm:

RT lottery improves the ability to handle the real-time requirements and gives

a systematic analysis flow during ticket assignments. Nevertheless, RT lottery

still fails in the highly loaded bus.

As a result, we design an arbitration algorithm dealing with both bandwidth

and real-time requirements. It takes the advantages of lottery based algorithms, but

provides better bandwidth controllability over ticket assignments.
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Proposed Algorithm

The proposed real-time bandwidth-regulating lottery, called RB lottery briefly, is

introduced in the following sections. First, we present the architecture details of

RB lottery and then give an example. Second, we presents our approaches, FRB

and ARB.

3.1 Real-time bandwidth-regulating lottery(RB lottery)

The proposed arbitration algorithm, RB lottery, is based on our previous

work, RT lottery [21]. An extra component, the bandwidth regulator, is added into

RT lottery which provides precise controllability over the bandwidth allocation. As

shown in Figure 3.1, it is a three-level arbitration algorithm to solve real-time and

bandwidth requirements simultaneously.

As shown in Figure 3.1, RB lottery is a three-level arbitration algorithm.

The first level, the real-time handler, addresses the requests with the real-time

requirements in advance. The following levels, bandwidth regulator and Lottery

with tuned weight, work together to deal with the bandwidth requirements.

• Real-Time Handler:

It is proposed in RT lottery [21] and is described elaborately in Section 2.2.4.

20
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Figure 3.1: The architecture of proposed arbitration algorithm

The real-time handler governs the requests with real-time requirements and

provides the guarantees of hard real-time.

• Bandwidth Regulator:

A traffic monitor with the controllability over bandwidth allocation records the

bus communication behaviors. It includes a set of bandwidth registers which

records the transaction cycles of each master in a fixed period called window.

When a master gets granted for bus access, the corresponding bandwidth

register records the transaction cycles. The total transaction amounts recorded

in the bandwidth register could be regarded as the allocated bandwidth. Next,

the bandwidth regulator checks the allocated bandwidth of each master and

blocks the requests of masters with more allocated bandwidth than required.

Unless the blocking signal is released, there are no chances for the blocked

masters to get granted. Because the over-served masters are blocked, the

masters with less allocated bandwidth than required have higher possibility to

be granted.

• Lottery with Tuned Weight:

It is briefly introduced in Section 2.2.3 and Section 2.2.4. The contending

masters are granted by the lottery manager and the ticket assignment are

decided by a simulation-based mechanism named weight tuning.
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As shown in Figure 3.2, a simple example explains how RB lottery works.

An addition circuitry called the bandwidth regulator is added into the RT lottery.

It monitors the communication behaviors of each master and blocks the requests

of masters met the bandwidth requirement temporarily. The allocated bandwidth

is recorded in the bandwidth register. Whenever a master gets granted, the corre-

sponding bandwidth register adds one every cycle until the master completes the

communication transaction. The master meets the bandwidth requirements unless

and until the allocated bandwidth larger than the required bandwidth. For example,

if the allocated bandwidth of M4 recorded in the bandwidth register is larger the

required bandwidth, the bandwidth regulator blocks the request signal temporarily.

As the instant shown, the four masters, Master 1, Master 2 , Master 3 and Master

4, are static assigned 1, 2, 3 and 4 tickets, respectively. If there are pending requests

in Master 1, Master 3 and Master 4, the real-time handler checks the corresponding

real-time counters at the first level. If the real-time counter of a master is smaller

than the warning line, it get the highest priority and is granted the bus access im-

mediately. The real-time handler provides the hard real-time guarantee for masters

with real-time requirements. Otherwise, if all real-time counters are larger than the

warning line, the bandwidth regulator checks the bandwidth registers at the sec-

ond level. The allocated bandwidth of each master recorded in the corresponding

bandwidth register is compared with the required bandwidth. The master meets

the bandwidth requirements unless and until the allocated bandwidth larger than

the required bandwidth. The bandwidth regulator temporarily blocks the requests

of masters who meets the bandwidth requirement in a fixed period of time.

