
國立交通大學

電子工程學系 電子研究所

碩 士 論 文

應用於 H.264/AVC 的高產量 M 串聯多

重符號背景適應性二元算術解碼器

High Throughput M-cascade

Mult i -Symbol CABAD for H.264/AVC

研究生 : 吳 錦 木

指導教授 : 張添烜 博 士

中 華 民 國 九 十 七 年 一 月

應用於 H.264/AVC 的高產量 M 串聯多

重符號背景適應性二元算術解碼器

High Throughput M-cascade

Mult i -Symbol CABAD for H.264/AVC

研 究 生 : 吳錦木 Student : Jin-Mu Wu

指導教授 : 張添烜 博士 Advisor : Dr. Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所

碩士論文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Electronics Engineering & Institute of Electronics

January 2008
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 七 年 一 月

應用於 H.264/AVC 的高產量 M 串聯多

重符號背景適應性二元算術解碼器

研究生 : 吳 錦 木 指導教授 : 張 添 烜 博士

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所

摘 要

背景適應性二元算術解碼器(CABAD)的多重符號運算程序有著極大的資

料相依性以及適應性的機率估計，因此在硬體設計上這是很難直接運用平行

化和管線化來加速。在本論文中，我們基於統計的資料分布特性提出兩個主

要的方法來實現多重符號的 CABAD。1)首先我們提出 M 串聯的架構可以有

效率地提高算術編碼的產率。2)其次我們重新排列背景存儲器和使用一套小

的快速緩衝貯存器來改善管線化的危害物。我們的解碼器在 QP24 下平均解

一個巨方塊花費 219 個單位時間。這足以滿足層次 4.0 對 1080HD 格式每秒

三十張畫面的影像作即時解碼。基於 0.13 微米聯華電子互補式金氧半導體製

程，我們的多重符號 CABAD 設計在不含背景存儲器情況下需要 11,937 個邏

輯閘，其操作時脈為 115MHz。而我們的背景存儲器僅需 481 個單一接口靜

態隨機存儲器位元組。

High Throughput M-Cascade
Multi-Symbol CABAD for H.264/AVC

Student : Jin-Mu Wu Advisor : Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

The multi-symbol procedure of CABAD has strong data dependencies and

adaptive probability estimation, so that it is difficult to speedup the hardware design

by directly applying parallelism and pipeline schemes. In this thesis, based on the

result of data statistic we proposed two main methods to realize a high throughput

multi-symbol CABAD. 1) First we propose the M-cascade structure efficiently

increasing the throughput of arithmetic coding. 2) Secondly we rearrange the context

memory and use small cache registers improve pipeline hazards. Our decoder

averagely takes 219 cycles to decode a macro block in QP24. It is sufficient for level

4.0 to support 1080HD real-time decoding at 30fps. Based on 0.13μm UMC CMOS

process, our multi-symbol CABAD design needs 11,937 gates without context

memory and operates at 115 MHz. And our context memory only needs 481 bytes of

single-port SRAM.

