

國立交通大學

電子工程學系 電子研究所

碩 士 論 文

高效能且可組態之

子字組平行化乘加器設計

High-Performance Reconfigurable

Sub-Word Parallel Multiplier-Accumulator Design

研 究 生：林宏光

 指導教授：黃俊達 博士

中 華 民 國 九 十 五 年 七 月

高效能且可組態之

子字組平行化乘加器設計

High-Performance Reconfigurable

Sub-Word Parallel Multiplier-Accumulator Design

研 究 生：林宏光 Student: Hung-Kuang Lin

指導教授：黃俊達 博士 Advisor: Dr. Juinn-Dar Huang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Electronics Engineering & Institute of Electronics

July 2006
Hsinchu, Taiwan, Republic of China

中華民國九十五年七月

高效能且可組態之

子字組平行化乘加器設計

研究生：林宏光 指導教授：黃俊達 博士

國立交通大學

電子工程學系 電子研究所

摘 要

本論文提出一個高效能乘加器的設計方法。此乘加器除支援子字

組平行化功能之外，還能執行混模運算並具較有彈性的子字組設定。

我們提出了一個新的子字平行部份乘積陣列及一個創新的子字平行

部份乘積簡化樹以實現子字組平行化。為了利用原本的乘加器硬體，

子字組平行化乘加器僅需增加微量的延遲及些許的面積。我們提出的

乘加器可動態重組、可合成、可重覆使用且可驗證。我們實做並比較

我們的設計及先前的設計。實驗數據顯示，無論在設計延遲、所佔面

積、所耗功率，我們的方法在理論上及實務上都改善並且勝過舊方法。

 I

High-Performance Reconfigurable

Sub-Word Parallel Multiplier-Accumulator Design

Student: Hung-Kuang Lin Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering &

Institute of Electronics
National Chiao Tung University

ABSTRACT

This thesis presents the design methodology of a high-performance

reconfigurable multiplier-accumulator (MAC) capable of supporting sub-word

parallelism (SWP) and additional features such as mixed-mode operation and flexible

sub-word combination and mode assignment scheme. In order to perform SWP on the

proposed scalar MAC, a new SWP partial product array and a novel speed-optimized

SWP partial product reduction tree are proposed. With slight delay and some area

overhead, the SWP MAC utilizes essentially the same hardware as the proposed

scalar MAC. The whole design is dynamically reconfigurable, fully-synthesizable,

reusable, and verifiable. The proposed designs and previous relevant works are

implemented and compared. Experimental results demonstrate that the proposed SWP

MAC design theoretically and practically improves and outperforms previous works

in terms of critical path delay, area cost, and power consumption.

 II

ACKNOWLEDGMENT

誌 謝

能完成這份論文，首先我要感謝指導教授黃俊達老師。老師除

了授業及解惑專業知識之外，也教導我許多做研究及做事的方法與態

度，這些都對我的未來有裨益。另外感謝 ACAR 實驗室同學翊展、

孝恩、維聖、士祐，你們在各方面給的建議與幫助讓我這兩年研究生

涯過得充實而不孤單；碩一學弟哲霖、之暉、南興，碩一點五吉祥物

詠翔學長，你們是阿達實驗室的快樂泉源，謝謝你們讓我愛上

LAB317B 這小空間；特別感謝碩零學弟建德在這個研究議題上給我

的大量支援。謝謝交大電子 92 級的老同學們在工作上給的建言；謝

謝建中 329 班及蘆中 326 的一干老朋友們，看到大家都很努力讓見賢

思齊。也向其他默默支持我的朋友們說聲感謝。謝謝遠在美國的文玉

長時間的擔待，妳的支持是我的最大動力。最後且最重要地，感謝家

人的關懷。爺爺及奶媽是我的精神支柱；姊姊一直以來的支持及鼓

勵，讓我一生受用；感謝父母親二十多年來的撫養及付出，沒有您們

就不會有我與這份論文，我會努力讓您們開心。

我願將這份論文獻給支持我的大家。我愛你們！

 III

CONTENTS

Abstract (Chinese) .. I

Abstract (English) ... II

Acknowledgment ... III

Contents .. IV

List of Tables .. VII

List of Figures ... VIII

Chapter 1 Introduction ... 1

Chapter 2 Previous Works ... 4

 2.0 Overview ……………………………………………………………………… 4

 2.1 Prerequisites …………………………………………………………………... 4

 2.1.1 Simple Multiplication & Booth's Algorithm ………………………...….... 4

 2.1.2 Acceleration of Multiplication Flow ………………………………....…... 6

 2.1.3 Modified Booth's Algorithm (MBA) ………………………………..….... 7

 2.2 Related Works ……………………………………………………………...…. 9

 2.2.1 Partial Product Generation (PPG) …………………………………...….... 9

 2.2.2 Three-Dimensional-Method (TDM) PPRT …………………………...… 14

 2.2.3 High-Speed Adders ……………………………………………………... 16

 2.2.4 Sub-Word Parallelism (SWP) …………………………………………... 20

 2.3 Summaries of Previous Works …………………………………………….… 26

 IV

Chapter 3 Proposed MAC Designs .. 27

 3.0 Overview ……………………………………………………….………...….. 27

 3.1 Scalar MAC (SMAC) Design ……………………………………………..… 27

 3.1.0 Specification ………………………………………………………….… 27

 3.1.1 Scalar Partial Product Generation (SPPG) …………………………...…. 28

 3.1.2 Scalar Partial Product Reduction Tree (SPPRT) …………………….….. 31

 3.1.3 Scalar Carry-Propagate Adder (SCPA) ……………………………….… 33

 3.1.4 Summaries of the Proposed Scalar MAC Design …………………….. 33

 3.2 Sub-Word Parallel MAC (SWP MAC) Design………………….…………… 34

 3.2.0 Specification ……………………………………………….…………… 34

 3.2.1 Sub-Word Parallel MAC Execution Flow ……………………………… 35

 3.2.2 Sub-Word Parallel PPG (SWPPG) ……………………………………… 36

 3.2.3 Sub-Word Parallel PPRT (SWPPRT) …………………………………… 43

 3.2.4 Sub-Word Parallel CPA (SWCPA) ……………………………………… 46

 3.2.5 Summaries of the Proposed SWP MAC Design ...……………………… 49

Chapter 4 Experimental Results .. 50

 4.0 Overview …………………………………………………………………...... 50

 4.1 Implementation …………………………………………..………………….. 50

 4.2 Discussion of Experimental Results ………………………………………… 51

 4.2.0 Overview ………………………….…………………………………….. 51

 4.2.1 Delay Comparison ………………………………...….………………… 52

 4.2.2 Area Comparison …………………………………….…………………. 55

 4.2.3 Power Comparison …………………………………...…………………. 58

 V

Chapter 5 Application Notes .. 60

 5.0 Overview ………………………………………………………………… 60

 5.1 Functionality Enhancement ………………………………….……………… 60

 5.1.1 Multiply-Accumulate (MAC) Operation ………………….……………. 60

 5.1.2 Multiply-Negate (MAN) Operation ………………………..…………… 62

 5.1.3 Unsigned Operation ………………………………………….….……… 65

 5.1.4 Mixed-Mode Operation ……….……………………………...………… 67

 5.2 Overflow/Underflow Check for FXP Numbers …………………...………… 69

 5.2.1 Fixed-Point (FXP) Representation ……………………………………… 69

 5.2.2 Maintaining Precision & Accuracy …………………………...………… 70

 5.2.3 Saturation & Overflow/Underflow for Integers ………………………… 71

 5.2.4 Rounding of Fractions …………………………………………….…..… 77

 5.3 Reconfigurable Parameters Setup …………………………………....……… 78

Chapter 6 Conclusions .. 82

Future Works .. 83

Bibliography ... 84

 VI

LIST OF TABLES
Table 2.1. Selection table of modified Booth’s algorithm ………………....………... 8

Table 2.2. Truth table of standard encoding …………………………….......…….... 10

Table 2.3. Truth table of compact encoding …………………………....................... 10

Table 2.4. Truth table of race-free encoding ……………………….....................…. 11

Table 2.5. Truth table of LSB_new and hot2 …………………..…………............… 14

Table 3.1. Specification of the proposed SMAC design ………………................… 27

Table 3.2. Specification of the proposed SWP MAC design ………….....………… 35

Table 3.3. Possible sub-word combinations of the proposed SWP MAC design 35

Table 3.4. Truth table of sign encoding bits and sign bits of PPs ………………..… 41

Table 4.1. Environment setup for experiments …………………………………..… 51

Table 4.2. Critical path delay comparison ……………………………………….… 52

Table 4.3. Delay overhead on performing SWP …………………………………… 54

Table 4.4. Area cost comparison …………………………………………………… 55

Table 4.5. Area overhead on performing SWP ………………………………..…… 57

Table 4.6. Power consumption comparison ………………………………………... 58

Table 4.7. Power-delay characteristic comparison …………………………….…… 59

Table 5.1. Pseudo MAC instruction types and notations ………………………...… 72

Table 5.2. Pseudo MAC instruction examples ……………………………………... 72

Table 5.3. Some available modes for pseudo MAC instructions …………………... 73

Table 5.4. Possible saturation conditions using the exampling architecture ………. 76

Table 5.5. Interface of the proposed design ………………………………………... 79

Table 5.6. Possible sub-word combinations of the proposed SWP MAC design ….. 80

Table 5.7. Configuration example of KILL signal ……………………………….... 80

Table 5.8. Configuration example of MODE signal ……………………………….. 81

 VII

LIST OF FIGURES

Fig. 2.1. Simple multiplication flow ………………………………………………… 5

Fig. 2.2. Multiplication flow in three steps ………………………………………….. 7

Fig. 2.3. Execution flow of MBE multiplication ……………………...…………….. 9

Fig. 2.4. The MBE encoder and decoder in [9] ………………………….................. 11

Fig. 2.5. Sign encoding and hot-one modification …………………………………. 13

Fig. 2.6. The concept of TDM ……………………...……………………………… 15

Fig. 2.7. An 8-bit carry-select adder example ……………………………………… 17

Fig. 2.8. Architecture of a 32-bit hybrid parallel-prefix/carry-select Ling adder ….. 18

Fig. 2.9. Architecture of a 32-bit scalar Fong adder ……………………………….. 19

Fig. 2.10. Logic operators used in Fong adder …………………………………….. 20

Fig. 2.11. A simplified PPA for 32 × 32 multiplication in different modes ………... 22

Fig. 2.12. Shared Segmentation PPA for 32×32 multiplication in different modes ... 24

Fig. 3.1. Execution flow of the proposed Scalar MAC design …………………….. 28

Fig. 3.2. Decoding mcand 1000 in different modes when MBE selects -2x ……….. 30

Fig. 3.3. FA cell used in the proposed SPPRT …………………………………… 32

Fig. 3.4. The proposed scalar architecture …………………………………………. 34

Fig. 3.5. Execution flow of the 32-bit proposed SWP MAC design ……………….. 36

Fig. 3.6. A 32-bit example of masking and multiplexing on the multiplier ……....... 37

