M SRR N E R RS2
Input Selection’Encoding Algorithm

for Low Power:Multiplexer Tree



e

M F IR ERRBITE R
Input Selection Encoding Algorithm

for Low Power Multiplexer Tree

Mopo4 kXD Student: Hsiao-En Chang
Ry e kE B4 Advisor: Dr. Juinn-Dar Huang
W=+ g

T ISR T AT
AR

e

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Electronics Engineering & Institute of Electronics

August 2006

Hsinchu, Taiwan, Republic of China

SEARL LT N



THIARE R T

£

MEERT ARG NI B F P LSS AVISIRF P £ R Y $2 - o &VLSI
BERAAIFr At —ia 3  BEACERREIN] S E

%1
FeAI 51 F e AR A f s 1 BAG b AR PRIT R 5 Tk 5

§
1 REARITIEL 28] 5 1 B ead bk F e < #4975 (switching activity)
LPEAFPEER PFIE 25 e B PR A S 1 B s

wﬂﬁlﬁl%ﬁiﬁﬁ$%ﬁdﬁ%ﬂaﬂ°ﬂ?%“ﬁ%*ﬂ%%*&ﬁﬂﬁﬁﬁ%
AT RS IR G B - B2H] FA BN S AP T hR AR B
ﬁ%%%%$&ﬁmﬁ%$%ﬁ%%%¢§ﬂﬁ%$’ﬂWﬁmﬁﬁ§%¢ﬁ$%
AR B TR~ ER G, P EES B TR ULE ~ E 8N
A2 BN HEP DS IR B RS A PR D SR E 2 A64H]

51 PR T fod Hsd S0 40 T aas SO R 0 T 249 -



Input Selection Encoding Algorithm
for Low Power Multiplexer Tree

Student: Hsiao-En Chang Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

With the advent of portable devices, power consumption becomes one of most
important considerations in the VLSI designs. Multiplexer (MUX) is a basic component
that is commonly used in VLSL:designs. In-general; only 2-to-1 and 4-to-1 MUX are
available in the standard cell libtary. Any size of MUX could be used in various design
blocks. Usually, an n-to-1 MUX 1s decomposed as an equivalent tree of 2-to-1 MUXes.
The switch activity is an important factor.of pewer consumption. In this thesis, we focus
on the minimization of the switch activity for each 2-to-1 MUXes in the MUX tree. We
utilize the on probabilities of input signals to analyze the switching activity of 2-to-1
MUXes in a MUX tree. We solve the following problem: Given the on probabilities and
the selection probabilities of input data signals, our proposed algorithm efficiently
assigns each input selection encoding for input data signals. According to each input
selection encoding of input data signals, a minimum power MUX tree is generated.
Finally, the experimental results reveal that our proposed algorithm reduces up to 24%

power dissipation for 64-to-1 MUX when compared to average power dissipation.
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Chapter 1 Introduction

In recent years, with the advent of portable devices such as cellular phone and
notebook PC, power consumption becomes an important consideration in the VLSI
designs. Multiplexer (MUX) is a basic component commonly used in the VLSI
designs. Although the portion of MUX in total power consumption may be not always
great, the circuitry must be designed to dissipate as little power as possible in low

power designs.

1.1 Motivation

With the advent of portable devices such as cellular phone and notebook PC, power
consumption becomes an important consideration in the VLSI designs. Due to limited
power-supply of current battery technology in'portable devices, the circuitry in these
portable devices must be designed to.consume. as little power as possible.
Additionally, the designs which require high-performance or great complexity cause
high power consumption. And, high power consumption increases the cost of packing
and cooling[1]. Thus, power consumption is one of most important measurements of
design quality.

Multiplexer is a basic component commonly used in the VLSI designs. In general,
MUX is generated from synthesizing conditional statements of codes written in
hardware description language[2]. Usually only 2-to-1 MUX and 4-to-1 MUX are
available in the standard cell library. However, any size of the n-to-1 MUX could be
used in applications. For example, a 64-to-1 MUX controls the operands of the
register file to a shared operator in the processor designs. Generally, an n-to-1 MUX
is decomposed as an equivalent tree of 2-to-l MUX and the procedure of the

decomposition is referred as MUX decomposition.



MUX is extensively utilized in various design blocks. Regardless of the size of the
MUX, the power dissipation of the MUX must be minimized in low power designs.
The switching activity is one of most important factors of power consumption[3]. The
related works which reduce switching activity have been widely studied[4-8].In this
thesis, we focus on the minimization of the switching activity for 2-to-1 MUXes in a
MUX tree.

The related works [9-10] have proposed approaches which try to find a minimum
power MUX decomposition. In our work, we remodel the problem which has larger
solution space than that of the previous work [9]. As well, our proposed algorithm
also determines a minimum power MUX tree. We believe that the results of our
proposed algorithm are better than the results of the previous works due to the

exploration of larger solution space:

1.2 Thesis Organization

The rest of the thesis is organized ‘as' follows: In Chapter 2 we analyze the power
dissipation of MUX and gives the detailed description of MUX decomposition. In
Chapter 3 we introduce the bottom up heuristic algorithm of the previous works. In
Chapter 4 we describe motivation of our works. In Chapter 5 we propose an algorithm
for efficiently performing low power MUX tree decomposition. In Chapter 6 we show
the experimental results and analyze the results. In the end, conclusions and future

works are presented in Chapter 7.



Chapter 2 Preliminaries

In this chapter, we analyze the power dissipations of 2-to-1 MUXes in a MUX tree
in the first selection. In the second selection, we give a detailed description of the
MUX decomposition. Moreover, we show that the different decompositions result in

the different power dissipations.