In a word, RB lottery is a kind of three-level arbitration algorithm. It sepa-

rately deals with the real-time and bandwidth requirements at different levels. First,

the real-time handler solves the real-time requirements at the first level. The second
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Figure 3.2: An example of proposed arbitration algorithm architecture

and third levels target at the bandwidth requirements. It records the communication

behaviors and dynamically changes the granted probability.

3.2 The details of bandwidth regulator

In the following section, we present the details of the bandwidth regulator.

First, we introduce the bandwidth registers recorded the communication behaviors

during execution. Second, the period of time called the observation window is

presented.

3.2.1 Observation window

As shown in Figure 3.3, the execution time is divided into a sequence of fixed

size windows for observation. The size of an observation window is configurable.

In each observation window, all the transactions are monitored to obtain the in-

formation of bandwidth allocation. Once a master gets its required bandwidth,

the following requests from this master are temporarily blocked until next window

starts.
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The design of observation window is compromised of the hardware cost. De-

spite the hardware cost, we can use the unlimited size of observation window. How-

ever, it means that we also need to design a large set of bandwidth registers to

record all transaction amounts for each master. It is unrealistic in hardware imple-

mentation.

Figure 3.3: A sequence of fixed size windows

3.2.2 Bandwidth registers

A set of bandwidth registers record the communication behaviors of each

master. The bandwidth registers reflect the bandwidth allocated to masters in an

observation window. When a master get granted to the bus access, the correspond-

ing bandwidth register records the amount of transactions. For example, a granted

master initiates an 8-beat transactions, the corresponding bandwidth register in-

creases its value by eight cycles when the transaction is completed.

3.3 Our approaches

The following sections describe the approaches of how does the RB lottery

precisely control the bandwidth allocation.
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3.3.1 Fixed real-time bandwidth-regulating lottery (FRB)

One of the approaches of the RB lottery is called FRB. FRB statically com-

pares the allocated bandwidth with the required bandwidth and masks the requests

from masters who has already met bandwidth requirements in an observation win-

dow. The allocated bandwidth of a master is larger than the required bandwidth,

which is called over-served. Similar, the master with the allocated bandwidth less

than the required bandwidth is under-served. Not until the next window comes or

the pending request hits the warning line does the masking signal get released.

As shown in Figure 3.4, the algorithm flow of RB lottery is divided into three

blocks to explain. In block 1, the observation window is checked to see if it is ready to

proceed to the next window. When the next window starts, all of the blocking signals

are released. In block 2, the real-time handler detects the emergent real-time masters

from the contending requests and grants the most emergent master immediately to

avoid real-time violation. If no master is granted by the real-time handler, the

lottery manager stochastically grants a master from the contending requests. The

transaction amount of the granted master is recorded in its corresponding bandwidth

register. In block 3, the allocated bandwidth of the granted master is calculated from

the bandwidth register. If the granted master meets the bandwidth requirement, its

next request is temporarily blocked in the current observation window.

FRB records the communication behavior in an observation window. The

size of observation window compromises on the hardware cost. If we record all the

communication behaviors, it needs a lot of registers to store the information. As

a result, FRB divides the run-time into a sequence of windows and only consid-

ers the communication behaviors in the same window. The adjacent windows are

independent in FRB.
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Figure 3.4: The algorithm flow of FRB

3.3.2 Adaptive real-time bandwidth-regulating lottery (ARB)

The other approach of the RB lottery is called ARB. There are a set of

bandwidth variance which helps to dynamically change the boundary of blocking

the requests of a master. ARB records the transaction amounts of each master and

dynamically compares the allocated bandwidth with the required bandwidth and

the bandwidth variance. If the allocated bandwidth is larger than the value of the

required bandwidth plus the bandwidth variance, the bandwidth regulator masks

the request of corresponding master. Similar to FRB, the over-served master could

not get granted until the next window comes or the pending request hits the warning
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line.