Fig. 3.7. Detailed view of the 32-bit proposed SWPPA with a selection example … 39

Fig. 3.8. SW combinations of the 32-bit proposed SWP MAC design …………….. 42

Fig. 3.9. Breaking the FA carry-chain for SWP in SWPPRT ………………………. 44

Fig. 3.10. FA with carry-in masking used in [10] ………………………………….. 45

Fig. 3.11. FA with carry-out masking used in the proposed design ………………... 45

Fig. 3.12. A simple 64-bit SWP adder ……………………………………………… 47

 VIII

Fig. 3.13. Architecture of a 32-bit Fong adder with reconfigurability ……………... 48

Fig. 5.1. Execution flow of two approaches to completing MAC operation ………. 61

Fig. 5.2. MAN flow of method A …………………………………………………... 62

Fig. 5.3. MAN flow of method B …...……………………………………………… 63

Fig. 5.4. MAN flow of method C …………………………………………………... 64

Fig. 5.5. An exampling PPA for MAN/MAS operations using method C …………. 65

Fig. 5.6. Adding a PP to perform unsigned operation ……………………………… 66

Fig. 5.7. A representation problem on negation of unsigned numbers …………….. 67

Fig. 5.8. Dynamic range comparison among signed, unsigned, and mixed-mode … 68

Fig. 5.9. A PPA supporting MAN/MAS, unsigned/mixed-mode operation ………... 69

Fig. 5.10. Effect with or without saturation when overflow/underflow occurs ……. 74

Fig. 5.11. Three different rounding schemes ………………………………………. 78

 IX

CHAPTER 1
INTRODUCTION

Multiply-accumulate (MAC) computation is one of the most frequent operations

in DSP applications. A multiplier followed by an accumulator to integrate into a

multiplier-accumulator (MAC) unit characterizes a DSP processor. A series of MAC

operations has an arithmetic form like coefficient-data, inner product, or matrix

computation, and which serves as the core operation in many DSP algorithms such as

convolution, finite impulse response (FIR), fast Fourier transform (FFT), discrete

cosine transform (DCT), and so many other DSP algorithms also demand extensive

MAC operations. Multiplication (MUL), a basic essential arithmetic operation, is

regarded as a special case of MAC operation processed in the same MAC unit [1], [2],

[3]. Improvements in MAC design therefore significantly benefit the performance of

the whole DSP processor according to Amdahl’s law. A high performance DSP

processor desires a high speed MAC unit with reduced area, low power, and high

computational throughput, decided by the specification. To facilitate a high speed

MAC design, an architecture using radix-4 modified Booth encoding (MBE) [4] and

Wallace partial product reduction tree (PPRT) [5] associated with a high speed

carry-propagate adder (CPA) is prevalent. To increase the computational throughput,

sub-word parallelism (SWP), a form of single-instruction-multiple-data (SIMD),

helps by processing all sub-words (SWs) in parallel and hence providing a

performance boost especially for multimedia applications that often require

lower-precision operands [6].

Considering the short time to market of a product required in the very era of

system-on-a-chip (SoC), a synthesizable, reusable, and verifiable silicon intellectual

 1

property (SIP) with flexible user reconfigurability is popular and utilizes the design

reuse concept to help accelerate system integration [7]. Some MAC designs improve

the delay of CPA by prudently calculating the signal arrival time of each operand bit,

and use the delay profile to configure a faster adder scheme [8], [9]. This indicates the

adder scheme highly depends on the chosen cell library and thus usually not suitable

for reusable designs.

The previous SWP MAC designs are not speed optimized: the architecture in [6]

does not use MBE, resulting more partial products to be accumulated and

considerably increasing the latency. A modified Booth-encoded (MBE) MAC

architecture in [10], [11] completes SWP using a technique called “shared

segmentation” to arrange the partial product array (PPA); however, it forces a regular

connection scheme for full-adders (FAs) in the Wallace PPRT, producing lower

performance. In addition, the previous designs have a limited functionality either in

data format or in SW flexibility.

This thesis presents a synthesizable, reusable, and verifiable high-performance

reconfigurable MAC design. The proposed SWP MAC design is obtained, with slight

effort and small area overhead, by performing SWP on the proposed scalar design

which comprises a high performance MBE, a speed optimized PPRT, and a high

speed CPA. The proposed scalar design supports not only the signed operation but

also the unsigned and a special mixed-mode operation which forces the multiplicand

to be signed and multiplier to be unsigned. Mixed-mode operation provides a larger

dynamic range for DSP applications. The proposed scalar design also has better

performance in most cases compared with previous scalar MAC designs. As for SWP,

the proposed SWP MAC utilizes a novel SWP PPA to advance the performance of

SWP PPRT, and takes advantage of a new concept of carry-out masking to facilitate a

speed optimized SWP PPRT. Concerning the CPA, a high-performance Fong adder

 2

with SWP capability is integrated into the proposed scalar and SWP designs. The

proposed scalar design is superior to related works in most cases while the proposed

SWP MAC design not only outperforms previous works in terms of delay, area, and

power consumption but also features a more flexible SW combination and mode

assignment scheme.

The remainder of this thesis is organized as follows: Chapter 2 briefly describes

the previous works that are most relevant to the proposed designs. Chapter 3 details

the design methodology of the proposed MAC designs and theoretically compares

with previous works. Chapter 4 demonstrates and discusses the experimental results.

Chapter 5 explains some important application notes concerning the utilization of the

proposed designs. Chapter 6 concludes this thesis. Future works and bibliography are

also provided afterward.

 3

CHAPTER 2

PREVIOUS WORKS

2.0 Overview
In this chapter, we review some important previous work relevant to the

proposed MAC architecture. Section 2.1 recalls fundamentals and algorithms of

multiplication; Section 2.2 concisely describes some related works, theorems, and

techniques; Section 2.3 summarizes the previous works and highlights the differences

to be described in the next chapter.

2.1 Prerequisites

2.1.1 Simple Multiplication & Booth’s Algorithm

Traditional binary multiplication flow is essentially the same as done in decimal

multiplication: Logic AND operation is performed on a single bit of the multiplier

with each bit of multiplicands; the temporal result, a partial product (PP), always

equals the multiplicand itself or zero; the least-significant-bit (LSB) of the PP is

aligned to the multiplier bit used. Consequently, if an m-bit by n-bit multiplication is

executed, there will be n PPs each with m significant bits. After zero-extending or

sign-extending each PP to the most and the least significant ends, an m-bit by n-bit

rectangular partial product array (PPA) is formed. Accumulating all PPs produces the

final multiplication result. Fig. 2.1 shows the simple multiplication flow of an 8-bit by

8-bit multiplication. Roughly speaking, the number of the significant bits used (x-bit

in PPA of Fig. 2.1) is proportional to the amount of hardware required [12].

 4

The flow above is somewhat redundant when a series of zeros shows in the

multiplier; it can be further improved. In 1951, Booth introduces a binary

multiplication algorithm on the grounds of the add-and-shift concept [12]: the

consecutive bits in multiplier affect the generation of partial products. This

algorithm is based on two’s complement system and thus performs signed

multiplication. The fact that shifting alone is faster than addition followed by

shifting makes Booth’s multiplication faster than traditional ones. Although Booth’s

algorithm, also referred as radix-2 Booth’s algorithm, is not directly applied to

modern arithmetic circuits, it serves as a basis in understanding the radix-4 version

of this algorithm – modified Booth’s algorithm (MBA) [3].

Note that both simple multiplication and Booth’s algorithm produce a number

of n PPs where n is the bit width of the multiplier, as the eight PPs shown in Fig. 2.1.

Fig. 2.1. Simple multiplication flow.

 5

2.1.2 Acceleration of Multiplication Flow

The completion of multiplication involves two basic operations – partial

product generation (PPG) and their accumulation. Consequently, reducing the

number of PPs or accelerating their accumulation helps speed up multiplication [1].

The MBA for reducing the number of PPs will be detailed in the next section.

Accumulation of all PPs implies a series of addition. In theory, we can use a

series of carry-propagate adders (CPAs) to accumulate all PPs; the number of

addition required is in proportion to the number of PPs. This naïve method is

impractical because the delay of a CPA is considerable, let alone the number of PPs

grows with the bit width of the multiplier. A better architecture for connecting CPAs

exploits some parallelism; this is how we demonstrate in Fig. 2.1. However, the

number of the CPA levels still relates to the number of the PPs, incurring longer

delay.

As a result, the partial product reduction tree (PPRT) is often utilized. There

are plenty of algorithms dedicating to construct a PPRT [5], [14], [15]. One of the

most popular constructions of PPRT is the Wallace Tree [5]: use full-adders (FAs),

or say (3:2) counters [3], as the building blocks to perform carry-save addition

(CSA). It does not work out the addition result at the middle levels of the tree;

instead, it just saves each level’s carry-out and sum information of CSAs, avoiding

the carry propagation which takes a long time. A PPRT, Wallace Tree included, often

reduces many rows of PPs until only two rows remain; after summing these two

final PPs using a CPA (carry-out demands 1-bit left shift), the product is obtained.

A PPRT speeds up multiplication; multiplication flow is hence frequently

sliced into three phases – partial product generation, partial product reduction tree,

and carry-propagate adder. Fig. 2.2 exhibits the flow.

 6

Fig. 2.2. Multiplication flow in three steps.

2.1.3 Modified Booth’s Algorithm (MBA)

As mentioned previously, the PPG is dependent with the pattern of multiplier,

and the number of PPs is in proportion to the bit width of the multiplier. A PPG that

creates a fewer number of PPs will allow the partial product summation to be faster

and use less hardware. Given an n-bit multiplier, simple multiplication or Booth’s

algorithm encodes and ignores/eliminates one multiplier bit for n times, and hence

obtains n PPs.

In 1961, MacSorley presents a radix-4 Booth’s algorithm based on the concept

of original Booth’s algorithm and is refereed to as modified Booth algorithm (MBA)

[4]. Due to the property of radix-4 system, two bits of multiplier are ignored after

each encoding, and hence the number of PPs is reduced. Thanks to the property,

 7

modified Booth’s encoding (MBE) generates fewer PPs, and is especially useful if

groups of consecutive zeros and ones shown in the multiplier. Table 2.1 lists the

corresponding behavior for all possible conditions of an encoding triplet [1]. MBA

decreases the latency of multiplication through reduction of the number of the PPs

and thus the reduction of the levels in the PPRT.

A modified Booth encoded/recoded (we use “encode” in the remaining content)

multiplier also consists of three parts: a modified Booth encoder (MBE) associated

with the arrangement/alignment of partial product array (PPA) to do PPG, a lower

PPRT to accumulate PPs to two, and a fast CPA to sum for the product. Fig. 2.3

displays the execution flow of modified Booth encoded multiplication.

