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Chapter 1

Introduction and Preliminaries

This thesis is devoted to a study of topics in graph theory: Near Automorphisms

and Chaotic Mappings. We start with an introduction of terminologies in graph

theory.

1.1 Basic Notions of Graphs

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a

relation that associates with each edge two vertices (not necessarily distinct) called

its endpoints. A loop is an edge whose endpoints are equal. Multiple edges are edges

having the same pair of endpoints.

A simple graph is a graph having no loops or multiple edges. We specify a simple

graph by its vertex set and edge set, treating the edge set as a set of unordered pairs

of vertices and writing e = uv (or e = vu) for an edge e with endpoints u and v.

When u and v are the endpoints of an edge e, they are adjacent and are neighbors,

and we say they are incident to e. We write u ↔ v for ”u is adjacent to v”.

The degree of vertex v (in a loopless graph) is the number of incident edges. In

many important applications, loops and multiple edges do not arise, and we restrict

our attention to simple graphs. Thus in a simple graph we view an edge as an

unordered pair of vertices and can ignore the formality of the relation associating
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endpoints to edges. This study emphasizes simple graphs.

A graph is finite if its vertex set and edge set are finite. We adopt the convention

that every graph mentioned in this study is finite, unless explicitly constructed oth-

erwise. An independent set (or stable set) in a graph is a set of pairwise nonadjacent

vertices. A graph G is bipartite if V (G) is the union of two disjoint independent

sets called partite sets of G. A graph G is k-partite if V (G) can be expressed as the

union of k independent sets. A path is a simple graph whose vertices can be ordered

so that two vertices are adjacent if and only if they are consecutive in the list. A

cycle is a graph with an equal number of vertices and edges whose vertices can be

placed around a circle so that two vertices are adjacent if and only if they appear

consecutively along the circle.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G)

and the assignment of endpoints to edges in H is the same as in G. We then write

H ⊆ G and say that ”G contains H”. A graph G is connected if each pair of vertices

in G belongs to a path; otherwise, G is disconnected. An isomorphism from a simple

graph G to a simple graph H is a bijection (one to one correspondence) f : V (G) →

V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say ”G is isomorphic

to H”, written G ∼= H, if there is an isomorphism from G to H. The (unlabeled)

path and cycle with n vertices are denoted Pn and Cn, respectively; an n-cycle is a

cycle with n vertices. A complete graph is a simple graph whose vertices are pairwise

adjacent, the (unlabeled) complete graph with n vertices is denoted Kn. A complete

bipartite graph (or biclique) is a simple bipartite graph such that two vertices are

adjacent if and only if they are in different partite sets. When the sets have sizes r

and s, the (unlabeled) complete bipartite graph is denoted Kr,s.

The structural properties of a graph are determined by its adjacency relation and
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hence are preserved by isomorphism. An automorphism of G is an isomorphism from

G to G. A graph G is vertex-transitive if for every pair u, v ∈ V (G) there is an

automorphism that maps u to v. The components of a graph G are its maximal

connected subgraphs of G. A component (or graph) is trivial if it has no edges;

otherwise it is nontrivial. An isolated vertex is a vertex of degree 0. A cut-edge

or cut-vertex of a graph is an edge or vertex whose deletion increase the number of

components. We write G − e or G −M for the subgraph of G obtained by deleting

an edge e or set of edges M . We write G− v or G− S for the subgraph obtained by

deleting a vertex v or set of vertices S, and its or their incident edges.

A directed graph or digraph G is a triple consisting of a vertex set V (G), an arc

set A(G), and a function assigning each direct-edge an ordered pair of vertices. The

first vertex of the ordered is the tail of the direct-edge, and the second is the head;

together, they are the endpoints. We say that an direct-edge is an direct-edge from

its tail to its head. The terms ”head” and ”tail” come from the arrows used to draw

digraphs. As with graphs, we assign each vertex a point in the plane and each edge

a curve joining its endpoints. When drawing a digraph, we give the curve a direction

from the tail to the head. In a digraph, a loop is an edge whose endpoints are equal.

Multiple direct-edges are direct-edges having the same ordered pair of endpoints. A

digraph is simple if each ordered pair is the head and tail of at most one direct-edge;

one loop may be present at each vertex.

A digraph is a path if it is a simple digraph whose vertices can be linearly ordered

so that there is an direct-edge with tail u and head v if and only if v immediately

follows u in the vertex ordering. A cycle is defined similarly using of the vertices on

the circle. A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is

a connected acyclic graph. A leaf (or pendent vertex) is a vertex of degree 1. Paths
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are trees. A tree is a path if and only if its maximum degree is 2. A star is a tree

consisting of one vertex adjacent to all the others. The n-vertex star is the biclique

K1,n−1 (or Sn−1). If G has u, v-path, then the distance from u to v, written dG(u, v)

or simply d(u, v), is the least length of a u, v-path. If G has no such path, then

d(u, v) = ∞. The diameter (diam G) is maxu,v∈V (G) d(u, v). The eccentricity of a

vertex u, written ε(u). The radius of a graph G, written rad G, is minu∈V (G) ε(u).

The diameter equals the maximum of the vertex eccentricities. A caterpillar is a tree

in which a single path (the spine) is incident to (or contains) every edges.

1.2 Motivation

To determine whether two graphs are isomorphic or not is one of the most impor-

tant and difficult problems in graph theory. It is known that solving the problem by

using an algorithm is an NP-hard problem. Similarly, given a graph G, to determine

the set of automorphisms of G is not easy at all. Practically, we may have to check

all permutations of V (G) in order to find Aut(G). Therefore, some permutations are

indeed automorphisms, but there are permutations which are not automorphisms.

Among all the permutations of V (G), we are interested in knowing a way to measure

how close (or how far) a permutation is from being an automorphism.

From the definition of an automorphism f of G, it is not difficult to see that

dG(u, v) = dG(f(u), f(v)), i.e., the permutation f is an isometric mapping (keeping

distance fixed). So, if a permutation g of V (G) fails to do the job, it is not an

automorphism. This phenomenon motivates us to observe how much can a permu-

tation ϕ affect the distance of u and v to the distance of ϕ(u) and ϕ(v) for each

pair of vertices u and v in V (G). So, we define the total relative displacement of G,

δf (G) =
∑

u,v∈V (G)

|dG(u, v) − dG(f(u), f(v))|. Clearly, δf (G) = 0 if and only if f is
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an automorphism of G. Furthermore, if a permutation f which gives the smallest

positive value in {δϕ(G) : ϕ is a permutation of V (G)}, f is very close to being an

automorphism. Such a permutation is now known as a near automorphism of G. On

the other (opposite) direction, we may also try to find a permutation f such that

δf (G) attains the largest value of {δϕ(G) : ϕ is a permutation of V (G)}, f is then

called a chaotic mapping of G. The later part of this research is also motivated by

the sorting problem in computer science.

Due to practical reasons, in order to study the disorderedness of input data, they

only consider the situation in which data are arranged on a path or a cycle. For

convenience, we use a path to explain the notion. Now, let Pn = 1, 2, · · · , n be a path

with n vertices 1, 2, · · · , n arranged as < 1, 2, · · · , n >. Clearly, for i = 1, 2, · · · , n−1,

(i, i + 1) is an edge of Pn and thus dPn(i, i + 1) = 1. Moreover, dpn(i, j) = |i − j|.

So, if the sorting data are distributed randomly to another path with the same set

of vertices of Z = < z1, z2, · · · , zn >, then dPn(i, i + 1) may not be the same as

dPn(zi, zi+1). It is natural to define the oscillation Z of Pn by

Osc(Z) =
n−1∑
i=1

(|zi − zi+1| − 1).

Then, finding maxZ∈Sn Osc(Z) reveals the maximum disorderedness of the input data

arranged on a path. See [4,10] for references.

1.3 Total Relative Displacement

Let G = (V, E) be a connected graph of order n and f be a permutation of V .

The relative displacement of two distinct vertices u and v in G is then denoted by

δf (u, v) = |d(u, v) − d(f(u), f(v))|. In addition, let δf (u) =
∑

v

δf (u, v), and then

the total relative displacements of permutation f in G is the sum of δf (u, v) over
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all the (n
2 ) unordered pairs {u, v} of distinct vertices of G denoted by δf (G), i.e.,

δf (G) =
∑

u6=v

δf (u, v) =
1

2

∑
u

δf (u).

It is clear that a permutation f is an automorphism of G if and only if δf (G) = 0.

Let π(G) and π∗(G) denote the smallest nonzero total relative displacement and the

largest total relative displacement in G, respectively. The permutations which realize

π(G) and π∗(G) are called the near automorphism and the chaotic mapping of G,

respectively.

For clearness, we give an example here.

Example 1.3.1. Let f1 = (1, 2), f2 = (1, 3) and f3 = (1, 2, 3), then

( ) 811
=Gfδ

( ) 813
=Gfδ

( ) 012
=Gfδ

1f

2f

3f
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By checking all permutations of the six vertices, we are able to see that π(G) = 8

and π∗(G) = 8. From this example, it is not difficult to realize that finding π(G) and

π∗(G) for a general graph is going to be very challenging.

In what follows, we explore some properties of total relative displacements.

Lemma 1.3.2. Let G be a graph and let f be a permutation of V (G). Then δf (G)

is even. Moreover, π(G) and π∗(G) are even.

Proof. Let f be a permutation of V (G) and k be a positive integer. Then

|{{x, y} : d(x, y) = k}| = |{{x, y} : d(f(x), f(y)) = k}|

which implies that

∑

x6=y∈V (G)

d(x, y) =
∑

x6=y∈V (G)

d(f(x), f(y)).

Let δ(x, y) = { 0 if d(x, y) ≥ d(f(x), f(y))
1 if d(x, y) < d(f(x), f(y)).

Then,

δf (G) =
∑

x,y∈V (G)

|d(x, y)− d(f(x), f(y))|

=
∑

x,y∈V (G)

(−1)δ(x,y)d(x, y)−
∑

x,y∈V (G)

(−1)δ(x,y)d(f(x), f(y)).

Since
∑

x,y∈V (G)

d(x, y) ≡
∑

x,y∈V (G)

(−1)δ(x,y)d(x, y) (mod 2) and

∑

x,y∈V (G)

d(f(x), f(y)) ≡
∑

x,y∈V (G)

(−1)δ(x,y)d(f(x), f(y)) (mod 2),

∑

x,y∈V (G)

(−1)δ(x,y)d(x, y) ≡
∑

x,y∈V (G)

(−1)δ(x,y)d(f(x), f(y)) (mod 2).

So, δf (G) ≡ 0 (mod 2) and π(G) and π∗(G) are even.

Lemma 1.3.3. If f is a permutation of V (G) and h is an automorphism of a graph

G, then δh◦f (G) = δf (G) = δf◦h(G).
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Proof. Since h is an automorphism, each vertex pair of V (G) preserves their dis-

tance by h. Thus d(h(f(x)), h(f(y))) = d(f(x), f(y)) for each vertex pair {x, y}.