誌 謝

首先，我要感謝我的指導教授 張添烜博士，研究生這幾年來給我的支持與

鼓勵，在老師指導下習得了研究的方法、觀念以及對於視訊壓縮這領域的瞭解，

並且提供了優良的設計環境。張教授在研究上的支援使這本論文得以順利的產

生，對此致上深深的感謝。

同時也要謝謝我的口試委員們，交大電子李鎮宜教授和清華電機陳永昌教

授，感謝教授們百忙之中抽空來指導我，各位的寶貴意見讓本論文更加完備。

感謝實驗室的夥伴們，在艱難的時候有大家的陪伴及建議；特別謝謝林佑

昆，張彥中和鄭朝鐘學長，給予課程及研究上的建議指導及訓練，讓研究能順利

完成。感謝余國亘、王欲仁同學，與我交流軟硬體及視訊處理上的經驗和技巧；

感謝蔡旻奇、古君偉同學，在課業研究上一同學習成長。感謝海珊學長、郭子筠、

林嘉俊、吳秈璟，李得瑋學弟們，一同渡過實驗室的生活。這些，都是我珍貴的

回憶。希望大家將來都有一片美好未來。

感謝我的父母及姐姐，家人給我的溫暖是生活的支柱。感謝猴子包子餅乾以

及陪伴我的同學朋友們，你們是我研究所的回憶。

最後，在此，將本論文獻給所有愛我與我愛的人。

 I

CONTENTS
CONTENTS... І

LIST OF TABLES ..Ш

LIST OF FIGURES.. IV

CHAPTER 1 INTRODUCTION..1

1.1 Motivation .. 1

1.2 Thesis Organization .. 2

CHAPTER 2 OVERVIEW OF CABAD FOR H.264/AVC ..3

2.1 Overview of H.264/AVC standard.. 4

2.2 Algorithm of binary arithmetic coding ... 6

2.2.1 Arithmetic coding.. 6

2.2.2 Binary arithmetic coding...10

2.3 Algorithm of CABAD for H.264/AVC ... 14

2.3.1 System level of CABAD... 14

2.3.2 Three modes of decoding process in CABAD .. 16

2.4 Binarization decoding flow... 19

2.4.1 Unary (U) binarization process ... 20

2.4.2 Truncated unary (TU) binarization process... 21

2.4.3 Unary/k-th order Exp-Golomb (UEGk) binarization process ... 21

2.4.4 Fixed-length binarization (FL) process ... 23

2.4.5 Special binarization process..23

2.5 Context model organization.. 26

2.5.1 Assignment process of context index ..28

2.6 Paper survey for CABAD designs .. 31

CHAPTER 3 MULTI-SYMBOL OF BINARY ARITHMETIC DECODER ENGINE................................ 34

3.1 Overview of CABAD system ... 34

3.2 Statistics and analysis ... 38

3.3 Proposed multi-symbol architecture ... 41

3.3.1 One-symbol structure of BAD .. 41

3.3.2 Cascaded structure of multi-symbol BAD .. 43

3.3.3 Extending structure of multi-symbol BAD ... 45

3.3.4 M-cascade of multi-symbol architecture...47

3.4 Pipeline organization .. 50

 II

CHAPTER 4 STRUCTURE OF CONTEXT MODEL ... 55

4.1 Overview of the context model... 55

4.2 Context memory ... 58

4.2.1 Memory rearrangement... 59

CHAPTER 5 SIMULATION AND IMPLEMENTATION RESULT... 64

5.1 Simulation result... 64

5.1.1 Performance in each syntax element... 64

5.1.2 Performance of our proposed design... 65

5.2 Implement result ... 69

CHAPTER 6 Conclusion and Future Work... 72

6.1 Conclusion .. 72

6.2 Future work... 73

REFERENCE ... 74

 III

LIST OF TABLES
TABLE 2-1. RESULTS OF ENCODING PROCESS.. 11

TABLE 2-2. RESULTS OF DECODING PROCESS AND ITS COMPARATOR... 13

TABLE 2-3. BIN STRING OF THE UNARY BINARIZATION.. 20

TABLE 2-4. EXAMPLE FOR BINARIZATION COEFF_ABS_LEVEL_MINUS1 ... 22

TABLE 2-5. BIN STRING OF THE FL CODE.. 23

TABLE 2-6. BINARIZATION IN I SLICE.. 24

TABLE 2-7. BINARIZATION IN P/SP AND B SLICE... 24

TABLE 2-8. BINARIZATION TABLE FOR SUB-MACROBLOCK TYPE IN P/SP AND B SLICE ... 25

TABLE 2-9. SYNTAX ELEMENT AND ASSOCIATED DEFINITION OF CTXIDXOFFSET.. 29

TABLE 2-10. DEFINITION OF THE CTXIDXINC VALUE FOR CONTEXT MODEL INDEX ... 29

TABLE 2-11. SPECIFICATION OF CTXIDXINC FOR SPECIFIC VALUES OF CTXIDXOFFSET AND BINIDX........................ 30

TABLE 2-12. ASSIGNMENT OF CTXBLOCKCATOFFSET.. 30

TABLE 2-13. SPECIFICATION OF CTXBLOCKCAT ... 30

TABLE 3-1. PERCENTAGE OF THE BINS AT EACH SYNTAX ELEMENT ... 39

TABLE 3-2. PERCENTAGE OF THE CYCLE COUNTS AT EACH SYNTAX ELEMENT .. 39

TABLE 3-3. PERCENTAGE OF EACH CONCATENATE SYMBOL.. 40

TABLE 3-4. RESULTS FOR RANGE, OFFSET AND BINVAL AT EACH MODE .. 42

TABLE 3-5. DEPENDENCY OF SYMBOL, BIN_FLAG, VALMPS AND BIN VALUE.. 42

TABLE 3-6. LATENCY OF THE ADDERS IN THREE-SYMBOL EXTENDING BAD... 47

TABLE 3-7. CASE OF MULTI-SYMBOL WHICH OUR ARCHITECTURE CAN DECODE ... 48

TABLE 3-8. TRUTH TABLE OF BINVALID?_BAD RELATED TO OUR BAD ARCHITECTURE... 49

TABLE 3-9. PARAMETERS OF THE DECISION MODE CHANGING TO THE BYPASS MODE.. 52

TABLE 5-1. PERFORMANCE OF BIN/CYCLE IN EACH SYNTAX ELEMENT BY DIFFERENT QP....................................... 64

TABLE 5-2. IMPROVEMENT OF DECODING PERFORMANCE (A)IN QP36 (B)IN QP30 (C)IN QP24 (D)IN QP18 66

TABLE 5-3. SUMMARIZATION OF AVERAGE THREE-SYMBOL PERFORMANCE IN DIFFERENT QP................................ 68

TABLE 5-4. SYNTHESIS RESULT OF OUR DESIGN.. 69

TABLE 5-5. COMPARISON WITH OTHER DESIGNS USING 1080HD SEQUENCE... 70

TABLE 5-6. COMPARISON WITH OTHER DESIGNS USING CIF SEQUENCE .. 70

 IV

LIST OF FIGURES
FIG. 2-1. SPECIFIC CODING PARTS OF THE THREE PROFILES IN H.264/AVC.. 4

FIG. 2-2. BLOCK DIAGRAM OF H.264/AVC CODING STRUCTURE... 5

FIG. 2-3. BIT-RATE SAVINGS PROVIDED BY CABAC RELATIVE TO CAVLC... 6

FIG. 2-4. EXAMPLE OF THE PROBABILITY MODEL.. 7

FIG. 2-5. ENCODING PROCEDURE FOR SYMBOL SEQUENCE (C B C E).. 8

FIG. 2-6. EXAMPLE OF ARITHMETIC DECODING PROCESS .. 9

FIG. 2-7. DEFINITION OF MPS AND LPS.. 10

FIG. 2-8. ENCODING PROCESS OF SUB-DIVIDED INTERVAL MPS AND LPS ... 11

FIG. 2-9. EXAMPLE OF ENCODING BINARY ARITHMETIC CODING WITH ADAPTIVE PROBABILITY.............................. 12

FIG. 2-10. DECODING OF SUBDIVISION OF MPS AND LPS ... 13

FIG. 2-11. CABAD BLOCK DIAGRAM.. 14

FIG. 2-12. DECODING FLOW OF THE DECISION MODE .. 16

FIG. 2-13. DECODING FLOW OF THE BYPASS MODE ... 17

FIG. 2-14. DECODING FLOW OF THE TERMINAL MODE ... 18

FIG. 2-15. FLOWCHART OF RENORMALIZATION... 19

FIG. 2-16. PSEUDO CODE OF THE SUFFIX PART ALGORITHM ... 22

FIG. 2-17. ILLUSTRATION OF THE NEIGHBOR LOCATION IN MACROBLOCK LEVEL .. 27

FIG. 2-18. ILLUSTRATION OF THE NEIGHBOR LOCATION IN SUB-MACROBLOCK LEVEL... 27

FIG. 2-19. (A) ZIG-ZAG SCAN AND (B) FIELD SCAN... 31

FIG. 3-1. BLOCK DIAGRAM OF CABAD.. 34

FIG. 3-2. ELEMENTARY OPERATIONS OF CABAD.. 35

FIG. 3-3. OVERVIEW OF OUR ARCHITECTURE .. 36

FIG. 3-4. DECODING FLOW AT SYNTAX ELEMENT LEVEL.. 38

FIG. 3-5. BAD FOR ONE-SYMBOL ARCHITECTURE... 41

FIG. 3-6. SIMPLIFY ONE-SYMBOL BAD ARCHITECTURE AND ITS SIMPLY DRAWING ... 43

FIG. 3-7. CASCADE ARCHITECTURE OF THREE-SYMBOL BAD ... 44

FIG. 3-8. EXAMPLE OF TWO-SYMBOL EXPANDING BAD ARCHITECTURE ... 45

FIG. 3-9. ORGANIZATION OF THE MULTI-SYMBOL BAD .. 48

FIG. 3-10. TIMING DIAGRAM OF THE PIPELINE COMPARISON ... 50

FIG. 3-11. THE TIMING DIAGRAM OF OUR ARCHITECTURE RESTRICTS ... 51

FIG. 3-12. SCHEDULE OF THE DECISION MODE CHANGING TO THE BYPASS MODE IN MVD-SE................................ 53

FIG. 4-1. TRADITIONAL ORGANIZATION OF CONTEXT MEMORY ... 55

FIG. 4-2. STRUCTURE OF CSR... 56

FIG. 4-3. PART OF OUR CONTEXT SELECTION... 57

FIG. 4-4. OPTIMAL ARRANGEMENT OF CONTEXT MEMORY .. 58

FIG. 4-5. MODIFIED DATA ARRANGEMENT OF CONTEXT MEMORY ... 59

 V

FIG. 4-6. FLOW DIAGRAM OF THE SIGNIFICANCE MAP ... 60

FIG. 4-7. DECODING ORDER OF SIG._COEFF_FLAG AND LAST_SIG._COEFF_FLAG .. 60

FIG. 4-8. TIMING DIAGRAM FOR THE ORIGINAL ORGANIZATION OF CONTEXT MEMORY ... 61

FIG. 4-9. (A) ORIGINAL MODIFIED ORGANIZATION. (B) OUR PROPOSED ORGANIZATION .. 61

FIG. 4-10. FORMULA OF INTRA PREDICTION MODES .. 62

FIG. 4-11. MEMORY REARRANGE FOR INTRA CONTEXT MEMORY .. 62

FIG. 4-12. FULL-VIEW ORGANIZATION OF OUR PROPOSED CONTEXT MEMORY .. 63

FIG. 5-1. CHARACTERISTIC CURVES OF 100MHZ FOR THREE SEQUENCES ... 68

 1

Chapter 1

Introduction

1.1 Motivation

H.264/AVC is a new international video coding standard developed by the Joint

Video Team of ISO/IEC Moving Picture Experts Group and ITU-T Video Coding Experts

Group. The new standard can save the bit-rate up to 50% compared to the previous video

standard under the same video quality. It employs various advanced coding tools such as

multiple reference frame, variable block size, in-loop de-blocking filter, quarter-sample

interpolation, and context-based adaptive binary arithmetic coding. Because of its

outstanding performance in quality and compression gain, the more and more consumer

application products adopt H.264/AVC as its video standard, such as portable video

device, video telephony, digital camera …etc.

H.264/AVC contains two entropy coding schemes which are context-based adaptive

variable length coding (CAVLC) and context-based adaptive binary arithmetic coding

(CABAC). Compared to CAVLC, CABAC averagely can save 9%-14% of bit-rate at the

expense of higher computation complexity. Therefore, the acceleration of the CABAC

decoding is necessary for high-performance. The bottlenecks are the strong data

dependencies and the problem of adaptive probability estimation.

Based on the data analysis of the decoding bins for different syntax elements and

different concatenate symbol case, we proposed efficient techniques to reduce clock

cycles for a macroblock. 1) The three-symbol-per-cycle architecture by M-cascade

 2

structure efficiently increases the throughput of arithmetic coding. 2) Rearrangement of

the context table and using small cache registers improve pipeline hazards.

1.2 Thesis organization

This thesis is organized as follows. In Chapter 2, we present the overview of CABAD

for H.264/AVC. We will describe several parts in the chapter such as H.264/AVC

standard, arithmetic coding, binary arithmetic coding, binarization decoding flow and

context model organization. Chapter 3 shows the proposed architecture of our

multi-symbol CABAD design. We focus on M-cascade structure of binary arithmetic

decoding engine to promote the throughput. Chapter 4 presents our context memory

model and the rearrangement of memory table. The simulation result and implementation

is shown in Chapter 5. And we make a brief conclusion and future work in Chapter 6.

 3

Chapter 2

Overview of CABAD for H.264/AVC

H.264 has been developed jointly by ITU-T VCEG and ISO/IEC MPEG. Its data

compression efficiency is four and two times better than earlier video standards, MPEG-2

and MPEG-4 respectively. This is due to that H.264/AVC adopts many complicated and

computational video coding tools, so it can maintain the video quality as well enhance the

coding efficiency. In this chapter, we show the algorithm of CABAD. The CABAD is

composed of the arithmetic decoding process, the binarization and the context model. The

arithmetic decoding process reads the bit-streams and computes the bin to offer the

binarization process for decoding the suitable syntax elements. The context model

records the historical probability.

This chapter is organized as follows. In section 2.1, we roughly describe H.264/AVC

standard [1]. In section 2.2, the more detail of the binary arithmetic coding algorithm will

be shown. In section 2.3, we introduce the algorithm CABAD in H.264/AVC. It contains

three modes of decoding process and the renormalization process. In section 2.4, we

introduce all kinds of the binarization process. Last we show how to get the neighbor

syntax element to index the suitable context model allocation and present the context

model related with each syntax element in section 2.5.

 4

2.1 Overview of H.264/AVC standard

H.264/AVC has following advanced features to improve the coding efficiency and

video quality, variable block-size motion compensation, quarter-sample-accurate motion

compensation, multiple reference picture motion compensation, in-loop de-blocking filter,

small block-size transform, arithmetic entropy coding, and context-adaptive entropy

coding. Figure 2-1 shows the three profiles of H.264/AVC standard. These three profiles

are basic profiles of H.264/AVC. Baseline profile targets applications of low bit rates

such as video telephony, video conferencing and multimedia communication because of

its low computation complexity; main profile supports the mainstream consumer for

applications of broadcast system and storage devices; extended profile is intended as the

streaming video profile with error resilient tools for data loss robustness and server

stream switching. However, in those profiles small size of blocks and fixed quantization

matrix can’t totally hold the image information in high frequency, so H.264/AVC adds

Fidelity Range Extensions which contains high profile, high 10 profile, high 4:2:2 profile

and high 4:4:4 profile based on main profile for high definition multimedia applications.

Figure 2-1 Specific coding parts of the three profiles in H.264/AVC

 5

Figure 2-2 Block diagram of H.264/AVC coding structure

Figure 2-2 shows the block diagram of the basic coding flow. When doing encoder

one frame is inputted, the encoder will do prediction and choose intra or inter prediction

according to the input frame type. After the prediction, the original input will subtract the

predicted result to get the residual data. Then the residual data will experience

discrete-time cosine transform (DCT) and quantization. Finally, entropy coding will

encode the DCT coefficients to bit-stream and send it out. In H.264/AVC decoder, the

input bit-stream is firstly decoded by entropy decoder and the outputs of the entropy

decoder is DCT coefficients, Through de-quantization and inverse DCT, we can fetch the

residual data and finally we add the residual data and the result of MC or intra prediction

to get one frame.

In H.264/AVC, there are two methods of entropy coding. The simpler entropy coding

method is UVLC and context-adaptive variable length coding (CAVLC). UVLC uses

 6

exp-Golomb codeword tables for all syntax elements except the quantized transform

coefficients. For transmitting the quantized transform coefficients, a more efficient

method CAVLC is employed. Another method of entropy coding is context-adaptive

binary arithmetic coding (CABAC) which can be used in place of UVLC and CAVLC.

Compared to CAVLC, CABAC averagely can save 9% to 14% of bit rate at the similar

quality from [3], as shown in Figure 2-3. Therefore, we will further discuss CABAC in

the following sections.

Figure 2-3 Bit-rate savings provided by CABAC relative to CAVLC

2.2 Algorithm of binary arithmetic coding

2.2.1 Arithmetic coding

Arithmetic coding is a variable-length coding technique. It provides a practical

alternative to Huffman coding that can more closely approach theoretical maximum

compression ratios. Arithmetic encoder converts a sequence of data symbols into a single

fractional number and can approach the optimal fractional number of bits required to

 7

represent each symbol. A scheme using an integral number of bits for each data symbol is

unlikely to come so close to the optimum bits. In general, arithmetic coding offers

superior efficiency and more flexibility compared to the Huffman coding.

