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Chapter 1

Introduction

1.1 Motivation for Designing Low Power Clock

Network

Clock design plays an important role in modern VLSI designs. A chip may have

millions of gates with a very complex structure. Studies have shown that the clock

network contributes 20-50% of the total power on a chip. It is necessary to develop

process to significantly reduce the power dissipation of the clock network, because

of the growing importance of low-power designs for portable electronics. The de-

sign of the clock distribution network determines the clock skew, thus affecting the

maximum attainable clock frequency. Clock tree design also determines the tran-

sition times of the signals at the clock elements, which again limits the maximum

frequency of operation. Therefore the clock distribution needs more careful design

planning methodology for modern VLSI.

The problem of clock tree synthesis for zero skew has been widely researched. The

DME method [8] [6] optimally embeds a given clock tree topology in the Manhattan

plane with zero-skew and attempts to minimize the total wire length. In addition

to zero-skew, a second requirement on a clock tree is that the slew rate must be

sharp. This requires the insertion of buffers to isolate the downstream capacitance.

Various buffering algorithms [17] [15] have been proposed that can be used either
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directly or adapted for clock routing.

High power dissipation is primarily due to the large amount of capacitance driven

by the clock net. It already has many techniques to reduce the power consumption

[16] [19]. Here, we propose a methodology for building low power buffered clock trees

using a smaller voltage to distribute the signal over the chip, and then transmit the

low-swing signal to low-swing flip-flops.

1.2 Organization of This Thesis

The rest of this thesis is organized as follows. Chapter II presents previous work, the

delay and power estimation model and problem formulation. Chapter III introduces

background of the proposed clock network and buffer insertion criterion. Chapter

IV shows the proposed algorithm including clustering and DME with simultaneously

buffer insertion. In Chapter V, we present the experimental results and Chapter VI

concludes this thesis.
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Chapter 2

Preliminaries

In this chapter, we give a brief overview of previous clock tree design. Moreover,

we introduce the models that we use in this thesis, and formulate our problem as

follows.

2.1 Previous Works

Previous works on clock tree construction concentrated on zero or near zero-skew

routing. In addition to zero-skew, further work focus on routing clock tree with

minimum total wire length and phase delay [8] [5] [7]. A bottom-up construction

algorithm [14] reduced the total wire length by 15%, though its time complexity is

O(n2 log n). A clustering-based algorithm [4] improved the time complexity with-

out any increase of the total wire length. The Deferred-Merge Embedding (DME)

algorithm embeds internal nodes of topology G via a two-phase process. Let u and

v be the nodes of a ZST (zero-skew tree). First, DME bottom-up merging scheme

which ensures zero-skew under Elmore delay model is proposed and presents loci of

possible locations of internal nodes in the zero-skew tree. A top-down phase then

resolves the exact locations of all internal nodes in ZST.

The DME algorithm computes merging segment msv, representing the set of

possible placement of v yielding a min-cost ZST rooted at v. The merging segment
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Figure 2.1: Construction of a merging segment msp = trru

⋂
trrv.

is always a Manhattan arc, i.e., a segment having slope +1 or -1. Let p be the

parent of u and v. The computation of msp is based on msu and msv. That is, msp

is a set of points such that the ZSTs rooted at msu and the ZSTs rooted at msv

can be merged with minimum added cost. For merging schemes, a widely accepted

conclusion is that a subtree should be merged with its nearest neighboring subtree

to save wire length.

The set of points within a fixed distance of a Manhattan arc is called a tilted

rectangular region (TRR). The boundary of a TRR is composed of Manhattan arcs.

The Manhattan arc at the center of a TRR is called its core. The radius of a TRR is

the Manhattan distance between its core and its boundary. It has been shown that

msp = trru

⋂
trrv, where trru is the TRR with core msu and radius |eu| and trrv is

the TRR with core msv and radius |ev|. It is shown in the Figure 2.1. During the

second phase, DME algorithm determines exact locations for the internal node in a

top-down fashion. [1] proposes a buffered clock tree synthesis applying a clustering

algorithm to obtain clusters of approximately equal capacitance loading.

