B * 3 H.264/AVC hg 2 & M 8 5 %
ERFRT R gRBES AR AR

High Throughput M-cascade
Multi-Symbol CABAD for H.264/AVC

B * 3 H.264/AVC h3 2 & M 8 5 %
ERRETRERE: AR FERE

High Throughput M-cascade
Multi-Symbol CABAD for H.264/AVC

y 2 Student : Jin-Mu Wu

ot
|
A
e
S

R RpE L Advisor : Dr. Tian-Sheuan Chang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Electronics Engineering & Institute of Electronics

January 2008
Hsinchu, Taiwan, Republic of China

P 3 R4 L+ - g - 2

B * 3t H.264/AVC e 3 2 £ M 8 5
REFRERE- B FERF

GEESNE S N g % G E #

*e

T Bt &5 i3 B(CABAD) e 5 £ BELE N 2R § Fik* onf
AR R B G RS T R Flt AR ARG A REE R E Y T 7
e E M ki o R 0 APRANBI AT RAFTELER NS B A
B 2 R FR S L P CABAD - 1)F LA PRI M 8 BT 10T
AP R BERBNEF DB AAPEATRAT I R - £
g T B R E AR DR TS o AP iR R & QP24 T T 15z
- BESHEY 219 BEH =pFR o 35 B0 B = 4.0 # 1080HD X F)
L REEG T TRERE o AN 0L M M ET I TN 45 LY
fo A s F B CABAD %t £ F B BT 2 & 11,937 Bl
FER > B PP L 1I5MHz - A A ehd B 3 B2 481 BH - Bv #

EL K;iﬁ& \F 'FE] BB 1]*’ L "_E_l_ o

High Throughput M-Cascade
Multi-Symbol CABAD for H.264/AVC

Student : Jin-Mu Wu Advisor : Dr. Tian-Sheuan Chang

Department of Electronics Engineering & Institute of Electronics

National Chiao Tung University

Abstract

The multi-symbol procedute of CABAD" has strong data dependencies and
adaptive probability estimation, so that'it is difficult to speedup the hardware design
by directly applying parallelism and pipeline schemes. In this thesis, based on the
result of data statistic we proposed two main methods to realize a high throughput
multi-symbol CABAD. 1) First we propose the M-cascade structure efficiently
increasing the throughput of arithmetic coding. 2) Secondly we rearrange the context
memory and use small cache registers improve pipeline hazards. Our decoder
averagely takes 219 cycles to decode a macro block in QP24. It is sufficient for level
4.0 to support 1080HD real-time decoding at 30fps. Based on 0.13um UMC CMOS
process, our multi-symbol CABAD design needs 11,937 gates without context
memory and operates at 115 MHz. And our context memory only needs 481 bytes of

single-port SRAM.

%T?@‘Pfﬁ%%fﬁﬁu%%*ﬁﬂ@ﬁﬁ@ﬁmﬁﬁ,

jﬁ'f#ﬁi#j %Qm&;llﬁﬁio%%ﬁ}ﬁ 2. i#;%l’%i%ﬂva/ﬂumﬂ

e AP FL AP xR F 34 KB rFEITBMAL K
FORMHEEPEF L P RN E T AL AG Y L i o

BHT &P LI G] ARk R R SRR

Yo

SRR SR o U S AT e ViR Vot iy SRR R AHIE S Sl S
A RHARD RS S A L E A 2 AR AIT IS o BT
R#HFELH T2 R 5 bFBE L - FE Y AL B R E 5 5
HEL IR ZEFEFP - FABTRT DL ol RAANL |

WAl F YA RIRG - P EEA KR

BHF A B guge s AN Gg e § 4 Eadl °},§, BHiE+ & F &ip I

Rl agE B ix 'FB{*\‘EH”“TW’!W}%

Fi
O
F_*
(S

Lo R R A B A

CONTENTS

CONTENTS et h bbbt e e btk R e R e e h e R b e e e b e Rt e R e e b e e b e eh b e e e e b e bt eh e e b e e s e enr e e e b e nbeane s 1
LIST OF TABLESottt bbbt h e bbbt bbbt e bt e s et e bbbt e et e s e nnenes il
LIST OF FIGURESottt bbbt e bbbt h bt et an bbbt ennen s v
CHAPTER 1 INTRODUCGCTION.cciiiiitiiitt ittt bbbt e bbbt b e s e e ane e sne s 1
| LY (o] 517714 o) o WO OO OO TRTRPOUPRUPTURUR 1
1.2 TRESIS OTZANIZALIONeuvitiiieiieieieete ettt ettt et et e et e ettt eateue e st e eeabe st e ebesseebeeneensensansensesaeebeeneeneensenseneeseeanes 2
CHAPTER 2 OVERVIEW OF CABAD FOR H.264/AVCcoiiiiiee ettt 3
2.1 Overview of H.264/AVC Standard..............ooviiiiiiiiiiieieee ettt 4
2.2 Algorithm of binary arithmetic COAIMNEcoueiiiiiiiiiiieiee ettt sttt 6
2.2.1 ATTHRIMELIC COAIME. ..cviueeiieiieiete ettt ettt ettt b e bt eb e e st e b et e st e ebesbeebeeneensenaeateabesneeneens 6

2.2.2 Binary arithmetic COMIME........ueveriiiririeiieiieieie sttt ar et neean s 10

2.3 Algorithm of CABAD for H.264/AV C il il i ettt seesve e v e e eseesveenseennens 14
2.3.1 System level Of CABAD ...t i e com ssses ssda e itastie e seesseessesseesseesseessesssesssesseesseessesssessessseessesssesssesssens 14

2.3.2 Three modes of decoding process T CABAD &tk ..l o 16

2.4 Binarization decoding flOW oo oo e e e et ettt e vt et e ebeesaestaesteesbeesbeesaesaaeeseesseebeenseensans 19
2.4.1 Unary (U) DINAriZatiOn PIOCESS ... e iiei borios tomnteevidsshrrereeiseesesseesseesseessesssesseesssessesssesssessssssesssesssesssens 20

2.4.2 Truncated unary (TU) binariZation PrOCESS. .. iitsrteee eeureruerterterterteeteeueetetensessestesseeseeseeseesessessessesseenes 21

2.4.3 Unary/k-th order Exp-Golomb (UEGK) binarization pProCesscc.eeeeevereereerreesvesieeseesseessenssennens 21

2.4.4 Fixed-length binarization (FL) PrOCESSccievvieiieiieieriiereeie e seeste et eaeseeesaeesseesaeesseeeeesseeseesseessens 23

2.4.5 Special DINATIZAtION PIOCESSvevirririeireeieeiesrertisreste s steee e e st ar b b et et e e e e resbear e st e aseesne e renrearenns 23

2.5 Context MOAE] OTZANIZALIONcveecviiiertierieeteeteeteeeesteesteeseeseeseesseeseesseessesssesseesseesseessesssesssesseessesssesssens 26
2.5.1 Assignment process Of CONLEXE INAEXvivviieiiriiiiiiiieeei e 28

2.6 Paper Survey for CABAD dESIZNScc.viivieiieieiieiieriterie ettt ete et e stte e esseesaessaessaesseesseesseesseessesseeseessenssens 31
CHAPTER 3 MULTI-SYMBOL OF BINARY ARITHMETIC DECODER ENGINE.........cc.ccccoeviininnnne. 34
3.1 OVErview Of CABAD SYSTEIMcuieuiiiiiiieiiieite ettt ettt sttt ese e et e te et e bt eaeese et ensesbesaeebebesaeabesneaneens 34
3.2 StatiStics And ANALYSISc.eevertiiteitietiet ettt ettt ettt bttt h ettt e b be et ebe et eh e et e be et e nteebeeaeeneens 38
3.3 Proposed multi-SymbOl arChit@CIUIEcc.eeiuieriieiieie ettt ettt ebeeebeetae e esreebeessesanesseessesnnesrnenns 41
3.3.1 One-symbol Structure OF BADc..ccoiiiiiiiiiieiieiecee ettt ettt beesbeennesraesane e 41

3.3.2 Cascaded structure of multi-symbol BADcccccoeouiiiiiiiiiieiieieeeeeeeete ettt n e 43

3.3.3 Extending structure of multi-symbol BADccooviiiiiiiiiicii ettt 45

3.3.4 M-cascade of multi-Symbol archit@CtUIE...........ciiiiriiiiieicee e 47

3.4 PIpeline OZANIZALIONc.veeviieiiieieiietieteeteeteesteeteebeeeaestaesaeesteesseesseesaesseeseessaessanssessseseessesssesssesssesseesseenns 50

CHAPTER 4 STRUCTURE OF CONTEXT MODELccciciiiiiiiiee e 55

4.1 Overview Of the CONtEXt MOAEL.........eiuiiiiiiiiie ettt st eb ettt eeeeseeneas 55
4.2 CONEXE MMCINIOTY ...cnviuteeiteritentienttente et ettesttesbee bt enteesteeateshtesbe e bt emteeateestesbeenbeenbeembeembeestesbeenbeenbeenteentesneenbeens 58
4.2.1 MEMOTY TEAITANZEIMENEccueeiuietietieteete ettt e stee bt e bt eateettestee bt e bt e beesbesbeesbeesbtenbeenteeneeeseenbeenseenseenrens 59
CHAPTER 5 SIMULATION AND IMPLEMENTATION RESULTcoiiiiiiiitiieeie e 64
5.1 STMUIALION TESULL ...ttt ettt sttt e et e et et e st e e beeaeebeeneesees e et ansesseeseabeeneeneens 64
5.1.1 Performance in each Syntax elemMeNntccoeeuiiieieiiinieie ettt 64

5.1.2 Performance of our propoSed deSIZN.cceruiruiiieiiiriiieie ettt 65

5.2 IMPIEMENLE TESUILviiiiiiieiiiieciieceece ettt ettt et e be e e e s e e saeesbeesbeesseesseessesbeesseessasssessseseesseenseennesseenns 69
CHAPTER 6 CoNnclusion and FULUIE WOTK...........cccceveuriieiiiiiieicissessisse s ssssns 72
6.1 CONCIUSION -ttt ettt ettt b st e st et et et e et e e bt e aeea e emeensen e e s e bt ententeneensesseaseabesneeneans 72
0.2 FULUIE WOTK ...ttt ettt et st a e b et et e a e e bt e s bt eb e e sb b e s bt e bt ebeeneeemaesaeene 73
REFERENQCE ... oottt et b b1t e e e b e 4t e b e e bt e R £ e R e e Rt e b e eh e eb e e be e e benbeeb e et e e bt ene e s et ee 74

II

LIST OF TABLES

TABLE 2-1. RESULTS OF ENCODING PROCESScccutttittteniteenttteriteentteesiteentteesseeessseessseenseeesseesnseeesssessseeesssessseeessesses 11
TABLE 2-2. RESULTS OF DECODING PROCESS AND ITS COMPARATOR.....cc..ueerurierurieriteeniieesreesreesneesreesseesseesnseesane 13
TABLE 2-3. BIN STRING OF THE UNARY BINARIZATTION......ceiutteruteentteeniteentreenieeentteesiseensaeesseeenseeesssesnseeasseesnseeesssesses 20
TABLE 2-4. EXAMPLE FOR BINARIZATION COEFF_ABS_LEVEL_MINUSLcoiviiiiiiiiieeiie ettt et et evee e 22
TABLE 2-5. BIN STRING OF THE FL CODE......ccittiiiiiiiiiiiiteiiitente ettt ettt et ettt e bt esate e bteeaaeebaeenaneennee 23
TABLE 2-6. BINARIZATION IN I SLICEtttittiittieniiteniitesiteesitt et ettt ettt ettt esiae ettt e sateebeeesateenbeeesasesbeeensaeenbaeenanesnnes 24
TABLE 2-7. BINARIZATION IN P/SP AND B SLICE.......cceiiiiieiiiieiiesiese et et etesetesttesteeseesesaesneesseesaenseensesnsessnens 24
TABLE 2-8. BINARIZATION TABLE FOR SUB-MACROBLOCK TYPE IN P/SP AND B SLICEccoovviiiiiiiieeieeereeeveeae 25
TABLE 2-9. SYNTAX ELEMENT AND ASSOCIATED DEFINITION OF CTXIDXOFFSET.......cvtciieiiieeeiriieenereeeenereeeesnseeens 29
TABLE 2-10. DEFINITION OF THE CTXIDXINC VALUE FOR CONTEXT MODEL INDEXcccccovtieeririreenereeeeerreeenenseaens 29
TABLE 2-11. SPECIFICATION OF CTXIDXINC FOR SPECIFIC VALUES OF CTXIDXOFFSET AND BINIDX........cc0ccevuvvennnn. 30
TABLE 2-12. ASSIGNMENT OF CTXBLOCKCATOTFFSETcciuttiriiteriiieniieeniitesieeeniteesiteesiaeesiteenbeeesssessseeesssesnseeesssesnses 30
TABLE 2-13. SPECIFICATION OF CTXBLOCKCATceeiuiiiiiiiiiiienieesite ettt ettt et ettt e site et esateesbeeeaaeebeeesaneennee 30
TABLE 3-1. PERCENTAGE OF THE BINS AT EACH SYNTAX ELEMENTuvtiiiiiiieeeirieeesireeesereeeeserseeesssseeessssssesssssesaans 39
TABLE 3-2. PERCENTAGE OF THE CYCLE COUNTS AT EACH SYNTAX ELEMENTccciiuiiiiiirieeeerieeeeereeeeserneeesnseaenns 39
TABLE 3-3. PERCENTAGE OF EACH CONCATENATE SYMBOL .. .10 ite e eeiveeeiieesiteesiteesieesiieesieesabeesaseesnbeesbeesabeesnseesnne 40
TABLE 3-4. RESULTS FOR RANGE, OFFSET AND BINVAL AT EACH MODEcccccvvtieiiieeeeierieeesreeeesereeesnsseeessssesaans 42
TABLE 3-5. DEPENDENCY OF SYMBOL, BIN FLAG/VALMPS AND BIN VALUE.......ccocteriienieenieenieeniieesieesieeseeenane 42
TABLE 3-6. LATENCY OF THE ADDERS IN THREE=SYMBOL EXTENDING BADcoooiiiiiiiiiiieiieceec e 47
TABLE 3-7. CASE OF MULTI-SYMBOL WHICH OUR ARCHITECTURE CAN DECODEcveieietvieeererieeenereeeeserreeesneeaans 48
TABLE 3-8. TRUTH TABLE OF BINVALID? BAD RELATED TO OUR BAD ARCHITECTURE........cccccevuirieneenieereenreeanens 49
TABLE 3-9. PARAMETERS OF THE DECISION MODE CHANGING TO THE BYPASS MODE........cccceeiviieeerreeeeerreeesreeaenns 52
TABLE 5-1. PERFORMANCE OF BIN/CYCLE IN EACH SYNTAX ELEMENT BY DIFFERENT QP.........cccoooviiiiiiiiiniiiiiiens 64
TABLE 5-2. IMPROVEMENT OF DECODING PERFORMANCE (A)IN QP36 (B)IN QP30 (C)IN QP24 (D)IN QP18 66
TABLE 5-3. SUMMARIZATION OF AVERAGE THREE-SYMBOL PERFORMANCE IN DIFFERENT QP........cccccoovviiiinninnn. 68
TABLE 5-4. SYNTHESIS RESULT OF OUR DESIGNeeiuttiritteniiteniteeniteeniieentteesieeentteessseesseeesseeeseeesssesnseeessuesnseeesssesnes 69
TABLE 5-5. COMPARISON WITH OTHER DESIGNS USING 1080HD SEQUENCE........ccocttiriieniienieenieenieeeieesreesieenane 70
TABLE 5-6. COMPARISON WITH OTHER DESIGNS USING CIF SEQUENCEcccuttrtiiriieniienitenieesieesieeeieesieesiee e 70