With arithmetic coding, an entire word or message is coded as one single number in

the range of [0, 1). This range is divided into sub ranges and assigned to every symbol a

range in this line based on its probability, the higher the probability, the higher range

which assigns to it. Once we have defined the ranges and the probability line, start to

encode symbols, and every symbol defines where the output floating point number lands.

We will describe it with an example as follows. First, we consider a 5-symbol alphabet

S= {a, b, c, d, e} and their probabilities as shown in Figure 2-4. Each symbol is assigned

a sub-range within the range 0.0 to 1.0, depending on its probability of occurrence. In this

example, “a” has a probability of 0.1 and is given the range 0~0.1. “b” has a probability

of 0.2 and is given the next 20% of the total range, i.e. the range 0.1~0.3. After assigning

a sub-range to each symbol, the total range 0~1.0 has been divided amongst the data

symbol according to their probabilities.

Figure 2-4 Example of the probability model

 8

We would like to encode a message of symbol sequence (c b c e) using the above

fixed model of probability estimates. As each symbol in the message is processed, the

range is narrowed down by the encoder as explained in the algorithm. Since the first

symbol of the message is “c”, the range is first narrowed down to [0.3, 0.7). Then the

range is survived to [0.34, 0.42), because it belongs to symbol “b”. According to

arithmetic encoding algorithm the last symbol is “c” and hence we could send any

number in the range 0.3928 to 0.396. The decoding processing is using the same

probability model and will get the same result.

Figure 2-5 Encoding procedure for symbol sequence (c b c e)

 9

As shown in Figure 2-5, arithmetic encoding calls for generation of a number that

falls within the range [Low, High). The below algorithm will ensure that the shortest

binary codeword is found. Then we know the number 0.394 is transmitted. 0.394 can be

represented as a fixed-point fractional number using nine bits, so our message of symbol

sequence (c b c e) is compressed to a nine-bit quantity.

When doing decoding procedure, we find the sub-range in which the received number

falls. We can immediately decode that the first symbol is “c” because the number 0.394

belongs to the range [0.3, 0.7). Then the range is narrowed down to [0.3, 0.7) and decoder

subdivides this range. We see that the value of 0.394 now falls in the range [0.34, 0.42),

so the second letter must be “b”. This kind of process is repeated until the entire sequence

(c b c e) is decoded. Following is the algorithm of the arithmetic decoding procedure.

Figure 2-6 Example of arithmetic decoding process

 10

2.2.2 Binary arithmetic coding

This section introduces the basic arithmetic algorithm to understand the binary

arithmetic coding algorithm and know how to encode and decode the bit-stream.

Arithmetic coding is quite slow in general because we need a series of decision and

multiplications. The complexity is greatly reduced if we have only two symbols.

According to the probability, the binary arithmetic coding defines two sub-intervals in the

current range. The two sub-intervals are named as MPS (Most Probable Symbol) and

LPS (Least Probable Symbol). Figure 2-7 shows the definition of the sub-intervals. The

lower part is MPS and the upper one is LPS. The range value of MPS is defined as rMPS

and the range value of LPS is defined as rLPS, and they are defined as follows. The

summation of ρMPS andρLPS is equal to one because the probability of the current interval is

one.

Figure 2-7 Definition of MPS and LPS

Depending on the bin decision, it identifies as either MPS or LPS. Assume the bin

value of MPS is 1 and the bin value of LPS is 0. If bin is equal to “1”, the next interval

belongs to MPS. Figure 2-8(a) shows the MPS sub-interval condition and the lower part

of the current interval is the next one. The range of the next interval is re-defined as

rMPS. By the way, if we want to achieve the adaptive binary arithmetic coding, the ρMPS

is increased to update the probability. On the contrary, the next current interval belongs to

 11

LPS when bin is equal to “0”. Figure 2-8(b) shows the LPS sub-interval condition and the

upper part of the current interval is the next one. The range of the next interval is

re-defined as rLPS and ρMPS is decreased. The codIOffset is allocated at the intersection

between the current MPS and LPS range. Depending on the codIOffset, the arithmetic

encoder produces the bit-stream in order to achieve the compression effect.

Table 2-1 Results of encoding process

Figure 2-8 Encoding process of sub-divided interval MPS and LPS

 12

Figure 2-9 Example of encoding binary arithmetic coding with adaptive probability

An example of encoding a binary sequence: 01111, as shown above. Initially the

counter is set 1, so the probability is half-and-half. After encoding the bin “0”, the counter

of bin “0” increase one so that the probability is adaptively changed. The probability for

bin “0” and bin “1” is 2/3 and 1/3 respectively. The procedure is continuous as the pattern.

Finally we encode 0.4667 to binary output.

In the binary arithmetic decoder, it decompresses the bit-stream to the bin value

which offers the binarization to restore the syntax elements. The decoding process is

similar to the encoding one. Both of them are executed by means of the recursive interval

subdivision. Something different is described as follows.

It is needed to define the initial range and the MPS probability when starting the

binary arithmetic decode. The value of codIOffset is composed of the bit-stream con

compared with rMPS. Figure 2-10 illustrates the decoding subdivision of MPS and LPS

 13

condition. If codIOffset is less than rMPS, the condition belongs to MPS. The range of

the next interval is equal to rMPS and the probability of MPS is increased. The bin value

outputs “1”. The next value of codIOffset remains the current one. If codIOffset is greater

than or equal to rMPS, the next interval turns into LPS. The range of the next interval is

defined as rLPS and the probability of MPS is decreased. The bin value outputs “0”. The

next value of codIOffset is to subtract the rMPS from the current codIOffset.

Table 2-2 Results of decoding process and its comparator

Figure 2-10 Decoding of subdivision of MPS and LPS

 14

2.3 Algorithm of CABAD for H.264/AVC

2.3.1 System level of CABAD

The main profile uses a more complex entropy coding scheme CABAC which is

based on arithmetic coding. In section 2.2.3, we introduce the basic algorithm of the

binary arithmetic coding. Although it can achieve the high compression gain, the

hardware complexity becomes the problem. In Figure 2-7, it has to compute the value of

rMPS and rLPS with two multipliers and processes the next value of codIOffset, range,

and the probability by means of the floating adders and comparators. It consumes the lots

of hardware cost. According to H.264/AVC standard, it adopts table-base method to

decrease the complexity hardware cost. And we will describe that later.

Figure 2-11 CABAD block diagram

First, Figure 2-11 shows the CABAD block diagram consisted of three blocks.

1. Binarization

2. Context Model

3. Binary Arithmetic Decoder

The binary arithmetic decoder (BAD) reads the bit-stream and transfers to bin string,

 15

and the BAD has three different modes. In encoder, a given non-binary valued syntax

element (e.g. a transform coefficient or motion vector or any symbol with more than 2

values) is uniquely mapped to a binary sequence (called bin-string) by the binarization.

On the contrary, in decoder, the binarization process reads the bin string and decodes to

the syntax element (SE) by five kinds of decoding ways which will be shown in section

2.4. Last the context model is about the table-based probability.

 16

2.3.2 Three modes of decoding process in CABAD

CABAD offers a far more efficient form of run-length coding by exploiting

correlation between symbols. In order to improve the coding efficiency, there are three

modes of the binary arithmetic decoders in H.264/AVC system such as the decision mode,

bypass mode, and terminal mode. The decision mode includes the utilization of adaptive

probability models and interval maintainer, the bypass mode codes for a fast encoding of

symbols which are approximately uniform probability, and the last mode of terminal

mode is a special fixed executing before end of coding with non-adapting probability

state. We will show whole algorithms as follows.

Figure 2-12 Decoding flow of the decision mode

 17

The first algorithm is the decision mode which is shown in Figure 2-12. There are two

main factors to dominate the hardware efficiency. One is the multiplier of (range)x(ρMPS)

and the other is the probability calculation. According to H.264/AVC standard, the

table-based method is used in place of the multiplication operation. In the decoding flow

of the decision mode, codIRangeLPS looks up the table depending on two indexes such

as pStateIdx and qCodIRangeIdx. pStateIdx is defined as the probability of MPS which

gets from the context model. qCodIRangeIdx is the quantized value of the current range

(codIRange). The second factor of the improved method is about the probability

calculation to estimate the value of ρMPS. In section 2.2.3, we know that the value of ρMPS

is increased when MPS condition happened and is decreased when LPS condition

happened. In Figure 2-12, it shows the table-based method to process the probability

estimation. It divides into two parts such as MPS and LPS conditions. It computes the

next probability by the transIdxLPS table when the LPS condition happened and by the

transIdxMPS table when the MPS condition happened. The two probability tables are

approximated by sixty-four quantized values indexed by the probability of the current

interval.

Figure 2-13 Decoding flow of the bypass mode

 18

The second algorithm is the bypass mode which is applied by the specified syntax

element such as mvd and coeff_abs_level_minus1. Figure 2-13 shows the flowchart of

the bypass decoding mode. This mode is unnecessary to refer to the context model, and it

doesn’t do the probability computation to estimate the probability of the next interval.

The computed codIRange doesn’t change which means that it doesn’t do renormalization

in the bypass mode.

Figure 2-14 Decoding flow of the terminal mode

The third algorithm is the terminal mode. Figure 2-14 shows the decoding flowchart

of the terminal mode. The terminal decoding mode is quite simple, and it also doesn’t

need the context model to refer to the probability. The value of the next codIRange is

always to subtract two from the current codIRange depending on whether the condition

belongs to MPS or LPS. The final values of codIRange and codIOffset are required to

renormalize when MPS condition happened. The process of the terminal mode is used to

trace if the current slice is ended. It occurs one time per macroblock process which is

seldom used during all decoding processes.

 19

Figure 2-15 Flowchart of renormalization

In the basic binary arithmetic decoder described in section 2.2.3, the floating-point

operation is used. That will increase the complexity of the circuit in practical

implementation. In H.264/AVC, CABAD adopts the integer operation to improve. We do

the renormalization to keep the scales of codIRange and codIOffset. Figure 2-15 shows

the flowchart of renormalization. The MSB of codIRange always keeps logic one in order

to realize the integer operation. If the MSB of codIRange is equal to logic zero, the value

of codIRange has to be shifted left until the MSB of codIRange is equal to one.

Depending on the shifted number of codIRange, codIOffset fills the bit-stream in LSB.

2.4 Binarization decoding flow

In section 2.4, we focus on the decoding process of the binarization. H.264/AVC

adopts five methods of the binarization to code all syntax elements.

