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截斷乘法器之進位估計與其快速傅立葉

轉換應用 

 

 

學生 : 趙祐徵   

指導教授 : 張錫嘉 

電子工程學系 電子研究所碩士班 

 
摘 要       

 

在本論文中，我們提供了一個用統計方式來分析截斷乘法器補

償。在截斷乘法器中，被截去部分的誤差可以用簡單的進位公式來補

償。本論文對 Baugh-Wooley 以及 Booth 乘法器各提出了三種不同的

補償方式。藉由以我們所提出的這些補償方式，與使用 direct-truncate

方法的 Baugh-Wooley 以及 Booth 乘法器相比較之下，各減少了約

85%以及 80%的誤差。此外，我們將此補償方法應用在 64 點 FFT 的

乘法器裡面，可以得到與 post-truncate 相近的 SQNR(Signal to 

Quantization Noise Ratio)。當應用於 2048 點 FFT 時，我們所提出的

方法可以大約降低約 4.7%的面積而其 SQNR值亦不會與 post-truncate

有太大的差異。 
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Student: You-Zheng Chao  
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Institute of Electronics 
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ABSTRACT 

 
This thesis provides a statistical analysis for truncated-width multiplier which 

receives two n-bit inputs and truncates n-bit output. The truncated parts which 

produce carry-in can be replaced by carry estimation methods. In order to reduce the 

truncation error, different compensation methods are provided for different bit-width. 

This thesis discusses Baugh-Wooley and Booth multiplier and provides three types of 

compensation method for these two multipliers. According to the simulation result, 

about 85% and 80% error of the direct-truncation Baugh-Wooley and Booth 

multipliers can be reduced. For the 64-point FFT case, the software simulation shows 

similar performance while comparing to post-truncate method. For the hardware of 

2048-point FFT, our method can reduce about 4.7% gate count while comparing to 

post-truncate method without performance loss. 
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Chapter 1

Introduction

1.1 Research Motivation

In many digital signal procession (DSP) applications, multipliers have the fixed-width

property in order to reduce the growing width of serially concatenated addition and mul-

tiplication. The fixed-width property means that : If both input bits of a multiplication

equal to n-bit, its corresponding output bit number will be 2n. In order to reduce the

hardware complexity and keep fixed-width property, the 2n-bit output will truncate k bits

(usually k = n) by direct truncating or rounding the k least significant bits. Consider the

case of k = n, the input and output will be kept the same bit-width. For example, assume

a 8-bit fixed-width multiplier in Figure 1.1, one input is X(x7∼x0), a 8-bit integer; the

other input is Y(y7∼y0), a 8-bit decimal.

By multiplying X by Y, we can get the 16 bits product which is composed of 8-bit

decimal and 8-bit integer. In order to reduce the area and improve critical path of the

multiplier, the least significant 8 bits (P7 ∼ P0) will be truncated. But some error may be

introduced by direct truncating the least significant 8 bits. Thus, to ease this phenomenon,

carry compensation is required. A proper carry compensation can effectively reduce the

error by adding a proper carry to the most significant part (P15 ∼ P8).

In the thesis, an area-efficient low-error multiplier based on statistical analysis is pro-

posed. The carry estimation method for different truncated-width multiplier is variable

through different input width n. And it can be implemented with few full adder cells.

From simulation result, the error by using direct-truncation can be reduced by proper

1



P0_0

b0

a0

p0

P0_7 P0_6 P0_5 P0_4 P0_3 P0_2 P0_1

P1_6 P1_5 P1_4 P1_3 P1_2 P1_1 P1_0

P2_6 P2_5 P2_4 P2_3 P2_2 P2_1 P2_0

P3_6 P3_5 P3_4 P3_3 P3_2 P3_1 P3_0

b7 b6 b5 b4 b3 b2 b1

a7 a6 a5 a4 a3 a2 a1

p7 p6 p5 p4 p3 p2 p1p8p15 p14 p13 p12 p11 p10 p9

P0_8

P1_7

P2_7

P3_7

P1_8

P2_8

P3_8

n0

n1

n2

n3

Figure 1.1: 8-bit fixed width multiplier

carry compensation.

1.2 Thesis Organization

The organization of this thesis is as follow. In chapter 2, basic concept of two multipliers

and three existed compensation approach are introduced. Chapter 3 shows the statistical

analysis of Baugh-Wooley and Booth encoding multiplier. Chapter 4 illustrates a software

example for a 64-point FFT. The hardware example of a 2048-point FFT is shown in

Chapter 5. Finally, Chapter 6 is the conclusion of this thesis.
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Chapter 2

Existed Fixed Width Multipliers and

Compensation Methods

2.1 Basic Multiplier Architecture

Multiplication is widely used and essential for digital signal processing. Multiplication

algorithms can be designed in many different architectures for various application. The

most basic way to perform multiplication is generating the rows of partial products and

then summing them. For many signal processing application, multiplication operation is

a signed operation, which means one or both operand of multiplication may be signed.

The following paragraph will illustrate two different architecture for signed multiplication.

2.1.1 Baugh-Wooley multiplier

Multiplication of signed number may need abstraction operation while summing the par-

tial products. But we can recall that the signed number is described in 2’s complement

form, which the most significant bit has the negative weight. Hence, the product is :

P =

(
−yM−12

M−1 +
M−2∑

j=0

yj2
j

)(
−xN−12

N−1 +
N−2∑

i=0

xi2
i

)

=
N−2∑

i=0

M−2∑

j=0

xiyj2
i+j + xN−1yM−12

M+N−2 −

(
N−2∑

i=0

xiyM−12
i+M−1 +

M−2∑

j=0

xN−1yj2
j+N−1

)

(2.1)

3



In equation (2.1), the last two terms with negative weight must be subtracted. The

Baugh-Wooley multiplier algorithm [1] handles subtraction function as adding 2’s com-

plement of negative terms.(i.e., inverting each bit of negative terms, and adding one at

least significant bit). Figure 2.1 shows the procedure of summing partial products.

y0

x0

p0

y5 y4 y3 y2 y1

x5 x4 x3 x2 x1

p7 p6 p5 p4 p3 p2 p1p8p11 p10 p9

x0y0x0y1x0y2x0y3x0y4

x1y0x1y1x1y2x1y3x1y4

x2y0x2y1x2y2x2y3x2y4

x3y0x3y1x3y2x3y3x3y4
x4y0x4y1x4y2x4y3x4y4

2 2

0 0

2
N M

i j

i j

i j

x y
− −

+

= =
∑∑

x5y5

11111

____

x0y5

____

x1y5

____

x2y5

____

x3y5

____

x4y511

1

11111

____

x5y0

____

x5y1

____

x5y2

____

x5y3

____

x5y411

1

2

1 12
M N

N Mx y
+ −

− −

2
1

1

0

2
N

i M

i M

i

x y
−

+ −
−

=

−∑

2
1

1

0

2
M

j N

N j

j

x y
−

+ −
−

=

−∑

Figure 2.1: Partial product for 2’s complement Baugh-Wooley multiplier

The upper part of partial product represent unsigned multiplication, and the second

row represents the most significant bit of the product. The final two pairs of rows means

subtraction, which is transformed into 2’s complement form. Notice that each term has

leading and tailing 1’s, which are inversion of implicant leading and tailing 0’s. And the

extra 1 in least significant part must be added while taking 2’s complement.

The simplification of Figure 2.1, called modified Baugh-Wooley multiplier [2] which

reduced partial products by summing the 1’s, is shown in Figure 2.2. We can see that

the most part of sign-extension bits are eliminated, which reduces area complexity and

hardware cost.
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y0

x0

p0

y5 y4 y3 y2 y1

x5 x4 x3 x2 x1

p7 p6 p5 p4 p3 p2 p1p8p11 p10 p9

x0y0x0y1x0y2x0y3x0y4

x1y0x1y1x1y2x1y3x1y4

x2y0x2y1x2y2x2y3x2y4

x3y0x3y1x3y2x3y3x3y4

x4y0x4y1x4y2x4y3x4y4

x5y5

____

x0y5

____

x1y5

____

x2y5

____

x3y5

____

x4y5

____

x5y0____

x5y1____

x5y2____

x5y3____

x5y4

1

1

Figure 2.2: Simplified partial product for 2’s complement Baugh-Wooley multiplier

2.1.2 Booth Encoding Multiplier

Multipliers in the previous section compute partial products are in radix-2 manner, that

is, each bit has one corresponding partial product. In order to reduce the number of

partial products, we can use modified Booth encoding [3] [4] technique. Consideration of

two 2’s complement number X and Y, with m and n bits separately.

X = −xm−1 +
m−1∑

i=1

xm−1−i2
−i

Y = −yn−1 +
n−1∑

j=1

yn−1−j2
−j

(2.2)

We must concatenate a ”0” at the right end of Y for modified Booth encoding, as in

Figure 2.3. Table 2.1 shows the encoding table of partial product.

b0b7 b6 b5 b4 b3 b2 b1 0

y0'y1'y2'y3'

Figure 2.3: Grouping of multiplier bits for bit width n = 8
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Table 2.1: Modified Booth encoding table

y2i+1 y2i y2i−1 y′
i Xsel 2Xsel NEG

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 0 1 1 0 0

0 1 1 2 0 1 0

1 0 0 -2 0 1 1

1 0 1 -1 1 0 1

1 1 0 -1 1 0 1

1 1 1 0 0 0 1

After modified Booth encoding, Y can express as following.

Y =

n/2−1∑

j=0

y′
n/2−1−j2

−(2j+1) (2.3)

where

y′
j = −2y2j+1 + y2j + y2j−1 (2.4)

By using Table 2.1 and Figure 2.4, we can get the simplified partial products. For

example, a 8x8 multiplier’s partial product is shown as follow.

P0_0P0_7 P0_6 P0_5 P0_4 P0_3 P0_2 P0_1

P1_6 P1_5 P1_4 P1_3 P1_2 P1_1 P1_0

P2_6 P2_5 P2_4 P2_3 P2_2 P2_1 P2_0

P3_6 P3_5 P3_4 P3_3 P3_2 P3_1 P3_0

P0_8

P1_7

P2_7

P3_7

P1_8

P2_8

P3_8

n0

n1

n2

n3
β=LPmajor

λ=LPminor

HP (Higher Part) LP (Lower Part)

Figure 2.4: HP and LP part for modified Booth Multiplier when n = 8

And its relationship between partial products and encoded y’ is shown in Table 2.2.
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Table 2.2: Modified Booth encoded partial product

y′
i Pi,8 Pi,7 Pi,6 Pi,5 Pi,4 Pi,3 Pi,2 Pi,1 Pi,0 ni

0 0 0 0 0 0 0 0 0 0 0

1 a7 a7 a6 a5 a4 a3 a2 a1 a0 0

-1 a7 a7 a6 a5 a4 a3 a2 a1 a0 1

2 a7 a6 a5 a4 a3 a2 a1 a0 0 0

-2 a7 a6 a5 a4 a3 a2 a1 a0 1 1

2.2 Compensated Multiplier Architecture

2.2.1 L. D. Van’s Fixed-Width Multiplier

The fixed-width multiplier proposed by L. D. Van will be introduced in this section, [5] [6].

