Bgraf: B g G ed g ¥
e

Carry Estimationof Truncated-Width
Multipliersfor EET Application

Ly 4 A Al

I ERE RS L

R SER-£8 AT R L
s

Carry Estimation of Truncated-Width
Multiplier for FFT Application

24 1A Ak Student : You-Zheng Chao
i ERE RHE Advisor : Hsie-Chia Chang

A Thesis
Submitted to Department of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
In Partial Fulfillment of the Requirements
For the Degree of Master
In
Electronics Engineering

January 2007
Hsinchu, Taiwan, R.O.C.

2

BErE BB e

g2 Aldnik
iR R L

TR L AL TR

AR P o AP ET RS N kAR ki B
o AU BY AR SFREL T 0 fH i 22N kA
¥ o A%~ ¥ Baugh-Wooley 14 %2 Booth k2 B & #4717 =7 e
AN ;ﬁ“g! rA i erdR gt A i 2 3% > 27 @ * direct-truncate

= ;% e Baugh-Wooley 2 %2 Booth 3k ;2 Bipitfiez. ™ » & 0

v

)

4
85%11 %2 80% R £ o plovh o iR AT F S 2 R Y 464 8L FFT 0
ki Bama o ¥ 12 & post-truncate 4p i & SQNR(Signal to
Quantization Noise Ratio) - % & * > 2048 gL FFT pF » 4 i o704 41 e
FEF S R 47%50 o 2 SQNR B 7 ¢ 22 post-truncate

IR R A

Carry Estimation of Truncated-Width
Multiplier for FFT Application

Student: You-Zheng Chao
Advisor: Hsie-Chia Chang

Institute of Electronics
National Chiao Tung University

ABSTRACT

This thesis provides a statistical analysis .for truncated-width multiplier which
receives two n-bit inputs and truncates n-bit-output. The truncated parts which
produce carry-in can be replaced by carry estimation methods. In order to reduce the
truncation error, different compensation methods are provided for different bit-width.
This thesis discusses Baugh-Wooley and Booth multiplier and provides three types of
compensation method for these two multipliers. According to the simulation result,
about 85% and 80% error of the direct-truncation Baugh-Wooley and Booth
multipliers can be reduced. For the 64-point FFT case, the software simulation shows
similar performance while comparing to post-truncate method. For the hardware of
2048-point FFT, our method can reduce about 4.7% gate count while comparing to

post-truncate method without performance loss.

z+
=/\AN

-\
¥

FRRE A &ALy 2 RTRL - B ki £0 FY IR AER
G R LR G Rt e I8 e B R A LY § 0 F LA R R B e S H e
SR EEEF o X T 2 REF LS AL S B WA G B AL
BUAR HER PRTE R LS A W E Y s o kR
m‘T;ug]\}s EEY ZFUERAEL R R E R S 0 B
EALGFRFES I RO v oL EA AT AREAEY 0 T R L R
ot thy BR#OasisFHETMNE SN FHREARE F S P0G mipang
MADF L AREL LR MR R L - R Hhien £P > g S Fes

A E - o

Carry Estimation of Truncated-Width Multiplier for
FFT Application

Student: You—Z,‘heng Chao

Advisdf:‘ Dr. Hs‘;iq—‘"Chiﬂa‘t Chang

Department of Eleetronics Engineering

National Chiao Tung University

Contents

1 Introduction
1.1 Research Motivation

1.2 Thesis Organization

2 Existed Fixed Width Multipliers and Compensation Methods
2.1 Basic Multiplier Architecture
2.1.1 Baugh-Wooley multiplier
2.1.2 Booth Encoding Multipl.ier‘. Bap s
2.2 Compensated Multiplier Archltecture N .‘ e
2.2.1 L. D. Van’s leed—Wldth Mlllitlpller -.7.
2.2.2 S.J. Jou’s Fixed- Wldth Mlﬂp_her . S
223 K. J. Cho’s Fixed- Wldth Mult1pher

3 Statistical Analysis of Truncated Width Multiplier
3.1 Analysis of Carry Estimation for Baugh-Wooley Multiplier
3.1.1 Type I: Carry Estimation Conditioned onajorb;
3.1.2 Type I : Carry Estimation Conditioned on oj or 3;
3.1.3 Type IIT : Carry Estimation Conditioned on oj and 3;
3.2 Analysis of Carry Estimation for modified Booth Multiplier
3.2.1 Carry estimation by Conditioningony;
3.2.2 Carry estimation by Conditioningon 3;
3.2.3 Carry estimation by Conditioningon oy
3.3 Generalized Carry Estimation

3.4 Simulation Result

11

4 Software Simulation for 64-point FFT

4.1 Introduction to Fast Fourier Transform (FFT) Algorithm
4.1.1 Radix 2% Architecture for 64-point FFT

4.2 Software Simulation for a 64-point FFT

4.2.1 Method 1 : Direct Imaginary Part Compensation

4.2.2 Method 2 : Proposed Single Multiplier Compensation

4.2.3 Comparison

5 Hardware Application for 2048-point FFT
5.1 Architecture of a 2048-point FF'T

5.1.1 Main Memory

5.1.2 Ping-Pong Cache Memory Architecture
5.1.3 Processing Engine (PE)

5.2 Proposed Multiplier Architecture for 2048-point FFT

5.2.1 Method 1 : Design-Ware Direct Truncate Compensation

5.2.2 Method 2 : Single Multiplier @ompensation

5.3 Comparison

6 Conclusion

]

111

41
41
43
44
45
47
47

49
49
50
51
51
53
53
54
25

58

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2

3.3

3.4
3.5

8-bit fixed width multiplier oo

Partial product for 2’s complement Baugh-Wooley multiplier
Simplified partial product for 2’s complement Baugh-Wooley multiplier . .
Grouping of multiplier bits for bit widthn=8
HP and LP part for modified Booth Multiplier whenn =8
Partial product of 8-bit Baugh-Wooley Array multiplier
£ and A in Baugh-Wooley multiplier
Fixed-width multiplier Wlth L. D. Van approach forn=8, ..
Example of 6 x 8 Booth multlphem % T
6x8 fixed width Booth multlpher W1th 5 Jou sapproach

The structure of K. J. Cho S scheme‘. = &
The partial product of yg’yg’y{’y{)’ — 0001
Karnaugh map for (a) LP_carry_0 and (b) LP_carry_1 for bit width n = 10
Approximate carry circuit forn =10

Approximate carry generation circuit for (a) n =10 (b) n =14

Fixed-width multiplier with K. J. Cho’s approach for bit widthn =8 . . .

Partial product for A x B n-bit fixed width Baugh-Wooley multiplier . . .
The LSP of partial product for an n = 8 Baugh-Wooley multiplier. Py, =
{Po;, Prj,....,Py_1,} and Pg, ={Pio,Pir,..., Pipna}. -
Relationship between Agw,,,, 0, and 3 — 3,1 for n = 8. The solid line and
the dash line represent the value of Agw,,, and 8 —G,—1
All cases of 3 — 3,1 for Az and \pyjpat n =8

Add n + z columns and round the result ton-bit

v

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Decomposition of N-point DFT into N/2-point DFT by decimation in time
Decimation in time FFT butterfly architecture for N =8
Butterfly of radix 22 Algorithm
64-point FFT Butterfly with radix 23 Algorithm
SQNR v.s. truncation bits L

Block diagram of the two-stream FFT/IFFT processor
Cache-memory architecture
Ping-pong cache-memory architecture
Ping-pong cache-memory architecture
Multiplier Architecture for the 2048-point FFT
Corresponding expected value of partial product in 6-bit truncation
Layout view of proposed multiplier for 2048-point FFT
Layout view of Design-ware direct-truncate, then compensation 1 multiplier

for 2048-point FET

List of Tables

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1

4.2
4.3
4.4

5.1
5.2

Modified Booth encoding table. 0. 6
Modified Booth encoded partial product 7
Probable value of Carry,_ for different and 7. 15
Rounded value of E[)\| for bit widthn =10 19
Representation of approximate carry values 20
Conditional probability of the partial products for Type III 29
The estimated 2)\5;,@) — 1 for different bit widthn 32
Radix-4 modified Booth encodlng tabler, 33
Probabilities of y; for rad.lx—4 Boqth encodmg 33
The value of F;; form ajaj 1 and Yori : 34
Conditions for both Pj; = 1 and ozj 5 I i 36
Conditions for both FP;; = 1 and = . o O 36
Estimation for Baugh-Wooley multlphers while truncating the least (n—z)-bit 38
The estimated 2)\%&” — 1 for different bit widthnand 2. 39
Estimation for Booth multipliers while truncating the least (n — z)-bit . . 39
Mean absolute error L 40

Truncation error v.s. truncation bits of the post-truncation for a 64-point

FET . o e 46
Truncation error of real part and imaginary part 46
SQNR comparison with imaginary part compensation 47
SQNR comparison with Booth Type III compensation. 47
Comparison between truncated and un-truncated multiplier 53
Mean absolute error comparisono 54

vi

5.3
5.4
9.5
5.6

Multiplier gate count comparison 55

SQNR comparison 55
Hardware complexity (gate count) comparison 56
The chip summary of design-ware post-truncated multiplier architecture

v.s. proposed Booth multiplier architecture 56

vil

Chapter 1

Introduction

1.1 Research Motivation

In many digital signal procession (DSP) applications, multipliers have the fixed-width
property in order to reduce the growing width of serially concatenated addition and mul-
tiplication. The fixed-width property means th@F : If both input bits of a multiplication
equal to n-bit, its corresponding Qutlput bit numbé‘r\, will be 2n. In order to reduce the
hardware complexity and keep ﬁxe‘d—ﬂwidtl‘i !p‘&"o'perty, "‘thle 2n-bit output will truncate k bits
(usually £ = n) by direct truncating or rop@ the kﬁleast significant bits. Consider the
case of k = n, the input and outplif-"will Be l‘iél‘)-"t:-the‘.ﬁsame bit-width. For example, assume
a 8-bit fixed-width multiplier in F iglirﬁ‘e“l.l, orle i.nput is X(x7~xg), a 8-bit integer; the
other input is Y(y7~yo), a 8-bit decimal.

By multiplying X by Y, we can get the 16 bits product which is composed of 8-bit
decimal and 8-bit integer. In order to reduce the area and improve critical path of the
multiplier, the least significant 8 bits (P7 ~ P0) will be truncated. But some error may be
introduced by direct truncating the least significant 8 bits. Thus, to ease this phenomenon,
carry compensation is required. A proper carry compensation can effectively reduce the
error by adding a proper carry to the most significant part (P15 ~ P8).

In the thesis, an area-efficient low-error multiplier based on statistical analysis is pro-
posed. The carry estimation method for different truncated-width multiplier is variable
through different input width n. And it can be implemented with few full adder cells.

From simulation result, the error by using direct-truncation can be reduced by proper

a7 a6 as a4 a3 a2 al al

>< b7 b6 bS b4 b3 b2 b1 b0

PO 8|P07 P06 P05 PO 4 PO 3 PO 2 PO 1 PO O

P1.8 P1.7 P16|P15 P14 P13 P12 P1.1 P10 n0

P28 P27 P26 P25 P24 P23 P22 P21 P20 nl

P38 P37 P36 P35 P34 P33 P32(P31 P30 n2

n3

pl5 pl4 pl13 pl2 pll pl0 p9 p8 p7 po6 p5 p4 p3 P2 pl pO

Figure 1.1: 8-bit fixed width multiplier

carry compensation.

1.2 Thesis Organization

The organization of this thesis is agfollowssln:chapter 2, basic concept of two multipliers
and three existed compensation appreach aré introdueed. Chapter 3 shows the statistical
analysis of Baugh-Wooley and Boeth encoding multiplier. Chapter 4 illustrates a software
example for a 64-point FFT. The*hardware example of a 2048-point FFT is shown in
Chapter 5. Finally, Chapter 6 is the conclusion of this thesis.