The proposed architecture is theoretically based on MBA. Some most

MBA-relevant works will be discussed in the following sections.

Table 2.1. Selection table of modified Booth’s algorithm.

Y2i+1 Y2i Y2i-1 Operation Explanation

0 0 0 +0 string of 0's

0 0 1 +X end of 1's

0 1 0 +X a single 1

0 1 1 +2X end of 1's

1 0 0 -2X beginning of 1's

1 0 1 -X a single 0

1 1 0 -X beginning of 1's

1 1 1 -0 string of 1's

Note: 2i indicates the even bit positions; when i = 0, Y[-1]
is assume to be zero

 8

Fig. 2.3. Execution flow of MBE multiplication.

2.2 Related Works

2.2.1 Partial Product Generation (PPG)

Partial product generation is divided into two parts - decoding the multiplicand

in correspondence with the encoding of multiplier done by an MBE, and the

arrangement and alignment on the MBE outputs to form the PPA.

Concerning the MBE, [16] presents a comparison of energy dissipation among

standard, compact, and race-free encoding schemes of an MBE. The race-free

 9

scheme encoded MBE consumes least power because it balances the delay of

internal signals and thus avoids glitches/sparks in the circuits. In [9] the race-free

MBE is further optimized in terms of timing and area. The spirit of this

implementation is to intentionally use “wrong” encoding signals at middle gate

levels and corrects the error at final level. The temporal “wrong” logic enables more

logic optimization compared to other encoding schemes, leading to a decrease in

delay, reduction of area, and less consumption of power. Table 2.2, 2.3, and 2.4 list

the truth table of standard, compact, and race-free MBE schemes, respectively. Fig.

2.4 shows the improved encoder and decoder of the MBE in [9].

Table 2.2. Truth table of standard encoding.

Y2i+1 Y2i Y2i-1 P1 P2 Z M1 M2
0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 0 1 0 0 0

1 0 0 0 0 0 0 1

1 0 1 0 0 0 1 0

1 1 0 0 0 0 1 0

1 1 1 0 0 1 0 0

Table 2.3. Truth table of compact encoding.

Y2i+1 Y2i Y2i-1 P1 P2 Neg
0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 0 1

1 1 1 0 0 1

 10

Table 2.4. Truth table of race-free encoding.

Y2i+1 Y2i Y2i-1 P1 P2 Neg Z
0 0 0 0 1 0 1

0 0 1 1 0 0 1

0 1 0 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 1 1 0

1 0 1 1 0 1 0

1 1 0 1 0 1 1

1 1 1 0 1 1 1

Fig. 2.4. The MBE encoder and decoder in [9].

When MBA is used, the PPs are treated as signed numbers since three negative

MBE outputs may be selected as listed in Table 2.1. This suggests sign extension be

applied to every PP to ensure a correct result; however, sign extension needs to take

considerable extra logic. To deal with, in [17], [18], [19], a technique called

sign-encoding (SE) or sign-generation is provided and [12] gives this technique a

general description. The concept of SE is depicted in Fig. 2.5 at the MSB end: It

begins to presume all PPs are negative and hence one-extension is applied as shown

in Fig. 2.5a. Since the extended ones are fixed in position, accumulating all extended

 11

ones in advance produces {1,1} in front of the first PP and {1,0} for others, as

shown in Fig. 2.5b. To correct the presumption, add one to the LSB of each

sign-extension string, resulting in the logic in Fig. 2.5c. As a whole, SE exploits the

predictability of sign-extension, and cleverly protects from the redundant extension

bits simply for correctly representing a sign number. It takes only two or three SE

bits, {p,n,n} for the first PP and {1,p} for others, in front of the original MSB of

each PP where n stands for the original sign of each PP; p, the negation of n.

We simulate a multiplier with or without using SE. While SE is used, the

power consumption of the PPG and PPRT is saved up to one-third of that without

using SE; the improvment rate grows as the bit width increases.

Another problem arises when MBE selects a negative output. Since MBA

treats the operands as signed numbers in two’s complement (TC) format, if a

negative output is selected, we have to negate/two’s-complement the bit stream,

implying a two’s complementer for negation is required. To complete the operation,

the ones, also called hot-ones [19], are needed to be added after inverting (one’s

complementing) the bit stream. It’s a waste to let these ones solely for TC be one of

the PPRT inputs. Fortunately, due to MBA this can be prevented since the least

significant bit (LSB) position of the present PP should align two bits far from the

LSB of the preceding PP; two bits space {h,h} is saved and can be utilized to locate

the hot-one from the preceding PP as shown in Fig. 2.5a at the LSB end. The

hot-one may also left shift one bit if MBE selects 2x or -2x from the encoding table,

but this takes no effort since two bits space are reserved.

In case a random-valued multiplier is being encoded, the hot-one bit may show

up in either left or right h position. This irregularity will increase the PPRT latency

[9]. In [9], the authors also propose a skill – we refer it to “hot-one modification” in

this paper– to regulate the LSB end of all PPs. Observing the fact that the hot-one

 12

logic relates the LSB logic of the present PP as shown in Fig. 2.5b, a truth table as

listed in Table 2.5 can be built; the new logic equation of two signals LSB_new and

hot2 can be expressed as:

2 1 2

2 1 2 - 1 2 2 1 2

_ ()

2

i LSB i i

i i i i LSB i LSB

LSB new x y y

hot y y y y x y x

−

+ −

= ⋅ ⊕

= ⋅ + ⋅ + ⋅ + . (2.1)

It arranges all hot-one bits to the left h positions (hot2) accompanied with the

probable modification on the preceding LSB (LSB_new). As a result, Fig. 2.5c

exhibits the arranged, shorter, parallelogram-shaped, more regular PPA to be

accumulated in the PPRT.

Fig. 2.5. Sign encoding and hot-one modification.

 13

Table 2.5. Truth table of LSB_new and hot2.

LSB_old Y2i+1 Y2i Y2i-1 hot2 LSB_new
0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 0 0

1 0 0 0 0 0

1 0 0 1 0 1

1 0 1 0 0 1

1 0 1 1 0 0

1 1 0 0 1 0

1 1 0 1 0 1

1 1 1 0 0 1

1 1 1 1 0 0

2.2.2 Three-Dimensional-Method (TDM) PPRT

In [8], Oklobdzija et al present a three-dimensional method (TDM) to build a

speed optimized Wallace PPRT. The main idea of this speed optimization can be

briefly depicted as Fig. 2.6: In Fig. 2.6a, a common logic implementation of an FA is

shown. Without loss of generality, assuming a NAND gate delay to be 1 and an

XOR gate delay to be 2, the delay of each input-to-output path can be calculated as

shown in Fig. 2.6b. The longest path is from input a or input b to output sum; sum,

therefore, is referred to as the “slow output” in contrast with the “fast output”, cout.

cin is the “slow input” since it can wait for a slow output. Connecting a “slow

output” to a signal requiring a “fast input” (e.g., a) produces the critical path! Take a

two-level PPRT for example, the latency of the left configuration in Fig. 2.6c is

 14

more balanced since it connects the “fast output” cout to a “fast input” b, while the

regular configuration on the right side always connects sum to b, creating a critical

path. Exploiting the concept to balance the uneven delay of all paths is the spirit of

TDM.

Fig. 2.6. The concept of TDM.

 15

TDM requires the delay information of each cell used in the PPRT and then

three-dimensionally constructs a speed optimized PPRT using the cells available.

The thought of regulating the PPA in [9] stems from the fact that TDM is also

implemented in their work. Irregularity of PPA diminishes the optimization of PPRT

in accordance with TDM [9].

Since the TDM takes cell delay information as inputs, the optimized PPRT is

cell-dependent and thereby library-dependent. Generally speaking, TDM is a sorting

algorithm; we can implement a generator coded in high-level languages to facilitate

the generation of the speed optimized PPRT.

Later in [20], Oklobdzija et al. prove that TDM is truly optimized, not just

improved.

2.2.3 High-Speed Adders

To complete fast multiplication, it must take a fast PPG, a speed optimized

PPRT, and also a high-speed adder. In general, fast addition concerns the fast

generation of carries or correct prediction of the behavior of carries. In this section,

two fast addition schemes – carry-select addition and prefix addition – are

introduced with conceptual description.

Fig. 2.7 demonstrates an 8-bit example of a carry-select adder (CSKA) or a

conditional-sum adder (CoSA): an operand is partitioned into several blocks (bit

width can be fixed or variable). Instead of waiting carry-out from the block LSBs, a

CSKA or CoSA duplicates blocks of MSBs, and calculates the sum of the two

blocks in parallel by presuming the carry-in bit to be one or zero, respectively. Since

the carry-in must be either one or zero, the correct answer can be selected from one

of the two MSBs blocks. A two-to-one multiplexer (MUX2) can simply use the

 16

carry-out from the LSBs block as the selection signal to pick the correct answer.

This scheme is fast because every block in Fig 2.7 processes in parallel, so for the

8-bit example, the critical path is the addition time of the LSBs block plus a MUX2

selection time. However, since duplicated hardware is used, the area approximately

doubles the normal case that uses only one MSBs block.

Fig. 2.7. An 8-bit carry-select adder example.

The other popular fashion of fast addition exploits carry lookahead concept

that the behavior of carry is actually decided by the carry generation of current

inputs or carry propagation of previous carry generation or carry-in. This makes it

possible to anticipate the carry. The anticipatory signals are faster because they pass

fewer gates, but it takes many more gates to anticipate the proper carry [21]. This

concept can be further generalized to parallel prefix computation which observing

that block-level generate/propagate signals can also be grouped using prefix

operators [3].

Various parallel prefix addition schemes exist such as Brent-Kung [22] and

Han-Carlson [23]. In general, the more the parallel-prefix operators are used, the

faster the addition completes; however, the actual speed depends on implementation

details. A high performance addition scheme on the grounds of Ling addition [24] is

presented in [25]. It reduces one logic level over the original Ling Adder in theory

 17

and also minimizes the fan-out of each prefix operator while implemented. In [26]

the area is further reduced by fully exploiting the idea of hybrid addition. As a result,

considering both in theory or implementation, a high-speed, area-minimized, hybrid

Ling adder, which is called “Fong adder” for the remaining context, is presented in

[26]. Fig. 2.8 shows a 32-bit architecture of the speed improved hybrid Ling adder

[25]: The fan-out of each logic operator is properly taken care of and some modified

carry-select adders (MCSAs) are used – the hybrid part – to obtain the result. Fig.

2.9 shows the architecture of a 32-bit Fong adder: Compared to [25], MCSAs with

large area are replaced with simple carry select adders (SCSAs) and a ripple-carry

adder (RCA), resulting a smaller area cost. This is done by implementing some logic

operators working in parallel with prefix operators in each level and hence

introduces no timing overhead. Fig 2.10 shows the logic operators used in Fong

adder.