Since a clock network is normally very large, buffers are often employed to ensure
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an acceptable slew rate. It is a constraint on the maximum allowable rise time on

any buffer input signal. The constraint guarantees the correct operation of the

clock tree and will be shown to be useful in manipulating the clock tree design. [10]

places buffers of the same size at the nodes of the same level in the clock tree for two

reasons: (1) zero skew routing generally results in a balanced tree; (2) this level by

level buffering scheme can reduce the effect of inter-die process variations. However,

low power design tends to have less number of buffers to reduce the power dissipation.

[17] investigates the problem of computing a lower bound on the number of buffers

required when given a maximum clock slew rate constraint and a predefined clock

tree.

Clock networks account for a significant fraction of the power dissipation of

a chip and are critical to performance. [16] presents theory and algorithms for

building a low-power clock tree by distributing the clock signal at a lower voltage

and translating the signal to a higher voltage at the utilization points. Two low-

power schemes are used: reduced swing and multiple-supply voltages. Reduced

swing clock scheme with drivers, intermediate drivers and receivers are illustrated

in Figure 2.2.

Furthermore, the power dissipation of flip-flops can be decreased by some circuit

techniques. Clustered Voltage Scaling(CVS), firstly proposed in [19], is a simple and

practical technique for low power design. The essence of such technology is based on

the utilization of excess timing slack in synchronous circuits. [13] shows that a low-

swing clock double-edge triggered flip-flop(LSDFF) is developed to reduce power

consumption significantly compared to conventional flip-flops. It uses a double-edge

triggered operation as well as a low-swing clock. [12] also used the reduced swing

clock driver and a special flip-flop which embodies the leak current cutoff mechanism.
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Figure 2.2: Reduced swing clock scheme [16], it is constructed by drivers, buffers
and receivers.

2.2 Delay Computation and Skew Constraints

We assume that a clock tree is a binary tree in which the root is the clock source

and the leaves are clock pins (flip-flops). Elmore delay model is used in computing

the signal propagation delay of the clock tree. Let ev denote the edge between an

internal node v and its parent. Let rv be the resistance of edge ev and Cv be the

total capacitance of subtree Tv. The delay from a node u of the clock tree to a

descendant node v of u, denoted by d(u, v) is

d(u, v) =
∑

u′∈path(u,v)

ru′Cu′

Where path(u,v) is the set of nodes along the unique path from u to v excluding v.

Let r be the root, N be the number of clock pins, and li(1≤i≤N) be a leaf. Clock

skew can be defined as

S = max
0<i,j<N

| d(r, li)− d(r, lj) |

The model of the buffer is shown in Figure 2.3

In this model a buffer has three parameters: input capacitance cb, output resis-

tance rb, and internal delay db. Buffers of different sizes have different parameters.
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Figure 2.3: Buffer model has three parameters cb, rb, db.

Figure 2.4: Zero-skew merging (with no buffers) v1, v2 are subtrees of parent node
v.

If the tree topology is given, the position of the root v of the new subtree formed

after merging can be determined from the positions of the two children v1 and v2 of

v. This is illustrated in Figure 2.4 and 2.5. Let tv denote the delay from v to any

leaf of subtree Tv. Then

tv = rl1(
cl1
2

+ Cv1) + tv1

= rl2(
cl2
2

+ Cv2) + tv2

where l1 (l2) is the wire length from v to v1 (v2), and r and c are per unit

resistance and per unit capacitance of the routing wire. At a zero-skew merge, it is

clear that l1+l2 ≥l, where l is the distance between v1 and v2. Therefore, in order

to minimize the total wire length, it is desired to find v such that l1+l2=l. If there
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Figure 2.5: Zero-skew merging (with buffers inserted) v1, v2 are subtrees of parent
node v.

is no such a v, zero-skew routing algorithms should use a ”snaking”. The number

of snaking depends on algorithms and the input data. The same equations hold for

the case in Figure 2.5, where node v1 and v2 are buffered. The relation between tvi

and t’vi (i = 1, 2), the delay value before buffer insertion, is

tvi = db + rb ∗ Cvi + t′vi

During each merging distances l1 and l2 are determined such that the delay from

the new root v to all leaves are all the same. In other words, zero skew is maintained.