As shown in Figure 3.5, the bandwidth variance of each master starts at zero

and is periodically increment or decrement according to the allocated bandwidth in

the previous window [27]. If the allocated bandwidth is larger than the required

bandwidth in the current window, the bandwidth variance will be decreased in the

next window. Otherwise, it will be increased. The bandwidth variance has both

an upper bound and lower bound. If a master gets more bandwidth than required

frequently, the bandwidth decreases until it hits the lower bound. Similar, if the

allocated bandwidth of a master is less than the required bandwidth frequently,

the corresponding bandwidth boundary increases until it hits the upper bound.

The bandwidth variance reflects the relationship between the adjacent windows.

The larger size of bandwidth variance means the more adjacent windows took into

consideration during tuning the bandwidth allocation.

Figure 3.5: The bandwidth variance architecture

As shown in Figure 3.6, the major different between FRB and ARB is the

block 1. As what FRB does, ARB checks the running window first in block 1. In

the current window, ARB records the transaction amounts and temporarily blocks

the requests of over-served master. However, if it is a new window, ARB not only
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releases all the masked requests but also records the allocated resultant into the

bandwidth boundary.

Figure 3.6: The algorithm flow of ARB

Unlike what FRB does, ARB makes a relationship between the adjacent win-

dows. If a master gets more bandwidth allocation than required, ARB decreases the

corresponding bandwidth boundary and the master gets less bandwidth allocation in

the next window. Similarly, an under-served master in the current window gets more

bandwidth allocation than required. The compensation mechanism more precisely

controls the overall bandwidth allocation like the bandwidth requirements.
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Experimental Results

4.1 Experiment environment

4.1.1 SystemC model

The following experiment environment is developed under SystemC v2.1 with

the transaction level model (TLM) library [28, 29]. In Figure 4.1, a simple system

with N masters and one slave is shown as an example. Each master has a thread to

generate bus traffic and puts the requests into the respective tlm transport channel.

After a master initiates the request to the tlm transport channel, it waits for the cor-

responding response from the slave. The thread in the arbiter polls all of the request

fifos. It decides which is the most important request and then forwards the request

from the master to the slave at the same time. After the slave responds, the arbiter

puts the response into the response fifo through the relevant tlm transport channel.

The master then picks up the corresponding response up and completes the transac-

tion. It is a high abstraction-level model to evaluate the system performance under

different arbitration algorithms.

The arbiter is able to adopt any available algorithms to make arbitration

decisions. In the following experiments, five arbitration algorithms, static priority,

lottery, TDMA + Lottery (the first level arbitration is TDMA and the second level

arbitration is Lottery), RT lottery and RB lottery are evaluated for comprehensive

comparisons.

29
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The high abstraction-level model is capable of providing a fast simulation

speed that is up to one million cycles per second. Therefore, we can efficiently

estimate the system performance and explore the proper system design parameters

in this environment.

Figure 4.1: An example system using transaction level model in SystemC

4.1.2 Traffic types

We classify three high abstract-level traffic models to emulate the IP cores

behavior in SoC systems. They have some parameters defined as follows. First, the

transactions of a request is represented as the beat number. For example, if the

beat number of a request is 4, it means that it is a 4-beat transaction. Second, the

time of next request can be initiated is determined as the interval time. Third, the

real-time requirement is represent as Rcycle which is the dead-line of a request.

• D type(D for dependency):

A D type master has no real-time requirements and initiates the next request
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at the time depending on the finish time of the current request. As show in

Figure 4.2, the beat number is 5 and the interval time is 10. If the first request

is initiated at cycle 2 and is granted at cycle 5, the request will be completed

at cycle 9. The next request will be initiated at cycle 19 which is 10 cycles

later than the finish time.