Then the equality follows.

δh◦f (G) =
∑

x,y∈V (G)

|d(x, y)− d(h(f(x)), h(f(y)))|

=
∑

x,y∈V (G)

|d(x, y)− d(f(x), f(y))| = δf (G)

=
∑
j=1

∑
i=1

|{{x, y} : x, y ∈ V (G), d(x, y) = i, d(f(x), f(y)) = j}| · |i− j|

=
∑
j=1

∑
i=1

|{{h(x), h(y)} : h(x), h(y) ∈ V (G), d(h(x), h(y)) = i,

d(f(h(x)), f(h(y))) = j}| · |i− j|

=δf◦h(G)

Lemma 1.3.4. Let f be a permutation of V (G) and f(v) = v for some v ∈ V (G).

Then δf (v) is even.

Proof. Since δf (v) =
∑
u6=v

δf (u, v) =
∑
u6=v

|d(u, v)− d(f(u), v)|, δf (v) ≡ ∑
u6=v

(d(u, v)−

d(f(u), v)) ≡ ∑
u6=v

d(u, v)−∑
u6=v

d(f(u), v) (mod 2). By the fact that f is a permutation,

∑
u6=v

d(u, v) =
∑
u6=v

d(f(u), v)). Hence, δf (v) ≡ 0 (mod 2).

If the graph we consider is vertex-transitive, for example Cn, then we have better

properties.

Lemma 1.3.5. If G is a vertex-transitive graph and f is a near automorphism of G,

then δf (v) is even for each v ∈ V (G).

Proof. Let h be an automorphism of G. Then, for each v ∈ V (G), δh◦f (v) =

∑
u∈V (G)\{v}

|d(v, u) − d((h ◦ f)(v), (h ◦ f)(u))| =
∑

u∈V (G)\{v}
|d(v, u) − d(f(v), f(u))| =

δf (v). Now, consider f . If there exists an v ∈ V (G) such that f(v) = v, then

by Lemma 1.3.4, we have the proof. Otherwise, since G is vertex-transitive, there
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exists an automorphism h of G such that h(u) = v where u = f(v). Therefore,

(h ◦ f)(v) = h(f(v)) = h(u) = v. This implies that δh◦f (v) is even. By Lemma 1.3.3,

δh◦f (v) = δf (v). Hence δf (v) is even.

Lemma 1.3.6. Let v ∈ V (G), f(v) = v and δf (v) 6= 0. Then there exist at least two

distinct vertices u and w such that δf (u, v) and δf (w, v) are positive.

Proof. Suppose there exists a unique u ∈ V (G) such that δf (v) = δf (v, u) 6=

0. Then
∑

w∈V (G)\{v,u}
|d(v, w) − d(f(v), f(w))| = 0. This implies that for each w ∈

V (G) \ {v, u}, d(v, w) = d(f(v), f(w)) = d(v, f(w)). Now, since f(u) 6= v and f(u) 6=

u, d(v, f(u)) = d(v, f 2(u)) = d(v, f 3(u)) = · · · . By the fact that f is a permutation of

finite order, there exists a t ≤ |V (G)| such that f t is an identity and thus d(v, f(u)) =

d(v, u). This contradicts δf (v, u) 6= 0, and we have the proof.

For convenience, we need a notion called the displacement graph of graph G.

Definition 1.3.7. Suppose G is a graph and f is a permutation of V (G). The

displacement graph of G with respect to f is the directed multigraph G[f ] whose

vertex set V (G[f ]) = {a1, a2, · · · , at}, where t = diam(G), and the arc set A(G[f ]) =

{〈ai, aj〉 : i 6= j, there is a pair of vertices u and v such that d(u, v) = i and d(f(u),

f(v)) = j}.

It is not difficult to see that for each displacement graph of G with respect to a

non-automorphism, deg+(a1) = deg−(a1) 6= 0.

Note that if there are exactly s pairs of vertices u and v such that d(u, v) = i

and d(f(u), f(v)) = j, then 〈ai, aj〉 occurs in G[f ] exactly s times, i.e., 〈ai, aj〉 is of

multiplicity s. For each unordered pair {u, v} of distinct vertices of G, let α(u, v)

denote 〈ai, aj〉, where d(u, v) = i and d(f(u), f(v)) = j.

We now have a couple of conclusions about the structure of G[f ].
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Lemma 1.3.8. For each vertex ai ∈ V (G[f ]), 1 ≤ i ≤ diam(G), deg+(ai) = deg−(ai).

Proof. This is a direct consequence of the fact that |{{u, v} : u, v ∈ V (G), d(u, v) =

i}| = |{{z, w} : z, w ∈ V (G), d(f(z), f(w)) = i}| where 1 ≤ i ≤ diam(G).

Lemma 1.3.9. δf (G) =
∑

〈ai,aj〉∈A(G[f ])

|i− j|.

Proof. The lemma follows from Definition 1.3.7 easily.

Lemma 1.3.10. Let G be a graph and f be a permutation of G but not an automor-

phism, then there is an edge uv of G such that δf (u, v) ≥ 1.

Proof. If δf (u, v) = 0 for each edge uv ∈ E(G), then f(u)f(v) is still an edge in G,

i.e., f is an automorphism.

Lemma 1.3.11. If f is a permutation of V (G), then δf (G) = δf−1(G).

Proof. Obviously, G[f ] and G[f−1] have the same vertex set, but their arc sets

have the inverse direction. Thus, by Lemma 1.3.9, we have δf (G) = δf−1(G).

Lemma 1.3.12. Let G be a connected graph which is not complete. Then 2 ≤ π(G) ≤

2|V (G)| − 4.

Proof. Note that there exist no near automorphisms for a complete graph. There-

fore, we only consider those graphs which are not complete. Since G is not a com-

plete graph, there exist three vertices x, y and z such that xy, xz ∈ E(G) and

yz /∈ E(G). Then, let f be the transposition (xy). Clearly, f is not an auto-

morphism, since x is adjacent to z but y is not adjacent to z. As for π(G), since

δf (G) =
∑{δf (u, v) | |{u, v} ∩ {x, y}| = 1} ≤ 2|V (G)| − 4, we conclude that

π(G) ≤ 2|V (G)| − 4. By the fact that π(G) is even and π(G) 6= 0, 2 ≤ π(G)

follows.
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1.4 Known Results

The notion of near automorphism was first introduced by Chartrand et al. in

[5] and they conjectured that π(G) = 2n − 4 where G is a path with n vertices.

Later, Aitken [1] proved this conjecture and among other things, characterized those

permutations f for which π(G) = δf (G) = 2n− 4 when G is a path with n vertices.

He also proved that, if n ≥ 25, then the only values of δf (G) less than 4n are 2n− 4,

4n− 12, and 4n− 10, and he classified the permutation f that give these values.

Theorem 1.4.1. [1] π(Pn) = 2n− 4.

Theorem 1.4.2. [1] Let G be a path with n vertices where n ≥ 25, and let f be a

permutation of V (G). If 0 < δf (G) < 4n then δf (G) is one of the following: 2n− 4,

4n− 12, or 4n− 10. Let h : V (G) → V (G) be the function which sends i to n− i+1.

Then either f or h ◦ f is of the following form : (i) a transposition switching i and

i + 1 for some 1 ≤ i ≤ n − 1, here δf (G) = 2n − 4, (ii) a transposition switching i

and i + 2 for some 1 ≤ i ≤ n− 2, here δf (G) = 4n− 12, (iii) a three cycle permuting

i, i + 1, and i + 2 for some 1 ≤ i ≤ n− 2, here δf (G) = 4n− 10, or (iv) a product of

a transposition switching i and i + 1 with a transposition switching j and j + 1 where

1 ≤ i < i + 1 < j ≤ n− 1, here δf (G) = 4n− 12.

In 1999, Chartrand, Gavlas and Vander Jagt [5] claimed that π(Km,n) = 2(m +

n− 2), for all integers 2 ≤ m ≤ n, but, as a special case of a more general treatment,

Reid [12] proved Theorem 1.4.3. He also determined π(Kn1,n2,··· ,nt) and described the

permutations f of Kn1,n2,··· ,nt for which δf (Kn1,n2,··· ,nt) = π(Kn1,n2,··· ,nt).

Let Kn1,n2,··· ,nt be a complete t-partite graph with partite sets X1, X2, · · · , Xt and

|Xi| = ni. Let f be a permutation of V (Kn1,n2,··· ,nt). For each 1 ≤ i, j ≤ t, define

aij = |Aij(f)| = |{x : x ∈ Xi andf(x) ∈ Xj}|.
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Then,

(1.1) δf (Kn1,n2,··· ,nt) =
t∑

i=1

n2
i −

∑
1≤i,j≤t

a2
ij.

Reid then transformed the problem into the combinatorial optimization problem

of maximizing the sums of the squares of the entries in certain t by t matrices with

non-negative integer entries in which the sum of the entries in the ith row and the

sum of the entries in the ith column were each equal to ni, 1 ≤ i ≤ t. Following this

effort, he obtained the following two results.

Theorem 1.4.3. [12] For all positive integers m and n, where max(m,n) ≥ 2. Then

π(Km,n) =

{
2m if n = m + 1,
2(m + n− 2) otherwise.

.

Theorem 1.4.4. [12]

π(Kn1,n2,...,nt) =





2nh+1 − 2 if 1 = n1 = · · · = nh < nh+1 ≤ · · · ≤ nt,
and t ≥ (h + 1), for some h ≥ 2;

2nk0 if 1 = n1 < n2 or nh ≥ 2 and
nk+1 = nk + 1 for some k, 1 ≤ k ≤ t− 1,
and 2 + nk0 ≤ n1 + n2, where k0

is the smallest index for which
nk0+1 = nk0 + 1;

2(n1 + n2 − 2) otherwise.

where Kn1,n2,··· ,nt denotes the complete t-partite graph with t-partite sets of cardinality

n1 ≤ n2 ≤ · · · ≤ nt.

In the other direction, Fu et al. [9] studied the maximum value of the total

relative displacements of permutations in a graph G. They transformed the problem

of finding π∗(Kn1,n2,··· ,nt) into a quadratic integer programming problem, equation

(1.1), and developed a characterization of the optimal solution. A polynomial time

algorithm running in O(n5logn) time was then developed to solve the problem, where
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n was the number of vertices in the multipartite graph. Moreover, in [7], they studied

the total relative displacement of the permutations in complete bipartite graphs and

complete tripartite graphs with an approach different from that in [9]. They also

developed an algorithm running in O(n4
3) time for finding the chaotic numbers of

complete tripartite graphs, where n3 is the number of vertices of the largest partite

set.