2.3 Power Estimation of Clock Network

In modern VLSI designs, the high power dissipation in the clock net is primarily

due to the large amount of capacitance driven by the clock net, in conjunction with

the fact that the clock net switches on every transition. The total-power dissipation

consists of two components: (1) the static-power dissipation, which is due to a leak-

age current of transistors during steady state. (2) the dynamic power dissipation,

which has two components: short circuit and charge/discharge of capacitance power

dissipation. The short circuit power dissipation is a function of the slew rate of the
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input voltage; the sharper the clock edge, the lower the short circuit power dissipa-

tion.Moreover, the design trend is to use more pipeline stages for high throughput,

which increases the number of flip-flops in a chip. Thus it is important to reduce

power consumption in both the clock trees and the flip-flops. Power consumption

of a particular clocking scheme ca be represented as

Pck−scheme = Pck−network + PFF

where Pck−network and PFF represent power consumptions in the clock network and

flip-flops, respectively. Each term in (1) can be expressed as

Pck−network = (Cline + Cck−tr) ∗ V 2
ck−swing ∗ fck

PFF = (αi ∗ Ci ∗ γ + αo ∗ Co ∗ γ + Cck−buf ) ∗ V 2
DD ∗ fck

Where Cline is the interconnect line capacitance, Cck−tr is the capacitance of the

clocked transistors of the buffers, Ci is the internal node capacitance of the FF,

Cck−buf is the capacitance of the clock buffers inside the FF, Co is the output node

capacitance of the FF, Vck−swing is the clock swing voltage level,αi is the internal

node transition activity ratio,αo is the output node transition activity ratio, and fck

is the clock frequency. γ is 2 for double-edge triggered FFs and 1 for single-edge

triggered FFs.

2.4 Problem Formulation

Same as other clock routing works, we adopt the Elmore delay model for delay

computation. The total wire, buffer and flip-flop capacitance, resistance and low-

swing clock voltage are considerations for the dynamic power consumption. The

problem we will solve is formally stated follows.

Given a set of clock pins S = {vs
1, vs

2,..., vs
n} and a clock root vr. A clock tree is

defined by a tree rooted by vr whose n clock pins are S(Figure 2.6). A set of pins in
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Figure 2.6: Clock tree routing with a root vr and pins S={vs
1, vs

2,..., vs
8}.

the subtree rooted by a node v is denoted by Sv. In this thesis, clock trees are always

binary. We called the nearest internal node to the root denoted by vc. We want to

construct a zero-skew clock tree T rooted at Vr with clock sinks as leaf nodes such

that the total power consumption is minimized. The transition time constraint is

satisfied for any nodes for 10% of clock period.
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Chapter 3

Low-Swing Buffered Clock Tree

Clock network plays an important role in power dissipation in a chip. In order

to reduce power consumption, we use the low-swing clock voltage to translate the

signal by low-swing buffers. Furthermore, LSDFF (Low-Swing Clock Double-Edge

Triggered Flip-Flop) can use double-edge triggered operation as well as a low-swing

clock. The details of the clock distribution are shown in the following subsections.

3.1 Structure of Low-Swing Clock Tree

In [16], multiple-supply voltage and low-swing interconnection schemes require ad-

ditional LH converters that convert the incoming clock signal to the chip from a

high-voltage swing to a lower-voltage swing. The input clock could be generated so

that it has a low-voltage swing. The clock signal is then transmitted on the chip

as a low-voltage signal, thereby ensuring a low power clock distribution network.

We can save more power if we can transmit the low-swing signal directly to flip-

flop without level converter. Therefore, we present a low-swing clock scheme with

low-swing buffers and low-swing flip-flops. It is illustrated in Figure 3.1

The low-swing buffer is shown in Figure 3.2 from [12]. The clock swing, Vclock =

VDD - n*Vth depends on the number of inserted MOSFETs. The power consumption

associated with the clock distribution is proportional to Vclock in this case. The
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Figure 3.1: Low swing clock scheme with low-swing buffers and low-swing flip-flops.

buffers do not require additional supply voltage, so they are easily implemented. We

simulate the low-swing buffer by SPICE under the condition of n=1, and Vdd=1.8V.

The buffers can transmit the low-swing signal about 1.1V one by one during the

simulation.