Figure 4.2: D type master (beat number = 5; interval time = 15)

• D R type(D for dependency, R for real-time):

A D R type master behaviors like a D type master with the real-time require-

ment. Each request must be completed before its deadline. Figure 4.3 is an

example with the same parameters used in Figure 4.2. But the master has an

extra real-time requirement, Rcycle, which is set to 10 cycles. Consequently,

the request initiated at cycle 2 must be completed before cycle 12 which is 10

cycles later than the initiated time. It is a real-time violation, if the request

is not completed until cycle 12.

Figure 4.3: D R type master (beat number = 5; interval time = 15; Rcycle = 10)

• ND R type(ND for non-dependency, R for real-time):

A ND R type master is another kind of master with the real-time requirement.
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But the initiated time of the current request from an ND R type master is

independent of the completed time of its previous request. In other words, the

ND R type masters issue requests periodically. As shown in Figure 4.4, the

same parameters used in Figure 4.3. Since the interval time is 15, the second

request is initiated at cycle 17, which directly depends on the initiated time

of the first request.

Figure 4.4: ND R type master (beat number = 5; interval time = 15; Rcycle = 10)

4.1.3 Traffic behavior

In the following experiments, we set up a system with eight masters. As

shown in Table 4.1, the second column is the master type and the third column

is the real-time requirement, Rcycle. However, the Rcycle of a D type master is

left undefined since they do not have real-time requirements. The fourth and the

fifth column are the probability of the beat size and the interval time between two

successive requests initiated by a master, respectively.

For example, the second row shows that the Master 1 may initiate 50% chance

of 8-beat transactions and 50% chance of 16-beat transactions. And the next request

of Master 1 may wait for 6, 7, 8, 9 or 10 cycles with the probability of 10%, 20%,

30%, 40% and 50%, respectively.

Moreover, Master 1, Master 2, Master 3 and Master 4 are D type masters

which only require a fraction of bandwidth allocation. Master 5, Master 6, Master

7 and Master 8 are masters with real-time requirements. They not only require a
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fraction of bandwidth allocation but also restrict the completed time of each request.

Master 1, Master 3, Master 5 and Master 7 are heavy traffic masters and the others

are light traffic masters. The heavy traffic masters have larger burst beats and

shorter interval time than the light ones. In other words, the heavy traffic masters

generate a heavier traffic load to the shared bus than the light ones do.

4.2 Experiment 1

In Experiment 1, we compare the performance of different arbitration algo-

rithms, static priority, Lottery, TDMA + Lottery( the second level arbitration is

Lottery), RT lottery and RB lottery. The level of difficulty to meet both real-time

and bandwidth requirements generally depends on the bus workload in terms of the

percentage of bus bandwidth utilization. As a result, we randomly generate pat-

terns for different bus workloads and compare the results. As shown in Table 4.2,

the first column gives the bus workload varying from 60% to 95%. For each bus

workload, 100 random patterns of different required bandwidth combinations for the

eight masters are generated. And then we simulate the input patterns with different

arbitration algorithms. The results in 102400 simulation cycles are recorded and

analyzed to see if the arbitration algorithms can meet the real-time and bandwidth

Table 4.1: The behavior of each master in the experiments
type Rcycle beat/probability interval/probability

Master 1 D 8/50 16/50 6/10 7/20 8/40 9/20 10/10
Master 2 D 1/50 4/50 10/10 11/20 12/40 13/20 14/10
Master 3 D 8/50 16/50 6/10 7/20 8/40 9/20 10/10
Master 4 D 1/50 4/50 10/10 11/20 12/40 13/20 14/10
Master 5 D R 128 8/50 16/50 10/10 11/20 12/40 13/20 14/10
Master 6 D R 196 1/50 4/50 10/10 11/20 12/40 13/20 14/10
Master 7 ND R 65 8/50 16/50 65/10 66/20 67/40 68/20 69/10
Master 8 ND R 85 1/50 4/50 85/10 86/20 87/40 88/20 89/10
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requirements simultaneously. If the real-time requirements are not all met or the

allocated bandwidth is less than the required bandwidth with 2% error range during

simulation, it is a failed pattern.