III

LIST OF FIGURES

FIG. 2-1. SPECIFIC CODING PARTS OF THE THREE PROFILES IN H.264/AVC.......cccviiiieiiieciieeeee e 4
FIG. 2-2. BLOCK DIAGRAM OF H.264/AVC CODING STRUCTURE........eeiueruieruientreieanreeeessaesseesseenseessessesnsesseesssensesnes 5
F1G. 2-3. BIT-RATE SAVINGS PROVIDED BY CABAC RELATIVE TO CAVLC ...ttt 6
F1G. 2-4. EXAMPLE OF THE PROBABILITY MODEL.......ccuutteiittiteesttteesitteeesereeesssssesssssesessssssssssssesssssssesssssssssssssesanssses 7
FIG. 2-5. ENCODING PROCEDURE FOR SYMBOL SEQUENCE (C B C E)..uvveuviuieniieiieiienieeieeaesieesseesseensessesnnesseessnenseenes 8
F1G. 2-6. EXAMPLE OF ARITHMETIC DECODING PROCESSeeieittiieiitreeeeiireeeesrreeessseeesssseeeesssesssssssesssssesssssssessnnnes 9
FIG. 2-7. DEFINITION OF MPS AND LPS...c. ottt sttt et st e st e st esabeesane 10
F1G. 2-8. ENCODING PROCESS OF SUB-DIVIDED INTERVAL MPS AND LPSoooiiiiiii e 11
F1G. 2-9. EXAMPLE OF ENCODING BINARY ARITHMETIC CODING WITH ADAPTIVE PROBABILITYcvvvieeirieeeirieanne 12
FIG. 2-10. DECODING OF SUBDIVISION OF MPS AND LPSoiiiiiiiiiieee ettt 13
FIG. 2-11. CABAD BLOCK DIAGRAM.......cttiutteitteniteenitteniteenittesite ettt esiseenteeessseessteesaseenseeessseeseeesssesnseeessaesnseeesssesses 14
FIG. 2-12. DECODING FLOW OF THE DECISION MODEcetittteritteniieeniieeniieeniteeniteesseenieeesseesnseeesssessseeesseessseeesssesses 16
FIG. 2-13. DECODING FLOW OF THE BYPASS MODEeevuttiititeniteeniteeniieeniteeniteenteeesseenseeesseessseeesssessseeenssesnseeessesses 17
FIG. 2-14. DECODING FLOW OF THE TERMINAL MODBEceeiuttenitteniieeniteeniieenieeeniteesiteenieeessteenseeesssessseeesssesnseeesseesses 18
FIG. 2-15. FLOWCHART OF RENORMALIZATIONceuuteeiiasibate e eeeneeeesireenteeesseeenteeesieeenseeesseeesseeesssesnseeenssesnseeesnsesses 19
FIG. 2-16. PSEUDO CODE OF THE SUFFIX,PARTIALGORITHM 1. .c10iteueeeureeireesieeniteesieesteeeieesateesseesnbeesnseesnseesnseesane 22
FI1G. 2-17. ILLUSTRATION OF THE NEIGHBOR LOCATION.-IN-MACROBLOCK LEVEL0vtiiiitiieeeiiieeenireeeenereeeesnnseeens 27
FI1G. 2-18. ILLUSTRATION OF THE NEIGHBOR LOCATION IN'SUB-MACROBLOCK LEVEL........ccccevviieeririeeeerreeeneneeaanns 27
FIG. 2-19. (A) ZIG-ZAG SCAN AND (B) FIELDSCAN.......eeeteeressiiesiieneeneeesseeseeseesesssesseesseessesnsessesssesseassesssesssesssessaens 31
FIG. 3-1. BLOCK DTAGRAM OF CAB A D ... i ettt et st st st e e e s esbee e 34
FIG. 3-2. ELEMENTARY OPERATIONS OF CABAD ...ttt ettt sttt s 35
FIG. 3-3. OVERVIEW OF OUR ARCHITECTUREccetttiutieniteenutteniteeniteenireentteesseeensseessseenseeesseesnseeesssesnseeensaessseeesssesses 36
FIG. 3-4. DECODING FLOW AT SYNTAX ELEMENT LEVEL....ccuuttrtteititeniieeniieenieeentteesieeenieeesieeenseeesssessseeesseesnseeesssesnes 38
FIG. 3-5. BAD FOR ONE-SYMBOL ARCHITECTUREucteruteeititeniteeniteeniteentteesteeentteesaseenseeesseeeseeenssesnseeenssesnseeesseesnnes 41
FI1G. 3-6. SIMPLIFY ONE-SYMBOL BAD ARCHITECTURE AND ITS SIMPLY DRAWINGcccccvveeererieeennreeensnreeeesnseaans 43
FI1G. 3-7. CASCADE ARCHITECTURE OF THREE-SYMBOL BADcoociiiiiiiiiiiiiiiiiceeceeeeeetesee e 44
FI1G. 3-8. EXAMPLE OF TWO-SYMBOL EXPANDING BAD ARCHITECTUREccciitviieeriiiieeniiieeeirieeesereeeenesseessnseaaans 45
FIG. 3-9. ORGANIZATION OF THE MULTI-SYMBOL BAD ..ottt 48
FI1G. 3-10. TIMING DIAGRAM OF THE PIPELINE COMPARISONeerutieriiieniieerieeniteesteesteesseesseesseesseesnseesnseessseesnne 50
FI1G. 3-11. THE TIMING DIAGRAM OF OUR ARCHITECTURE RESTRICTScccuvtieeririeeenrreeeniereeeeserseeesssseeesssseeesssseenans 51
FI1G. 3-12. SCHEDULE OF THE DECISION MODE CHANGING TO THE BYPASS MODEINMVD-SE.........c.cccooeiiiiinn. 53
FIG. 4-1. TRADITIONAL ORGANIZATION OF CONTEXT MEMORY ...ccuutteruiienurierreeniteesteesteesseesseesseesseessseessseessseesnne 55
FIG. 4-2. STRUCTURE OF CSRo...couitiiiiiiiiiiitieeite ettt ettt ettt e st e st e st e st e s bt e sabeesabeesabeesnbeesabeesnsaenane 56
FIG. 4-3. PART OF OUR CONTEXT SELECTIONterutterttteriteenitteniteentteeniaeenteeesseeensseessseenseeesseesnseeesssesnseeessuesnseeesssesses 57
FIG. 4-4. OPTIMAL ARRANGEMENT OF CONTEXT MEMORYcerutteruiienirieniieenreesteesseesteesseesseessseesssesssseessseesnseesnne 58
FI1G. 4-5. MODIFIED DATA ARRANGEMENT OF CONTEXT MEMORYcuuvviiiiiurieearerieeenrreeesereesesssseessssssessssssesesssseeaans 59

v

FIG. 4-6. FLOW DIAGRAM OF THE SIGNIFICANCE MAPccootiiuutetiieeieeiiiteeeeeeeeeeisiaaeeeeeeeseessasseeeeesssesanseesesssennnnseees 60

FIG. 4-7. DECODING ORDER OF SIG. COEFF_FLAG AND LAST_SIG. COEFF_FLAGccuviveieuieveieriereneeneesesesesseseneenes 60
FIG. 4-8. TIMING DIAGRAM FOR THE ORIGINAL ORGANIZATION OF CONTEXT MEMORYccceeverreeenreireareereareennens 61
FIG. 4-9. (A) ORIGINAL MODIFIED ORGANIZATION. (B) OUR PROPOSED ORGANIZATIONccccvverveerereenveennreenveennns 61
FIG. 4-10. FORMULA OF INTRA PREDICTION MODEScccuteitterteesteesueessreesueessseesseessseesssesssseessseessseesssessssessssasnnns 62
FIG. 4-11. MEMORY REARRANGE FOR INTRA CONTEXT MEMORYccccuteririeaueenriesueesseessseesnseessseesseesssessssessssessnne 62
FIG. 4-12. FULL-VIEW ORGANIZATION OF OUR PROPOSED CONTEXT MEMORYcccveritieerueerreenueenreensseessseesssesanne 63
FIG. 5-1. CHARACTERISTIC CURVES OF 100MHZ FOR THREE SEQUENCEScoettuuttrieeeeieiireeeeeeeeeeisiiereeeeeessennnnees 68

Chapter 1

Introduction

1.1 Motivation

H.264/AVC is a new international video coding standard developed by the Joint
Video Team of ISO/IEC Moving Picture Experts Group and ITU-T Video Coding Experts
Group. The new standard can save the bit-rate up to 50% compared to the previous video
standard under the same video quality. It employswvarious advanced coding tools such as
multiple reference frame, variable-block size; in-loop de-blocking filter, quarter-sample
interpolation, and context-based adaptive—bimmary -arithmetic coding. Because of its
outstanding performance in quality ‘and-compression gain, the more and more consumer
application products adopt H.264/AVC as its video standard, such as portable video
device, video telephony, digital camera ...etc.

H.264/AVC contains two entropy coding schemes which are context-based adaptive
variable length coding (CAVLC) and context-based adaptive binary arithmetic coding
(CABAC). Compared to CAVLC, CABAC averagely can save 9%-14% of bit-rate at the
expense of higher computation complexity. Therefore, the acceleration of the CABAC
decoding is necessary for high-performance. The bottlenecks are the strong data
dependencies and the problem of adaptive probability estimation.

Based on the data analysis of the decoding bins for different syntax elements and
different concatenate symbol case, we proposed efficient techniques to reduce clock

cycles for a macroblock. 1) The three-symbol-per-cycle architecture by M-cascade
1

structure efficiently increases the throughput of arithmetic coding. 2) Rearrangement of

the context table and using small cache registers improve pipeline hazards.

1.2 Thesis organization

This thesis is organized as follows. In Chapter 2, we present the overview of CABAD
for H.264/AVC. We will describe several parts in the chapter such as H.264/AVC
standard, arithmetic coding, binary arithmetic coding, binarization decoding flow and
context model organization. Chapter 3 shows the proposed architecture of our
multi-symbol CABAD design. We focus on M-cascade structure of binary arithmetic
decoding engine to promote the throughput, Chapter 4 presents our context memory
model and the rearrangement of memory table: The simulation result and implementation

is shown in Chapter 5. And we make a brief conclusion and future work in Chapter 6.

Chapter 2

Overview of CABAD for H.264/AVC

H.264 has been developed jointly by ITU-T VCEG and ISO/IEC MPEG. Its data
compression efficiency is four and two times better than earlier video standards, MPEG-2
and MPEG-4 respectively. This is due to that H.264/AVC adopts many complicated and
computational video coding tools, so it can maintain the video quality as well enhance the
coding efficiency. In this chapter, we show the algorithm of CABAD. The CABAD is
composed of the arithmetic decodingprocess, the binarization and the context model. The
arithmetic decoding process reads the bit-streams and computes the bin to offer the
binarization process for decoding the-suitable syntax elements. The context model
records the historical probability.

This chapter is organized as follows. In section 2.1, we roughly describe H.264/AVC
standard [1]. In section 2.2, the more detail of the binary arithmetic coding algorithm will
be shown. In section 2.3, we introduce the algorithm CABAD in H.264/AVC. It contains
three modes of decoding process and the renormalization process. In section 2.4, we
introduce all kinds of the binarization process. Last we show how to get the neighbor
syntax element to index the suitable context model allocation and present the context

model related with each syntax element in section 2.5.

2.1 Overview of H.264/AVC standard

H.264/AVC has following advanced features to improve the coding efficiency and
video quality, variable block-size motion compensation, quarter-sample-accurate motion
compensation, multiple reference picture motion compensation, in-loop de-blocking filter,
small block-size transform, arithmetic entropy coding, and context-adaptive entropy
coding. Figure 2-1 shows the three profiles of H.264/AVC standard. These three profiles
are basic profiles of H.264/AVC. Baseline profile targets applications of low bit rates
such as video telephony, video conferencing and multimedia communication because of
its low computation complexity; main profile supports the mainstream consumer for
applications of broadcast system and storage devices; extended profile is intended as the
streaming video profile with etfor resilient tools".for data loss robustness and server
stream switching. However, in those profiles small size of blocks and fixed quantization
matrix can’t totally hold the image information in high frequency, so H.264/AVC adds
Fidelity Range Extensions which contains high profile, high 10 profile, high 4:2:2 profile

and high 4:4:4 profile based on main profile for high definition multimedia applications.

Extended
SI/SP slice

Main

B slice

Baseline

I/P slice
Diff. block size
Multi-Ref, M.C
Transform & Quantization
Ya Pel MLC

Intra predictio

Deblocking filter
CAVLC

MBAFF

PAFF

Weighted prediction

Redundant slice

Field coding
Data partition

FMO : Flexible Macroblock Ordering PAFF : Picture Adaptive Frame/Field Coding
ASO : Arbitrary Slice Ordering MBAFF : Macroblock Adaptive Frame/Field Coding

Figure 2-1 Specific coding parts of the three profiles in H.264/AVC

Input Coder

Vid
Si[gr?:I C.m?tr?l Control
AT L 3 Qremmmnmnmsam s emmasn » Data
an asf ..,,@ Transform/ .
i *Quant. |
- chil .;‘Qulant. I Thinet, 6ot
£ Decoder || :
Split into !L--;----* Sc-:rallngf& Inv.
Macroblocks ! ! ransform
16x16 pixels | : ; —
E' : Coding
E : De-blocking ?
: Intra-frame Filter UVLC VLC
| % Prediction I CAVLC
{ - Z N\ Y- cABAC
Motion- \ Video
Intra/Inter Comp'ensanon Signal /
| r .
i Motion
L " Data
. Motion L
Estimation

Figure 2-2 Block.diagramof H:264/AVC coding structure

Figure 2-2 shows the block’diagram of the basic coding flow. When doing encoder
one frame is inputted, the encoder will doiprediction and choose intra or inter prediction
according to the input frame type. After the prediction, the original input will subtract the
predicted result to get the residual data. Then the residual data will experience
discrete-time cosine transform (DCT) and quantization. Finally, entropy coding will
encode the DCT coefficients to bit-stream and send it out. In H.264/AVC decoder, the
input bit-stream is firstly decoded by entropy decoder and the outputs of the entropy
decoder is DCT coefficients, Through de-quantization and inverse DCT, we can fetch the
residual data and finally we add the residual data and the result of MC or intra prediction
to get one frame.