The L. D. Van’s approach is based on Baugh-Wooley multiplier [1]. Figure 2.5 shows the

partial product terms of an 8x8 multiplier using Baugh-Wooley architecture. It can be

divided into two parts, HP (high part) and LP (low part), which represents the most

significant part and the least significant part of partial product.

p0p7 p6 p5 p4 p3 p2 p1p8p15 p14 p13 p12 p11 p10 p9

___

X7Y0 X6Y0 X5Y0 X4Y0 X3Y0 X2Y0 X1Y0 X0Y0
___

X7Y1 X6Y1 X5Y1 X4Y1 X3Y1 X2Y1 X1Y1 X0Y1
___

X7Y2 X6Y2 X5Y2 X4Y2 X3Y2 X2Y2 X1Y2 X0Y2

1

___

X7Y3 X6Y3 X5Y3 X4Y3 X3Y3 X2Y3 X1Y3 X0Y3
___

X7Y4 X6Y4 X5Y4 X4Y4 X3Y4 X2Y4 X1Y4 X0Y4
___

X7Y5 X6Y5 X5Y5 X4Y5 X3Y5 X2Y5 X1Y5 X0Y5
___

X7Y6 X6Y6 X5Y6 X4Y6 X3Y6 X2Y6 X1Y6 X0Y6

X7Y7

___

X6Y7

___

X5Y7

___

X4Y7

___

X3Y7

___

X2Y7

___

X1Y7

___

X0Y71

LP (Low Part)HP (High Part)

Figure 2.5: Partial product of 8-bit Baugh-Wooley Array multiplier
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Generally speaking, the carry from the least significant part to the most significant

part of Baugh-Wooley multiplier can be defined as Equation (2.5).

Carry = [
1

2
β + λ] (2.5)

The two elements in the equation (2.5), β and λ, represent the lower part of the partial

product, and can be seen as a part of Figure 2.5. They are respectively defined in Equation

(2.6) and (2.7), which are shown in Figure 2.6.

β = xn−1y0 + xn−2y1 + xn−3y2 + · · · + x1yn−2 + x0yn−1 (2.6)

λ = 2−2(xn−2y0 + xn−3y1 + · · · + x0yn−2) + · · · + 2−2x0y0 (2.7)

___

X7Y0 X6Y0 X5Y0 X4Y0 X3Y0 X2Y0 X1Y0 X0Y0

X6Y1 X5Y1 X4Y1 X3Y1 X2Y1 X1Y1 X0Y1

X5Y2 X4Y2 X3Y2 X2Y2 X1Y2 X0Y2

X4Y3 X3Y3 X2Y3 X1Y3 X0Y3

X3Y4 X2Y4 X1Y4 X0Y4

X2Y5 X1Y5 X0Y5

X1Y6 X0Y6
___

X0Y7

LSP (least significant part )

λβ

Figure 2.6: β and λ in Baugh-Wooley multiplier

Before introducing L. D. Van’s approach, a terminology, θindex,τ , is shown in Equation

(2.8), and is defined as follow:
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θindex,τ (qn−1−τ , qn−2−τ , . . . , q0) =

< xn−1−τy0 >qn−1−τ + < xn−2−τy1 >qn−2−τ + · · ·+ < x0yn−1−τ >q0

(2.8)

The parameter,τ , means to truncate the (τ -1) least significant columns of partial part,

and keep (n + τ) most-significant columns to be un-truncated, and the binary parameters

qn−1−τqn−2−τ . . .q0 are belong to (0,1).

Equation (2.9) illustrates the operation of < X >q

< X >q=





X, if q = 0

X, otherwise
(2.9)

The X above means the complement of the binary number X. For example, if n = 8,

and keeping eight columns, the 129th index, θindex=129,τ=0, can be written as Equation

(2.10).

θindex=129,τ=0 = x7y0 + x6y1 + x5y2 + x4y3 + x3y4 + x2y5 + x1y6 + x0y7 (2.10)

Two calculation methods of error-compensation bias for τ = 0 will be explained in the

following discussion.

Referencing to the derivation in [6], Equation (2.5) can be rewritten as Equation (2.11)

Carryτ−1 = θindex,τ=0 + [
1

2
β − θindex,τ=0 + λ]γ (2.11)

The following shows that Equation (2.5) can be replaced by Equation (2.12)

Carryτ−1 = (< xn−2y1 >qn−2 + < xn−3y2 >qn−3 + · · ·+ < x1yn−2 >q1) + [K]γ (2.12)

Which K can be shown as Equation (2.13)

K =< xn−1y0 >qn−1 + < x0yn−1 >q0 +
1

2
β − θindex,τ=0 + λ (2.13)

After the index is chosen, the first term in the parenthesis of equation (2.12) can be

easily determined. The second term, [K]γ , can be calculated by the expected value of the
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partial product which can be obtained by full search. Based on the above equations, two

types of carry-estimation formulas are proposed to get more accurate error-compensation

value. These formulas are separately shown in Equation (2.14) and Equation (2.15).

Carrytype1 =






(< xn−2y1 >qn−2 + < xn−3y2 >qn−3 + · · ·+ < x1yn−2 >q1)+[K1]γ ,

if θindex = 0

(< xn−2y1 >qn−2 + < xn−3y2 >qn−3 + · · ·+ < x1yn−2 >q1)+[K2]γ ,

if θindex > 0

(2.14)

Carrytype1 =






(< xn−2y1 >qn−2 + < xn−3y2 >qn−3 + · · ·+ < x1yn−2 >q1)+[K3]γ ,

if θindex < n

(< xn−2y1 >qn−2 + < xn−3y2 >qn−3 + · · ·+ < x1yn−2 >q1)+[K4]γ ,

if θindex = n

(2.15)

Where K1, K2, K3, and K4 are the mean value of K for different range of θindex. For

all different indices in these above equations, the values of K1 and K2 can be determined

by all input condition simulation. We choose the indices which satisfy [K1]γ ∈ (0, 1) and

[K2]γ ∈ (0, 1) in order to reduce hardware complexity. For example, a 6x6 multiplier,

there are only three indices to satisfy the conditions, [K1]γ ∈ (0, 1) and [K2]γ ∈ (0, 1).

But when the bit width ”n” is changed, the indices will no longer satisfy these conditions.

So the second approach ’type 2’ is used to find the fixed value of ’K’ for different bit

width ’n’. By exhaustive search for bit width n from 4 to 12, we can find that the specific

index θindex=2n−1+1 satisfy [K3]γ = 1 and [K4]γ = 0. Because the error-compensation bias

is shown as Equation (2.12) and θindex=2n−1+1 = xn−1y0 + xn−2y1 + . . . + x1yn−2 + x0yn−1

For n ≤ 12, it can be described as Equation (2.16).

Carrytype2,index=2
n−1

+1 =






(< xn−2y1 >qn−2 + < xn−3y2 >qn−3 + · · · + < x1yn−2 >q1) + 1,

if θindex=2
n−1

+1 < n

(< xn−2y1 >qn−2 + < xn−3y2 >qn−3 + · · · + < x1yn−2 >q1),

if θindex=2
n−1

+1 = n

(2.16)
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Exhaustive simulation for large bit width ”n” will be a long time. So ”Type 2” ap-

proach for large ”n” will be introduced in the following. Two cases of ”Type 2” approach,

θindex=2n−1 +1 < n and θindex=2n−1 +1 = n will be separately explained.In order to reduce

time for exhaustive simulation, ”Type 2” approach for large ”n” will be introduced. We

will separately explain two conditions for ”Type 2” approach.

Case 1 : θindex=2n−1+1 < n

Assumed the probability of each bit of input data equals to ”1” is 1/2. Hence, the

expect value E[xiyj] and E[xiyj] are equal to 1/4 and 3/4 separately. According to these

above expect values, the expected value of 1
2
β can be represented as Equation(2.17).

E[
1

2
β] =

1

2
× (

3

4
+

3

4
+

1

4
× (n − 2))

=
n

8
+

1

2

(2.17)

Similarly, the expected value of λ, E[λ] can be shown in the following Equation (2.18).

E[λ] =
1

22
×

1

4
× (n − 1) +

1

23
×

1

4
× (n − 2) + . . . +

1

2n
×

1

4
× 1

=
1

4
(

1

22
× (n − 1) +

1

23
× (n − 2) + . . . +

1

2n
+ 1)

∼=
n

8
−

1

4
, if n ≥ 4

(2.18)

From equation (2.13), the value of [K3]γ for index = 2n−1 + 1 is shown as Equation

(2.19).

[K3]γ = [E[K]]γ

=

[
E[xn−1y0 + x0yn−1 −

1

2
β + λ]

]

γ

=

[
3

4
+

3

4
−

n

8
−

1

2
+

n

8
−

1

4

]

γ

= 1

(2.19)

From above equations, we can obtain the error-compensation bias for bit width ”n”

without exhaustive simulation. Equation (2.20) shows the error-compensation bias for

θindex=2n−1+1 < n, which is the same as Equation (2.16).
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Carrytype2,index=2n−1+1 = (< xn−2y1 >qn−2 + < xn−3y2 >qn−3 + · · ·+ < x1yn−2 >q1) + 1,

if θindex=2
n−1

+1 < n

(2.20)

Case 2 : θindex=2n−1+1 = n

The case θindex=2n−1+1 = n is met only when x0yn−1 = xn−1y0 = 1 and x1yn−2 =

x2yn−3 = . . . = xn−2y1 = 1. So, the expected value of 1
2
β can be represented as

Equation(2.21).

E[
1

2
β] =

1

2
× 1 × n =

n

2
(2.21)

And the expected value of λ, E[λ] can be shown as following.

E[λ] =
1

22

(
1

3
× 1 × 2 + 1 × (n − 3)

)
+

1

22

(
1

3
× 1 × 2 + 1 × (n − 4)

)

+ . . . +
1

2n−1

(
1

3
× 1 × 2

)
+

1

2n

(
1

9
× 1 × 1

)

=
1

2
n −

3

5
if n ≥ 4

(2.22)

From Equation (2.21) and (2.22), the value of [K4]γ for index = 2n−1 + 1 can be

illustrated as following.

[K4]γ = [E[K]]γ

=

[
E[xn−1y0 + x0yn−1 −

1

2
β + λ]

]

γ

= 0
(2.23)

The error-compensation which is the same as Equation (2.16) for case 2 is shown in

Equation (2.24).