The parameters of compared arbitration algorithms are set as follows:

• fixed priority:

The priority of each master is assigned according to the required bandwidth.

The master with higher required bandwidth has a higher priority.

• Lottery:

The weight of each master is assigned according to the required bandwidth.

The required bandwidth ratio is the weight ratio.

• TDMA + Lottery:

1st level – TDMA: Masters with real-time requirements are allocated with time

slots accordingly.

2nd level – Lottery: The weight of each master is assigned according to the

required bandwidth. The required bandwidth ratio is regarded as the weight

ratio.

• RT lottery:

The weight of each master is assigned according to their bandwidth require-

ments and the traffic behaviors initially. To achieve better bandwidth alloca-

tion, a weight tuning mechanism is used to redistribute tickets among masters.

More details can be found in [21].

• RB lottery:

The weight of each master is assigned and tuned as the process of RT lottery.
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The size of observation window and bandwidth variance are set to 256 and 10

cycles, respectively.

As shown in Table 4.2, the first column is the total required bandwidth

varying from 60% to 95%. For each case of total required bandwidth, we generate 100

random patterns of different required bandwidth combinations for the eight masters.

And then we simulate the input patterns with different arbitration algorithms. We

record and analyze the results in 102400 simulation cycles to see if the arbitration

algorithms can meet the real-time and bandwidth requirements simultaneously. If

one of the requirements is violated, it is a failed pattern.

Table 4.2: The number of fail patterns under different arbitration algorithms
Fixed TDMA + RB lottery

Workload(%) Priority Lottery Lottery RT lottery FRB ARB

60 100 100 95 0 0 0
65 100 100 98 0 0 0
70 100 100 100 0 0 0
75 100 100 100 10 0 0
80 100 100 100 18 0 0
85 100 100 100 37 1 0
90 100 100 100 55 12 10
95 100 100 100 74 44 39

The second and third column show the simulation results of the fixed priority

and Lottery, respectively. Since fixed priority and Lottery do not take real-time re-

quirements into consideration, they fail in the 100 patterns under different workload.

The fourth column shows the simulation results of TDMA + Lottery. It handles

the real-time requirements at the first level and provides control over bandwidth

requirements at the second level. As a result, it may survive when the workload

is less than 70%, but it still fails to meet the requirements in high workload. The

fifth column is the results of RT lottery. Compared to other arbitration algorithms,
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RT lottery is outstanding. Because of the hard real-time guarantees and the fine-

control over bandwidth, it successfully meets the requirements of most patterns.

However, it still loss the bandwidth controllability in the high workload. The sixth

and seventh column show the results of the proposed algorithm, RB lottery. The

first fail pattern appears when the workload is 85%, which is an extremely high

traffic load. Under the same observation window, we also find that ARB performs

better than FRB.

Figure 4.5: Figure of Table 4.2

As shown in Figure 4.5, the number of fail patterns monotonically increases

while the workload increases. And the proposed algorithm, RB lottery, still meets

the requirements in more than half of patterns when the workload is 95%.

From this experiment, we have the following summaries. Since fixed priority

and lottery do not consider the real-time requirements, they fail in the 100 random
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patterns under different bus workloads. TDMA + Lottery may survive in the cases

of low bus workload. Compared to other existing arbitration algorithms, RT lottery

is remarkable good. However, RB lottery performs even better. The first failed case

appears when the bus workload reaches 85%, which is an extremely high traffic load.

The number of fail cases monotonically increases while the total required

bandwidth rises. And the proposed algorithm, RB lottery, still holds more than

50% successful cases even when workload is 95%.

Table 4.3: The summaries of experiment 1
real-time capability bandwidth capability

fixed priority no consideration poor

Lottery no consideration required weight tuning

TDMA + Lottery no guarantees required weight tuning

RT lottery always hold good except the highly loaded bus

RB lottery always hold outperform than others
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4.3 Experiment 2

The observation window size is one of the key parameters in our proposed

algorithm. The performance under different window sizes is compared in the experi-

ment. We experiment the size of observation window from 256 to infinite and observe

the performance of RB lottery included FRB and ARB. Similar to experiment 1,

we generate 100 random required bandwidth combinations for each workload and

simulate 102400 cycles for each case.