In H.264/AVC, there are two methods of entropy coding. The simpler entropy coding

method is UVLC and context-adaptive variable length coding (CAVLC). UVLC uses

exp-Golomb codeword tables for all syntax elements except the quantized transform
coefficients. For transmitting the quantized transform coefficients, a more efficient
method CAVLC is employed. Another method of entropy coding is context-adaptive
binary arithmetic coding (CABAC) which can be used in place of UVLC and CAVLC.
Compared to CAVLC, CABAC averagely can save 9% to 14% of bit rate at the similar
quality from [3], as shown in Figure 2-3. Therefore, we will further discuss CABAC in

the following sections.

INTERLACED TEST SEQUENCES 2) — e

6C '
F—— f 3 s | s =1yl
Name | Resolution | Frame rate | Duration 20— —1|- x FDrT'nu!a1 B
Canoe | 720 % 576 25 Hz b sec. 18 I _| ¥ Rugby :
Formula | 720 % 576 25 Hz 6 scc. oy + Mabila & Calendar
Rugby T20x 576 | 25 Hz 6 sec. %.IG ----- S N ., ¥ - L0 Football]
Mobile & Calendar | 720 x 480 | 30H=z 6 sce. .:Enlq -

te
I,

Football 720%480 | 30Hz | 6sec. \ '

o §12 _i_X___ ;\;‘_‘:____
Gi0 A [P
P Emprim

Mvpaped o

@
i i
|
|

4

2

.U I I TE— T TT—— r—
24 26 28 30 32 34 35 383 40 42

PSNR [dB]

Figure 2-3 Bit-rate savings provided by CABAC relative to CAVLC

2.2 Algorithm of binary arithmetic coding

2.2.1 Arithmetic coding

Arithmetic coding is a variable-length coding technique. It provides a practical
alternative to Huffman coding that can more closely approach theoretical maximum
compression ratios. Arithmetic encoder converts a sequence of data symbols into a single

fractional number and can approach the optimal fractional number of bits required to

represent each symbol. A scheme using an integral number of bits for each data symbol is
unlikely to come so close to the optimum bits. In general, arithmetic coding offers
superior efficiency and more flexibility compared to the Huffman coding.

With arithmetic coding, an entire word or message is coded as one single number in
the range of [0, 1). This range is divided into sub ranges and assigned to every symbol a
range in this line based on its probability, the higher the probability, the higher range
which assigns to it. Once we have defined the ranges and the probability line, start to
encode symbols, and every symbol defines where the output floating point number lands.
We will describe it with an example as follows. First, we consider a 5-symbol alphabet
S= {a, b, c, d, e} and their probabilities as shown in Figure 2-4. Each symbol is assigned
a sub-range within the range 0.0 to 1.0, depending on its probability of occurrence. In this
example, “a” has a probability of 0:1 and is givefi.the range 0~0.1. “b” has a probability
of 0.2 and is given the next 20% of the total range, 1.e. the range 0.1~0.3. After assigning
a sub-range to each symbol, the total range.0-1.0 has been divided amongst the data

symbol according to their probabilities:

Symbol Probability Range
a 0.1 [0, 0.1) Total range
b 0.2 [(h1.0.3) < »
c 0.4 [0.3,0.7) 0 0l 0.3 0.7 09 1.0
i 02 [0.7.09) | | |]
. 0.1 (0.9, 1.0) | I | [
a b ¢ d e

Figure 2-4 Example of the probability model

Algorithm of Arithmetic Encoding
:l Low =0 High=1
|

¢ Loop. For all the symbols.

o High Low + High Range(symbol)
o Low Low + Low_ Range (symbol)

|
|
|
|
|
O Range = High - Low :
|
|
|
|
|

|
|
|
|
|
|
|
'® Outputa code © Low <= code < High

We would like to encode a message of symbol sequence (c b ¢ e) using the above
fixed model of probability estimates. As each symbol in the message is processed, the
range is narrowed down by the encoder as explained in the algorithm. Since the first
symbol of the message is “c”, the range is first narrowed down to [0.3, 0.7). Then the
range is survived to [0.34, 0.42), because it belongs to symbol “b”. According to
arithmetic encoding algorithm the last, symbol is “c” and hence we could send any
number in the range 0.3928 to 6.396. The'rde'c'oding processing is using the same

probability model and will get the same result.

Symbol Range Low High
0 1

c] 0.3 0.7

b 0.4 0.34 0.42

C .08 0.364 0.396

e 0.032 0.3928 0.396
e 07 —— 042 —— 0396 —
09 ' 066 | 0412/ — /0.-3'3':2).8 B L
e cit™ 0.58 - — _.--'6.396 1 7 0.3864 ——
(1 0 B 042 41—/ 0.364 ——_ 0.3736 1 —

b

0.1 —4— Tho344——— 0348 |— "0.3672 —
o 1 03 =L Y e 0364 2L

Figure 2-5 Encoding procedure for symbol sequence (c b ¢ e)

8

As shown in Figure 2-5, arithmetic encoding calls for generation of a number that
falls within the range [Low, High). The below algorithm will ensure that the shortest
binary codeword is found. Then we know the number 0.394 is transmitted. 0.394 can be
represented as a fixed-point fractional number using nine bits, so our message of symbol

sequence (¢ b ¢ e) is compressed to a nine-bit quantity.

Generating Codeword for Encoder

® code=1(k=1
@ while (wvaluc{code)<Low)
{ assign 1 to the k-th binary fraction bit
it (value (code) > High)
replace the k-th bit by
k =k + 1

When doing decoding procedare, we find the sub-range in which the received number
falls. We can immediately decode that the first symbol is “c” because the number 0.394
belongs to the range [0.3, 0.7). Then the range-is narrowed down to [0.3, 0.7) and decoder
subdivides this range. We see that the value of 0.394 now falls in the range [0.34, 0.42),
so the second letter must be “b”. This kind of process is repeated until the entire sequence

(c b ce)is decoded. Following is the algorithm of the arithmetic decoding procedure.

Algorithm of Arithmetic Decoding

® Get binary code and convert to value{codword ..

[

!

1@ Loop. For all the codeword.
|

: © Decide symbol “s” from comparing : Low_Range (symbol) <= value < High Range(symbol)
|

|

|

|

© Qutput s
o Range = High Range(symbol) - Low_Range (symbol)
o wvalue = (value - Low Range (symbol)) / Range |
Arithmetic Decoding Procedure |
| Probability Model |
value Output Symbol Low High Range
Symbol [Probabil R
0.394 c 0.3 0.7 04 — - 0, 0.1]
0.23 1 3 0.2 b 0.2 0.1, 0.3)
L b 0 g3 C 0.4 0.3,0.7)
0675 ¢ 0.3 0.7 0.4 d 0.2 0.7.0.9)
0.9375 e 0.9 1.0 0.1 ¢ 0.1 0.9, 1.0)

Figure 2-6 Example of arithmetic decoding process

2.2.2 Binary arithmetic coding

This section introduces the basic arithmetic algorithm to understand the binary
arithmetic coding algorithm and know how to encode and decode the bit-stream.
Arithmetic coding is quite slow in general because we need a series of decision and
multiplications. The complexity is greatly reduced if we have only two symbols.
According to the probability, the binary arithmetic coding defines two sub-intervals in the
current range. The two sub-intervals are named as MPS (Most Probable Symbol) and
LPS (Least Probable Symbol). Figure 2-7 shows the definition of the sub-intervals. The
lower part is MPS and the upper one is LPS. The range value of MPS is defined as rtMPS
and the range value of LPS is defined, as,tLPS, and they are defined as follows. The

summation of o wmes and 0 1es 1s equal, to onerbecause the probability of the current interval is

one.
] "
rLPS
_ | |range rMPS = ragne X pypes
rLPS = ragne x ppps
rMPS fagps o The probability of MPS
| ¥ pps o The probability of LPS

Figure 2-7 Definition of MPS and LPS

Depending on the bin decision, it identifies as either MPS or LPS. Assume the bin
value of MPS is 1 and the bin value of LPS is 0. If bin is equal to “1”, the next interval
belongs to MPS. Figure 2-8(a) shows the MPS sub-interval condition and the lower part
of the current interval is the next one. The range of the next interval is re-defined as
rMPS. By the way, if we want to achieve the adaptive binary arithmetic coding, the o mrs

is increased to update the probability. On the contrary, the next current interval belongs to

10

LPS when bin is equal to “0”. Figure 2-8(b) shows the LPS sub-interval condition and the
upper part of the current interval is the next one. The range of the next interval is

re-defined as rLPS and p wes is decreased. The codlOffset is allocated at the intersection
between the current MPS and LPS range. Depending on the codlOffset, the arithmetic

encoder produces the bit-stream in order to achieve the compression effect.

Table 2-1 Results of encoding process

MPS LPS
PMPS next pmps + Prac PMPS = PDer
ragne o VPSS rLPS
codlOffset,. TMPS X pages e codlOffset + rLPS x pupes on

fiae + The increment of gy Py o+ The decrement of e

[B T 'y
rLPS FLPSpext LPS FLPS
range o —= codlOffset, ., range
— codlOffset — codlOffset
*x =1 codlOffset, .
tMPS,..., . MPS, .
tMPS rMPS N
¥ T ST ST I L L i 0
(aybin= "1" (b) bin= 0"

Figure 2-8 Encoding process of sub-divided interval MPS and LPS

11

0.5 7 0.5 »

—+ 05 L 04167 _
L 045
L 0.4667

B, —0 0 - 0.3333 0.4167 0.45
Encode 0 01 011 0111
C(0) i 2 2 2 2
(1) | ! 2 3 4
50 12 23 12 25 173
pl 1/2 1/3 1/2 3/5 2/3

C() : Counter for bin 0 orl
p ¢ Adaptive probability

Figure 2-9 Example of encoding binary arithmetic coding with adaptive probability

An example of encoding a“binary.'sequence; 01111, as shown above. Initially the
counter is set 1, so the probability is half-and-half. After encoding the bin “0”, the counter
of bin “0” increase one so that the probability is adaptively changed. The probability for
bin “0” and bin “1” is 2/3 and 1/3 respectively. The procedure is continuous as the pattern.
Finally we encode 0.4667 to binary output.

In the binary arithmetic decoder, it decompresses the bit-stream to the bin value
which offers the binarization to restore the syntax elements. The decoding process is
similar to the encoding one. Both of them are executed by means of the recursive interval
subdivision. Something different is described as follows.

It is needed to define the initial range and the MPS probability when starting the
binary arithmetic decode. The value of codlOffset is composed of the bit-stream con

compared with rMPS. Figure 2-10 illustrates the decoding subdivision of MPS and LPS

12

condition. If codIOffset is less than rMPS, the condition belongs to MPS. The range of
the next interval is equal to rMPS and the probability of MPS is increased. The bin value
outputs “1”. The next value of codlOffset remains the current one. If codlOffset is greater
than or equal to rMPS, the next interval turns into LPS. The range of the next interval is
defined as rLPS and the probability of MPS is decreased. The bin value outputs “0”. The

next value of codlOffset is to subtract the rMPS from the current codIOffset.

Table 2-2 Results of decoding process and its comparator

Condition codlOffset < MPS codlOffset == MPS
MPS LPS
FUPS pevt Purs T Poee Pyes = Poee
ragne peu riVIPS rLPS
codlOffset, .., codlOffset codlOffset - tMPS

Pige + The increment of 2 yepg Ppe + The decrement of pyps —

Fy [Yy A 'y
. LPS,
rLPS S TLPS, o rLPS ’
MPS — codlOffset rLPS
range o ’ ™ range
- codlOffset - COdIOffset s L i
2 \rNIPSu:'m = C leff T,
MPS, e ! codIOffset, .,
rMPS - rMPS N
¥ | v v | v
(a) Decoding MPS (b) Decoding LPS

Figure 2-10 Decoding of subdivision of MPS and LPS

13

2.3 Algorithm of CABAD for H.264/AVC

2.3.1 System level of CABAD

The main profile uses a more complex entropy coding scheme CABAC which is
based on arithmetic coding. In section 2.2.3, we introduce the basic algorithm of the
binary arithmetic coding. Although it can achieve the high compression gain, the
hardware complexity becomes the problem. In Figure 2-7, it has to compute the value of
rMPS and rLPS with two multipliers and processes the next value of codlOffset, range,
and the probability by means of the floating adders and comparators. It consumes the lots
of hardware cost. According to H.264/AVC 'standard, it adopts table-base method to

decrease the complexity hardwate cost. And:we will describe that later.

1
1
: Context Model
1
1
1

_|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Decision

| i
: | ~
i [- Y s
j Decoding Engine ! % izt

|

|
|

bit-stream J i !

' |

: Hypﬂss I)ecnding ; 4 b syntax element

|

Engine

Binary Arithmetic Decoder

Figure 2-11 CABAD block diagram

First, Figure 2-11 shows the CABAD block diagram consisted of three blocks.
1. Binarization
2. Context Model
3. Binary Arithmetic Decoder

The binary arithmetic decoder (BAD) reads the bit-stream and transfers to bin string,
14

and the BAD has three different modes. In encoder, a given non-binary valued syntax
element (e.g. a transform coefficient or motion vector or any symbol with more than 2
values) is uniquely mapped to a binary sequence (called bin-string) by the binarization.
On the contrary, in decoder, the binarization process reads the bin string and decodes to
the syntax element (SE) by five kinds of decoding ways which will be shown in section

2.4. Last the context model is about the table-based probability.

15

2.3.2 Three modes of decoding process in CABAD

CABAD offers a far more efficient form of run-length coding by exploiting
correlation between symbols. In order to improve the coding efficiency, there are three
modes of the binary arithmetic decoders in H.264/AVC system such as the decision mode,
bypass mode, and terminal mode. The decision mode includes the utilization of adaptive
probability models and interval maintainer, the bypass mode codes for a fast encoding of
symbols which are approximately uniform probability, and the last mode of terminal
mode is a special fixed executing before end of coding with non-adapting probability

state. We will show whole algorithms as follows.

DecodeDecision (ctxIdx)

gCodIRangeldx = (codlRange>>6) & 3
codIRangelLPS = rangeTabLPS[pStateldx][qCodIRangeldx]
codlRange = codIlRange - codlRangeLPS
No-
—] MPS

binVal = valMPS
pStateldx = transldxMP S[pStateldx]

]

codlOffset >= codIRange

binVal =! valMPS
codlOffset = codlOffset - codIRange
codIiRange = codIRangeLPS

pStateldx==07? Yes—l
| valMPS = 1 - valMPS
No |

pStateldx = transldxLP S[pStateldx] ‘

¥

RenormD

Figure 2-12 Decoding flow of the decision mode

16

The first algorithm is the decision mode which is shown in Figure 2-12. There are two
main factors to dominate the hardware efficiency. One is the multiplier of (range)x(pmps)
and the other is the probability calculation. According to H.264/AVC standard, the
table-based method is used in place of the multiplication operation. In the decoding flow
of the decision mode, codIRange.PS looks up the table depending on two indexes such
as pStateldx and qCodIRangeldx. pStateldx is defined as the probability of MPS which
gets from the context model. qCodIRangeldx is the quantized value of the current range
(codIRange). The second factor of the improved method is about the probability
calculation to estimate the value of pyps. In section 2.2.3, we know that the value of pmps
is increased when MPS condition happened and is decreased when LPS condition
happened. In Figure 2-12, it shows the table-based method to process the probability
estimation. It divides into two parts such as MPS and LPS conditions. It computes the
next probability by the transIdxL RS table 'when the L.PS condition happened and by the
transIdxMPS table when the MPS ¢ondition-happened. The two probability tables are
approximated by sixty-four quantized wvalues-indexed by the probability of the current

interval.