Fig. 2.8. Architecture of a 32-bit hybrid parallel-prefix/carry-select Ling adder.

*This figure is a direct copy of Fig. 8 in [25]

 18

Fig. 2.9. Architecture of a 32-bit scalar Fong adder.
*This figure is a direct copy of Fig. 30 in [26]

Fig. 2.10. Logic operators used in Fong adder.

 19

2.2.4 Sub-Word Parallelism (SWP)

The utilization of parallel processing leads to a boost in performance. It is a

key feature among modern multimedia extensions and DSP processors [6]. A direct

implementation of parallel processing is to duplicate hardware such as dual-MAC

architecture in ADI-Blackfin® series [27] or quad-MAC architecture in TI-C6000®

family [28] DSP processors to increase throughput. However, if given a 16-bit

fixed-point (FXP) DSP processor designated for multimedia applications, the

original 16-bit datapath is a waste and consumes unwanted power when

lower-precision data such as 8-bit pixels are under processing. Duplicating hardware

usually damages the hardware utilization rate.

Sub-word parallelism (SWP) or sub-word parallel processing serves as a

solution to improve hardware utilization rate and increases throughput by exploiting

parallel processing concept. Viewed as a form of Single-Instruction-Multiple-Data

(SIMD), SWP is a technique to divide an operand (hardware) into multiple

lower-precision ones, conditionally uses the whole or part of the hardware, and

thereby raises the hardware utilization rate without introducing significant overhead.

For example the same 16-bit scalar hardware can simultaneously process two 8-bit

data and hence double the throughput.

In order for clear and precise explanation, we refer the terms SWP, vectorizing,

slicing, segmenting, and partitioning to the same concept as described above, and

sub-words (SWs), vectors, slices, segments, and elements are the same product after

performing SWP. The term scalar represents a status without utilizing SWP.

SWP concept is of great performance help [29], [30], and SWP datapath units

are hence developed. If all units are sub-word parallelized, both scalar and SWP

operations can be executed and the computing ability will magnificently increase

 20

compared to a scalar only architecture. For example, [31], [32], [10], and [26], all

propose an SWP adder architecture.

Concerning our work, the SWP multiplier requires an SWP PPG, an SWP

PPRT, and also an SWP CPA. The major difference between the scalar and the SWP

architecture lies in the existence of the invisible “boundaries” between SWs. As for

multiplication, involving PPs accumulation, the carry-out behavior of each SW

should be manipulated. In this section, two SWP PPG methods are explained; SWP

accumulation will be discussed and compared with the proposed design together in

Chapter 3.

A non-Booth encoded multiplier architecture [6], based on Baugh-Wooley

algorithm [33], finds that most bits in the signed PPA overlap those in the unsigned

PPA. Concerning SWP, it arranges the PPAs of different SWP modes as shown in

Fig. 2.11: Observing that most bits in 8-bit SWP PPA P0, P1, P2,and P3 in Fig.

2.11c are identical to those of 16-bit PPA P0 and P1 in Fig. 2.11b, or 32-bit scalar

PPA P0 in Fig. 2.11a, it indicates most bits in different SWP modes can share with

one another. The only effort is on each SW boundary and on managing fields of

zeros (Z8 or Z16). Since the architecture is not modified Booth encoded, it has more

PPs and has worse performance in terms of speed; however, a non-MBE architecture

usually consumes less power [36]. This MUL/MAC architecture can further

functionally integrate the sum-of-square operation into the same PPA without much

overhead [34], resulting in a sub-word parallel multiplication and sum-of-square unit

(SPMSSU) [35].

 21

Fig. 2.11. A simplified PPA for 32 × 32 multiplication in different modes.

 22

A 64-bit fixed-point (FXP) vector MAC architecture capable of supporting

multiple precisions is presented in [10] and [11]; it can perform one 64 × 64, two

32 × 32, four 16 × 16, or eight 8 × 8 bit signed/unsigned MAC operations using

essentially the same hardware of a scalar 64-bit modified Booth encoded MAC.

These papers also compare different SWP PPA methods and propose one called

shared segmentation. The shared segmentation method exploits substantially the

same concept as done in [6] (described in the preceding paragraph). Most bits in a

vector mode overlap with those in another mode, producing similar SWP PPA as Fig.

2.11. It also designs an SWP Wallace PPRT using a special FA at SW boundaries and

an SWP CPA using 4-bit CLA blocks. Fig. 2.12 depicts a detailed 32-bit PPA

example of the shared segmentation method: Fig. 2.12a, Fig. 2.12b, and Fig. 2.12c

illustrates the PPA in 32-bit (scalar), 16-bit, and 8-bit vector mode, respectively. Fig.

2.12d displays the PPs overlap among vector modes; it’s clearly shown in the figure

that many bits take no effort on selection. It implies there’s no need to use a 32-bit, a

16-bit and an 8-bit MBEs to generate three PPs and use three-to-one multiplexers

(MUX3s) for selection; All that’s required is the 32-bit MBE output associated with

some multiplexing at 16-bit and 8-bit vector boundaries.

It just takes some timing and area overhead to “vectorize” a scalar MAC using

shared segmentation method. However, this architecture limits the SW combination

and places restrictions on constructing the vector PPRT. The vector CPA in this work

can also be improved. As a result, the proposed SWP PPA resembles and improves

the shared segmentation PPA described in this section.

 23

 24

Fig. 2.12. Shared Segmentation PPA for 32×32 multiplication in different modes.

 25

2.3 Summaries of Previous Works
The multiplication flow of a scalar MBE multiplier can be partitioned into

three steps – PPG, PPRT, and CPA. For PPG, a race-free encoding scheme which

outperforms other schemes in terms of timing, area, and power consumption is

proposed. Sign encoding that prevents sign extension, and hot-one modification that

integrates LSB with hot-ones both make the PPA more regular. PPRT often uses

levels of FAs to perform carry-save addition, and TDM is an algorithm that helps

construct a speed optimized PPRT. The number of PPs after the PPRT is reduced to

two. A CPA is used to sum the two PPs to obtain the final product. SWP increases

throughput and provides a performance boost in multimedia extensions or DSP

processors. Without much overhead, SWP can be applied to MUL/MAC unit by

rearranging PPA and the support of SWP accumulation.

The proposed scalar and SWP designs improve and innovate while utilizing

some previous works. We’ll describe the proposed designs in more detail in the next

chapter.

 26

CHAPTER 3
PROPOSED MAC DESIGNS

3.0 Overview
In this chapter, the design methodology of the proposed MAC designs is

elaborated. Section 3.1 presents the scalar version of the proposed MAC design: as

described in Chapter 2, the MAC unit consists of three parts – PPG, PPRT, and CPA.

Based on the scalar MAC architecture, Section 3.2 enunciates the sub-word parallel

(SWP) version of the proposed MAC. The differences, improvements and innovations

are compared or highlighted in each section and briefly summarized in Section 3.3.

3.1 Scalar MAC (SMAC) Design

3.1.0 Specification

A high performance scalar MAC design which multiplies the N-bit multiplicand

(mcand) by the N-bit multiplier (mlier) with/without accumulating a 2N-bit

accumulator (accu) is proposed. It supports signed/unsigned/mixed-mode operation.

Table 3.1 lists the specification of the proposed SMAC. Fig. 3.1 shows the proposed

SMAC execution flow. To be noted, the carry-out of final result is also provided.

Table 3.1. Specification of the proposed SMAC design.

Operation: m_out = accu + mcand × mlier (mode)
Bit Width of mcand 8/16/32/64
Bit Width of mlier 8/16/32/64
Bit Width of accu 16/32/64/128

Bit Width of m_out 16/32/64/128
Available modes 01:Signed/00:Unsigned/1?:Mixed-mode

 27

Fig. 3.1. Execution flow of the proposed Scalar MAC design.

3.1.1 Scalar Partial Product Generation (SPPG)

The first phase of SPPG, modified Booth encoding (MBE), is to encode the

triplets chosen from the multiplier and then decodes the multiplicand with respect to

MBA selection table (Table 2.1). The proposed scalar design favors the race-free

concept in [16] that diminishes the energy dissipation, and benefits from the

implementation in [9] which saves one logic level and reduces area.

A special operating mode, mixed-mode, is integrated into the proposed scalar

design. It forces the multiplicand and the accumulator to be signed, the multiplier to

be unsigned, and produces a signed result after operation. Mixed-mode operation

has a larger dynamic range, and will be explained in detail in Section 5.4.

However, the MBE scheme in [9] only applies to signed operands. To support

unsigned/mixed-mode operation, some modification must be performed on the MBE.

 28

By specification, both unsigned and mixed mode treat mlier, the multiplier, as an

unsigned number; however, due to two’s complement (TC) format natively utilized

in MBA, the MSB of mlier is the negatively weighted sign bit. It implies N+1 bits

are required in TC format to fully represent an N-bit unsigned number by forcing the

(N+1)th bit, the new MSB and sign bit, to a zero. Owing to the existence of the extra

zero, an always positive PP is generated to support unsigned/mixed-mode operation.

This is why an N-bit DSP processor with an (N+1)-bit MAC unit supporting

unsigned multiplication is frequent.

Briefly speaking, two methods are used to generate the extra PP. The first

method uses MBE to generate by assuming {0,0,m} as the extra encoding triplet

where m stands for the MSB of mlier, resulting in a PP equal to zero or mcand since

the extra triplet is always {0,0,0} or {0,0,1}. The other method uses a similar

concept by observing when unsigned/mixed-mode is asserted, a multiplexer with a

string of zeros and mcand as two inputs and m as the control signal can select the

extra PP. The result should be identical with the first method. As a result, both

methods help unsigned/mixed-mode operation while neither of them influences on

signed operation since the MBE selection of the extra signed-extended triplet

{m,m,m} or the selection of MUX2s always equals zero. Section 5.1 will detail the

way to support unsigned and mixed-mode operation.

Using either method, the logic of the extended triplet {s,s,m} or the extended

bit s is dependent with m, the MSB of mlier, and the assigned mode under execution.

If naming mode[1] as mix (1: mixed-mode; 0: signed/unsigned mode) as well as

mode[0] as tc (1: signed-mode; 0: unsigned-mode), the logic of s is derived as:

(~)s m tc mix= ⋅ ⋅
.

(3.1)

 29

In the proposed SPPG, the first method is utilized; besides, signed encoding is

also integrated into the MBE, resulting in an N-bit-input and (N+2)-bit-output MBE.

Fig 3.2 demonstrates why the output PP requires two-bit extension: assume a 4-bit

operand, 1000, is the mcand, and the current encoding triplet is {1,0,0} (-2x); it

indicates the negation of mcand followed by one-bit left shift is to be performed.