2.1 Power Dissipation of MUX

To estimate the power dissipation of a 2-to-1 MUX, the power dissipation is

expressed by the following formula:

1
power =7C o/ ' 'ofeq (1)
where C is the output capacitance; V44 is'the supply. voltage, f is the clock frequency,
and o is the switching activity of the output. In this thesis, we only focus on the
switching activity a, so the power dissipation-of a 2-to-1 MUX is proportional to a.
Consider a 2-to-1 MUX shown in “Fig. ‘I, the power dissipation of MUX is

proportional to o of the MUX output Q.

Q

sﬁ/l—llw—g

Fig.1. A 2-to-1 MUX

We define OP to be the on probability of a data signal. Take the on probability of

MUX output Q as example, it is called OP(Q). Fig. 2 shows probabilities of output Q



conditions for the 2-to-1 MUX in Fig. 1. The output Q switches as the output Q is
from logic 0 to logic 1 or from logic 1 to logic 0. We can observe that the switching
activity a of MUX output Q is equal to 2*OP(Q)*(1-OP(Q)). Therefore, the power

dissipation of 2-to-1 MUX solely depends on the OP of the MUX output.

(1-0P(Q)*(1-0P(Q) OPQMIOPQ)  opoyor(Q)

(1-OP(Q))*OP(Q)

Fig. 2. Probabilities,of output Q conditions

To analyze the power dissipation of a 2-to-1 MUX it is essential to compute the OP
of the MUX output. For a 2-fe-1 MUX"4in" Fig: 1, the OP of MUX output Q is
computed by the following equation:

OP(Q) = (1 — OP(S)) * OP(D0) + OP(S) * OP(D1) )

Further, we should analyze the power dissipations of each 2-to-1 MUX in a MUX
tree. That is, we should compute the OP of 2-to-1 MUXes in a MUX tree. Also, we
just use the OP of data signals, and the OP of selection signals. In Fig. 3, the OP(DO0),
OP(D1), OP(D2), OP(D3) and OP(S0) are given. According to Equation(2) , we can
compute OP(Q1) and OP(Q?2). It is easy to see that we can utilize OP(Q1), OP(Q2),
and OP(S1) to compute the OP(Q3) by using Equation(2). Therefore, given the OP of
data signals and the OP of selection signals, we can use the bottom up approach to

analyze the power dissipations of 2-to-1 MUXes in a MUX tree.



Q3
S1

Ql Q2
S0 S0

Do Di D2 D3

Fig. 3.A 4-to-1 MUX tree

2.2 MUX Decomposition

MUX decomposition is the procedure of transforming an n-to-1 MUX into an
equivalent tree of 2-to-1 MUXes. For example, Fig. 4 shows two different

decompositions of a 4-to-1 MUX .

S1

3 S0 S0 N Si

Do D1 D2 D3 Do Di D2 Ds Do D2 Di Ds
original MUX decomposition A decomposition B

| T T

Fig. 4. Two different decompositions of a 4-to-1 MUX

In Fig. 4, the data signals of the 4-to-1 MUX are denoted by DO, D1, D2, D3 while

the selection signals of the 4-to-1 MUX are denoted by SO, S1. The combinations

5



(S1, S0) of selection signals are used to select one of four data signals to be the 4-to-1
MUX output. We refer to this combination as the encoding for the data signals. For
example, the combination (1,1) is used to select D3 to be the MUX output. (S1,S0) =
(1,1) is the encoding of D3. Due to the different orders of selection signals for data
signals, the original MUX can be transformed to be two different decompositions.
Moreover, we can observe that each 2-to-1 MUX in two decompositions are given the
different data signals and the different selection signals. According to Equation(2), the

different decompositions result in the different power dissipations.



Chapter 3 Previous Works

In this chapter, we introduce the previous work [9]. In the first section, we describe
the problem formulation of the previous works. In the second section, the bottom up
heuristic algorithm proposed in [9] is introduced. In the third section, we give a

summary of the bottom up heuristic algorithm.

3.1 Problem Formulation of the Previous Works [9]

The previous work[9] solves the following problem: Given an n-to-1 MUX with a
fixed encoding for the data signals, the OP of the data signals, and the OP of the
selection signals, the algorithm of [9] tries to determine a minimum power MUX
decompositions. Fig. 5 shows an example of the 8-to-1 MUX. The encoding of data

signals, the OP of data signals, and’OP of selection.signals are given in Fig. 5.

fixed encoding
s2 st [so
po [o |o o
p1 o o |1
p2 o |1 o
p3 |o |1 |1
D4 |1 0 0 $2
Ds (1 |0 |1 S1
D6 |1 1 0 S0
A" TITTIT
OP(D0) ~ OP(D7), OP(S0) ~ OP(S2) Do DiD2D3D4DsDeD?