 Unary (U) binarization process

 Truncated unary (TU) binarization process

 Unary/k-th order Exp-Golomb (UEGk) binarization process

 20

 Fixed-length binarization (FL) process

 Special binarization process

This section is organized as follows. In section 2.4.1, the decoding flow of the unary

code is shown first. The unary code is the basic coding method. Section 2.4.2 shows the

truncated unary code which is the advanced unary coding. It is applied in order to save

the unary bit to express the current value. Section 2.4.3 is the Exp-Golomb binarization

process. The UEGk is only used for the residual data and the motion vector difference

(mvd). In section 2.4.4, we describe the fixed-length decoding flow. It is the typical

binary integer method. And section 2.4.5 is the special definition by means of the

table-base method.

2.4.1 Unary (U) binarization process

Table 2-3 is the unary code of binarization process. The bin string of a syntax element

having (unsigned integer) value synElVal which is a bin string of length synElVal + 1.

The bin string index is defined as binIdx. The bins for binIdx less than synElVal are equal

to logic one. The bin with binIdx equal to synElVal is equal to logic 0. So the number of

logic one is equal to synElVal.

Table 2-3 Bin string of the unary binarization

 21

2.4.2 Truncated unary (TU) binarization process

The truncated unary binarization is based on the unary binarization and has an

additional factor of cMax which is defined as the maximum length of the current bin

string. When the value of syntax element (synElVal) is less than cMax, the U binarization

process is invoked. If synElVal is equal to cMax, the bin string is a bit string of length

cMax with all bins being equal to logic one. For example, it is assumed that synElVal

equals to 4. If the value of cMax is “5”, the result of bin string is equal to “11110”. If the

value of cMax is “4”, the result of bin string is equal to “1111” where the end bit of “0” is

truncated in this case.

2.4.3 Unary/k-th order Exp-Golomb (UEGk)

binarization process

The UEGk code is composed of two parts which are the prefix and suffix bit string.

The prefix part of UEGk is specified by using the TU binarization process for the prefix

part min(uCoff, Abs(synElVal)) of a syntax element value synElVal with cMax equals to

uCoff, where uCoff > 0. So the prefix part is dominated by cMax. Figure 2-16 shows the

suffix part algorithm by means of the pseudo code. In the CABAD binarization engine, it

only applies two decoding flows such as UEG0 (the order k=0) and UEG3 (the order

k=3). UEG0 is used by the residual data with uCoff=14 and UEG3 is used by the motion

vector difference with uCoff=9. Table 2-4 is an example which shows the corresponding

bin strings for values of UEG0 from 1 to 20.

 22

Figure 2-16 Pseudo code of the suffix part algorithm

Table 2-4 Example for binarization coeff_abs_level_minus1

 23

2.4.4 Fixed-length binarization (FL) process

Table 2-5 Bin string of the FL code

The fixed-length code is represented by means of the typical unsigned integer. For

example, the value of “610” is equal to “1102”. The value of decimal type changes to the

binary format, which requires fixed-length code. FL binarization is constructed by using a

fixedLength-bit unsigned integer bin string of the syntax element value, where

fixedLength = Ceil(Log2 (cMax + 1)), (Cei(x) means the smallest integer greater than

or equal to x.). Table 2-5 shows the fixed-length code definition. In this table, the cMax

equals seven and the fixedLength will be three. All syntax elements which are decoded

by the FL binarization are always represented with three binary bits.

2.4.5 Special binarization process

Input to this process is a request for a binarization for syntax element mb_type and

sub_mb_type. In order to perform the higher video quality, the macroblock and

sub-macroblock are divided into many kinds of types such as I, P/SP, B, and SI slices.

These two syntax elements are difficult to define by means of the above-mentioned

 24

coding flows. In H.264/AVC [1], it adopts the table-based method to define mb_type and

sub_mb_type. The binarization engine reads the bin string and checks if the bin string is

mapped the specified location in these tables. If the bin string is found in these tables, it

can look up the current macroblock type.

Table 2-6 Binarization in I slice Table 2-7 Binarization in P/SP and B slice

The binarization scheme for coding macroblock type in I slice is specified in Table

2-6. The binarization scheme for P macroblock type in P/SP slice and B macroblock in B

slice are specified in Table 2-7. For P/SP and B slices, the specification of the

binarization for sub_mb_type is given in Table 2-8.

 25

Table 2-8 Binarization table for sub-macroblock type in P/SP and B slice

 26

2.5 Context model organization

The values of the context model offer the probability value of MPS (pStateIdx) and

the historical value of bin (valMPS) in order to achieve the adaptive performance.

Context provides estimates of conditional probabilities of the coding symbols, and it has

to prepare 399 locations of the context model to record all encoding/decoding results.

Utilizing suitable context models, given inter-symbol redundancy can be exploited by

switching between different probabilities according to coded symbol in the neighborhood

of the current symbol.

The context model index is dominated by two factors such as ctxIdxOffset and

ctxIdxInc. ctxIdxInc is the only one factor related with the syntax element of the neighbor

blocks. The variable syntax elements refer to the left and top block to define the

ctxIdxInc of the first binIdx such as mb_type, mb_skip_flag, ref_idx, mb_qp_delta, …,

etc. The generic form of the equation is given as follows. The conditional term

condTermFlag (A, B) describes the functional relationship between the spatially neighbor

block A and B.

In CABAC system, the referred position is based on the current block which can treat

as not only the macroblock but also the sub-macroblock. So we have two methods to

allocate the required blocks.

 27

Figure 2-17 Illustration of the neighbor location in macroblock level

Figure 2-18 Illustration of the neighbor location in sub-macroblock level

The first method is to get neighbor in macroblock level. Figure 2-17 shows the left (A)

and top (B) macroblocks of the current one. And the second method is in sub-macroblock

level, as shown in Figure 2-18. The coordinate of the current sub-macroblock is defined

as (sub_mb_x, sub_mb_y). If sub_mb_x is not equal to “0”, the left sub_macroblock is in

the left side of the current macroblock. If sub_mb_x is equal to “0”, the left

sub_macroblock can’t be found in the current macroblock and has to refer to the left side

of the macroblock A. The circles in the macroblock A are the required sub-macroblocks

which mean the syntax elements of the sub-macroblock 3, 7, 11, 15 have to be stored in

order to record the left sub-macroblock. And the top block is similar to the left. The

 28

syntax elements of the sub-macroblock 12, 13, 14, 15 also have to be stored in order to

record the top sub-macroblock.

2.5.1 Assignment process of context index

H.264/AVC uses the above two rules to allocate the context model. The first rule is

used except residual data of syntax element (coded_block_flag, significant_coeff_flag,

last_significant_coeff_flag, and coeff_abs_level_minus1). The context model index is

equal to the sum of ctxIdxOffset and ctxIdxInc. Depending on the syntax element and the

slice type, we can find the value of ctxIdxOffset in Table 2-9. The value of ctxIdxInc is

looked up in Table 2-10 by referring to the syntax element and binIdx. In Table 2-10, the

word of “Terminal” means that the encoding/decoding flow enters the terminal process. If

the generated bin is equal to “1”, the slice has to be stopped and encodes/decodes the next

slice.

 29

Table 2-9 Syntax element and associated definition of ctxIdxOffset

Table 2-10 Definition of the ctxIdxInc value for context model index

 30

Table 2-11 Specification of ctxIdxInc for specific values of ctxIdxOffset and binIdx

For special ctxIdxInc, that is derived by using the value of prior decoded bin value.

Table 2-11 shows the value of ctxIdxInc in special binIdx.

The second rule is the context index method for the residual data such as coded_block,

significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minus1. The

value of the context model index is the sum of ctxIdxOffset, ctxIdxBlockCatOffset, and

ctxIdxInc. The assignment of ctxIdxOffset is shown in Table 2-9. The value of

ctxIdxBlockCatOffset is defined as Table 2-12 which is dominated by the parameters of

syntax element and ctxBlockCat. The ctxBlockCat is the block categories for the different

coefficient presentations. ctxBlockCat sorts five block categories in Table2-13.

maxNumCoeff means the required coefficient number of the current ctxBlockCat.

Table 2-12 Assignment of ctxBlockCatOffset Table 2-13 Specification of ctxBlockCat

 31

For the syntax elements significant_coeff_flag and last_significant_coeff_flag, the

value of ctxIdxInc is defined as the scanning position that ranges from 0 to

“maxNumCoeff - 2” in Table 2-13. The scanning position of the residual data process has

two scanning orders. One is scanned for frame coded blocks with zig-zag scan and the

other is scanned for field coded blocks with field scan, as shown in figure 2-19.

Figure 2-19 (a) zig-zag scan and (b) field scan

2.6 Paper survey for CABAD designs

In this section, we will introduce some of CABAD decoding designs which have been

published recently (2005 ~ 2007). The main differences of all of these are almost in arithmetic

design due to that the arithmetic coder is the main dominator of throughput for the whole

CABAD system. The CABAD decoder designs are introduced as follows.

1. For the CABAD design of [4] proposed by Yongseok Yi, In-Cheol Park, the initial

design without optimization takes 7.43 clock cycles per bin. The optimization

strategies are shown as follows.

(1) Several context models are simultaneously loaded from memory.

(2) Employing a small storage to remove structural hazards and data dependencies.

(3) Bin-level pipelining.

After adopting these strategies, the processing time is reduced to 3.93 clock cycles

 32

per bin. But the throughput of this design is not high-product because it is

one-symbol architecture and its context memory needs great hardware cost.

2. The high-performance CABAD design is proposed by J. W. Chen, Y. L. Lin [5]. It

proposes three parallel processing techniques. The initial design without optimization

decodes 0.44 bins per cycle. Three parallel processing techniques are shown as

follows.

(1) Parallelizing the tasks of decoding coefficients and getting neighboring data.

(2) The two-bin-per-cycle decoding method.

(3) Context table rearrangement method.

After adopting these methods, the throughput is up to 0.99 bins per cycle.

3. The CABAD decoder design of [8] is proposed by Y. C. Yang, C. C. Lin, H. C. Chang

et al. They adopt four techniques to improve the performance of CABAD. They are

adopting 1) two-symbol architecture pipeline scheduling, 2) using segmented context

tables, 3) adding cache registers to store the value of context memory, and 4) doing

look-ahead codeword parsing.

4. We also reference the multi-symbol architecture design for arithmetic encoder [6]

which is proposed by Y. J. Chen, C. H. Tsai, L. G. Chen. The one-symbol arithmetic

coder was partitioned into four stage: Update State, Update Range, Update Low and

Output. And then they extend the architecture of one-symbol arithmetic encoder to

arbitrary m-symbol.

