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摘 要 

背景適應性二元算術解碼器(CABAD)的多重符號運算程序有著極大的資

料相依性以及適應性的機率估計，因此在硬體設計上這是很難直接運用平行

化和管線化來加速。在本論文中，我們基於統計的資料分布特性提出兩個主

要的方法來實現多重符號的 CABAD。1)首先我們提出 M 串聯的架構可以有

效率地提高算術編碼的產率。2)其次我們重新排列背景存儲器和使用一套小

的快速緩衝貯存器來改善管線化的危害物。我們的解碼器在 QP24 下平均解

一個巨方塊花費 219 個單位時間。這足以滿足層次 4.0 對 1080HD 格式每秒

三十張畫面的影像作即時解碼。基於 0.13 微米聯華電子互補式金氧半導體製

程，我們的多重符號 CABAD 設計在不含背景存儲器情況下需要 11,937 個邏

輯閘，其操作時脈為 115MHz。而我們的背景存儲器僅需 481 個單一接口靜

態隨機存儲器位元組。 
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Abstract 
 

The multi-symbol procedure of CABAD has strong data dependencies and 

adaptive probability estimation, so that it is difficult to speedup the hardware design 

by directly applying parallelism and pipeline schemes. In this thesis, based on the 

result of data statistic we proposed two main methods to realize a high throughput 

multi-symbol CABAD. 1) First we propose the M-cascade structure efficiently 

increasing the throughput of arithmetic coding. 2) Secondly we rearrange the context 

memory and use small cache registers improve pipeline hazards. Our decoder 

averagely takes 219 cycles to decode a macro block in QP24. It is sufficient for level 

4.0 to support 1080HD real-time decoding at 30fps. Based on 0.13μm UMC CMOS 

process, our multi-symbol CABAD design needs 11,937 gates without context 

memory and operates at 115 MHz. And our context memory only needs 481 bytes of 

single-port SRAM. 
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Chapter 1 
 

Introduction 
 

 

1.1 Motivation 
 

H.264/AVC is a new international video coding standard developed by the Joint 

Video Team of ISO/IEC Moving Picture Experts Group and ITU-T Video Coding Experts 

Group. The new standard can save the bit-rate up to 50% compared to the previous video 

standard under the same video quality. It employs various advanced coding tools such as 

multiple reference frame, variable block size, in-loop de-blocking filter, quarter-sample 

interpolation, and context-based adaptive binary arithmetic coding. Because of its 

outstanding performance in quality and compression gain, the more and more consumer 

application products adopt H.264/AVC as its video standard, such as portable video 

device, video telephony, digital camera …etc. 

H.264/AVC contains two entropy coding schemes which are context-based adaptive 

variable length coding (CAVLC) and context-based adaptive binary arithmetic coding 

(CABAC). Compared to CAVLC, CABAC averagely can save 9%-14% of bit-rate at the 

expense of higher computation complexity. Therefore, the acceleration of the CABAC 

decoding is necessary for high-performance. The bottlenecks are the strong data 

dependencies and the problem of adaptive probability estimation. 

Based on the data analysis of the decoding bins for different syntax elements and 

different concatenate symbol case, we proposed efficient techniques to reduce clock 

cycles for a macroblock. 1) The three-symbol-per-cycle architecture by M-cascade 
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structure efficiently increases the throughput of arithmetic coding. 2) Rearrangement of 

the context table and using small cache registers improve pipeline hazards. 

 

1.2 Thesis organization 
 

This thesis is organized as follows. In Chapter 2, we present the overview of CABAD 

for H.264/AVC. We will describe several parts in the chapter such as H.264/AVC 

standard, arithmetic coding, binary arithmetic coding, binarization decoding flow and 

context model organization. Chapter 3 shows the proposed architecture of our 

multi-symbol CABAD design. We focus on M-cascade structure of binary arithmetic 

decoding engine to promote the throughput. Chapter 4 presents our context memory 

model and the rearrangement of memory table. The simulation result and implementation 

is shown in Chapter 5. And we make a brief conclusion and future work in Chapter 6. 
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Chapter 2 
 

Overview of CABAD for H.264/AVC 
 

 

H.264 has been developed jointly by ITU-T VCEG and ISO/IEC MPEG. Its data 

compression efficiency is four and two times better than earlier video standards, MPEG-2 

and MPEG-4 respectively. This is due to that H.264/AVC adopts many complicated and 

computational video coding tools, so it can maintain the video quality as well enhance the 

coding efficiency. In this chapter, we show the algorithm of CABAD. The CABAD is 

composed of the arithmetic decoding process, the binarization and the context model. The 

arithmetic decoding process reads the bit-streams and computes the bin to offer the 

binarization process for decoding the suitable syntax elements. The context model 

records the historical probability. 

This chapter is organized as follows. In section 2.1, we roughly describe H.264/AVC 

standard [1]. In section 2.2, the more detail of the binary arithmetic coding algorithm will 

be shown. In section 2.3, we introduce the algorithm CABAD in H.264/AVC. It contains 

three modes of decoding process and the renormalization process. In section 2.4, we 

introduce all kinds of the binarization process. Last we show how to get the neighbor 

syntax element to index the suitable context model allocation and present the context 

model related with each syntax element in section 2.5. 
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2.1 Overview of H.264/AVC standard 
 

H.264/AVC has following advanced features to improve the coding efficiency and 

video quality, variable block-size motion compensation, quarter-sample-accurate motion 

compensation, multiple reference picture motion compensation, in-loop de-blocking filter, 

small block-size transform, arithmetic entropy coding, and context-adaptive entropy 

coding. Figure 2-1 shows the three profiles of H.264/AVC standard. These three profiles 

are basic profiles of H.264/AVC. Baseline profile targets applications of low bit rates 

such as video telephony, video conferencing and multimedia communication because of 

its low computation complexity; main profile supports the mainstream consumer for 

applications of broadcast system and storage devices; extended profile is intended as the 

streaming video profile with error resilient tools for data loss robustness and server 

stream switching. However, in those profiles small size of blocks and fixed quantization 

matrix can’t totally hold the image information in high frequency, so H.264/AVC adds 

Fidelity Range Extensions which contains high profile, high 10 profile, high 4:2:2 profile 

and high 4:4:4 profile based on main profile for high definition multimedia applications. 

 

 
Figure 2-1 Specific coding parts of the three profiles in H.264/AVC 
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Figure 2-2 Block diagram of H.264/AVC coding structure 

 

Figure 2-2 shows the block diagram of the basic coding flow. When doing encoder 

one frame is inputted, the encoder will do prediction and choose intra or inter prediction 

according to the input frame type. After the prediction, the original input will subtract the 

predicted result to get the residual data. Then the residual data will experience 

discrete-time cosine transform (DCT) and quantization. Finally, entropy coding will 

encode the DCT coefficients to bit-stream and send it out. In H.264/AVC decoder, the 

input bit-stream is firstly decoded by entropy decoder and the outputs of the entropy 

decoder is DCT coefficients, Through de-quantization and inverse DCT, we can fetch the 

residual data and finally we add the residual data and the result of MC or intra prediction 

to get one frame. 

In H.264/AVC, there are two methods of entropy coding. The simpler entropy coding 

method is UVLC and context-adaptive variable length coding (CAVLC). UVLC uses 
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exp-Golomb codeword tables for all syntax elements except the quantized transform 

coefficients. For transmitting the quantized transform coefficients, a more efficient 

method CAVLC is employed. Another method of entropy coding is context-adaptive 

binary arithmetic coding (CABAC) which can be used in place of UVLC and CAVLC. 

Compared to CAVLC, CABAC averagely can save 9% to 14% of bit rate at the similar 

quality from [3], as shown in Figure 2-3. Therefore, we will further discuss CABAC in 

the following sections. 

 

 
Figure 2-3 Bit-rate savings provided by CABAC relative to CAVLC 

 

2.2 Algorithm of binary arithmetic coding 
 

2.2.1 Arithmetic coding 
 

Arithmetic coding is a variable-length coding technique. It provides a practical 

alternative to Huffman coding that can more closely approach theoretical maximum 

compression ratios. Arithmetic encoder converts a sequence of data symbols into a single 

fractional number and can approach the optimal fractional number of bits required to 
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represent each symbol. A scheme using an integral number of bits for each data symbol is 

unlikely to come so close to the optimum bits. In general, arithmetic coding offers 

superior efficiency and more flexibility compared to the Huffman coding. 

With arithmetic coding, an entire word or message is coded as one single number in 

the range of [0, 1). This range is divided into sub ranges and assigned to every symbol a 

range in this line based on its probability, the higher the probability, the higher range 

which assigns to it. Once we have defined the ranges and the probability line, start to 

encode symbols, and every symbol defines where the output floating point number lands. 