Carrytype2,index=2n−1+1 = (< xn−2y1 >qn−2 + < xn−3y2 >qn−3 + · · ·+ <x1yn−2 >q1) + 1,

if θindex=2
n−1

+1 = n

(2.24)

The following Figure 2.7 shows the hardware architecture of an 8-bit fixed-width mul-

tiplier with the 129th index. The A-A cell in the figure is used to determine the value of

θindex=2n−1+1 is equal to n or not.
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Figure 2.7: Fixed-width multiplier with L. D. Van approach for n = 8

2.2.2 S. J. Jou’s Fixed-Width Multiplier

In this section, the S. J. Jou’s approach [7] [8] based on Booth encoding technique will be

discussed. The S. J. Jou’s approach is form by statistical analysis and linear regression

analysis. The following Figure 2.8 shows an example of 6x8 Booth encoding multiplier.

The partial products are divided into two parts, the eight most significant bits as HP

and the six least significant bits as LP. The Carry5 in the figure means the carry from

LP to HP. For fixed width purpose, we will truncate the LP and leave only HP. So the

signal, Carry5, will be forced to zero and some truncation error may be generated by this

procedure. In order to reduce the truncation error, proper error compensation may be

add to the HP.

The signal Carry5, which form LP to HP, can be obtained from Equation (2.25). And

⌊x⌋ is the floor function, which means the largest integer smaller than or equal to the

value of x.
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P0_6P0_6P0_6P0_6 P0_5P0_5P0_5P0_5 P0_4P0_4P0_4P0_4 P0_3P0_3P0_3P0_3 P0_2P0_2P0_2P0_2 P0_1P0_1P0_1P0_1 P0_0P0_0P0_0P0_0

P1_6P1_6P1_6P1_6 P1_5P1_5P1_5P1_5 P1_4P1_4P1_4P1_4 P1_3P1_3P1_3P1_3 P1_2P1_2P1_2P1_2 P1_1P1_1P1_1P1_1 P1_0P1_0P1_0P1_0

P2_6P2_6P2_6P2_6 P2_5P2_5P2_5P2_5 P2_4P2_4P2_4P2_4 P2_3P2_3P2_3P2_3 P2_2P2_2P2_2P2_2 P2_1P2_1P2_1P2_1 P2_0P2_0P2_0P2_0

P3_6P3_6P3_6P3_6 P3_5P3_5P3_5P3_5 P3_4P3_4P3_4P3_4 P3_3P3_3P3_3P3_3 P3_2P3_2P3_2P3_2 P3_1P3_1P3_1P3_1 P3_0P3_0P3_0P3_0

p7p7p7p7 p6p6p6p6 p5p5p5p5 p4p4p4p4 p3p3p3p3 p2p2p2p2 p1p1p1p1 p0p0p0p0p8p8p8p8p13p13p13p13 p12p12p12p12 p11p11p11p11 p10p10p10p10 p9p9p9p9

CarryCarryCarryCarry 5555

HPHPHPHP LPLPLPLP

Figure 2.8: Example of 6 x 8 Booth multipliers

Carry5 =⌊2−1(P0,5 + P1,3 + P2,1) + 2−2(P0,4 + P1,2 + P2,0)

+ 2−3(P0,3 + P1,1) + 2−4(P0,2 + P1,0)

+ 2−5P0,1 + 2−6P0,0⌋

(2.25)

Equation (2.25) can be generalized as Equation (2.26), and τ means the number of

bits which will be truncated.

Carryτ−1 =⌊2−1(P0,τ−1 + P1,τ−3 + · · · + P⌈τ/2⌉−1,1)

+ 2−2(P0,τ−2 + P1,τ−4 + · · · + P⌈τ/2⌉−1,0)

+ · · · + 2−(τ−1)P0,1 + 2−τP0,0⌋

=
⌊
2−1β + λ

⌋

(2.26)

The β and λ in Equation (2.26) can represented as follows.

β = P0,τ−1 + P0,τ−3 + · · · + P⌈τ/2⌉,1

λ = 2−2(P0,τ−2 + P1,τ−4 + · · · + P⌈τ/2⌉,0) + · · · + 2−(τ−1)P0,1 + 2−τP0,0

(2.27)

⌈x⌉ is the ceiling function, which means the smallest integer larger than or equal to

the value of x. The value of β means the number of ”1” in the (τ − 1)th column, and

the value of λ means the sum of remaining columns. Before we introduce the S. J. Jou’s

approach, we must assume the probability of each input bit equaling to ”1” is 1/2 and the

probability of each partial product bit Pi,j equaling ”1” is P (Pi,j). From equation (2.27)
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we can find that the λ is a quite long term. In order to simplify it, we can simplify λ in

terms of β and τ . According to the P (Pi,j) concept, we can rewrite λ as

λ =
τ−1∑

k=1

1

2k+1
× P (Pi,j) ×

⌈
τ − k

2

⌉
(2.28)

The value of P (Pi,j) varies with β and τ . By using statistical and linear regression

line analysis, P (Pi,j) can be approximated as follow.

P (Pi,j) =
0.41

τ
× β + 0.58(0.01 × τ + 0.37) (2.29)

Taking the above two equations into Equation (2.27), the error compensation equation

can be shown as Equation (2.30).

Carryτ−1 =

⌊
2−1β +

{
τ−1∑

k=1

1

2k+1

[
0.41

τ
β + 0.58(0.01τ + 0.37)

⌈
τ − k

2

⌉]}
+ 0.5

⌋
(2.30)

And the value of Carryτ−1 for probable τ are listed in Table . It is obviously that the

β is the best error-compensation value for any value of τ .

Table 2.3: Probable value of Carryτ−1 for different β and τ

τ β + 2 β + 1 β β − 1 β − 2 β − 3 Expected value

4 0 2.34% 85.94% 11.72% 0 0 β − 0.09

6 1.27% 36.35% 56.88% 5.49% 0 0 β + 0.33

8 2.11% 37.06% 53.05% 7.75% 0.04% 0 β + 0.33

10 3.23% 36.78% 50.30% 9.54% 0.14% 0 β + 0.33

12 4.38% 36.24% 47.97% 11.09% 0.31% 3.58E-7 β + 0.33

14 5.52% 35.66% 45.88% 12.38% 0.55% 1.20E-5 β + 0.33

The circuit of 6x8 fixed width multiplier with S. J. Jou’s approach is shown in Figure

2.9. The adder cells in the LP are omitted and are replaced by β(P0,5 + P1,3 + P2,1).

2.2.3 K. J. Cho’s Fixed-Width Multiplier

In this section, the K. J. Cho’s approach [9] [10] with Booth encoding technique will be

discussed. The partial products of modified Booth encoding multiplier can be divided
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Figure 2.9: 6x8 fixed width Booth multiplier with S. J. Jou’s approach

into two parts, HP and LP, as shown in Figure 2.4. And the carry from LP to HP can be

represented as

Carry7 =

⌊
1

2
β + λ

⌋
(2.31)

where β and λ are

β = P0,6 + P1,4 + P2,2 + P3,0 (2.32)

λ = 2−2(P0,5 + P1,3 + P2,1) + 2−3(P0,4 + P1,2 + P2,0 + n2)

+2−4(P0,3 + P1,1) + 2−5(P0,2 + P1,0 + n1)

+2−6(P0,1) + 2−7(P0,0 + n0)

(2.33)

The value of β is the sum of LPmajor and the value λ is the sum of LPminor, as shown

in Figure 2.10. The adder cells in LPminor are discarded and replaced by approximate

carry, shown in Equation (2.34).

Carryτ−1 = CE[
1

2
β + CA[λ]] (2.34)

Where the CE[x] means the exact carry, and the CA[x] means the approximate carry

of x.
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     Higher Part 

   (HP)

LP_major LP_minor                              

Approximate carryExact carry

Figure 2.10: The structure of K. J. Cho’s scheme

The procedure proposed by K. J. Cho can be summarized as follows.

1. Divide LP into LPmajor and LPminor.

2. Compute the approximate carry value of LPminor.

3. Add the approximate carry to LPmajor.

4. The carry from the add operation in step 3 is the error compensation bias.

In order to find the carry estimation bias in the LP, we first define y′′
i as

y′′
i =





1, if y′

i 6= 0

0, otherwise
(2.35)

From Table 2.1, we can see that y′′
i can be computed from

y′′
i = Xi,sel ∨ 2Xi,sel (2.36)

For example, there are only four case for y′′
3y

′′
2y

′′
1y

′′
0 = 1000, which are 1000, 2000, 1000

and 2000. For another example, consider the case of y′′
3y

′′
2y

′′
1y

′′
0 = 0001, and there are three

possible cases are shown as follows.

00000001(0) → y′′
3y

′′
2y

′′
1y

′′
0 = 0001

11111110(0) → y′′
3y

′′
2y

′′
1y

′′
0 = 0002̄

11111111(0) → y′′
3y

′′
2y

′′
1y

′′
0 = 0001̄

(2.37)

And the corresponding cases of partial products are
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Figure 2.11: The partial product of y′′
3y

′′
2y

′′
1y

′′
0 = 0001

Assumed that the probability of each input bit equaling to ”1” is 1/2, so

E[ai] = E[bi] =
1

2
(2.38)

Thus, the rounded value of E[λ] for each case in Figure 2.11 can be computed as

follows

{E[λ]}r =





0, for y′

3y
′
2y

′
1y

′
0 = 0001

1, for y′
3y

′
2y

′
1y

′
0 = 0001̄, 0002̄

(2.39)

Where the {x} is the rounding operation of x.

Notice that E[λ] is always zero when y′′
3y

′′
2y

′′
1y

′′
0 = 1000. That is, no matter how the y′

3

changes, E[λ] will not vary with it. Because no partial product elements corresponding to

y′
3 is included in λ, as shown in Figure 2.4. In general, the element of the partial product

corresponding to y′
n
2
−1 will not be included in LP minor(λ) for any input width ”n”.

From the previous discussion, we can see that the value of E[λ] is determined by the

partial product of LP minor. The K. J. Cho’s method determines the error compensation

more accurately, because the carry from LP minor to LP major is replaced by {E[λ]}.

We only need to calculate the value of {E[λ]} from y′′
n
2
−2y

′′
n
2
−3 · · · y

′′
0 . The procedure of K.

J. Cho’s approach is explained in the following example.

Example 1 : For a 10x10 fixed width Booth multiplier, Table 2.4 shows the value

of {E[λ]} corresponding to all conditions of y′′
3y

′′
2y

′′
1y

′′
0 . Notice that y′′

4 is not included in

Table 2.4. Because no partial product corresponding to y′′
4 has effect on LP minor.
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Table 2.4: Rounded value of E[λ] for bit width

n = 10

y′′
3y

′′
2y

′′
1y

′′
0 (# of cases) {E[λ]}r (# of cases)

0 0 0 0 (4) 0(4)

0 0 0 1 (12) 0(4), 1(8)

0 0 1 0 (12) 0(4), 1(8)

0 0 1 1 (36) 1(36)

0 1 0 0 (12) 0(4), 1(8)

0 1 0 1 (36) 1(36)

0 1 1 0 (36) 1(36)

0 1 1 1 (108) 1(52), 2(56)

1 0 0 0 (12) 0(4), 1(8)

1 0 0 1 (36) 1(36)

1 0 1 0 (36) 1(36)

1 0 1 1 (108) 1(52), 2(56)

1 1 0 0 (36) 1(36)

1 1 0 1 (108) 1(52), 2(56)

1 1 1 0 (108) 1(52), 2(56)

1 1 1 1 (324) 2(324)

Consider the Table 2.4, we can see that the necessary number of carry signal is two.