5. A novel configurable architecture of CABAC encoder [7] is proposed by Y. J. Chen,

C. H. Tsai, L. G. Chen. The traditional processing unit is divided into two parts, MPS

encoder and LPS encoder. With different arrangements of these two basic

components, they develop two types of ML-decomposed structures, such as 1) ML

cascade architecture and 2) throughput-selection architecture. ML cascade

architecture exploits the complementary critical path of MPS and LPS coder, and

 33

throughput-selection architecture offers more choices of ML cascades to select the

highest throughput one.

 34

Chapter 3

Multi-Symbol of Binary Arithmetic
Decoder Engine

3.1 Overview of CABAD system

Figure 3-1 Block diagram of CABAD

Arithmetic coding is a recursive subdivision procedure. It contains two data

dependency which results in intensive computation. Firstly, the interval is specified by

range and offset. Depending on symbol is the Most Significant Symbol (MPS) or Least

Significant Symbol (LPS), the next interval is updated as one of two sub-intervals. The

second is the adaptive probability state of the context of symbol. The probability table

will be updated according to the current symbol. Figure 3-1 is the system architecture of

 35

CABAD which consists of three main modules called the binary arithmetic decoder, the

binarization engine, and the context model. The entire decoding procedure is described as

follows. When starting to decode, it has to initialize the context model by looking up the

initial table. BAD reads bit-stream to get the bin value. At the same time, it refers to the

current probability from the context model to find the sub-range of MPS or LPS and

updates the probability of the location of the current context model index (ctxIdx). The

bin string from several bin values is fed to the binarization engine. Then the binarization

engine will send out the value of syntax element. Address Generator generates the

address of the context model which has been described in section 2-5. Due to these strict

data dependencies, the elementary operations can hardly be processed in parallel.

Figure 3-2 Elementary operations of CABAD

To execute multi-symbol CABAD, the BAD unit and the Context model should

properly support multi-symbol architecture. Figure 3-2 shows the elementary operations

like address generator(AG), context memory load(CML), binary arithmetic

decoding(BAD), and context memory update (CMU). And these stages are delimited by

cycle boundaries. [4] optimizes the cycle boundaries , and we move the operation of

 36

context selection to BAD stage.

Figure 3-3 Overview of our architecture

Figure 3-3 is overview of our architecture. γbase(s) is a base context index generated

from the AG stage as the ctxIdxOffset definition from standard [1]. The set of context

memory data Cj(s) in the same syntax element is gotten from context memory according

to γbase(s) and stored in a small storage called the context state register (CSR). After the

context memory is obtained, the BAD stage takes place. In our BAD stage, it contains

three parts such as context selection, binary arithmetic decoding core, and binarization

engine. We select needed context data (c1,c2,…) from Cj(s) according to binIdx

(ctxIdxInc) and feed them to BAD core. At the same time, we should update each of the

context data. For example, if ctx1 and ctx2 are the same, the pState and valMPS of ctx2

should be replaced by the updated ones of ctx1. When working BAD core, the symbol is

decided by comparing the coding offset and the coding range. Then the renormalization

follows to keep the coding range and the coding offset to a fixed precision. Then, we send

 37

the bin string (b1, b2, b3) to do the binarization and resolve the value of syntax element.

Besides, only the updated values of context data ci corresponding to those valid bins

should be written back to CSR. Finally, the data Cj(s) of CSR will write back to context

memory. The part of BAD core is described in next section, and the detail of context

model in next chapter.

 38

3.2 Statistics and analysis of syntax elements

Figure 3-4 Decoding flow at syntax element level

Figure 3-4 is the state transition at the syntax element level. H.264/AVC defines

twenty-five syntax elements. Many syntax elements only need one bin to decode (like

significant_coeff_flag, last_significant_coeff_flag, end_of_slice_flag, coded_block_flag,

and intra_pre_mode_flag …. First two of them have around 40% of bins). And others

need multiple bins to get its information (like coeff_abs, rem_intra_pre_mode, mb_type,

sub_mb_type, ref_idx, mvd …, etc.).

 39

Table 3-1 Percentage of the bins at each syntax element

 bin%

syntax element QP36 QP30 QP24 QP18 avg

Intra_pred_flag, intra_rem 1.68 3.34 4.01 2.85 2.97

sig. & last_sig. 40.51 40.83 39.05 37.46 39.46

coeff_abs 25.98 31.87 38.12 44.08 35.01

MVD 4.87 5.00 5.23 6.67 5.44

Ref_frame 0.52 0.38 0.29 0.24 0.36

other 26.43 18.57 13.30 8.69 16.75

Table 3-2 Percentage of the cycle counts at each syntax element

 cycle%

syntax element QP36 QP30 QP24 QP18 avg

Intra_pred_flag, intra_rem 1.86 3.72 4.51 3.26 3.34

sig. & last_sig. 44.78 45.35 43.84 42.77 44.19

coeff_abs 21.12 26.67 32.62 38.47 29.72

MVD 3.91 3.99 4.22 5.52 4.41

Ref_frame 0.58 0.43 0.32 0.28 0.40

other 27.75 19.84 14.49 9.70 17.95

Table 3-1 and Table 3-2 are shown the percentage of decoded bins and cycle counts of

different syntax elements. "sig.& last_sig.” and “coeff_abs” have most of decoding bins.

Therefore, how to enhance the throughput would be divided into two parts. The first is

our multi-symbol architecture that can decode multiple bins per cycle. It is shown in next

section. But the multi-symbol architecture will not enhance the performance of the

one-bin syntax elements such as sig.& last_sig. Then secondly, we rearrange our context

memory to advance our architecture performance. It is mainly to improve the part of

significant_coeff_flag and last_significant_coeff_flag, and that is shown in next chapter.

 40

Table 3-3 Percentage of each concatenate symbol

Table 3-3 is the statistics of the average percentage of each symbol alignment. It

simulates under executing four CIF sequences (stefan, foreman, news and mobile) by

JM8.2. The number of frame is 200 and we set QP16, QP28, and QP40. We find the

percentage of concatenate M-symbol is obviously higher than others, especially MMM in

3-symbol and MM in 2-symbol. Take 3-symbol an example, we divide four orders of the

happening probability (from most probability to least probability). First group is MMM

and it contains 44%. Second group are MML, MLM, and LMM, and they contain 13%

respectively. Last group is LLL and it contains 3%. It is efficient that the concatenate

symbols (MMM) will be improved firstly.

1. MMM

2. MML, MLM, LMM

3. MLL, LML, LLM

4. LLL

 41

3.3 Proposed multi-symbol architecture

In this section, we extend the architecture of one-symbol arithmetic decoder to

three-symbol. It has data dependencies in range and offset. Depending on symbol is the

Most Significant Symbol (MPS) or the Least Significant Symbol (LPS), next interval is

updated as one of two sub-intervals. The range and offset equations are as follows,

MPS： Rangen = Rangen-1 – rLPSn

 Offsetn = Offset n-1

LPS： Rangen = rLPSn

 Offsetn = Offset n-1 – Range n-1 + rLPSn

where n represents current symbol and rLPS is the estimated range when coding LPS.

3.3.1 One-symbol structure of BAD

Figure 3-5 BAD for one-symbol architecture

 42

Table 3-4 Results for range, offset and binVal at each mode

The basic Binary Arithmetic Decoding core is as shown in Figure 3-5 [11]. For

hardware sharing, it combines three modes (decision, bypass, and terminal) into the

architecture, and Table 3-4 shows the results of range, offset, and bin value in each mode.

The shaded adder is also the comparator which calculates the temporal variables OffsetX

and RangeX, and it will decide the symbol is MPS or LPS resulting in the binVal. The

table of rangeLPS has 256 entries. The large table is unfortunately located in the critical

path when decoding multi-symbol. To speed up, we divide the table into two parts, 64:1

and 4:1 as like [6]. Then, we can pre-compute the greater parts (64:1) when doing other

operations. Table 3-5 shows the dependency of Bin_flag, valMPS, and Bin_value. The

result of bin value is Bin_flag depending on valMPS. And the signal Bin_flag is the msb

of the result from the subtractor of Offset and RangX. When Offset is less than RangX,

the signal of Bin_flag will be set 1. It means that the decoding symbol is MPS, and the

decoding Bin value is the function XOR of the two signals Bin_flag and valMPS.

Table 3-5 Dependency of symbol, Bin_flag, valMPS and bin value

comparator Bin_flag Symbol Bin_flag valMPS Bin value

Offset >= RangX 0 LPS 0 0 1

Offset < RangX 1 MPS 1 0 0

 0 1 0

 1 1 1

 43

3.3.2 Cascaded structure of multi-symbol BAD

The intuitive method for multi-symbol BAD is to cascade one-symbol architecture as

shown in Figure 3-6. It doesn’t decode next bin until the result of the comparator of

current bin, so that the critical path of the one-symbol architecture will have two adders

and the rangeLPS table. If we extend to three-symbol, the critical path is too long that

will be six adders and three rangeLPS tables. The hardware cost is three times than

one-symbol architecture. Figure 3-7 is simply drawing of the cascade architecture of

three-symbol BAD [5].

Figure 3-6 Simplify one-symbol BAD architecture and its simply drawing

 44

Figure 3-7 Cascade architecture of three-symbol BAD

 45

3.3.3 Extending structure of multi-symbol BAD

Figure 3-8 Example of 2-symbol expanding BAD architecture

As shown in Figure 3-8, if we expand the range and offset equation of two-symbol

BAD, the architecture can reduce the long critical path. The following equations are the

results of Range and Offset. LPS1 represents that the first decoding symbol is LPS, and

LPS2 represents that the second decoding symbol is LPS, and so forth to MPS1 and MPS2.

LL_R represents the result of range which decodes concatenate symbols of both LPS.

The same as to LL_O, and the last letter O represents the result of Offset. And LM_R

represents the result of range that the first decoding symbol is LPS and the second

decoding symbol is MPS. And so forth to LM_O, MM_R, MM_O, ML_R, ML_O.

 46

When doing the first symbol’s comparator, it also does the second symbol’s operation.

In addition, the rangeLPS table can be computed in advance because we already know

the next decoded symbol is MPS or LPS. As a result, it can reduce one adder time and

one rangeLPS table time if every adding one-symbol extending architecture. So the

critical path of the two-symbol extending architecture is three adders and one rangeLPS

table.