Due to the need of one-bit left shift, a 5-bit temporary data is required, as shown in

the second and third rows in the figure. The bit in bit position 5 is used to save the

correct sign that may shift out 5-bit data boundary. If the operating mode is different,

this saved bit may differ even if LSBs are the same. Moreover, this bit is also useful

for sign encoding. Six bits are hence required for correct representation.

However, the logic of the extended two bits relates to the operating mode, two

2-input AND gates (AND2) are needed at the most significant two bits of the mcand

to generate these two extended bits. These AND2s are added in the decoder in Fig.

2.4 while there’s no logic change on the remaining LSBs. This modification

increases a little delay and is still area reduced.

Fig. 3.2. Decoding mcand 1000 in different modes when MBE selects -2x.

 30

The second phase of SPPG, arranging scalar partial product array (SPPA), is to

properly arrange the PPs generated from MBE. Two techniques, sign encoding (SE)

and hot-one modification, are used to arrange the proposed SPPA.

As mentioned in Section 2.2.1, SE is done by replacing the sign-extension bits

with {p,n,n} for the first PP and {1,p} for others, where n stands for the sign bit of

the PP and p = ~n. This technique reduces the number of sign-extension bits to two

or three and then considerably saves the area and power consumption as bit width

grows.

Hot-one modification aligns the hot-one bits, obtained by two’s

complementing of the preceding PP, all to the left position (hot2) with a slight logic

change on the LSB of the preceding PP. It makes the LSB end of the PPA shorter

and regular.

Both techniques help the proposed SMAC create a narrower-width SPPA

which occupies less area, consumes less power, and assists the speed optimization of

TDM PPRT. The proposed SPPG is architecturally similar to the PPG in [9].

3.1.2 Scalar Partial Product Reduction Tree (SPPRT)

Three-dimensional method (TDM) [8] is utilized to construct the proposed

SPPRT with the architecture of Wallace Tree. A full-adder (FA) is the basic cell to

build levels of CSAs. Fig. 3.3 shows the FA cell used in the proposed SPPRT.

Concerning TDM, it takes the delay information of each cell used in the tree. Instead

of using logic cells like XOR, AND, and OR to build an FA, the SPPRT directly uses

the standard high speed FA cell provided by the cell library. This helps not only

simplify the generation algorithm but also estimate the delay more accurately. All

that is required is to look up in the cell library databook [37] for the delay of six

 31

paths in an FA (a-to-sum, b-to-sum, cin-to-sum, a-to-cout, b-to-cout, and cin-to-cout).

A simple software generator is developed to connect the FAs in the SPPRT using

TDM.

TDM can be further optimized if the arrival time of each input bit of PPRT is

given. It implies that this optimization is cell library dependent and hence and is

hard to be reusable. Considering the proposed design, it is easy to obtain reusability.

Although the delay information is cell library dependent, to look it up and send it

into the software generator to rebuild another SPPRT is effortless since only a

standard FA cell is used. However, it’s not suitable to use the whole input signal

delay profile to build the SPPRT since the synthesizer may generate different SPPG

netlist each time the timing constraint varies. The ever-changing delay profile makes

the PPRT not speed optimized and perhaps not reusable. As a remedy, logic

optimization is left for the synthesizer to make. Since the delay profile is

unpredictable and eventually a kind of estimation, the proposed scalar design simply

assumes all signals arrive to the SPPRT simultaneously, leading to a reusable TDM

SPPRT.

Fig. 3.3. FA cell used in the proposed SPPRT.

 32

3.1.3 Scalar Carry-Propagate Adder (SCPA)

Both adders in [8] and [9] exploit the input operand delay profile to configure

a hybrid adder scheme to accelerate addition and reduce area. This again is cell

library dependent and hence is hardly reusable. For the proposed scalar design,

architectural optimization using delay profile is not recommended. Each bit of two

operands of the SCPA hypothetically leaves the SPPRT and arrives at the same time.

Fong adder [26] is implemented as the SCPA. The architecture of a 32-bit Fong

adder has been shown in Fig. 2.9. There are three main reasons that Fong adder is

utilized. First, it outperforms most other adders in terms of delay while it minimizes

area cost compared to similar architectures. Second, the carry-out bit is provided so

as to perform overflow/underflow check. Last but not least, Fong adder also

supports SWP that meets our requirement with only a slight delay and area overhead.

The proposed SWP scheme is described in Section 3.2.

3.1.4 Summaries of the Proposed Scalar MAC Design

Fig 3.4 displays the proposed scalar architecture. It is partitioned into SPPG,

SPPRT, and SCPA. In SPPG, a race-free encoding scheme is utilized with a

high-speed and area-reduced MBE implementation supporting signed, unsigned, and

mixed-mode operation. Sign encoding and hot-one modification are applied on the

proposed SPPA. In SPPRT, a speed optimized reusable PPRT exploiting TDM is

built. As for SCPA, Fong adder is used. Note the figure actually shows the multiplier

design. It can easily perform MAC operation simply by feeding the multiplication

result into SPPRT as another PP. The proposed SWP design utilizes essentially the

same hardware of the proposed scalar design. The way to perform SWP is described

in the next section.

 33

Fig. 3.4. The proposed scalar architecture.

3.2 Sub-Word Parallel MAC (SWP MAC) Design

3.2.0 Specification

A high performance sub-word parallel MAC (SWP MAC) design based on the

SMAC architecture is proposed. Table 3.2 lists the specification of the SWP MAC.

Kill signals separate SWs and each SW independently processes in its unique mode.

Table 3.3 lists the possible sub-word combinations. The detailed SWP

reconfiguration scheme is provided in Section 5.3.

 34

Table 3.2. Specification of the proposed SWP MAC design.

Operation: m_out = accu + mcand × mlier (mode)(kill)
Bit Width of mcand 8/16/32/64
Bit Width of mlier 8/16/32/64
Bit Width of accu 16/32/64/128

Bit Width of m_out 16/32/64/128
Bit Width of a Basic SW Input:8/Output:16

Bit Width of Each Kill 1
Bit Width of Each Mode 2

Available mode 01:Signed/00:Unsigned/1?:Mixed-mode;
independence among all sub-words

Table 3.3. Possible sub-word combinations of the proposed SWP MAC design.

Possible Sub-Word Combinations

(16)
16-bit

(8,8)
(32)

(8,8,8,8)
(8,8,16)
(16,16)

32-bit

(16,8,8)

64-bit A 64-bit SWP MAC is viewed consisting of two independent
32-bit SWP MACs; it has 5×5=25 possible combinations

3.2.1 Sub-Word Parallel MAC Execution Flow

Fig 3.5 shows the execution flow of the proposed SWP MAC: it is still

partitioned into three main parts – SWPPG, SWPPRT, and SWCPA. To apply SWP,

some modification should be made in each part – mostly lies in the preprocessing of

SWPPG. SWPPG is described in Section 3.2.2; SWP accumulation is divided into

 35

SWPPRT and SWCPA and explained in Section 3.2.3 and 3.2.4, respectively.

Fig. 3.5. Execution flow of the 32-bit proposed SWP MAC design.

3.2.2 Sub-Word Parallel PPG (SWPPG)

The proposed SWPPG has an identical MBE scheme as used in scalar PPG.

The difference lies in the preprocessing on the input operands and the arrangement

of the sub-word parallel partial product array (SWPPA). The additional logic for

SWP processes mostly in parallel with the SPPG; this enhancement incurs only a

 36

slight timing overhead and some area overhead.

Operand preprocessing consists of two parts – masking and multiplexing on

the multiplier and multiplexing on the multiplicand. Fig 3.6 shows a 32-bit example

of masking and multiplexing on the multiplier: The bottom SW_0 is the 32-bit

multiplier in scalar mode. There is a zero assumed to the right of the LSB for the use

of first encoding triplet while there are two s0 bits, for the use of

unsigned/mixed-mode operation, extended to the left of MSB where s0 is generated

according to Eq. (3.1). These bits are necessary to complete MBE operation. When

SWP modes are under execution, the assumed zero and the extend s bits should be

appended to each SW as done in scalar mode. For instance in the top row of Fig.3.6,

zeros are assumed at mlier[-1], mlier[7], mlier[15], and mlier[23], and s bits are

extended to the left of each SW’s MSB. This modification results in 3-bit overlap

between SWs, and some bits differ among SWP modes. Therefore mode-dependent

multiplexing (selection) or zero-masking are required at these bit positions.

Fig. 3.6. A 32-bit example of masking and multiplexing on the multiplier.

To take an example, the fifth encoding triplet in 32-bit or 16-bit mode is

mlier[9:7]; in 8-bit mode, mlier[7] should be masked to a zero, resulting a

{mlier[9:8],0} encoding triplet. This demonstrates the necessity of zero-masking

 37

between SW boundaries. Concerning multiplier multiplexing, it is important to note

that the overlapped triplets {s0,s0,mlier[7]} between SW_0 and SW_1 in 8-bit mode

for the use of unsigned/mixed-mode correction, is not sent to the MBE; instead, the

correction PP is generated, simply using an 8-bit MUX2. This multiplexing

eliminates the ambiguity in selecting which triplet to MBE. The MSB of SW_0,

mlier[7] in this case, is the selection signal of the MUX2, i.e. when mlier[7] equals

1-bit one, mcand[7:0] as correction PP for SW_0 is required. The same idea can be

applied to each SW boundary, avoiding using some 8-bit or 16-bit MBEs to generate

correction PPs. All this is required is the scalar 32-bit MBEs.

As for preprocessing on multiplicand, the proposed SWPPA arranges PPA of

each SW similar to what has been explained in Section 2.2.4. Some bits overlap and

remain the same among different SWP modes while some bits, especially bits at SW

boundaries, vary and require mode-dependent multiplexing (selection). The

difference is in sign encoding (SE) bits plus one bit saved for the sign of PP and the

hot-one modification bits. Fig. 3.7 shows the detailed view of the 32-bit proposed

SWP PPA: Fig 3.7a shows the SWP PPA in scalar mode in which we can see 17 PPs

including accumulator; SE bits and hot-one modification bits are also shown. Fig

3.7b displays the SWP PPA in 16-bit mode: the SE bits and the sign-bit of PP08

shares those of scalar PP08 while the hot-one modification bits don’t share; in

contrast, PP01 has a same hot-one modification bits while it differs in SE bits and

the sign-bit. Fig 3.7c depicts the 8-bit SWP PPA. Clearly, it tells that the difference

mainly lies at SW boundaries. Fig 3.7d exemplifies the selection of PP01 among

different modes. Although there exists three modes, only three bit positions actually

require a 3-to-1 multiplexer (MUX3) for selection; some take AND2s or MUX2s

while some do not demand any selection. As a note, even in the 64-bit proposed

SWP design, the proposed SWP PPA requires still MUX3s for worst-case positions.

 38

 39

Fig. 3.7. Detailed view of the 32-bit proposed SWPPA with a selection example.