We will describe it with an example as follows. First, we consider a 5-symbol alphabet 

S= {a, b, c, d, e} and their probabilities as shown in Figure 2-4. Each symbol is assigned 

a sub-range within the range 0.0 to 1.0, depending on its probability of occurrence. In this 

example, “a” has a probability of 0.1 and is given the range 0~0.1. “b” has a probability 

of 0.2 and is given the next 20% of the total range, i.e. the range 0.1~0.3. After assigning 

a sub-range to each symbol, the total range 0~1.0 has been divided amongst the data 

symbol according to their probabilities. 

 

 

Figure 2-4 Example of the probability model 
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We would like to encode a message of symbol sequence (c b c e) using the above 

fixed model of probability estimates. As each symbol in the message is processed, the 

range is narrowed down by the encoder as explained in the algorithm. Since the first 

symbol of the message is “c”, the range is first narrowed down to [0.3, 0.7). Then the 

range is survived to [0.34, 0.42), because it belongs to symbol “b”. According to 

arithmetic encoding algorithm the last symbol is “c” and hence we could send any 

number in the range 0.3928 to 0.396. The decoding processing is using the same 

probability model and will get the same result. 

 

 

 

Figure 2-5 Encoding procedure for symbol sequence (c b c e) 
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As shown in Figure 2-5, arithmetic encoding calls for generation of a number that 

falls within the range [Low, High). The below algorithm will ensure that the shortest 

binary codeword is found. Then we know the number 0.394 is transmitted. 0.394 can be 

represented as a fixed-point fractional number using nine bits, so our message of symbol 

sequence (c b c e) is compressed to a nine-bit quantity. 

 
 

When doing decoding procedure, we find the sub-range in which the received number 

falls. We can immediately decode that the first symbol is “c” because the number 0.394 

belongs to the range [0.3, 0.7). Then the range is narrowed down to [0.3, 0.7) and decoder 

subdivides this range. We see that the value of 0.394 now falls in the range [0.34, 0.42), 

so the second letter must be “b”. This kind of process is repeated until the entire sequence 

(c b c e) is decoded. Following is the algorithm of the arithmetic decoding procedure. 

 

 

Figure 2-6 Example of arithmetic decoding process 
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2.2.2 Binary arithmetic coding 
 

This section introduces the basic arithmetic algorithm to understand the binary 

arithmetic coding algorithm and know how to encode and decode the bit-stream. 

Arithmetic coding is quite slow in general because we need a series of decision and 

multiplications. The complexity is greatly reduced if we have only two symbols. 

According to the probability, the binary arithmetic coding defines two sub-intervals in the 

current range. The two sub-intervals are named as MPS (Most Probable Symbol) and 

LPS (Least Probable Symbol). Figure 2-7 shows the definition of the sub-intervals. The 

lower part is MPS and the upper one is LPS. The range value of MPS is defined as rMPS 

and the range value of LPS is defined as rLPS, and they are defined as follows. The 

summation of ρMPS andρLPS is equal to one because the probability of the current interval is 

one. 

 

Figure 2-7 Definition of MPS and LPS 

 

Depending on the bin decision, it identifies as either MPS or LPS. Assume the bin 

value of MPS is 1 and the bin value of LPS is 0. If bin is equal to “1”, the next interval 

belongs to MPS. Figure 2-8(a) shows the MPS sub-interval condition and the lower part 

of the current interval is the next one. The range of the next interval is re-defined as 

rMPS. By the way, if we want to achieve the adaptive binary arithmetic coding, the ρMPS 

is increased to update the probability. On the contrary, the next current interval belongs to 
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LPS when bin is equal to “0”. Figure 2-8(b) shows the LPS sub-interval condition and the 

upper part of the current interval is the next one. The range of the next interval is 

re-defined as rLPS and ρMPS is decreased. The codIOffset is allocated at the intersection 

between the current MPS and LPS range. Depending on the codIOffset, the arithmetic 

encoder produces the bit-stream in order to achieve the compression effect. 

 

Table 2-1 Results of encoding process 

 

 

 

Figure 2-8 Encoding process of sub-divided interval MPS and LPS 
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Figure 2-9 Example of encoding binary arithmetic coding with adaptive probability 

 

An example of encoding a binary sequence: 01111, as shown above. Initially the 

counter is set 1, so the probability is half-and-half. After encoding the bin “0”, the counter 

of bin “0” increase one so that the probability is adaptively changed. The probability for 

bin “0” and bin “1” is 2/3 and 1/3 respectively. The procedure is continuous as the pattern. 

Finally we encode 0.4667 to binary output. 

In the binary arithmetic decoder, it decompresses the bit-stream to the bin value 

which offers the binarization to restore the syntax elements. The decoding process is 

similar to the encoding one. Both of them are executed by means of the recursive interval 

subdivision. Something different is described as follows. 

It is needed to define the initial range and the MPS probability when starting the 

binary arithmetic decode. The value of codIOffset is composed of the bit-stream con 

compared with rMPS. Figure 2-10 illustrates the decoding subdivision of MPS and LPS 
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condition. If codIOffset is less than rMPS, the condition belongs to MPS. The range of 

the next interval is equal to rMPS and the probability of MPS is increased. The bin value 

outputs “1”. The next value of codIOffset remains the current one. If codIOffset is greater 

than or equal to rMPS, the next interval turns into LPS. The range of the next interval is 

defined as rLPS and the probability of MPS is decreased. The bin value outputs “0”. The 

next value of codIOffset is to subtract the rMPS from the current codIOffset. 

 

Table 2-2 Results of decoding process and its comparator 

 

 

 

Figure 2-10 Decoding of subdivision of MPS and LPS 
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2.3 Algorithm of CABAD for H.264/AVC 
 

2.3.1 System level of CABAD 
 

The main profile uses a more complex entropy coding scheme CABAC which is 

based on arithmetic coding. In section 2.2.3, we introduce the basic algorithm of the 

binary arithmetic coding. Although it can achieve the high compression gain, the 

hardware complexity becomes the problem. In Figure 2-7, it has to compute the value of 

rMPS and rLPS with two multipliers and processes the next value of codIOffset, range, 

and the probability by means of the floating adders and comparators. It consumes the lots 

of hardware cost. According to H.264/AVC standard, it adopts table-base method to 

decrease the complexity hardware cost. And we will describe that later. 

 

 

Figure 2-11 CABAD block diagram 

 

First, Figure 2-11 shows the CABAD block diagram consisted of three blocks. 

1. Binarization 

2. Context Model 

3. Binary Arithmetic Decoder 

The binary arithmetic decoder (BAD) reads the bit-stream and transfers to bin string, 



 

 15

and the BAD has three different modes. In encoder, a given non-binary valued syntax 

element (e.g. a transform coefficient or motion vector or any symbol with more than 2 

values) is uniquely mapped to a binary sequence (called bin-string) by the binarization. 

On the contrary, in decoder, the binarization process reads the bin string and decodes to 

the syntax element (SE) by five kinds of decoding ways which will be shown in section 

2.4. Last the context model is about the table-based probability. 
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2.3.2 Three modes of decoding process in CABAD 
 

CABAD offers a far more efficient form of run-length coding by exploiting 

correlation between symbols. In order to improve the coding efficiency, there are three 

modes of the binary arithmetic decoders in H.264/AVC system such as the decision mode, 

bypass mode, and terminal mode. The decision mode includes the utilization of adaptive 

probability models and interval maintainer, the bypass mode codes for a fast encoding of 

symbols which are approximately uniform probability, and the last mode of terminal 

mode is a special fixed executing before end of coding with non-adapting probability 

state. We will show whole algorithms as follows. 

  

 

Figure 2-12 Decoding flow of the decision mode 
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The first algorithm is the decision mode which is shown in Figure 2-12. There are two 

main factors to dominate the hardware efficiency. One is the multiplier of (range)x(ρMPS ) 

and the other is the probability calculation. According to H.264/AVC standard, the 

table-based method is used in place of the multiplication operation. In the decoding flow 

of the decision mode, codIRangeLPS looks up the table depending on two indexes such 

as pStateIdx and qCodIRangeIdx. pStateIdx is defined as the probability of MPS which 

gets from the context model. qCodIRangeIdx is the quantized value of the current range 

(codIRange). The second factor of the improved method is about the probability 

calculation to estimate the value of ρMPS. In section 2.2.3, we know that the value of ρMPS 

is increased when MPS condition happened and is decreased when LPS condition 

happened. In Figure 2-12, it shows the table-based method to process the probability 

estimation. It divides into two parts such as MPS and LPS conditions. It computes the 

next probability by the transIdxLPS table when the LPS condition happened and by the 

transIdxMPS table when the MPS condition happened. The two probability tables are 

approximated by sixty-four quantized values indexed by the probability of the current 

interval. 