The low-swing flip-flop is presented in Figure 3.3 from [13]. It reduces power

consumption in both the clock tree and the flip-flops. LSDFF uses both a low-swing

clock and a double-edge triggered operation to reduce power consumption in the

clock network. Further, LSDFF does not have any redundant internal data holding

node switching. Therefore, we establish a SPICE model using 0.18um CMOS pro-

cess for LSDFF. The simulation condition is 1.8V Vdd with clock frequency 125MHz.

The low-swing clock voltage is about 1.1V, and the output load capacitance is ap-

proximately 100fF. The simulated waveform [13] of the LSDFF are shown in Figure

3.4 and 3.5.
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Figure 3.2: Low swing drivers Vclock = VDD - n*Vth [12].

Figure 3.3: Scheme of LSDFF(Low-Swing Double-Edge Triggered Flip-Flop) [13].
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Figure 3.4: Simulated waveforms ”High” to ”Low” transition of Q at rising edge of
the clock.

Figure 3.5: Simulated waveforms ”Low” to ”High” transition of Q at falling edge of
the clock.
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3.2 Buffer Insertion

A clock network distributes the clock signal from the clock source to the clock sinks.

This must be done while maintaining the integrity of the signal, and minimizing the

following clock parameter: (1) clock skew. (2) clock skew rate. (3) clock phase delay

or latency. Consider a buffered clock tree, which is a tree that contains buffers in

its source to sink paths. The addition of a buffer to a clock path reduces the wiring

load and may also reduce the gate load to the clock driver. Hence, one may reduce

the clock slew rates by adding buffers in a clock tree. The following facts motivate

minimizing the number of buffers used in a clock tree: (1) total capacitance and

the total power consumed in driving clock signal; (2) the number of buffers may be

large enough to be of significant impact in total chip area.

For this work, we make the following assumption. (1) the clock slew rate is a

prediction of the 7% of maximum allowable transition time on any node input signal.

This assumption guarantees the correct operation of the clock tree by checking the

transition time violation during embedding phase. (2) the clock tree will be buffered

with a single type of low-swing buffer. We employ SPICE simulation to construct a

look-up table for our low-swing buffers. The variables of the table is input transition

and load capacitance. The table gives out the output transition time. For the

transition time after a wire, we employ the PERI (Probability distribution function

Extension for Ramp Input) method [2] [15] to compute the output transition time.

It is a simple technique for extending any delay metric derived for a step input

into a delay metric for a ramp input for RC trees that is valid over all input slews.

According to PERI method, the output transition time is the root-mean square of

the output transition time of step input and input transition:

tout =
√

t2in + t2step

15



The output transition time of step input tstep is computed based on RC network

charging process.
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Chapter 4

Low-Swing DME Buffering for
Low Power Clock Network
Construction

In this chapter, we briefly describe our algorithm, which is based on DME algorithm.

In order to reduce the wire length and number of buffers inserted, we modify the

DME algorithm from [16] to fit our requirement. The details of these modifications

are shown in the following subsections.

4.1 Load Clustering

The influence of clustering method on wire length are significant. The bottom-up

phase during DME, the order of merging is very important. Furthermore, improper

order of merging may cause the total wire length increasing and consume more

power. For traditional matching-based methodology [11] [16], a geometric matching

of 2N segments or sinks cluster into N groups between segments, with no two of

the N group sharing the same segments. This algorithm generates a good results

due to the perfect matching when pins are regularly distributed. [6] proposed NS

(Nearest-neighbor selection) algorithm. We modify the NS algorithm to adopt our

methodology. Then, we introduce the NS algorithm.
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Figure 4.1: (a) A regular wire without wire snaking (b) Elongation of the wire by
snaking [3] when unbalance merging occurs.

Figure 4.2: (a) Matching-based vs. (b) Ours clustering methodology, the routing by
the matching method is longer than that by ours. The topologies are in Fig. 4.3.

Figure 4.3: (a) Matching-based vs. (b) Ours clustering methodology when they
build different topologies of clock tree with input {A, B, C, D}.
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Let K be a set of points or diagonal segments with n elements. We take the near-

est neighbor pair v1 and v2 from K, calculates a segment for v from v1 and v2 using

the zero-skew merge, and put the segment into K, then, delete v1, v2 from K. After

n-1 operation, K has only one element that is the segment for the center vc. In Figure

4.2, the wire length by matching method is longer than that by ours methodology.