In this thesis, we shall mainly study the near automorphisms of certain graphs

such as cycles and trees. For cycles Cn, we prove that π(Cn) = 4bn
2
c−4 for n ≥ 4, and

for the trees, we characterize the trees T where π(T ) = 2 or 4 or 2n− 4 respectively.

As to π∗(G), we obtain a better lower bound for G ∼= Pn than that achieved earlier

by Chiang et al. in [6].

13



Chapter 2

Graphs G with π(G) = 2 and
π(G) = 4

We start this chapter with a review. It was shown in Lemma 1.3.12 that if G is

a connected graph which is not complete, then 2 ≤ π(G) ≤ 2n − 4. Aitken showed

that π(Pn) = 2n− 4 in [1], therefore, it is interesting to know the oppositive case for

which graphs G, π(G) = 2.

In this chapter, we shall first consider the graphs G such that π(G) = 2. Then,

for the rest of this chapter, the trees T with π(T ) = 2 or 4 are characterized.

2.1 π(G) = 2

The following lemma plays an important role in determining the graphs G with

π(G) = 2.

Lemma 2.1.1. If there are two vertices u and v of graph G such that |N [u]| =

|N [v]| + 1, N(u) \ N [v] = {w}, d(v, w) = 2 and d(x,w) ≥ d(x, v) − 1 for all x 6= w,

then π(G) = 2.

Proof. Let f be a transposition (uv). Then δf (G) = |d(u,w) − d(f(u), f(w))| +

|d(v, w)− d(f(v), f(w))| = 2.

The lemma is not the sufficient condition, for example, see Figure 2.1

14
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Figure 2.1: f = (34)(56) and δf (G) = 2.

Proposition 2.1.2. If π(G) = 2 and the near automorphism is a transposition (uv),

then |N [u]| = |N [v]| + 1, N(u) \ N [v] = {w}, d(v, w) = 2 and d(x,w) ≥ d(x, v) − 1

for all x 6= w. (see Figure 2.2.)
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Figure 2.2: f = (uv) and δf (G) = 2.

Unfortunately, we are not able to characterize all graphs G with π(G) = 2 at this

moment. But, if G is a bipartite graph, then we are able to do so. In fact, we prove

a more general case.

Theorem 2.1.3. Suppose G is a connected graph without 3-cycles and 5-cycles, and

|V (G)| ≥ 3. Then, π(G) = 2 if and only if G ' P3.

Proof. It is clear that π(P3) = 2. On the other hand, suppose π(G) = 2 but

G � P3. In this case, |V (G)| ≥ 4. Choose a near automorphism f of G such that

δf (G) = 2. By Lemma 1.3.10, there exists an edge uv ∈ E(G) such that δf (u, v) ≥ 1.
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Also, by Lemma 1.3.8 and Lemma 1.3.10 deg+(a1) = deg−(a1) ≥ 1 and so in fact

A(G[f ]) = {〈a1, a2〉, 〈a2, a1〉} as π(G) = 2.

Let α(u, v) = 〈a1, a2〉. Therefore, d(f(u), f(v)) = 2. Let w be the vertex in G

such that (f(u), f(w), f(v)) is a path in G. Clearly, d(f(u), f(w)) = d(f(w), f(v)) =

1. Thus, d(u,w) ≤ 2 and d(w, v) ≤ 2, and at most one of them is equal to 2.

Furthermore, w is not adjacent to both u and v, for otherwise there is a C3, which is

not possible. By symmetry we may assume that d(w, v) = 1 and d(u,w) = 2, and so

(u, v, w) is a path in G.

Since |V (G)| ≥ 4 and G is connected, there exists a vertex z adjacent to some

vertex of {u, v, w}. If z is adjacent to u, then z is not adjacent to v and so d(z, v) =

d(f(z), f(w)) = 2 implying that d(z, w) = 2 and so there is a C5, a contradiction.

The case z is adjacent to w can be treated similarly. If z is adjacent to v, then

d(z, u) = d(z, w) = 2 implies that d(f(z), f(u)) = d(f(z), f(w)) = 2, and so there is

a C5, again a contradiction. Hence the theorem is true.

2.2 Trees T with π(T ) = 4

By Theorem 2.1.3, if T is a tree with π(T ) = 2, then T is a path with three vertices.

Therefore, the smallest total relative displacement left to consider is π(T ) = 4. In

what follows, we obtain a characterization of such trees T . First, we need a lemma.

Lemma 2.2.1. If u, v and w are three vertices in a tree T , then d(u, v) ≡ d(w, u) +

d(w, v) (mod 2).

Theorem 2.2.2. If T is a tree of order at least 4. Then π(T ) = 4 if and only if there

exists a vertex x such that T − x contains an isolated vertex and a component K2,

with the only exception that π(S3) = 4.
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Proof. By Theorem 2.1.3, we have π(T ) ≥ 4 if |V (T )| ≥ 4. Hence the trees with

order 4 are P4 and S3, and π(P4) = 4 and π(S3) = 4. Assume that u is an isolated

vertex in T − x, and v belongs to the component K2 of T − x and is adjacent to x.

Let the transposition f = (uv). Then δf (T ) = δf (w, u) + δf (w, v) = 2 + 2 = 4, see

Figure 2.3. Thus, π(T ) = 4.
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vv
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¡
¡

@
@

x

u v

w

Figure 2.3: f = (uv) and δf (G) = 4.

Conversely, suppose that π(T ) = 4. Then A(T [f ]) is equal to {〈a1, a2〉, 〈a2, a1〉,

〈ai, ai+1〉, 〈ai+1, ai〉 : for some i, 1 ≤ i ≤ t}, {〈a1, a2〉,〈a2, a3〉,〈a3, a1〉}, {〈a1, a3〉,

〈a2, a1〉, 〈a3, a2〉} or {〈a1, a3〉, 〈a3, a1〉}.

Case 1. A(T [f ]) = {〈a1, a2〉, 〈a2, a1〉, 〈ai, ai+1〉, 〈ai+1, ai〉 : for some i, 1 ≤ i ≤ t}.

When i = 1, we claim that T ' S3. By the same argument as in Theorem 2.1.3, there

are three vertices u, v, w of V (T ) such that (u, v, w) and (f(u), f(w), f(v)) are two

paths in T , and |V (T )| ≥ 4. Since d(u,w) = 2, d(f(u), f(w)) = d(f(v), f(w)) = 1 and

〈ai, aj〉 /∈ A(T [f ]) for i ≥ 3 or j ≥ 3. Hence, none of the vertices of V (T )\{u, v, w} is

adjacent to u or w in T . With the same argument, since d(f(u), f(v)) = 2, d(u, v) =

d(v, w) = 1 and 〈ai, aj〉 /∈ A(T [f ]) for i ≥ 3 or j ≥ 3, we get that for each vertex y of

V (T )\{u, v, w}, f(y) must be adjacent to f(w). Then each vertex of V (T )\{u, v, w}

contributes 2 to π(T ). Hence δf (G) = 2(|V (T )| − 2) = 4 implies that |V (T )| = 4,

and T ' S3.
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Otherwise, for i ≥ 2, we have |V (T )| ≥ 5. Let α(x0, xi) = 〈ai, ai+1〉 and the path

from x0 to xi in T be (x0, x1, . . . , xi) and y be a vertex of V (T ) such that f(y) lies on

the path from f(x0) to f(xi) . Without loss of generality, we let d(x0, y) ≥ d(xi, y).

Since d(x0, xi) 6= d(f(x0), f(xi)), we have d(x0, x1) 6= d(f(x0), f(x1)) or d(x1, xi) 6=

d(f(x1), f(xi)), i.e. α(x0, x1) or α(x1, xi) ∈ A(T [f ]).

If α(x0, x1) ∈ A(T [f ]), then α(x0, x1) = 〈a1, a2〉. Furthermore, if i ≥ 3, then

α(x0, x2) = 〈a2, a1〉 or α(x2, xi) = 〈a2, a1〉. But, when α(x0, x2) = 〈a2, a1〉, d(f(x0),

f(xi)) ≤ d(f(x0), f(x2)) + d(f(x2), f(xi)) = 1 + (i − 2) = i − 1, a contradiction.

On the other hand, if α(x2, xi) = 〈a2, a1〉, i = 4, d(f(x0), f(x4)) ≤ d(f(x0), f(x2)) +

d(f(x2), f(x4)) = 2 + 1 = 3, also a contradiction. Thus the only possible case left

is i = 2. Then, α(x0, x1) = 〈a1, a2〉 and δf (x1, x2) = 0 imply that d(f(x0), f(x2)) =

d(f(x0), f(x1)) + d(f(x1), f(x2)), f(x1) is on the path from f(x0) to f(x2) and the

path is (f(x0), f(y), f(x1), f(x2)). Since d(x0, y) ≥ d(x2, y), α(x0, y) ∈ A(T [f ]), in

fact α(x0, y) = 〈a2, a1〉. The induced subgraph of {x0, x1, x2, y} in T is a star with

center x1. Since |V (T )| ≥ 5, there exists another vertex z which is adjacent to one of

{x0, x1, x2, y}, and no matter which one is adjacent to z, δf (z) ≥ 2, a contradiction.

Now, suppose that α(x1, xi) ∈ A(T [f ]) and δf (x0, x1) = 0. Then α(x1, xi) is equal

to 〈a1, a2〉 or 〈a2, a1〉, i = 2 or i = 3. First, for i = 3, we have d(f(x0), f(x3)) ≤

d(f(x0), f(x1)) + d(f(x1), f(x3)) = 1 + 1 = 2, a contradiction. Hence, i = 2 and

the path from f(x0) to f(x2) is (f(x0), f(x1), f(y), f(x2)). Since d(f(y), f(x1)) =

d(f(y), f(x2)) = 1 and d(x1, x2) = 1, by Lemma 2.2.1, we have α(y, x1) = 〈a2, a1〉 or

α(y, x2) = 〈a2, a1〉 in the tree T . If α(y, x1) = 〈a2, a1〉, then we have δf (y, x2) = 0 and

the induced subgraph of {x0, x1, x2, y} is a path (x0, x1, x2, y); if α(y, x2) = 〈a2, a1〉,

then we have δf (y, x1) = 0 and the induced subgraph of {x0, x1, x2, y} is a star with

the center x1. Since |V (T )| ≥ 5, there exists a vertex z′ which is adjacent to one of
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the vertices in {x0, x1, x2, y}. Clearly, no matter which one is adjacent to z′, we also

have δf (z
′) ≥ 2. Thus, this case is not possible.

Case 2. A(T [f ]) = {〈a1, a2〉, 〈a2, a3〉, 〈a3, a1〉}. Let α(u, v) = 〈a1, a2〉 and (f(u),

f(w), f(v)) be the path in T for some vertex w. Then d(f(w), f(u)) = d(f(w), f(v)) =

1 implies that one of the elements in {d(w, u), d(w, v)} is 1 and the other one is 3.

By Lemma 2.2.1, this case is impossible.