 

 

Figure 2-13 Decoding flow of the bypass mode 
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The second algorithm is the bypass mode which is applied by the specified syntax 

element such as mvd and coeff_abs_level_minus1. Figure 2-13 shows the flowchart of 

the bypass decoding mode. This mode is unnecessary to refer to the context model, and it 

doesn’t do the probability computation to estimate the probability of the next interval. 

The computed codIRange doesn’t change which means that it doesn’t do renormalization 

in the bypass mode. 

 

 

Figure 2-14 Decoding flow of the terminal mode 

 

The third algorithm is the terminal mode. Figure 2-14 shows the decoding flowchart 

of the terminal mode. The terminal decoding mode is quite simple, and it also doesn’t 

need the context model to refer to the probability. The value of the next codIRange is 

always to subtract two from the current codIRange depending on whether the condition 

belongs to MPS or LPS. The final values of codIRange and codIOffset are required to 

renormalize when MPS condition happened. The process of the terminal mode is used to 

trace if the current slice is ended. It occurs one time per macroblock process which is 

seldom used during all decoding processes. 

 



 

 19

 

Figure 2-15 Flowchart of renormalization 

In the basic binary arithmetic decoder described in section 2.2.3, the floating-point 

operation is used. That will increase the complexity of the circuit in practical 

implementation. In H.264/AVC, CABAD adopts the integer operation to improve. We do 

the renormalization to keep the scales of codIRange and codIOffset. Figure 2-15 shows 

the flowchart of renormalization. The MSB of codIRange always keeps logic one in order 

to realize the integer operation. If the MSB of codIRange is equal to logic zero, the value 

of codIRange has to be shifted left until the MSB of codIRange is equal to one. 

Depending on the shifted number of codIRange, codIOffset fills the bit-stream in LSB. 

 

2.4 Binarization decoding flow 
 

In section 2.4, we focus on the decoding process of the binarization. H.264/AVC 

adopts five methods of the binarization to code all syntax elements.  

 Unary (U) binarization process 

 Truncated unary (TU) binarization process 

 Unary/k-th order Exp-Golomb (UEGk) binarization process 
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 Fixed-length binarization (FL) process 

 Special binarization process 

This section is organized as follows. In section 2.4.1, the decoding flow of the unary 

code is shown first. The unary code is the basic coding method. Section 2.4.2 shows the 

truncated unary code which is the advanced unary coding. It is applied in order to save 

the unary bit to express the current value. Section 2.4.3 is the Exp-Golomb binarization 

process. The UEGk is only used for the residual data and the motion vector difference 

(mvd). In section 2.4.4, we describe the fixed-length decoding flow. It is the typical 

binary integer method. And section 2.4.5 is the special definition by means of the 

table-base method. 

 

2.4.1 Unary (U) binarization process 
 

Table 2-3 is the unary code of binarization process. The bin string of a syntax element 

having (unsigned integer) value synElVal which is a bin string of length synElVal + 1. 

The bin string index is defined as binIdx. The bins for binIdx less than synElVal are equal 

to logic one. The bin with binIdx equal to synElVal is equal to logic 0. So the number of 

logic one is equal to synElVal. 

Table 2-3 Bin string of the unary binarization 
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2.4.2 Truncated unary (TU) binarization process 
 

The truncated unary binarization is based on the unary binarization and has an 

additional factor of cMax which is defined as the maximum length of the current bin 

string. When the value of syntax element (synElVal) is less than cMax, the U binarization 

process is invoked. If synElVal is equal to cMax, the bin string is a bit string of length 

cMax with all bins being equal to logic one. For example, it is assumed that synElVal 

equals to 4. If the value of cMax is “5”, the result of bin string is equal to “11110”. If the 

value of cMax is “4”, the result of bin string is equal to “1111” where the end bit of “0” is 

truncated in this case. 

 

2.4.3 Unary/k-th order Exp-Golomb (UEGk) 

binarization process 
 

The UEGk code is composed of two parts which are the prefix and suffix bit string. 

The prefix part of UEGk is specified by using the TU binarization process for the prefix 

part min( uCoff, Abs(synElVal) ) of a syntax element value synElVal with cMax equals to 

uCoff, where uCoff > 0. So the prefix part is dominated by cMax. Figure 2-16 shows the 

suffix part algorithm by means of the pseudo code. In the CABAD binarization engine, it 

only applies two decoding flows such as UEG0 (the order k=0) and UEG3 (the order 

k=3). UEG0 is used by the residual data with uCoff=14 and UEG3 is used by the motion 

vector difference with uCoff=9. Table 2-4 is an example which shows the corresponding 

bin strings for values of UEG0 from 1 to 20. 
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Figure 2-16 Pseudo code of the suffix part algorithm 

 

 

Table 2-4 Example for binarization coeff_abs_level_minus1 
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2.4.4 Fixed-length binarization (FL) process 
 

Table 2-5 Bin string of the FL code 

 

 

The fixed-length code is represented by means of the typical unsigned integer. For 

example, the value of “610” is equal to “1102”. The value of decimal type changes to the 

binary format, which requires fixed-length code. FL binarization is constructed by using a 

fixedLength-bit unsigned integer bin string of the syntax element value, where 

fixedLength = Ceil( Log2 (cMax + 1) ), ( Cei(x) means the smallest integer greater than 

or equal to x.). Table 2-5 shows the fixed-length code definition. In this table, the cMax 

equals seven and the fixedLength will be three. All syntax elements which are decoded 

by the FL binarization are always represented with three binary bits. 

 

2.4.5 Special binarization process 
 

Input to this process is a request for a binarization for syntax element mb_type and 

sub_mb_type. In order to perform the higher video quality, the macroblock and 

sub-macroblock are divided into many kinds of types such as I, P/SP, B, and SI slices. 

These two syntax elements are difficult to define by means of the above-mentioned 
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coding flows. In H.264/AVC [1], it adopts the table-based method to define mb_type and 

sub_mb_type. The binarization engine reads the bin string and checks if the bin string is 

mapped the specified location in these tables. If the bin string is found in these tables, it 

can look up the current macroblock type. 

 

Table 2-6 Binarization in I slice       Table 2-7 Binarization in P/SP and B slice 

    
 

The binarization scheme for coding macroblock type in I slice is specified in Table 

2-6. The binarization scheme for P macroblock type in P/SP slice and B macroblock in B 

slice are specified in Table 2-7. For P/SP and B slices, the specification of the 

binarization for sub_mb_type is given in Table 2-8. 
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Table 2-8 Binarization table for sub-macroblock type in P/SP and B slice 
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2.5 Context model organization 
 

The values of the context model offer the probability value of MPS (pStateIdx) and 

the historical value of bin (valMPS) in order to achieve the adaptive performance. 

Context provides estimates of conditional probabilities of the coding symbols, and it has 

to prepare 399 locations of the context model to record all encoding/decoding results. 

Utilizing suitable context models, given inter-symbol redundancy can be exploited by 

switching between different probabilities according to coded symbol in the neighborhood 

of the current symbol. 

The context model index is dominated by two factors such as ctxIdxOffset and 

ctxIdxInc. ctxIdxInc is the only one factor related with the syntax element of the neighbor 

blocks. The variable syntax elements refer to the left and top block to define the 

ctxIdxInc of the first binIdx such as mb_type, mb_skip_flag, ref_idx, mb_qp_delta, …, 

etc. The generic form of the equation is given as follows. The conditional term 

condTermFlag (A, B) describes the functional relationship between the spatially neighbor 

block A and B. 

 

In CABAC system, the referred position is based on the current block which can treat 

as not only the macroblock but also the sub-macroblock. So we have two methods to 

allocate the required blocks. 
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Figure 2-17 Illustration of the neighbor location in macroblock level 

 

 

Figure 2-18 Illustration of the neighbor location in sub-macroblock level 

 

The first method is to get neighbor in macroblock level. Figure 2-17 shows the left (A) 

and top (B) macroblocks of the current one. And the second method is in sub-macroblock 

level, as shown in Figure 2-18. The coordinate of the current sub-macroblock is defined 

as (sub_mb_x, sub_mb_y). If sub_mb_x is not equal to “0”, the left sub_macroblock is in 

the left side of the current macroblock. If sub_mb_x is equal to “0”, the left 

sub_macroblock can’t be found in the current macroblock and has to refer to the left side 

of the macroblock A. The circles in the macroblock A are the required sub-macroblocks 

which mean the syntax elements of the sub-macroblock 3, 7, 11, 15 have to be stored in 

order to record the left sub-macroblock. And the top block is similar to the left. The 
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syntax elements of the sub-macroblock 12, 13, 14, 15 also have to be stored in order to 

record the top sub-macroblock. 