Chapter 2

Existed Fixed Width Multipliers and
Compensation Methods

2.1 Basic Multiplier Architecture

Multiplication is widely used and essen’ﬁial for, digital signal processing. Multiplication
algorithms can be designed in many dlfferent archltectures for various application. The
most basic way to perform multiplication 1§ geﬁéra‘cmg the rows of partial products and
then summing them. For many 51gna1 processmg apphcatwn multiplication operation is
a signed operation, which means one.or "both operand of multiplication may be signed.

The following paragraph will 1llustrate two 'different architecture for signed multiplication.

2.1.1 Baugh-Wooley multiplier

Multiplication of signed number may need abstraction operation while summing the par-
tial products. But we can recall that the signed number is described in 2’s complement

form, which the most significant bit has the negative weight. Hence, the product is :

M—2 N—2

P = <—ZJM12M1 + Z Z/j2j> <—317N12N1 + Z 961;2i>
=0 =0

N-

E

-2

N—2 M-2
7iyy 2+ a2 (Z w2 4 Z xN—lijH_N_l)

i=0 i=0 j=0

.
Il
o

(2.1)

In equation (2.1), the last two terms with negative weight must be subtracted. The
Baugh-Wooley multiplier algorithm [1] handles subtraction function as adding 2’s com-
plement of negative terms.(i.e., inverting each bit of negative terms, and adding one at

least significant bit). Figure 2.1 shows the procedure of summing partial products.

x5 x4 x3 x2 xI x0

X y5 y4 y3 y2 yl

Xoys Xo¥Y3 XoY2 XoY1 XoYo
N=2M=2 " X1¥4 X1y3 Xiy2 X1y1 XiYo
sziy_ ;2 Xoys Xo¥y3 Xo¥2 Xa¥1 X2Yo
X3y4 X3Y3 X3y2 X3¥Y1 X3Yo
X4Y4 X4Y3 X4¥Y2 X4¥Y1 X4Yo

N2
Xy Va2 XsYs

N-2 M= 1 1 X X X X, 1 1 1 1 1

_ZxN_ly/_Z,-w-l [1 I Xsys Xsy3 Xsy2 Xsy1 Xsyo 1 1 1 1 1

pll pl0 p9 p8_ p7. p6‘ p5 p4 p3 p2 pl po

Figure 2.1: Partial producf for 2’s cofnblemen’ju Baugh-Wooley multiplier

The upper part of partial product tepresent unéigned multiplication, and the second
row represents the most significant bit of the product. The final two pairs of rows means
subtraction, which is transformed into 2’s complement form. Notice that each term has
leading and tailing 1’s, which are inversion of implicant leading and tailing 0’s. And the
extra 1 in least significant part must be added while taking 2’s complement.

The simplification of Figure 2.1, called modified Baugh-Wooley multiplier [2] which
reduced partial products by summing the 1’s, is shown in Figure 2.2. We can see that
the most part of sign-extension bits are eliminated, which reduces area complexity and

hardware cost.

x5 x4 x3 x2 xI x0

X ¥5 y4 y3 y2 yl 0

1 Xsyo XoYa Xo¥3 XoY2 XoY1 XoYo

Xsy1 X1ys Xi1ys Xiy2 XiY1r XiYo

Xs5y2 Xo¥a4 X2y3 Xoy2 X2y1 XaYo

Xs5y3 X3ys4 X3yY3 X3¥2 X3¥Y1 X3Yo

X5¥4 X4¥Ya X4Y3 X4¥Y2 XaY1 X4Yo

1 Xsys Xq¥s X3¥s Xo¥s Xi1¥Ys XoYs

pll pl0 p9 p8 p7 p6 p5 p4é p3 p2 pl po

Figure 2.2: Simplified partial product for 2’s complement Baugh-Wooley multiplier

2.1.2 Booth Encoding Multiplier

Multipliers in the previous section Compﬁte partial products are in radix-2 manner, that
is, each bit has one corresponding partial product, - In order to reduce the number of
partial products, we can use modificd Booth eﬁcodingj [3] [4] technique. Consideration of

two 2’s complement number X and 'Y, withim and n bits separately.

m—1
X =Ty + g Tp—1-i2""
i=1

1 (2.2)
Y = —Yn—1 + Z yn—l—jQ_j

j=1
We must concatenate a 70" at the right end of Y for modified Booth encoding, as in

Figure 2.3. Table 2.1 shows the encoding table of partial product.

Y3 Y2 yi' Yo

Figure 2.3: Grouping of multiplier bits for bit width n = 8

Table 2.1: Modified Booth encoding table

Yoir1r Yo Yoi-1 | Yi | Xset | 2Xse | NEG
0 0 0 0 0 0 0
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 2 0 1 0
1 0 0 [-2] O 1 1
1 0 1 1)1 0 1
1 1 0 |-1] 1 0 1
1 1 1 0 0 0 1
After modified Booth encoding, Y can express as following.
n/2—1
Y = Z y;/2f17j2_(21+1) (2.3)
3 ‘
where
V= UGty il (2.4)

By using Table 2.1 and Figure 24iswe camget the simplified partial products. For

example, a 8x8 multiplier’s partial product is shown as follow.

P08 PO 7 | PO 6//P05 PO 4 PO 3 PO 2 PO_1 PO O
| 1l |
| 0 !
P18 P17 P16 PLS lP1_4:iP1_3 P12 P11 PLO T
: I nl :
P28 P27 P26 P25 P24 P23 || P22\P2.1 P20 |
| 1 |
| Il n2 I
P38 P37 P36 P35 P34 P33 P32 P31 [IP3QI-——————————————————————"-
: n3 : }{-:memor
|‘_“JB:LPmajor
HP (Higher Part) LP (Lower Part)

Figure 2.4: HP and LP part for modified Booth Multiplier when n = 8

And its relationship between partial products and encoded y’ is shown in Table 2.2.

Table 2.2: Modified Booth encoded partial product

yé Pz,s Pz‘,7 Pz',ﬁ Pz',5 Pi,4 Pz,3 Pz',z Pm Pz',o n;
0 0 0 0 0 0 0 0 0 0 0
1| a7 ay ag as as a3 Qs aq ag | 0
-1 az a7 @ a a a3 ay @ a |1
2 ar Qg as Ay as asg aq agp 0 0
2\ a7 a a5 a a3 az a a 1 |1

2.2 Compensated Multiplier Architecture

2.2.1 L. D. Van’s Fixed-Width Multiplier

The fixed-width multiplier proposed by L. D. Van will be introduced in this section, [5] [6].
The L. D. Van’s approach is based on Baugh-Wooley multiplier [1]. Figure 2.5 shows the
partial product terms of an 8x8 multiplier using Baugh-Wooley architecture. It can be
divided into two parts, HP (high part) and LP{{low part), which represents the most

significant part and the least significant-part-ofipartial product.

HP (High Part) | ! LP (Low Part)

> < »
*VI‘ >

A

1 Xy X0, XY, Xo¥, XsY, Xo¥) Xi¥) XY,
ﬁ1|X6Y1 XY XY X3Y;, XY XiYr XpY;
XY, X1 XY, X,Y, X;Y, X,¥, X;¥, X,Y,
XY Xo¥; X5Y3:X4Y3 X;Y; Xo¥; XiY; Xo¥;
ﬁ) Xo¥s Xs5Ys Xo¥y| XsYy Xo¥s Xa¥s XoYy
ﬁs XsYs X5Ys X,¥s X3Y5|X2Y5 XiYs XoYs
ﬁ,; XoYs Xs5Ys XY Xs3Ys X2Y6:X1Y6 XoYs

1 XY, ﬁ7 Xs_Y7 ﬁ7 ﬁ7 X_21_77 ﬁ7|)_(0_Y7
]

pl5 pl4 pl3 pl2 pll pl0 p9 p8 !p7 p6 p5 p4d p3 p2 pl po

Figure 2.5: Partial product of 8-bit Baugh-Wooley Array multiplier

Generally speaking, the carry from the least significant part to the most significant

part of Baugh-Wooley multiplier can be defined as Equation (2.5).

Carry = [%5 + Al (2.5)

The two elements in the equation (2.5), 5 and A, represent the lower part of the partial
product, and can be seen as a part of Figure 2.5. They are respectively defined in Equation

(2.6) and (2.7), which are shown in Figure 2.6.

B =Tn 1Yo + Tn-2Y1 + Tp-3Y2 + -+ + T1Yn—2 + ToYn—1 (2.6)

A =2"2(TpoYo + Tp_3Yy1 + **+ + ToYn—2) + - + 2 2T0Yo (2.7)

&
<«

LSP.(least significant part)

»
>

|
— — — — —— —— — — e—

X1, | [xoviat, X v, X, xv, o, |
| x,v,, | 75 X1, 3610 XY, XY XY,
I Xs5Y, |X4Y2'H X3Y§‘ X2Y2 ‘}'(IYZ‘ “X0Y2

| Xy || Xs¥s XX X0 X,Y;

|X3Y4| |X2Y4 XY, X,Y,

I XoYs | XiYs XoYs
X1Y6| XY
X,Y;

L | - — — _[—_—— —
Figure 2.6: § and A in Baugh-Wooley multiplier

Before introducing L. D. Van’s approach, a terminology, 0inges -, is shown in Equation

(2.8), and is defined as follow:

eindea:,‘r(anlf‘r? An—2—7, - - - ’qo) = (2 8)

< Tp-1-7Y0 >+ <o pyr ST 4+ < oY1 >T

The parameter,r, means to truncate the (7-1) least significant columns of partial part,
and keep (n + 7) most-significant columns to be un-truncated, and the binary parameters
Gn-1-rqn—o—r - - -qo are belong to (0,1).

Equation (2.9) illustrates the operation of < X >4

cx e] HE0 (29)
X, otherwise

X

The X above means the complement of the binary number X. For example, if n = 8,
and keeping eight columns, the 129, index, 0;nges—129.r—0, can be written as Equation

(2.10).

Oindea=120,r—0 = TrYo + Tey14 T84 5T|1"__i;$z;:,ya--:‘h L5Y1 + Tays + T1Ye + Toyr (2.10)

Two calculation methods of eﬁror—comg_éﬁsation bias for 7 = 0 will be explained in the

following discussion.

Referencing to the derivation in [6], Eqilatidn (2.5) can be rewritten as Equation (2.11)

1
CCLTTyT,1 = einde:v,T:O + [§ﬁ - eindex,T:O +)\]»y (211)

The following shows that Equation (2.5) can be replaced by Equation (2.12)

Carry,—1 = (< Tp_oys > + < Tp_gyo >3 + -+ < 2yy,_0 >) + [K], (2.12)

Which K can be shown as Equation (2.13)

1
K =< Tn-1Y0 >t + < ZoYn—1 > +§5 - eindex,‘rzo + A (213)

After the index is chosen, the first term in the parenthesis of equation (2.12) can be

easily determined. The second term, [K],, can be calculated by the expected value of the

9

partial product which can be obtained by full search. Based on the above equations, two
types of carry-estimation formulas are proposed to get more accurate error-compensation

value. These formulas are separately shown in Equation (2.14) and Equation (2.15).

p
(< Tp—2Y1 >dn-2 < Tp—3Y2 >3 4 ... 4 < T1Yn—2 >Q1)+[K1]7,

if Qindew =0
Carryiyper =
(< Tnootpy P2 + < gy >0 4+ < T1Yp_g >+ (K],

if deex >0
(2.14)

(

(< Tp—2Y1 >dn—2 + < Tp—3Y2 >dn=3 .o < T1Yn—2 >q1)+[K3],y,

if Gmdw <n
Carrytypel = 3
(< Tp_oty >92 + < Tp_gyp >3 4o+ < Ty >D)+[Kyl,,

if eindez =N
(2.15)

Where Ky, Ky, K3, and K, are t,hér':i.r.l‘eran Vé}hé -Qf K for different range of 60;,4c,. For
all different indices in these aubove'".eématic"n!iq}S 'tflel valﬁ'es of K7 and K5 can be determined
by all input condition simulation= We Choose the mdldes which satisty [K;], € (0,1) and
[Ks], € (0,1) in order to reduce hardwar%lemty For example, a 6x6 multiplier,
there are only three indices to satlsfy ‘the condltlons [K1], € (0,1) and [K,], € (0,1).
But when the bit width "n” is changed, the indices will no longer satisfy these conditions.
So the second approach ’type 2’ is used to find the fixed value of 'K’ for different bit
width 'n’. By exhaustive search for bit width n from 4 to 12, we can find that the specific
index 0,gep—on-141 satisfy [K3), = 1 and [K4], = 0. Because the error-compensation bias
is shown as Equation (2.12) and 0;,4e0—2n-111 = Tn_1Y0 + Tn-2Y1 + - - - + T1Yn—2 + ToYn_1

For n < 12, it can be described as Equation (2.16).