Thus, two signals(LP carry 0 & LP carry 1) shown in Table 2.5 are needed to represent the

rounded value of E[λ]. From Table 2.4 and Table 2.5, Karnaugh map representation for

these two signal can be obtained in Figure 2.12. The value of approximate carry in Figure

2.12 can be determined by using probability analysis. For example, for y′′
3y

′′
2y

′′
1y

′′
0 = 0001,

P[{E[λ] = 0}]=4/12 and P[{E[λ] = 1}]=8/12. Thus, the approximate value of carry is

determined to be 1. So the LP carry 0 and LP carry 1 signals can be simplified from each

Karnaugh map as
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Table 2.5: Representation of approximate

carry values

Rounded value LP carry 0 LP carry 1

0 0 0

1 1 0

2 1 1

LP carry 0 = y′′
3 + y′′

2 + y′′
1 + y′′

0

LP carry 1 = y′′
3y

′′
2(y

′′
1 + y′′

0) + y′′
1y

′′
0(y

′′
3 + y′′

2)
(2.40)

1 1 1

1 1 1

1 1 1

1 1 1

1

1

1

1

1 1 1

1

00 01 11 10

00

01

11

10

y1"y0"

y3"y2"

y1"y0"

y3"y2"
00 01 11 10

00

01

11

10

(a) (b)

Figure 2.12: Karnaugh map for (a) LP carry 0 and (b) LP carry 1 for bit width n = 10

Figure 2.13 shows the circuit of Equation (2.40), which is the approximate carry from

LP minor to LP major. Thus, the carry signal result from LP major are added to HP as

the error compensation bias.

The procedure of example 1, called approximate carry generation procedure (ACGP)

I, is listed as follows.

1. For input bit width n, the number of approximate carry signal is determined by

NAC = ⌊n/4⌋.

2. Denote the approximate carry signals in order. For example, LP carry 0, LP carry 1,

. . ., LP carry (NAC − 1).
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LP_carry_1

LP_carry_0y3"

y2"

y1"

y0"

Figure 2.13: Approximate carry circuit for n = 10

3. Calculate the rounded values of E[λ] for all cases of y′′
n
2
−2 + y′′

n
2
−3 · · · y

′′
0

4. Generate carry generation circuit by applying Karnaugh map to the result of step

3.

It is very time consuming to perform exhaust simulation for large bit width n. So a

statistical analysis for obtaining approximate carry will be introduced as following.

Given that y′′
i is 1, it can be shown that E[Pi,j] = 1/2. If y′′

2y
′′
1y

′′
0 = 100 in Figure 2.4,

E[λ] can be calculate by Equation (2.31) as follows:

E[λ] = E[2−1(P2,1 + 2−2(P2,0 + n2))]

= 2−1E[P2,1] + 2−2(E[P2,0] + E[n2])

= 2−1 + 2 − 2(2−1 + 2−1)

= 2−1

(2.41)

By the same way, the values of E[λ] for y′′
2y

′′
1y

′′
0 = 010 and y′′

2y
′′
1y

′′
0 = 001 are both equal

to 2−1. For n = 8, E[λ] can be expressed as

E[λ] = 2−1(y′′
2 + y′′

1 + y′′
0) (2.42)

In general case, E[λ] can be represented as

E[λ] = 2−1

n/2−2∑

i=0

y′′
i (2.43)

Where n in the above equation is the bit width of multiplier. The following shows an

example for n = 10.
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Example 2 : Consider the case of bit width n = 10, the rounded value E[λ]

E[λ] = 2−1

10/2−2∑

i=0

y′′
i = 2−1(y′′

3 + y′′
2 + y′′

1 + y′′
0) (2.44)

The maximum rounded value of E[λ] is 2. So, two signals are needed for the rounded

value. Notice that if only one y′′
i in Equation (2.44) equals to 1, the rounded value is 1.

And if three of more y′′
i equal to 1, the rounded value is 2. Means that the number of

carry signal can be determined as follows.

E[λ] =
⌊
2−1(y′′

3 + y′′
2 + y′′

1 + y′′
0)
⌋

(2.45)

By using this scheme, the approximate carry generation circuit for n = 10 and n = 14

can be obtained and shown in Figure 2.14.

FA

FA

y
3
" y
2
" y
1
" y

0
"

1

LP_carry_1

LP_carry_0

FA FA

FA

y
5
" y
4
" y
3
" y

2
" y
1
" y
0
"

LP_carry_0LP_carry_1

LP_carry_2

1

(a) (b)

Figure 2.14: Approximate carry generation circuit for (a) n = 10 (b) n = 14

The procedure of example 2, called approximate carry generation procedure (ACGP)

II, is listed as follows.

1. Divide {y′′
n
2
−2y

′′
n
2
−3 · · · y

′′
0} into groups of three signals. If the number of signal in the

set is 3N + k(k = 1, 2), then the last group has only k signals.

2. N FAs are required for 3N signals. For k = 2, the last two signals needs a HA. For

k = 1, it needs only a carry input at the next stage. The N(N + 1 for K = 2) carry

signals form the approximate carry signals.
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3. The sum signals from step 2 are added as step 2. Then the carry signals from these

adders are approximate carry signals. The new sum signals generated from present

stage are passed to the next stage.

4. Repeat step 2 until only one sum signal remains.

5. Add 1 to the last adder.

The circuit for bit width n = 8 with K. J. Cho’s approach is shown in Figure 2.15. We

can see that the lower part of adder cells are reduced and replaced by carry approximation

signals (LP carry 0 and LP carry 1), which are generated from Figure 2.14.
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P
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Figure 2.15: Fixed-width multiplier with K. J. Cho’s approach for bit width n = 8
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Chapter 3

Statistical Analysis of Truncated

Width Multiplier

3.1 Analysis of Carry Estimation for Baugh-Wooley

Multiplier

Consider the n-bit Baugh-Wooly 2’s complement multiplier. Suppose the two input de-

fined as A = −an−12
n−1+

∑n−2
j=0 aj2

j and B = −bn−12
n−1+

∑n−2
i=0 bi2

i, where aj, bj ∈ {0, 1},

then the product is

A × B = an−1bn−12
n−2 +

n−2∑

j=0

n−2∑

i=0

ajbi2
j+i

+ 2n−1

(
−2n−1 +

n−2∑

j=0

ajbn−12j + 1

)
+ 2n−1

(
−2n−1 +

n−2∑

i=0

an−1bj2i + 1

) (3.1)

Define Pij = ajbi and Pij denote the bit inverse of Pij. The partial product can be

shown as Figure 3.1. To keep the fixed width property, the input width and output

width must be the same. So we should keep the n-bit most significant part (MSP).

Different truncation method will result in different truncation error and computation

complexity. The post-truncate method remove the last n-bit least significant part (LSP)

after the overall summation is completed, produce the smaller truncation error. However,

its requires the most computation complexity. On the other hand, the direct-truncation
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method discard the computation of LSP part, which leads large truncation error and has

the least computation complexity.

an-1

_____

P0_n-11

an-2 a1 a0

bn-1 bn-2 b1 b0

P0_n-2 P0_1 P0_0

P1_0P1_1P1_n-3P1_n-2

_____

P1_n-1

Pn-2_0Pn-2_1Pn-2_n-2

_____

Pn-2_n-1

Pn-1_0Pn-1_1Pn-1_n-2

_____

Pn-1_n-11

β γ

n-bit Least Significant Part (LSP)n-bit  Most Significant Part (MSP)

Figure 3.1: Partial product for A × B n-bit fixed width Baugh-Wooley multiplier

Let Sum denote the MSP part of A × B, and from Figure 3.1 and Equation 3.1, the

product of post-truncated method can be shown as

A × Bpost truncation = Sum + 2n

[
1

2

n−1∑

i=0

Pi,n−i−1 +
n−1∑

i=0

n−i−2∑

j=0

Pi,j2
j−n

]

r

= Sum + 2n

[
β

2
+ λ

]

r

= Sum + 2nσ

(3.2)

where σ =
[

β
2

+ λ
]
r

is the carry-in to the Sum. The [x]r operation in Equation 3.2 is

the round operation, which rounds x to its nearest number. From Equation 3.2 we can see

β domains the value of carry-in σ. So we can utilize the information of β to compensate

the truncation error.

Define αj = Pn−j−1,j and βi = Pi,n−i−1 [11] first, then the element of partial product

Pi,j = ajbi depends both on aj and bi, and Pi,j is related to {P0,j, P1,j, . . . , Pn−1,j} and

{Pi,0, Pi,1, . . . , Pi,n−1}. We can define PAj
= {P0,j, P1,j, . . . , Pn−1,j} for j = 0, 1, . . . , n − 1

and PBi
= {Pi,0, Pi,1, . . . , Pi,n−1} for i = 0, 1, . . . , n−1, so the partial product of A×B will
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be composed of PA0
, PA1

, . . . , PAn−1
or PB0

, PB1
, . . . , PBn−1

. Figure 3.2 shows an example

for n = 8 and the dependency among the partial products with αj ∈ PAj
and βi ∈

PBi
. Thus, the element αj (or βi) that constitutes β =

∑n−1
j=0 αj =

∑n−1
i=0 βi contains

the information of all Pi′j ∈ PAj
(or Pij′ ∈ PBi

). From above discussion, we can find

that λ strongly depends on β and can be estimated from the information implied in

β. Three carry estimation method will be presented in the following section. Without

loss of generality, the input of multiplier should be independent and uniform distributed,

means that the probability P (ajbi) = P (aj)P (bi), P (aj = 0) = P (aj = 1) = 1
2

and

P (bi = 0) = P (bi = 1) = 1
2
.

P0,0

____

P0,7 P0,6 P0,5 P0,4 P0,3 P0,2 P0,1

P1,6 P1,5 P1,4 P1,3 P1,2 P1,1 P1,0

P2,5 P2,4 P2,3 P2,2 P2,1 P2,0

P3,4 P3,3 P3,2 P3,1 P3,0

P4,0P4,3 P4,2 P4,1

P5,2 P5,1 P5,0

P6,1 P6,0
____

P7,0

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

λβ

β0 =α7=

β1 =α6=

β2 =α5=

β3 =α4=

β4 =α3=

β5 =α2=

β6 =α1=

β7 =α0=

Figure 3.2: The LSP of partial product for an n = 8 Baugh-Wooley multiplier. PAj
=

{P0,j, P1,j, . . . , Pn−1,j} and PBi
= {Pi,0, Pi,1, . . . , Pi,n−1}.