 

 

2.5.1 Assignment process of context index 
 

 

 

H.264/AVC uses the above two rules to allocate the context model. The first rule is 

used except residual data of syntax element (coded_block_flag, significant_coeff_flag, 

last_significant_coeff_flag, and coeff_abs_level_minus1). The context model index is 

equal to the sum of ctxIdxOffset and ctxIdxInc. Depending on the syntax element and the 

slice type, we can find the value of ctxIdxOffset in Table 2-9. The value of ctxIdxInc is 

looked up in Table 2-10 by referring to the syntax element and binIdx. In Table 2-10, the 

word of “Terminal” means that the encoding/decoding flow enters the terminal process. If 

the generated bin is equal to “1”, the slice has to be stopped and encodes/decodes the next 

slice. 
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Table 2-9 Syntax element and associated definition of ctxIdxOffset 

 

 

Table 2-10 Definition of the ctxIdxInc value for context model index 
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Table 2-11 Specification of ctxIdxInc for specific values of ctxIdxOffset and binIdx 

 

 

For special ctxIdxInc, that is derived by using the value of prior decoded bin value. 

Table 2-11 shows the value of ctxIdxInc in special binIdx. 

 

The second rule is the context index method for the residual data such as coded_block, 

significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minus1. The 

value of the context model index is the sum of ctxIdxOffset, ctxIdxBlockCatOffset, and 

ctxIdxInc. The assignment of ctxIdxOffset is shown in Table 2-9. The value of 

ctxIdxBlockCatOffset is defined as Table 2-12 which is dominated by the parameters of 

syntax element and ctxBlockCat. The ctxBlockCat is the block categories for the different 

coefficient presentations. ctxBlockCat sorts five block categories in Table2-13. 

maxNumCoeff means the required coefficient number of the current ctxBlockCat. 

 

Table 2-12 Assignment of ctxBlockCatOffset   Table 2-13 Specification of ctxBlockCat 
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For the syntax elements significant_coeff_flag and last_significant_coeff_flag, the 

value of ctxIdxInc is defined as the scanning position that ranges from 0 to 

“maxNumCoeff - 2” in Table 2-13. The scanning position of the residual data process has 

two scanning orders. One is scanned for frame coded blocks with zig-zag scan and the 

other is scanned for field coded blocks with field scan, as shown in figure 2-19. 

 

 

Figure 2-19 (a) zig-zag scan and (b) field scan 

2.6 Paper survey for CABAD designs 
 

In this section, we will introduce some of CABAD decoding designs which have been 

published recently (2005 ~ 2007). The main differences of all of these are almost in arithmetic 

design due to that the arithmetic coder is the main dominator of throughput for the whole 

CABAD system. The CABAD decoder designs are introduced as follows. 

1. For the CABAD design of [4] proposed by Yongseok Yi, In-Cheol Park, the initial 

design without optimization takes 7.43 clock cycles per bin. The optimization 

strategies are shown as follows. 

(1) Several context models are simultaneously loaded from memory. 

(2) Employing a small storage to remove structural hazards and data dependencies. 

(3) Bin-level pipelining. 

After adopting these strategies, the processing time is reduced to 3.93 clock cycles 
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per bin. But the throughput of this design is not high-product because it is 

one-symbol architecture and its context memory needs great hardware cost. 

2. The high-performance CABAD design is proposed by J. W. Chen, Y. L. Lin [5]. It 

proposes three parallel processing techniques. The initial design without optimization 

decodes 0.44 bins per cycle. Three parallel processing techniques are shown as 

follows. 

(1) Parallelizing the tasks of decoding coefficients and getting neighboring data. 

(2) The two-bin-per-cycle decoding method. 

(3) Context table rearrangement method. 

After adopting these methods, the throughput is up to 0.99 bins per cycle. 

3. The CABAD decoder design of [8] is proposed by Y. C. Yang, C. C. Lin, H. C. Chang 

et al. They adopt four techniques to improve the performance of CABAD. They are 

adopting 1) two-symbol architecture pipeline scheduling, 2) using segmented context 

tables, 3) adding cache registers to store the value of context memory, and 4) doing 

look-ahead codeword parsing. 

4. We also reference the multi-symbol architecture design for arithmetic encoder [6] 

which is proposed by Y. J. Chen, C. H. Tsai, L. G. Chen. The one-symbol arithmetic 

coder was partitioned into four stage: Update State, Update Range, Update Low and 

Output. And then they extend the architecture of one-symbol arithmetic encoder to 

arbitrary m-symbol. 

5. A novel configurable architecture of CABAC encoder [7] is proposed by Y. J. Chen, 

C. H. Tsai, L. G. Chen. The traditional processing unit is divided into two parts, MPS 

encoder and LPS encoder. With different arrangements of these two basic 

components, they develop two types of ML-decomposed structures, such as 1) ML 

cascade architecture and 2) throughput-selection architecture. ML cascade 

architecture exploits the complementary critical path of MPS and LPS coder, and 



 

 33

throughput-selection architecture offers more choices of ML cascades to select the 

highest throughput one. 
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Chapter 3 
 

Multi-Symbol of Binary Arithmetic 
Decoder Engine 
 

 

3.1 Overview of CABAD system  
 

 
Figure 3-1 Block diagram of CABAD 

 

Arithmetic coding is a recursive subdivision procedure. It contains two data 

dependency which results in intensive computation. Firstly, the interval is specified by 

range and offset. Depending on symbol is the Most Significant Symbol (MPS) or Least 

Significant Symbol (LPS), the next interval is updated as one of two sub-intervals. The 

second is the adaptive probability state of the context of symbol. The probability table 

will be updated according to the current symbol. Figure 3-1 is the system architecture of 
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CABAD which consists of three main modules called the binary arithmetic decoder, the 

binarization engine, and the context model. The entire decoding procedure is described as 

follows. When starting to decode, it has to initialize the context model by looking up the 

initial table. BAD reads bit-stream to get the bin value. At the same time, it refers to the 

current probability from the context model to find the sub-range of MPS or LPS and 

updates the probability of the location of the current context model index (ctxIdx). The 

bin string from several bin values is fed to the binarization engine. Then the binarization 

engine will send out the value of syntax element. Address Generator generates the 

address of the context model which has been described in section 2-5. Due to these strict 

data dependencies, the elementary operations can hardly be processed in parallel. 

 

 

Figure 3-2 Elementary operations of CABAD 

 

To execute multi-symbol CABAD, the BAD unit and the Context model should 

properly support multi-symbol architecture. Figure 3-2 shows the elementary operations 

like address generator(AG), context memory load(CML), binary arithmetic 

decoding(BAD), and context memory update (CMU). And these stages are delimited by 

cycle boundaries. [4] optimizes the cycle boundaries , and we move the operation of 
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context selection to BAD stage. 

 

 
Figure 3-3 Overview of our architecture 

 

Figure 3-3 is overview of our architecture. γbase(s) is a base context index generated 

from the AG stage as the ctxIdxOffset definition from standard [1]. The set of context 

memory data Cj(s) in the same syntax element is gotten from context memory according 

to γbase(s) and stored in a small storage called the context state register (CSR). After the 

context memory is obtained, the BAD stage takes place. In our BAD stage, it contains 

three parts such as context selection, binary arithmetic decoding core, and binarization 

engine. We select needed context data (c1,c2,…) from Cj(s) according to binIdx 

(ctxIdxInc) and feed them to BAD core. At the same time, we should update each of the 

context data. For example, if ctx1 and ctx2 are the same, the pState and valMPS of ctx2 

should be replaced by the updated ones of ctx1. When working BAD core, the symbol is 

decided by comparing the coding offset and the coding range. Then the renormalization 

follows to keep the coding range and the coding offset to a fixed precision. Then, we send 
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the bin string (b1, b2, b3) to do the binarization and resolve the value of syntax element. 

Besides, only the updated values of context data ci corresponding to those valid bins 

should be written back to CSR. Finally, the data Cj(s) of CSR will write back to context 

memory. The part of BAD core is described in next section, and the detail of context 

model in next chapter.  
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3.2 Statistics and analysis of syntax elements 
 

 

Figure 3-4 Decoding flow at syntax element level 

 

Figure 3-4 is the state transition at the syntax element level. H.264/AVC defines 

twenty-five syntax elements. Many syntax elements only need one bin to decode (like 

significant_coeff_flag, last_significant_coeff_flag, end_of_slice_flag, coded_block_flag, 

and intra_pre_mode_flag …. First two of them have around 40% of bins). And others 

need multiple bins to get its information (like coeff_abs, rem_intra_pre_mode, mb_type, 

sub_mb_type, ref_idx, mvd …, etc.).  
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Table 3-1 Percentage of the bins at each syntax element 

  bin% 

syntax element QP36 QP30 QP24 QP18 avg 

Intra_pred_flag, intra_rem 1.68  3.34  4.01  2.85  2.97 

sig. & last_sig. 40.51 40.83 39.05 37.46  39.46 

coeff_abs 25.98 31.87 38.12 44.08  35.01 

MVD 4.87  5.00  5.23  6.67  5.44 

Ref_frame 0.52  0.38  0.29  0.24  0.36 

other 26.43 18.57 13.30 8.69  16.75 

 

Table 3-2 Percentage of the cycle counts at each syntax element 

  cycle% 

syntax element QP36 QP30 QP24 QP18 avg 

Intra_pred_flag, intra_rem 1.86  3.72  4.51  3.26  3.34 

sig. & last_sig. 44.78 45.35 43.84 42.77  44.19 

coeff_abs 21.12 26.67 32.62 38.47  29.72 

MVD 3.91  3.99  4.22  5.52  4.41 

Ref_frame 0.58  0.43  0.32  0.28  0.40 

other 27.75 19.84 14.49 9.70  17.95 

 

Table 3-1 and Table 3-2 are shown the percentage of decoded bins and cycle counts of 

different syntax elements. "sig.& last_sig.” and “coeff_abs” have most of decoding bins. 