Case 3. A(T [f ]) = {〈a1, a3〉, 〈a2, a1〉, 〈a3, a2〉}. By Lemma 1.3.11, if f is a

near automorphism, then f−1 is also a near automorphism. Moreover, A(T [f−1]) =

{〈a1, a2〉, 〈a2, a3〉, 〈a3, a1〉}. Thus, by Case 2, Case 3 is also not possible.

Case 4. A(T [f ]) = {〈a1, a3〉, 〈a3, a1〉}. Let α(u, v) = 〈a1, a3〉 and {x, y} be

a pair of vertices of T such that (f(u), f(x), f(y), f(v)) is a path in T . Then,

d(f(u), f(y)) = d(f(x), f(v)) = 2 implies that d(u, y) = d(x, v) = 2, and d(f(u), f(x))

= d(f(x), f(y)) = d(f(y), f(v)) = 1 implies that one of the elements in {d(u, x),

d(x, y), d(y, v)} is 3 and the other two are 1 in tree T .

If α(x, y) = 〈a3, a1〉, then in T the graph induced by the vertex set {u, v, x, y}

is the path (x, u, v, y). If |V (T )| = 4, then T ' P4. If |V (T )| ≥ 5, then there is a

vertex w which is adjacent to one vertex in {u, v, x, y} and keeps the condition that

δf (w) = 0. This is impossible, since δf (w) ≥ δf (w, x) + δf (w, y) > 0.

In addition, since α(u, x) = 〈a3, a1〉 and α(y, v) = 〈a3, a1〉 are similar cases, we con-

sider the case α(u, x) = 〈a3, a1〉. Then the graph induced by {u, v, x, y} is (u, v, y, x),

and it’s obviously an exchange of x and v. If |V (T )| ≥ 5, then for each vertex w

in V (T ) \ {u, v, x, y}, δf (w) = 0. Moreover, in order to maintain δf (w) = 0, all the

paths which combine each vertex in {u, v, x, y} to each vertex in V (T ) \ {u, v, x, y}

must pass through y. This implies that T − y contains an isolated vertex x and K2

induced by {u, v}. Furthermore, the near automorphism is the transposition (vx).
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This concludes the proof.

So, we have obtained the trees T of order n such that π(T ) = 4. But, for larger

values t, 4 < t ≤ 2n− 4, to determine the trees T with π(T ) = t seems quite difficult.

We shall make an effort in Chapter 4 to find those trees T with π(T ) = 2n− 4.
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Chapter 3

Near Automorphisms of Cycles

As mentioned earlier in Theorem 1.4.1, the near automorphisms have been charac-

terized by Aitken and he also proved that π(Pn) = 2n− 4. Therefore, it is natural to

ask what are the set of near automorphisms of Cn, the cycle of order n, and we shall

answer this question in this chapter. Furthermore, by using the idea we obtained in

showing π(Cn) = 4bn
2
c − 4, we obtain an alternative proof of π(Pn) = 2n− 4.

3.1 π(Cn) = 4bn
2c − 4

For convenience, the n-cycle Cn we consider throughout this chapter is denoted

by (v−bn
2
c, · · · , v−1, v0, v1, · · · , vbn

2
c) (for n even we let v−bn

2
c = vbn

2
c) and the vertices

are distributed on the cycle evenly. Now, clearly the permutations g(vi) = v−i and

h(vi) = vi+j for some j, 1 ≤ j ≤ t, and for all i, 1 ≤ i ≤ t, are automorphisms of

Cn. The permutations g and h are the mirror reflection and the rotation respectively

( geometrically speaking).

Theorem 3.1.1. π(Cn) = 4bn
2
c − 4.

Proof. Let the permutation be the transposition (v0v1). Then, by direct counting,

we have π(Cn) ≤ δf (Cn) = 4bn
2
c − 4. For n ≤ 3, all permutations of Cn are auto-

morphisms. Therefore, we start our proof by showing that for each positive integer
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n ≥ 4, δf (Cn) ≥ 4bn
2
c − 4 for any non-automorphism f .

Since Cn is a vertex-transitive graph, by Lemma 1.3.5, we may assume that f is a

non-automorphism of Cn such that f(v0) = v0 and δf (v0) = min{δf (v) : v ∈ V (Cn)}.

Clearly, if δf (v0) ≥ 4, then δf (Cn) ≥ 2n and the proof follows. Hence we assume

that min{δf (v) : v ∈ V (Cn)} is equal to 0 or 2. Note that, by Lemma 1.3.4, δf (v0) is

even.

Case 1. δf (v0) = 0.

This implies that for each vi ∈ V (Cn), i 6= 0, f(vi) ∈ {vi, v−i}. Let A = {k :

f(vk) = vk, k = 1, 2, · · · , dn
2
e − 1} and B = {h : f(vh) = v−h, h = 1, 2, · · · , dn

2
e − 1}.

Since f is not an automorphism, then |A| 6= 0 and |B| 6= 0. Thus in this case, n ≥ 5.

Then, for each k ∈ A and h ∈ B, |dCn(vk, vh) − dCn(f(vk), f(vh))| ≥ 1 whenever

n is odd and |dCn(vk, vh) − dCn(f(vk), f(vh))| ≥ 2 whenever n is even. Now, let

A− = {−k : k ∈ A} and B− = {−h : h ∈ B}. The above inequalities also hold for

k ∈ A− and h ∈ B or k ∈ A and h ∈ B− or k ∈ A− and h ∈ B− depending on

whether n is odd and even, respectively. Thus, we conclude that δf (Cn) ≥ 4|A||B|

or 8|A||B| depending on whether n is odd or even, respectively. Nevertheless, by the

fact that |A| + |B| = dn
2
e − 1, we have δf (Cn) ≥ 4 · 1 · (dn

2
e − 2) or 8 · 1 · (dn

2
e − 2)

with respect to whether n is odd or even, respectively and the equality holds only if

|h| = dn
2
e − 1 for all odd n and special for n = 6 since 8 · (dn

2
e − 2)= 4bn

2
c − 4.

Case 2. δf (v0) = 2.

By Lemma 1.3.6, there exist two distinct vertices vh and vk such that δf (v0) =

δf (v0, vh) + δf (v0, vk), where h, k ∈ {−bn
2
c, · · · , 0, · · · , bn

2
c} (again, for n even we let

v−bn
2
c = vbn

2
c) and |h| = |k| + 1. Hence, the near automorphism f satisfies one of

the following four conditions: (a) f(vh) = vk and f(vk) = vh, (b) f(vh) = vk and

f(vk) = v−h, (c) f(vh) = v−k and f(vk) = vh, (d) f(vh) = v−k and f(vk) = v−h. Since
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δf (v0) = 2, for each vi, i 6= h, k, f(vi) = vi or f(vi) = v−i. Obviously, if we compose

an automorphism g to all the possible permutations in (a), then we can get all the

possible permutations in (d), where g is a mirror reflection such that g(v0) = v0 and

g(vi) = v−i for all i, and so do (b) and (c). Thus, it suffices to find δf (Cn) for the f ’s

satisfying (a) and (b) respectively. By considering the displacement of vh and vk, we

have

δf (Cn) ≥
∑

i 6=h,k

{δf (vh, vi) + δf (vk, vi)}

=
∑

i 6=h,k

{|d(vh, vi)− d(f(vh), f(vi))|+ |d(vk, vi)− d(f(vk), f(vi))|}

Let C = {i : f(vi) = vi, i 6= h, k} and D = {j : f(vj) = v−j, j 6= h, k}. Since

v0 ∈ C, |C| 6= 0, and |C|+ |D| = n− 2. Then, for the f satisfying (a), we have

δf (Cn) ≥ ∑
i6=h,k
i∈C

{|d(vh, vi)− d(vk, vi)|+ |d(vk, vi)− d(vh, vi)|}+
∑

i6=h,k
i∈D

{|d(vh, vi)− d(vk, v−i)|+ |d(vk, vi)− d(vh, v−i)|}.(3.1)

By the fact that |d(vh, vi)− d(vk, vi)| ≥ 1 and |d(vh, vi)− d(vk, v−i)| ≥ 1 for each

i 6= h, k in the case n is even, we have δf (Cn) ≥ 2(|C| + |D|) = 2(n− 2), as desired.

On the other hand, if n is odd, there is exactly one vertex vj, j 6= h, k in V (Cn) that

satisfies d(vh, vj) = d(vk, vj). Thus, δf (Cn) ≥ 2(n−3) = 4bn
2
c−4 in the case when n is

odd, since |C| 6= 0, δf (Cn) = 4bn
2
c−4 if |d(vh, vi)−d(vk, vi)| = 1. In fact, d(vh, vk) = 1

for all i and for all n but i = bn
2
c or −bn

2
c, and we have |d(vh, vi) − d(vk, vi)| = 1; if

d(vh, vk) 6= 1, then there are four and two vertices such that |d(vh, vi)− d(vk, vi)| = 1

and the other vertices |d(vh, vi) − d(vk, vi)| ≥ 3 and 2 in all n even and odd case,

respectively.

Next, for the f satisfying (b), we have

δf (Cn) ≥ ∑
i6=h,k
i∈C

{|d(vh, vi)− d(vk, vi)|+ |d(vk, vi)− d(v−h, vi)|}+
∑

i6=h,k
i∈D

{|d(vh, vi)− d(vk, v−i)|+ |d(vk, vi)− d(v−h, v−i)|}.(3.2)
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By observation, we are able to see that at least one of the summands is larger

than 2. Therefore, we conclude that δf (Cn) > 4bn
2
c − 4 in this case. In conclusion

that we have the lower bound δf (Cn) ≥ 4bn
2
c − 4.

By the way, in the above argument, we also have the near automorphisms of Cn

are f ◦ g and g ◦ f where f = (v0v1) and g is an automorphism of Cn, (since Cn

is a vertex-transitive graph, we prefer (v0v1) to any transposition of two adjacent

vertices), and special for n = 5, f = (v0v1) or (v0v2) and for n = 6, f = (v0v1), (v0v2)

or (v0v3). This concludes the following theorem.

Theorem 3.1.2. The near automorphisms of Cn are f ◦g and g ◦f where f = (v0v1)

and g is an automorphism of Cn, and special for n = 5, f = (v0v1) or (v0v2) and for

n = 6, f = (v0v1), (v0v2) or (v0v3).

3.2 An Alternative Proof of π(Pn) = 2n− 4

In this section, we would like to point out that the study of near automorphisms

of paths and cycles does have some similarity. With the following proposition, we

provide a short proof of π(Pn) = 2n− 4 which was obtained by Aitken [1].

Proposition 3.2.1. π(Pn) ≥ π(Cn), the equality holds only when n is even.