Fig. 5. An example of the 8-to-1 MUX



3.2 Bottom Up Heuristic Algorithm

In the bottom up heuristic algorithm, we construct the MUX decomposition from
the bottom level of the MUX tree to the top level of the MUX tree. Fig. 6 shows the
first pass of the 8-to-1 MUX. Three cases are formed by choosing three different
selection signals as the current selection signal. According to Eauqtion(2), we can
observe that the different selection signals cause different power dissipations for each
2-to-1 MUX. In the bottom up heuristic algorithm, we should calculate the sum of
power dissipations of the 2-to-1 MUXes. Then, we greedily choose the selection
signal with the smallest sum of the calculated power dissipations. For this example,
we choose selection signal SO to be the selection signal of the bottom level due to the

smallest sum of the total power dissipations,in casel.

first pass:
Ql Ql Q2 3

so#l_Ll\ S so#_L\ so#_L\

] [ [ ]
Do Dt DDz D4 D& De D

casel: selection signal SO

o A Q @

Q Q! Q2 0t
SHI_I_I\ Slﬂ SHI_I_I\ SHI_LI\ so{"\ SO‘/_L\ so{L\ so{L\

Do D2 DI D3 D4 Dg Ds D7 ] ] ] ]
case2: selection signal S1 Do Dr D2 Dy D4 D5 D6 D

Q0 Q1 Q2 Q3
sHl_Ll\ S — SHl_Ll\ SHl_Ll\

Do D& DI Ds D2 D¢ D3 Dr
case3: selection signal S2

Fig. 6. First pass of the 8-to-1 MUX



Intuitively, we apply the method of the first pass to choose the selection signals of
other levels of MUX tree iteratively. Fig.7 shows the second pass and third pass of the
8-to-1 MUX. In Fig. 7, we greedily choose the selection signals S2 to be the selection
signal at the second pass. At the third pass, only selection signal S1 is left to be the

selection signal for the top level of MUX tree.

second pass

7’@\ o 0l

0 Dl D2 D3 4 DS Dé D7 N 9

casel' selection S|gnal Sl

S0 S0 S S0
ﬂ o s s

[ ] 11
Do Di lgs 153 D¢ D7
casez: select|on S|gnal S2

third pass:
St
S2 S2

T A i W

Do Di D4 Ds D2 D3 De D7

Fig. 7. Second pass and third pass of the 8-to-1 MUX



3.3 Summary of Bottom Up Heuristic Algorithm

In this section, we give a summary of the bottom up heuristic algorithm. First, the
advantage of the bottom up heuristic algorithm is that at each pass we minimize the
power of half the remaining 2-to-1 MUXes in a MUX tree. For example, it needs
seven 2-to-1 MUXes to construct a 8-to-1 MUX tree. We minimize four 2-to-1
MUXes at the first pass in the bottom up heuristic algorithm. Second, the bottom up
heuristic algorithm is an efficient approach to determine a power-minimized MUX
decomposition. It returns a solution that is an optimal or near optimal decomposition.
We analyze the time complexity of the bottom up heuristic algorithm. If number of
data signals is n, the required iterations of bottom up heuristic algorithm is (log n) *

(logan+1)/2-1.

10



Chapter 4 Motivation

In this Chapter, the difference in solution space between the fixed encoding and
unfixing encoding for data signals is presented in the first section. In the second
section, we analyze the exact number of solutions for the two different solution

spaces.

4.1 Limited Solution Space

In selection 2.2, the MUX decomposition has been introduced. An example of two
different decompositions is shown in Fig. 8. ALU, MACO, MACI1, VIDEO are
functional blocks. The 4-to-1 MUX is decomposed as a tree of 2-to-1 MUXes.
Because the encoding are specified for the outputs of those functional blocks, we

reorder the selection signals to explore at most two.combinations of decompositions.

encoding

v SO 00 S1
ALU (Oo)r——s—l1 ALU ()|———S—0]
1) | (10) |
MACO | MACI | |

SO S1
mact P2 | : maco O | :
11 | 1 I
VIDEO[— 1 e e — 4 VIDEO [ e e e — .
decomposition A decomposition B

Fig. 8. An example of two different decompositions

However, if the encoding for the outputs of those functional blocks is not specified
in advance, the outputs of those functional blocks can be assigned to arbitrary input

positions of the 4-to-1 MUX. Fig. 9 shows an example of six possible combinations

11



of those functional blocks. As the encoding is not specified for the outputs of those
functional blocks, six possible combinations of those functional blocks can be
explored. The decomposition A and the decomposition B in Fig. 8 are the same as
casel and case2 in Fig. 9. Therefore, the solution space of unfixed encoding for data
signals is larger than the solution space of fixed encoding for data signals in advance.
Actually, each encoding of data signals is specified by designers. The fixed encoding

for data signals in advance is not generally necessary.

AV~ 1 A T T T A R T T T
| U | 4 |
MACO | | MACI | | MACO | |
I I | I
MACI | MACQ sy | VIDEO—LI_ |
VIDEO _____l VIDEO_rt.__..____I MACI_I_';____I
casel case2 case3
ALU M~ 1 — == ALU = — ]
ALU M 1
| | = | | |
MACI | | |vipeo | | [VIPEO—| |
| | |
VIDEO | MAC]I _u_ I MACO _ll_ I
| | _IJ‘ |
MACO = — 4 MACO—I_I._____J MACI |
case4d case5 case6

Fig. 9. An example of six possible combinations of those functional blocks

4.2 Solution Space Analysis

Assume the number of data signals is n. We analyze the exact number of the
solutions if the fixed encoding is assigned for data signals. We can reorder the
selection signals to search all possible decompositions. Hence, the number of the

solutions is (logy n)!. As the encoding is not specified for data signals in advance, we
12



can assign input position of the MUX arbitrary data signals. The number of the
possible combinations of the data signals is n!. In Fig. 10, the combination of the data
signals in case2 is generated by reversing selection signal S in casel. As well, the
power dissipation of casel is equal to the power dissipation of case2. That is, the
number of the solutions should be divided by 2 for each level of the MUX tree.
Hence, as encoding is not specified for data signals, the number of the solutions is
(n-1)!. The entire solution space is shown in Fig. 11. The solution space of the unfixed
encoding is equal to the entire solution space. Additionally, as the number of the data
signals increases, the ratio of the solution space of the fixed encoding to the entire
solution space decreases significantly. The bottom up heuristic algorithm in [9]
searches the solution in the solution space of fixed encoding of Fig.11. The solution of
our proposed algorithm in the next section is explored from the entire solution space

of Fig. 11.