Therefore, how to enhance the throughput would be divided into two parts. The first is 

our multi-symbol architecture that can decode multiple bins per cycle. It is shown in next 

section. But the multi-symbol architecture will not enhance the performance of the 

one-bin syntax elements such as sig.& last_sig. Then secondly, we rearrange our context 

memory to advance our architecture performance. It is mainly to improve the part of 

significant_coeff_flag and last_significant_coeff_flag, and that is shown in next chapter. 
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Table 3-3 Percentage of each concatenate symbol 

 
 

Table 3-3 is the statistics of the average percentage of each symbol alignment. It 

simulates under executing four CIF sequences (stefan, foreman, news and mobile) by 

JM8.2. The number of frame is 200 and we set QP16, QP28, and QP40. We find the 

percentage of concatenate M-symbol is obviously higher than others, especially MMM in 

3-symbol and MM in 2-symbol. Take 3-symbol an example, we divide four orders of the 

happening probability (from most probability to least probability). First group is MMM 

and it contains 44%. Second group are MML, MLM, and LMM, and they contain 13% 

respectively. Last group is LLL and it contains 3%. It is efficient that the concatenate 

symbols (MMM) will be improved firstly. 

 

1. MMM 

2. MML,  MLM,  LMM 

3. MLL,  LML,  LLM 

4. LLL 
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3.3 Proposed multi-symbol architecture 
 

In this section, we extend the architecture of one-symbol arithmetic decoder to 

three-symbol. It has data dependencies in range and offset. Depending on symbol is the 

Most Significant Symbol (MPS) or the Least Significant Symbol (LPS), next interval is 

updated as one of two sub-intervals. The range and offset equations are as follows, 

MPS： Rangen = Rangen-1 – rLPSn 

       Offsetn = Offset n-1 

LPS：  Rangen = rLPSn 

       Offsetn = Offset n-1 – Range n-1 + rLPSn 

where n represents current symbol and rLPS is the estimated range when coding LPS. 

 

3.3.1 One-symbol structure of BAD 

 

Figure 3-5 BAD for one-symbol architecture 
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Table 3-4 Results for range, offset and binVal at each mode 

 
 

The basic Binary Arithmetic Decoding core is as shown in Figure 3-5 [11]. For 

hardware sharing, it combines three modes (decision, bypass, and terminal) into the 

architecture, and Table 3-4 shows the results of range, offset, and bin value in each mode. 

The shaded adder is also the comparator which calculates the temporal variables OffsetX 

and RangeX, and it will decide the symbol is MPS or LPS resulting in the binVal. The 

table of rangeLPS has 256 entries. The large table is unfortunately located in the critical 

path when decoding multi-symbol. To speed up, we divide the table into two parts, 64:1 

and 4:1 as like [6]. Then, we can pre-compute the greater parts (64:1) when doing other 

operations. Table 3-5 shows the dependency of Bin_flag, valMPS, and Bin_value. The 

result of bin value is Bin_flag depending on valMPS. And the signal Bin_flag is the msb 

of the result from the subtractor of Offset and RangX. When Offset is less than RangX, 

the signal of Bin_flag will be set 1. It means that the decoding symbol is MPS, and the 

decoding Bin value is the function XOR of the two signals Bin_flag and valMPS. 

 

Table 3-5 Dependency of symbol, Bin_flag, valMPS and bin value 

comparator Bin_flag Symbol  Bin_flag valMPS Bin value 

Offset >= RangX 0 LPS  0 0 1 

Offset < RangX 1 MPS  1 0 0 

    0 1 0 

    1 1 1 
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3.3.2 Cascaded structure of multi-symbol BAD 
 

The intuitive method for multi-symbol BAD is to cascade one-symbol architecture as 

shown in Figure 3-6. It doesn’t decode next bin until the result of the comparator of 

current bin, so that the critical path of the one-symbol architecture will have two adders 

and the rangeLPS table. If we extend to three-symbol, the critical path is too long that 

will be six adders and three rangeLPS tables. The hardware cost is three times than 

one-symbol architecture. Figure 3-7 is simply drawing of the cascade architecture of 

three-symbol BAD [5]. 

    

Figure 3-6 Simplify one-symbol BAD architecture and its simply drawing 
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Figure 3-7 Cascade architecture of three-symbol BAD 
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3.3.3 Extending structure of multi-symbol BAD 
 

 

Figure 3-8 Example of 2-symbol expanding BAD architecture 

 

As shown in Figure 3-8, if we expand the range and offset equation of two-symbol 

BAD, the architecture can reduce the long critical path. The following equations are the 

results of Range and Offset. LPS1 represents that the first decoding symbol is LPS, and 

LPS2 represents that the second decoding symbol is LPS, and so forth to MPS1 and MPS2. 

LL_R represents the result of range which decodes concatenate symbols of both LPS. 

The same as to LL_O, and the last letter O represents the result of Offset. And LM_R 

represents the result of range that the first decoding symbol is LPS and the second 

decoding symbol is MPS. And so forth to LM_O, MM_R, MM_O, ML_R, ML_O. 
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When doing the first symbol’s comparator, it also does the second symbol’s operation. 

In addition, the rangeLPS table can be computed in advance because we already know 

the next decoded symbol is MPS or LPS. As a result, it can reduce one adder time and 

one rangeLPS table time if every adding one-symbol extending architecture. So the 

critical path of the two-symbol extending architecture is three adders and one rangeLPS 

table. 

It is easy to expand to three-symbol architecture, and its critical path is four adders 

and one rangeLPS table. We reduce the critical path of two adders and two rangeLPS 

tables compared to the cascade three-symbol BAD architecture. But the hardware cost of 

extending three-symbol architecture is seven times larger than one-symbol architecture. 

The hardware cost is too great. Next we propose an efficient method to reduce the critical 

path and let cost down. 
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3.3.4 M-cascade of multi-symbol architecture 
 

Table 3-6 Critical path of the adders in three-symbol extending BAD 

  MMM MML MLM MLL 

Num. of adders time 3 4 3 4 

     

  LLL LLM LMM LML 

Num. of adders time 4 3 2 3 

 

Table 3-6 is shown the critical path of the needed adders of decoding each 

concatenate symbol case. 

 

The critical path of cascade three-symbol architecture is too long and the hardware 

cost of extending three-symbol architecture is too large. Case control study with Table 

3-6, Table 3-3 and hardware design, in concatenate three symbols we finally choose the 

decoding process of MMM and MML to make sure hardware sharing (cost down) and 

efficiently enhance the throughput. We can speed up 57% decoding bin and minimize the 

hardware cost and the critical path. 
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Figure 3-9 Organization of the multi-symbol BAD 

 

Table 3-7 Case of multi-symbol which our architecture can decode 

  case 

1-symbol L, M 

2-symbol ML,MM 

3-symbol MML,MMM 

 

We propose our M-cascade of multi-symbol BAD architecture in Figure 3-9 The 

architecture can decode three concatenate symbol whether it is decision mode or bypass 

mode, and it only executes the case of symbol alignment(L, M, ML, MM, MML, MMM) 

as shown in Table 3-7. The architecture decodes next symbol when the prior symbol is 
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M-symbol, so we call it M-cascade architecture. For an example, if we want to decode 

the symbol streams MLLMMM, our architecture will decode ML firstly and L at next 

cycle, and decode MMM finally. So it doesn’t always execute up to three symbols. First 

problem is that the architecture of other symbol alignment (MLM, MLL, LMM, LML, 

LLM, and LLL) doesn’t parallel processing in our design. These symbol alignments 

should be separated to one-symbol and two-symbol or three one-symbols. Because we 

focus on the improvement of the most percentage, we choose the case of MMM and the 

case of MML to decoding. Secondly, the binarization engine judges the three bin string if 

the bin values are the valid symbols. The signal binvalidx_BAD is to discriminate the 

correctness of the decoded bin value by our confining architecture (only decoding L, M, 

ML, MM, MML, MMM). Table 3-8 is shown their relation. Then we sent those needed 

signal to execute the binarization. If the first n bins are valid, the n-th results of 

codIOffset and codIRange have to be selected by the binarization engine to offer the next 

BAD.  