DecodeBypass

codIOffset = codIOffset << 1
codlOffset = codlOffset | read_bits(1)
Yes
LPS f

codlOffset >=
codIlRange
binVal =1

codlOffset = codlOffset - codIRange

I

Figure 2-13 Decoding flow of the bypass mode

17

The second algorithm is the bypass mode which is applied by the specified syntax
element such as mvd and coeff abs level minusl. Figure 2-13 shows the flowchart of
the bypass decoding mode. This mode is unnecessary to refer to the context model, and it
doesn’t do the probability computation to estimate the probability of the next interval.
The computed codIRange doesn’t change which means that it doesn’t do renormalization

in the bypass mode.

DecodeT ermmate

‘ codiRange = codlRange-2 ‘

codlOffset >= codIRange

Yes
LPS l

binVal = 1 binval =0

Figure 2-14 Decoding flow of the terminal mode

‘ RenormD

The third algorithm is the terminal mode. Figure 2-14 shows the decoding flowchart
of the terminal mode. The terminal decoding mode is quite simple, and it also doesn’t
need the context model to refer to the probability. The value of the next codlRange is
always to subtract two from the current codIRange depending on whether the condition
belongs to MPS or LPS. The final values of codlRange and codlOffset are required to
renormalize when MPS condition happened. The process of the terminal mode is used to
trace if the current slice is ended. It occurs one time per macroblock process which is

seldom used during all decoding processes.

18

[RenormD |

.
-

Y
odIRange<0x0100

Yes
\J

codlRange = codlRange << 1 No
codlOffset = codlOffset << 1
codlOffset = codlOffset | read bits(1)

Figure 2-15 Flowchart of renormalization

In the basic binary arithmetic decoder described in section 2.2.3, the floating-point
operation is used. That will increase the ‘eomplexity of the circuit in practical
implementation. In H.264/AVC,:CABAD:adopts.the‘integer operation to improve. We do
the renormalization to keep the scales of codIRange and codIOffset. Figure 2-15 shows
the flowchart of renormalization. The MSB of codIRange always keeps logic one in order
to realize the integer operation. If the MSB of codIRange is equal to logic zero, the value
of codlRange has to be shifted left until the MSB of codlRange is equal to one.

Depending on the shifted number of codIRange, codlOffset fills the bit-stream in LSB.

2.4 Binarization decoding flow

In section 2.4, we focus on the decoding process of the binarization. H.264/AVC
adopts five methods of the binarization to code all syntax elements.

< Unary (U) binarization process

<> Truncated unary (TU) binarization process

< Unary/k-th order Exp-Golomb (UEGKk) binarization process
19

<> Fixed-length binarization (FL) process

< Special binarization process

This section is organized as follows. In section 2.4.1, the decoding flow of the unary
code is shown first. The unary code is the basic coding method. Section 2.4.2 shows the
truncated unary code which is the advanced unary coding. It is applied in order to save
the unary bit to express the current value. Section 2.4.3 is the Exp-Golomb binarization
process. The UEGKk is only used for the residual data and the motion vector difference
(mvd). In section 2.4.4, we describe the fixed-length decoding flow. It is the typical
binary integer method. And section 2.4.5 is the special definition by means of the

table-base method.

2.4.1 Unary (U) binarization:process

Table 2-3 is the unary code of binarization‘process. The bin string of a syntax element
having (unsigned integer) value synElValiwhich is a bin string of length synElVal + 1.
The bin string index is defined as binldx. The bins for binldx less than synElVal are equal
to logic one. The bin with binldx equal to synElVal is equal to logic 0. So the number of
logic one is equal to synElVal.

Table 2-3 Bin string of the unary binarization

Value of syntax element B i
(synElVal))
] 0
1 10
2 110
3 1 110
+ 1 1110
5 1 11110
binldx 012345

20

2.4.2 Truncated unary (TU) binarization process

The truncated unary binarization is based on the unary binarization and has an
additional factor of cMax which is defined as the maximum length of the current bin
string. When the value of syntax element (synElVal) is less than cMax, the U binarization
process is invoked. If synElVal is equal to cMax, the bin string is a bit string of length
cMax with all bins being equal to logic one. For example, it is assumed that synElVal
equals to 4. If the value of cMax is “5”, the result of bin string is equal to “11110”. If the
value of cMax is “4”, the result of bin string is equal to “1111” where the end bit of “0” is

truncated in this case.

2.4.3 Unary/k-th: order Exp-Golomb (UEGK)

binarization‘process

The UEGk code is composed of two parts which are the prefix and suffix bit string.
The prefix part of UEGK is specified by using the TU binarization process for the prefix
part min(uCoff, Abs(synEIVal)) of a syntax element value synElVal with cMax equals to
uCoff, where uCoff > 0. So the prefix part is dominated by cMax. Figure 2-16 shows the
suffix part algorithm by means of the pseudo code. In the CABAD binarization engine, it
only applies two decoding flows such as UEGO (the order k=0) and UEG3 (the order
k=3). UEGO is used by the residual data with uCoff=14 and UEGS3 is used by the motion
vector difference with uCoff=9. Table 2-4 is an example which shows the corresponding

bin strings for values of UEGO from 1 to 20.

21

Figure 2-16 Pseudo code of the suffix part algorithm

| Suffix Part Algorithem |
Lif (Abs(synElval) >= uCoff) i |
: sufs = Abs{ synElVal) - uCoff :
1 stopLoop = 0 1
L do |
I it (sufS == (1=<k)) { |
: put(1) |
I sufS§ = sufS - (1<<k) I
: k++ :
! } i
I else | I
: put(0) !
1 while (k--) 1
: put ((sufS=>k) & Ox01 }:
! stopLoop = 1 I
l } i
: } while (I!stopLoop) :
1} 1
| if (signedValFlag && synElval != 0) j
: it (synElval = 0) 1
I put(0) |
: else :
I put(1) I

!

Table 2-4 Examp'le':‘ for binarization coeff_abs_level_minus1

_ Bin string

= TU prefix EGO suffix

1 U}

2 1 0

3 1 1 0

4 1]

5 S L S

13 e I B R S e B [

14 T 1 1 [1 T] e 1]] S [1 G)

15 IR T T T R LR R R | O

16 111 1 1 1 1 1 1 1 1 1 1 111 @& 0O

17 (|] S I I O R T 1 O]

18 S T [T [I I 1 1 0 O O
19 IS T I I N 1 1 0 0]
20 I T (A (I IO (I 1 1 0 1 O
binldx I 2 3 4 5 6 7 8 9 1011 12 13 14]15 16 17 18 19 ..

22

2.4.4 Fixed-length binarization (FL) process

Table 2-5 Bin string of the FL code

Value of syntax element B stidiii
(synElVal))
]] 0 0
1 0 1] I
2 0 I 0
3 0 I 1
+ I 0 0
5 I 0 I
binldx 0 I 2

The fixed-length code is represented. by, means of the typical unsigned integer. For
example, the value of “6,¢” is eqlial to 1103”.:The .value of decimal type changes to the
binary format, which requires fixed-length code. FL binarization is constructed by using a
fixedLength-bit unsigned integer bin string of ~the syntax element value, where
fixedLength = Ceil(Log, (cMax + 1)), (ICei(x) means the smallest integer greater than
or equal to x.). Table 2-5 shows the fixed-length code definition. In this table, the cMax
equals seven and the fixedLength will be three. All syntax elements which are decoded

by the FL binarization are always represented with three binary bits.

2.4.5 Special binarization process

Input to this process is a request for a binarization for syntax element mb_type and
sub mb type. In order to perform the higher video quality, the macroblock and
sub-macroblock are divided into many kinds of types such as I, P/SP, B, and SI slices.

These two syntax elements are difficult to define by means of the above-mentioned

23

coding flows. In H.264/AVC [1], it adopts the table-based method to define mb_type and
sub_mb_type. The binarization engine reads the bin string and checks if the bin string is
mapped the specified location in these tables. If the bin string is found in these tables, it

can look up the current macroblock type.

Table 2-6 Binarization in I slice Table 2-7 Binarization in P/SP and B slice
Value (name) of mb_type Bin string Slice type | Value (name) of mb_type Bin string

0 14 0 0 P LO_16x16 00 0

I 116x16000 |1 0 0 0 0 0 3 faem R oo o

2 I 16x16_1 00 10 0 0 0 1 P/SP slice 3 P8 000 1

3 116x162 00 1 0 0 0 1 0 4P Sxfrefd i

4 1 16x16 3 00 1 0 06 0 1 1 5~30 Intra, Prefix only || 1

5 116x16010 1 0 0 1 0 0 0 0 B_Dircct_16x16 || 0

6 1l6x16 110 1 0 0 1 0 0 1 1 E_t?_:gﬂz : g ?

7 116x16210 1 0 0 1 0 1 0 - hETalE T B

8 116x163 10 1 0 0 1 0 1 1 : i lf 5 o @ i

9 116x16020 |[1 0 0 1 1 0 0 : manineie |1 5 6 & &%

10 1Ll6x16.1 20 10 0 1 1 0 1 6 BLILI I6x8 1 1 0 0 1 1

11 11616220 10 0 1 1 1 0 7 BLILISI6 |[I 1 0 1 0 0

12 116x16 3 2 0 1 0 0 1 1 1 1 8 BLOLLI6KS [[1 1 0 1 0 1

13 116x16 0 0 1 1 0 1 0 0 0 9 BLOLl&I6 (1 1 0 1 1 0

14 Diete 1ot |10 10 0 | bosoame (viwl g
15 1 161116 201 1 0 1 0 1 0 Bslice | B0 Bi i |1 1 1 0 0 0 0
16 116x16 3 0 | 1 0 1. 01 1 13 BLOBiSI6 [1 1 1 0 0 0 I
17 1_16x16_0_1_1 1 01 1 0 0 0 14 B_L1 Bi 16x8 1 11 0 0 1 0
18 1_16x16_1 11 10 1 1 0 0 1 15 BLIBisxl6 |[1 1 1 0 0 1 1
19 1 16x16. 2 1 1 10 1 1 0 1 0 l6e B_Bi_LO_16x8 11 6 1 00
20 1 16x16 3 11 1 0 1 1 0 1 1 :; g_gi_t?_leg : : } g : ‘]) (‘)

1 X

%i : }21}2 ? 3 } 1 g : 1 } g ? 19 B:H]:L.):ﬁxm 1110010
e = 20 B_Bi Bi_16x8 11 1 1 0 0 0
23 1lexl6 2 21 1o 1 1 1 10 21 B_Bi Bi 8x16 L1 1 1 0 0 1
24 1_16x16_3 2 1 1 0 1 1 1 1 1 22 B&8 [N R B

25 1 PCM 1 1 23 ~48 Intra, Prefixonly [[1 1 1 1 0 1

binldx 0 1 2 3 4 5 6 binldx 0 1 2 3 4 5 6

The binarization scheme for coding macroblock type in I slice is specified in Table
2-6. The binarization scheme for P macroblock type in P/SP slice and B macroblock in B
slice are specified in Table 2-7. For P/SP and B slices, the specification of the

binarization for sub_mb_type is given in Table 2-8.

24

Table 2-8 Binarization table for sub-macroblock type in P/SP and B slice

Value (name) of sub
mb_type
P L0 Bx8 1
P_LO 8x4 0
P LO 4x8 0
P LO 4x4 0
B Direct 8x8 0
1
1
1
|
|
]
1
]
|
1
|
]

Slice type Bin string

B/SP slice

B LO &R
B LI 8x8
B Bi 8x&
B LO 8x4
B LO 4x8
B L1 8x4
B L1 4x8
B Bi 8x4
B Bi 4x8
10 B L0 4x4
11 B LI 4x4
12 B Bi 4x4
binldx 0

B slice

MOS0 =d S Lh b R = D B — S

—_o -

bt | o | ko o] Y Y
| P e T T E = i T

W= — O O O O~ —= O O
| = D — D D D — D

25

2.5 Context model organization

The values of the context model offer the probability value of MPS (pStateldx) and
the historical value of bin (valMPS) in order to achieve the adaptive performance.
Context provides estimates of conditional probabilities of the coding symbols, and it has
to prepare 399 locations of the context model to record all encoding/decoding results.
Utilizing suitable context models, given inter-symbol redundancy can be exploited by
switching between different probabilities according to coded symbol in the neighborhood
of the current symbol.

The context model index is dominated by two factors such as ctxIdxOffset and
ctxIdxInc. ctxIdxInc is the only one factor related with the syntax element of the neighbor
blocks. The variable syntax eléments, referto the left and top block to define the
ctxIdxInc of the first binldx such‘as mb_type, mb skip flag, ref idx, mb qp delta, ...,
etc. The generic form of the-equationis--given- as follows. The conditional term
condTermFlag (A, B) describes the functionalrelationship between the spatially neighbor

block A and B.

In CABAC system, the referred position is based on the current block which can treat
as not only the macroblock but also the sub-macroblock. So we have two methods to

allocate the required blocks.

26

Figure 2-17 Illustration of the neighbor location in macroblock level

C

iy = o
F R
o 21k

Figure 2-18 Tllustration of the neighbor location in sub-macroblock level

The first method is to get neighbor in macroblock level. Figure 2-17 shows the left (A)
and top (B) macroblocks of the current one. And the second method is in sub-macroblock
level, as shown in Figure 2-18. The coordinate of the current sub-macroblock is defined
as (sub_mb_x, sub mb_y). If sub mb_x is not equal to “0”, the left sub_macroblock is in
the left side of the current macroblock. If sub mb x is equal to “0”, the left
sub_macroblock can’t be found in the current macroblock and has to refer to the left side
of the macroblock A. The circles in the macroblock A are the required sub-macroblocks
which mean the syntax elements of the sub-macroblock 3, 7, 11, 15 have to be stored in

order to record the left sub-macroblock. And the top block is similar to the left. The

27

syntax elements of the sub-macroblock 12, 13, 14, 15 also have to be stored in order to

record the top sub-macroblock.

2.5.1 Assignment process of context index

@ Lxcept residual data
ctxldx = ctxldxOffset + ctxldxInc
® For residual data

ctxldx = ctxldxOffset + ctxldxBlockCatOffset + ctxldxInc

H.264/AVC uses the above two,riiles to allocate the context model. The first rule is
used except residual data of syntax element (coded block flag, significant coeff flag,
last significant coeff flag, and coeff abs level minusl). The context model index is
equal to the sum of ctxIdxOffset and ctxIdxInc. Depending on the syntax element and the
slice type, we can find the value of ctxIdxOffset in Table 2-9. The value of ctxIdxInc is
looked up in Table 2-10 by referring to the syntax element and binldx. In Table 2-10, the
word of “Terminal” means that the encoding/decoding flow enters the terminal process. If
the generated bin is equal to “1”, the slice has to be stopped and encodes/decodes the next

slice.