Proof. Let Pn =< v1, v2, · · · , vn > and Cn = (v1, v2, · · · , vn). Now, it is easy to see

that dPn(vi, vj) = |j − i| and dCn(vi, vj) = min{|j − i|, n− |j − i|}. In order to prove

the proposition, we will first show that for each permutation f of V (Pn) = V (Cn) and

for each pair of distinct vertices {x, y}, |dPn(x, y) − dPn(f(x), f(y))| ≥ |dCn(x, y) −

dCn(f(x), f(y))|. Clearly, if both dPn(x, y) and dPn(f(x), f(y)) are not larger than

bn
2
c, neither are dCn(x, y) and dCn(f(x), f(y)), and thus the proof follows. On the

other hand if both dPn(x, y) and dPn(f(x), f(y)) are larger than bn
2
c, then |dCn(x, y)−
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dCn(f(x), f(y))| = |n−dPn(x, y)−n+dPn(f(x), f(y))| = |dPn(x, y)−dPn(f(x), f(y))|.

Therefore, it is left to consider the case that one of them is larger and the other

is smaller than bn
2
c or equivalently dPn(x, y) > bn

2
c and dPn(f(x), f(y)) ≤ bn

2
c (by

symmetry). Now, we have two subcases to consider.

(i) dPn(x, y) + dPn(f(x), f(y)) ≥ n.

|dCn(x, y) − dCn(f(x), f(y))| = |n − dPn(x, y) − dPn(f(x), f(y))| = dPn(x, y) +

dPn(f(x), f(y))−n ≤ dPn(x, y)−dPn(f(x), f(y)) = |dPn(x, y)−dPn(f(x), f(y))|.

(ii) dPn(x, y) + dPn(f(x), f(y)) < n.

|dCn(x, y)−dCn(f(x), f(y))| = |n−dPn(x, y)−dPn(f(x), f(y))| = n−dPn(x, y)−

dPn(f(x), f(y)) ≤ dPn(x, y)− dPn(f(x), f(y)) = |dPn(x, y)− dPn(f(x), f(y))|.

Note that the equalities in (i) and (ii) hold when n = 2dPn(x, y) and n = 2dPn(f(x), f(y))

respectively. Therefore, n must be even. Thus, for each non-automorphism f , we have

δf (Pn) ≥ δf (Cn). Hence, we left with the case that when f is an automorphism of

Cn but not an automorphism of Pn, δf (Pn) ≥ 2n− 4.

Clearly, g(vi) = vn−i+1 and h(vi) = vi+j (mod n) are a mirror reflection and

rotation of Cn here, respectively, and they can create all the automorphisms of Cn.

Obviously, if {f(v1), f(vn)}= {v1, vn} for some automorphism f of Cn, then f is

also an automorphism of Pn. Otherwise, if {f(v1), f(vn)}= {vj, vj+1} for 1 ≤ j <

n, then {f(vj), f(vj+1)}= {v1, vn} or {f(vn−j), f(vn−j+1)}= {v1, vn}, and δf (Pn) ≥

δf (v1, vn)+ δf (vj, vj+1)+ δf (vn−j, vn−j+1)= (n − 2) + (n − 2)= 2n − 4. Thus this

concludes the proof.

Hence, by Theorem 3.1.1 and Proposition 3.2.1, we can get π(Pn) ≥ 2n−4. Then,

π(Pn) = 2n− 4 [1] follows by the fact that π(Pn) ≤ 2n− 4 (Lemma 1.3.12).
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Chapter 4

Trees T with π(T ) = 2n− 4

4.1 Necessary Conditions

It should be recalled that if G is a graph of order n, then π(G) ≤ 2n−4. Therefore,

it is interesting to know for which graphs G, π(G) = 2n−4. By Theorem 1.4.1 [1], it is

known that if Pn is a path with n vertices, then π(Pn) = 2n− 4 for each n ≥ 3. Since

Pn is a special tree, we intend to find more trees T of order n such that π(T ) = 2n−4

and finally find all trees T of order n with π(T ) = 2n− 4.

First, we obtain the necessary conditions for the trees T having π(T ) = 2n− 4.

Lemma 4.1.1. Let T be a tree of order n such that π(T ) = 2n − 4. Then, the

following conditions hold:

(a) If there exists a vertex x with degT (x) ≥ 3 and T −x has an isolated vertex, then

T − x has at most one non-trivial component.

(b) For each y ∈ V (T ), if T−y contains only non-trivial components, then degT (y) ≤

3.

Proof. We verify (a) first. Assume that x is a vertex in T with degT (x) ≥ 3, T − x

has an isolated vertex x0 and T −x contains at least two non-trivial components. Let

H be one of the non-trivial components which has the minimum number of vertices,
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and let |V (H)| = s. Clearly, s ≥ 2 and s < n
2
. Let z ∈ V (H) and zx ∈ E(T ). Now,

by letting f = (x0z), the transposition of x0 and z, we have δf (T ) = 4(s− 1). Since

π(T ) = 2n− 4, 4(s− 1) ≥ 2n− 4 which implies s ≥ n
2
, a contradiction. Hence, (a) is

verified.

Now, we verify (b). Observe that if y is a pendent vertex of T , then the assertion

follows. So, let y be a cut vertex of T . Let H1 and H2 be two non-trivial components

in T − y which have minimum number of vertices t and r, respectively (t ≤ r). Let

yi ∈ V (Hi), i = 1, 2, such that yyi ∈ E(T ). By a similar argument, let f = (y1y2),

then δf (T ) = 4(t + r− 2) ≥ 2n− 4. Hence t + r ≥ n
2

+ 1. This implies that T − y has

at most three non-trivial components, and thus degG(x) ≤ 3.

By Lemma 4.1.1, it is not difficult to see that if π(T ) = 2n−4 where T is a tree of

order n, then T must be a graph in the following two classes of graphs, see Figure 4.1

and Figure 4.2. For convenience, the class of graphs in Figure 4.1 is denoted by T (2)

(double broom) and the other class of graphs in Figure 4.2 is denoted by T (3) (triple

broom). Since T ∈ T (2) is a star (path) whenever t = 1 (s = 2) and π(T ) = 2n − 4,

we consider this case a special one and assume that t ≥ 2 (s ≥ 2) throughout of the

rest of this chapter.
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Figure 4.1: Double Broom (s ≥ r).
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Figure 4.2: Triple Broom.

4.2 Double Broom T with π(T ) = 2n− 4

In this section, we shall focus on the trees T in T (2) with constraints on the number

of pendent vertices. By observation, both transpositions α = (y2xs) and β = (yt−1zr)

are not automorphisms. It is not difficult to see that δα(T ) = 4(r + t − 2) and

δβ(T ) = 4(s + t − 2). This implies that π(T ) ≤ min{4(r + t − 2), 4(s + t − 2)}.

Therefore, if π(T ) = 2n − 4, then r + t ≥ n
2

+ 1 and s + t ≥ n
2

+ 1. That is to say,

without these two extra constraints, π(T ) < 2n − 4 for the trees in T (2). Therefore,

we have

Lemma 4.2.1. If T ∈ T (2) is a tree of order n and π(T ) = 2n− 4, then r + t ≥ n
2
+1

where s ≥ r.
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In what follows, we shall prove that all the trees T ∈ T (2) with s ≥ r and r + t ≥
n
2

+ 1 attain π(T ) = 2n− 4.

It is worth of noting again that if T is a path of order n ≥ 3, then T ∈ T (2) and

also T satisfies the constraints mentioned above. Therefore, the result obtained in

what follows implies that π(Pn) = 2n− 4.

In order to evaluate π(T ), we introduce a notion which is interesting in itself. Let

A = (a1, a2, · · · , am) and B = (b1, b2, · · · , bm) be two ordered m-tuples of real numbers

where a1 ≤ a2 ≤ · · · ≤ am. Define ‖A − B‖ to be
m∑

i=1

|ai − bi|. So, ‖A − B‖ is a

non-negative value. Also, let φ(B) = (bφ(1), bφ(2), · · · , bφ(m)) where φ is a permutation

of {1, 2, · · · ,m}, i.e., φ ∈ Sm (the symmetric group of order m). Now, it is interesting

to find minφ∈Sm ‖A− φ(B)‖.

Lemma 4.2.2. Let φ ∈ Sm such that bφ(1) ≤ bφ(2) ≤ · · · ≤ bφ(m). Then ‖A − φ(B)‖

attains minφ∈Sm ‖A− φ(B)‖.

Proof. It suffices to prove that if bi > bj for some i < j, then ‖A − B′‖ ≤ ‖A −

B‖ where B′ = (b1, b2, · · · , bi−1, bj, bi+1, · · · , bj−1, bi, bj+1, · · · , bm). The proof is then

obtained by sorting the sequence B step by step.

We now claim that |ai− bj|+ |aj− bi| ≤ |ai− bi|+ |aj− bj|. Since for all the orders

the other differences are the same , the proof follows.

By checking all six cases of the distributions of bi and bj compared with ai and

aj, we have (1) bj ≤ bi ≤ ai ≤ aj, (2) bj ≤ ai ≤ bi ≤ aj, (3) bj ≤ ai ≤ aj ≤ bi, (4)

ai ≤ bj ≤ bi ≤ aj, (5) ai ≤ bj ≤ aj ≤ bi, (6) ai ≤ aj ≤ bj ≤ bi. Then, the proof follows

by calculating the values |ai − bj|, |aj − bi|, |ai − bi| and |aj − bj| in each respective

case.

We are now ready to evaluate the total relative displacements. First, we consider

two distinct vertices u and v in G. Since Au = {dG(u,w) : u 6= w} and Av =
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{dG(v, w) : v 6= w} are two sets of positive integers, we let Âu = (a1, a2, · · · , an−1)

and Âv = (b1, b2, · · · , bn−1) where n is the order of G, Âu and Âv are two non-

decreasing sequences obtained from Au and Av, respectively, by sorting their orders.

For convenience, we define P (u, v) = ‖Âu − Âv‖ =
n−1∑
i=1

|ai − bi|. Obviously, P (u, v) =

P (v, u). Moreover, we have the following property, which holds for all graphs, not

only trees.

Lemma 4.2.3. For each vertex x ∈ V (G) and each permutation f of V (G) =

{v1, v2, · · · , vn}, δf (x) ≥ P (x, f(x)).

Proof. δf (x) =
∑

w 6=x

δ(x, w) =
∑

w 6=x

|d(x, w) − d(f(x), f(w))| ≥ ‖Âx − Âf(x)‖ =

P (x, f(x)).

Observe that Lemma 4.2.3 provides a way to estimate the lower bound of δf (G).

In order to find δf (T ) where T ∈ T (2), we also need the following results. Without

mentioning otherwise, all trees T we consider in what follows are of order n and

T ∈ T (2), furthermore, s ≥ r and r + t ≥ n
2

+ 1.

Lemma 4.2.4. Let T be the tree in Figure 4.1. Then,

(1)
∑

w∈V (T )

d(xi, w) = [t2 + (2r + 1)t + (2r + 4s− 4)]/2,

(2)
∑

w∈V (T )

d(zi, w) = [t2 + (2s + 1)t + (2s + 4r − 4)]/2, and

(3)
∑

w∈V (T )

d(yi, w) = i2 − (1− s + r + t)i + (t + 1)(r +
t

2
).