;

(< Tpoys >T2 + < Xy 3y >T3 +- -+ < Ty, o >T) + 1,
if 0

o index=2"
Carrytype2,index:2n_l+1 - q
(< Tp—2Y1 >n=2 + < Tn—3Y2 >n=3 + 4+ < T1Yn—2 > 1)7

if

1
\ index=2"

(2.16)

10

1 <N

Exhaustive simulation for large bit width "n” will be a long time. So "Type 2” ap-

proach for large "n” will be introduced in the following. Two cases of " Type 2”7 approach,

0 n-1+1<nand0.

indes—on—1 1 = n will be separately explained.In order to reduce

index=2
time for exhaustive simulation, " Type 2”7 approach for large "n” will be introduced. We
will separately explain two conditions for ”Type 2”7 approach.

Case 1 : 0,,400—9n-141 <N

Assumed the probability of each bit of input data equals to 71”7 is 1/2. Hence, the
expect value E[z;y;] and E[Z;y;] are equal to 1/4 and 3/4 separately. According to these

above expect values, the expected value of %B can be represented as Equation(2.17).

x(§+z~l—%x(n—2)) o

1 1 Ty 1

_1(1 ‘ .1.);+ 1 X"(* 2)+ L1 o) (218)

VAR a2 AT '
' -k~

2%_1’1“”4 ,

From equation (2.13), the value of [K}] "for index = 27! + 1 is shown as Equation

(2.19).

[Ks], = [EIK]],
= [E[:Ifnlyo+$oyn1 - %54‘)\]]7 (2.19)
3.3 n 1 n 1 1
—{zﬂrg‘i g—z];

From above equations, we can obtain the error-compensation bias for bit width ”"n”
without exhaustive simulation. Equation (2.20) shows the error-compensation bias for

Oindes—an-141 < m, which is the same as Equation (2.16).

11

Carrytypezmdex:z”‘lﬂ = (< Tpooth >+ < Tpglp ST 4+ < 1Yo >T) + 1,

if 9index:2n_1+l <n
(2.20)
Case 2 : 0;,40p0—0n-141 =1
The case 6;,4cp—2n-141 = n is met only when Zoy,—1 = Z,—190 = 1 and z1y, 2 =
TolYn-3 = ... = Typoy; = 1. So, the expected value of %ﬁ can be represented as
Equation(2.21).
1 1 n
ElZ(8l==x1 == 2.21
0=y x1xn=1 (2.21)
And the expected value of A, E[)\] can be shown as following,.
1 /1
E\ = 72 3><1><2—|—1>< ><1><2+1><(—4)
+... .+ ! 1><1><2 +— ><1><1 (2.22)
2n—1 \ 3 2 9
13 e
=—n—-ifn>4 el

From Equation (2.21) and (222), the 'V&lﬁe of [K,), for index = 2" + 1 can be
ot N ! 2

illustrated as following.

[Ka]y = [E]K]]

! (2.23)

1
= |E[T 100 + ToYn—1 — 55 + Al =0
5

The error-compensation which is the same as Equation (2.16) for case 2 is shown in

Equation (2.24).

CarrthPGZ,index:2"71+l = (< Tn—2U1 >n=2 + < Tn—-3Y2 >n=s +- <T1Yn—2 >q1) + 17

if ezndem 2" +1 =n

(2.24)

The following Figure 2.7 shows the hardware architecture of an 8-bit fixed-width mul-
tiplier with the 129th index. The A-A cell in the figure is used to determine the value of
0

indez—om—1 41 15 equal to n or not.

12

®7 %6 x5 x4 x3 X2 xl x0

¥l
¥l
¥2
‘ |\|+\‘+‘\+\ ‘ _
¥ ND AFA AFA Al A-A :
VR 2N 2N 2N N ot Sou
¥5 ‘ND AFA A[’A‘ AFA AFA A NFA
‘ |\|+\+\+\+‘\‘+‘\
ia] ND AFA AFA NN AFA, AFA A=A
\|+|\‘+‘\G|\+\+\‘+\
¥7 A NIA NEA NEA NEA NEA NEA 1'3
N N 2N 2N 2N 2N TN
Sl T By B T B B B

P15 P14 P13 P1.

(5]

P11 P10 P9 PR

Figure 2.7: Fixed-width multiplier with L. D. Van approach for n = 8

2.2.2 S. J. Jou’s leed-Wldth Multlpher

In this section, the S. J. Jou’s approach (7] [S]_ba_s_ed on Booth encoding technique will be
discussed. The S. J. Jou’s approach is form by Sta,tistlcal analysis and linear regression
analysis. The following Figure 2.8 ShOWS an example of 6x8 Booth encoding multiplier.
The partial products are divided into two parts, the eight most significant bits as HP
and the six least significant bits as LP. The Carrys; in the figure means the carry from
LP to HP. For fixed width purpose, we will truncate the LP and leave only HP. So the
signal, C'arrys, will be forced to zero and some truncation error may be generated by this
procedure. In order to reduce the truncation error, proper error compensation may be
add to the HP.

The signal Carrys, which form LP to HP, can be obtained from Equation (2.25). And
|] is the floor function, which means the largest integer smaller than or equal to the

value of z.

13

HP : LP

A
\

A
\

PO_6 \PO_5 PO_4 PO_3 PO_2 PO_1 PO_O

|
|
P1.6 P1.5 P1_4 EP1_3 P1.2 P1_.1 P10
|
P26 P2.5 P2_4 P23 P2_2 :P2_1 P2_0

pl3 pl2 pll pl0O p9 p8 p7 pb6 p5 p4 p3 p2 pl p0

P3_6 P3_5 P3_4 P3.3 P3_2 P3_1 P30

Figure 2.8: Example of 6 x 8 Booth multipliers

Carrys =|27" (Pos + Pig+ Pa1) + 272 (Pou + Pia + Pay)
+273(Pos+ Pr1) + 274 (Po2 + Piyo) (2.25)
+275Py1 + 28Ry

Equation (2.25) can be generalized ag Equation (2.26), and 7 means the number of

bits which will be truncated.
Carry, 1 :LQ_}(PO,T“A L P -+ Prrjo-1,1)

+ 27 (R0 + Pigity +o 4 Prr/21-1,0)

: ‘ (2.26)
4270 0P 4277 P |
-7+
The 8 and A in Equation (2.26) can represented as follows.
B=PFPy,1+Por_s+-+ P
o (2.27)

AN=2"(Pyso+ Pirat- 4 Prppo)+ -+ 27D Py + 27 Py

[x] is the ceiling function, which means the smallest integer larger than or equal to
the value of . The value of § means the number of 71”7 in the (7 — 1), column, and
the value of A means the sum of remaining columns. Before we introduce the S. J. Jou’s
approach, we must assume the probability of each input bit equaling to ”1” is 1/2 and the
probability of each partial product bit P;; equaling 717 is P(F; ;). From equation (2.27)

14

we can find that the A is a quite long term. In order to simplify it, we can simplify A in

terms of # and 7. According to the P(P,; ;) concept, we can rewrite \ as

T—1
1 T—k
A=) i X P(P;;) x [5 W (2.28)
k=1
The value of P(P;;) varies with § and 7. By using statistical and linear regression

line analysis, P(P; ;) can be approximated as follow.

0.41
P(Pj) = = x 3+ 0.58(0.01 x 7 +0.37) (2.29)

Taking the above two equations into Equation (2.27), the error compensation equation

can be shown as Equation (2.30).

Carry, 1 = \‘2_15 + {S L {0'416 + 0.58(0.017 4 0.37) [H—H } +0 5J (2.30)
T— ok+1 ’ ' ' 2 ' '

T
k=1
And the value of Carry,_; for probable 7 are listed in Table . It is obviously that the

(3 is the best error-compensation value forjamyvalue of 7.

Table 2.3: Probable! vaiue Of' bar;fyT_li'.for different 3 and 7
HEISA e

T B8+2] B+1 e: | ﬁ—l 5—2| B—3 | Expected value

40 0 | 2.34% | 85.04% FHIR%E 0

0 8- 0.09
6 || 1.27% | 36.35% | 56.88% | SAI%T" 0 0 5+ 0.33
8 || 2.11% | 37.06% | 53.05% | 7.75% | 0.04% | 0 54033
10 || 3.23% | 36.78% | 50.30% | 9.54% | 0.14% | 0 G+ 0.33

12 || 4.38% | 36.24% | 47.97% | 11.09% | 0.31% | 3.58E-7 B+ 0.33
14 || 5.52% | 35.66% | 45.88% | 12.38% | 0.55% | 1.20E-5 B +0.33

The circuit of 6x8 fixed width multiplier with S. J. Jou’s approach is shown in Figure
2.9. The adder cells in the LP are omitted and are replaced by B(FPy5 + P13+ Pa1).

2.2.3 K. J. Cho’s Fixed-Width Multiplier

In this section, the K. J. Cho’s approach [9] [10] with Booth encoding technique will be

discussed. The partial products of modified Booth encoding multiplier can be divided

15

HA HA FA
v & v &y
v

PIO

Sol
Sall
jas
>
: ja
>
3l 3
> >
‘JU o
&3] &3]
\: :?O
2! 2!
> >
[S) [
S

3 4| FA 3.3 FA _
/

v v

P12 Pll

Figure 2.9: 6x8 fixed width Booth multiplier with S. J. Jou’s approach

into two parts, HP and LP, as shown in Figure 2.4. And the carry from LP to HP can be

represented as

1
Carry; = bﬁ +)\J (2.31)
where 8 and A are
B =/ Ropit Pie 4850 .50 (2.32)
AN = 27%(Pos+ Pis ¥Ry #27%(Poy+ Pio+ Pap +no)
(2.33)

+274(Pos+ Pia) +27(Pos + Pio +)
+2_6(P071> + 2_7<P0,0 + Tl())
The value of 3 is the sum of LFP,,, o and the value A is the sum of LP,,ip0r, as shown

in Figure 2.10. The adder cells in LP,,;,.. are discarded and replaced by approximate

carry, shown in Equation (2.34).

Carry,_; = C’E[%ﬂ + Cu[A] (2.34)

Where the Cg[x] means the exact carry, and the C4[z] means the approximate carry

of x.

16

Exactcarry ~ Approximate carry

|y

Higher Part
(HP)

LP_major LP_minor

Figure 2.10: The structure of K. J. Cho’s scheme

The procedure proposed by K. J. Cho can be summarized as follows.