Z | 7 | \"¥7 | 5 | \

Do D1 D2 D3 D1 Do D3 D2
casel case?2

Fig. 10. Equal power dissipation in both cases

fixed encoding

unfixed encoding

Fig. 11. Entire solution space
13



Chapter 5 Proposed Algorithm

In this Chapter, we describe the problem formulation of our proposed algorithm in
the first section. In the second section, we give a detailed description of our proposed

algorithm. In the third section, we summarize our proposed algorithm.

5.1 Problem Formulation of Proposed Algorithm

Our proposed algorithm tries to search a larger solution space than the bottom up
heuristic algorithm, so different problem formulation is given. We solve the problem
as following: Given the on probabilities (OP) of the data signals and the selection
probabilities (SP) of the data signals, our proposed algorithm determines input
positions for the data signals in a MUX tree. That is, the proposed algorithm assigns
input selection encoding for data signals. According to the input selection encoding of

the data signals, a power-minimized MUX tree is generated.

5.2 Proposed Algorithm

In this selection, we give a detailed description of our proposed algorithm.
5.2.1 Analysis of OP of MUX Output

The way to reduce the power dissipation of the MUX is to minimize the switch
activity a of the MUX output. The o of the MUX output only depends on the OP of
the MUX inputs. We discuss the relation between a and OP of the MUX further.
Consider a 2-to-1 MUX and the switching activity curve shown in Fig. 12. The curve
represents the equation o = 2*OP(Q)*(1 - OP(Q)). As the OP(Q) is away from 0.5, the
a decreases. If we want to reduce power dissipation of the 2-to-1 MUX, we should

avoid the OP of the 2-to-1 MUX output approaching 0.5.

14



0.45
04}

0351 /
03t

025+ 1

02t 4 Q

\ | |

Do D1

005+

D L 1 1 1 L 1 1 1 L
0 o1 02 03 04 05 06 07 08 03 1 OP(Q)

a =2*0OP(Q)*(1 - OP(Q))

Fig. 12. A 2-to-1 MUX and switching activity curve

The OP of the 2-to-1 MUX.‘outputs can be computed by Equation(2) and the
Equation(2) is actually an interpolation. A 2-to-1 MUX and illustration of Equation(2)
are shown in Fig. 13. From the-illustration‘of Equation(2) in Fig. 13, we make two
observations. First, OP(Q) is bound“between OP(D1) and OP(DO0). Second, the
position of OP(Q) between OP(D1) and OP(DO0) is proportional to the position of

OP(S) between 0 and 1.

Q " T=~-O0P(DI)
OP(Q)

IL ]L __~L0P(Do)
O 1 O_‘/’//

Fig. 13. A 2-to-1 MUX and illustration of Equation(2)
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5.2.2 2-to-1 MUX Inputs

In our proposed algorithm, we construct a MUX tree from the bottom level of
MUX tree to the top level of MUX tree. We should minimize the power dissipation of
2-to-1 MUX at a level of MUX tree first. According to Equation(2), if we consider
both SP and OP of data signals, the entire solution space must be explored
exhaustively. Due to time complexity, an efficient approach must be applied.

In section 5.2.1, we have mentioned that the OP of the 2-to-1 MUX output is bound
between two OP of 2-to-1 MUX inputs. If we determine 2-to-1 MUX inputs only by
considering the OP of data signals, the OP of 2-to-1 MUX output must vary between
two OP of the MUX inputs. For example, if we avoid 0.5 between two OP of the
2-to-1 MUX inputs, the OP of the 2-to-1 MUX output could be far from 0.5.Thus, we
only consider the OP of the data signals first in out.proposed algorithm.

Consider an example of different.2-to-1 MUX inputs shown in Fig. 14. Because we
consider the OP of the data signals only,-we-assign four data signals with equal SP to
the 2-to-1 MUX inputs in Fig. 14."The.data signals with equal SP cause OP(S) to be
0.5, so the OP of the 2-to-1 MUX output is equal to the middle between two OP of the
2-to-1 MUX inputs. In casel of Fig. 14, we see that the OP(Q1) is in the middle
between OP(D0) and OP(D3), so OP(Q1) is 0.5. We also can see that the OP(Q2) is
0.5. In case2 of Fig. 14, the OP(Q1) is 0.15 and the OP(Q2) is 0.75. The sum of a in
casel is higher than the sum of a in case2. From case2, we can instinctively think that
if the two data signals which both always have “on” conditions or both have “off”
conditions are in the same 2-to-1 MUX inputs, the a of the 2-to-1 MUX output is low.
Moreover, we can observe that the OP of the 2-to-1 MUX inputs in case2 avoid the
OP of the 2-to-1 MUX outputs approaching 0.5. Thus, if we use 0.5 to partition the

OP of the data signals into two groups and the data signals in the same group should
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be in the same 2-to-1 MUX inputs, the OP of the 2-to-1 MUX outputs could be far

from 0.5.