Proof. Since (1) and (2) are easy to see, we check (3) here.
∑

w∈V (T )

d(yi, w) = si + (i− 1) + (i− 2) + · · ·+ 1 + 1 + · · ·+ (t− i) + r(t− i + 1)

= si + i(i−1)
2

+ (t−i)(t−i+1)
2

+ r(t− i + 1)

= si + i2

2
− i

2
+ t2

2
− ti + i2

2
+ t

2
− i

2
+ rt− ri + r

= i2 − (1− s + r + t)i + (t + 1)(r + t
2
).
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Lemma 4.2.5. Let T ∈ T (2) with s ≥ r and r + t ≥ n
2

+ 1. Then, we have the

following sorting values.

(1) P (xi, zj) = (s− r)t.

(2) P (xi, yj) ≥ n− 2, for 1 ≤ j ≤ t− (s− r); and

P (xi, yj) = 2, for j = t and s = r + 1 = 2.

(3) P (zi, yj) ≥ n− 2, for all j.

(4) P (yi, yj) =





0, i = j, or i + j = t + 1 for s = r;

1, i = t
2
, j = t

2
+ 1 for s− r = 1;

2, i = t−1
2

, j = t+1
2

for s = r + 1 = 2;

i = t+1
2

, j = t+3
2

for s = r + 1 = 2;

i = t
2
, j = t

2
+ 1 for s = r + 2;

3, i = t
2
− 1, j = t

2
for s = r + 1 = 2;

i = t−1
2

, j = t+1
2

for s = r + 2 = 3;

i = t−1
2

, j = t+1
2

for s = r = 2;

i = t+1
2

, j = t+3
2

for s = r = 2;

i = t
2

+ 1, j = t
2

+ 2 for s = r + 1 = 2;

i = t
2
− 1, j = t

2
+ 2 for s = r + 1;

i = t
2
− 1, j = t

2
+ 1 for s = r + 1 = 2;

i = t
2
, j = t

2
+ 1 for s = r + 3; and

P (yi, yj) ≥ 4, otherwise.

Proof.

31



(1) Clearly, Âxi
= (1, 2, · · · , 2︸ ︷︷ ︸

s

, 3, 4, · · · , t, t + 1, · · · , t + 1︸ ︷︷ ︸
r

) and

Âzj
= (1, 2, · · · , 2︸ ︷︷ ︸

r

, 3, 4, · · · , t, t + 1, · · · , t + 1︸ ︷︷ ︸
s

).

Therefore, P (xi, zj) = ‖Âxi
−Âzj

‖ = (1+2+· · ·+(s−r))·2+(s−r)·(n−2s−1) =

(s− r)(s− r + 1) + (s− r)(n− 2s− 1) = (s− r)(n− s− r) = (s− r)t.

(2) Since P (xi, yj) =
∑ |ai − bi| ≥

∑
(ai − bi) =

∑
ai −

∑
bi =

∑

w∈V (T )

d(xi, w) −
∑

w∈V (T )

d(yj, w), thus we have P (xi, yj) ≥ n− 2 for 1 ≤ j ≤ t− (s− r).

Also, we have

Âxi
= (1, 2, · · · , 2︸ ︷︷ ︸

s

, 3, 4, · · · , t, t + 1, · · · , t + 1︸ ︷︷ ︸
r

), and

Âyt = (1, · · · , 1︸ ︷︷ ︸
s+1

, 2, · · · , t− 1, t, · · · , t︸ ︷︷ ︸
r

). This implies that

P (xi, yt) =

{
n− 2, if s = r;
2r + (s− r − 1)(t− 2), if s− r ≥ 1. Hence, the claim follows.

(3) P (zi, yj) ≥
∑

w∈V (T )

d(zi, w)−
∑

w∈V (T )

d(yj, w) ≥ n− 2, for all j.

(4) The proof follows by considering the following cases: 1 ≤ i < j < t+1
2

, 1 ≤ i <

j = t+1
2

, 1 ≤ i < t+1
2

< j ≤ t, t+1
2

= i < j ≤ t, and t+1
2

< i < j ≤ t.

Since they can be obtained by a routine calculation, we omit the details here.

We now are ready to find π(T ). Recall that if f is a permutation of V (G) such

that f(u) = u for some vertex u ∈ V (G), then δf (u) is even.

Lemma 4.2.6. Let f be a permutation which is not an automorphism of T with

f(u) = u and δf (u) = 0 or 2 for some u ∈ V (T ). Then, δf (T ) ≥ 2n− 4.

Proof. First, let δf (u) = 0. If u = xi for some i, then f maps a vertex of

{x1, x2, · · · , xi−1, xi+1, · · · , xs, y2} into a vertex of the same set (maintaining adja-

32



cency). Since f is not an automorphism, f(y2) = xj for some j ∈ {1, 2, · · · , i− 1, i +

1, · · · , s}. Moreover, f(yk) = yk for k = 1, 3, 4, · · · , t and f(zi′) = zi′′ where i′, i′′

are elements in {1, 2, · · · , r}. So, δf (y2) = 2(t − 2) + 2r and δf (T ) = 4(r + t − 2).

By assuming that r + t ≥ n
2

+ 1, we conclude that δf (T ) ≥ 2n − 4. Similarly, if

u = zj for some j, then δf (T ) ≥ 2n − 4. So, we are left to consider u = yk for some

k ∈ {1, 2, · · · , t}. Again, since δf (yk) = 0, the set Sl = {x ∈ V (T ) : d(yk, x) = l}

maps onto Sl, l = 1, 2, · · · . For convenience, we depict T by Figure 4.3, in which the

vertices to the left (right) of the dot line are called left vertices (right vertices). Now,

let the set of vertices w ∈ V (T ) \ {yk} such that f(w) stays on the same side be A,

and the set of vertices which move to the other side be B = V (T ) \ (A ∪ {yk}). This

implies that δf (T ) ≥ 2|A||B| = 2|A|(n− 1− |A|).

Since |A| 6= n − 1, |A| 6= 0 and |A| ≥ 2 (f is not an automorphism), we have

δf (T ) ≥ 4(n− 3) ≥ 2n− 4 for n ≥ 4. This concludes the proof of the case δf (u) = 0.

Next, if δf (u) = 2, then by Lemma 1.3.6, there exist two vertices v and w such

that δf (u, v) = δf (u,w) = 1. Therefore, for each x ∈ V (T ) \ {u, v, w}, we have

δf (u, x) = 0. This implies that δf (v, x) ≥ 1 and δf (w, x) ≥ 1. Hence, δf (T ) ≥

δf (v) + δf (w) ≥ 2(n− 2) = 2n− 4.
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Figure 4.3: The graph with respect to yk.
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Lemma 4.2.7. If f(xi) = xi and π(T −xi) = 2|V (T −xi)|−4 for some i ∈ {1, 2, · · · ,

s}, then δf (T ) ≥ 2n− 4.

Proof. Since δf (T ) = δf (xi)+ δf (T −xi), δf (T ) = δf (xi)+ (2n− 6) by assumption.

Now, if δf (xi) ≥ 2, then δf (T ) ≥ 2n − 4. On the other hand, if δf (xi) = 0, then

the possible near automorphisms are the composition of an automorphism and a

transposition (y2xj) for some j 6= i. This implies that δf (T ) ≥ 2n− 4.

Now, we prove the main result.

Theorem 4.2.8. Let T ∈ T (2), s ≥ r and r + t ≥ n
2

+ 1. Then π(T ) = 2n− 4.

Proof. When s = 1 (or t = 1), then T is a path (star) and thus π(T ) = 2n− 4. So,

in what follows, we assume that s ≥ 2 and t ≥ 2, i.e., n ≥ 6.

For convenience, the proof is split into three cases.

Case 1. s = r. By definition, we have δf (T ) = 1
2

∑

v∈V (T )

δf (v). Therefore,

if δf (v) ≥ 4 for each vertex v in T , then the assertion is true. In what follows,

we find those vertices u in T such that δf (u) ≤ 3. Since δf (u) ≥ P (u, f(u)), we

evaluate P (u, f(u)) first. Recall that P (u, f(u)) = ‖Âu − Âf(u)‖. Therefore, by

direct counting in Lemma 4.2.5, P (u, f(u)) ≤ 3 if (u, f(u)) ∈ A ∪ B, where A =

{(xi, xj), (xi, zj), (zi, zj), (zi, xj), (yk, yk), (yk, yt+1−k)} and B = {(y t−1
2

, y t+1
2

), (y t+1
2

, y t−1
2

), (y t+1
2

, y t+3
2

), (y t+3
2

, y t+1
2

)}. Note that for (u, f(u)) ∈ B, P (u, f(u)) = 3. If the per-

mutation f gives a pair (u, f(u)) ∈ A, then there exists an automorphism g of T , such

that (g ◦ f)(u) = u. Since f is not an automorphism, g ◦ f is not an automorphism

either. Furthermore, by Lemma 4.2.6, δf (T ) = δg◦f (T ) ≥ 2n − 4. Otherwise, the

permutation f does not provide any pairs (u, f(u)) ∈ A satisfying δf (u) ≤ 3 but

in B we have a pair (u, f(u)) such that δf (u) ≤ 3. This implies that for each pair

(u, f(u)) ∈ A, δf (u) ≥ 4. Since B has four pairs and P (u, f(u)) = 3 for each pair,
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δf (T ) ≥ 2n− 2 ≥ 2n− 4. This concludes the proof of Case 1.

Case 2. s = r + 1.

Assume that f(xi) 6= xj for all j, and there is no fixed vertex u (f(u) = u) with

δf (u) ≤ 3. For convenience, we let ξf (u) = 4− δf (u). It suffices to show that if f is

a near automorphism of T ,
∑

u∈V (T ) ξf (u) ≤ 8. By the fact that δf (u) ≥ P (u, f(u)),

ξf (u) ≤ 4 − P (u, f(u)). Therefore, the pairs (u, f(u)) such that P (u, f(u)) < 4

are what we are concerned with. First, assume that t ≥ 4 and r ≥ 2. Then, the

permutation (near automorphism) f gives δf (u) < 4 for vertex pairs (u, f(u)) ∈{

(y t
2
, y t

2
+1), (y t

2
+1, y t

2
), (y t−1

2
, y t+3

2
), (y t+3

2
, y t−1

2
), (y t

2
−1, y t

2
+2), (y t

2
+2, y t

2
−1)}. Since a

permutation f can be represented by disjoint union of cycles (Algebra), for each

vertex yi, yi is in exactly one cycle (yi, f(yi), f
2(yi), · · · , yi). Then, by direct counting,

we have
∑

ξf (u) ≤ 8. Hence, δf (T ) ≥ 2n− 4.