28

Table 2-9 Syntax element and associated definition of ctxIdxOffset

. i Slice type
Image layer Syntax element CECTTTESEET
o mb_skip flag = 1 o= 111 1 24
Slieaan mb_field decoding flag 70
mb_type SRR
mb_type (prefix) 0 ¢ = 1 14 27
| mb type (suffix) 3 1 = 17132
Mol ayer coded block pattern (prefix) 73
coded block pattern (suffix) 77
mb qp delta 60
3 previntradxd pre mode flag 68
B (II::E;; tiom rem intradxd pred mode 69
intra_chroma_pred_mode 64
ref_idx_10 - - 1541 54
MB prediction and ek i 1) - M a4
sub-MB prediction LT L R R
(Inter) mvd [l x = b= ! =B 40
mvd 10 v - - 47 4T
mvd 11 v R .
sub-MB prediction | sub mb type - 1 - | 21 | 36
coded block flag B3
significant_coeft flag (field) 105
oo significant coeff flag (frame) 277
Rasidual datd last_significant_coeft flag (field) 166
last_significant_coeff flag (frame) 338
coeft’ abs level minusl 227

L

Fy LR

Table 2-10 Definition of the ctxIdxInc value for context model index

ctxldxOffset Syntax element i | 0 r ;’mld?{ 3 TF T 5 56
0 mh_type_SI (prefix) I na | na | na Ina | na | na
3 mb_type Sl (suffix) & mb type [| 0,1,2 | Terminal | 3 . 4 156,67, 17
11 mb skip flag P | na | ma | na ' na | na | na
14 mb_type P (prefix) 0 | 1 i 23 | na_ | na | na ma
17 mb_type P (suffix) 0 ! Terminal ! 1 J 2 FEIERE
21 sub mb type P 0 | 1 [2 | na | nd | na | na
24 mb_skip flag B 0.1.2 L oma |, pa , na ,na,na, na
27 mb type B (prefix) T | 3 45 | 5 I 5 1 5 1 5
32 mb_type B (suffix) 0 | Terminal | 1 2 13373 73
36 sub mb _type B 0 ! 1 123 | 3 131 3 1 pa
40 mvd 10 x mvd 11 x A | 3 1 4 | 5 6 | 6 | 6
47 mvd 10 ¥ mvd 11 T 3 : 4 ! 5 6 166
54 ref_idx [0 ref idx 11 0,1,2,3) 4 [3 I 3 2 1303
60 mb _qp_delta 0,1 | 2 3 | 3 313 13
04 intra_chroma pred mode 00,2 8 3 3 [na na | na | na
68 prev intradx4 pre mode flag 0 , na , mna , na na ; na , na
69 rem_intradx4d pred mode 0 ! 0 1 0 ! na na | na ! na
70 mb_field decoding flag 01,2 | na | na | na na | na | na
73 coded_block_pattern (prefix) 0.1.2.3 '0,1,2,370,1,2,370,1,2.3 T na T na T na
77 coded_block_pattern (suffix) YT 1 4,.5,6,7 na | na na | na | na
276 end_of slice 0 | na | ma | na na | na | na

Table 2-11 Specification of ctxIdxInc for specific values of ctxIdxOffset and binldx

ctx 1dxOffset binldx ctxldxIne
3 4 (b;!=0) ? 5:6
’ 5 b;!=0) ? 6:7
14 2 (by!=1) ? 2:3
17 4 (b!=0) 2 2:3
27 2 (by!=0) ? 4:5
32 4 (by =0 ?2 2:3

For special ctxIdxInc, that is derived by using the value of prior decoded bin value.

Table 2-11 shows the value of ctxIdxInc in special binldx.

The second rule is the contextindex method for'the residual data such as coded block,
significant coeff flag, last significant coeff flag, | and coeff abs level minusl. The
value of the context model index is the sum-of ctxldxOffset, ctxIdxBlockCatOffset, and
ctxIldxInc. The assignment of ctxIdxOffset is shown in Table 2-9. The value of
ctxIldxBlockCatOffset is defined as Table 2-12 which is dominated by the parameters of
syntax element and ctxBlockCat. The ctxBlockCat is the block categories for the different
coefficient presentations. ctxBlockCat sorts five block categories in Table2-13.

maxNumCoeff means the required coefficient number of the current ctxBlockCat.

Table 2-12 Assignment of ctxBlockCatOffset Table 2-13 Specification of ctxBlockCat

ctxBlockCat Block type maxNumCoeff | ctxBlockCat

Syntax element 01 2 3 4 =
coded block_flag 0 4 % 12 16 Luma DC‘ t\or Intral6x16 16 0
SR e = Luma AC for Intral6x16 15 1

sigmificant_coeff flag 0 15 29 44 47
= : = Luma 4x4 16 2
last_significant coeff flag|| 0 15 29 44 47 ;

e abs Teiel mee 0 10 20 30 39 Chroma DC 4 3
cocff abs level minus % Chroma AC 15 4

30

For the syntax elements significant coeff flag and last significant coeff flag, the
value of ctxldxInc is defined as the scanning position that ranges from 0 to
“maxNumCoeff - 2” in Table 2-13. The scanning position of the residual data process has
two scanning orders. One is scanned for frame coded blocks with zig-zag scan and the

other is scanned for field coded blocks with field scan, as shown in figure 2-19.

e

e P SR+

L7

Lid e 2

//'/
///l
7 &

Ln—— o —— o —

;
;

wp M-

1

(a) zig-zag scan (b) field scan

9 — 10 14 — |5

1

Figure 2-19 (a) zig-zag scan.and (b) field scan

2.6 Paper survey forr-CABAD designs

In this section, we will introduce some of CABAD decoding designs which have been
published recently (2005 ~ 2007). The main differences of all of these are almost in arithmetic
design due to that the arithmetic coder is the main dominator of throughput for the whole
CABAD system. The CABAD decoder designs are introduced as follows.

1. For the CABAD design of [4] proposed by Yongseok Yi, In-Cheol Park, the initial
design without optimization takes 7.43 clock cycles per bin. The optimization
strategies are shown as follows.

(1) Several context models are simultaneously loaded from memory.
(2) Employing a small storage to remove structural hazards and data dependencies.
(3) Bin-level pipelining.

After adopting these strategies, the processing time is reduced to 3.93 clock cycles

31

per bin. But the throughput of this design is not high-product because it is
one-symbol architecture and its context memory needs great hardware cost.

The high-performance CABAD design is proposed by J. W. Chen, Y. L. Lin [5]. It
proposes three parallel processing techniques. The initial design without optimization
decodes 0.44 bins per cycle. Three parallel processing techniques are shown as
follows.

(1) Parallelizing the tasks of decoding coefficients and getting neighboring data.

(2) The two-bin-per-cycle decoding method.

(3) Context table rearrangement method.

After adopting these methods, the throughput is up to 0.99 bins per cycle.

The CABAD decoder design of [8] is proposed by Y. C. Yang, C. C. Lin, H. C. Chang
et al. They adopt four techniques to imptove the performance of CABAD. They are
adopting 1) two-symbol architecture pipeline scheduling, 2) using segmented context
tables, 3) adding cache registets-to.store the value of context memory, and 4) doing
look-ahead codeword parsing:

We also reference the multi-symbol architecture design for arithmetic encoder [6]
which is proposed by Y. J. Chen, C. H. Tsai, L. G. Chen. The one-symbol arithmetic
coder was partitioned into four stage: Update State, Update Range, Update Low and
Output. And then they extend the architecture of one-symbol arithmetic encoder to
arbitrary m-symbol.

A novel configurable architecture of CABAC encoder [7] is proposed by Y. J. Chen,
C. H. Tsai, L. G. Chen. The traditional processing unit is divided into two parts, MPS
encoder and LPS encoder. With different arrangements of these two basic
components, they develop two types of ML-decomposed structures, such as 1) ML
cascade architecture and 2) throughput-selection architecture. ML cascade

architecture exploits the complementary critical path of MPS and LPS coder, and
32

throughput-selection architecture offers more choices of ML cascades to select the

highest throughput one.

33

Chapter 3

Multi-Symbol of Binary Arithmetic
Decoder Engine

3.1 Overview of CABAD system

CABAD
. Binary Arithmetic Lo T
Bit-stream > i —— Binarization = value
Decoding B
SRk
i bin string
DAfue [update |
i i
valMPS v

e Context Model

A
ctxldx

Side
information

| Address Generator |-

Figure 3-1 Block diagram of CABAD

Arithmetic coding is a recursive subdivision procedure. It contains two data
dependency which results in intensive computation. Firstly, the interval is specified by
range and offset. Depending on symbol is the Most Significant Symbol (MPS) or Least
Significant Symbol (LPS), the next interval is updated as one of two sub-intervals. The
second is the adaptive probability state of the context of symbol. The probability table

will be updated according to the current symbol. Figure 3-1 is the system architecture of

34

CABAD which consists of three main modules called the binary arithmetic decoder, the
binarization engine, and the context model. The entire decoding procedure is described as
follows. When starting to decode, it has to initialize the context model by looking up the
initial table. BAD reads bit-stream to get the bin value. At the same time, it refers to the
current probability from the context model to find the sub-range of MPS or LPS and
updates the probability of the location of the current context model index (ctxIdx). The
bin string from several bin values is fed to the binarization engine. Then the binarization
engine will send out the value of syntax element. Address Generator generates the
address of the context model which has been described in section 2-5. Due to these strict

data dependencies, the elementary operations can hardly be processed in parallel.

Decision Mode

Yy
Y

Context selection

|
I
oftftd |
i
I
I
I

Adlilvess 7 hase(8) Context Ci(s) Cjls) Confext
Gene r’!II:) . » Memory > Binary Arithmetic Decoding » Memory
: Load Update

- h,l_ - b;l' o h_‘l_ o

Binarization

—_— — e e . — —

| Py

1= =1
BYPASS Mode & TERMINAL Mode

-_— = = Cycle boundury

Figure 3-2 Elementary operations of CABAD

To execute multi-symbol CABAD, the BAD unit and the Context model should
properly support multi-symbol architecture. Figure 3-2 shows the elementary operations
like address generator(AG), context memory load(CML), binary arithmetic
decoding(BAD), and context memory update (CMU). And these stages are delimited by

cycle boundaries. [4] optimizes the cycle boundaries , and we move the operation of

35

context selection to BAD stage.

Context Selection

Context Memory

\T,
|

I
I
[
il
[
i
v il
- . I
_ | Context State Register N valMPs ¥y
" g) i
T baselB) 5 (C5R) valMPS I
| T Cils) [_l‘_[_ A 5[l
| | - g (11
| | |
I =] |
I 5 il
1 Y ¥ S
| | H —— g
h Iy
| | | S i
| | ! il
| v Y | !
| | ! i g il
| | ¢ Cly C y C3 |
| | i
I | Binary Arithmetic Decoding |
i |
i | b1¢ h:‘ bﬁ
; | — valid
! g ; L value(s) '
i | Binarization engine :
T ! by |
Cixldx =:L‘tx|d:r.0ﬂsu1 |+ CtxldxIne
Cixldx =Et_x@x_Ol}'s_ct_+_Cixl_diBlU£k_L‘1t(1ffEcl: + CixldxIne
Lookup Logic

Figure-3-3. Overview-of our architecture

Figure 3-3 is overview of our architecture: ysas(S) is a base context index generated
from the AG stage as the ctxIdxOffset definition from standard [1]. The set of context
memory data Cj(s) in the same syntax element is gotten from context memory according
to Yrase(s) and stored in a small storage called the context state register (CSR). After the
context memory is obtained, the BAD stage takes place. In our BAD stage, it contains
three parts such as context selection, binary arithmetic decoding core, and binarization
engine. We select needed context data (ci,cp,...) from Cj(s) according to binldx
(ctxIdxInc) and feed them to BAD core. At the same time, we should update each of the
context data. For example, if ctx; and ctx, are the same, the pState and vaIMPS of ctx;
should be replaced by the updated ones of ctx;. When working BAD core, the symbol is
decided by comparing the coding offset and the coding range. Then the renormalization

follows to keep the coding range and the coding offset to a fixed precision. Then, we send

36

the bin string (b, by, bs) to do the binarization and resolve the value of syntax element.
Besides, only the updated values of context data c; corresponding to those valid bins
should be written back to CSR. Finally, the data Cj(s) of CSR will write back to context
memory. The part of BAD core is described in next section, and the detail of context

model in next chapter.

37

3.2 Statistics and analysis of syntax elements

mb_skip_flag

—
Intra_pre_mode_flag
7

LS

Sub_mb_type P Sub mb type B

Rem_intra_pre_mode | Ref idx 10

!

Intra_chroma_pre_mode

Ref idx_I1

‘ Mwd_10 x, Mvd 10 y ‘

'

‘ Mvd_I1_x, Mvd_11_y ‘
|

‘ Mb_gp delta
[

Last significant coef
<Coeff_abs_level_minus

‘{ End_of slice flag |

Figure 3-4 Decoding flow at syntax element level

Figure 3-4 is the state transition at the syntax element level. H.264/AVC defines
twenty-five syntax elements. Many syntax elements only need one bin to decode (like
significant_coeff flag, last significant coeff flag, end of slice flag, coded block flag,
and intra_pre_mode flag First two of them have around 40% of bins). And others
need multiple bins to get its information (like coeff abs, rem_intra_pre _mode, mb_type,
sub mb_type, ref idx, mvd ..., etc.).

38

Table 3-1 Percentage of the bins at each syntax element

bin%
syntax element QP36 QP30 QP24 QP18 avg
Intra_pred_flag, intra_rem 1.68 3.34 4.01 2.85 2.97
sig. & last_sig. 40.51 40.83 39.05 37.46 39.46
coeff_abs 25.98 31.87 38.12 4408 35.01
MVD 4.87 5.00 5.23 6.67 5.44
Ref_frame 0.52 0.38 0.29 0.24 0.36
other 26.43 18.57 13.30 8.69 16.75

Table 3-2 Percentage of the cycle counts at each syntax element

cycle%
syntax element QP36 QP30 QP24 QP18 aveg
Intra_pred_flag, intra_rem 1.86 3.72 4.51 3.26 3.34
sig. & last_sig. 4478 45.35 43.84 42.77 44.19
coeff_abs 21,12 26.67 32.62 38.47 29.72
MVD 391 3.99 4.22 5.52 4.41
Ref_frame 0.58 0.43 0.32 0.28 0.40
other 2715 19:84 14.49 9.70 17.95

Table 3-1 and Table 3-2 are shown the percentage of decoded bins and cycle counts of
different syntax elements. "sig.& last sig.” and “coeff abs” have most of decoding bins.
Therefore, how to enhance the throughput would be divided into two parts. The first is
our multi-symbol architecture that can decode multiple bins per cycle. It is shown in next
section. But the multi-symbol architecture will not enhance the performance of the
one-bin syntax elements such as sig.& last_sig. Then secondly, we rearrange our context
memory to advance our architecture performance. It is mainly to improve the part of

significant coeff flag and last significant coeff flag, and that is shown in next chapter.