It is easy to expand to three-symbol architecture, and its critical path is four adders

and one rangeLPS table. We reduce the critical path of two adders and two rangeLPS

tables compared to the cascade three-symbol BAD architecture. But the hardware cost of

extending three-symbol architecture is seven times larger than one-symbol architecture.

The hardware cost is too great. Next we propose an efficient method to reduce the critical

path and let cost down.

 47

3.3.4 M-cascade of multi-symbol architecture

Table 3-6 Critical path of the adders in three-symbol extending BAD

 MMM MML MLM MLL

Num. of adders time 3 4 3 4

 LLL LLM LMM LML

Num. of adders time 4 3 2 3

Table 3-6 is shown the critical path of the needed adders of decoding each

concatenate symbol case.

The critical path of cascade three-symbol architecture is too long and the hardware

cost of extending three-symbol architecture is too large. Case control study with Table

3-6, Table 3-3 and hardware design, in concatenate three symbols we finally choose the

decoding process of MMM and MML to make sure hardware sharing (cost down) and

efficiently enhance the throughput. We can speed up 57% decoding bin and minimize the

hardware cost and the critical path.

 48

Figure 3-9 Organization of the multi-symbol BAD

Table 3-7 Case of multi-symbol which our architecture can decode

 case

1-symbol L, M

2-symbol ML,MM

3-symbol MML,MMM

We propose our M-cascade of multi-symbol BAD architecture in Figure 3-9 The

architecture can decode three concatenate symbol whether it is decision mode or bypass

mode, and it only executes the case of symbol alignment(L, M, ML, MM, MML, MMM)

as shown in Table 3-7. The architecture decodes next symbol when the prior symbol is

 49

M-symbol, so we call it M-cascade architecture. For an example, if we want to decode

the symbol streams MLLMMM, our architecture will decode ML firstly and L at next

cycle, and decode MMM finally. So it doesn’t always execute up to three symbols. First

problem is that the architecture of other symbol alignment (MLM, MLL, LMM, LML,

LLM, and LLL) doesn’t parallel processing in our design. These symbol alignments

should be separated to one-symbol and two-symbol or three one-symbols. Because we

focus on the improvement of the most percentage, we choose the case of MMM and the

case of MML to decoding. Secondly, the binarization engine judges the three bin string if

the bin values are the valid symbols. The signal binvalidx_BAD is to discriminate the

correctness of the decoded bin value by our confining architecture (only decoding L, M,

ML, MM, MML, MMM). Table 3-8 is shown their relation. Then we sent those needed

signal to execute the binarization. If the first n bins are valid, the n-th results of

codIOffset and codIRange have to be selected by the binarization engine to offer the next

BAD.

In Figure 3.9, bit stream buffer is fed to ○1 , ○2 , ○3 , ○4 , ○5 and Renormalization

unit. ○1 , ○3 and ○5 is about bypass decoding process. ○2 is the operation of the

renormalization after decoding “M”, and ○4 is after decoding “MM”.

Table 3-8 Truth table of binvalid?_BAD related to our BAD architecture

INPUT OUTPUT

MSB_1 MSB_2 MSB_3 binvalid1_BAD binvalid2_BAD binvalid3_BAD

0 ? ? 1 0 0

1 0 ? 1 1 0

1 1 ? 1 1 1

 50

3.4 Pipeline organization

The most effective way to enhance the performance is to exploit the pipelining

scheme. In decision mode, it takes 4 cycles to complete one bin coding in conventional

processing without pipelining. The bypass mode and the terminal mode doesn’t need the

probability data, so it will not execute the part of context memory and takes one cycle to

complete one bin coding, as shown in Figure 3-3. We show these stages to schedule the

pipeline organization in this section. And we also show some restricts in our design.

Figure 3-10 Timing diagram of the pipeline comparison

Figure 3-10 shows the timing diagram of the pipeline comparison for decision mode,

and it is almost the same as [4]. But we move the CS operation to BAD stage.

In conventional scheme, it must compute context address every symbol processing

and load context data (pState and valMPS) to next stage without CSR. In our design, we

load a series set of context data to CSR in syntax element beginning and write back to

 51

context memory in syntax element end. We only read and write context memory one time

in every syntax element (except the two syntax element of significant_coeff_flag and

last_significant_coeff_flag), but in conventional scheme it will read and write context

memory more times depending on how many the decoded bins in that syntax element. It

can be found that the conventional scheme produces one bin every 4 cycles in average,

and the other one with pipelining and CSR produces 1~3 bins every cycle. Compared

with the conventional organization, the proposed design with the pipeline can save large

the process cycles. Next we show the timing diagram of some restricts and situation

resulted from our multi-symbol BAD unit.

Figure 3-11 The timing diagram of our architecture restricts

Because our BAD architecture only decodes the symbol stream L, M, ML, MM,

MML or MMM, it will judge the correctness of those outcome decoding symbol whether

our architecture support or not. Then it forwards the binIdx of the last valid symbol to the

unit of CS and BAD at next cycle to process continually. Figure 3-11(a) is an example.

 52

Our architecture doesn’t support the concatenate symbol MLM, but support ML. It will

judge the symbol M of binIdx = 5 is invalid, and forward the value of binIdx = 4.

Although the comparator decide the decoding symbol of binIdx = 5 is M, and it is indeed,

but the output of codIRange and codIOffset will be wrong. That will result in the wrong

following process. So we put some logic to estimate.

 Figure 3-11(b) is the timing diagram happening when syntax element change. When

a new syntax element is to be decoded, the pipeline is stalled for two cycles to update and

load the series set of context data. The CSR (Figure 3-3) will write back the context data

of prior syntax element to context memory and then load the new one of current syntax

element. When the correct output of ML is decoded and sent to the binarization engine,

the binarization judges it’s the end of syntax element. Then we write back the CSR to

context memory, and at next cycle we will load context data of new syntax element to

CSR. It wastes two cycles and it is also the bottleneck of our architecture.

When decoding the syntax element of MVD and coeff_abs, it may decode the bin

using bypass mode or decision mode. This part is shown the schedule of the decision

mode changing to the bypass mode in our architecture. When the decoding bins in these

two syntax elements are more than the value boundary (£), the following bins will use

bypass mode to decode. The value boundary (£) of MVD and coeff_abs is set 8 and 13

respectively as shown in Table 3-9.

Table 3-9 The parameters of the decision mode changing to the bypass mode

Syntax element Value boundary Should decode more bins using bypass mode

MVD 8 n+2

coeff_abs 13 N

In syntax element MVD, if the decoding bins are more n than 8 until the value of bin

 53

is 0, it should decode n+2 bins using bypass mode in following process. The situation is

also the same in syntax element coeff_abs. If the decoding bins are more n than 13 until

the decoding bin value is 0 in syntax element coeff_abs, it should decode n bins using

bypass mode in following process. And both of them, the last decoding bypass bin is also

the sign bin. If decoding bins in the two syntax element are less than the value 8 and 13

respectively until the decoding bin value is 0, it should decode more one bin by bypass

mode as sign bin. And the changing to bypass mode, it always happens at next cycle

whether the concatenate symbols which our architecture can support or not. Figure 3-12

is an example of syntax element MVD.

Figure 3-12 Schedule of the decision mode changing to the bypass mode in MVD-SE

Figure 3-12(a) is the situation of the decoded bins less than 8 until bin value = 0 in

 54

syntax element MVD. When binIdx = 6 decoding the result of bin value = 0, it decodes

more one bin at binIdx = 7 as sign bin at next cycle. Then this syntax element process

finish. Figure 3-12(b) is the situation of the decoded bins more than 8 until bin value = 0.

When binIdx = 10 decoding the result of bin value = 0, we will know the result of binIdx

= 11 is wrong although the concatenate symbols MML our architecture can support.

Besides we should decode more 5 bins using bypass mode at next follows cycles.

 55

Chapter 4

Structure of Context Model

4.1 Overview of the context model

The values of the context model depending on the context index (ctxIdx) offer the

probability value (pStateIdx) and the historical value of bin (valMPS) in order to achieve

the adaptive performance. We have to prepare the 399 locations of the context model to

record all decoding results. And two kinds of context model index methods allocate the

context model.

ctxIdx = ctxIdxOffset + ctxIdxInc

ctxIdx = ctxIdxOffset + ctxIdxBlockCatOffset + ctxIdxInc

Figure 4-1 Traditional organization of context memory

 56

Figure 4-1 is the traditional organization of context memory, it is dependent on syntax

element and the slice type as shown in Table 2-9. The context memory in traditional

organization needs 399x7 bits.

In our multi-symbol design, context model must provide multiple context values and

set these values to corresponding BAD operations. In context memory load stage, we

load a series set of context data (Cj(s)) to CSR according to the context base γbase(s) [4].

Theγbase(s) is the ctxIdxOffset or the sum of ctxIdxOffset and ctxIdxBlockCatOffset

respectively to the two equations, as follows.

Figure 4-2 Structure of CSR

CSR architecture is shown in Figure 4-2. The difference from [4] is that the structure

of CSR has ten registers to hold the context data from the read subset Cj(s). Since the

 57

range of context index increments lies in [0, 9] for the syntax element coeff_abs_level,

we set the register file to 10.

After loading the subset of context elements to CSR, we must choose the correct three

set of context data (pState and valMPS) to the BAD unit. The problem is that some

ctxIdxInc of syntax element need look for bin value (as shown in Table 2-11) and use the

adaptive probability table. Context selection calculates the index to achieve by using the

lookup logic and exploiting the current valMPS, so that the problem of ctxIdxInc can be

resolved. Because of our multi-symbol M-cascade archticture, we use the characteristic to

combine the data dependency of valMPS and lookup logic to get each ctxIdxInc, so that

we can get the correct context data (pState and valMPS). Then if ctx1 equals to ctx2, the

pState of ctx2 should be replaced by the updated one of ctx1. Finally the updated values

of context data should be written back to CSR. Figure 4-5 is the part of our context

selection.

Figure 4-3 Part of our context selection

 58

4.2 Context memory

To load the ten context elements at once, we need a 70-bit-wide memory

configuration. Figure 4-3 [4] shows the context memory organization that is optimal in

the sense of memory size required when using our architecture, and that needs 400x7 bits.

But in this arrangement, some syntax elements will take more cycles to complete

read/write the full context data of the decoding bins iteratively. We modify the optimal

organization to read all the elements of each subset in one cycle, as shown in Figure 4-4

[4]. But the modified organization lets memory increase to 670x7 bits. In next section, we

propose the new modified context memory. It will decrease the memory size to 550x7

bits and simultaneously enhance the throughput.