QL Q2
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0.4
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03

0251

T ¥
1S/ MI\SY M2\
DD Bl Do

OP(D0) OP(D1) OR(D2) OP(D3)

045 -

0.4r

-

03r

0.25) . Ql Q|2
|
S7 M1 \S7/ M2\
| |
D0 Dl ]|)2 ]|)3

0.6 0y na 09 OP
OP(D2) OP(D3)

case2

Fig. 14. An example of different 2-to-1 MUX inputs
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However, only partitioning the data signals into two groups is not enough to
determine all of 2-to-1 MUX inputs. We should find an efficient way to determine
2-to-1 MUX inputs in the n-to-1 MUX. Take the 8-to-l MUX as example. An
example of the different 2-tol MUX inputs in the bottom level of the 8-to-1 MUX is
shown in Fig. 15. The table presents the OP and SP of data signals. In the three cases,
the data signals in the same group are in the same 2-to-1 MUX inputs. We can see that
the sum of a in case3 is smallest among three cases. The approach of case3 uses the
sorting order of the OP of the data signals to determine the 2-to-1 MUX inputs. In our
proposed algorithm, we greedily adopt the approach of case3 to determine the 2-to-1
MUX inputs. If it has even number of the data signals in both groups, we also use the
sorting order to determine 2-to-1 MUX inputs. Thus, our proposed algorithm can
efficiently determine 2-to-1 MUX;inputs by using.sorting order of the OP of the data

signals.

18



data signals:

OP|0.1/0.2|0.3|0.4|0.6|0.7(0.8|0.9
SP|1/8(1/8|1/8 |1/8 |1/8 |1/8 |1/8|1/8

0'|25 0.|25 O.|75 O.|75
/I D\ /I I\ /1 D\ /I I\
0.1 0.4 0.2 0.3 0.6 0.9 0.7 0.8

a=1.5
casel
0.2 0|.3 O|.7 O|.8

/I I I\ /I I\ /I I\ /I I\
0.1 0.3 0.2 04 0.6 0.8 0.7 0.9

Soa=1.48
case?2

O.IIS 0'|35 O.|65 O.|85
/I I\ ,ﬂ f\ /| D\ /| I\
0.1 0.2 0.3 04-0.6 0.7 0.8 0.9

Xo=1.42
case3

Fig. 15. An example of the different 2-tol MUX inputs in the bottom level

of the 8-to-1 MUX
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5.2.3 Order of 2-to-1 MUX Inputs

Although our proposed algorithm determines 2-to-1 MUX inputs, the OP of the
2-to-1 MUX outputs are just bound between two OP of 2-to-1 MUX inputs. From
section 5.2.1, the OP of selection probability can determine the position of the OP of
the 2-to-1 MUX outputs between two OP of 2-to-1 MUX inputs. The Fig. 16 shows
different orders of 2-to-1 MUX inputs. The different orders of 2-to-1 MUX inputs
cause the different OP of the selection signal.

If we want to determine minimum power of 2-to-1 MUXes by changing the orders
of the 2-to-1 MUX inputs, the solution space is too large. For example, if the number
of the data signals is n, the number of all combinations of the data signals is 2 /2.
The example of the equal power dissipation condition is shown in Fig. 10. The
number of all combinations of the.data signals should be divided by 2. Thus, the total

/-1

number of the solutions is 2 ~Due to time complexity, an efficient way must be

proposed.

o N
A B C D A B D C

OP(S) = SP(B) + SP(D) OP(S)= SP(B) + SP(C)
casel case2

Fig. 16. Different orders of 2-to-1 MUX inputs
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The OP of the 2-to-1 MUX outputs should be as far from 0.5 as possible. Assume
that the 2-to-1 MUX inputs have the following ideal condition: the OP of the 2-to-1
MUX input port “1” is further from 0.5 than the OP of the 2- to-1 MUX input port “0”
and 2-to-1 MUX input port “1” has high selection probability. From illustration of
Equation(2) in Fig.13, the OP of the 2-to-1 MUX output approaches the OP of the
2-to-1 MUX input port “1” and have low «. Fig. 17 shows the ideal condition of
2-to-1 MUX inputs. In Fig. 17, the OP of the 2-to-1 MUX input port “1” is further
from 0.5 than the OP of the 2-to-1 MUX input port “0”. Moreover, the SP of the
2-to-1 MUX input port “1” is higher than the SP of the 2-to-1 MUX input port “0”.
Because OP(S) is 0.8, OP(Q1) approaches 0.9 between 0.5 and 0.9, OP(Q2)
approaches 0.1 between 0.1 and 0.5. Thus, if the condition of 2-to-1 MUX inputs is
the same as the ideal condition of 2-to-1 MUX inputs in Fig. 17, the higher SP of the
2-to-1 MUX input should be insthe.same input port. Then, the OP of the 2-to-1 MUX
output approaches the OP of the MUX input.which1s further from 0.5 than another.
However, we can’t expect that all conditions-of the 2-to-1 MUX inputs are the same

as the ideal condition of the 2-to-1 MUX input pair in Fig. 17.

Q1 Q2
S—/0 N\ S—7o 1\
I I
OP: 0.5 0.9 05 0.1
SP: 0.1 0.3 01 05
OP(S) =0.8

OP(Q1) = 0.82 OP(Q2) = 0.18

Fig. 17. Ideal condition of 2-to-1 MUX inputs
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Next, we classify 2-to-1 MUX input pair into two types form the OP and the SP of
the 2-to-1 MUX inputs. The two types of 2-to-1 MUX input pairs are referred as the
ideal MUX and the unpredictable MUX. If the condition of the 2-to-1 MUX inputs is
the same as the ideal condition of the 2-to-1 MUX inputs in Fig. 17, the 2-to-1 MUX
is an ideal MUX. Fig. 18 shows an example of the ideal MUX. We can see that SP(D)
> SP(C) and OP(D) < OP(C) < 0.5. The MUX M2 is an ideal MUX. The MUX M2 of
case2 has correct order of MUX inputs. The OP(Q1) and the OP(Q2) of case2 are
further from 0.5 than the OP(Q1) and the OP(Q2) of casel.The order of the ideal
MUX can be determined by the SP and OP of the ideal MUX inputs. Thus, the orders
of the ideal MUX inputs can be fixed efficiently without considering other orders of

MUX inputs.