1. Divide LP into LP,,qjor and LEPin0r-
2. Compute the approximate carry value of LP,,;nor-

3. Add the approximate carry to LP,,q;or-

4. The carry from the add operatiomin'step. s is the error compensation bias.

In order to find the carry estimation bila‘:s;il}“the LP, we first define y/ as

- . \ 1,1fyzl 7é O‘

0, otherwilse

From Table 2.1, we can see that ¢/ can be computed from

yll’/ = Xi,sel \ 2Xi,sel

(2.35)

(2.36)

For example, there are only four case for y5ysy}ys = 1000, which are 1000, 2000, 1000

"o 1 0 I

and 2000. For another example, consider the case of y45y4y{y; = 0001, and there are three

possible cases are shown as follows.

00000001(0) — y/yyyl = 0001
11111110(0) — ylyly!'y! = 0002
11111111(0) — oyl = 0001

And the corresponding cases of partial products are

17

(2.37)

01234567:891011121314

Y¥5¥1¥ = 0001 ! 0
a, a;\aq as a4, ay a, 4, a,
ywivye=0001 1 1
a, G, dg a5 a, a, a, a, a,
ror o ~N l
ViYa iy, =0002 S 1
a; dg1ds a, a; a, a, d, |
HP | LP

Figure 2.11: The partial product of y5y5y{y; = 0001

Assumed that the probability of each input bit equaling to ”1” is 1/2, so

Ela] = Elb] = (2.38)

1
2
Thus, the rounded value of E[A] for each case in Figure 2.11 can be computed as

follows

0} forysysuty, = 0001

{E[N} == : S
Efor w5959y =-0001, 0002

(2.39)

Where the {x} is the rounding éperét‘ibn'o‘f"x; :

Notice that E[A] is always zero ;)vhen Y3y yi’ Yo = 1000. That is, no matter how the y;
changes, F[\] will not vary with it. Because no partial product elements corresponding to
y5 is included in A, as shown in Figure 2.4. In general, the element of the partial product
corresponding to y’%_l will not be included in LP_minor(\) for any input width ”"n”.

From the previous discussion, we can see that the value of F[\| is determined by the
partial product of LP_minor. The K. J. Cho’s method determines the error compensation

more accurately, because the carry from LP_minor to LP_major is replaced by {E[A]}.

We only need to calculate the value of { E[\]} from ¢’ _zy’%’ _3-+-Yy- The procedure of K.

2

J. Cho’s approach is explained in the following example.
Example 1 : For a 10x10 fixed width Booth multiplier, Table 2.4 shows the value
of {E[A]} corresponding to all conditions of y3yhy;y;. Notice that y} is not included in

Table 2.4. Because no partial product corresponding to i has effect on LP_minor.

18

Table 2.4: Rounded value of E[)] for bit width

n = 10

Vil (# of cases) | (B[N}, (# of cases)
0000 (4) 0(4)
0001 (12) 0(4), 1(8)
0010 (12) 0(4), 1(8)
0011 (36) 1(36)
0100 (12) 0(4), 1(8)
0101 (36) 1(36)
0110 (36) 1(36)
0111 (108) 1(52), 2(56)
1000 (12) 0(4), 1(8)
1001 (36) 1(36)
1010 (36) 1(36)

1011 (108) 0% | 1(82), 2(56)
1100 @36)5 | HAH1@6) &
1101 (108) | | 1(52).2(56)
111 0(10§)1“ “”:"23152)%2(56)
1111 (324) omf(s24)

Consider the Table 2.4, we can see that the necessary number of carry signal is two.
Thus, two signals(LP_carry_0 & LP_carry_1) shown in Table 2.5 are needed to represent the
rounded value of E[\]. From Table 2.4 and Table 2.5, Karnaugh map representation for
these two signal can be obtained in Figure 2.12. The value of approximate carry in Figure
2.12 can be determined by using probability analysis. For example, for y5v5y 'y, = 0001,
PH{E[N\ = 0}]=4/12 and P[{E[\] = 1}|=8/12. Thus, the approximate value of carry is
determined to be 1. So the LP_carry 0 and LP_carry_1 signals can be simplified from each

Karnaugh map as

19

Table 2.5: Representation of approximate

carry values

Rounded value | LP_carry 0 | LP_carry_1

0 0 0
1 1 0
2 1 1

LP carry 0 = o/ + o/ + 1/ + 1/
_carry Ys Y2 T Y1 T Yo 2.40)

", .1 ", .11

LP_carry 1 = y5ys (¥ + vg) + vivo (5 + v35)

y1"yo" y1"yo"
e, 00 01 11 10 00 o1 11 10
YS y2 Y3"Y2”
00 1 1 1 00
oL | 1 | 1| 1 | Jufesss,, 01 1
11 1 1 1 s A 1 1 1
10 1 1 1 1 | 10 1
(@) | (b)

Figure 2.12: Karnaugh map for (a) LP_carry 0 and (b) LP_carry_1 for bit width n = 10

Figure 2.13 shows the circuit of Equation (2.40), which is the approximate carry from
LP_minor to LP_major. Thus, the carry signal result from LP_major are added to HP as
the error compensation bias.

The procedure of example 1, called approximate carry generation procedure (ACGP)

I, is listed as follows.

1. For input bit width n, the number of approximate carry signal is determined by

Nac = |n/4].

2. Denote the approximate carry signals in order. For example, LP_carry 0, LP_carry_1,

.., LP_carry_(Nyc — 1).

20

ys" Dmrry 0
i i D I
) O
iD :DTcanm
(e [S D'

Figure 2.13: Approximate carry circuit for n = 10

1

3. Calculate the rounded values of E[A] for all cases of y7 , + y’éfg eyl

2

4. Generate carry generation circuit by applying Karnaugh map to the result of step

3.

It is very time consuming to perform exhaust simulation for large bit width n. So a

statistical analysis for obtaining approximate carry will be introduced as following.

(2

Given that y! is 1, it can be sho,v&fiif‘fhat E[P”]: 1/2. If yyiyy = 100 in Figure 2.4,

E[A] can be calculate by Equatio_ri; :('2.31)32583 f‘@liolws:-. : .
- | Pl ~
E[N = BR(Par+ 27 Diy+ no))]

= 2_1-‘E[P271]] QAQ(E[PQ,()] + E[TLQ])
=27t 4+2-2(271 4271
=921

(2.41)

", .1, 1

By the same way, the values of E[\] for y5y;y; = 010 and y5y]y; = 001 are both equal

to 271, For n = 8, E[)\] can be expressed as

E[N =275 + i +) (2.42)
In general case, E[A] can be represented as

n/2—2

EN =27y (2.43)
=0
Where n in the above equation is the bit width of multiplier. The following shows an

example for n = 10.

21

Example 2 : Consider the case of bit width n = 10, the rounded value E[)]

10/2-2
—2?1§:y”—2 5+ s+ +) (2.44)

The maximum rounded value of E[)] is 2. So, two signals are needed for the rounded
value. Notice that if only one 3/ in Equation (2.44) equals to 1, the rounded value is 1.
And if three of more y;" equal to 1, the rounded value is 2. Means that the number of

carry signal can be determined as follows.

EN =275 + v +y! +v0)] (2.45)

By using this scheme, the approximate carry generation circuit for n = 10 and n = 14

can be obtained and shown in Figure 2.14.
y3” y2|l ylvl

FA . .,
LP carry 0] . ‘LP_!_cnarry‘_l » [LP_carry O

" n " " n " "

Yo V5" Y, Yy Y, 9" Y,

LP _carry_ 1 l 1896 |§ carry 2
(b

Figure 2.14: Approximate carry generation circuit for (a) n = 10 (b) n = 14

The procedure of example 2, called approximate carry generation procedure (ACGP)

I1, is listed as follows.

1. Divide {y’é —2?/%—3 -+ yo } into groups of three signals. If the number of signal in the
set is 3N + k(k = 1,2), then the last group has only k signals.

2. N FAs are required for 3N signals. For k = 2, the last two signals needs a HA. For
k =1, it needs only a carry input at the next stage. The N(N + 1 for K = 2) carry

signals form the approximate carry signals.

22

3. The sum signals from step 2 are added as step 2. Then the carry signals from these
adders are approximate carry signals. The new sum signals generated from present

stage are passed to the next stage.
4. Repeat step 2 until only one sum signal remains.

5. Add 1 to the last adder.

The circuit for bit width n = 8 with K. J. Cho’s approach is shown in Figure 2.15. We
can see that the lower part of adder cells are reduced and replaced by carry approximation

signals (LP_carry 0 and LP_carry_1), which are generated from Figure 2.14.

Ij 3 EJ 13()73 E) 7 fiﬁ 1.4
|‘°"_¢ V'ss
HA |HA |<—P16| HA |5 5[FA |<Z22

P carry 0
F—/PM FA [«& 5[FA 4—5’24 FA ﬁzs’_:A_':/
Pcarryl
HA}«—' HA FA@sFAﬁ35FAﬁ34FAﬁ33FA<-P32FAﬁal’_Fi_':/
CPA

¢ v v v v i v

P P B, [, P, P,

14 13 1 10

Figure 2.15: Fixed-width multiplier with*K. J. Che’s approach for bit width n = 8

23

Chapter 3

Statistical Analysis of Truncated
Width Multiplier

3.1 Analysis of Carry Estimation for Baugh-Wooley
Multiplier

Consider the n-bit Baugh-Wooly 95 compl(%ment mﬁltiplier. Suppose the two input de-
fined as A = —an_12”_1—|—2?72 a;2) and B = ”—‘bn_12"ﬁ11+2?;02 b;2', where a;, b; € {0,1},

then the product is

[\
[\

n—

AXB=an_1by 12"+ Y a2t

n—

[e=]

1=

(3.1)

J
n—

V)

+2n—1 (_271—1 +
i=0

n—2
ajbn_12j + 1) + 2n—1 <_2n—1 + Z Cln_liji + 1)

j=0

Define P;; = a;b; and P_” denote the bit inverse of F;;. The partial product can be
shown as Figure 3.1. To keep the fixed width property, the input width and output
width must be the same. So we should keep the n-bit most significant part (MSP).
Different truncation method will result in different truncation error and computation
complexity. The post-truncate method remove the last n-bit least significant part (LSP)
after the overall summation is completed, produce the smaller truncation error. However,

its requires the most computation complexity. On the other hand, the direct-truncation

24

method discard the computation of LSP part, which leads large truncation error and has

the least computation complexity.

an 1 al’l-2 a] ao

x by by - - - - - - - b, be
L Pyt "Popa - - o o o Po1 Pooo

Pini |Pra2l|Pins- - - - P Pry
Pozni Pozn2 - - - - - - Poz 1 || Pz
1 Pojnt Pogn2- - - oo - - P | Pn-l_OJ | 7]
L, B L, Y
-% > - >
n-bit Most Significant Part (MSP) n-bit Least Significant Part (LSP)

Figure 3.1: Partial product for A x B n-bit fixed width Baugh-Wooley multiplier

Let Sum denote the MSP partzof A > B, and frem Figure 3.1 and Equation 3.1, the

product of post-truncated method can be shown as

n—1n—i—2

n—1)
% Z B,n—i—l + Z Z BVij_n
=0

i=0 j=0
= Sum + 2" [g—i—)\}

n
A X Bpost,truncation = Sum + 2°

r

(3.2)

= Sum +2"c

where o = [g +)\L is the carry-in to the Sum. The [z], operation in Equation 3.2 is
the round operation, which rounds x to its nearest number. From Equation 3.2 we can see
[domains the value of carry-in o. So we can utilize the information of to compensate
the truncation error.