It is clear that the topology of different methodology with matching-base and ours

in Figure 4.3. [6] do not take buffer insertion into account. We categorize the nodes

into buffered and nonbuffered node sets. NS algorithm is applied on nonbuffered

node sets.

In case that the two merging segments are too much out of balance and the

elongation severely affects the wirability, then addition of buffers and delay. A

common practice for wire elongation is done by ”snaking” Figure 4.1. It can be

reduced if we choose a merging order that can reduce the delay differences among

all merging segments. Because we do not have the topology of clock tree, we have to

cluster the nodes (maybe merging sets or clock pins) to construct the binary clock

tree. Merging cost is well-estimated by the following formulation:

Cost(i, j) =
DISTANCE(i, j)

disthalf−perimeter

+
| Delayi −Delayj |
delayhalf−perimeter

Cost(i,j ) is the merging cost of the merging segment MSi and merging segment

MSj. DISTANCE(i,j ) is the Manhattan distance of MSi and MSj. Delayi means

that the delay time from MSi to the sinks. disthalf−perimeter is the half perimeter

of the chip core, and the delayhalf−perimeter is the RC delay of the half perimeter

of the chip core delayhalf−perimeter = (r0 ∗ disthalf−perimeter)(c0 ∗ disthalf−perimeter).

We normalize the distance and delay. Therefore, we can add these two factors to

estimate the cost. The minimum cost pair has highest priority to be merged. By the

consideration of delay and distance, we can avoid the merging of unbalance merging

19



Figure 4.4: Algorithm DME with buffer insertion
Algorithm Low-Power Clock Synthesis
Input: set of sinks S, timing constraints and technology parameters
Output: tree of buffered merging segments with physical location
Begin

A = S; /* A is a set of non-buffered segments */
B = 0; /* B is a set of buffered segments */
While ( |A| > 1 or |B| > 0 )
{

if ( |B| > 0 and |A| = 0 )
A = B; B = 0;

while (|A| > 1)
{

choose the minimum cost of nodes b, c (segments or sinks);
a = Zero-Merge (b, c); /* zero merge the two segments */
A = A - {b, c}; /* delete merging segments b, c from A */
If (buffer insertion criterion satisfied /*if the transition
time exceeds the constraint */)
{

b = insert buffer(b);
c = insert buffer(c);
a = Zero-Merge(b, c);
B = B + {a};

} else
A = A + {a};

}
} /* bottom-up phase */
/* the last segment of A is for the center vc */
search for nearest point to the root vr on the segment vc;
Local Embedding(vc);

segments.

4.2 DME with Buffer Insertion

4.2.1 Bottom-up phase

The clock tree construction procedure is similar to previous works [16] [1] [8] in many

ways. The primary differences are in the use of a low-swing buffer for translate the

low-swing clock voltage and low-swing flip-flops for clock sinks.
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Figure 4.5: Subfunction of Local Embedding
Local Embedding(v)
{

if ( v.lchild = NULL and v.rchild = NULL)
return;

let v1, v2 be the child of v, for i = 1, 2, determine a point vi on the
segment for vi so as to satisfy the zero-skew.
Route from v to vi;
Calculate transition time of node v ;
Local Embedding(v1);
Local Embedding(v2);

}

An outline of the algorithm is illustrated in Figure 4.4. The algorithm maintains

two sets, A and B. A is a set of nonbuffered nodes and is initialized to a set of sinks,

while B is a set of buffered merging segments and is initialized as an empty set.

The merging segments correspond to the roots of subtrees and a buffered merging

segment is the one that has buffers placed at the root of its two-child nodes.

A zero-skew clock tree is constructed using our algorithm. A simple flow chart

of bottom-up phase is shown in Figure 4.6. It first clusters the point set (segment

set) of A. We sort the cost of each pair of the merging segments. The minimum cost

pair is selected from A, a zero-skew merging is performed for the merging segments

that are selected by our clustering algorithm.

The two merged segments will be deleted from A and the new merging segment

will be checked to see if it satisfies the transition time (slew rate) constraint. The

transition time is calculated by PERI method. This may be verified by hypothet-

ically inserting a buffer at the root of the new subtree and checking for transition

time violations. In [16], it verifies the transition time violation by RC modeling of

the merged nodes. The simulation results by RC modeling are not accurate because

the input transition time takes an important role of transition time calculation.