Figure 4-4 Optimal arrangement of context memory

 59

Figure 4-5 Modified data arrangement of context memory

4.2.1 Memory rearrangement

In this section, we proposed a new context memory. It not only decreases the memory

size but also enhance the throughput of CABAD. According to analysis shown in Table

3-1, there are most usage on the syntax element Significant_coeff_flag and

Last_siginficant_coeff_flag, about 40% of total bins averagely. And we also find that in

I-MB the percentage of intra related syntax elements (intra_chroma_pred_mode and

pre_intra_pre_mode_flag and rem_intra_pre_mode) are huge. We focus on these two

 60

parts. Figure 4-6 is the flow diagram of the significant map and Figure 4-7 shows an

example of the decoding order of significant_coeff_flag and Last_significant_coeff_flag.

For each coefficient in scanning order, a one-bit symbol significant_coeff_flag is

transmitted. If the bin value of the significant_coeff_flag symbol is 1 at this scanning

position, a further one-bit symbol last_significant_coeff_flag is processing. This symbol

indicates if the current significant coefficient is the last one inside the block or if the

further coefficients follow.

Figure 4-6 Flow diagram of the significance map

Figure 4-7 Decoding order of sig._coeff_flag and last_sig._coeff_flag

As the decoding order, the change of the syntax element is too frequent

(sig._coeff_flag → last_sig._coeff_flag or last_sig._coeff_flag → sig._coeff_flag). It will

decrease the performance of multi-symbol CABAD because our architecture with the

context memory organization (as shown in Figure 4-8) stall two cycles to change the

 61

syntax element. Our design can concurrently read a series subset of two context data of

sig._coeff_falg and last_sig._coeff_flag pair from context memory. Figure 4-9(a) is the

original part organization of context memory of sig._coeff_flag and last_sig._coeff_flag,

and Figure 4-8 its timing diagram. Figure 4-9(b) is our proposed organization which can

read/write five pairs in one memory access to decrease the frequency of memory access

and promote the decoding bins of this syntax element per cycle to two bins, originally

decoding one bin. We can decrease the size of memory about significance map from

360x7 bits to 260x7 bits. Besides, we can save the two stalls.

Figure 4-8 Timing diagram for the original organization of context memory

Figure 4-9 (a) Original modified organization. (b) Our proposed organization.

Decoding intra syntax elements is similar to above situation. After decoding the

syntax element prev_intra4x4_pre_mode_flag, we decode the mode indicator

rem_intra4x4_pre_mode, where it is only present if the former takes a value of 0.

 62

Decoding the iteration of prev_intra4x4_pre_mode_flag and rem_intra4x4_pre_mode, we

finally decode the syntax element intra_chroma_pred_mode, as shown the formula in

Figure 4-10. And Figure 4-11 is the part of memory rearrange of intra memory. We can

decrease the size of memory about intra syntax from 30x7 bits to 10x7 bits.

Figure 4-10 The formula of intra prediction modes

Figure 4-11 Memory rearrange for intra context memory

 63

Figure 4-12 Full-view organization of our proposed context memory

Figure 4-12 is our last context memory organization which is combined above

technique. Its location at memory address corresponding to the syntax element and the

ctxIdxOffset defined by standard.

 64

Chapter 5

Simulation and Implement Result

5.1 Simulation result

5.1.1 Performance in each syntax element

Table 5-1 Performance of bin/cycle in each syntax element by different QP

 bin/cycle

syntax element QP36 QP30 QP24 QP18 avg

Intra_pred_flag, intra_rem 1.78 1.60 1.44 1.38 1.55

sig. & last_sig. 1.07 1.08 1.08 1.09 1.08

coeff_abs 0.90 1.01 1.12 1.27 1.08

MVD 1.02 1.16 1.22 1.22 1.16

Ref_frame 1.06 1.06 1.06 1.06 1.06

other 0.63 0.62 0.64 0.68 0.64

Table 5-1 is the performance of bin per cycle in each syntax element. Our

multi-symbol architecture can enhance more than one bin per cycle in the syntax

elements which need concatenate symbol, i.e. coeff_abs, MVD, and Ref_frame etc. And

intra related syntax element and significance map also can up to one bin per cycle

because of our context memory rearrangement. We successfully achieve decoding

multiple symbols per cycle to enhance the performance of the throughput.

 65

5.1.2 Performance of our proposed design

In this section, first we compare the performance of our architecture with a

conventional implementation which does not exploit the proposed schemes, that is, one

symbol architecture and the elementary operations as shown in Figure 3-2 are not

pipelined and the memory organization of Figure 4-1 is used. Table 5-2 summarizes the

decoding performance of our architecture and the column of Test sequence I, P, B means I

slice, P slice and B slice respectively. The column of Decoded Bins and Total cycles show

the number of symbols and the number of decoding cycles. Test sequences adopt

1080HD (1920x1088) which are sunflower, station and riverbed. All the sequences are

encoded by reference software JM8.2 in Main Profile at Level 4.0. Sequence type is

IBBP and IntraPeriod is set 10. Total encoded frames are 240 and the frame rate is 30fps.

As shown in Table 5-2, in different QP(36, 30, 24, 18) the uses of our architecture

result in almost 3.5 times speedup throughput on the average compared to the

conventional architecture. The number of Total cycles exclude the time for the RISC to

process parameter set and slice headers, the context memory initialization time for each

slices, and the macroblock initialization time. So the Total cycles means processing

arithmetic coding and read/write context memory.

 66

Table 5-2(a) Improvement of decoding performance in QP36

IBBP - QP36 Conventional Scheme Proposed Design

 PSNR
Bit-Rate

(Mbps)
Test Sequence Decoded Bins Total cycles cycle/MB cycle/bin Total cycles cycle/MB cycle/bin

Total 159753127 580824325 299.07 3.636 176556185 90.91 1.105

I 5336516 19208945 294.25 3.600 6038969 92.51 1.132

P 53991759 193977177 330.16 3.593 59013412 100.44 1.093

35.93 10.814 sunflower

B 100424852 367638203 285.15 3.661 111503804 86.49 1.110

Total 98680596 357874098 184.27 3.627 120002067 61.79 1.216

I 3856447 13922923 213.28 3.610 4605947 70.56 1.194

P 35125766 126904661 216.00 3.613 42158820 71.76 1.200

35.46 6.869 station

B 59698383 217046514 168.35 3.636 73237300 56.80 1.227

Total 187244878 672465916 346.26 3.591 206312056 106.23 1.102

I 5529299 20013020 306.57 3.619 6445327 98.73 1.166

P 56066623 201661669 343.24 3.597 62587331 106.53 1.116

1080p

34.26 13.896 riverbed

B 125648956 450791227 349.65 3.588 137279398 106.48 1.093

Average 35.22 10.526 148559533.7 537054779.7 276.54 3.618 167623436 86.31 1.141

Table 5-2(b) Improvement of decoding performance in QP30

IBBP - QP30 Conventional Scheme Proposed Design

 PSNR
Bit-Rate

(Mbps)
Test Sequence Decoded Bins Total cycles cycle/MB cycle/bin Total cycles cycle/MB cycle/bin

Total 262367865 948899829 488.60 3.617 265943740 136.94 1.014

I 9362625 33804366 517.84 3.611 10113758 154.93 1.080

P 92034331 329060572 560.08 3.575 93605849 159.32 1.017

39.25 19.736 sunflower

B 160970909 586034891 454.54 3.641 162224133 125.83 1.008

Total 194248697 701241503 361.08 3.610 213932462 110.16 1.101

I 7771132 28040647 429.54 3.608 8742360 133.92 1.125

P 67533891 242356782 412.51 3.589 74942632 127.56 1.110

38.27 15.407 station

B 118943674 430844074 334.17 3.622 130247470 101.02 1.095

Total 325432948 1163550682 599.13 3.575 339055561 174.58 1.042

I 10294589 37282526 571.12 3.622 11480410 175.86 1.115

P 93733898 336605180 572.93 3.591 100792285 171.56 1.075

1080p

37.3 27.399 riverbed

B 221404461 789662976 612.48 3.567 226782866 175.90 1.024

Average 38.27 20.847 260683170 937897338 482.93 3.601 272977254.3 140.56 1.052

 67

Table 5-2(c) Improvement of decoding performance in QP24

IBBP - QP24 Conventional Scheme Proposed Design [4]

 PSNR
Bit-Rate

(Mbps)
Test Sequence Decoded Bins Total cycles cycle/MB cycle/bin Total cycles cycle/MB cycle/bin

Speedup Speedup

Total 412679877 1473716100 758.83 3.571 388382867 199.98 0.941

I 15459666 55679850 852.94 3.602 15856147 242.89 1.026

P 147496197 522142005 888.72 3.540 142097904 241.86 0.963

42.29 34.082 sunflower

B 249724014 895894245 694.88 3.588 230428816 178.73 0.923

3.79 1.73

Total 346038115 1237500235 637.20 3.576 352746525 181.63 1.019

I 14982871 53706613 822.71 3.585 15694224 240.41 1.047

P 125639987 447011054 760.84 3.558 130821592 222.67 1.041

40.9 30.987 station

B 205415257 736782568 571.47 3.587 206230709 159.96 1.004

3.51 1.88

Total 555112870 1965199252 1011.90 3.540 545521386 280.90 0.983

I 18459019 66216793 1014.35 3.587 19036548 291.61 1.031

P 158023951 563031565 958.32 3.563 161073578 274.16 1.019

1080p

40.35 51.094 riverbed

B 378629900 1335950894 1036.20 3.528 365411260 283.42 0.965

3.60 1.84

Averag 41.18 38.721 437943620.7 1558805196 802.65 3.562 428883592.7 220.84 0.981 3.63 1.81

Table 5-2(d) Improvement of decoding performance in QP18

IBBP - QP18 Conventional Scheme Proposed Design

 PSNR
Bit-Rate

(Mbps)
Test Sequence Decoded Bins Total cycles cycle/MB cycle/bin Total cycles cycle/MB cycle/bin