Define oj = P,_;_1; and §3; = P;,—;—1 [11] first, then the element of partial product
P, ; = a;b; depends both on a; and b;, and P is related to {Fy;, P1;,...,P,—1,} and
{Pio, Pia,- ., Pin—1}. We can define Py, = {Poj, Prj, ..., Py} for j=0,1,...,n—1
and P, = {P,o,Pi1,...,Pip_1} fori=0,1,...,n—1, so the partial product of Ax B will

25

be composed of Pyu,, Pa,,...,Pa, , or Pg,, Pp,,...,Pp, ,. Figure 3.2 shows an example

for n = 8 and the dependency among the partial products with a; € P4, and ; €
Pp,. Thus, the element a; (or ;) that constitutes 3 = '~ oy = Y. B contains
the information of all Py; € Py, (or Py € Pg,). From above discussion, we can find
that A\ strongly depends on (3 and can be estimated from the information implied in
(. Three carry estimation method will be presented in the following section. Without
loss of generality, the input of multiplier should be independent and uniform distributed,
means that the probability P(a;b;) = P(a;)P(b;), P(a; = 0) = P(a; = 1) = 3 and
Pb;=0)=P(b;=1)=5

PA7 PA6 PAS PA4 PA3 PAZ PA] PAO

Pgo

‘;jjjg; VAl
o AWIII o
| Brmoim .AW” -
et e, o

| Bs=a,= P52] 5V I
|B6=a1= P61t P60 ‘ 'IT‘ 3T B Pgs
|B7=a0=,,9%| =\ .] t> Pg;

Figure 3.2: The LSP of partial product for an n = 8 Baugh-Wooley multiplier. P, =
{Po;, Prj,...,Py1;}and Pg, ={P, o, Pi1,...,Pin-1}.

3.1.1 Type I: Carry Estimation Conditioned on a; or b;

Consider any element P;; of partial product, it is generated from a; x b;, so the conditional
expectation F [Pyla; = 0] = 0 and E [P;la; = 1] = 1. Therefore, any clements P;; € Py,
can be estimated as a; - E [Pjla; = 1] + (1 — a;) - E[Pyjla; =0] = % Then A can be

estimated as

26

Py (3.3)

<
Il

o
<
Il

o

lga.g—(n—j—l)]] _ 122 —(n—j— 1]
447 3=

r

1
= [(270 D 427D 4 407!
_8(i Fok2T) . (3.4)
1
= |- (1—-2"nD
0],
=0
So the carry in to MSP can besestimated as follows
- | e =
a =l 1 _‘"]. 'JI
‘75331/'1_: !5(5—4'7 n aj)] (3.5)

By using similar procedure, we cait get thie carry-in from b;

(g, e

From the initial assumption, A and B are uniform distributed, so Equation (3.5) and

BWIO

Equation (3.6) will result in the same carry-in. But the computation complexity will

apparently grow as n increases.

3.1.2 Type II : Carry Estimation Conditioned on «; or [

Now consider o; = P,_1_j; and 3 = P,,_,—; in Figure 3.1, notice that a; = 3,_;_1.
The expectation values of any partial product conditioned on «; are E[P;|la; =0] =
¢ and E[Pjla; =1] = 4. So P can be determined by the conditional expectation

;- E[Pyla; =1+ (1 - a;) - E[Pylay = 0] = F + 5.

27

Jj=0 k=2
n—2
1 Oéj 1
= 2142 (1 = 2= (n-1-0)
Y (2)
7=0
n—2
1 Oéj 1
~32 (5 +5) 7
7=0
n—2
1 (n—1)
ST T
7=0
n—1
(ﬁ B O[nfl) (n - 1) o
6 12 |77 ;O‘J
The Type II carry estimation denoted by agyv)vn is
(o) 23:01 Q; (@)
UBWII - 2 + ABVV][
:n72 v b T . n—2
0 n—1 A («a
B I e 22%] 59
’ E| n, - ,
Lj=1 L] n J=1 -
=) ok 0] P, S
= g . 18296 F

Cag om0 1 SRt
where 0 = G + =5+ + Ay, — 3 2?-:1 @y
From the same procedure, the carry-in estimated by [; can also be conditioned by the
expectation value of E [P;;|3;], which is shown as follows.

— B -1

3.1.3 Type III : Carry Estimation Conditioned on «; and

A

Since Pj; depends on «; and [3;, we can estimate value of F;;, denoted by F;;, by the

conditional expectation E[P;;|a;3;]. Notice that a; = 3,—;_1.

Py = a;f; - E[Pyla;fi = 1] + (1 — a;8) - E [Pyla; B = 0]

= Bnj1Bi - E[Pij|Bn—j-18i = 1] + (1 = Bu—j15i) - E [Py|Bn—j—18i = 0]

(3.10)

28

Table 3.1 lists the probabilities of P (P;; = 1|a;8; = 0) and P (P;; = 1|a;;3; = 1). From
Equation 3.10 we can see the carry estimation of Type III, called)‘mev is related to
the vector of {fo, 41, ...,0n_1}. So, comparing Type IT and Type III can be thought as
one-dimension and two-dimension estimation. Since two-dimension estimation contains
more information of the partial product, it will result in less truncation error. From the
Type II estimation shown in Equation (3.9),)\g%,m should be related to (6 — (,_1) since

they have both conditioned on . In order to express Ag‘vﬁ[,)m simply, we define 6 as follows.
n—1 n—1

0=> 52 =Y aniq? (3.11)
=0 =0

Table 3.1: Conditional probability of the partial products for Type III

. 1€{1,2,...,n—2}and | 1€{0,n—1}and j €{1,2,...,n—2}or | i € {0,n—1} and
Probability
je{l,2,... ,n—2} je{on—1}andie{1,2,...,n—2} je{0n—1}
Pr(P;j = 1|a;8; = 0) i 2 3
Pr (P” = 1|Oé]',gi = 1) 1 % é
Thus, there are two important fac¢tor for)\%V@I - the vector of {fo, (1, ..., 0,1} and

(8 — Bn-1). Note that several corﬁb“inatiéﬁ% of" {ﬁg, ,81, . ﬁn 1} will result in the same
(8 — Bn-1) value. From Figure 3. 3 \iha observe tha‘p)\ ,and (8 — B,-1) are highly
correlated. If any two different 0 ‘lead to the same (ﬁ ﬁn 1) the corresponding A BWm
will also be similar. In other words, NG (18— @L 1) is given, we can find the maximum and
the minimum number of A, called A, and A, to meet the corresponding (8 — B,-1).
Moreover, the \,,q. and \,,.;, can be also viewed as the boundaries of the carry estimation.

We can rewrite the o in Equation 3.2 by Equation 3.12, note that [g]r = L%JT

'6+1+2A—1 (3.12)

2 2

B+1 2\ — 1
P

Q

29

Figure 3.3: Relationship between Agyw,,,, 0, and 8 — 3,_1 for n = 8. The solid line and

the dash line represent the value of Agy,,, and 8 — 3,4

Subsequently, Type III carry estimation of value (2A — 1) will be estimated as Equation
(3.13). |

a i s
2250y, — 18| 5 (@ 1) $42Amin — 1) (3.13)

T

Figure 3.4 shows an 8-bit exampleé of (2)\max‘“— 1)and (2\,,;, — 1) from Figure 3.3. For
68— 0n1=0,1,2,...,7 in this example; 2)\555,)[1[— 1 will be 0,1,1,2,2,3,4,4, respectively.
However, it is difficult to determine 2)\(Ba£,)m — 1 by Equation (3.12) and (3.13). So a
look-up table method is required for Type III estimation. For example, consider the case
of n = 8, [QASBO‘V@IH . 1]T =0,1,1,2,2,3,4,4 ~ |1(8— .1 +1)|. From the similar

procedure, [2/\55‘,6[,)111 — 1} for different n is shown in Table 3.2.

3.2 Analysis of Carry Estimation for modified Booth
Multiplier

Radix-4 Booth multiplier converts the multiplication of A x B into A x y by Table 3.3,
where B = {bn—la bn_g, . ,bo} and Yy = {yfn/Q]—h y[n/2‘|_27 Ce ,yg}. Note that the b_l

is always 0 and the number of rows in partial product are reduced into (%W Same as

30

BB,

Figure 3.4: All cases of § — 3,1 for A\je: and A\, at n =38

Baugh-Wooley multiplier, the partial product of modified Booth multiplier, P;; = a;y;,
can be also divided into two parts, n-bit MSP and n-bit LSP. The most significant column
of LSP is represented by 3 and the surﬁiﬁdtiéﬁ of rest (n — 1) columns is denoted as \.
The 3 dominates the carry-in to the MSP,| so the compensatlon for Booth multiplier can
be expressed as a function of (. : : :

Similar to Baugh-Wooley multlpher W_d_ﬁne PA] = {R;,Prj,--..Pu;}, Ppi =
{Pio,Pia1,-..,Pina}, aj = Poq_jj and G = l'n 1—;. Since {ap,a1,...,a,_1} and

{ﬁo, B,y 75[71/2}—1} contains the mformatlon of ap, a1, ...,an—1 and By, 51, ..., Bnj21-1,
respectively, we can estimate P;; by the conditional expectations of E [P;;|y;], E [P;;]ey]

and E [P;;|3;]. The three estimation method will be presented as follows.

3.2.1 Carry estimation by Conditioning on y;

For the encoded Booth multiplication A x y;, if y; = 0, all elements in the row will be zero.
So the carry should be estimated only when y; # 0. All elements Pj; can be estimated
by conditional expectation by E [P;;]y; # 0]. From Table 3.4 and Table 3.5 we can verify
E[Pjly; # 0] = % Moreover, let y;» denote the event y; # 0, then Pj; can be estimated
by . Besides, the n; in Booth encoding equals to 1 only when y; < 0. It also has

conditional expectations E [n;ly» = 1] = % and F [n;|y» = 0] = 0. Hence, n; can also

31

Table 3.2: The estimated 2)\5;?)”1 —1 for different

bit width n

Bit-width (n)

(ap)
)\BWIH —1

0, ifﬁ_ﬁnfl =0
10
|3 (8= Ba1 +2)], otherwise
12 L% (B — Bn-1+ Z)J
14 13 (8= Bt +3)]
16 [% (B — Bt + 3)J

estimated by %, Then the estimated value A will be

)\BOOthI -

~) n721
. (%1) Q—k + %2—(71—21‘))
[n/Q] . o -

(3.14)

The carry in to MSP is opootn, = [5 +)\L n: [(ﬁ + 4 Z [n/2]-1)] . The Type I

carry in signal can be directly generated from the Booth encoding output, but it requires

much computation complexity for % 25262171 y;» as bit width n increases.

3.2.2 Carry estimation by Conditioning on [3;

Since (; = agy; which contains the information of y;, we can estimate the conditional

expectation by E [P;;|5;]. In order to get E[

probabilities of P (P;|3; = 1) and P (P,;|6; = 0) as Equation (3.15) and (3.16).