Consider t ≥ 4 and r = 1. Then the near automorphism f gives δf (u) < 4

for vertices (u, f(u)) ∈ {(y t
2
−1, y t

2
), (y t

2
, y t

2
−1), (y t−1

2
, y t+1

2
), (y t+1

2
, y t−1

2
), (y t+1

2
, y t+3

2
),

(y t+3
2

, y t+1
2

), (y t
2
+1, y t

2
+2), (y t

2
+2, y t

2
+1), (y t

2
, y t

2
+1), (y t

2
+1, y t

2
), (y t−1

2
, y t+3

2
), (y t+3

2
, y t−1

2
),

(y t
2
−1, y t

2
+2), (y t

2
+2, y t

2
−1), (y t

2
−1, y t

2
+1), (y t

2
+1, y t

2
−1)}∪{(xi, yt), (yt, xi)}. Again, since

f has a cycle (yi, f(yi), f
2(yi), · · · , yi) or (xi, yt), but not both, we conclude that

∑
ξf (u) ≤ 8 by direct counting.

Finally, we have special cases left to check, namely t = 3 and r ≥ 2; and t = 3,

s = 2 and r = 1. Since they are easy to obtain, we omit the details. This concludes

the proof of Case 2.

Case 3. s ≥ r + 2.

The proof follows by a similar argument as in Case 1 and Case 2. Since the

permutation (near automorphism) f gives δf (u) < 4 for vertices u ∈ V (T ) satisfying

(u, f(u)) ∈ {(y t−1
2

, y t+1
2

) : r = 1 and s = 3}∪ {(y t
2
, y t

2
+1) : s = r + 2}∪ {(y t

2
−1, y t

2
+1) :
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s = r + 3}, the conclusion can be obtained easily by direct counting. Hence, δf (T ) ≥

2n− 4 and we have the proof of the theorem.

To conclude this chapter, we would like to mention one more result which can be

obtained from the main theorem.

Corollary 4.2.9. Let T be a caterpillar of order n. Then π(T ) = 2n− 4 if and only

if T ∈ T (2), s ≥ r and r + t ≥ n
2

+ 1.
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Chapter 5

Chaotic Mappings

As mentioned earlier in the introduction, motivated by the study of total disor-

deredness via permutations, we investigate the maximum value of the total relative

displacements of graphs. This chapter is devoted to introducing several known results

and presenting recent progress in finding π∗(Pn).

5.1 Basic Notions

Recall that the maximum value of the total relative displacements of permutations

in a graph G is denoted by π∗(G) and called the chaotic number of G. In [9], the prob-

lem of finding π∗(Kn1,n2,··· ,nt) was transformed into a quadratic integer programming

problem (QIP), and a characterization of the optimal solution was given. Further-

more, they gave a polynomial time algorithm to solve the problem. For completeness,

we describe their work here. Mainly, we should minimize
∑

a2
ij of A = (aij).

Let A = (aij) be a t× t non-negative matrix. We call

C = (ai1j1 , ai1j2 , ai2j2 , ai2j3 , ai3j3 , · · · , aisjs , aisj1)

a cycle of length 2s, s ≥ 2, in A. A cycle C of length 2s is said to be overweight if

either aikjk
≥ 1 for 1 ≤ k ≤ s and

ai1j1 − ai1j2 + ai2j2 − ai2j3 + ai3j3 − · · ·+ aisjs − aisj1 > s,
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or aikjk+1
≥ 1 for 1 ≤ k ≤ s, where js+1 = j1 and

−ai1j1 + ai1j2 − ai2j2 + ai2j3 − ai3j3 + · · · − aisjs + aisj1 > s.

Below, we show a matrix with an overweight cycle of length 4:

A =




3 → 1 1
↑ ↓
1 ← 2 1

1 1 0




.

It is not difficult to see that, since A = (aij) has an overweight cycle,
∑

a2
ij = 19 is

not of minimum value under the constraints that the row sums and column sums are

fixed. The next matrix A′ = (a′ij) reaches a smaller value
∑

a
′2
ij = 17,

A′ =




2 2 1
2 1 1
1 1 0


 .

Theorem 5.1.1. A = (aij) is an optimal solution of the problem (QIP) ,i.e.
∑

a2
ij

is minimum, if and only if no overweight cycle exists in A.

Proof. Necessity. Suppose that A has an overweight cycle C = (ai1j1 , ai1j2 , · · · , aisjs ,

aisj1). Without loss of generality, assume that aikjk
≥ 1 for 1 ≤ k ≤ s and

ai1j1 − ai1j2 + ai2j2 − ai2j3 + ai3j3 − · · ·+ aisjs − aisj1 > s.

Define A′ = (a′ij), where

a′ij =





aij − 1, if (i, j) = (ik, jk) for some 1 ≤ k ≤ s,

aij + 1, if (i, j) = (ik, jk+1) for some 1 ≤ k ≤ s,

aij, otherwise.

Now,
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∑
a2

ij −
∑

a
′2
ij = a2

i1j1
+ a2

i1j2
+ · · ·+ a2

isj1
− a

′2
i1j1

− a
′2
i1j2

− · · · − a
′2
isj1

= 2(ai1j1 + ai2j2 + · · ·+ aisjs)

−2(ai1j2 + ai2j3 + · · ·+ aisj1)− 2s

> 0.

Therefore,
∑

a2
ij is not the minimum. Note that the row sums and column sums

of A and A′ are equal, respectively. Hence, we have the proof for necessity.

Sufficiency. For contradiction, assume that all cycles of A are not overweight and

∑
a2

ij is not the minimum. Let A∗ = (a∗ij) denote an optimal solution.

Let

4ij = aij − a∗ij, 1 ≤ i, j ≤ t.

Define a directed bipartite multigraph G with bipartition (X,Y ), where

X = {x1, x2, · · · , xt}, Y = {y1, y2, · · · , yt},

xi joins to yi with 4ij edges if 4ij > 0, and xi joins from yj with 4ij edges if 4ij < 0.

Since
t∑

j=1

4ij = 0, for 1 ≤ i ≤ t,

and
t∑

i=1

4ij = 0, for 1 ≤ j ≤ t,

the outdegree and indegree of each vertex in G are equal. Thus, each component of G

has a directed Eulerian circuit, and hence G can be decomposed into directed cycles

C1, C2, · · · , Cm. For each cycle Cl, define

w(Cl) =
∑

(xi,yj)∈Cl

aij −
∑

(yj ,xi)∈Cl

aij.
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Note that,

4ij > 0, for (xi, yj) ∈ Cl,

and that 4ij > 0 implies aij ≥ 1, since a∗ij ≥ 0. Thus,

aij ≥ 1, for (xi, yj) ∈ Cl.

This means that, if w(Cl) > |E(Cl)|/2, where |E(Cl)| is the number of edges in cycle

Cl, then Cl introduces an overweight cycle in A. Since A has no overweight cycle, we

have

w(Cl) ≤ |E(Cl)|/2, for 1 ≤ l ≤ m.

Therefore,

∑
1≤i,j≤t

a2
ij −

∑
1≤i,j≤t

a∗2ij =
∑

1≤i,j≤t

a2
ij −

∑
1≤i,j≤t

(aij −4ij)
2

= 2
∑

1≤i,j≤t

aij4ij −
∑

1≤i,j≤t

42
ij

= 2
m∑

l=1

w(Cl)−
∑

1≤i,j≤t

42
ij

≤ 2
m∑

l=1

|E(Cl)|/2−
∑

1≤i,j≤t

42
ij

= |E(G)| −
∑

1≤i,j≤t

42
ij

=
∑
i,j

|4ij| −
∑

1≤i,j≤t

42
ij

≤ 0,

where |E(G)| denotes the number of edges in G. This contradicts the fact that

A∗ = (a∗ij) is an optimal solution, while A = (aij) is not.

The following algorithm is the algorithm to compute π∗(Kn1,n2,··· ,nt).
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Algorithm Start from an initial matrix (aij),

aij =

{
ni, if i = j,
0, if i 6= j

Carry out the following steps in each iteration.

Step 1. Check whether the matrix (aij) has an overweight cycle. If not, then stop;

we obtain

π∗(Kn1,n2,··· ,nt) =
t∑

i=1

n2
i −

∑
1≤i,j≤t

a2
ij.

Step 2. Suppose that (ai1j1 , ai1j2 , ai2j2 , · · · , aisjs , aisj1) is an overweight cycle, with

aikjk
≥ 1 for 1 ≤ k ≤ s and ai1j1−ai1j2 +ai2j2−ai2j3 +ai3j3−· · ·+aisjs−aisj1 > s.

Then, set

ai1j1 ← ai1j1 − 1,

ai1j2 ← ai1j2 + 1,

ai2j2 ← ai2j2 − 1,

...

aisjs ← aisjs − 1,

aisj1 ← aisj1 + 1.

Go to the next iteration.

Later, in order to find a better upper bound of π∗(G), Chiang and Tzeng [8]

studied total self-variations of sequences as follows.

Let X = (x1, x2, · · · , xk) be a sequence, and Y = (y1, y2, · · · , yk) be a sequence

obtained by permuting all the terms of X. The total self-variation of sequence X

with respect to Y is

ζY (X) =
k∑

i=1

|xi − yi|.
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Define η∗(X) = max{ζY (X) : Y is a sequence that permutes all the terms of X}.

Chiang and Tzeng proved the following property.

Theorem 5.1.2. [8] Let X = (x1, x2, · · · , xk) be a non-decreasing sequence. If Y =

(xk, xk−1, · · · , x1), then η∗(X) = ζY (X).

The following lemma is an easy consequence of the definitions of π∗(G) and η∗(X).

The result is very useful in finding the upper bound of π∗(G).

Lemma 5.1.3. [8] Let G = (V,E) be a graph of order n and X be a sequence con-

sisting of all the distances of the (n
2 ) unordered pairs of distinct vertices of G. Then

δf (G) ≤ π∗(G) ≤ η∗(X) for any permutation f of V .

In [6], they studied the total relative displacement of permutations in a path and

a cycle, they got the upper and lower bound for π∗(Pn) and π∗(Cn). We list their

results in what follows.

Theorem 5.1.4. [6] Let t = b
√

2n(n−1)+1−1

2
c. Then

π∗(Pn) ≤ 2
3
t(t + 1)(t + 2) = 1

3
n(n− 1)(2n− 4− 3t).

Corollary 5.1.5. [6] π∗(Pn) ≤ 4
3
(n + 1)3.

Let f be the permutation of V (Pn) defined by

f(i) =





n
2
− i + 1 , if 1 ≤ i ≤ n

2
;

3n
2
− i + 1 , if n

2
+ 1 ≤ i ≤ n; or

f(i) =





n−2i+1
2

, if 1 ≤ i ≤ n−1
2

;

n+1
2

, if i = n+1
2

;

3(n+1)
2

− i , if n+1
2

+ 1 ≤ i ≤ n,

for whether n is even or odd, respectively. Then the lower bound follows.