3.1.1 Type I : Carry Estimation Conditioned on aj or bi

Consider any element Pij of partial product, it is generated from aj×bi, so the conditional

expectation E [Pij|aj = 0] = 0 and E [Pij|aj = 1] = 1
2
. Therefore, any elements Pij ∈ PAj

can be estimated as aj · E [Pij|aj = 1] + (1 − aj) · E [Pij|aj = 0] =
aj

2
Then λ can be

estimated as
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λBWI
=

n−2∑

j=0

n−j∑

k=2

aj

2
2−k

=
1

2

n−2∑

j=0

aj

n−j∑

k=2

2−k

=
1

4

n−2∑

j=0

aj −
1

4

n−2∑

j=0

aj2
−(n−j−1)

(3.3)

The second term of Equation (3.3) can be approximated (rounding) by its expectation

[
E

[
1

4

n−2∑

j=0

aj2
−(n−j−1)

]]

r

=

[
1

8

n−2∑

j=0

2−(n−j−1)

]

r

=

[
1

8

(
2−(n−1) + 2−(n−2) + . . . + 2−1

)]

r

=

[
1

8

(
1 − 2−(n−1)

)]

r

= 0

(3.4)

So the carry in to MSP can be estimated as follows.

σ
(a)
BWI

=

[
1

2

(
β +

1

2

n−2∑

j=0

aj

)]

r

(3.5)

By using similar procedure, we can get the carry-in from bi

σ
(b)
BWI0 =

[
1

2

(
β +

1

2

n−2∑

i=0

bi

)]

r

(3.6)

From the initial assumption, A and B are uniform distributed, so Equation (3.5) and

Equation (3.6) will result in the same carry-in. But the computation complexity will

apparently grow as n increases.

3.1.2 Type II : Carry Estimation Conditioned on αj or βi

Now consider αj = Pn−1−j,j and β = Pi,n−i−1 in Figure 3.1, notice that αj = βn−j−1.

The expectation values of any partial product conditioned on αj are E [Pij|αj = 0] =

1
6

and E [Pij|αj = 1] = 1
2
. So Pij can be determined by the conditional expectation

αj · E [Pij|αj = 1] + (1 − αj) · E [Pij|αj = 0] =
αj

3
+ 1

6
.
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λ
(α)
BWII

=
n−2∑

j=0

(
αj

3
+

1

6

) n−j∑

k=2

2−k

=
1

2

n−2∑

j=0

(
αj

3
+

1

6

)(
1 − 2−(n−1−j)

)

≈
1

2

n−2∑

j=0

(
αj

3
+

1

6

)

=
1

6

n−2∑

j=0

αj +
(n − 1)

12

=
(β − αn−1)

6
+

(n − 1)

12

(
β =

n−1∑

j=0

αj

)

(3.7)

The Type II carry estimation denoted by σ
(α)
BWII

is

σ
(α)
BWII

=

[∑n−1
j=0 αj

2
+ λ

(α)
BWII

]

r

=

[
n−2∑

j=1

αj +
α0

2
+

αn−1

2
+ λ

(α)
BWII

−
1

2

n−2∑

j=1

αj

]

r

=
n−2∑

j=1

αj + [δ]r

(3.8)

where δ = α0

2
+ αn−1

2
+ λ

(α)
BWII

− 1
2

∑n−2
j=1 αj.

From the same procedure, the carry-in estimated by βi can also be conditioned by the

expectation value of E [Pij|βi], which is shown as follows.

λ
(β)
BWII

=
(β − βn−1)

6
+

(n − 1)

12
(3.9)

3.1.3 Type III : Carry Estimation Conditioned on αj and βi

Since Pij depends on αj and βi, we can estimate value of Pij, denoted by P̂ij, by the

conditional expectation E[Pij|αjβi]. Notice that αj = βn−j−1.

P̂ij = αjβi · E [Pij|αjβi = 1] + (1 − αjβi) · E [Pij|αjβi = 0]

= βn−j−1βi · E [Pij|βn−j−1βi = 1] + (1 − βn−j−1βi) · E [Pij|βn−j−1βi = 0]
(3.10)
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Table 3.1 lists the probabilities of P (Pij = 1|αjβi = 0) and P (Pij = 1|αjβi = 1). From

Equation 3.10 we can see the carry estimation of Type III, called λ
(αβ)
BWIII

, is related to

the vector of {β0, β1, . . . , βn−1}. So, comparing Type II and Type III can be thought as

one-dimension and two-dimension estimation. Since two-dimension estimation contains

more information of the partial product, it will result in less truncation error. From the

Type II estimation shown in Equation (3.9), λ
(β)
BWIII

should be related to (β − βn−1) since

they have both conditioned on β. In order to express λ
(αβ)
BWIII

simply, we define θ as follows.

θ =
n−1∑

i=0

βi2
i =

n−1∑

i=0

αn−i−12
i (3.11)

Table 3.1: Conditional probability of the partial products for Type III

Probability
i ∈ {1, 2, . . . , n − 2} and i ∈ {0, n − 1} and j ∈ {1, 2, . . . , n − 2} or i ∈ {0, n − 1} and

j ∈ {1, 2, . . . , n − 2} j ∈ {0, n − 1} and i ∈ {1, 2, . . . , n − 2} j ∈ {0, n − 1}

Pr (Pij = 1|αjβi = 0) 1

5

3

13

3

7

Pr (Pij = 1|αjβi = 1) 1 1

3

1

9

Thus, there are two important factor for λ
(αβ)
BWIII

, the vector of {β0, β1, . . . , βn−1} and

(β − βn−1). Note that several combinations of {β0, β1, . . . , βn−1} will result in the same

(β − βn−1) value. From Figure 3.3 we can observe that λ
(αβ)
BWIII

and (β − βn−1) are highly

correlated. If any two different θ lead to the same (β − βn−1), the corresponding λ
(αβ)
BWIII

will also be similar. In other words, once (β − βn−1) is given, we can find the maximum and

the minimum number of λ, called λmax and λmin, to meet the corresponding (β − βn−1).

Moreover, the λmax and λmin can be also viewed as the boundaries of the carry estimation.

We can rewrite the σ in Equation 3.2 by Equation 3.12, note that
[

β
2

]
r

=
⌊

β+1
2

⌋
r
.

σ =

[
β

2
+ λ

]

r

=

[
β + 1

2
+

2λ − 1

2

]

r

≈

⌊
β + 1

2

⌋
+

[
2λ − 1

2

]

r

(3.12)
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Figure 3.3: Relationship between λBWIII
, θ, and β − βn−1 for n = 8. The solid line and

the dash line represent the value of λBWIII
and β − βn−1

Subsequently, Type III carry estimation of value (2λ − 1) will be estimated as Equation

(3.13).

2λ
(αβ)
BWIII

− 1 ≈

[
1

2
((2λmax − 1) + (2λmin − 1))

]

r

(3.13)

Figure 3.4 shows an 8-bit example of (2λmax − 1) and (2λmin − 1) from Figure 3.3. For

β − βn−1 = 0, 1, 2, . . . , 7 in this example, 2λ
(αβ)
BWIII

− 1 will be 0,1,1,2,2,3,4,4, respectively.

However, it is difficult to determine 2λ
(αβ)
BWIII

− 1 by Equation (3.12) and (3.13). So a

look-up table method is required for Type III estimation. For example, consider the case

of n = 8,
[
2λ

(αβ)
BWIII

− 1
]

r
= 0, 1, 1, 2, 2, 3, 4, 4 ≈

⌊
1
2
(β − βn−1 + 1)

⌋
. From the similar

procedure,
[
2λ

(αβ)
BWIII

− 1
]

r
for different n is shown in Table 3.2.

3.2 Analysis of Carry Estimation for modified Booth

Multiplier

Radix-4 Booth multiplier converts the multiplication of A × B into A × y by Table 3.3,

where B = {bn−1, bn−2, . . . , b0} and y =
{
y⌈n/2⌉−1, y⌈n/2⌉−2, . . . , y0

}
. Note that the b−1

is always 0 and the number of rows in partial product are reduced into
⌈

n
2

⌉
. Same as
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Figure 3.4: All cases of β − βn−1 for λmax and λmin at n = 8

Baugh-Wooley multiplier, the partial product of modified Booth multiplier, Pij = ajyi,

can be also divided into two parts, n-bit MSP and n-bit LSP. The most significant column

of LSP is represented by β and the summation of rest (n − 1) columns is denoted as λ.

The β dominates the carry-in to the MSP, so the compensation for Booth multiplier can

be expressed as a function of β.

Similar to Baugh-Wooley multiplier, we define PAj = {P0,j, P1,j, . . . , Pn,j}, PBi =

{Pi,0, Pi,1, . . . , Pi,n−1}, αj = Pn−1−j,j and βi = Pi,n−1−i. Since {α0, α1, . . . , αn−1} and
{
β0, β1, . . . , β⌈n/2⌉−1

}
contains the information of a0, a1, . . . , an−1 and β0, β1, . . . , β⌈n/2⌉−1,

respectively, we can estimate Pij by the conditional expectations of E [Pij|yi], E [Pij|αj]

and E [Pij|βi]. The three estimation method will be presented as follows.

3.2.1 Carry estimation by Conditioning on yi

For the encoded Booth multiplication A×yi, if yi = 0, all elements in the row will be zero.

So the carry should be estimated only when yi 6= 0. All elements Pij can be estimated

by conditional expectation by E [Pij|yi 6= 0]. From Table 3.4 and Table 3.5 we can verify

E [Pij|yi 6= 0] = 1
2
. Moreover, let yi′′ denote the event yi 6= 0, then Pij can be estimated

by
yi′′

2
. Besides, the ni in Booth encoding equals to 1 only when yi < 0. It also has

conditional expectations E [ni|yi′′ = 1] = 1
2

and E [ni|yi′′ = 0] = 0. Hence, ni can also
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Table 3.2: The estimated 2λ
(αβ)
BWIII

−1 for different

bit width n

Bit-width (n) 2λ
(αβ)
BWIII

− 1

8
⌊

1
2
(β − βn−1 + 1)

⌋

10
0, if β − βn−1 = 0

⌊
1
2
(β − βn−1 + 2)

⌋
, otherwise

12
⌊

1
2
(β − βn−1 + 2)

⌋

14
⌊

1
2
(β − βn−1 + 3)

⌋

16
⌊

1
2
(β − βn−1 + 3)

⌋

estimated by
yi′′

2
. Then the estimated value λ will be

λBoothI
=

⌈n/2⌉−1∑

i=0

(
yi′′

2

n−2i∑

k=2

2−k +
yi′′

2
2−(n−2i)

)

=
1

4

⌈n/2⌉−1∑

i=0

yi′′

(3.14)

The carry in to MSP is σBoothI
=
[

β
2

+ λ
]
r

=
[

1
2

(
β + 1

2

∑⌈n/2⌉−1
i=0 yi′′

)]

r
. The Type I

carry in signal can be directly generated from the Booth encoding output, but it requires

much computation complexity for 1
2

∑⌈n/2⌉−1
i=0 yi′′ as bit width n increases.