32

P;;|5;], we must calculate these conditional

Table 3.3: Radix-4 modified

Booth encoding table

boiv1 | b2i | baio1 || yi | M
0 0 0 010
0 0 1 110
0 1 0 110
0 1 1 210
1 0 0 211
1 0 1 11
1 1 0 1)1
1 1 1 010

Table 3.4: Probabilities of y; for radix-4 Booth encoding

P(yZ:—Q) P(yz:_l) P(yzzo) P(yzzl) P(yz:2)
0 :i el | 2 | 0
0<i<|[n/2] % : : 3
NerEs
P (Pj =a;y;, = 1,0, = axy; = 0)
=P(aj1=1,a,1=1,y;=-2)+ P(a; =0,a, = 1,y; = —1)
(3.15)
—l—P(aj: 1,ak:0,yi: 1)+P(aj_1 = l,ak_l :O,yl:2)
B 3
16
P(Pj=ajy;=1,0=ary; = 1)
- P(aj—l - 07ak—1 - an’L - _2) +P(a] - O,Gk - 07y2 - _1)
(3.16)

—|—P(aj:1,ak:1,yi:1)+P(aj_1:1,ak_1:1,yi:2)

_3
16

And the probability of P(/3;) is

33

Table 3.5: The value of

P;; form aja;—; and y;

Py ;1

v 1100011011
0 0|00/ O0
1 010 1 1
2 0 1101
-2 1101 1]0
-1 1 1170710

P(Bi=apy; =1) =P (ax_1 =0,y; = =2)+ P(ap = 0,y; = —1)

+P(ap =1,y =1)+ P (a1 =1,y; = 2) (3.17)

"i + e
So P (5 —0) = 2, we can get: E[|@! 0} '—‘"% =2 and E[P;]6;, =1] =

PP;=LBi=1) _ 1 Oy the other hand cqns1der the con.dltlonal probabilities of n;

P(Bi=1)
Plyi= 10 B2 Py = -2 ap1=1) 3
P(n;,=1|5,=0) = = — 3.18
and
P(yZ:_lvak:O)+P(yZ:_27ak—0:1) 1
P(n,=1|gi=1) = = - 3.19
Thus, F [n;|6; = 0] = "(_ﬁ;ﬁ)o) + and E [n;|3; = 1] = % = 3, and Type

IT carry estimation Apyen,, can be shown as follows.

[n/2]-1 n—2
Bi 3 _ 5 3
oy = 3 | (55 0-m) Xt (G gpa-m) - 2@]
Booth ; 2 10 kz:; 2 (3.20)
v 3
“10 " M

34

3.2.3 Carry estimation by Conditioning on «;

Since P;; = a;y; and a; = a,yy, where ¢ # ', so P;; is related on a; and we can estimate P;
by the conditional expectation E [P;;|c;]. Before we compute the value of E [P;;|a; = 1]
and E [Pj|la; =0], P(P; =1|la; =1) and P (P;; = 1|a; = 0) must be computed first.

From Table 3.6 and 3.7, the conditional probabilities are

P(P;=1a;=1) 18/128 3
PPy =1y =1) = e =D B (3.21)
J
P(P;j=1,0;=0) 15/64 3
=

35

Table 3.6: Conditions for both F;; =1 and a; = Py; =1

Yir = —2 Yy = —1 yir =1 Yir =2
9 aj—1 = 0 aj—1 = O,Clj =0 aj—1 = 0,(1]‘ =1 NA
Y = —
(35) (135) (135) (0)
1 aj,lz(),aj:O aj:O NA aj_1:1,aj:0
Yi = —
(135) (33) (0) (128)
1 aj,1:0,aj:1 NA aj:1 aj_lzl,ajzl
Yi =
(13s) (0) (33) (38)
9 NA ;-1 = 1,aj =0 ;-1 = l,aj =1 a;—1 = 1
Yi =
(0) (1) (125) (13s)

Table 3.7: Conditions for both Pj; =1 and o; = Py; = 0

Yir = —2 yir = —1 yir =0 yir =1 Y =2
5 NA aj—1 = O,G,JZ 1 (iJ_I =0 aj—1 = 0, a; = 0 aj—1 = 0
Yi = — i ‘ ; £y
(0) SRS R (1) (1)
L aj_1:0,aj:1 NA aj:0: CL]’ZO CL]'71:0,CL]':0
Yi = — i | 1
(125) £ LS 1896 5 (35) (1)
1 aj—1 = 1,aj =1 a; :1 a; Zi NA aj—1 = O,Clj =1
yi = I
() (32) (52) (0) (1)
9 aj—1 = 1 a;—1 = 1,6Lj =1 a;—1 = 1 ;-1 = l,aj =0 NA
Yi =
() (2) (1) () (0)

Equations (3.21) and (3.22) means that the events of P;; and «; are independent if
the inputs are uniformly and independently distributed. Then, the expected value of P;;

is
3

Equation 3.23 indicates that all the F;; in A can be estimated by a constant value,

(3.23)
g. From similar procedure, the expect value of n;, F [n,], can also be estimated by %.

36

Then the carry estimation of Type III for an n-bit radix-4 Booth multiplier is calculated

as follows.

3 3 .
>‘Booth111 = g Q_k + g 2—(n—21)
=0 k=2 i=0 (3.24)
B 3 {n"
1612

3.3 Generalized Carry Estimation

The carry estimation methods mentioned in above two sections both truncate halt bits
of multiplication result. In some cases, fewer bits are required to be truncated. For
1 <z < n, an n-bit fixed-width multiplier that truncates (n — z) bits are illustrated as in

Figure 3.5. The carry from 3 to v can be represented as follows.

b)) e

A
(n-z)-bit
>
|
(n+z)-bit 1
: l Rounding i

n-bit

Figure 3.5: Add n + 2z columns and round the result to n-bit

From the same concept, since 3 still provides the information of A, the carry estimation

equations can be derived and listed in Table 3.8, 3.9 and 3.10.

37

Table 3.8: Estimation for Baugh-Wooley multipliers
while truncating the least (n — 2)-bit

Type Estimation of A
Type (%) 27230 Ya
Type I® 27y T oy
Type I1(®) || 2-2 Z" - 1()(1_2 (n—2— J))
Type 11 || 2723771 (8 4 1) (1 — 2-(n==-D)

3.4 Simulation Result

Exhaustive simulations are required for comparing the performance of each compensation
method. In order to provide a quantitative performance measurement, we define the mean

absolute error as follows. Assume the':‘“r‘nultipliey‘ “ajﬁ.@.l multiplicand are both n-bit.

-2n—1_1 2nL1 1 :‘I

=2 Sz M (3.26)

= Z_~2" lj__gn 1 J

Where M, is the product of the mi=bit ﬁxed—w1dth multiplier to be compared, and

the comparison of mean absolute error for 2 = 1 are listed in Table 3.11. Since Booth
encoding reduces the number of partial products, the error of Booth multiplier is smaller.
By observing Table 3.11, about 85% and 80% error of the Baugh-Wooley and Booth

multipliers are compensated regardless of the bit-width n.

38

Table 3.9: The estimated 2)\%@111 — 1 for different bit width n and z

Bit-width (n)

(aB) _
2)\]§‘W1H —1,z=2

s
2~ 1,2=3

07 ifﬁ_ﬂn—zzo

i 16— Bacr) + 1]
|3 (8= Ba—1) + 1], otherwise
1’ lf(/@ - Bn—l) =1
10 % LIB - ﬁn—zJ +m0d((ﬂ — /Bn—l) , 2)
|3 (B — Bn-z)|, otherwise
5 (8~ Bu—s)], if B = Bz > 3
12 L% (/6 - ﬁn—l + 2)J
|5 (B — Bn—z +1)], otherwise
[3 (8= Bnos +2)] 0SB Broe <4 | [F(B= oz +2)], 0 G~ s <2
14 2 (B—Bae+)], if4<B—Br0z<9 | [3(B—Bnz+1)],if2<B—Bn.<T
|2 (B~ Bn-2)|, otherwise
16

Table 3.10:

L% (ﬁ - ﬁn—z + 2)J

Estimation for Booth

multipliers while truncating the least

(n — 2)-bit
Type Estimation of
Type [| 2-G+0 S m/21-12/20
Type I1 | 27 ({5 + 55 [5])
Type 111 27 (3 131)

39

Table 3.11: Mean absolute error

Method n=8 | n=10 | n=12 n =14 n =16
Post-Trun. 63.75 | 255.75 | 1023.75 | 4095.75 | 16383.75
Direct Trun. B.W. 576.25 | 2816.25 | 13312.25 | 61440.25 | 278528.2
BW. A=0 146.38 | 803.17 | 4161.13 | 20597.50 | 98511.41
B.W. Van’s [6] 105.96 | 456.26 | 104343 | 8217.69 | 34554.25
Proposed B.W. Type-I 92053|,403.46 | 174325 | T456.74 | 3165157
Proposed B.W. Type-II 10281 "4032.'15 1750.22 | 7513.40 | 30792.76
Proposed B.W. Type-III 90.18 0550 | 167338 | 731321 | 301203
Direct- Trun Radix.4 Booth “38"4.2‘5' ‘w"192‘0".\25 9216.25 | 43008.25 | 196608.2
Radix-4 Booth,\ = 0 130.68 | 725.74 | 3622.57 | 17474.12 | 82030.32
Radix-4 Booth,Jou’s [3] 107.1 | 477.09 | 2083.53 | 8978.42 | 38315.33
Proposed Radix-4 Booth Type-I 84.59 | 350.78 | 1461.55 | 6040.97 | 24965.26
Proposed Radix-4 Booth Type-II || 88.77 | 393.60 | 1667.44 | 6745.14 | 28706.97
Proposed Radix-4 Booth Type-III || 88.77 | 406.16 | 1654.26 | 6771.68 31267

40

Chapter 4

Software Simulation for 64-point

FEFT

4.1 Introduction to Fast Fourier Transform (FFT)
Algorithm

Discrete Fourier Transform(DFT)‘"is‘ Widely}used in “‘(niigital signal procession application.
For a N-point DFT, where N is aznumber with power éf two, we can use the Fast Fourier
Transform(FFT) algorithm to reduce the'eomputation time and complexity.

Given a sequence z[n], the N-point:DET-is ‘deﬁnﬂed as
X[k =Y znWk k=0,1,2,...,N -1 (4.1)
n=0
where X[k] and [n] are complex numbers and WE" is

_ 2mnk 2mnk
Whn = =i@m/N) :cos(7;?)—j‘Si”(7;\7;) (4.2)

When we directly use Equation (4.1) to compute the value of N-point DFT, its com-

putational complexity is O(N?). But if we use radix-r FFT algorithm, the computational
complexity will apparently reduce to O(Nlog). For example, consider the decimation in
time FFT algorithm, which divided z[n] into two sequence, one for odd points and the

other for even points, then Equation (4.1) can be written as

41

(N/2)-1 (N/2)—1
Xk = Y a2 W5, + Wh Y al2r + W, = G[k] + Wy H[K] (4.3)

r=0 r=0

The corresponding figure is shown in Figure 4.1. So each N-point DF'T can be replaced
by two N/2-point DFT and several adder operation. From similar procedure, we can
further reduce the N/2-point DFT into N/4-point DET. Finally, for N = 8, the simplified
FFT architecture is shown in Figure 4.2.

N/2-points
DFT

x[5] —>—— N/2-points
DFT

x[0] > > > X[0]

x[4] —> - =><>< > / X[1]
WO

x[2] > g > X[2]

VAN

x[6] —> - > - X[3]

-1
WO

> > < X[4]
\/ W, >O<\

> > X[5]

-1
8 ><>< we \
x[3] > > n > « X[6]
Wso >< Wgz \ W83 \
x[7] > > n > X[7]

-1 -1

Figure 4.2: Decimation in time FFT butterfly architecture for N = 8

42

4.1.1 Radix 2? Architecture for 64-point FFT

In order to derive the 64-point FFT algorithm by using radix 23 FFT algorithm [12], we

must define

n = 32aq + 16y + 8ag + ay, aq,a, a3 =0, 1,4 =0,1,...,7

k:ﬁ1+252+4ﬁ3+8ﬁ47 51752753 = 0717ﬁ4 :Oa17"'77
By using Equation (4.4), Equation (4.1) can be rewritten as

(4.4)

X [B1+202 4+ 483 +804] =

ST Y 23200 + 160 + Sas + o] (4.5)

ag4=0 az3=0 ay=0 a1 =0

(B142B2+4B3+804) (3201 + 1602 +8az+crs)
x Wea

The twiddle factor in Equation (4.5) can be decomposed as

W(51+2ﬁg+4ﬂg+854)(32a1{g_16d2'+"8aéq*af4). _
64 s =

W;‘lﬁl W40‘251 W20‘252"W§43(ﬂ134_'!§f)wl20f§§3 W’@Ojf(ﬁl +2824403) W;4ﬁ4
Thus, Equation (4.5) becomes: | r E
=, | ‘ =
X [B1 + 202 + 485 + SO BUs 1, 5o, Bs, oy, | W™ wn

ay=0

BUsg is the 8-point FFT butterfly architecture, and it can be divided into 3 steps by
using radix-2 index map, called radix 22 butterfly architecture. The following equation

shows the property.