 40

Therefore the preprocessing on multiplicand concerns the generation of SE bits,

sign bits of PPs, and hot-one modification bits of each SW and their selection among

modes. Table 3.4 lists the truth table of SE bits and sign bits of PPs used in the

proposed SWP design. Table 2.5 and Eq. (2.1) have shown the logic of hot-one

modification bits. These bits are generated in parallel with scalar MBE without

introducing any timing overhead since their logic is not as complicated as an MBE.

The area overhead, as demonstrated in Fig. 3.7d, is not huge since most bits share

those in the scalar PPA.

Table 3.4. Truth table of sign encoding bits and sign bits of PPs.

n s
tc Y2i+1 Y2i Y2i-1

m=0 m=1 m=0 m=1
0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 1

0 1 0 0 1 1 1 0

0 1 0 1 1 1 1 1

0 1 1 0 1 1 1 1

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 1 0 1 0 1

1 0 1 0 0 1 0 1

1 0 1 1 0 1 0 1

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 0

1 1 1 0 1 0 1 0

1 1 1 1 0 0 0 0

tc: 1:signed/0:unsigned; Y: multiplier; m: MSB of SW;
s: sign of corresponding PP; n: SE bit

 41

Thanks to this SWP PPA, the proposed architecture offers more flexible SW

combination schemes than previous works if both SWPPRT and SWCPA also

support. The SWP combination scheme is controlled by the pre-decoded input kill

signals. The pre-decoding is performed in parallel with the scalar MBE and thereby

does not incur timing overhead. Fig. 3.8 shows the SWP schemes of the 32-bit

proposed SWP design: Each kill signal conditionally enables/disables the

carry-chain. Three kill signals provide 8 SW combinations; however, if

{kill2,kill1,kill0} equals {0,0,1}, {1,0,0}, or {1,0,1}, the middle 16-bit SW obtains a

fault PPA since the corresponding PPA has never been generated in this region. Fig.

3.8a to Fig. 3.8e shows the possible five SW combinations; Fig. 3.8f displays an

invalid SW combination scheme. For 64-bit design using the proposed architecture,

two 32-bit SW halves process in parallel, offering a total of 25 (5×5) different SW

combinations.

Fig. 3.8. SW combinations of the 32-bit proposed SWP MAC design.

 42

The proposed SWP design is characterized by SWP mode assignment as well;

each SW has its own operating mode. To take an example, if a 32-bit SWP operates

in 8-bit SWP mode as sketched in Fig. 3.8b, the four SWs don’t have to perform the

same signed/unsigned/mixed-mode MAC operation at the same time. Instead, each

SW assigns its unique mode signal, and a total of 81 (3×3×3×3) different SW mode

assignment schemes are allowed. Moreover a central mode signal assigned to all

SWs, as used in [10], introduces high fan-out, and which consequently requires

buffer insertion. SWP mode assignment ameliorates high fan-out.

Although this modification increases some input ports and places some

restrictions on mode assignment, it provides reconfigurability and flexibility for the

proposed design. Compared to the 64-bit proposed design, [10] offers only four SW

combinations and all SWs should operate in a same central mode, and mixed-mode

is not supported.

3.2.3 Sub-Word Parallel PPRT (SWPPRT)

To add SWP in the scalar PPRT, the behavior of carries traversing SW

boundaries requires careful manipulation. On the whole, it involves carry-killing

(blocking, breaking, disabling, etc) at SW boundaries on each level in the SWPPRT.

Both the proposed SWPPRT and the VPPRT in [10] exploit Wallace CSA Tree,

using an FA as the basic building block. It implies both designs judiciously manage

the carry-out or carry-in of FAs to conditionally break the carry-chain. For example,

Fig. 3.9 sketches an image at a SW boundary: Assuming FA_0 is at the MSB of

SW_0 and FA_1 is at the LSB of SW_1, there are two ideas to break the

carry-chain – ignoring the carry-in of FA_1 or disabling the carry-out of FA_0. It

implies new FA cells are required, without glue logic, for the use at SW boundaries.

 43

Fig. 3.9. Breaking the FA carry-chain for SWP in SWPPRT.

The first idea is utilized in [10]. Considering an FA used at the LSB of SW_1,

the signal cin receives the FA carry-out from MSB of the previous SW_0, and hence

requires masking on cin using the signal kill. Fig 3.10 shows the FA with carry-in

masking used in [10]. This method does not create a new critical path since the paths

cin to sum and cin to cout are fast as shown in Fig. 2.6a. Combining cin with kill

using NAND2 incurs no significant delay since the extra gate is in parallel with

others. This claim is somehow misleading because it implicitly assumes the delays

of all signals are balanced and thereby an FA is always assumed to have its longest

path latency all the time. This is often not the case with the real circuit since uneven

delay among paths do exist, facilitating the speed optimization using TDM [8]. If

using the FA scheme at SW boundaries, in Fig. 3.9 cout of FA_0 “must” connect to

cin of FA_1 and sum of FA_0 “must” connect to a or b of FA_1. This restricted

scheme creates a longer critical path going through all sum signals and all a/b

signals since it eliminates the use of TDM to optimize the delay. Furthermore, on the

middle levels of Wallace CSA Tree, a lack in cin signals for connection of cout

signals is possible and other FA cells may be required.

 44

Fig. 3.10. FA with carry-in masking used in [10].

The proposed design utilizes a different idea. Since uneven path latency does

exist in the proposed SPPRT, TDM can still be utilized. Generally speaking, the

more a flexible signal connection is available, the more the speed of a PPRT is

optimized. The proposed SWPPRT concerns conditionally disabling the carry-out as

shown in Fig. 3.9. A possible realization of FA with carry-out masking used at the

MSB of SW_0 is shown in Fig. 3.11.

Fig. 3.11. FA with carry-out masking used in the proposed design.

 45

Whenever kill is asserted, cout must be zero. This modification does not add

extra delay to the original FA critical path; however it creates some longer paths

compared to the scalar PPRT. It thereby slightly reduces the SPPRT performance

since the original FA cells at each MSB of SWs should be replaced by new cells.

This method allows flexible FA connection; TDM is thus still feasible. The

proposed SWPPRT outperforms the VPPRT in [10] in theory since TDM speed

optimization can still be applied. The SWPPRT has nearly the same performance as

the SPPRT. Delay information of the new FA cell is required for TDM; for simplicity,

we assume the new FA cell has identical delay information with the original FA cell.

To configure the SW combination scheme, SWPPRT requires identical kill

signals fed into SWPPA. If properly assigned and connected at SW boundaries, the

SWPPRT supports equivalent SW combinations as configured in SWPPA.

3.2.4 Sub-Word Parallel CPA (SWCPA)

There are various SWP adder schemes. The basic idea again is to break the

carry-chain across SW boundaries. An easy approach to breaking the carry-chain is to

conditionally insert one-bit zero between SWs to both operands. This annihilates the

carry-chain. When a carry is required, a 1-bit one is simply inserted between SWs to

either operand, serving as propagate signal without affecting the result. This approach

is less relevant to the adder architecture; however, the delay overhead is considerable

as bit width grows. If taking consecutive 16 bits as a basic adder block size, a 32-bit

SWP adder requires one inserted bit; a 64-bit adder, three; a 128-bit adder, seven. This

enlarges the bit width of the CPA to a number unequal to the power of two, and which

deteriorates the performance of CPA since in most architectures the block size usually

equals the power of two. Fig 3.12 sketches a simple 64-bit SWP adder scheme. The

kill signal controls the annihilate or propagate behavior of the carry.

 46

Fig. 3.12. A simple 64-bit SWP adder.

AN SWP adder using 4-bit carry-lookahead generator (CLG) is implemented

in [10]. Similar to the SWP method in VPPRT, an AND2 is added to mask the

carry-in of the CLG without additional delay. This CLA logic is expressed as:

0 0 0 (~)
1 1 0 1 0 1 (~)
2 2 1 2 0 1 2 0 1 2 (~

[3: 0] 3 2 3 1 2 3 0
[3: 0] 0 1 2 3,

cout g p cin kill
cout g g p p p cin kill
cout g g p g p p p p p cin kill
g g g p g p p g
p p p p p

= + ⋅ ⋅
= + ⋅ + ⋅ ⋅ ⋅
= + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
= + ⋅ + ⋅ ⋅ + ⋅
= ⋅ ⋅ ⋅

)

(3.2)

where g[3:0] and p[3:0] stand for 4-bit CLG generate and propagate signal from bit

0 to bit 3, respectively. This adder enjoys the merits of a scalar CLA without large

overhead.

As for Fong adder exploited in the proposed SCPA, it also enhances for SWP

with minor area and timing overhead because extra operators for breaking the

carry-chain are added only at boundary bit positions and work in parallel with the

original operators as shown in Fig. 3.13. Fong adder is capable of supporting flexible

SW combinations with a basic block size. Concerning the proposed SWP MAC design,

we choose a size of 16 bits for lowest granularity. The break signals in Fong adder

control the behavior of carries across SW boundaries, and thus configure the SWP

scheme. The logic of break signals are identical to kill signals used in the proposed

 47

SWP MAC, and hence meets our specification without any efforts. The carry-out

signal of each SW is provided for further possible use. As far as the carry-in signal cin

of each SW is concerned, Fong adder sets some restrictions to configure scalar or

SWP schemes; however, using our design methodology, the negation of kill signals

equal the cin signals of Fong adder at the corresponding bit positions. Compared with

SWP CLA design in [10], Fong adder has better performance in terms of delay and

area since the optimized Ling addition is essentially faster than CLA by reducing one

logic level, and the hybrid adder architecture contributes to a smaller area. The

advantage manifests itself as the bit width increases [26].

Fig. 3.13. Architecture of a 32-bit Fong adder with reconfigurability.

*This figure is a direct copy of Fig. 47 in [26]

 48

3.2.5 Summaries of the Proposed SWP MAC Design

Based on the proposed scalar MAC design, the proposed SWP MAC applies

SWP to SPPG, SPPRT and SCPA. In SPPG, SWP is done by preprocessing on

operands and carefully arranging the SWPPA. In SPPRT, SWP is done by replacing

SW boundary FA cells with a new FA supporting carry-out masking. For SCPA,

Fong adder performs SWP by adding some logic operators working in parallel with

original operators. The timing and area overhead mostly lies in SWPPG since

multiplexing and masking requires several levels of logic. As for SWPPRT, the

novel method still facilitates the use of TDM to generate SWP speed optimized

Wallace Tree. The SWP Fong adder has nearly the same performance as a scalar

Fong adder. Due to the support of SWPPG, SWPPRT, and SWCPA, the proposed

SWP MAC not only theoretically outperforms [10] but also innovatively features

more flexible SW combination and mode assignment schemes.

 49

CHAPTER 4
EXPERIMENTAL RESULTS

4.0 Overview
In this chapter, we provide the experimental results of the proposed design.

Section 4.1 elaborates the environment for implementation. Section 4.2 provides the

data and statistics of the experiment and discusses the experimental results.