We modified the methodology in [16] of the transition time calculation. The
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following example shows the step of zero-merge and buffer insertion criterion. Let

v1 and v2 are the minimum cost pair selected from A. Zero-Merge() is performed for

v1, v2, and produce a new node v for a parent node of v1 and v2. DME bottom-up

buffer insertion methodology can not predict the transition from the parent node

v to the subtrees of child nodes v1, v2. From previous chapter, we hypothesize the

input transition from root v equals 7% of the constraint. We will prove that our

hypothesis is correct during top-down phase. The transition time of the child nodes

v1 and v2 are the root-mean square of the transition time of parent node v and step

input transition time. We have to check the transition time violation of v1 and v2.

If such a violation exists (transition time is larger than 10% of the clock period),

then buffers are inserted at the root of the two-child nodes and the two-child nodes

are zero-skew merged again. Moreover, if buffers are inserted at the child nodes of

a given node, then this node will be added to a buffered segment set B; if not, it is

added to A. The procedure continues until the set A is empty, which occurs when all

nodes at this level are buffered. Algorithm bottom-up buffer insertion ensures that

for any path from the root to the sinks, there will be an equal number of buffers.

Once we have added the first level of clock buffers, we swap the sets A and B,

and repeat the whole procedure again. The algorithm proceeds until there are only

one node left in A and B is empty. At the end of the process, we has only one

element that is the segment for the center vc. At this point, the procedure returns

a tree of segments rooted at vc.

4.2.2 Top-down phase

Next, top-down embedding phase determines the best position for each node in the

reverse order of bottom-up merging phase. First, the position of the center vc is

determined on the segment for vc by routing from the root vr in the shortest way.

Once the position of a node is determined, we can easily calculate the positions of
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Figure 4.6: Process flow of DME buffering bottom-up phase.
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Table 4.1: This table shows the relation of numbers of buffer inserted and hypothesis
of input transition. Column ”errors” means that the transition time violation for
all nodes in clock tree during top-down phase. It verifies during top-down phase to
re-calculate the transition time.

Hypothesis 6% 7% 8%
#buf errors(%) #buf errors(%) #buf errors(%)

r1 23 1.4% 38 0.5% 40 0.3%
r2 51 1.2% 67 0.6% 84 0.4%
r3 66 2.1% 81 0.5% 112 0.2%
r4 87 1.8% 118 0.7% 223 0.2%
r5 174 2.0% 211 0.6% 314 0.3%

its children so as to satisfy the zero-skew merge equations. Therefore, all positions

of nodes are calculated in a top-down fashion starting from the position of vc.

In order to verify the transition time of each iteration, we calculate the transition

time again by top-down fashion. We assume that the transition time of clock root

is 7% of the clock period. By this assumption, we can obtain transition time results

that are more accurate. We calculate the transition time downstream from the root

and check for transition time violation. Table 4.1 shows the relation of numbers of

buffer inserted and hypothesis of input transition. Column ”errors” means that the

transition time violation for all nodes in clock tree during top-down phase. If the

transition time of a large part of nodes is under the transition time constraint, it

means that our hypothesis is accurate. From experimental results, 7% is suitable for

our hypothesis. It lowers the number of buffer inserted and controls the transition

time violation less than 1% of total nodes.
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Chapter 5

Experimental Results

We have implemented three approaches for low-power buffered clock tree in C++

and tested it on Pentium 4 PC 3.2 GHz with 1GB memory. One is the method from

[10], and another approach is the low-swing clock distribution from [16]. Finally,

it is our approach. In order to get more accurate simulation of power and timing

analysis, we use UMC 180nm standard cell library for conventional buffers and FFs,

and develop SPICE model for our low-swing FFs and buffers using 180nm CMOS

process. The benchmark circuits are r1-r5 downloaded from the GSRC Bookshelf

(http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/). The parameters that we

used are based on a 180 nm technology.