In Figure 3.9, bit stream buffer is fed to ○1 , ○2 , ○3 , ○4 , ○5  and Renormalization 

unit. ○1 , ○3  and ○5  is about bypass decoding process. ○2  is the operation of the 

renormalization after decoding “M”, and ○4  is after decoding “MM”. 

 

Table 3-8 Truth table of binvalid?_BAD related to our BAD architecture 

INPUT OUTPUT 

MSB_1 MSB_2 MSB_3 binvalid1_BAD binvalid2_BAD binvalid3_BAD

0 ? ? 1 0 0 

1 0 ? 1 1 0 

1 1 ? 1 1 1 
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3.4 Pipeline organization 
 

The most effective way to enhance the performance is to exploit the pipelining 

scheme. In decision mode, it takes 4 cycles to complete one bin coding in conventional 

processing without pipelining. The bypass mode and the terminal mode doesn’t need the 

probability data, so it will not execute the part of context memory and takes one cycle to 

complete one bin coding, as shown in Figure 3-3. We show these stages to schedule the 

pipeline organization in this section. And we also show some restricts in our design. 

 

 

Figure 3-10 Timing diagram of the pipeline comparison 

 

Figure 3-10 shows the timing diagram of the pipeline comparison for decision mode, 

and it is almost the same as [4]. But we move the CS operation to BAD stage. 

In conventional scheme, it must compute context address every symbol processing 

and load context data (pState and valMPS) to next stage without CSR. In our design, we 

load a series set of context data to CSR in syntax element beginning and write back to 
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context memory in syntax element end. We only read and write context memory one time 

in every syntax element (except the two syntax element of significant_coeff_flag and 

last_significant_coeff_flag), but in conventional scheme it will read and write context 

memory more times depending on how many the decoded bins in that syntax element. It 

can be found that the conventional scheme produces one bin every 4 cycles in average, 

and the other one with pipelining and CSR produces 1~3 bins every cycle. Compared 

with the conventional organization, the proposed design with the pipeline can save large 

the process cycles. Next we show the timing diagram of some restricts and situation 

resulted from our multi-symbol BAD unit. 

 

 

Figure 3-11 The timing diagram of our architecture restricts 

 

Because our BAD architecture only decodes the symbol stream L, M, ML, MM, 

MML or MMM, it will judge the correctness of those outcome decoding symbol whether 

our architecture support or not. Then it forwards the binIdx of the last valid symbol to the 

unit of CS and BAD at next cycle to process continually. Figure 3-11(a) is an example. 
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Our architecture doesn’t support the concatenate symbol MLM, but support ML. It will 

judge the symbol M of binIdx = 5 is invalid, and forward the value of binIdx = 4. 

Although the comparator decide the decoding symbol of binIdx = 5 is M, and it is indeed, 

but the output of codIRange and codIOffset will be wrong. That will result in the wrong 

following process. So we put some logic to estimate. 

 Figure 3-11(b) is the timing diagram happening when syntax element change. When 

a new syntax element is to be decoded, the pipeline is stalled for two cycles to update and 

load the series set of context data. The CSR (Figure 3-3) will write back the context data 

of prior syntax element to context memory and then load the new one of current syntax 

element. When the correct output of ML is decoded and sent to the binarization engine, 

the binarization judges it’s the end of syntax element. Then we write back the CSR to 

context memory, and at next cycle we will load context data of new syntax element to 

CSR. It wastes two cycles and it is also the bottleneck of our architecture. 

 

When decoding the syntax element of MVD and coeff_abs, it may decode the bin 

using bypass mode or decision mode. This part is shown the schedule of the decision 

mode changing to the bypass mode in our architecture. When the decoding bins in these 

two syntax elements are more than the value boundary (£), the following bins will use 

bypass mode to decode. The value boundary (£) of MVD and coeff_abs is set 8 and 13 

respectively as shown in Table 3-9.  

 

Table 3-9 The parameters of the decision mode changing to the bypass mode  

Syntax element Value boundary Should decode more bins using bypass mode 

MVD 8 n+2 

coeff_abs 13 N 

 

In syntax element MVD, if the decoding bins are more n than 8 until the value of bin 
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is 0, it should decode n+2 bins using bypass mode in following process. The situation is 

also the same in syntax element coeff_abs. If the decoding bins are more n than 13 until 

the decoding bin value is 0 in syntax element coeff_abs, it should decode n bins using 

bypass mode in following process. And both of them, the last decoding bypass bin is also 

the sign bin. If decoding bins in the two syntax element are less than the value 8 and 13 

respectively until the decoding bin value is 0, it should decode more one bin by bypass 

mode as sign bin. And the changing to bypass mode, it always happens at next cycle 

whether the concatenate symbols which our architecture can support or not. Figure 3-12 

is an example of syntax element MVD. 

 

 

Figure 3-12 Schedule of the decision mode changing to the bypass mode in MVD-SE 

 

Figure 3-12(a) is the situation of the decoded bins less than 8 until bin value = 0 in 
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syntax element MVD. When binIdx = 6 decoding the result of bin value = 0, it decodes 

more one bin at binIdx = 7 as sign bin at next cycle. Then this syntax element process 

finish. Figure 3-12(b) is the situation of the decoded bins more than 8 until bin value = 0. 

When binIdx = 10 decoding the result of bin value = 0, we will know the result of binIdx 

= 11 is wrong although the concatenate symbols MML our architecture can support. 

Besides we should decode more 5 bins using bypass mode at next follows cycles. 
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Chapter 4 
 

Structure of Context Model 
 

 

4.1 Overview of the context model 
 

The values of the context model depending on the context index (ctxIdx) offer the 

probability value (pStateIdx) and the historical value of bin (valMPS) in order to achieve 

the adaptive performance. We have to prepare the 399 locations of the context model to 

record all decoding results. And two kinds of context model index methods allocate the 

context model. 

ctxIdx = ctxIdxOffset + ctxIdxInc 

ctxIdx = ctxIdxOffset + ctxIdxBlockCatOffset + ctxIdxInc 

 

Figure 4-1 Traditional organization of context memory 
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Figure 4-1 is the traditional organization of context memory, it is dependent on syntax 

element and the slice type as shown in Table 2-9. The context memory in traditional 

organization needs 399x7 bits. 

 

In our multi-symbol design, context model must provide multiple context values and 

set these values to corresponding BAD operations. In context memory load stage, we 

load a series set of context data (Cj(s)) to CSR according to the context base γbase(s) [4]. 

Theγbase(s) is the ctxIdxOffset or the sum of ctxIdxOffset and ctxIdxBlockCatOffset 

respectively to the two equations, as follows.  

 

 

 
Figure 4-2 Structure of CSR 

 

CSR architecture is shown in Figure 4-2. The difference from [4] is that the structure 

of CSR has ten registers to hold the context data from the read subset Cj(s). Since the 
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range of context index increments lies in [0, 9] for the syntax element coeff_abs_level, 

we set the register file to 10. 

 

After loading the subset of context elements to CSR, we must choose the correct three 

set of context data (pState and valMPS) to the BAD unit. The problem is that some 

ctxIdxInc of syntax element need look for bin value (as shown in Table 2-11) and use the 

adaptive probability table. Context selection calculates the index to achieve by using the 

lookup logic and exploiting the current valMPS, so that the problem of ctxIdxInc can be 

resolved. Because of our multi-symbol M-cascade archticture, we use the characteristic to 

combine the data dependency of valMPS and lookup logic to get each ctxIdxInc, so that 

we can get the correct context data (pState and valMPS). Then if ctx1 equals to ctx2, the 

pState of ctx2 should be replaced by the updated one of ctx1. Finally the updated values 

of context data should be written back to CSR. Figure 4-5 is the part of our context 

selection. 

 

 

Figure 4-3 Part of our context selection 
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4.2 Context memory 
 

To load the ten context elements at once, we need a 70-bit-wide memory 

configuration. Figure 4-3 [4] shows the context memory organization that is optimal in 

the sense of memory size required when using our architecture, and that needs 400x7 bits. 

But in this arrangement, some syntax elements will take more cycles to complete 

read/write the full context data of the decoding bins iteratively. We modify the optimal 

organization to read all the elements of each subset in one cycle, as shown in Figure 4-4 

[4]. But the modified organization lets memory increase to 670x7 bits. In next section, we 

propose the new modified context memory. It will decrease the memory size to 550x7 

bits and simultaneously enhance the throughput. 