As shown in Table 4.4, larger size of observation window in FRB can provide

better performance. In the highly loaded bus, for example, 95% of workload in the

seventh column, only 27 patterns miss the requirements in the 100 random patterns

while the observation window is large enough. However, large observation window

leads to higher hardware cost. There is a tradeoff between performance and cost.

Table 4.4: The number of fail patterns under different size of observation window in FRB
the size of observation window in FRB

Workload(%) 128 256 512 1024 2048 ∞

85 4 1 0 0 0 0
87 11 1 0 0 0 0
89 25 11 4 2 0 0
91 37 25 10 7 7 4
93 42 31 24 20 14 12
95 57 44 33 32 28 27

ARB shows the same results with FRB in Table 4.5. Larger observation

window results in better performance. However, the unlimited size of observation

window for ARB is not useful. The bandwidth variance cooperates with the win-

dows. If there are no windows during operation, ARB works like FRB. The seventh

column shows that the number of fail pattern is the same as FRB in Table 4.4.

Comparing the performance of ARB and FRB in Figure 4.6, ARB shows

better ability on handling real-time and bandwidth requirements simultaneously
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Table 4.5: The number of fail patterns under different size of observation window in ARB
the size of observation window in ARB

Workload(%) 128 256 512 1024 2048 ∞

85 1 0 0 0 0 0
87 5 1 0 0 0 0
89 13 4 0 0 0 0
91 32 13 5 4 0 4
93 34 23 16 10 9 12
95 52 39 27 22 20 27

under the same situation. About 30% to 100% fail cases in FRB could be solved in

ARB due to the dynamic bias boundary.

Figure 4.6: Figures of Table 4.5 and Table 4.4
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4.4 Experiment 3

In the following experiment, we compare the different bandwidth variance

in our proposed architecture. Similar to experiment 1, we generate 100 random

patterns with different required bandwidth combinations for each workload and

simulate 102400 cycles for each case. The bandwidth variance varies from 5% of

required bandwidth to 30% of required bandwidth and the observation window is

set to 256 in the experiment.

As shown in Table 4.6, the larger bandwidth variance in ARB can provide

better performance. For example, when the workload is 95%, there are 42 fail pat-

terns when the bandwidth variance is 5% in the second column and 33 fail patterns

when the bandwidth variance is 30% in the seventh column. The bandwidth vari-

ance reflects the relationships between the adjacent windows. The larger size of

bandwidth variance records more communication behaviors of windows while ARB

dynamically tunes the bandwidth allocation. However, larger bandwidth variance

also leads to higher hardware cost. We need to make the tradeoff between perfor-

mance and cost during design.

Table 4.6: The number of fail patterns under different size of bandwidth variance in ARB
the bandwidth variance in ARB

Workload(%) 5% 10% 15% 20% 25% 30%

85 0 0 0 0 0 0
87 2 1 1 1 1 1
89 8 7 6 5 5 5
91 21 20 16 15 15 11
93 30 30 27 25 23 21
95 42 39 39 37 35 33
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Conclusions

A three-level arbitration algorithm, RB lottery, is proposed in this paper.

It provides not only the hard real-time guarantee but also the better capability of

bandwidth control. The bandwidth regulator is utilized to dynamically monitor

the bus communication and thus can precisely control the bandwidth allocation.

Four existing arbitration algorithms, static priority, Lottery, TDMA + Lottery, and

RT lottery, are compared with RB lottery. The experimental results clearly show

that RB lottery is the best among these five algorithms.

Hence, the lottery-based arbiter with a bandwidth regulator can be a better

choice for those SoC buses with both the real-time and bandwidth constraints.
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