3.2.2 Carry estimation by Conditioning on βi

Since βi = akyi which contains the information of yi, we can estimate the conditional

expectation by E [Pij|βi]. In order to get E [Pij|βi], we must calculate these conditional

probabilities of P (Pij|βi = 1) and P (Pij|βi = 0) as Equation (3.15) and (3.16).
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Table 3.3: Radix-4 modified

Booth encoding table

b2i+1 b2i b2i−1 yi ni

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 2 0

1 0 0 -2 1

1 0 1 -1 1

1 1 0 -1 1

1 1 1 0 0

Table 3.4: Probabilities of yi for radix-4 Booth encoding

P (yi = −2) P (yi = −1) P (yi = 0) P (yi = 1) P (yi = 2)

i = 0 1
4

1
4

1
4

1
4

0

0 < i < ⌈n/2⌉ 1
8

1
4

1
4

1
4

1
8

P (Pij = ajyi = 1, βi = akyi = 0)

= P (aj−1 = 1, ak−1 = 1, yi = −2) + P (aj = 0, ak = 1, yi = −1)

+ P (aj = 1, ak = 0, yi = 1) + P (aj−1 = 1, ak−1 = 0, yi = 2)

=
3

16

(3.15)

P (Pij = ajyi = 1, βi = akyi = 1)

= P (aj−1 = 0, ak−1 = 0, yi = −2) + P (aj = 0, ak = 0, yi = −1)

+ P (aj = 1, ak = 1, yi = 1) + P (aj−1 = 1, ak−1 = 1, yi = 2)

=
3

16

(3.16)

And the probability of P (βi) is
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Table 3.5: The value of

Pij form ajaj−1 and yi

Pij ajaj−1

yi 00 01 10 11

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

-2 1 0 1 0

-1 1 1 0 0

P (βi = akyi = 1) =P (ak−1 = 0, yi = −2) + P (ak = 0, yi = −1)

+P (ak = 1, yi = 1) + P (ak−1 = 1, yi = 2)

=
3

8

(3.17)

So P (βi = 0) = 5
8
, we can get E [Pij|βi = 0] =

P (Pij=1,βi=0)

P (βi=0)
= 3

10
and E [Pij|βi = 1] =

P (Pij=1,βi=1)

P (βi=1)
= 1

2
. On the other hand, consider the conditional probabilities of ni

P (ni = 1|βi = 0) =
P (yi = −1, ak = 1) + P (yi = −2, ak−1 = 1)

5/8
=

3

10
(3.18)

and

P (ni = 1|βi = 1) =
P (yi = −1, ak = 0) + P (yi = −2, ak−0 = 1)

3/8
=

1

2
(3.19)

Thus, E [ni|βi = 0] = P (ni=1,βi=0)
P (βi=0)

= 3
10

and E [ni|βi = 1] = P (ni=1,βi=1)
P (βi=1)

= 1
2
, and Type

II carry estimation λBoothII
can be shown as follows.

λBoothII
=

⌈n/2⌉−1∑

i=0

[(
βi

2
+

3

10
(1 − βi)

) n−2i∑

k=2

2−k +

(
βi

2
+

3

10
(1 − βi)

)
2−(n−2i)

]

=
β

10
+

3

20

⌈n

2

⌉
(3.20)

34



3.2.3 Carry estimation by Conditioning on αj

Since Pij = ajyi and αj = ajyi′ , where i 6= i′, so Pij is related on αj and we can estimate Pij

by the conditional expectation E [Pij|αj]. Before we compute the value of E [Pij|αj = 1]

and E [Pij|αj = 0], P (Pij = 1|αj = 1) and P (Pij = 1|αj = 0) must be computed first.

From Table 3.6 and 3.7, the conditional probabilities are

P (Pij = 1|αj = 1) =
P (Pij = 1, αj = 1)

P (αj = 1)
=

18/128

3/8
=

3

8
(3.21)

P (Pij = 1|αj = 0) =
P (Pij = 1, αj = 0)

P (αj = 0)
=

15/64

5/8
=

3

8
(3.22)
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Table 3.6: Conditions for both Pij = 1 and αj = Pi′j = 1

yi′ = −2 yi′ = −1 yi′ = 1 yi′ = 2

yi = −2
aj−1 = 0 aj−1 = 0, aj = 0 aj−1 = 0, aj = 1 NA

(
1

128

) (
1

128

) (
1

128

)
(0)

yi = −1
aj−1 = 0, aj = 0 aj = 0 NA aj−1 = 1, aj = 0

(
1

128

) (
1
32

)
(0)

(
1

128

)

yi = 1
aj−1 = 0, aj = 1 NA aj = 1 aj−1 = 1, aj = 1

(
1

128

)
(0)

(
1
32

) (
1

128

)

yi = 2
NA aj−1 = 1, aj = 0 aj−1 = 1, aj = 1 aj−1 = 1

(0)
(

1
128

) (
1

128

) (
1

128

)

Table 3.7: Conditions for both Pij = 1 and αj = Pi′j = 0

yi′ = −2 yi′ = −1 yi′ = 0 yi′ = 1 yi′ = 2

yi = −2
NA aj−1 = 0, aj = 1 aj−1 = 0 aj−1 = 0, aj = 0 aj−1 = 0

(0)
(

1
128

) (
1
64

) (
1

128

) (
1

128

)

yi = −1
aj−1 = 0, aj = 1 NA aj = 0 aj = 0 aj−1 = 0, aj = 0

(
1

128

) (
1
32

) (
1
32

) (
1
32

) (
1

128

)

yi = 1
aj−1 = 1, aj = 1 aj = 1 aj = 1 NA aj−1 = 0, aj = 1

(
1

128

) (
1
32

) (
1
32

)
(0)

(
1

128

)

yi = 2
aj−1 = 1 aj−1 = 1, aj = 1 aj−1 = 1 aj−1 = 1, aj = 0 NA

(
1

128

) (
1

128

) (
1
64

) (
1

128

)
(0)

Equations (3.21) and (3.22) means that the events of Pij and αj are independent if

the inputs are uniformly and independently distributed. Then, the expected value of Pij

is

E [Pij|αj = 1] = E [Pij|αj = 0] = E [Pij] =
3

8
(3.23)

Equation 3.23 indicates that all the Pij in λ can be estimated by a constant value,

3
8
. From similar procedure, the expect value of ni, E [ni], can also be estimated by 3

8
.
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Then the carry estimation of Type III for an n-bit radix-4 Booth multiplier is calculated

as follows.

λBoothIII
=

3

8

⌈(n−1)/2⌉−1∑

i=0

n−2i∑

k=2

2−k +
3

8

⌈(n−1)/2⌉−1∑

i=0

2−(n−2i)

=
3

16

⌈n

2

⌉
(3.24)

3.3 Generalized Carry Estimation

The carry estimation methods mentioned in above two sections both truncate halt bits

of multiplication result. In some cases, fewer bits are required to be truncated. For

1 ≤ z ≤ n, an n-bit fixed-width multiplier that truncates (n− z) bits are illustrated as in

Figure 3.5. The carry from β to γ can be represented as follows.

σz = 2n−z+1

[
β

2
+ λ

]

r

≈ 2n−z+1

(⌊
β + 1

2

⌋
+

[
2λ − 1

2

]

r

)
(3.25)

MSP

γ β λ

n-bit (z-1)-bit 1-bit (n-z)-bit

  (n+z)-bit

n-bit

Rounding

Figure 3.5: Add n + z columns and round the result to n-bit

From the same concept, since β still provides the information of λ, the carry estimation

equations can be derived and listed in Table 3.8, 3.9 and 3.10.
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Table 3.8: Estimation for Baugh-Wooley multipliers

while truncating the least (n − z)-bit

Type Estimation of λ

Type I(a) 2−z
∑n−z−1

j=0 aj

Type I(b) 2−z
∑n−z−1

i=0 bi

Type II(α) 2−z
∑n−z−1

j=0

(αj

3
+ 1

6

) (
1 − 2−(n−z−j)

)

Type II(β) 2−z
∑n−z−1

i=0

(
βi

3
+ 1

6

) (
1 − 2−(n−z−i)

)

3.4 Simulation Result

Exhaustive simulations are required for comparing the performance of each compensation

method. In order to provide a quantitative performance measurement, we define the mean

absolute error as follows. Assume the multiplier and multiplicand are both n-bit.

|ǫ| =
1

22n

2n−1−1∑

i=−2n−1

2n−1−1∑

j=−2n−1

|Mn − i × j| (3.26)

Where Mn is the product of the n-bit fixed-width multiplier to be compared, and

the comparison of mean absolute error for z = 1 are listed in Table 3.11. Since Booth

encoding reduces the number of partial products, the error of Booth multiplier is smaller.

By observing Table 3.11, about 85% and 80% error of the Baugh-Wooley and Booth

multipliers are compensated regardless of the bit-width n.
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Table 3.9: The estimated 2λ
(αβ)
BWIII

− 1 for different bit width n and z

Bit-width (n) 2λ
(αβ)
BWIII

− 1, z = 2 2λ
(αβ)
BWIII

− 1, z = 3

8
0, if β − βn−z = 0 ⌊

1
2 (β − βn−1) + 1

⌋
⌊

1
2 (β − βn−1) + 1

⌋
, otherwise

10 1
2 ⌊β − βn−z⌋+mod((β − βn−1) , 2)

1, if(β − βn−1) = 1

⌊
1
2 (β − βn−z)

⌋
, otherwise

12
⌊

1
2 (β − βn−1 + 2)

⌋
⌊

1
2 (β − βn−z)

⌋
, if β − βn−z > 3

⌊
1
2 (β − βn−z + 1)

⌋
, otherwise

14

⌊
1
2 (β − βn−z + 2)

⌋
, if 0 ≤ β − βn−z < 4

⌊
1
2 (β − βn−z + 2)

⌋
, if 0 ≤ β − βn−z < 2

⌊
1
2 (β − βn−z + 1)

⌋
, if 4 ≤ β − βn−z < 9

⌊
1
2 (β − βn−z + 1)

⌋
, if 2 ≤ β − βn−z < 7

⌊
1
2 (β − βn−z)

⌋
, otherwise

⌊
1
2 (β − βn−z)

⌋
, otherwise

16
⌊

1
2 (β − βn−z + 2)

⌋ ⌊
1
2 (β − βn−z + 2)

⌋

Table 3.10: Estimation for Booth

multipliers while truncating the least

(n − z)-bit

Type Estimation of λ

Type I 2−(z+1)
∑⌈n/2⌉−⌊z/2⌋

i=0 yi′′

Type II 2−z
(

β
10

+ 3
20

⌈
n
2

⌉)

Type III 2−z
(

3
8

⌈
n
2

⌉)
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Table 3.11: Mean absolute error

Method n = 8 n = 10 n = 12 n = 14 n = 16

Post-Trun. 63.75 255.75 1023.75 4095.75 16383.75

Direct Trun. B.W. 576.25 2816.25 13312.25 61440.25 278528.2

B.W. λ = 0 146.38 803.17 4161.13 20597.50 98511.41

B.W. Van’s [6] 105.96 456.26 1943.43 8217.69 34554.25

Proposed B.W. Type-I 92.05 403.46 1743.25 7456.74 31651.57

Proposed B.W. Type-II 102.81 403.15 1750.22 7513.40 30792.76

Proposed B.W. Type-III 90.18 393.89 1673.38 7313.21 30120.3

Direct-Trun.Radix-4 Booth 384.25 1920.25 9216.25 43008.25 196608.2

Radix-4 Booth,λ = 0 139.68 725.74 3622.57 17474.12 82030.32

Radix-4 Booth,Jou’s [8] 107.1 477.09 2083.53 8978.42 38315.33

Proposed Radix-4 Booth Type-I 84.59 350.78 1461.55 6040.97 24965.26

Proposed Radix-4 Booth Type-II 88.77 393.60 1667.44 6745.14 28706.97

Proposed Radix-4 Booth Type-III 88.77 406.16 1654.26 6771.68 31267
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Chapter 4

Software Simulation for 64-point

FFT

4.1 Introduction to Fast Fourier Transform (FFT)

Algorithm

Discrete Fourier Transform(DFT) is widely used in digital signal procession application.