4.1 Implementation
To acquire delay and area estimates, the scalar architecture in [10] consisting

of an MBE with the encoding scheme in Table 2.2, a regularly connected Wallace

PPRT, and a CPA using 4-bit CLA blocks is rebuilt; Synopsys DesignWare IPs

(DWIPs) [38] – DW02_mult (scalar multiplier) and DW02_prod_sum1 (scalar MAC)

using wall synthesis model (MBE-Wallace architecture) – are also chosen for

synthetical result comparison. VMAC in [10], an SWP MAC design, is rebuilt for

comparison. All designs are implemented in Verilog HDL on register transfer level

(RTL) with a same coding style, and then synthesized using Synoposys Design

Compiler [39] in Artisan 0.18 um standard cell library for UMC 0.18 um silicon

technology with and a relatively conservative wireload model wl10. The FA cell

used in PPRT and the delay information for TDM algorithm exploit the cell

ADDFHX4, a high speed standard FA cell [37]. All other cells are optimized by the

synthesizer. Synopsys PrimePower [40] is used for power analysis. In order to prove

the correctness of functionality, all designs are simulated by Cadence Verilog-XL

simulator [41] with patterns cycling through all possible combinations, and the

 50

results are compared to behavior models in Verilog format provided by DWIP. As

for verification, Novas nLint [42] is used for design rule check with a reusable rule

set according to [7]; TransEDA Verification Navigator [43], for code coverage

analysis; Cadence Conformal equivalence checker [44], for logic equivalence

(formality) checking between original designs and gate-level netlists. These EDA

tools ensure the robustness of designs. Table 4.1 lists the environment for out

experiment.

Table 4.1. Environment setup for experiments.

Simulation Environment
Coding Verilog HDL

Simulator Cadence Verilog® -XL
Synthesizer Synopsys Design Compiler®

Power Analyzer Synopsys PrimePower®
Cell Library Artisan UMC 0.18 μm technology

Wire Load Model UMC wl10

Verification
Design Rule Check Novas nLint® with strict rule set
Equivalence Check Cadence Encounter™ Conformal® Equivalence Checker
Coverage Analysis TransEDA Verification Navigator®

4.2 Discussion of Experimental Results

4.2.0 Overview

All results are shown in tabular form with discuss under the tables; besides, the

improvement rate of each comparison relative to the proposed design are also

provided in percentage.

The result of critical path delay in worst case, area cost at critical timing, and

power consumption will be reported and compared at the following sections.

 51

4.2.1 Delay Comparison

Table 4.2 reports the critical path delay in nano-second of all designs in worst

case: Table 4.2a lists the delay of scalar multiplier designs; Table 4.2b lists the delay

of scalar MAC designs; Table 4.2c lists the delay of SWP multiplier designs; Table

4.2d lists the delay of SWP MAC designs.

Table 4.2. Critical path delay comparison.

(a). Scalar multiplier designs.

Max Delay of
SMUL(ns)

DW01_mult (wall) SMUL in [10]
Proposed

 SMUL
8-bit 4.06 13.79% 4.35 19.54% 3.50

16-bit 5.25 10.48% 5.92 20.61% 4.70
32-bit 6.18 5.83% 7.61 23.52% 5.82
64-bit 7.40 6.35% 9.11 23.93% 6.93

(b). Scalar MAC designs.

Max Delay of
SMAC(ns)

DW02_prod_sum1
(wall)

SMAC in [10]
Proposed

SMAC
8-bit 4.31 16.01% 4.74 23.63% 3.62

16-bit 5.55 12.97% 6.43 24.88% 4.83
32-bit 6.50 10.15% 7.65 23.66% 5.84
64-bit 7.81 11.01% 9.37 25.83% 6.95

These two tables clearly show the high-speed advantage of the proposed scalar

design. The proposed design on average accelerates DWIPs by approximately 10%

and [10] by more than 20%. TDM PPRT contributes the most while Fong adder also

has a relatively short delay. The delay of the proposed SPPG is a little longer due to

the enhancement for mixed-mode. If removed, the proposed design will have an

even better performance. The design in [10] is the slowest since TDM is not applied;

 52

DWIPs outperform [10] by instantiating the same high speed FA ADDFHX4 cells

from the cell library. The delay difference between each two rows in each table is

approximately the same since doubling the bit width incurs two more levels of CSA

delay into PPRT which is about 1.2 ns in this case. In two tables the corresponding

entry relates since adding an accumulator into PPRT incurs one more level of CSA

delay or sometimes no delay; this is the feature of Wallace Tree.

(c). SWP multiplier designs.

Max Delay of
SWP MUL(ns)

Proposed SMUL VMUL in [10]
Proposed
SWP MUL

16-bit 4.70 -2.98% 6.02 19.60% 4.84
32-bit 5.82 -5.15% 7.75 21.03% 6.12
64-bit 6.93 -4.33% 9.31 22.34% 7.23

(d). SWP MAC designs.

Max Delay of
SWP MAC(ns)

Proposed SMAC VMAC in [10]
Proposed
SWP MAC

16-bit 4.83 -4.14% 6.56 23.32% 5.03
32-bit 5.84 -5.82% 7.82 20.97% 6.18
64-bit 6.95 -4.60% 9.65 24.66% 7.27

Table 4.2c and Table 4.2d manifest the high-speed feature of the proposed

SWP designs. In all cases, they outperform the SWP designs in [10], and even

outperform the scalar designs of DWIPs. The theoretical benefits of the proposed

SWPPRT using TDM are also realized. The delay of the proposed scalar design is

also compared. It is clear that our SWP method incurs less than 6% timing overhead.

Table 4.3 reports the delay overhead on performing SWP. Table 4.3a shows the

case with the designs in [10]. Table 4.3b shows the case with the proposed designs.

 53

Table 4.3. Delay overhead on performing SWP.

(a). Designs in [10].

SWP Delay
Overhead of [10]

SMUL VMUL Overhead SMAC VMAC Overhead

8-bit 4.35 N/A N/A 4.74 N/A N/A
16-bit 5.92 6.02 1.69% 6.43 6.56 2.02%
32-bit 7.61 7.75 1.84% 7.65 7.82 2.22%
64-bit 9.11 9.31 2.20% 9.37 9.65 2.99%

(b). The proposed designs.

SWP Delay
Overhead of
the proposed

SMUL
SWP
MUL

Overhead SMAC
SWP
MAC

Overhead

8-bit 3.50 N/A N/A 3.62 N/A N/A
16-bit 4.70 4.84 2.98% 4.83 5.03 4.14%
32-bit 5.82 6.12 5.15% 5.84 6.18 5.82%
64-bit 6.93 7.23 4.33% 6.95 7.27 4.60%

8-bit SWP designs are not available since a size of 8-bit is chosen as the

multiplier/MAC basic block. The SWP 8-bit design is thus equivalent to a scalar

8-bit design.

These two tables indicate that the delay overhead on performing SWP in [10]

is less than the proposed design. Both the shared segmentation method and the

proposed design incurs at most a MUX3 delay for the SWPPA, and both CPA

designs have a similar overhead on SWP. This condition thereby infers the decrease

in SWPPRT performance since a lower performance FA cell is used to replace the

FAs at SW boundaries with a same estimation of delay profile. The degradation of

TDM is reasonable; however, the actual delay still significantly outperforms [10].

[10] with a smaller delay overhead is not good because it implicitly assumes all FA

 54

cells introduce a critical timing. The PPRT performance in both scalar and SWP

designs is said to be equally slow.

4.2.2 Area Comparison

Table 4.4 reports the area cost in square-micro-meter of all designs at critical

timing: Table 4.4a lists the area cost scalar multiplier designs; Table 4.4b lists the

area cost of scalar MAC designs; Table 4.4c lists the area cost of SWP multiplier

designs; Table 4.4d lists the area cost of SWP MAC designs.

Table 4.4. Area cost comparison.

(a). Scalar multiplier designs.

Total Cell Area of
SMUL (μm²)

DW01_mult (wall) SMUL in [10] Proposed

8-bit 11104 -20.81% 15202 11.76% 13415
16-bit 39587 -3.15% 51217 20.27% 40835
32-bit 133335 -3.17% 183334 24.97% 137563
64-bit 469149 -3.57% 710822 31.64% 485917

(b). Scalar MAC designs.

Total Cell Area of
SMAC (μm²)

DW02_prod_sum1
(wall)

SMAC in [10] Proposed

8-bit 13734 -15.26% 18422 14.07% 15830
16-bit 43070 -6.57% 59010 22.22% 45898
32-bit 141897 -4.25% 196640 24.77% 147932
64-bit 496389 -3.43% 709248 27.61% 513423

These two tables show that the proposed design has nearly the same area cost

except for 8-bit, compared with DWIPs. This can be explained that for the 8-bit

 55

design, the area overhead for mixed-mode weighs heavily due to the area is still

small, and the area reduction advantage of Fong adder is obscure. The effect of

hybrid adder architecture manifests itself as bit width increases while the proposed

MBE features area reduction as well. The proposed design is faster and enhanced

with mixed-mode operation with approximately the same area. The proposed design

significantly outperforms [10] owing to different MBE and PPRT schemes. When

doubling the bit width, the area becomes three to four times as large as the original

area, and which meets theoretical inference. In two tables the corresponding entry

relates since adding an longer accumulator into PPRT incurs one more level of

longer CSA logic, and is also with a multiple of three to four as the size doubles.

(c). SWP multiplier designs.

Total Cell Area of
SWP MUL (μm²)

Proposed SMUL VMUL in [10]
Proposed
SWP MUL

16-bit 40835 -23.35% 59282 15.04% 50368
32-bit 137563 -23.49% 210162 19.17% 169883
64-bit 485917 -24.61% 813822 25.60% 605508

(d). SWP MAC designs.

Total Cell Area of
SWP MAC (μm²)

Proposed SMAC VMAC in [10]
Proposed
SWP MAC

16-bit 45898 -20.91% 66825 16.96% 55494
32-bit 147932 -21.21% 222638 19.46% 179302
64-bit 513423 -22.19% 818144 23.32% 627349

These two tables demonstrate that the proposed SWP design outperforms the

design of [10] in terms of area cost with approximately 20% overhead. Most

overhead is introduced by the SWPPG. Although the proposed SWPPA avoids using

 56

dedicated MBEs to generate PP for each bit width, sign encoding bits, sign bit,

hot-one modification bits still need to be generated by designated logic. The area

overhead for SWPPRT and SWCPA is not considerable, especially as bit width

grows.

Table 4.5 reports the area overhead on performing SWP. Table 4.5a shows the

case with the designs in [10] while Table 4.5b shows the case with the proposed

designs.

Table 4.5. Area overhead on performing SWP.

(a). Designs in [10].