OP |0.6 "} 0:804 |0.2
SP 102,403 (017|104

Ql Q2 1 Q2
TR R
A A
casel case?2
OP(Q1) =0.68, OP(Q2) = 0.28 OP(Q1) =0.74, OP(Q2) = 0.26

Fig. 18. An example of the ideal MUX

The unpredictable MUX is described as following: the OP of the 2-to-1 MUX
input port “1” is further from 0.5 than the OP of the 2- to-1 MUX input port “0” and
the SP of the 2-to-1 MUX input port “1” is lower than the OP of the 2- to-1 MUX

input port “0”. An example of the unpredictable MUX is shown in Fig. 19. The MUX
22



M2 is the unpredictable MUX. The OP(Q1) of case2 is further 0.5 than the OP(Q1) of
casel. However, the OP(Q2) of casel is further 0.5 than the OP(Q2) of case2. Both
results must be computed to determine the order of the unpredictable MUX inputs.
Thus we can’t predict the order of the unpredictable MUX inputs only from the SP

and the OP of the unpredictable MUX inputs.

A B C D
OP |06 |08 |04 |0.2
SP |02 |03 |04 |01

Ay ol 4

casel case2
OP(S)=0.4 OP(S) =0.7
OP(Q1) = 0.68, OP(Q2) =0.32 OP(Q1) =0.74, OP(Q2) =0.34

Fig. 19. An example of the unpredictable MUX

The properties of both ideal MUX and unpredictable MUX have been
introduced. All of 2-to-1 MUXes belong to either the ideal MUX or the unpredictable
MUX. All cases of the ideal MUX are shown in Fig. 20. And, two ideal MUX inputs
conform the following equation:

{ |OP(A) - 0.5| = |OP(B) - 0.5 } & { SP(A) = SP(B) } 3)

All cases of the unpredictable MUX are shown in Fig. 21. And, two unpredictable

MUX inputs conform the following equation:

{ |OP(A) - 0.5 > |OP(B)-0.5]} & { SP(A) < SP(B)} (4)
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Fig. 20. All cases of the ideal MUX
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Fig. 21. All cases of the unpredictable MUX
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5.2.4 Process of Fixing Order of MUX Inputs

After the 2-to-1 MUX inputs are given, we should find an efficient approach to fix
orders of the 2-to-1 MUX inputs to minimize a of the MUX outputs in our proposed
algorithm. First, we find all of the ideal MUXes and fix orders of the ideal MUX

inputs. Fig. 22 shows the process of fixing orders of ideal MUX inputs.

Sﬁ/()_l_l\ Sﬁ/()_l_l\

low SP high SP low SP high SP

Fig.22. Process of fixing orders of ideal MUX inputs

We can’t expect that all 2-to=]l MUXes ate the ideal MUXes. After fixing the
orders of the ideal MUX inputs, we have to fix the orders of the unpredictable MUX
inputs. Due to time complexity, we can’t search all possible solutions exhaustively by
swapping the unpredictable MUX inputs. According to Equation(2) and Equation(3),
only the SP of the data signals affect the OP of the 2-to-1 MUX outputs after the
2-to-1 MUX inputs are given. Consequently, we greedily fix the order of the
unpredictable MUX first which has the largest sum of the two SP of the unpredictable
MUX inputs. The process of fixing orders of the unpredictable MUX inputs is shown
in Fig. 24. The MUX M1 and the MUX M2 are the ideal MUXes, and their orders
have been fixed. The MUX M3 and the MUX M4 are the unpredictable MUXes. The
sum of the SP(E) and the SP(F) is larger than the sum of SP(G) and SP(H), so we fix
the order of MUX M3 inputs first. As computing the OP(S), the only fixed MUX are
considered. The different orders of the MUX M3 inputs cause the different OP(S).

The total power dissipation is the sum of the Q1, Q2, and Q3. We compute the two
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different total power dissipations. Then we greedily choose the order of the MUX
inputs which generates the lowest total power dissipation. In this example, the total
power dissipation of case2 is lower than the total power dissipations of casel. Thus,
the order of MUX M3 inputs of case2 is chosen. We use the same approach to fix all
orders of the unpredictable MUX inputs iteratively. After fixing all orders of the
unpredictable MUX inputs, the input positions of the data signals in a level of the

MUX tree are determined.

wwﬁ%

SP(B)+SP(D)+SP(F)
SP(A)+SP(B)+SP(C)+SP(D}:SPE)SP(F)

casel S4| I\/llll\S—/| 1\/|[2|\S4|1\/}3|\S—/|N}4|\

A B CD F E GH
wwww

F E G H

SP(B)+SP(D)+SP(E)
SP(A)+SP(B)+SP(C)+SP(D)+SP(E)+SP(F)

case?