For a N-point DFT, where N is a number with power of two, we can use the Fast Fourier

Transform(FFT) algorithm to reduce the computation time and complexity.

Given a sequence x[n], the N-point DFT is defined as

X[k] =
N−1∑

n=0

x[n]W kn
N , k = 0, 1, 2, . . . , N − 1 (4.1)

where X[k] and x[n] are complex numbers and W kn
N is

W kn
N = e−j(2π/N) = cos

(
2πnk

N

)
− j · sin

(
2πnk

N

)
(4.2)

When we directly use Equation (4.1) to compute the value of N-point DFT, its com-

putational complexity is O(N2). But if we use radix-r FFT algorithm, the computational

complexity will apparently reduce to O(N logN
r ). For example, consider the decimation in

time FFT algorithm, which divided x[n] into two sequence, one for odd points and the

other for even points, then Equation (4.1) can be written as

41



X[k] =

(N/2)−1∑

r=0

x[2r]W rk
N/2 + W k

N

(N/2)−1∑

r=0

x[2r + 1]W rk
N/2 = G[k] + W k

NH[k] (4.3)

The corresponding figure is shown in Figure 4.1. So each N-point DFT can be replaced

by two N/2-point DFT and several adder operation. From similar procedure, we can

further reduce the N/2-point DFT into N/4-point DFT. Finally, for N = 8, the simplified

FFT architecture is shown in Figure 4.2.
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Figure 4.1: Decomposition of N-point DFT into N/2-point DFT by decimation in time
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Figure 4.2: Decimation in time FFT butterfly architecture for N = 8
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4.1.1 Radix 23 Architecture for 64-point FFT

In order to derive the 64-point FFT algorithm by using radix 23 FFT algorithm [12], we

must define

n = 32α1 + 16α2 + 8α3 + α4, α1, α2, α3 = 0, 1; α4 = 0, 1, . . . , 7

k = β1 + 2β2 + 4β3 + 8β4, β1, β2, β3 = 0, 1; β4 = 0, 1, . . . , 7
(4.4)

By using Equation (4.4), Equation (4.1) can be rewritten as

X [β1 + 2β2 + 4β3 + 8β4] =

7∑

α4=0

1∑

α3=0

1∑

α2=0

1∑

α1=0

x [32α1 + 16α2 + 8α3 + α4]

× W
(β1+2β2+4β3+8β4)(32α1+16α2+8α3+α4)
64

(4.5)

The twiddle factor in Equation (4.5) can be decomposed as

W
(β1+2β2+4β3+8β4)(32α1+16α2+8α3+α4)
64 =

W α1β1

2 W α2β1

4 W α2β2

2 W
α3(β1+β2)
8 W α3β3

2 W
α4(β1+2β2+4β3)
64 W α4β4

8

(4.6)

Thus, Equation (4.5) becomes

X [β1 + 2β2 + 4β3 + 8β4] =
7∑

α4=0

BU8 [β1, β2, β3, α4, ] W
α4β4

8 (4.7)

BU8 is the 8-point FFT butterfly architecture, and it can be divided into 3 steps by

using radix-2 index map, called radix 23 butterfly architecture. The following equation

shows the property.

BU8 [β1, β2, β3, α4, ] =

1∑

α3=0

1∑

α2=0

1∑

α1=0






BU2 [α1, α2, α3, α4] W
α1β1

2 W α2β1

4︸ ︷︷ ︸
1st step

W α2β2

2 W
α3(β1+β2)
8

︸ ︷︷ ︸
2nd step

W α3β3

2 W
α4(β1+2β2+4β3)
64

︸ ︷︷ ︸
3rd step






(4.8)
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Each step has four butterfly operations. After the butterfly operation, the twiddle fac-

tor is multiplied to corresponding butterfly output point, as shown in Figure 4.3. Except

the twiddle factor multiplication, there are only three twiddle factors in radix 23 algo-

rithm, W 4
8 , W 1

8 and W 3
8 . W 4

8 = −j, so we just need to exchange real part and imaginary

part. The other two twiddle factor W 1
8 and W 3

8 , which equal to
√

2(1−j)
2

and −
√

2(1−j)
2

sepa-

rately, can be replace by some add operations. Because the
√

2
2

which equals to 0.70710678

can be approximated by 2−1 + 2−3 + 2−4 + 2−6 + 2−8, which can be implemented by five

shifters and four adders. As a result, the 64-point FFT with 2-level radix 23 algorithm is

shown in Figure 4.4.
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Figure 4.3: Butterfly of radix 23 Algorithm

4.2 Software Simulation for a 64-point FFT

The 64-point FFT with radix-23 algorithm has only one complex multiplier array stage.

It locates between the two radix-23 stage, which shown in Figure 4.4. In this 64-point

FFT simulation, we choose the input bit width n equal to 8 and the quantified twiddle

factor bit width 9. Notice the input bit width through three stage of addition in Figure

4.3 will grow to 11 bits. So the input of complex multiplier array will be 11 × 9. The

following subsections introduces some compensation method with various truncation bits.
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Radix 2
3

Radix 2
3

Figure 4.4: 64-point FFT Butterfly with radix 23 Algorithm

4.2.1 Method 1 : Direct Imaginary Part Compensation

The complex multiplication can be detail list in following equation

(a + j · tw1) × (b + j · tw2) = (a · b − tw1 · tw2) + j × (a · tw2 + b · tw1) (4.9)

where a and b are input to the complex multiplier; tw1 and tw2 are the quantified

twiddle factor. For fixed-width property, some least significant bits must be truncated,

and the corresponding truncation error will arise. Assume the error in each truncation

of multiplier equals to ǫ, then Equation 4.9 with the truncation error can be rewritten as

follows.

(a + j · tw1) × (b + j · tw2) ={[(a · b)trun + ǫ1] − [(tw1 · tw2)trun + ǫ2]}

+ j × {[(a · tw2)trun + ǫ3] + [(b · tw1)trun + ǫ4]}
(4.10)

Rewrite the real part and the imaginary part of Equation 4.10 we can get

Real Part : (a · b)trun + (tw1 · tw2)trun + ǫ1 − ǫ2 (4.11)
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Imaginary Part : (a · tw2)trun + (b · tw1)trun + ǫ3 + ǫ4 (4.12)

The quantified twiddle factor in the 64-point FFT will be kept to some constant value.

Consider the post-truncation method, it truncate the unnecessary bits after multiplica-

tion. By software simulation for post-truncation method, we can get the corresponding

truncation error. It results in different value for different truncation bit, as listed in the

following Table 4.1.

Table 4.1: Truncation error v.s. truncation bits of the post-

truncation for a 64-point FFT

11 × 9 with k-bit truncation k = 8 k = 9 k = 10 k = 11

a · b (ǫ1) 0.4300 0.4619 0.4755 0.4839

tw1 · tw2 (ǫ2) 0.4247 0.4375 0.4376 0.4375

a · tw2 (ǫ3) 0.4277 0.4323 0.4316 0.4357

b · tw1 (ǫ4) 0.4283 0.4590 0.4735 0.4851

We can notice that the truncation error in the real part of complex multiplication can

be eliminated, and the error in the imaginary part will be accumulated. As shown in the

following Table 4.2.

Table 4.2: Truncation error of real part and imaginary part

11 × 9 with k-bit truncation k = 8 k = 9 k = 10 k = 11

Real Part (ǫ1 − ǫ2) 0.0053 0.0244 0.0379 0.0464

Imaginary Part (ǫ3 + ǫ4) 0.8560 0.8913 0.9051 0.9208

From above analysis, we can directly compensate 1 at the imaginary part of the

complex multiplier. By the SQNR (Signal to Quantization Noise Ratio) function defined

in Equation (4.13), we can see the improvement of the compensation for a 64-point FFT,

as listed in Table 4.3.

SQNR = 10 × log10

∑∣∣X2
ref

∣∣
∑ ∣∣(Xref − X)2

∣∣ (4.13)
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Table 4.3: SQNR comparison with imaginary part compensation

SQNR of 11 × 9 with k-bit truncate k = 8 k = 9 k = 10 k = 11 k = 12

Post truncation 47.1259 42.4836 36.9213 30.9923 24.9635

Post truncation imaginary part + 1 49.6604 46.6120 41.7880 36.0879 30.1041

From the above table, we can see the compensation has strongly improvement for

SQNR.

4.2.2 Method 2 : Proposed Single Multiplier Compensation

For Booth encoding multiplier, we choose Type-III estimation in Equation (3.24) to esti-

mate it. In the case of 11 × 9, the n is equal to 10 and the Type-III estimation is equal

to

σTypeIII
=

β

2
+

3

16

⌈
10

2

⌉
=

β

2
+

15

16
≈

β

2
+ 1 (4.14)

The corresponding SQNR are listed as follows.

Table 4.4: SQNR comparison with Booth Type III compensation

SQNR of 11 × 9 with k-bit truncate k = 8 k = 9 k = 10 k = 11 k = 12

Booth direct truncation 37.7897 32.1659 26.2788 20.2672 14.2282

Post truncation 47.1259 42.4836 36.9213 30.9923 24.9635

Type III estimation σ = β
2

+ 1 45.4798 43.1634 38.1305 32.3758 26.2117

4.2.3 Comparison

Figure 4.5 shows the diagram of SQNR v.s. truncation bits. We can see the pro-

posed Booth compensation method will have better SQNR while comparing to the post-

truncation method. And the direct imaginary part compensation outperforms than all

other methods. But it requires the most hardware since there is no any truncation of cal-

culating the LSP and need an extra hardware to implement the +1 circuit. The following
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chapter will discuss about the hardware complexity among these truncation methods by

using a 2048-point FFT example.

Figure 4.5: SQNR v.s. truncation bits
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Chapter 5

Hardware Application for 2048-point

FFT

5.1 Architecture of a 2048-point FFT

Since 2048 is not a power of 8, we can decomposed the 2048-point FFT into three stages

of radix-23 and one stage of radix-22, as the following equation.