A comparison from Table 5.1 of the results of our algorithm with algorithm from

[16] and [10] showed that our algorithm can reduce the total wire length. This is

because that [16] use the bottom-up buffer insertion and does not have top-down

phase to decide the physical position on the segment. Furthermore, our algorithm

evaluates the cost with capacitance. By the consideration of capacitance, we can

reduce the probability of of wire snaking by the capacitive load unbalance. According

to the delay metrics used, the clock skew is zero by construction. In order to maintain

the clock waveform, the transition time must satisfy the constraints accounting for

10% of the clock period. The three approach operate at different frequency. We set
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Table 5.1: Performance Comparison (Phase delay, wire length and Power) between
[16], [10] and ours. The results present advantages in wire length and number of
buffers. However, our phase delay is average 6% more than [16]

[16] [10] ours
Benchmark PD WL #buf PD WL #buf PD WL #buf

(ps) (um) (ps) (um) (ps) (um)
r1 1281 191712 51 1013 193617 78 1330 192931 38
r2 1847 422109 89 1526 397432 125 2065 364872 67
r3 2337 532981 93 1939 479690 123 2413 453514 81
r4 2424 1038801 151 2205 962796 199 2572 890124 118
r5 2749 1589283 251 2571 1427090 350 2883 1380442 211

the transition time constraint equals 0.8ns. We can see that the number of buffers

can be reduced by our algorithm. However, our phase delay is average 6% more

than [16].

Table 5.2 shows the comparison of power dissipation between algorithm [16],

[10], and ours. The total power values shown in the table are the sum of the wire

power, the buffer power and the flip-flops power. The fourth column results of my

algorithm runs with frequency 125MHz with LSDFF. [16] and [10] runs with clock

frequency 250MHz for conventional single-edge triggered FFs to achieve the same

throughput. The low-swing voltage for LSDFF is about 1.1V. As shown in Table

5.2, the power consumption is reduced by our algorithm mainly due to halved clock

frequency and low-swing voltage interconnection. It is reduced 48%-51% over [16].

Table 5.3 shows the performance comparison of different algorithm [16] and ours.

In this experiment, We adopt the same structure of clock tree from Figure 2.2 [16].

The two simulation conditions use the same reduced swing drivers, buffers, receivers

and FFs. The only different is the algorithm of constructing clock tree. The results

present the slightly improvement of wire length and power consumption, though our

phase delay is a little bit higher.
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Table 5.2: Power dissipation of the clock tree between [16], [10] and ours. The results
show that the power dissipation of our methodology is reduced 48%-51% over [16]

[16] [10] ours
Benchmark for 250MHz for 250MHz for 125MHz

(mW) (mW) (mW)
r1 49.51 72.49 25.32
r2 103.20 153.53 64.90
r3 128.43 193.43 73.13
r4 273.54 396.60 141.30
r5 404.31 567.75 214.48

Table 5.3: Comparison of different algorithm([16] and ours) with the same structure
of clock tree

[16] ours
Benchmark PD WL Power PD WL Power

(ps) (um) (mW) (ps) (um) (mW)
r1 1281 191712 49.51 1092 189201 45.81
r2 1847 422109 103.20 1931 365927 87.45
r3 2337 532981 128.43 2521 488218 106.21
r4 2424 1038801 273.54 2598 914891 242.84
r5 2749 1589283 404.31 2764 1383918 349.32
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Chapter 6

Conclusion and Future Work

A buffered clock tree is often desirable to solve skew problem. However, as technol-

ogy advances, chips running at higher frequency to obtain lower power consumption

in clock network.

In this thesis, we have implemented our algorithm to generate a zero-skew clock

tree. Our implementation guarantees that number of buffers along any path from

root to sinks is equal, and uses a low-swing voltage to distribute the clock signal.

Furthermore, we try to minimize the number of buffers under transition time con-

straints. By using the technique of low-swing interconnection (buffers and flip-flops),

we obtain lower power consumption in clock tree construction. According to the re-

sults, we believe that our algorithm can be applied to most designs to construct a

low power clock tree under appropriate constraints.

In future works, we plan to further improve our methodology to handle the gated

clock designs. We can add the process of grouping the gated sinks, and construct

the clock tree rooted by clock gates. After that, we move or merge for all the clock

gates to optimize the power consumption and route one by one. We expect that the

framework presented here can be extended in the presence of gated designs.
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