OP(S)=

OP(S)=

Fig.24. Process of fixing orders of the unpredictable MUX inputs

In our proposed algorithm, we construct a MUX tree from the bottom level to the
top level. From the previous steps, we have analyzed how to determine the input
positions of the data signals in a level of the MUX tree. Then we can obtain the OP of
the each 2-to-1 MUX output in a level of the MUX tree. It is easy to see that the SP of

the 2-to-1 MUX output is the sum of the SP of the 2-to-1 MUX inputs. By using the
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SP and the OP of the MUX outputs in a level of the MUX tree, we use the same
approach to determine next level of a MUX tree. Finally, the input positions of the
data signals in a MUX tree are determined. That is, input selection encoding is

assigned to the data signals.

5.3 Summary of Proposed Algorithm

According to the main idea introduced in previous sections, the process of our

proposed algorithm can be summarized in the following steps:

e Determine 2-to-1 MUX inputs in a level of the MUX tree greedily by using the
sorting order of the OP of the data signals.

o (lassify the 2-to-1 MUX inputs into,two types from the SP and the OP of the
2-to-1 MUX inputs. The two typesiarethe ideal MUX and the unpredictable
MUX .

e Fix the orders of the ideal MUX inputs-first. For example, all of the ideal MUX
input port“1” are given 2-to-1 MUX"input which has higher SP than another
input.

e Fix the orders of the unpredictable MUX inputs one by one. The priority is given
by the sum of the two SP of the unpredictable MUX inputs.

o After the orders of the 2-to-1 MUX inputs are fixed in the a level of the MUX
tree, the SP and the OP of the 2-to-1 MUX outputs are known. Thus, apply the
previous steps to determine each level of the MUX tree iteratively.

e Finally, the input positions of the data signals in a MUX tree are determined and

the input selection encoding is assigned for the data signals.
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Chapter 6 Experimental Results and Analysis

We implement both bottom up heuristic algorithm and our proposed algorithm in
our experiments. We apply these algorithms on 4-to-1, 8-to-1, 16-to-1, 32-to-1, and
64-to-1 MUXes. The implementations are in C++. The different OP and SP of the
data signals cause the different results. We randomly generate 100 different cases of
the OP and the SP for data signals when we apply these algorithms on each n-to-1
MUX. Then, we recorder those results and get the average result.

We define that the better solution is the solution which is better than the reference
solution in the entire solution space. Table 2 shows the average number of the better
solutions in the 4-to-1 MUX. Table 3 shows the number of the better solutions in the
8-to-1 MUX. The “average solution’is the average result of 1000 random cases for
different data signals. The better'case ratio is caleulated by the following equation:

number of average  better solutions (5)
numberi-of total solutions

better solution ratio =

The number of the total solutions is 3! = 6 for a 4-to-1 MUX. The number of the total
solutions is 7! = 5040 for an 8-to-1 MUX. The “variance” presents the variance of
average number of better solutions. The variance is not great in 4-to-1 MUX and
8-to-1 MUX. The solutions of bottom up heuristic algorithm are near best solutions of
MUX decomposition. However, about 20% of the total solutions are better than the
best solution of MUX decomposition in 8-to-1 MUX due to small solution space. The
solution of our proposed algorithm is better than over 95% of the total solutions in
8-to-1 MUX. If the size of the MUX is over 8, the total solution space is too large. We
only search the total solutions of the both 4-to-1 MUX and 8-to-1 MUX to compare

results.
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Table 1. Average number of the better solutions in the 4-to-1 MUX

approach

average Liu's work | best solution Proposed
solution of MUX
decomposition
2.97 1.96 1.96 0.39
0.82 0.73 0.73 0.75
49.50% 32.6/% 32.6/% 6.50%

Table 2. Average number of the better solutions in the 8-to-1 MUX

approach

average Liu'swork | best solution proposed
solution of MUX

decomposition
245158 | 1031.72 926.87 28.13
138.85 220.79 187.15 46.06
48.64% 20.47% 18.39% 0.56%

The total solutions of the arbitrary n-to-1 MUX can’t be obtained. We analyze the

results by using the following equation:

power savingrate =

average solution - reference soultion

average solution
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Moreover, we observe the each power saving rate at different ranges of OP of the data
signals. The three different ranges are {0< OP <1}, {0.2 < OP < 0.8}, and {0.4 < OP
< 0.6}. The power saving rates at the three different ranges is shown in Table 3, Table
4, and Table 5. The solutions of the proposed algorithm are near the best solutions of
entire solution space in the 4-to-1 MUX and 8-to-1 MUX. In our proposed algorithm,
as the size of the MUX increases, the power saving rate increases. For example, the
power saving rate of 64-to-1 MUX is up to about 24% at the range {0 < OP <l1}. In
the bottom up heuristic algorithm, as the size of the MUX increases, the power saving
rate decreases. This is because that the ratio of the solution space of MUX
decomposition to the entire solution space decreases significantly, as the size of the
MUX increases. From Table 3, Table 4, and Table 5, the power saving rate decreases
as range of the OP diminishes. FromEq1uat10n(4), if the OP of the data signals is
between 0.4 and 0.6, the OP of-.'thé MU)IK_ioﬁ,tputs §1-:i.1|1 vary between 0.4 and 0.6 with
any combinations of the data si:gflals,. Thﬁsrtheqangél of the OP of data signals limits
the power saving rate. s -

Table 3. Power saving rate at the range {0 <OP < 1}

Liu’s work best solution of proposed best solution
MUX of entire
decomposition solution
space

4.46% 4.46% 7.82% 9.36%

5.56% 6.03% 16.78% 18.75%
5.26% 5.74% 20.89% _
4.50% 4.83% 23.43% _
3.19% 3.38% 24.33% _
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Table 4. Power saving rate at the range {0.2 < OP < 0.8}