X (k1 + 8k2 + 64k3 + 512k4) =

3∑

n4=0






7∑

n3=0






7∑

n3=0

{
7∑

n3=0

x(n′)

}

︸ ︷︷ ︸
stage 1

W k2n2

8 W
k2(4n3+n4)
256





︸ ︷︷ ︸

stage 2

W k3n3

8 W k3n4

32





︸ ︷︷ ︸

stage 3

W k4n4

8

︸ ︷︷ ︸
stage 4

(5.1)

where





x(n′) = x (256n1 + 32n2 + 4n3 + n4) W k1n1

8 W
k1(32n2+4n3+n4)
2048

k1, k2, k3 = 0, 1, 2 ; k4 = 0, 1, 2, 3
(5.2)

And the block diagram of the the FFT/IFFT processor [13] is shown in Figure 5.1.

It consists of four FFT/IFFT control units, a main memory unit, a processing engine
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(PE), and a cache. In this design, a novel block scaling method and a new ping-pong

cache-memory architecture are proposed. Since FFT and IFFT have only difference in

complexconjugated twiddle factors, the IFFT can be implemented by conjugating FFT

input and output [14] as shown in Figure 5.1. And the modules of the design is discussed

as follows.

M

U

X

[*]

FFT/IFFT control Eight-bank 

4096-word

 SRAM

control

Eight-bank 

4096-word

 SRAM

Butterfly unit & 

complex multiplier

Block 

scaling 

unit

64-word 

cache

Main memory

Processing 

engine

M

U

X

[*]

FFT/IFFT control

Date path

Control path

FFT/IFFT for Path 1

FFT/IFFT for Path 2

FFT/IFFT for Path 1

FFT/IFFT for Path 2

Path 1 output

Path 2 output

Path 1 input

Path 2 input

Ping-pong cache-memory architecture

Figure 5.1: Block diagram of the two-stream FFT/IFFT processor

5.1.1 Main Memory

For memory-based FFT, continue flow (CF) memory [15] architecture is used to reduce

the memory size. Although CF FFT can reduce memory size by doing I/O operation

concurrently in a single memory, it requires additional control units. Because the original

CF FFT uses radix-4 and radix-2 algorithms which have different bit-reverse orders. In

this design, radix-23 and radix-22 algorithms are used and have the same bit-reverse order

as radix-2 algorithm [16].
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5.1.2 Ping-Pong Cache Memory Architecture

Cached-memory FFT [17] [18] is proposed for low power consumption by reducing the

memory accesses. Data are first read from main memory and then sent to the cache,

as shown in Figure 5.2. Although cached-memory FFT can reduce memory accesses

effectively, a complex controlled concurrent read/write cache with unit is required to

increase the throughput. Thus the ping-pong cache-memory architecture which uses a

simple cache with single read/write operations is proposed, as shown in Figure 5.3. The

data read from the main memory are used by PE first and then written to the cache.

After the cache is full, data in the cache are read by PE and the computed results are

stored back to the main memory. By using the architecture, half the memory accesses

can be reduced.

PE Cache Main memory

Figure 5.2: Cache-memory architecture

PECache Main memory

Figure 5.3: Ping-pong cache-memory architecture

5.1.3 Processing Engine (PE)

The processing engine with block scaling approach is shown in Figure 5.4. Consider the

case of 2048-point FFT, the inputs have the same decimal point at the fist processing stage,

so the data alignments are skipped. The input data are sent into radix-23 Butterfly Unit

(BU) directly and then passed to the first overflow detection and scaling unit (ODSU1)

in Figure 5.4. If an overflow is detected, all inputs will be scaled and the corresponding

51



shift value in exponent will be saved in the block scaling unit. Afterward, the output of

ODSU1 is sent to the complex multipliers for twiddle factor multiplications. The outputs

of the complex multipliers are passed to the second overflow detection and scaling unit

(ODSU2) in Figure 5.4. The second and third stages are similar to stage 1. For stage 4,

the radix-22 operation is performed and only scaling is performed in ODSU1. Complex

multiplications and ODSU2 are skipped because there is no twiddle factor multiplication

at the final stage.

3 2

Mult

1

Mult

2

Mult

3

Mult

4

Mult

5

Mult

6

Mult

7

ROM ROM ROM ROM ROM ROM ROM

Block 

scaling 

controller

Exponent 

table

By pass

Selection of 

radix-23/22/2

Block scaling unit 

(BSU)

Figure 5.4: Ping-pong cache-memory architecture

52



5.2 Proposed Multiplier Architecture for 2048-point

FFT

In this section, we will discuss multipliers in this 2048-point FFT. The multiplication

in the FFT is 12 × 9 and truncate 6 bits, and the output of the multiplication is 15

bits. In the complex multiplication operation defined in Equation 4.9, the real part an

imaginary part must be add or subtract. After summing or subtracting the truncated

result, it truncates additional 2 bits finally, as shown in Figure 5.5. Several methods for

this procedure is listed in the following sub-sections.

Truncate

2 bits

21

21

12

12

9

9

16 14

Truncate 

6 bits

15

15

Truncate 

6 bits

Figure 5.5: Multiplier Architecture for the 2048-point FFT

5.2.1 Method 1 : Design-Ware Direct Truncate Compensation

For the 2048-point FFT application, 6 bits are truncated in each multiplication. If we

directly truncate the unused part of the partial product and directly compensate 1 to the

remaining parts, the area of multiplier will be saved without much performance loss. As

shown in the following table.

Table 5.1: Comparison between truncated and un-truncated multiplier

Area (Gate count) SQNR (dB, for FFT)

Post-truncation 737.6 47.6818

Direct truncate, compensate 1 718.3 48.2845
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5.2.2 Method 2 : Single Multiplier Compensation

Consider the Type-III compensation of Booth multiplier, it corresponding partial product

expected value can be shown as follows.

37.50 37.50

37.50 37.50

37.50 37.50

Unit : %λβ

6-bit Least Significant Part for FFT application

p0p5 p4 p3 p2 p1

37.5037.5037.50

37.5037.50

37.50

37.50

37.50

37.50

Figure 5.6: Corresponding expected value of partial product in 6-bit truncation

From Figure 5.6 we can calculate the compensation equals to carry in = β
2

+ 9
16

=

β
2

+ 0.5625. Consider all cases of β we can get






β = 0, carry in = 0.5625 ≈ 1

β = 1, carry in = 1.0625 ≈ 1

β = 2, carry in = 1.5625 ≈ 2

β = 3, carry in = 2.0625 ≈ 2

(5.3)

From equation (5.3) we can conclude the carry estimation equation as follows.

carry in =

⌊
β

2

⌋
+ 1 (5.4)

And its mean absolute error defined in Equation (3.26) compared with post-truncation

is listed in the following Table 5.2.

Table 5.2: Mean absolute error comparison

12 × 9 → 15 (truncate 6 bits) Mean absolute error

Direct-truncate 72.25(100%)

Post-truncate 15.75(21.80%)

Proposed with carry in =
⌊

β
2

⌋
+ 1 22.77(31.51%)
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5.3 Comparison

The following Table 5.3 shows the gate counts of different multipliers. If we directly

truncate the least significant 6 bits of the partial product, about 2.6% gate counts will be

saved. For Booth encoding multiplier, about 12.8% gate counts will be saved.

Table 5.3: Multiplier gate count comparison

12 × 9 Gate count

Design-ware multiplier 737.6

Design-ware direct truncate 6 bits compensation 718.3

Booth multiplier 948.6

Proposed Booth multiplier compensation truncate 6 bits 826.9

The SQNR of different compensation method are listed in the following Table 5.4. We

can see the proposed Booth compensation has the similar SQNR value to post-truncate

multiplier.

The hardware complexity of proposed multiplier and design-ware post-truncated mul-

tiplier using TSMC 0.18µm 1P6M technology is listed in Table 5.5.

We can see the both method 1 & 2 can reduce about 4.7% hardware of combinational

circuits since it truncates a part of partial products.

Table 5.4: SQNR comparison

Multiplier type Compensation SQNR (dB)

Design-ware multiplier

Direct truncate 47.6818

Direct truncate, directly compensate 1 48.2845

Post-truncate 48.0919

Post-truncate, imaginary + 1 48.4029

Booth multiplier

Direct truncate 47.5245

Post truncate 48.4029

Single multiplier compensation 48.4496
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Table 5.5: Hardware complexity (gate count) comparison

Combinational Sequential Total

Post-truncation 71657(18.88%) 307973(81.12%) 379630(100%)

Design-ware direct-trun., then compensate 1 68193(18.13%) 307948(82.87%) 376132(100%)

Proposed single multiplier compensation 68294(18.15%) 307959(82.85%) 376253(100%)

The chip layout view by using method 1 & 2 is shown in Figure 5.7 & 5.8. The

chip summary of the design-ware post-truncated multiplier and proposed single multiplier

compensation multiplier are listed in Table 5.6.

Table 5.6: The chip summary of design-ware post-truncated multiplier architecture

v.s. proposed Booth multiplier architecture

Type
Design-ware Design-ware direct-truncation,

Proposed

post-truncation then compensate 1

Process UMC 0.18µm 1P6M

Memory size 512 × 24 bits × 16

Operation frequency 25MHz

Core area 2.3mm × 2.3mm

Total gate count 374552 376252 370257

Average core power 109mW 136mW 127mW
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Figure 5.7: Layout view of proposed multiplier for 2048-point FFT
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Figure 5.8: Layout view of Design-ware direct-truncate, then compensation 1 multiplier

for 2048-point FFT
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Chapter 6

Conclusion

In this thesis, the carry estimation methods base on statistical analysis is proposed. There

is dependency among the truncated partial product of multipliers. Therefore the depen-

dency of the Baugh-Wooley and the Booth multipliers are discussed and three types of

carry estimation methods based on different conditions are proposed. The Type-III com-

pensation of Booth multiplier is the simplest type for implementation, because it always

deduced to a constant compensation. Furthermore, the estimation value can be changed

as the truncating bits vary. 85% and 80% error of the Baugh-Wooley and Booth multi-

pliers can be improved from the simulation result.

For real case application, the software simulation for 64-point FFT is discussed in

Chapter 4. This chapter provides two compensation methods: the directly compensation

for post-truncate multiplier can increase 2dB or more while comparing to post-truncate

method; and the Type-III compensation for Booth multiplier can have similar SQNR

performance while comparing to post-truncate method.

In Chapter 5, the hardware of a 2048-point FFT is implemented by 0.18µm 1P6M

CMOS technology. By comparing to the design-ware multiplier, the direct truncate and

compensate 1 method can reduce about 2.7% area for a single multiplier with about

0.6dB loss in SQNR. The single multiplier compensation method can reduce about 4.7%

gate count without loss in performance. In conclusion, our approach provide a lower area

comparing to the post-tuncated multiplier and high-performance closing to post-truncated

method.
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