BUS [ﬁla ﬁ?a ﬁ37 064,] =

()

1 1 1
50 30 37§ BUalanas s a W W g)

a3=0 a2=0 a1=0

~
1st step

(& J/

~
2nd step

\ 3rd step)

(4.8)

43

Each step has four butterfly operations. After the butterfly operation, the twiddle fac-
tor is multiplied to corresponding butterfly output point, as shown in Figure 4.3. Except

the twiddle factor multiplication, there are only three twiddle factors in radix 22 algo-

rithm, W, W and W3, W¢ = —j, so we just need to exchange real part and imaginary
part. The other two twiddle factor W¢ and W3, which equal to @ and —@ sepa-

rately, can be replace by some add operations. Because the \/75 which equals to 0.70710678
can be approximated by 27 4273 + 2% + 276 4- 278 which can be implemented by five
shifters and four adders. As a result, the 64-point FFT with 2-level radix 23 algorithm is

shown in Figure 4.4.

VV;;O
x[0] o\ /\/ > X[0]
0 W4
x[1] ip - > X[4]
SN/ XX
x[2]

N 7S o Xm

4 W6

x[3] :><><><><: - AN - ‘e X[6]

x[4] e X[1]
X >,

x[5] 4 — T X[5]
x[6] : A X[3]
/ \AW; - Ws7
x[7] = g e X[7]

Figure 4.3: Butterfly of radix 2% Algorithm

4.2 Software Simulation for a 64-point FFT

The 64-point FFT with radix-2% algorithm has only one complex multiplier array stage.
It locates between the two radix-2% stage, which shown in Figure 4.4. In this 64-point
FFT simulation, we choose the input bit width n equal to 8 and the quantified twiddle
factor bit width 9. Notice the input bit width through three stage of addition in Figure
4.3 will grow to 11 bits. So the input of complex multiplier array will be 11 x 9. The

following subsections introduces some compensation method with various truncation bits.

Radix 2° Radix 2°

Figure 4.4: 64-point FFT Butterfly with radix 2% Algorithm

At A

.

4.2.1 Method 1 : Direct Jinaginary:Part Compensation
= Els e
= — Es el A

alf 5
The complex multiplication can b‘qf(._eL:aﬂ 3 }ﬁ@%ﬁif_&fi@llﬁi{éing equation
l.";

| Ry f
N2 S

b
X R:i;,:.;"; 1896 ‘r,.-‘f-_:*
..-'“:-';‘

W)+ X (a-tws +b-tw) (4.9)

L

il

w,

.
K,

(a -+ - twn) x (b+ j - tws) = (0 bppelauits

where a and b are input to the complex multiplier; tw; and twy are the quantified
twiddle factor. For fixed-width property, some least significant bits must be truncated,
and the corresponding truncation error will arise. Assume the error in each truncation
of multiplier equals to €, then Equation 4.9 with the truncation error can be rewritten as

follows.

(a+7-twy) X (b4 J-twy) ={[(ab)prun + €1] — [(twy - tw2)run + €2]}

(4.10)
-+] X {[((I . tw2)trun —+ 63] + [(b . twl)mm -+ 64]}
Rewrite the real part and the imaginary part of Equation 4.10 we can get
Real Part : (a - b)yun + (twy - tw)gpun + €1 — €2 (4.11)

45

Imaginary Part : (a - tws)gun + (b tw1)gun + €3 + €4 (4.12)

The quantified twiddle factor in the 64-point FF'T will be kept to some constant value.
Consider the post-truncation method, it truncate the unnecessary bits after multiplica-
tion. By software simulation for post-truncation method, we can get the corresponding
truncation error. It results in different value for different truncation bit, as listed in the

following Table 4.1.

Table 4.1: Truncation error v.s. truncation bits of the post-

truncation for a 64-point FF'T

11 x 9 with k-bit truncation | k£ = k= k=10 =11
b (&) 0.4300 | 0.4619 | 0.4755 | 0.4839

twy - twy (€2) 0.4247 | 0.4375 | 0.4376 | 0.4375

a - tws (€3) 0.4277 | 0.4323 | 0.4316 | 0.4357

b-twy (€4) 1.0.4283 | 0.4590 | 0.4735 | 0.4851

=l
We can notice that the truncation-error in the real .part of complex multiplication can
be eliminated, and the error in the ~1mag1na v part Wlll be accumulated. As shown in the

following Table 4.2.

Table 4.2: Truncation error of real part and imaginary part

11 x 9 with k-bit truncation | k=8 | k=9 | k=10 | k=11

Real Part (€] — €3) 0.0053 | 0.0244 | 0.0379 | 0.0464
Imaginary Part (e3 +¢€4) | 0.8560 | 0.8913 | 0.9051 | 0.9208

From above analysis, we can directly compensate 1 at the imaginary part of the
complex multiplier. By the SQNR (Signal to Quantization Noise Ratio) function defined
in Equation (4.13), we can see the improvement of the compensation for a 64-point FFT,

as listed in Table 4.3.

> X2
Z’ ref — 2}

46

Table 4.3: SQNR comparison with imaginary part compensation

SQNR of 11 x 9 with k-bit truncate

k=28

k=9

k=10

k=11

k=12

Post truncation

47.1259

42.4836

36.9213

30.9923

24.9635

Post truncation imaginary part + 1

49.6604

46.6120

41.7880

36.0879

30.1041

From the above table, we can see the compensation has strongly improvement for

SQNR.

4.2.2 Method 2 : Proposed Single Multiplier Compensation

For Booth encoding multiplier, we choose Type-III estimation in Equation (3.24) to esti-

mate it. In the case of 11 x 9, the n is equal to 10 and the Type-III estimation is equal

to
6 3 |10 6 15
=4 |2l =2 x4 4.14
UTypezfz 2 + 16 2 ™ 2 + 16 2 + <)
The corresponding SQNR are ligted as fpllows; £
e [9 J \
Table 4.4: SQNR comparison with Booth Type III compensation

SQNR of 11 x 9 with k-bit truncate { - R=8f k=9 | k=10 | k=11 | k=12
Booth direct truncation CBTT89T 32,1659 | 26.2788 | 20.2672 | 14.2282

Post truncation 47.1259 | 42.4836 | 36.9213 | 30.9923 | 24.9635

Type IIT estimation o = g +1 45.4798 | 43.1634 | 38.1305 | 32.3758 | 26.2117

4.2.3 Comparison

Figure 4.5 shows the diagram of SQNR v.s. truncation bits. We can see the pro-
posed Booth compensation method will have better SQNR while comparing to the post-
truncation method. And the direct imaginary part compensation outperforms than all
other methods. But it requires the most hardware since there is no any truncation of cal-

culating the LSP and need an extra hardware to implement the +1 circuit. The following

47

chapter will discuss about the hardware complexity among these truncation methods by

using a 2048-point FFT example.

SANR

5

48
46 -

44
42
40

385

—&— Post truncation
—&— Puast truncation with Imaginary + 1

—#— Direct truncation Booth no compensation

—— Both beta/2+1

10

truncation bits

Figure 4.5: SQNR v.s. truncation bits

48

11

Chapter 5

Hardware Application for 2048-point
FFT

5.1 Architecture of a 2048-point FFT

Since 2048 is not a power of 8, we can degompeosed the 2048-point FF'T into three stages

of radix-23 and one stage of radix-22 as thefellowilig equation.
iy Elenx ‘
| J ‘ “ :

X (ky + 8ky + 64k; + 512k, Ny

(; 3\

7 7 7
PP Z{Zx(n')}wé“2”2w2’“§é4"3+”4> WS W
n3=0

n4=0 n3=0 \n3=0
stage 1
N vy
o
\ stage 2)
A >
Vv
stage 3
>y
~-
stage 4

where

z(n') = (2560, + 32ny + 4nz + ny) W§IH1W§6i§2n2+4n3+n4)
k17k27k3 = 07172 ; k4 = 0717273

(5.2)

And the block diagram of the the FFT/IFFT processor [13] is shown in Figure 5.1.

It consists of four FFT/IFFT control units, a main memory unit, a processing engine

49

(PE), and a cache. In this design, a novel block scaling method and a new ping-pong
cache-memory architecture are proposed. Since FFT and IFFT have only difference in
complexconjugated twiddle factors, the IFFT can be implemented by conjugating FF'T
input and output [14] as shown in Figure 5.1. And the modules of the design is discussed

as follows.
Ping-pong cache-memory architecture
Main memory :
[
B Eight-bank | M
FFT/IFFT control 2 LN FFT/IFFT control
—-(> 4096-word 71
SRAM |
|
Il

Path 1 output

c =

< C

4096-word ! Path 2 output
:> SRAM :(>

FFT/IFFT for Path | ——— | FFT/IFFT for Path 1
FFT/IFFT for Path 2 _PrT)c_es;in_gé\F_ ________ ! FFT/IFFT for Path 2

engine

[¥] Eight-bank i [*] —>

|
|
|
|
|
|
Path 1 input :
1~
I ——\,> control
Path 2 I
ath 2 input |
[— X |
|
|
|
|
|
|

complex multiplier €] scaling
unit

[
| |
| |
| |
| |
:> Date path I Butterfly unit & Block :
|
| |
| |
| |
| |

——> Control path

64-word
cache

J

Figure 5.1: Block diagfam Of,-ifﬂe~t\7vo—étfeam FFT/IFFT processor

5.1.1 Main Memory

For memory-based FFT, continue flow (CF) memory [15] architecture is used to reduce
the memory size. Although CF FFT can reduce memory size by doing I/O operation
concurrently in a single memory, it requires additional control units. Because the original
CF FFT uses radix-4 and radix-2 algorithms which have different bit-reverse orders. In
this design, radix-2% and radix-2? algorithms are used and have the same bit-reverse order

as radix-2 algorithm [16].

50

5.1.2 Ping-Pong Cache Memory Architecture

Cached-memory FFT [17] [18] is proposed for low power consumption by reducing the
memory accesses. Data are first read from main memory and then sent to the cache,
as shown in Figure 5.2. Although cached-memory FFT can reduce memory accesses
effectively, a complex controlled concurrent read/write cache with unit is required to
increase the throughput. Thus the ping-pong cache-memory architecture which uses a
simple cache with single read/write operations is proposed, as shown in Figure 5.3. The
data read from the main memory are used by PE first and then written to the cache.
After the cache is full, data in the cache are read by PE and the computed results are
stored back to the main memory. By using the architecture, half the memory accesses

can be reduced.

Cache Main memory

Figure 5.2: Cachq;memory “'a.rchitecture

'J'.'

Cache Main memory

Figure 5.3: Ping-pong cache-memory architecture

5.1.3 Processing Engine (PE)

The processing engine with block scaling approach is shown in Figure 5.4. Consider the
case of 2048-point FFT, the inputs have the same decimal point at the fist processing stage,
so the data alignments are skipped. The input data are sent into radix-22 Butterfly Unit
(BU) directly and then passed to the first overflow detection and scaling unit (ODSU1)

in Figure 5.4. If an overflow is detected, all inputs will be scaled and the corresponding

51

shift value in exponent will be saved in the block scaling unit. Afterward, the output of
ODSUL1 is sent to the complex multipliers for twiddle factor multiplications. The outputs
of the complex multipliers are passed to the second overflow detection and scaling unit
(ODSU2) in Figure 5.4. The second and third stages are similar to stage 1. For stage 4,
the radix-22 operation is performed and only scaling is performed in ODSU1. Complex
multiplications and ODSU2 are skipped because there is no twiddle factor multiplication

at the final stage.