Liu's work best solution proposed best solution
of MUX- of total
decomposition solution space
1.28% 1.28% 2.65% 3.00%
1.88% 2.06% 5.48% 6.18%
1.76% 1.89% 6.72% _
1.49% 1.60% 7.75% _
1.22% 1.28% 8.10% _
'S '! .. | J:’ | x ‘~ .'-
Table 5. Power §a;V1ng rate at ’the»range {0.4 <OP < 0.6}
-':'.‘, h s b .*F""‘:
Liu’s work best solution proposed best solution
of MUX of total
decomposition solution space
0.12% 0.12% 0.30% 0.32%
0.19% 0.20% 0.59% 0.67%
0.19% 0.20% 0.78% B
0.16% 0.18% 0.83% B
0.14% 0.14% 0.86%
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Chapter 7 Conclusions and Future Works

In this thesis we have solved the following problem: Given the SP and OP of the
data signals, our proposed algorithm determine input positions for the data signals in a
MUX tree. That is, the input selection encoding is assigned for the data signals.
According to the input selection encoding of the data signals, a power-minimized
MUX tree is generated. We analyze the differences in solution space between fixed
encoding and unfixed encoding for the data signals. Because the fixed encoding for
data signals limits the size of the solution space, our proposed algorithm is applied
without fixed encoding for data signals. From experimental results, the solution of our
proposed algorithm is better than over 90% of total solutions in 4-to-1 MUX and
8-to-1 MUX. Moreover, as the numbet of the data signals increases, the power saving
rate increases in the proposed algorithm.:FHor'example, the power saving rate is 24%
for 64-to-1 MUX at the OP range between 0 and 1.

Our proposed algorithm only considers the n-to-1 MUX where n is power of 2. The
incomplete MUX where size of MUX is not power of 2 is not adoptable in our
proposed algorithm so far. There are two problems. First, our proposed algorithm
can’t handle the odd number of the data signals, because one data signal is not
assigned to 2-to-1 MUX inputs. Second, some solution space can’t be explored. For
example, if the number of data signals is six, there are eight input positions for the six
data signals. Our proposed algorithm always assigns the six data signals to six
continuous input positions. And, the combination of non-continuous input positions
can’t be explored. Thus, in future works, we should extend our approach to handle
incomplete MUX tree or we use other algorithms to determine a minimum power

incomplete MUX tree.

33



References

[1] V. Tiwari, P. Ashar, and S. Malik, “Technology mapping for low power”, Design
Automation Conference, pp 74-79, June 1993.

[2] Shashidhar Thakur, D. F. Wong, and Shankar Krishnamoorthy, “Delay minimal
decomposition of mulitiplexers in technology mapping,” Desgin Automation
Conference, 1996.

[3] A. Ghosh, “Estimation of average switching activity in combination and

sequential circuits,” Proc. 29 th DAC, pp 253-259, June 1992.

[4] Rajeev Murgai, Robert K. Brayton, and Alberto Sangiovanni-Vincentelli,

“Decomposition of logic functions for minimum transition activity,” Proceedings
of European Design and Test conference, pp 404-410, 1995.

[5] A. Chandrakasan, R. Brodérsen, ‘“‘Minithizing power consumption in digital
CMOS circuits,” IEEE Proceedings, vol: 83, no. 4, pp. 473-484, April 1996.

[6] Unni Naray anan, P eic hen Ran, and C-LE:Liu; “Low power logic synthesis under
a general delay model”, Proceedings of International Symposium on Low Power
Electronics Design, pp. 209-214. 1998.

[7] Chi-Ying Tsui, Massoud Pedram, and Alvin M. Despain, “Technology
decomposition and mapping targeting low power dissipation”, Design Automation
Conference, pp 68-73, 1993.

[8] Eric Lehman, Yosinori Watanabe, Joel Grodstein, and Heather Harkness, “Logic
decomposition during technology mapping,” International Conference on
Computer-Aided Design, pp 264-271, 1995.

[9] Unni Narayanan, Hon Wai Leong, Ki-Seok Chaung, and C.L.Liu, “Low power

Multiplexer Decomposition,” Proceedings of International Symposium on Low

Power Electronics Design, pp. 269-274. 1997.

34



[10] Kisun Kim, Taekyoon Ahn, Sang-Yeol Han, Chang-Seung Kim, and Ki-Hyun
Kim, “Low-power multiplexer decomposition by suppressing propagation of

signal transitions,” Circuits and Systems, vol.5, no.5, pp 85-88, May 2001.

35



	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Organization

	Chapter 2 Preliminaries
	2.1 Power Dissipation of MUX
	2.2 MUX Decomposition

	Chapter 3 Previous Works
	3.1 Problem Formulation of the Previous Works [9]
	3.2 Bottom Up Heuristic Algorithm  
	3.3 Summary of Bottom Up Heuristic Algorithm

	Chapter 4 Motivation 
	4.1 Limited Solution Space
	4.2 Solution Space Analysis

	Chapter 5 Proposed Algorithm 
	5.1 Problem Formulation of Proposed Algorithm  
	5.2 Proposed Algorithm
	5.2.1 Analysis of OP of MUX Output
	5.2.2 2-to-1 MUX Inputs
	5.2.3 Order of 2-to-1 MUX Inputs 
	5.2.4 Process of Fixing Order of MUX Inputs 

	5.3 Summary of Proposed Algorithm 

	Chapter 6 Experimental Results and Analysis 
	Chapter 7 Conclusions and Future Works