39

Table 3-3 Percentage of each concatenate symbol

1- Symbol 2- Symbol
M L MW ML LM LL
T4% 26% 56% 18% 18% 8%
3- Symbol
MMM | MML | MLM | MLL | LMM | LML | LLM | LLL
44% 13% 13% 5% 13% 5% 5% 3%

Table 3-3 is the statistics of the average percentage of each symbol alignment. It
simulates under executing four CIF sequences (stefan, foreman, news and mobile) by
JMR8.2. The number of frame is 200 and we set QP16, QP28, and QP40. We find the
percentage of concatenate M-symbol is obviously higher than others, especially MMM in
3-symbol and MM in 2-symbol. Take 3-symbol an example, we divide four orders of the
happening probability (from most probability to least probability). First group is MMM
and it contains 44%. Second group.are MML;, MILM, and LMM, and they contain 13%
respectively. Last group is LLLE and.it contains 3%: It is efficient that the concatenate

symbols (MMM) will be improved firstly.

1. MMM
2. MML, MLM, LMM
3. MLL, LML, LLM

4. LLL

40

3.3 Proposed multi-symbol architecture

In this section, we extend the architecture of one-symbol arithmetic decoder to
three-symbol. It has data dependencies in range and offset. Depending on symbol is the
Most Significant Symbol (MPS) or the Least Significant Symbol (LPS), next interval is
updated as one of two sub-intervals. The range and offset equations are as follows,

MPS © Range, = Range,.; — rLPS,
Offset, = Offset .1
LPS :© Range, =rLPS,
Offset, = Offset,,.; — Range ,.; + rLPS,

where n represents current symbol and rLPS is the estimated range when coding LPS.

3.3.1 One-symbol structure of BAD

pStateldx codIRange codlOffset

| Bitstr(1)

S 74— BYPASS

0
vy
i ix :766\;;‘7 T, S S SR SEPR, SR S

[DESICION BYPASS} ——p

e |
| RangeX :

=1l

TERMINAL — 017 1017 #— DESICION
valMPS§ Bin_flag

LPS-Range MPS-Range
LPS-Offset MPS-Offset ‘
L

T
;T‘gf]
| I

\q_i'
Ef ‘ Renormalization |
v v

Bin value codlRange, .. codlOffset,.,..,

—

Figure 3-5 BAD for one-symbol architecture
41

Table 3-4 Results for range, offset and binVal at each mode

Vode cod[Range codlCffaet bin¥val
MPS LPS MPS LPS MPS LPS
DECISION | codlRange - LS [LPS codlOffset codlOffset - codlRange +1LES valMPS | lvalMPS
EYPASS codlRange codlRange | (codlOffset==1) | Bitati(1)) - cod[Range { (codl0ftset<<1) | Bitstr(l)) 0 1
TERMINAL] codlRange -2 | codlRange -2 cod[Offset codlOffset i l

The basic Binary Arithmetic Decoding core is as shown in Figure 3-5 [11]. For
hardware sharing, it combines three modes (decision, bypass, and terminal) into the
architecture, and Table 3-4 shows the results of range, offset, and bin value in each mode.
The shaded adder is also the comparator which calculates the temporal variables OffsetX
and RangeX, and it will decide the symbol is MPS or LPS resulting in the binVal. The
table of rangeLPS has 256 entries. The large table is unfortunately located in the critical
path when decoding multi-symbol. To speed up,,we divide the table into two parts, 64:1
and 4:1 as like [6]. Then, we can pre-compute the greater parts (64:1) when doing other
operations. Table 3-5 shows the dependency of Bin: flag, vaIMPS, and Bin value. The
result of bin value is Bin_flag depending on valMPS. And the signal Bin_flag is the msb
of the result from the subtractor of Offset and RangX. When Offset is less than RangX,
the signal of Bin_flag will be set 1. It means that the decoding symbol is MPS, and the

decoding Bin value is the function XOR of the two signals Bin_flag and valMPS.

Table 3-5 Dependency of symbol, Bin_flag, vaIMPS and bin value

comparator | Bin_flag | Symbol Bin_flag | valMPS |Bin value
Offset >= RangX 0 LPS 0 0 1
Offset < RangX 1 MPS 1 0 0
0 1 0
1 1 1

42

3.3.2 Cascaded structure of multi-symbol BAD

The intuitive method for multi-symbol BAD is to cascade one-symbol architecture as
shown in Figure 3-6. It doesn’t decode next bin until the result of the comparator of
current bin, so that the critical path of the one-symbol architecture will have two adders
and the rangelLPS table. If we extend to three-symbol, the critical path is too long that
will be six adders and three rangeLPS tables. The hardware cost is three times than
one-symbol architecture. Figure 3-7 is simply drawing of the cascade architecture of

three-symbol BAD [5].

pStateldx codlRange codlOffset Bit-stream

Bitstream pStateldx codIRange codOffset

L

o LPS-Offset L Mpgj()rfg,eg \ l‘symb01 BAD > Bin_ g

LPS-Range MPS-Range
Y

= | ,TU?T
I Renormalization }17
A] v)
Bin flag codIRange,. codlOfFset, o codlRange,. — codlOffset,,,,

Figure 3-6 Simplify one-symbol BAD architecture and its simply drawing

43

3-Symbol BAD

pStateldx Bit-stream codlRange codlOffset
WA el
I
I
|
< 1-Symbol BAD T B fagl
pSuateldx | H
I
I
V ¥ :
codIRangeue codlOffset,y, |
Li v |
|
< 1-Symbol BAD P Biietlig
pStateldx2

Y
codIRange;.q C{)dl;)ffsetnm

| 3
— |-Symbol BAD -—rp Bin_flag3
pSuateldx3 |
|

__________________ l_“_“_“_“l_“_“_“}

codIRange,. codlOftsety,,

Figure 3-7 Cascade architecture of three-symbol BAD

44

3.3.3 Extending structure of multi-symbol BAD

As shown in Figure 3-8, if we expand the range and offset equation of two-symbol
BAD, the architecture can reduce the long critical path. The following equations are the
results of Range and Offset. LPS; represents that the first decoding symbol is LPS, and
LPS; represents that the second decoding symbol is LPS, and so forth to MPS; and MPS,.
LL R represents the result of range which decodes concatenate symbols of both LPS.
The same as to LL._O, and the last letter O represents the result of Offset. And LM_R

represents the result of range that the first decoding symbol is LPS and the second

L 4
LLR LL O

pStateldx 1

RangeTabLPS
64:1

codIRange

pStateldx2-L

-

hd

codlOffset

pStateldx2-M

h

LM O LM R

r ¥

MM R MM O

ML_O

v
ML R

Figure 3-8 Example of 2-Symbel-expanding BAD architecture

decoding symbol is MPS. And so forth to LM_O, MM_R, MM O, ML R, ML O.

45

rLPS, ., ,1f LPS

Range, : 3
Range, - rLPS,;, ,If MPS
Offset, - Range, + rLPS,. ,if LPS
Offset, o
Offset, , T MPS
LPS, and LPS; LPS, and MPS;
Range, = rLPS, Range; = rLP§,
Offset; = Offsety; - Range, + rLPS,; Offset; = Offset, - Range, + rLPS,
Range, = rLPS, Range; = Range, - rLPS;
Offset; = Offset; - Range;, + rLPS, Offsets = Offset,
LL R : Range, = rLPS, LM R : Range, = rLP5, - rLPS:
LL O : Offset; = Offset; - Range, + rLPS; LM O : Offset; = Offset; - Range, - rLP§,
MPS,; and MPS, MPS, and LPS;
Range, = Range, - rLP5 Range, = Range; - rLPS,
Offset; = Offset, Offset; = Offset,
Range; = Range; - rtLPS; Range; = rLPS;
Offset, = Offset; Offset; = Offset; - Range, + rLPS,
MM R : Range; = Range, - rLPS, - 1LPS, ML R : Range, = rLPS;
MM O : Offset;, = Offset, ML O : Offset; = Offset, - Range, + rLPS, + rLPS,

When doing the first symbol’s comparator;-it also does the second symbol’s operation.
In addition, the rangeLPS table can be‘computed in advance because we already know
the next decoded symbol is MPS or LPS. As a result, it can reduce one adder time and
one rangeLPS table time if every adding one-symbol extending architecture. So the
critical path of the two-symbol extending architecture is three adders and one rangelLPS
table.

It is easy to expand to three-symbol architecture, and its critical path is four adders
and one rangeLPS table. We reduce the critical path of two adders and two rangeLPS
tables compared to the cascade three-symbol BAD architecture. But the hardware cost of
extending three-symbol architecture is seven times larger than one-symbol architecture.
The hardware cost is too great. Next we propose an efficient method to reduce the critical

path and let cost down.

46

3.3.4 M-cascade of multi-symbol architecture

Table 3-6 Critical path of the adders in three-symbol extending BAD

MMM MML MLM MLL

Num. of adders time 3 4 3 4
LLL LLM LMM LML

Num. of adders time 4 3 2 3

Table 3-6 is shown the critical path of the needed adders of decoding each

concatenate symbol case.

The critical path of cascade-three-symbol atchitecture is too long and the hardware
cost of extending three-symbol-architecture is.too large. Case control study with Table
3-6, Table 3-3 and hardware design;.in concatenate three symbols we finally choose the
decoding process of MMM and MML to make sure hardware sharing (cost down) and
efficiently enhance the throughput. We can speed up 57% decoding bin and minimize the

hardware cost and the critical path.

47

pStateldx] codIRange codlOffset .
bit stream

EEEEEEEEEEEEE
D
RangeTabLPS
64:1
pStateldx2
Y
by
MSE | l= ~ ! pStateldx3
TT .
l vy 0
codOitset 1 codRange |
a‘r MSB 2
-1' i Y v 5
S U - < (D
cod{ffser 2 codRange 2
valMPS1 W_‘__._\J__L'_/
valMP52 codOffset 3 codRarge 3
valMPS3
l‘ Yy ¥ »r y¥Yv¥veey

—» binVvall binvalidl BAD
Combinational Logic) —m hinVal? binvalid2 BAD | S— j
» binval3 binvalid3 BAD [T Renormalization |

codlRange,. codlOffset,

Figure 3-9 Organization of the multi-symbol BAD

Table 3-7 Case of multi-symbol which our architecture can decode

case
1-symbol L,M
2-symbol ML,MM

3-symbol MML,MMM

We propose our M-cascade of multi-symbol BAD architecture in Figure 3-9 The
architecture can decode three concatenate symbol whether it is decision mode or bypass
mode, and it only executes the case of symbol alignment(L, M, ML, MM, MML, MMM)

as shown in Table 3-7. The architecture decodes next symbol when the prior symbol is
48

M-symbol, so we call it M-cascade architecture. For an example, if we want to decode
the symbol streams MLLMMM, our architecture will decode ML firstly and L at next
cycle, and decode MMM finally. So it doesn’t always execute up to three symbols. First
problem is that the architecture of other symbol alignment (MLM, MLL, LMM, LML,
LLM, and LLL) doesn’t parallel processing in our design. These symbol alignments
should be separated to one-symbol and two-symbol or three one-symbols. Because we
focus on the improvement of the most percentage, we choose the case of MMM and the
case of MML to decoding. Secondly, the binarization engine judges the three bin string if
the bin values are the valid symbols. The signal binvalidx BAD is to discriminate the
correctness of the decoded bin value by our confining architecture (only decoding L, M,
ML, MM, MML, MMM). Table 3-8 is shown their relation. Then we sent those needed
signal to execute the binarization. If the first’n bins are valid, the n-th results of
codIOffset and codIRange have-to,be selected-by the-binarization engine to offer the next
BAD.

In Figure 3.9, bit stream buffer is:fed to«(@D, @, @), @, (& and Renormalization
unit. (D, ® and (& is about bypass decoding process. 2 is the operation of the

renormalization after decoding “M”, and (@ is after decoding “MM”.

Table 3-8 Truth table of binvalid? BAD related to our BAD architecture

INPUT OUTPUT
MSB 1 | MSB_2 | MSB_3 |binvalidl BAD |binvalid2_BAD | binvalid3_BAD
0 ? ? 1 0 0
1 0 ? 1 1 0
1 1 ? 1 1 1

49

3.4 Pipeline organization

The most effective way to enhance the performance is to exploit the pipelining
scheme. In decision mode, it takes 4 cycles to complete one bin coding in conventional
processing without pipelining. The bypass mode and the terminal mode doesn’t need the
probability data, so it will not execute the part of context memory and takes one cycle to
complete one bin coding, as shown in Figure 3-3. We show these stages to schedule the

pipeline organization in this section. And we also show some restricts in our design.

(a) Conventional scheme without pipeline and CSR

cyclel cyele eyeled cycled evcled cycled oycle? LR L]
_BAD ~MU - | BAD |
AG CML M ChU AG CML BN MU

(b) Proposed scheme with pipeline and CSR

cyclel oycle eyeled cycled eyveled cycled cyvele? 0 essses
Al CML BAID
BAD _
BRM
5
tBAD
TS 1]
CBAD _
[BR
s]
BAD — CMU
BA

Figure 3-10 Timing diagram of the pipeline comparison

Figure 3-10 shows the timing diagram of the pipeline comparison for decision mode,
and it is almost the same as [4]. But we move the CS operation to BAD stage.

In conventional scheme, it must compute context address every symbol processing
and load context data (pState and valMPS) to next stage without CSR. In our design, we
load a series set of context data to CSR in syntax element beginning and write back to

50

context memory in syntax element end. We only read and write context memory one time
in every syntax element (except the two syntax element of significant coeff flag and
last significant_coeff flag), but in conventional scheme it will read and write context
memory more times depending on how many the decoded bins in that syntax element. It
can be found that the conventional scheme produces one bin every 4 cycles in average,
and the other one with pipelining and CSR produces 1~3 bins every cycle. Compared
with the conventional organization, the proposed design with the pipeline can save large
the process cycles. Next we show the timing diagram of some restricts and situation

resulted from our multi-symbol BAD unit.

Decoding Symbols: MLMMMLse (in the same SE)

Not valid !!

¥
Binldx |3 41§ . . L L5
Symbol | M LX A CML | LBAP N bintax =4
Binldx |35 6 7 - TS]
Symbol |IM MM —%'%?— e
fa)
Decoding Symbol: MLMMMMs++
SE, new SE;
LGS
SE-1 ML AG CML | CBADZ |comu
B
s
SE-2 MMM Stall Stall AG CML BAD
BM
SE-2 3% CL CBAD s e
BM

(b)

Figure 3-11 The timing diagram of our architecture restricts

Because our BAD architecture only decodes the symbol stream L, M, ML, MM,
MML or MMM, it will judge the correctness of those outcome decoding symbol whether
our architecture support or not. Then it forwards the binldx of the last valid symbol to the

unit of CS and BAD at next cycle to process continually. Figure 3-11(a) is an example.

51

Our architecture doesn’t support the concatenate symbol MLM, but support ML. It will
judge the symbol M of binldx = 5 is invalid, and forward the value of binldx = 4.
Although the comparator decide the decoding symbol of binldx = 5 is M, and it is indeed,
but the output of codIRange and codlOffset will be wrong. That will result in the wrong
following process. So we put some logic to estimate.

Figure 3-11(b) is the timing diagram happening when syntax element change. When
a new syntax element is to be decoded, the pipeline is stalled for two cycles to update and
load the series set of context data. The CSR (Figure 3-3) will write back the context data
of prior syntax element to context memory and then load the new one of current syntax
element. When the correct output of ML is decoded and sent to the binarization engine,
the binarization judges it’s the end of syntax element. Then we write back the CSR to
context memory, and at next cycle-we will load context data of new syntax element to

CSR. It wastes two cycles and it-is,also the bottleneck of our architecture.