Eight-symbol input

S S T T O A A

Alignment unit - - — — —]
Selection of

N A

Configurable radix-2*/2%/2 BU |« — —

) A A e T

Overflow detection &
scaling unit (OSDU1) e |

- N Block
Mult || Mult || Mult || Mult || Mult || Mult || Mult scaling
1 2 3 4 s 6 | 7 [Bypass controller

X
ROM || ROM || ROM (| ROM || ROM | ROM || ROM

|
|
|
|
| |
| S T T A
R

Overflow detection &
scaling unit (OSDUz) - Block scaling unit

D (50

Eight-symbol output

Figure 5.4: Ping-pong cache-memory architecture

D2

5.2 Proposed Multiplier Architecture for 2048-point
FFT

In this section, we will discuss multipliers in this 2048-point FFT. The multiplication
in the FFT is 12 x 9 and truncate 6 bits, and the output of the multiplication is 15
bits. In the complex multiplication operation defined in Equation 4.9, the real part an
imaginary part must be add or subtract. After summing or subtracting the truncated
result, it truncates additional 2 bits finally, as shown in Figure 5.5. Several methods for

this procedure is listed in the following sub-sections.

12 21| Truncate i
6 bits 1
9 16 14
Xb— e
12 15
Truncate |
21| 6bits
0 —

Figure 5.5: Multipliér Architééture for-the 2048-point FFT

5.2.1 Method 1 : Design-Ware Direct Truncate Compensation

For the 2048-point FFT application, 6 bits are truncated in each multiplication. If we
directly truncate the unused part of the partial product and directly compensate 1 to the
remaining parts, the area of multiplier will be saved without much performance loss. As

shown in the following table.

Table 5.1: Comparison between truncated and un-truncated multiplier

Area (Gate count) | SQNR (dB, for FFT)

Post-truncation 737.6 47.6818

Direct truncate, compensate 1 718.3 48.2845

53

5.2.2 Method 2 : Single Multiplier Compensation

Consider the Type-III compensation of Booth multiplier, it corresponding partial product

expected value can be shown as follows.

6-bit Least Significant Part for FFT application

3
< >

p5 p4 p3 p2 pl p0

37.50/137.50 37.50 37.50 37.50 37.50

37.50|137.50 37.50 37.50 37.50
37.50((37.50 37.50
37.50

\—b B |—>7\. Unit : %

Figure 5.6: Corresponding expected value of partial product in 6-bit truncation

. . . o ﬁ 9
From Figure 5.6 we can calculate the compensation equals to carryin = 5 + {5 =

g + 0.5625. Consider all cases of 3 we can get

ﬂ = O carry_m ~ O 5625 ~ 1
ﬁ = o, carry_m = 1 0625 ~ 1

: (5.3)
ﬁ = 2 carry,z A 5625 ~ 2
\ 5 3 carry m—20625~2
From equation (5.3) we can conclude the'carry estimation equation as follows.
18
carry-in = | 5 +1 (5.4)

And its mean absolute error defined in Equation (3.26) compared with post-truncation

is listed in the following Table 5.2.

Table 5.2: Mean absolute error comparison

12 x 9 — 15 (truncate 6 bits) Mean absolute error
Direct-truncate 72.25(100%)
Post-truncate 15.75(21.80%)
Proposed with carry_in = |5] +1 22.77(31.51%)

54

5.3 Comparison

The following Table 5.3 shows the gate counts of different multipliers. If we directly
truncate the least significant 6 bits of the partial product, about 2.6% gate counts will be

saved. For Booth encoding multiplier, about 12.8% gate counts will be saved.

Table 5.3: Multiplier gate count comparison

12x9 Gate count
Design-ware multiplier 737.6
Design-ware direct truncate 6 bits compensation 718.3
Booth multiplier 948.6
Proposed Booth multiplier compensation truncate 6 bits 826.9

The SQNR of different compensation method are listed in the following Table 5.4. We
can see the proposed Booth compensation ha_s- the similar SQNR value to post-truncate
multiplier. ¥ | %

The hardware complexity of pr:;?posed‘ ﬂnhltlpher and design-ware post-truncated mul-

tiplier using TSMC 0.18um 1P6M ‘,‘techr.lol_o‘gj; is listed: in Table 5.5.

We can see the both method 1& 2 Ca'r'li‘re'dﬁ'cé about 4.7% hardware of combinational

circuits since it truncates a part of partial products.

Table 5.4: SQNR comparison

Multiplier type Compensation SQNR (dB)

Direct truncate 47.6818

Direct truncate, directly compensate 1 48.2845
Design-ware multiplier

Post-truncate 48.0919

Post-truncate, imaginary + 1 48.4029

Direct truncate 47.5245

Booth multiplier Post truncate 48.4029
Single multiplier compensation 48.4496

95

Table 5.5: Hardware complexity (gate count) comparison

Combinational Sequential Total

Post-truncation 71657(18.88%) | 307973(81.12%) | 379630(100%)

Design-ware direct-trun., then compensate 1 | 68193(18.13%) | 307948(82.87%) | 376132(100%)

Proposed single multiplier compensation 68294(18.15%) | 307959(82.85%) | 376253(100%)

The chip layout view by using method 1 & 2 is shown in Figure 5.7 & 5.8. The
chip summary of the design-ware post-truncated multiplier and proposed single multiplier

compensation multiplier are listed in Table 5.6.

Table 5.6: The chip summary of design-ware post-truncated multiplier architecture

v.s. proposed Booth multiplier architecture

Design-ware Design-ware direct-truncation,
Type R TR Proposed
post-truneation | __ | th,ep compensate 1
Process | & 'UMC .‘0..18um 1P6M
Memory size mQ x;él bits x 16
Operation frequency d gt J25MHZ
Core area 2.3mm X 2.3mm

Total gate count 374552 376252 370257
Average core power 109mW 136mW 127TmW

26

512x24
Mempry

- 512x24
Memory

Figure 5.7: Layout view of proposed multiplier for 2048-point FF'T

512x24
Memory

512x041

512x24
Memory |

512x24 . 512x24 | 512x24
Memory Memory | Memory

Figure 5.8: Layout view of Design-ware direct-truncate, then compensation 1 multiplier

for 2048-point FFT

57

Chapter 6

Conclusion

In this thesis, the carry estimation methods base on statistical analysis is proposed. There
is dependency among the truncated partial product of multipliers. Therefore the depen-
dency of the Baugh-Wooley and the Booth multipliers are discussed and three types of
carry estimation methods based on different conditions are proposed. The Type-III com-
pensation of Booth multiplier is the simplest, type for implementation, because it always
deduced to a constant compensation‘l.f‘urtherm(;r;e"‘the estimation value can be changed
as the truncating bits vary. 85% and 80% érror of the Baugh-Wooley and Booth multi-

pliers can be improved from the sunulatlon result f

For real case application, the Software &mula@pn for 64-point FFT is discussed in
Chapter 4. This chapter provides two éompensatibn methods: the directly compensation
for post-truncate multiplier can increase 2dB or more while comparing to post-truncate
method; and the Type-IIT compensation for Booth multiplier can have similar SQNR
performance while comparing to post-truncate method.

In Chapter 5, the hardware of a 2048-point FFT is implemented by 0.18um 1P6M
CMOS technology. By comparing to the design-ware multiplier, the direct truncate and
compensate 1 method can reduce about 2.7% area for a single multiplier with about
0.6dB loss in SQNR. The single multiplier compensation method can reduce about 4.7%
gate count without loss in performance. In conclusion, our approach provide a lower area
comparing to the post-tuncated multiplier and high-performance closing to post-truncated

method.

o8

Bibliography

[1]

C. R. Baugh and B. A. Wooley, “A two’s complement parallel array multiplication
algorithm,” in IEEE Trans. Comp., no. 12, Dec. 1973, pp. 1045-1047.

M. Hatamian and G.Cash, “A 70-MHz 8-bit x 8-bit parallel pipelined multiplier in
2.5-pm CMOS,” JSSC, vol. 21, no. 4, pp. 505-513, Aug. 1986.

A. Booth, “A single binary multiplication technique,” Quarterly J. Mechanics and
Applied Mathematics, vol. IV, no. 2, pp. 236-240, Jun. 1951.

O. L. MacSorley, “High speed atithinetié ins binary computers,” Proc. IRE, vol. 49,
pp. 67-91, Jan. 1961, ¥ RN
#

L. D. Van, S. S. Wang, and“.“W. ES,_F‘enflg, “'Desiign of the lower-error fixed-width

multiplier and its application,” in“IEE’E ;Tmns':‘Circuits Syst. II, vol. 47, Oct. 2000,
pp. 1112-1118. “ |

L. D. Van and C. C. Yang, “Generalized low-error area-efficient fixed-width multi-

pliers,” in IEEE Trans. Circuits Syst. I, vol. 52, Aug. 2005, pp. 1608-1619.

S. J. Jou and H. H. Wang, “Fixed-width multiplier for DSP application,” in IFEFE
Int. Symp. Computer Design, Sept. 2000, pp. 318-322.

S. J. Jou, M. H. Tsai, and Y. L. Tsao, “Low-error reduced-width booth multipliers for
DSP application,” in IEEE Trans. Circuits Syst. I, vol. 50, Nov. 2003, pp. 1470-1474.

K. J. Cho, K. C. Lee, J. G. Chung, and K. K. Parhi, “Low error fixed-width modified
Booth multiplier,” in Proc. IEEE Workshop on Signal Processing Systems, San Diego,
CA, Oct. 2002, pp. 45-50.

29

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

K. J. Cho, J. G. Chung, K. C. Lee, and K. K. Parhi, “Design of low-error fixed-width
modified Booth multiplier,” in IEEFE Trans. VLSI Syst., May. 2004, pp. 522-531.

Y. C. Liao, H. C. Chang, and C. W. Liu, “Carry estimation for two’s complement
fixed-width multipliers,” in IEEE Signal Processing Systems (SiPS), Oct. 2006.

Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A 1-GS/s FFT/IFFT processor for UWB
applications,” IEEFE J. Solid-State Circuits, vol. 40, pp. 1726-1735, Aug. 2005.

Y. Chen, Y. W. Lin, and C. Y. Lee, “A block scaling FFT/IFFT processor for
WiMAX applications,” in IEEE Asian Solid-State Circuits Conference, Nov. 2006.

K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point Fourier transform chip for
high-speed wireless LAN application using OFDM,” IEEE J. Solid-State Circuits,
vol. 39, pp. 484-493, Mar. 2003.

B. G. Jo and M. H. Sunwoo, “New continuous-flow mixed radix (CFMR) FFT using
novel in-place strategy,” in IEEE TransaCircuits Syst., vol. 52, May. 2005, pp. 911~
919. |

H. Shousheng and M. Torkelson “De31gn1ng plpehne FFT processor for OFDM
(de)modulation,” in Proc. [n-t Symp Signals, Systems and Electronics, Oct. 1998,
pp. 257-262. :

B. M. Bass, “A low-power, high-performance, 1024-point FFT processor,” IFEE J.
Solid-State Clircuits, vol. 34, pp. 380-387, Mar. 1999.

Y. Lin, H. Liu, and C. Lee, “A dynamic scaling processor for DVB-T applications,”
IEEFE J. Solid-State Clircuits, vol. 39, pp. 2005-2013, Nox. 2004.

60

-—\
\Y

¥

T

g

k-
=
>

oAl AR T

. 2 B
'\'—”‘:‘/’Fﬂ%

|-

BiARR AERE L@@
89.9 ~ 93.6 W=z *?¥ B~ F P17 i
93.9 ~ 95.7 M= i~ & RFA7%* (Oasis Lab)