 

Figure 4-4 Optimal arrangement of context memory 
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Figure 4-5 Modified data arrangement of context memory 

 

 

 

4.2.1 Memory rearrangement 
 

In this section, we proposed a new context memory. It not only decreases the memory 

size but also enhance the throughput of CABAD. According to analysis shown in Table 

3-1, there are most usage on the syntax element Significant_coeff_flag and 

Last_siginficant_coeff_flag, about 40% of total bins averagely. And we also find that in 

I-MB the percentage of intra related syntax elements (intra_chroma_pred_mode and 

pre_intra_pre_mode_flag and rem_intra_pre_mode) are huge. We focus on these two 



 

 60

parts. Figure 4-6 is the flow diagram of the significant map and Figure 4-7 shows an 

example of the decoding order of significant_coeff_flag and Last_significant_coeff_flag. 

For each coefficient in scanning order, a one-bit symbol significant_coeff_flag is 

transmitted. If the bin value of the significant_coeff_flag symbol is 1 at this scanning 

position, a further one-bit symbol last_significant_coeff_flag is processing. This symbol 

indicates if the current significant coefficient is the last one inside the block or if the 

further coefficients follow. 

 

 

Figure 4-6 Flow diagram of the significance map 

 

 

Figure 4-7 Decoding order of sig._coeff_flag and last_sig._coeff_flag 

 

As the decoding order, the change of the syntax element is too frequent 

(sig._coeff_flag → last_sig._coeff_flag or last_sig._coeff_flag → sig._coeff_flag). It will 

decrease the performance of multi-symbol CABAD because our architecture with the 

context memory organization (as shown in Figure 4-8) stall two cycles to change the 
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syntax element. Our design can concurrently read a series subset of two context data of 

sig._coeff_falg and last_sig._coeff_flag pair from context memory. Figure 4-9(a) is the 

original part organization of context memory of sig._coeff_flag and last_sig._coeff_flag, 

and Figure 4-8 its timing diagram. Figure 4-9(b) is our proposed organization which can 

read/write five pairs in one memory access to decrease the frequency of memory access 

and promote the decoding bins of this syntax element per cycle to two bins, originally 

decoding one bin. We can decrease the size of memory about significance map from 

360x7 bits to 260x7 bits. Besides, we can save the two stalls. 

 

 

Figure 4-8 Timing diagram for the original organization of context memory 

 

 

Figure 4-9 (a) Original modified organization. (b) Our proposed organization. 

 

Decoding intra syntax elements is similar to above situation. After decoding the 

syntax element prev_intra4x4_pre_mode_flag, we decode the mode indicator 

rem_intra4x4_pre_mode, where it is only present if the former takes a value of 0. 
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Decoding the iteration of prev_intra4x4_pre_mode_flag and rem_intra4x4_pre_mode, we 

finally decode the syntax element intra_chroma_pred_mode, as shown the formula in 

Figure 4-10. And Figure 4-11 is the part of memory rearrange of intra memory. We can 

decrease the size of memory about intra syntax from 30x7 bits to 10x7 bits. 

 

 

Figure 4-10 The formula of intra prediction modes 

 

 
Figure 4-11 Memory rearrange for intra context memory 
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Figure 4-12 Full-view organization of our proposed context memory 

 

Figure 4-12 is our last context memory organization which is combined above 

technique. Its location at memory address corresponding to the syntax element and the 

ctxIdxOffset defined by standard. 
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Chapter 5 
 

Simulation and Implement Result 
 

 

5.1 Simulation result 
 

5.1.1 Performance in each syntax element 
 

Table 5-1 Performance of bin/cycle in each syntax element by different QP 

  bin/cycle 

syntax element QP36 QP30 QP24 QP18 avg 

Intra_pred_flag, intra_rem 1.78 1.60 1.44 1.38  1.55 

sig. & last_sig. 1.07 1.08 1.08 1.09  1.08 

coeff_abs 0.90 1.01 1.12 1.27  1.08 

MVD 1.02 1.16 1.22 1.22  1.16 

Ref_frame 1.06 1.06 1.06 1.06  1.06 

other 0.63 0.62 0.64 0.68  0.64 

 

Table 5-1 is the performance of bin per cycle in each syntax element. Our 

multi-symbol architecture can enhance more than one bin per cycle in the syntax 

elements which need concatenate symbol, i.e. coeff_abs, MVD, and Ref_frame etc. And 

intra related syntax element and significance map also can up to one bin per cycle 

because of our context memory rearrangement. We successfully achieve decoding 

multiple symbols per cycle to enhance the performance of the throughput. 
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5.1.2 Performance of our proposed design 
 

In this section, first we compare the performance of our architecture with a 

conventional implementation which does not exploit the proposed schemes, that is, one 

symbol architecture and the elementary operations as shown in Figure 3-2 are not 

pipelined and the memory organization of Figure 4-1 is used. Table 5-2 summarizes the 

decoding performance of our architecture and the column of Test sequence I, P, B means I 

slice, P slice and B slice respectively. The column of Decoded Bins and Total cycles show 

the number of symbols and the number of decoding cycles. Test sequences adopt 

1080HD (1920x1088) which are sunflower, station and riverbed. All the sequences are 

encoded by reference software JM8.2 in Main Profile at Level 4.0. Sequence type is 

IBBP and IntraPeriod is set 10. Total encoded frames are 240 and the frame rate is 30fps. 

As shown in Table 5-2, in different QP(36, 30, 24, 18) the uses of our architecture 

result in almost 3.5 times speedup throughput on the average compared to the 

conventional architecture. The number of Total cycles exclude the time for the RISC to 

process parameter set and slice headers, the context memory initialization time for each 

slices, and the macroblock initialization time. So the Total cycles means processing 

arithmetic coding and read/write context memory. 
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Table 5-2(a) Improvement of decoding performance in QP36 

IBBP - QP36 Conventional Scheme Proposed Design 

  PSNR 
Bit-Rate 

(Mbps) 
Test Sequence Decoded Bins Total cycles cycle/MB cycle/bin Total cycles cycle/MB cycle/bin

Total 159753127 580824325 299.07 3.636 176556185 90.91 1.105

I 5336516 19208945 294.25 3.600 6038969 92.51 1.132

P 53991759 193977177 330.16 3.593 59013412 100.44 1.093

35.93 10.814 sunflower 

B 100424852 367638203 285.15 3.661 111503804 86.49 1.110

Total 98680596 357874098 184.27 3.627 120002067 61.79 1.216

I 3856447 13922923 213.28 3.610 4605947 70.56 1.194

P 35125766 126904661 216.00 3.613 42158820 71.76 1.200

35.46 6.869 station 

B 59698383 217046514 168.35 3.636 73237300 56.80 1.227

Total 187244878 672465916 346.26 3.591 206312056 106.23 1.102

I 5529299 20013020 306.57 3.619 6445327 98.73 1.166

P 56066623 201661669 343.24 3.597 62587331 106.53 1.116

1080p 

34.26 13.896 riverbed 

B 125648956 450791227 349.65 3.588 137279398 106.48 1.093

Average 35.22 10.526     148559533.7 537054779.7 276.54 3.618 167623436 86.31 1.141 

Table 5-2(b) Improvement of decoding performance in QP30 

IBBP - QP30 Conventional Scheme Proposed Design 

  PSNR 
Bit-Rate 

(Mbps) 
Test Sequence Decoded Bins Total cycles cycle/MB cycle/bin Total cycles cycle/MB cycle/bin

Total 262367865 948899829 488.60 3.617 265943740 136.94 1.014

I 9362625 33804366 517.84 3.611 10113758 154.93 1.080

P 92034331 329060572 560.08 3.575 93605849 159.32 1.017

39.25 19.736 sunflower 

B 160970909 586034891 454.54 3.641 162224133 125.83 1.008

Total 194248697 701241503 361.08 3.610 213932462 110.16 1.101

I 7771132 28040647 429.54 3.608 8742360 133.92 1.125

P 67533891 242356782 412.51 3.589 74942632 127.56 1.110

38.27 15.407 station 

B 118943674 430844074 334.17 3.622 130247470 101.02 1.095

Total 325432948 1163550682 599.13 3.575 339055561 174.58 1.042

I 10294589 37282526 571.12 3.622 11480410 175.86 1.115

P 93733898 336605180 572.93 3.591 100792285 171.56 1.075

1080p 

37.3 27.399 riverbed 

B 221404461 789662976 612.48 3.567 226782866 175.90 1.024

Average 38.27 20.847     260683170 937897338 482.93 3.601 272977254.3 140.56 1.052 
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Table 5-2(c) Improvement of decoding performance in QP24 

IBBP - QP24 Conventional Scheme Proposed Design   [4] 

  PSNR 
Bit-Rate 

(Mbps) 
Test Sequence Decoded Bins Total cycles cycle/MB cycle/bin Total cycles cycle/MB cycle/bin 