When decoding the syntax element.of MVD and coeff abs, it may decode the bin
using bypass mode or decision mode. This part is shown the schedule of the decision
mode changing to the bypass mode in our architecture. When the decoding bins in these
two syntax elements are more than the value boundary (£), the following bins will use
bypass mode to decode. The value boundary (£) of MVD and coeff abs is set 8 and 13

respectively as shown in Table 3-9.

Table 3-9 The parameters of the decision mode changing to the bypass mode

Syntax element | Value boundary | Should decode more bins using bypass mode
MVD 8 n+2
coeff_abs 13 N

In syntax element MVD, if the decoding bins are more n than 8 until the value of bin
52

is 0, it should decode n+2 bins using bypass mode in following process. The situation is
also the same in syntax element coeff abs. If the decoding bins are more n than 13 until
the decoding bin value is 0 in syntax element coeff abs, it should decode n bins using
bypass mode in following process. And both of them, the last decoding bypass bin is also
the sign bin. If decoding bins in the two syntax element are less than the value 8 and 13
respectively until the decoding bin value is 0, it should decode more one bin by bypass
mode as sign bin. And the changing to bypass mode, it always happens at next cycle
whether the concatenate symbols which our architecture can support or not. Figure 3-12

is an example of syntax element MVD.

D i o e e e L e T T = i = P e s P S = S s) i
I More than 8 bins until binVal = 0, following decodes using BY PASS mode :

If Binldx X =< 8, BinValX = 0 happens !!

Binldx 5 6
Symbol | M M
BinVal 1 O

Binldx |7 <*— Sign Bin using BYPASS decoding |
Syimbol % |
BinVal

(a)

If Binldx = 8, BinVal = 00 happens !! Binldx_X - 8=n,
(n+3) Bins use BYPASS decoding. Last Bin is Sign Bin.

Binldx 6 7 8
Symbol | M M M
BinVal 1 1 1
Mot valid
Binldx 9 10
Svmbol |M M
BinVval I
— Must more decoding 5 BYPASS Bins |
Binldx |1 2 3 |
Syvmbol M M M :
BinVal 1 00 1
_ L DSaBYPASS made]
Binldx 4 -5 1
Symbol |M L :
BinWVal 1 |

(b)

Figure 3-12 Schedule of the decision mode changing to the bypass mode in MVD-SE

Figure 3-12(a) is the situation of the decoded bins less than 8 until bin value = 0 in

53

syntax element MVD. When binldx = 6 decoding the result of bin value = 0, it decodes
more one bin at binldx = 7 as sign bin at next cycle. Then this syntax element process
finish. Figure 3-12(b) is the situation of the decoded bins more than 8 until bin value = 0.
When binldx = 10 decoding the result of bin value = 0, we will know the result of binldx
= 11 is wrong although the concatenate symbols MML our architecture can support.

Besides we should decode more 5 bins using bypass mode at next follows cycles.

54

Chapter 4

Structure of Context Model

4.1 Overview of the context model

The values of the context model depending on the context index (ctxIdx) offer the
probability value (pStateldx) and the historical value of bin (valMPS) in order to achieve
the adaptive performance. We have to prepare the 399 locations of the context model to
record all decoding results. And two kinds of context model index methods allocate the
context model.
ctxldx = ctxIdxOffset + ctxIdxInc

ctxIldx = ctxIdxOffset + ctxIdxBlockCatOffset + ctxIdxInc

cxldx
Mbype
p R .
Ref idx

I e e e e S S e

T [s e o s s s e o

e e T T T T T e e e T
Py

398

399 x 7 bits

Figure 4-1 Traditional organization of context memory

55

Figure 4-1 is the traditional organization of context memory, it is dependent on syntax
element and the slice type as shown in Table 2-9. The context memory in traditional

organization needs 399x7 bits.

In our multi-symbol design, context model must provide multiple context values and
set these values to corresponding BAD operations. In context memory load stage, we
load a series set of context data (Cj(s)) to CSR according to the context base 7 w«(s) [4].

The 7 we(s) 1s the ctxIdxOffset or the sum of ctxIdxOffset and ctxIdxBlockCatOffset

respectively to the two equations, as follows.

CtxIdx =:Ctxldx0ﬁ'5m : + CtxldxIne
CtxIdx =:Ctxldx0ﬁ'5m + Ctxldx Block CatOffset |4 CtxldxIne

Ci(s) 107

CitxldxInc Generator

c' [ey

Figure 4-2 Structure of CSR

CSR architecture is shown in Figure 4-2. The difference from [4] is that the structure

of CSR has ten registers to hold the context data from the read subset Cj(s). Since the

56

range of context index increments lies in [0, 9] for the syntax element coeff abs level,

we set the register file to 10.

After loading the subset of context elements to CSR, we must choose the correct three
set of context data (pState and vaIMPS) to the BAD unit. The problem is that some
ctxldxInc of syntax element need look for bin value (as shown in Table 2-11) and use the
adaptive probability table. Context selection calculates the index to achieve by using the
lookup logic and exploiting the current vaIMPS, so that the problem of ctxIdxInc can be
resolved. Because of our multi-symbol M-cascade archticture, we use the characteristic to
combine the data dependency of valMPS and lookup logic to get each ctxldxInc, so that
we can get the correct context data (pState and valMPS). Then if ctx1 equals to ctx2, the
pState of ctx2 should be replaced by the updated one of ctx1. Finally the updated values
of context data should be written.back to CSR: Figure 4-5 is the part of our context

selection.

CSR

G,
= & &

binldx_1

7x1 binldx_3 _ g xl

ctxldxine_I

pPSteld 1

v 10x1

cixldxlne 3 —

pState
Updaie

| valMPS_3

A Y

Figure 4-3 Part of our context selection

57

4.2 Context memory

To load the ten context elements at once, we need a 70-bit-wide memory
configuration. Figure 4-3 [4] shows the context memory organization that is optimal in
the sense of memory size required when using our architecture, and that needs 400x7 bits.
But in this arrangement, some syntax elements will take more cycles to complete
read/write the full context data of the decoding bins iteratively. We modify the optimal
organization to read all the elements of each subset in one cycle, as shown in Figure 4-4
[4]. But the modified organization lets memory increase to 670x7 bits. In next section, we
propose the new modified context memory. It will decrease the memory size to 550x7

bits and simultaneously enhance the throughput.

]"'v"lCI'I‘H}I‘F I": 10} x 7hits '___1

Address
0 .
10

0 S

Figure 4-4 Optimal arrangement of context memory

58

Memory | 10 x Thits g

Syntax Element

CixIdxOffset Address | !
0 0 mbtype_SI{prefix)
3 10 mbtype_SI{suffix) & mbtype |
11 20 mb_skip _flag P
H i
64 ~ 67 140 intra_chroma_pre_mode
68 150 Pre_intra
69 160 { rem_intra
85 200 ><
1 t = Coded_block_flag
104 240
105 250
1 14 field of Sig
165 330
166 340
] l field of Last_sig.
227 420
430
227~275 t Coeff_abs_level
470
276 480 Terminal
277 490
l l frame of Sig.
337 570
338 580
1 1 frame of Last_sig.
308 660
o
- Prlams | 3
Figure 4-5 Modfﬁs’é,-d M nt of context memory
e

4.2.1 Memory rearrangement

In this section, we proposed a new context memory. It not only decreases the memory
size but also enhance the throughput of CABAD. According to analysis shown in Table
3-1, there are most usage on the syntax element Significant coeff flag and
Last siginficant coeff flag, about 40% of total bins averagely. And we also find that in
I-MB the percentage of intra related syntax elements (intra chroma pred mode and
pre_intra_pre mode flag and rem_intra pre mode) are huge. We focus on these two

59

parts. Figure 4-6 is the flow diagram of the significant map and Figure 4-7 shows an
example of the decoding order of significant coeff flag and Last significant coeff flag.
For each coefficient in scanning order, a one-bit symbol significant coeff flag is
transmitted. If the bin value of the significant coeff flag symbol is 1 at this scanning
position, a further one-bit symbol last significant coeff flag is processing. This symbol
indicates if the current significant coefficient is the last one inside the block or if the

further coefficients follow.

| Significance Map |

for (i=0 ; i=Maxpos(blocktype) -1 ; i)

i
1

Decode significant coeft flag[i];
If (significant coeft flag[i])

Decode Last significant_coeft flagli];
If (Last_significant_coeff flagli])

Break;

Figure 4-6 Flow diagram-of the significance map

Scanning position 2 1 2 3 i 5 6 7 8
Transform coeft. levels : 8 0 3 -l 0 8 0 |
Significant coeff flag 00—l 1 0 —» | 0 —»

! !
AR Pk Dl D
0" 0 0 I

Last significant coeff flag 0

Figure 4-7 Decoding order of sig. coeff flag and last sig. coeff flag

As the decoding order, the change of the syntax element is too frequent
(sig._coeff flag — last_sig._coeff_flag or last_sig._coeff_flag — sig._coeff flag). It will
decrease the performance of multi-symbol CABAD because our architecture with the

context memory organization (as shown in Figure 4-8) stall two cycles to change the

60

syntax element. Our design can concurrently read a series subset of two context data of
sig. coeff falg and last sig. coeff flag pair from context memory. Figure 4-9(a) is the
original part organization of context memory of sig. coeff flag and last sig. coeff flag,
and Figure 4-8 its timing diagram. Figure 4-9(b) is our proposed organization which can
read/write five pairs in one memory access to decrease the frequency of memory access
and promote the decoding bins of this syntax element per cycle to two bins, originally
decoding one bin. We can decrease the size of memory about significance map from

360x7 bits to 260x7 bits. Besides, we can save the two stalls.

Decoding significant ‘CML ‘ ‘ BAD| | cw ‘

Decoding - significant

(scannigPos3) BAD | eee®

(scannigPos1) |

Dccod!ng last_significant Stall Stall CML BAD cw

(scannigPosl)

Decod?ng - significant Stall Stall CML ‘ BAD CW
(scannigPos2) -

o
L g .

Figure 4-8 Timing diagré__r;ﬁ. for ithe‘-eﬂ-g;mal organization of context memory
e v.]r"'r-::-".' 15> ; ;;;;;

[o et Sl S e S e e e S e e |
I Save significant_coeff flag context data }

Pro-half significant_coeft flag
(scanningPos 0~4 or 5-9 or 10~14)

Figure 4-9 (a) Original modified organization. (b) Our proposed organization.

Decoding intra syntax elements is similar to above situation. After decoding the
syntax element prev_intra4x4 pre mode flag, we decode the mode indicator

rem_intra4x4 pre mode, where it is only present if the former takes a value of O.

61

Decoding the iteration of prev_intra4x4 pre mode flag and rem_intra4x4 pre mode, we
finally decode the syntax element intra chroma pred mode, as shown the formula in
Figure 4-10. And Figure 4-11 is the part of memory rearrange of intra memory. We can

decrease the size of memory about intra syntax from 30x7 bits to 10x7 bits.

[i Intra Prediction Modes

for (1=0 ; 1<16 ; i++)

i
Decode prev intradxd pre mode flag;
If {(!prev intradx4 pre mode flag)

Decode rem_intradx4 pre _mode;

¥

Get neighbor information;

Decoding intra_chroma_pred mode;

Figure 4-10 Theform_ulla Qﬁ.;iﬁtrg prediction modes
g5\

0 > intra_chroma_pred mode
intradx4_pre_mode_flag
[rem_intra4x4 pred mode

Rearrange

Figure 4-11 Memory rearrange for intra context memory

62

CtxldxOffset

227~275

276

Memory I

Address
0
10
20

.
H

140
¢
180
l

220
230

l

350
360

400
410

l

530
540

10 x Tbits N
¥

9 68 64 65 66 § 67

o AT =<

Syntax Element

mbtype_SI(prefix)
mbtype_Sl(suffix) & mbtype |
mb_skip_flag P

Pre_intra & rem_intra & intra_chroma

Coded_block _flag

field of Sig. & Last sig.

Coeff _abs level

frame of Sig. & Last_sig.

Terminal

Figure 4-12 Full-view organization of our proposed context memory

Figure 4-12 is our last conte
technique. Its location at me

ctxIdxOffset defined by standar

63

Chapter 5

Simulation and Implement Result

5.1 Simulation result

5.1.1 Performance in each syntax element

Table 5-1 Performance of bin/cyele in each syntax element by different QP

bin/cycle
syntax element QP36 QP30 QP24 QP18 aveg
Intra_pred_flag, intra_rem 1.78 1.60 1.44 1.38 1.55
sig. & last_sig. 1.07 1.08 1.08 1.09 1.08
coeff _abs 0:.90 1.01 1.12 1.27 1.08
MVD 1.02 1.16 1.22 1.22 1.16
Ref frame 1.06 1.06 1.06 1.06 1.06
other 0.63 0.62 0.64 0.68 0.64

Table 5-1 is the performance of bin per cycle in each syntax element. Our
multi-symbol architecture can enhance more than one bin per cycle in the syntax
elements which need concatenate symbol, i.e. coeff abs, MVD, and Ref frame etc. And
intra related syntax element and significance map also can up to one bin per cycle
because of our context memory rearrangement. We successfully achieve decoding

multiple symbols per cycle to enhance the performance of the throughput.

64

5.1.2 Performance of our proposed design

In this section, first we compare the performance of our architecture with a
conventional implementation which does not exploit the proposed schemes, that is, one
symbol architecture and the elementary operations as shown in Figure 3-2 are not
pipelined and the memory organization of Figure 4-1 is used. Table 5-2 summarizes the
decoding performance of our architecture and the column of Test sequence I, P, B means I
slice, P slice and B slice respectively. The column of Decoded Bins and Total cycles show
the number of symbols and the number of decoding cycles. Test sequences adopt
1080HD (1920x1088) which are sunflower, station and riverbed. All the sequences are
encoded by reference software JMS8.2 in.Main Profile at Level 4.0. Sequence type is
IBBP and IntraPeriod is set 10. Total encoded frames are 240 and the frame rate is 30fps.

As shown in Table 5-2, in.different QP(36, 30, 24, 18) the uses of our architecture
result in almost 3.5 times speedup. throughput-on the average compared to the
conventional architecture. The number of Total cycles exclude the time for the RISC to
process parameter set and slice headers, the context memory initialization time for each
slices, and the macroblock initialization time. So the Total cycles means processing

arithmetic coding and read/write context memory.