Theorem 5.1.6. [6] Suppose that n is even. Then π∗(Pn) ≥ n3

12
− n

3
.
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Theorem 5.1.7. [6] Suppose that n is odd. Then

π∗(Pn) ≥





(n−1)3

12
+ (n−1)2

4
− n−1

3
, if n−1

2
is even;

(n−1)3

12
+ (n+1)(n−3)

4
− n−1

3
, if n−1

2
is odd.

Theorem 5.1.8. [6]

π∗(Cn) ≤





1
8
n3 − 1

4
n2 + 1

8
n , if n ≡ 1 (mod 4);

1
8
n3 − 1

4
n2 − 3

8
n , if n ≡ 3 (mod 4);

1
8
n3 − 1

4
n2 , if n is even.

Let f be the permutation of V (Cn) defined by

f(i) =





2i− 1 , if 1 ≤ i ≤ n
2
;

2i− n , if n
2

+ 1 ≤ i ≤ n; or

f(i) =





i+1
2

, if i is odd ;

i+n+1
2

, if i is even,

where n is even or odd, respectively. Then the lower bound follows.

Theorem 5.1.9. [6] Let Cn be an even cycle. Then π∗(Cn) ≥ n3

12
− n

3
.

Theorem 5.1.10. [6] Let Cn be an odd cycle. Then π∗(Cn) ≥ n3

12
− n

3
for n ≡ 1 or 5

(mod 6); and π∗(Cn) ≥ n3

12
− 3n

4
for n ≡ 3 (mod 6).

In order to see how close these bounds are, we present a couple of tables (Table

5.1 and 5.2) for Pn and Cn, respectively where n is not too large.

n 2 3 4 5 6 7 8
Thm. 5.1.4 0 2 8 16 30 52 80

π∗(Pn) 0 2 8 16 28 44 68
Thm. 5.1.6 and Thm. 5.1.7 0 0 4 8 16 24 40

n 9 10 11 12 13 14
Thm. 5.1.4 116 164 224 292 376 478

π∗(Pn) 96 134 180 234 298 374
Thm. 5.1.6 and Thm. 5.1.7 56 80 104 140 176 224

Table 5.1: π∗(Pn) and its upper and lower bounds

43



n 4 5 6 7 8 9 10
Thm. 5.1.8 4 10 18 28 48 72 100

π∗(Cn) 4 10 16 28 40 58 80
Thm. 5.1.9 and Thm. 5.1.10 4 10 16 28 40 54 80

n 11 12 13 14 15 16 17
Thm. 5.1.8 132 180 234 294 360 448 544

π∗(Cn) 110 140 182 224 278 336 408
Thm. 5.1.9 and Thm. 5.1.10 110 140 182 224 270 336 408

Table 5.2: π∗(Cn) and its upper and lower bounds

Note that π∗(Pn) and π∗(Cn) in the tables are obtained by computer , and they

are the correct values.

5.2 Improved Bounds

In this section, we mainly improve the upper bound for π∗(Pn). First, we consider

two examples:

v

f(v)

v v v v v v v v v

n = 9 1 2 3 4 5 6 7 8 9

9 7 5 3 1 8 6 4 2

v v v v v v v v v v

n = 10 v

f(v)

1 2 3 4 5 6 7 8 9 10

9 7 5 3 1 10 8 6 4 2

In the following we list all the displacements of (n
2 ) order pairs of P9 and P10,

respectively.

By direct counting, we have that π∗(P9) ≥ 84 and π∗(P10) ≥ 128, respectively,

from Tables 5.3 and 5.4.
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δf (1, 2) = 1 δf (2, 3) = 1 δf (3, 4) = 1 δf (4, 5) = 1 δf (5, 6) = 6
δf (1, 3) = 2 δf (2, 4) = 2 δf (3, 5) = 2 δf (4, 6) = 3 δf (5, 7) = 3
δf (1, 4) = 3 δf (2, 5) = 3 δf (3, 6) = 0 δf (4, 7) = 0 δf (5, 8) = 0
δf (1, 5) = 4 δf (2, 6) = 3 δf (3, 7) = 3 δf (4, 8) = 3 δf (5, 9) = 3

δf (1, 6) = 4 δf (2, 7) = 4 δf (3, 8) = 4 δf (4, 9) = 4
δf (1, 7) = 3 δf (2, 8) = 3 δf (3, 9) = 3
δf (1, 8) = 2 δf (2, 9) = 2
δf (1, 9) = 1

δf (6, 7) = 1 δf (7, 8) = 1 δf (8, 9) = 1
δf (6, 8) = 2 δf (7, 9) = 2
δf (6, 9) = 3

Table 5.3: δf (i, j) in P9

δf (1, 2) = 1 δf (2, 3) = 1 δf (3, 4) = 1 δf (4, 5) = 1 δf (5, 6) = 8
δf (1, 3) = 2 δf (2, 4) = 2 δf (3, 5) = 2 δf (4, 6) = 5 δf (5, 7) = 5
δf (1, 4) = 3 δf (2, 5) = 3 δf (3, 6) = 2 δf (4, 7) = 2 δf (5, 8) = 2
δf (1, 5) = 4 δf (2, 6) = 1 δf (3, 7) = 1 δf (4, 8) = 1 δf (5, 9) = 3
δf (1, 6) = 4 δf (2, 7) = 4 δf (3, 8) = 4 δf (4, 9) = 4 δf (5, 10) = 4

δf (1, 7) = 5 δf (2, 8) = 5 δf (3, 9) = 5 δf (4, 10) = 5
δf (1, 8) = 4 δf (2, 9) = 4 δf (3, 10) = 4
δf (1, 9) = 3 δf (2, 10) = 3
δf (1, 10) = 2

δf (6, 7) = 1 δf (7, 8) = 1 δf (8, 9) = 1 δf (9, 10) = 1
δf (6, 8) = 2 δf (7, 9) = 2 δf (8, 10) = 2
δf (6, 9) = 3 δf (7, 10) = 3
δf (6, 10) = 4

Table 5.4: δf (i, j) in P10

Now, compare these two values to the values obtained earlier by [6] π∗(P9) ≥ 56

and π∗(P10) ≥ 80, respectively, and the ones we found are indeed larger. In what

follows, we obtain larger lower bounds for π∗(Pn).
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Theorem 5.2.1. π∗(Pn) ≥





13
108

n3 + 1
9
n2 − 1

3
n, n ≡ 0 (mod 6);

13
108

n3 − 7
36

n + 2
27

, n ≡ 1 (mod 6);

13
108

n3 + 1
9
n2 − 5

9
n− 8

27
, n ≡ 2 (mod 6);

13
108

n3 − 5
12

n, n ≡ 3 (mod 6);

13
108

n3 + 1
9
n2 − 1

3
n− 4

27
, n ≡ 4 (mod 6); and

13
108

n3 − 7
36

n− 2
27

, n ≡ 5 (mod 6).

Proof. The results are obtained by six congruent classes and the following permu-

tations defined for odd n and even n, respectively. For odd n, let

f(i) =

{
n + 2− 2i , if 1 ≤ i ≤ n+1

2
;

2(n + 1− i) , if n+3
2
≤ i ≤ n.

We partition the set of all relative displacements into 4 parts, see Table 5.3 for

reference. The first part (left-upper corner) is equal to
n−1

2∑
i=1

{1 + 2 + 3 + · · ·+ i} =
1

48
(n− 1)(n + 1)(n + 3).

The other part can be obtained by direct calculation and they are equal to





1
16

n3 − 11
432

n2 − 11
432

n− 5
432

, n ≡ 1 (mod 6);

43
432

n3 − 1
16

n2 − 19
48

n + 1
16

, n ≡ 3 (mod 6);

43
432

n3 − 1
16

n2 − 25
144

n− 5
432

, n ≡ 5 (mod 6), respectively.

Similarly, we define f(i) =

{
n + 1− 2i , if 1 ≤ i ≤ n

2
;

2(n + 1− i) , if n
2

+ 1 ≤ i ≤ n,
when n is even,

then the proof follows by the same technique as in the case ”n is odd”.

In the following, we compare the results of Theorem 5.2.1 and the results of The-

orem 5.1.6 and Theorem 5.1.7. Clearly, this result is a better lower bound. The

differences of these bounds are listed in the following, but we still can’t accomplish

the goal of finding π∗(Pn).
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



1
27

n3 + 1
9
n2, n ≡ 0 (mod 6);

1
27

n3 − 11
18

n− 23
54

, n ≡ 1 (mod 12);

1
27

n3 − 1
9
n2 − 2

9
n− 8

27
, n ≡ 2 (mod 6);

1
27

n3 + 1
6
n + 1

2
, n ≡ 3 (mod 12);

1
27

n3 + 1
9
n2 − 4

27
, n ≡ 4 (mod 6);

1
27

n3 − 11
18

n− 31
54

, n ≡ 5 (mod 12);

1
27

n3 + 7
18

n + 31
54

, n ≡ 7 (mod 12);

1
27

n3 − 5
6
n− 1

2
, n ≡ 9 (mod 12);

1
27

n3 + 7
18

n− 23
54

, n ≡ 11 (mod 12);

From the partial results obtained in this chapter, it is not difficult to see that

finding the chaotic number of a graph seems to be a much harder task. We believe

that no polynomial time algorithms can be found for finding π∗(G) where G is an

arbitrarily given graph. However, we are not able to prove this at the moment.
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Chapter 6

Conclusion

From the results we obtained in Chapter 4, we have seen a chance of finding the

trees T of order n where π(T ) = 2n−4. To prove that for each T ∈ T (3), π(T ) = 2n−4

deserves to be considered in our further research, even it can be foreseen that more

details are involved in estimating δf (v) for each v ∈ V (T ). Fortunately, we do now

have a tool to find its lower bound by using the sorting values. This idea should work

for other graphs too.

On the other hand, the study of chaotic mappings has a long way to go. As can be

seen in Chapter 5, to determine π∗(Pn) or π∗(Cn) is still very far from being settled.

Between the results obtained so far and expected values, there are gaps. A smarter

idea is in need, and hopefully we can also find these two values in the near future.

To conclude this thesis, we would like to mention one more result which we have

worked on. Let Qk denote the k-dimensional hypercube. It is well-known that Q2
∼=

K2,2 and Qk = Qk−1 × K2 for k ≥ 3. Since Qk is vertex-transitive, there exists

a permutation f such that π(Qk) can be achieved by f in which δf (v) is even for

each v ∈ V (Qk). In fact, δf (v) ≡ 0 (mod 4) by Lemma 1.3.4. Thus, π(Qk) ≡ 0

(mod 4). This is what we can do so far, by the fact that π(Q3) = 8, we believe that

π(Qk) = 2 · 2k − 8 = 2k+1 − 8 is true.
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