Speedup Speedup

Total 412679877 1473716100 758.83 3.571 388382867 199.98 0.941 

I 15459666 55679850 852.94 3.602 15856147 242.89 1.026 

P 147496197 522142005 888.72 3.540 142097904 241.86 0.963 

42.29 34.082 sunflower 

B 249724014 895894245 694.88 3.588 230428816 178.73 0.923 

3.79 1.73 

Total 346038115 1237500235 637.20 3.576 352746525 181.63 1.019 

I 14982871 53706613 822.71 3.585 15694224 240.41 1.047 

P 125639987 447011054 760.84 3.558 130821592 222.67 1.041 

40.9 30.987 station 

B 205415257 736782568 571.47 3.587 206230709 159.96 1.004 

3.51 1.88 

Total 555112870 1965199252 1011.90 3.540 545521386 280.90 0.983 

I 18459019 66216793 1014.35 3.587 19036548 291.61 1.031 

P 158023951 563031565 958.32 3.563 161073578 274.16 1.019 

1080p 

40.35 51.094 riverbed 

B 378629900 1335950894 1036.20 3.528 365411260 283.42 0.965 

3.60 1.84 

Averag 41.18 38.721     437943620.7 1558805196 802.65 3.562 428883592.7 220.84 0.981 3.63 1.81

Table 5-2(d) Improvement of decoding performance in QP18 

IBBP - QP18 Conventional Scheme Proposed Design 

  PSNR 
Bit-Rate 

(Mbps) 
Test Sequence Decoded Bins Total cycles cycle/MB cycle/bin Total cycles cycle/MB cycle/bin

Total 719703099 2516505918 1295.78 3.497 626098699 322.39 0.870

I 27124737 96826353 1483.25 3.570 25421276 389.42 0.937

P 253605372 883909323 1504.48 3.485 226348979 385.26 0.893

45.06 64.07 sunflower 

B 438972990 1535770242 1191.18 3.499 374328444 290.34 0.853

Total 768562734 2716642302 1398.83 3.535 711058725 366.13 0.925

I 31187708 110743529 1696.44 3.551 28755263 440.49 0.922

P 264323295 927870765 1579.30 3.510 244012570 415.33 0.923

44.15 73.216 station 

B 473051731 1678028008 1301.52 3.547 438290892 339.95 0.927

Total 1087349108 3777376349 1945.02 3.474 950209535 489.27 0.874

I 35661835 126671584 1940.43 3.552 32220663 493.58 0.904

P 307098793 1075687003 1830.89 3.503 276403783 470.46 0.900

1080p 

43.89 103.024 riverbed 

B 744588480 2575017762 1997.25 3.458 641585089 497.63 0.862

Average 44.37 80.103     858538313.7 3003508190 1546.54 3.502 762455653 392.60 0.890 
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Table 5-3 Summarization of average three-symbol performance in different QP 

    Conventional Scheme Proposed Design 

  Bit-Rate cycle/MB cycle/bin cycle/MB cycle/bin bin/cycle 

QP36 10.53 276 3.618 86 1.141 0.876 

QP30 20.85 482 3.601 140 1.052 0.951 

QP24 38.72 802 3.562 220 0.981 1.019 

QP18 80.10 1546 3.502 392 0.890 1.124 

 

1080p 100MHz

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0 20 40 60 80 100 120

Bit-Rate(Mbps)

T
hr

ou
gh

pu
t(

M
B

/s
)

sunflower

station

riverbed

 
Figure 5-1 Characteristic curves of 100MHz for three sequences 

 

Table 5-3 shows the performance of our design. We can get better improvement in 

small QP. Because our architecture process the change of syntax element will take a little 

stalls to update the CSR data. More change of syntax element will bottle our design. 

From Table 3-1 “other” of syntax element in bigger QP has more percentage, so it worse 

our performance. Figure 5-1 is the characteristic cures of 1080HD under 100MHz. The 

dotted line is max macroblock processing rate(MB/s) 245760 from specification of Level 

4.0. 
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5.2 Implementation result 
 

The proposed architecture is designed by Verilog HDL and implemented in UMC 

0.13 µm technology. The synthesis result of our proposed design is summarized in Table 

5-4. As a result, the CABAC decoder can be clocked at 115 MHz and the gate count 

without memory is 11937. The memory requirement of context model is single-port 

SRAM with 481Bytes (550x7bits). 

 

Table 5-4 Synthesis result of our design 

 Proposed

Context Memory 550x7 bits

pState Generator 3121 

ctxIdxInc 1199 

transIdxMPS 125x3 

transIdxLPS 427 

 other 1120 

ThreeSym_BAD 18726 

RangeTabLPS 1966x3

OneSym_base 737x3 

 

Other 

(include Binarization,

 Renormalization..et al.)

10617

ThreeSym_control - 

CSR register file 1400 

Clock rate 115MHz

Area 47748 

Gate count 11937 
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Table 5-6 Comparison with other designs using 1080HD sequence 

  Proposed [4] [12] [8] [13] 

Technology UMC 0.13μm 0.18μm UMC 0.18μm TSMC 0.18μm 0.18μm 

Function decoder decoder codec decoder decoder 

Gate count* 11,937 na 38,436 na 42k 

Total gate count* - 81,162 84,873 83,157 na 

Max speed 115MHz 225MHz 110MHz 120MHz 45MHz 

Target spec. HD 1080@30fps HD 1080@30fps HD 1080@30fps HD 1080@30fps HD 1080@30fps

Arch - symbol/cycle 3(partial) 1 1(But Multi-bypass) 2 16 

I(cycle/MB) 270(QP24) 524(QP26) 462(QP36) na 

P(cycle/MB) 246(QP24) 269(QP26) 308(QP26) na 

B(cycle/MB) 204(QP24) 141(QP26) 254(QP26) na 

Total Avg. 219(QP24) 

3.93 cycle/Bin 

208(QP26) na na 

Bit-rate(Mbps) 38.72 na 22.11 na na 

Avg. 

bin/cycle 1.019 0.254 na na na 

Context Memory 481 Bytes Context Memory 662 Bytes Context Memory 349 Bytes     
Comment 

  Data Memory 11.52K Bytes Data Memory 3120 Bytes     

ps： Gate count*： without context memory    Total gate count*：with context memory 

 

Table 5-6 Comparison with other designs using CIF sequence 

 Proposed [5] [9] 

Technology UMC 0.13μm 0.13μm TSMC 0.13μm

Function decoder decoder decoder 

Gate count 11,937 11,475 na 

Total gate count - 40,762 138,226 

Max speed 115MHz 137MHz 200MHz 

Target spec. CIF CIF CIF 

Arch - symbol/cycle 3(partial) 2 1 

I(cycle/MB) 321(QP28) 309(QP28) 1661 

P(cycle/MB) 112(QP28) 143(QP28) 576 

B(cycle/MB) 72(QP28) 130(QP28) 328 

AVG 92(QP28) 194(QP28) 570 

Bit-rate(Mbps) 0.868 na na 

Avg. 

bin/cycle 0.967 0.8 1bin/2~3cycles

Comment Context Memory 481 Bytes Context Memory 349 Bytes  



 

 71

Table 5-5 and Table 5-6 show the comparison of the proposed multi-symbol CABAD 

and the other designs. Table 5-5 is using 1080HD sequence and table 5-6 is using CIF 

sequence. We select the data of QP24 to compare with other designs. Compared with 

Lee’[12], our performance in cycle per MB in B frame and total average are higher than 

theirs because our QP is lower and our architecture is partial multi-symbol. Beside above, 

our design will have two stall when syntax element transmits. If we add one more set of 

CMR register file, we can decrease one stall in that situation. Table 5-6 is using CIF 

sequence (news, foreman, and mobile), and other environment parameters are set the 

same as using 1080HD sequence 



 

 72

Chapter 6 
 
Conclusion and Future Work 
 

 

6.1 Conclusion 
 

We adopt several design techniques both on system level and module level to enhance 

the throughput. The contribution of this thesis can be divided into two parts. The first part 

is in Chapter 3. We construct the architecture of multi-symbol BAD by M-cascade 

structure. It can complete three arithmetic decoding modes and decode up to three 

symbols per cycle. The second part is about context model in Chapter 4. The context 

model must reorganize to support multi-symbol architecture. Several context data are 

simultaneously loaded from memory, and we use a set of registers to save them so that 

removing the data dependencies. We also rearrange the location of the context memory 

index. 

As a result, the average cycle count per macroblock can reduce up to 187 under the 

reasonable video quality, and the value of decoding bin per cycle is more than one. Our 

design can achieve the level 4.0 of H.264/AVC standard [1], which means that it can play 

the resolution of 1080HD video at 30fps. 
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6.2 Future work 
 

In order to achieve high quality videos, the high resolution and high frame rate 

becomes the target of the requirement of the digital TV market. To play the videos of 

1080HD at 60fps is the basic requirement. Using our current design is not sufficient to 

good quality. Hence, the acceleration of CABAD and the improvement of throughput are 

the essential work in the advanced application.
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