65

Table 5-2(a) Improvement of decoding performance in QP36

IBBP - QP36 Conventional Scheme Proposed Design
Bit-Rate
PSNR Test Sequence | Decoded Bins | Total cycles |cycle/MB |cycle/bin | Total cycles | cycle/MB |cycle/bin
(Mbps)
Total 159753127: 580824325 299.07 3.636: 176556185 90.91 1.105
1 S36sl6] 19208945 29425 36000 6038969 9251 L1
3593 | 10.814 | sunflower I I
P 539917595 193977177 330.16 3.5935 59013412 100.44 1.093
i i
B 1004248521 367638203 285.15 3.6611 111503804 86.49 1.110
I. I.
Total 986805965 357874098 184.27 3.6275 120002067 61.79 1.216
I 38564472 13922923 213.28 3.6102 4605947 70.56 1.194
1080p | 3546 | 6.869 | station ; i
P 351257661 126904661 216.00 3.6131 42158820 71.76 1.200
| |
B 596983835 217046514 168.35 3.6365 73237300 56.80 1.227
Total 1872448782 672465916 346.26 3.591; 206312056 106.23 1.102
1 55292995 20013020 306.57 3.6195 6445327 98.73 1.166
34,26 | 13.896 | riverbed . .
P 56066623! 201661669 34324 3.597! 62587331 106.53 1.116
I I
B 1256489565 450791227 349.65 3.5885 137279398 106.48 1.093
Average 3522 10.526 148559533.71537054779.7" 7276.54 3.6181 167623436 86.31 1.141
Table 5-2(b) Improvement of decoding-performance in QP30
IBBP - QP30 Conventional Scheme Proposed Design
Bit-Rate
PSNR Test Sequence | Decoded Bins “| Total cycles |cycle/MB |cycle/bin | Total cycles |cycle/MB |cycle/bin
(Mbps)
Towl | 262367865 948899829 48860 3617) 265943740 13694 1014
| |
I 93626251 33804366 517.84 3.611i 10113758 154.93 1.080
39.25 | 19.736 | sunflower ! !
P 920343315 329060572 560.08 3.5755 93605849 159.32 1.017
i i
B 1609709095 586034891 454.54 3.6415 162224133 125.83 1.008
| |
Total 194248697; 701241503 361.08 3.610i 213932462 110.16 ~ 1.101
I TIT1132) 28040647 429.54 3.608; 8742360 13392 1125
1080p | 38.27 | 15407 | station i i
P 675338011 242356782 412.51 3.5801 74942632 127.56 1.110
I I
B 118943674; 430844074 334.17 3.622; 130247470 101.02 1.095
Total 3254329485 1163550682 599.13 3.5755 339055561 174.58 1.042
| |
I 102945891 37282526 571.12 3.622i 11480410 17586 1.115
373 | 27399 | riverbed i i
P 937338985 336605180 572.93 3.5915 100792285 171.56 1.075
B 2214044615 789662976 612.48 3.5675 226782866 17590 1.024
Average 3827 20.847 260683170: 037897338 482.93 3.601:2729772543 14056 1.052

66

Table 5-2(c) Improvement of decoding performance in QP24

IBBP - QP24 Conventional Scheme Proposed Design [4]

Bit-Rate
PSNR Test Sequence |Decoded Bins|Total cycles |cycle/MB |cycle/bin | Total cycles |cycle/MB |cycle/bin
(Mbps) Speedup [Speedup

Total 412679877:1473716100 758.83 3.571: 388382867 199.98 0.941

I 15450666 SSGT9850 85204 3602 1SSS6147 24289 1026
42.29 | 34.082 |sunflower ! ! 3.79 1.73
P | 147496197 S22142005 88872 35400 142097004 24186 0963

i i
B 2497240141 895894245 694.88 3.5881 230428816 17873 0.923
]]

Total 34603811551237500235 637.20 3.5765 352746525 181.63 1.019

I 149828712 53706613 822.71 3.5852 15694224 240.41 1.047
1080p | 40.9 | 30.987 | station ; ; 3.51 1.88
P 1256399871 447011054 760.84 3.5581 130821592 222.67 1.041
| |
B 2054152575 736782568 571.47 3.5875 206230709 159.96 1.004
Total 555112870;1965199252 1011.90 3.5402 545521386 280.90 0.983
| |
I 184590191 66216793 101435 3.587i 19036548 291.61 1.031
40.35| 51.094 | riverbed I I 3.60 1.84
P 1580239515 5630315654 = 958.32 3.5635 161073578 274.16 1.019
i i
B 378629900;1335950894 1036.20 3.528; 365411260 283.42 0.965
Averag 41.18 38.721 437943620.751558805196 802.65 3.5625428883592‘7 220.84 0981 3.63 1.81
Table 5-2(d) Imptovement-of decoding-performance in QP18
IBBP - QP18 Conventional Scheme Proposed Design
Bit-Rate
PSNR Test Sequence | Decoded Bins | Total cycles [cycle/MB [cycle/bin | Total cycles | cycle/MB | cycle/bin
(Mbps)

Total 7197030991 2516505918 1295.78 34971 626098699 32239 0.870

I 271247375 06826353 1483.25 3.5705 25421276 389.42 0.937

4506 | 64.07 | sunflower i i
P 253605372! 883909323 1504.48 3485! 226348979 385.26 0.893

i i
B 4389729901 1535770242 1191.18 3.4991 374328444 290.34 0.853

Total 7685627345 2716642302 1398.83 3.5355 711058725 366.13 0.925

| |
I 311877081 110743529 169644 3.5511 28755263 44049 0.922

1080p |44.15| 73.216 | station : :
P 264323295 927870765 1579.30 3510f 244012570 41533 0.923

| |
B 4730517311 1678028008 1301.52 3.547! 438290892 33995 0.927

I I
Total 10873491081 3777376349 1945.02 3.4741 950209535 489.27 0.874

I 356618355 126671584 1940.43 3.5525 32220663 493.58 0.904
43.89 | 103.024 | riverbed i i
P 3070987931 1075687003 1830.89 3.503i 276403783 47046 0.900
i i
B 7445884805 2575017762 1997.25 3.4585 641585089 497.63 0.862
[[
Average 4437 80.103 858538313.71 3003508190 1546.54 3.5021 762455653 392.60 0.890

67

Table 5-3 Summarization of average three-symbol performance in different QP

Conventional Scheme Proposed Design
Bit-Rate | cycle/MB | cycle/bin | cycle/MB | cycle/bin | bin/cycle
QP36 10.53 276 3.618 86 1.141 0.876
QP30 20.85 482 3.601 140 1.052 0.951
QP24 38.72 802 3.562 220 0.981 1.019
QP18 80.10 1546 3.502 392 0.890 1.124
1080p 100MHz
1800000
60000 |2
110000
oo |
% 1000000 F \ —~— sunflower
§* 800000 [+;1tj:rob1d
= o | \
400000 —
200000
0 ‘
20 40 60 80 100 120
Bit-Rate(Mbps)

Table 5-3 shows the performance of our design. We can get better improvement in

small QP. Because our architecture process the change of syntax element will take a little

Figure 5-1 Characteristic curves of 100MHz for three sequences

stalls to update the CSR data. More change of syntax element will bottle our design.

From Table 3-1 “other” of syntax element in bigger QP has more percentage, so it worse
our performance. Figure 5-1 is the characteristic cures of 1080HD under 100MHz. The

dotted line is max macroblock processing rate(MB/s) 245760 from specification of Level

4.0.

68

5.2 Implementation result

The proposed architecture is designed by Verilog HDL and implemented in UMC
0.13 um technology. The synthesis result of our proposed design is summarized in Table
5-4. As a result, the CABAC decoder can be clocked at 115 MHz and the gate count

without memory is 11937. The memory requirement of context model is single-port

SRAM with 481Bytes (550x7bits).

Table 5-4 Synthesis result of our design

Proposed
Context Memory 550x7 bits
pState Generator 3121
ctxddxIne 1199
transIdxMPS 125x3
transldxLPS 427
other 1120
ThreeSym._BAD 18726
RangeTabLPS 1966x3
OneSym_base 737x3
Other
(include Binarization, 10617
Renormalization..et al.)
ThreeSym_control -
CSR register file 1400
Clock rate 115MHz
Area 47748
Gate count 11937

69

Table 5-6 Comparison with other designs using 1080HD sequence

Proposed 4] [12] [8] [13]
Technology UMC 0.13 #m 0.18 #m UMC 0.18 ¢ m TSMC 0.18 £ m 0.18 #m
Function decoder decoder codec decoder decoder
Gate count* 11,937 na 38,436 na 42k
Total gate count* - 81,162 84,873 83,157 na
Max speed 115MHz 225MHz 110MHz 120MHz 45MHz
Target spec. HD 1080@30fps HD 1080@301fps HD 1080@301fps HD 1080@ 30fps |HD 1080@30fps
Arch - symbol/cycle 3(partial) 1 1(But Multi-bypass) 2 16
I(cycle/MB) 270(QP24) 524(QP26) 462(QP36) na
P(cycle/MB) 246(QP24) 269(QP26) 308(QP26) na
3.93 cycle/Bin
B(cycle/MB) 204(QP24) 141(QP26) 254(QP26) na
e Total Avg. 219(QP24) 208(QP26) na na
Bit-rate(Mbps) 38.72 na 22.11 na na
bin/cycle 1.019 0.254 na na na
Context Memory 481 Bytes|Context Memory 662 Byt;:s Context Memory 349 Bytes
Comment

DatasMemory 11.52K Bytes

Pata Memory 3120 Bytes

ps - Gate count* -

without context memory

Total gate count™ : wath context-=memory

Table 5-6 Compariéon with other designs using CIF sequence

Proposed [5] [9]
Technology UMC 0.13 £ m 0.13 4m TSMC 0.13 £ m
Function decoder decoder decoder
Gate count 11,937 11,475 na
Total gate count - 40,762 138,226
Max speed 115MHz 137MHz 200MHz
Target spec. CIF CIF CIF
Arch - symbol/cycle 3(partial) 2 1
I(cycle/MB) 321(QP28) 309(QP28) 1661
P(cycle/MB) 112(QP28) 143(QP28) 576
B(cycle/MB) 72(QP28) 130(QP28) 328
e AVG 92(QP28) 194(QP28) 570
Bit-rate(Mbps) 0.868 na na
bin/cycle 0.967 0.8 1bin/2~3cycles
Comment Context Memory 481 Bytes|Context Memory 349 Bytes

70

Table 5-5 and Table 5-6 show the comparison of the proposed multi-symbol CABAD
and the other designs. Table 5-5 is using 1080HD sequence and table 5-6 is using CIF
sequence. We select the data of QP24 to compare with other designs. Compared with
Lee’[12], our performance in cycle per MB in B frame and total average are higher than
theirs because our QP is lower and our architecture is partial multi-symbol. Beside above,
our design will have two stall when syntax element transmits. If we add one more set of
CMR register file, we can decrease one stall in that situation. Table 5-6 is using CIF
sequence (news, foreman, and mobile), and other environment parameters are set the

same as using 1080HD sequence

71

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We adopt several design techniques both on system level and module level to enhance
the throughput. The contribution of this thesis can be divided into two parts. The first part
is in Chapter 3. We construct the architecture of multi-symbol BAD by M-cascade
structure. It can complete three' arithmetic ‘decoding modes and decode up to three
symbols per cycle. The second part is about context model in Chapter 4. The context
model must reorganize to support multi-symbol architecture. Several context data are
simultaneously loaded from memory, and'we use a set of registers to save them so that
removing the data dependencies. We also rearrange the location of the context memory
index.

As a result, the average cycle count per macroblock can reduce up to 187 under the
reasonable video quality, and the value of decoding bin per cycle is more than one. Our
design can achieve the level 4.0 of H.264/AVC standard [1], which means that it can play

the resolution of 1080HD video at 301fps.

72

6.2 Future work

In order to achieve high quality videos, the high resolution and high frame rate
becomes the target of the requirement of the digital TV market. To play the videos of
1080HD at 60fps is the basic requirement. Using our current design is not sufficient to
good quality. Hence, the acceleration of CABAD and the improvement of throughput are

the essential work in the advanced application.

73

References

[1].

[2].

[3].

[4].

[5].

[6].

[7].

[8].

Draft ITU-T Recommendation and Final Draft International Standard of Joint
Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC), May 2003.
JVT H.264/AVC Reference Software JM8.2.

D. Marpe, H. Schwarz, T. Wiegand, “Context-Based Adaptive Binary
Arithmetic Coding in the H.264/AVC Video Compression Standard,” IEEE
Trans. Circuits Sys. Video Technol., VOL. 13, NO. 7, pp.620-636, Jul. 2003.
Yongseok Yi, In-Cheol Park, “High-Speed H.264/AVC CABAC Decoding,”
IEEE Transactions on Circuits and Systems for Video Technology, VOL. 17,
NO. 4, pp.490-494, Apt. 2007,

J. W. Chen, Y. L. Lin; A High-Performanee Hardwired CABAC Decoder”, in
IEEE International Conference, ICASSP; VOL 2, pp.11-37-11-40, Apr. 2007.

Y. J. Chen, C. H. Tsai, L. G"Chen, “Analysis and Architecture Design for
Multi-Symbol Arithmetic Encoder in H.264/AVC,” in Proceedings of 2005
SOC Design Conference, Seoul, Korea, Oct. 2005.

Y. J. Chen, C. H. Tsai, L. G. Chen, “Novel Configurable Architecture of
ML-Decomposed Binary Arithmetic Encoder for Multimedia Applications,”
VLSI Design, Automation and Test, 2007. VLSI-DAT 2007. International
Symposium on 25-27 Apr. 2007 Page(s):1 — 4.

Y. C. Yang, C. C. Lin, H. C. Chang et al, “A High Throughput VLSI
Architecture Design for H.264 Context-Based Adaptive Binary Arithmetic
Decoding with Look Ahead Parsing,” IEEE International Conference on

Multimedia and Expo (ICME), pp.357 — 360, Jul. 2006.

74

[9].

[10].

[11].

[12].

[13].

J.. W. Chen, C. R. Chang, Y. L. Lin, “A Hardware Accelerator for
Context-Based Adaptive Binary Arithmetic Decoding in H.264/AVC,” IEEE
International Symposium on Circuits and Systems, pp.4525-4528, May 2005.

J. H. Lin, Keshab K. Parhi, “Parallelization of Context-Based Adaptive Binary
Arithmetic Coders”, in Signal Processing, IEEE Transactions on, Oct. 2006.

J. L. Chen, “Design of Context Adaptive Arithmetic Encoder and Decoder for
H.264/AVC video Coding,” M.S. thesis, National Chiao Tung University,
Taiwan, Jul. 2005.

Y. H. Huang, “Context Adaptive Binary Arithmetic Decoder of H.264/AVC for
Digital TV Application,” M.S. thesis, National Chiao Tung University, Taiwan,
Jul. 2006.

P. Zhang, W. Gao, D. Xie, D. Wu, “High-Performance CABAC Engine for
H.264/AVC High Definition Real-Time Decoding,” International Conference

on Consumer Electronics ICCE,-Jan.-2007

75

Adopl e gk L X
SR e AR A

d124 p ¥ 1 1982.06.13

1988.09 ~ 1994.06 . I
1994.09 ~ 1997.06 & A Fi= & LR

1997.09 ~2000.06 &atF 22w g ard H

2000.09 ~2004.06 Rz 2@~ & @[Fafrs
2004.06 ~2008.01 R 2 &5 | I LT hhE

	01.CHI_封面.pdf
	02.ENG_封面.pdf
	03.CHI_ABSTRACT.pdf
	04.ENG_ABSTRACT.pdf
	08.誌謝.pdf
	09.Content.pdf
	10.THESIS.pdf
	16.自傳簡歷.pdf