Total 719703099 2516505918 1295.78 3.497 626098699 322.39 0.870

I 27124737 96826353 1483.25 3.570 25421276 389.42 0.937

P 253605372 883909323 1504.48 3.485 226348979 385.26 0.893

45.06 64.07 sunflower

B 438972990 1535770242 1191.18 3.499 374328444 290.34 0.853

Total 768562734 2716642302 1398.83 3.535 711058725 366.13 0.925

I 31187708 110743529 1696.44 3.551 28755263 440.49 0.922

P 264323295 927870765 1579.30 3.510 244012570 415.33 0.923

44.15 73.216 station

B 473051731 1678028008 1301.52 3.547 438290892 339.95 0.927

Total 1087349108 3777376349 1945.02 3.474 950209535 489.27 0.874

I 35661835 126671584 1940.43 3.552 32220663 493.58 0.904

P 307098793 1075687003 1830.89 3.503 276403783 470.46 0.900

1080p

43.89 103.024 riverbed

B 744588480 2575017762 1997.25 3.458 641585089 497.63 0.862

Average 44.37 80.103 858538313.7 3003508190 1546.54 3.502 762455653 392.60 0.890

 68

Table 5-3 Summarization of average three-symbol performance in different QP

 Conventional Scheme Proposed Design

 Bit-Rate cycle/MB cycle/bin cycle/MB cycle/bin bin/cycle

QP36 10.53 276 3.618 86 1.141 0.876

QP30 20.85 482 3.601 140 1.052 0.951

QP24 38.72 802 3.562 220 0.981 1.019

QP18 80.10 1546 3.502 392 0.890 1.124

1080p 100MHz

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0 20 40 60 80 100 120

Bit-Rate(Mbps)

T
hr

ou
gh

pu
t(

M
B

/s
)

sunflower

station

riverbed

Figure 5-1 Characteristic curves of 100MHz for three sequences

Table 5-3 shows the performance of our design. We can get better improvement in

small QP. Because our architecture process the change of syntax element will take a little

stalls to update the CSR data. More change of syntax element will bottle our design.

From Table 3-1 “other” of syntax element in bigger QP has more percentage, so it worse

our performance. Figure 5-1 is the characteristic cures of 1080HD under 100MHz. The

dotted line is max macroblock processing rate(MB/s) 245760 from specification of Level

4.0.

 69

5.2 Implementation result

The proposed architecture is designed by Verilog HDL and implemented in UMC

0.13 µm technology. The synthesis result of our proposed design is summarized in Table

5-4. As a result, the CABAC decoder can be clocked at 115 MHz and the gate count

without memory is 11937. The memory requirement of context model is single-port

SRAM with 481Bytes (550x7bits).

Table 5-4 Synthesis result of our design

 Proposed

Context Memory 550x7 bits

pState Generator 3121

ctxIdxInc 1199

transIdxMPS 125x3

transIdxLPS 427

 other 1120

ThreeSym_BAD 18726

RangeTabLPS 1966x3

OneSym_base 737x3

Other

(include Binarization,

 Renormalization..et al.)

10617

ThreeSym_control -

CSR register file 1400

Clock rate 115MHz

Area 47748

Gate count 11937

 70

Table 5-6 Comparison with other designs using 1080HD sequence

 Proposed [4] [12] [8] [13]

Technology UMC 0.13μm 0.18μm UMC 0.18μm TSMC 0.18μm 0.18μm

Function decoder decoder codec decoder decoder

Gate count* 11,937 na 38,436 na 42k

Total gate count* - 81,162 84,873 83,157 na

Max speed 115MHz 225MHz 110MHz 120MHz 45MHz

Target spec. HD 1080@30fps HD 1080@30fps HD 1080@30fps HD 1080@30fps HD 1080@30fps

Arch - symbol/cycle 3(partial) 1 1(But Multi-bypass) 2 16

I(cycle/MB) 270(QP24) 524(QP26) 462(QP36) na

P(cycle/MB) 246(QP24) 269(QP26) 308(QP26) na

B(cycle/MB) 204(QP24) 141(QP26) 254(QP26) na

Total Avg. 219(QP24)

3.93 cycle/Bin

208(QP26) na na

Bit-rate(Mbps) 38.72 na 22.11 na na

Avg.

bin/cycle 1.019 0.254 na na na

Context Memory 481 Bytes Context Memory 662 Bytes Context Memory 349 Bytes
Comment

 Data Memory 11.52K Bytes Data Memory 3120 Bytes

ps： Gate count*： without context memory Total gate count*：with context memory

Table 5-6 Comparison with other designs using CIF sequence

 Proposed [5] [9]

Technology UMC 0.13μm 0.13μm TSMC 0.13μm

Function decoder decoder decoder

Gate count 11,937 11,475 na

Total gate count - 40,762 138,226

Max speed 115MHz 137MHz 200MHz

Target spec. CIF CIF CIF

Arch - symbol/cycle 3(partial) 2 1

I(cycle/MB) 321(QP28) 309(QP28) 1661

P(cycle/MB) 112(QP28) 143(QP28) 576

B(cycle/MB) 72(QP28) 130(QP28) 328

AVG 92(QP28) 194(QP28) 570

Bit-rate(Mbps) 0.868 na na

Avg.

bin/cycle 0.967 0.8 1bin/2~3cycles

Comment Context Memory 481 Bytes Context Memory 349 Bytes

 71

Table 5-5 and Table 5-6 show the comparison of the proposed multi-symbol CABAD

and the other designs. Table 5-5 is using 1080HD sequence and table 5-6 is using CIF

sequence. We select the data of QP24 to compare with other designs. Compared with

Lee’[12], our performance in cycle per MB in B frame and total average are higher than

theirs because our QP is lower and our architecture is partial multi-symbol. Beside above,

our design will have two stall when syntax element transmits. If we add one more set of

CMR register file, we can decrease one stall in that situation. Table 5-6 is using CIF

sequence (news, foreman, and mobile), and other environment parameters are set the

same as using 1080HD sequence

 72

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We adopt several design techniques both on system level and module level to enhance

the throughput. The contribution of this thesis can be divided into two parts. The first part

is in Chapter 3. We construct the architecture of multi-symbol BAD by M-cascade

structure. It can complete three arithmetic decoding modes and decode up to three

symbols per cycle. The second part is about context model in Chapter 4. The context

model must reorganize to support multi-symbol architecture. Several context data are

simultaneously loaded from memory, and we use a set of registers to save them so that

removing the data dependencies. We also rearrange the location of the context memory

index.

As a result, the average cycle count per macroblock can reduce up to 187 under the

reasonable video quality, and the value of decoding bin per cycle is more than one. Our

design can achieve the level 4.0 of H.264/AVC standard [1], which means that it can play

the resolution of 1080HD video at 30fps.

 73

6.2 Future work

In order to achieve high quality videos, the high resolution and high frame rate

becomes the target of the requirement of the digital TV market. To play the videos of

1080HD at 60fps is the basic requirement. Using our current design is not sufficient to

good quality. Hence, the acceleration of CABAD and the improvement of throughput are

the essential work in the advanced application.

 74

References

[1]. Draft ITU-T Recommendation and Final Draft International Standard of Joint

Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC), May 2003.

[2]. JVT H.264/AVC Reference Software JM8.2.

[3]. D. Marpe, H. Schwarz, T. Wiegand, “Context-Based Adaptive Binary

Arithmetic Coding in the H.264/AVC Video Compression Standard,” IEEE

Trans. Circuits Sys. Video Technol., VOL. 13, NO. 7, pp.620-636, Jul. 2003.

[4]. Yongseok Yi, In-Cheol Park, “High-Speed H.264/AVC CABAC Decoding,”

IEEE Transactions on Circuits and Systems for Video Technology, VOL. 17,

NO. 4, pp.490-494, Apr. 2007.

[5]. J. W. Chen, Y. L. Lin, “A High-Performance Hardwired CABAC Decoder”, in

IEEE International Conference, ICASSP, VOL 2, pp.II-37-II-40, Apr. 2007.

[6]. Y. J. Chen, C. H. Tsai, L. G. Chen, “Analysis and Architecture Design for

Multi-Symbol Arithmetic Encoder in H.264/AVC,” in Proceedings of 2005

SOC Design Conference, Seoul, Korea, Oct. 2005.

[7]. Y. J. Chen, C. H. Tsai, L. G. Chen, “Novel Configurable Architecture of

ML-Decomposed Binary Arithmetic Encoder for Multimedia Applications,”

VLSI Design, Automation and Test, 2007. VLSI-DAT 2007. International

Symposium on 25-27 Apr. 2007 Page(s):1 – 4.

[8]. Y. C. Yang, C. C. Lin, H. C. Chang et al, “A High Throughput VLSI

Architecture Design for H.264 Context-Based Adaptive Binary Arithmetic

Decoding with Look Ahead Parsing,” IEEE International Conference on

Multimedia and Expo (ICME), pp.357 – 360, Jul. 2006.

 75

[9]. J. W. Chen, C. R. Chang, Y. L. Lin, “A Hardware Accelerator for

Context-Based Adaptive Binary Arithmetic Decoding in H.264/AVC,” IEEE

International Symposium on Circuits and Systems, pp.4525-4528, May 2005.

[10]. J. H. Lin, Keshab K. Parhi, “Parallelization of Context-Based Adaptive Binary

Arithmetic Coders”, in Signal Processing, IEEE Transactions on, Oct. 2006.

[11]. J. L. Chen, “Design of Context Adaptive Arithmetic Encoder and Decoder for

H.264/AVC video Coding,” M.S. thesis, National Chiao Tung University,

Taiwan, Jul. 2005.

[12]. Y. H. Huang, “Context Adaptive Binary Arithmetic Decoder of H.264/AVC for

Digital TV Application,” M.S. thesis, National Chiao Tung University, Taiwan,

Jul. 2006.

[13]. P. Zhang, W. Gao, D. Xie, D. Wu, “High-Performance CABAC Engine for

H.264/AVC High Definition Real-Time Decoding,” International Conference

on Consumer Electronics ICCE, Jan. 2007

姓名： 吳 錦 木

出生地：台灣省彰化縣

出生日期：1982.06.13

學歷：

1988.09 ~ 1994.06 台北縣立自強國中

1994.09 ~ 1997.06 台北縣立海山國中

1997.09 ~ 2000.06 台北市立成功高級中學

2000.09 ~ 2004.06 國立交通大學 電子工程學系

2004.06 ~ 2008.01 國立交通大學 電子研究所 系統組

作 者 簡 歷

	01.CHI_封面.pdf
	02.ENG_封面.pdf
	03.CHI_ABSTRACT.pdf
	04.ENG_ABSTRACT.pdf
	08.誌謝.pdf
	09.Content.pdf
	10.THESIS.pdf
	16.自傳簡歷.pdf