SWP Area
Overhead of [10]

SMUL VMUL Overhead SMAC VMAC Overhead

8-bit 15202 N/A N/A 18422 N/A N/A
16-bit 51217 59282 15.75% 59010 66825 13.24%
32-bit 183334 210162 14.63% 196640 222638 13.22%
64-bit 710822 813822 14.49% 709248 818144 15.35%

(b). The proposed design.

SWP Area
Overhead of
the proposed

SMUL
SWP
MUL

Overhead SMAC
SWP
MAC

Overhead

8-bit 13415 N/A N/A 15830 N/A N/A
16-bit 40835 50368 23.35% 45898 55494 20.91%
32-bit 137563 169883 23.49% 147932 179302 21.21%
64-bit 485917 605508 24.61% 513423 627349 22.19%

These two tables imply that the proposed SWP design has less than double of

the overhead of [10]. This is reasonable since hot-one modification is applied to

 57

each SW boundary in each mode. It’s a trade-off between speed optimized PPRT and

a reduced area SWPPA.

4.2.3 Power Comparison

Estimation of power consumption is performed by PrimePower [40]. For designs

of a same size, an identical file with a number of 10,000 random patterns plays as the

stimulus for estimation. Power estimation is only applied to MAC designs. Simulation

results of scalar designs and the proposed SWP design executed in 8-bit SWP mode

are reported in milli-Watt in Table 4.6: Table 4.6a lists the power consumption at

critical timing as shown in Table 4.2 whereas Table 4.6b lists the power consumption

of the same designs processed at a relatively loose timing of 20 nano-second.

Table 4.6. Power consumption comparison.

(a). Power consumption at critical timing.

Power at
Tcrit. (mW)

SMAC in [10]
DW02_prod_sum1

(wall)
SWP MAC SMAC

8-bit 4.03 17.44% 3.21 -6.30% N/A 3.43
16-bit 15.22 88.41% 8.99 11.27% 9.48 17.39% 8.08
32-bit 34.30 45.90% 27.28 16.04% 28.52 21.31% 23.51
64-bit 153.70 92.61% 87.89 10.14% 97.97 22.77% 79.80

(b). Power consumption at T = 20 (ns).

Power at
T = 20ns

(mW)
SMAC in [10]

DW02_prod_sum1
(wall)

SWP MAC SMAC

8-bit 0.96 53.62% 0.69 11.47% N/A 0.62
16-bit 4.90 150.46% 2.50 27.76% 2.39 22.24% 1.96
32-bit 13.14 90.99% 8.88 29.10% 8.83 28.34% 6.88
64-bit 72.07 159.43% 34.37 23.72% 35.67 28.40% 27.78

 58

Except for the 8-bit comparison with DWIP at critical timing, the proposed

designs enjoy a less power consumption. The proposed scalar designs outperform

DWIPs even if the area cost of the proposed design is a little bit larger. For some

cases, the proposed SWP designs even outperform scalar DWIPs. Race-free

encoding for the MBE accounts for the phenomenon.

The proposed design thereby is high-speed, moderate-area, and power-reduced.

The power-delay (PD) characteristic is also calculated and listed in Table 4.7 to

demonstrate the superiority of the proposed design.

Table 4.7. Power-delay characteristic comparison.

Power-Delay
(mW-ns)

SMAC in [10]
DW02_prod_sum1

(wall)
SWP MAC SMAC

8-bit 19.09 53.77% 13.85 11.56% N/A 12.41
16-bit 97.86 150.83% 49.88 27.85% 47.70 22.25% 39.02
32-bit 262.40 91.11% 177.32 29.15% 176.25 28.37% 137.30
64-bit 1440.17 159.67% 686.42 23.77% 712.24 28.42% 554.61

 59

CHAPTER 5
APPLICATION NOTES

5.0 Overview
In this chapter, we discuss some important application issues when utilizing

the proposed MAC design. Section 5.1 details some frequently used DSP arithmetic

operations that can be easily enhanced or extended using the proposed architecture;

Section 5.2 provides some overflow/underflow check skills with respect to some

common fixed-point (FXP) number representation formats for DSP applications;

Section 5.3 describes the way to flexibly reconfigure parameters of the proposed

designs to meet users’ requirement.

5.1 Functionality Enhancement

5.1.1 Multiply-Accumulate (MAC) Operation

MAC operation is a DSP frequently used operation and is essentially the same

as multiplication. Multiplication is treated as a special-case MAC operation without

accumulation. A dedicated MAC unit is usually developed to integrate MAC

operation with multiplication. In order to implement MAC operation in

multiplication time, there are essentially two approaches:

I. Integrating accumulator data into PPRT as another PP.

II. Adding accumulator data after multiplication.

It seems approach I can considerably reduce the delay along the critical path

since it does not incur another CPA delay as approach II does. Instead, approach I

takes only a level of CSA delay or in some cases no delay; for example, A PPRT

 60

with five or six inputs both take three CSA levels for reduction; this is the

characteristic of Wallace Tree. Fig. 5.1 illustrates the flow of these two approaches.

 Fig. 5.1. Execution flow of two approaches to completing MAC operation.

However, if a MAC unit with complicated modes and functionalities for DSP

application is under consideration, approach II is sometimes a better alternative

because modification on inputs or maybe some internal temporal signals must be

performed to meet the specification assigned. It takes more and complex control

signals when using approach I to control the temporal data since the all PPG, PPRT,

and CPA may require their own control signals. The generation of control signals not

only influences performance but increases the design complexity. The choice

between approach I and approach II is a tradeoff.

As a reminder, the input and output (I/O) of PPRT is often a good place to

insert pipeline registers if needed.

 61

5.1.2 Multiply-Negate (MAN) Operation

In practical, sometimes the negated multiplication result is required. For

example, many DSP processors supports MAC operation with the negated

multiplication result (this is another example why we may use approach II in the

preceding section). This multiply-negate (MAN) or multiply-subtract (MAS)

operation has different implementation. Three different feasible methods are

described as follows:

A. Negation/Two’s complement is performed after multiplication: This is a

naïve method since a two’s complementer consisting of an inverter

associated with an incrementer will unavoidably be used along the critical

path. To improve, we can negate the final two partial products from the

bottom level of CSA output in PPRT and simply use another level of CSA

to sum the special ‘2’ solely for two’s complementing use. An incrementer

delay is therefore replaced with a level of CSA delay. The naïve flow and

the improved flow are shown in Fig. 5.2.

Fig. 5.2. MAN flow of method A.

 62

B. Negation/Two’s complement is manipulated by user: Compared with

method A, we now pay attention to the input end. If we can negate either

the multiplicand or the multiplier before multiplication, we will get the

negated result afterwards. Intuitively, this can be done by performing two’s

complement on one of the two operands, but this again jeopardizes the

performance. Fig. 5.3 shows this modification on input. Another way is to

use an instruction such as negation to deal with the problem; unfortunately,

it takes one or more clock cycles. The last resort is to mental-calculate the

negated operand; this way, however, loses dynamics and user-friendliness.

Fig. 5.3. MAN flow of method B.

C. Negation/Two’s complement is performed in multiplication run time: We

are to perform:

)(BAC ×−= . (5.1)

 63

By deduction and inspection, Eq. (5.1) is re-written as:

 BAC ×−=)(. (5.2)

Now replace –A by 1+¬A ; we can rewrite Eq. (5.2) as:

 BBABABAC +×¬=×+¬=×−=)()1()(. (5.3)

Eq. (5.3) indicates we can conditionally invert the multiplicand and

simply view the multiplier as another PP. Fortunately sometimes the

existence of the extra PP doesn’t introduce any timing overhead. This is

the characteristic of Wallace PPRT. Fig. 5.4 shows the flow of method C

and Fig. 5.5 depicts an example of PPA when MAN/MAS operation is

under execution. Note the accumulator (ACC) and the sign-extended

multiplier for negation (Mlier) are added at the bottom of the original

PPA.

Fig. 5.4. MAN flow of method C.

 64

Fig. 5.5. An exampling PPA for MAN/MAS operations using method C.

5.1.3 Unsigned Operation

Substantially, all signals in a circuit or design are simply bit streams; the

meaning of a bit stream depends on how a user treats or interprets. For a digital

system, unsigned number representation is native and important; for example, most

floating point formats represent numbers in a sign magnitude form, completely

separating the mantissa (significance) multiplication from the sign handling [12].

Therefore unsigned multiplication must be supported in a DSP multiplier.

Booth’s algorithm and modified Booth’s algorithm were originally developed

to cope with signed multiplication in TC format. The proposed design, based on

MBA, then requires some modification to support unsigned multiplication. Section

3.1 has introduced two ways to support unsigned/mixed-mode operation by

generating an extra PP. They are supplemented as follows.

The first way generates the extra PP by the MBE, assuming {0,0,m} as the

encoding triplet where m stands for the MSB of the multiplier. The triplet then

 65

always equals {0,0,0} or {0,0,1}, and the extra PP thereby always equals zero or the

unsigned multiplicand. After proper alignment, this PP helps unsigned multiplication

since the extra PP ensures a positive result. This modification has no influence on

signed mode since sign-extension of m is performed, and {m,m,m} is sent to the

MBE. The extra PP is hence destined to zero and does not affect the result.

The other way renders that in TC format, the MSB of each operand is the

negatively-weighted sign bit. If using TC format to represent an unsigned number,

one extra bit is required as the new MSB and sign for each operand. If unsigned

mode is under execution, the new MSB is zero-filled; otherwise, sign extension is

still applied and does not affect TC representation.

Either way has a similar idea that the negatively-weighted sign bit should be

especially taken care of by appending extra bits. The logic of the appending bits for

the extra triplet using the first way equal the logic of the new MSB and sign in the

second way, and which has been expressed in Eq. (3.1). Fig. 5.6 shows the PPA

enhanced with unsigned multiplication: a PP U_M, generated from either way for

correction, locates at the bottom of the PPA.

Fig. 5.6. Adding a PP to perform unsigned operation.

 66

Appended operand bits are necessary not only for supporting unsigned MAC

operation but also for performing MAN operation (described in Section 5.2) on

unsigned numbers. The reason is demonstrated in Fig.5.7: Actually, it takes N+1 bits

to represent an N-bit unsigned number after negation. Therefore, it is also of great

help when performing the MAN/MAS operations on unsigned numbers.

The difference of the two ways lies in the number of appended bits for each

operand. Considering the bit width of the generated PP from the MBE, the proposed

design appends two bits for each PP as shown in Fig. 3.2. Either way thereby has no

difference in the PPA, PPRT and CPA.

Fig. 5.7. A representation problem on negation of unsigned numbers.

5.1.4 Mixed-Mode Operation

Sign magnitude and TC are two different attempts on representing negative

numbers. Both formats, inevitably, trade the MSB significance for a sign bit. This

loses the dynamic range especially when representing unsigned numbers since the

MSBs should always be zero-filled.

To retain a larger dynamic range, some DSP processors [27] support a special

operation mode, called mixed-mode in this thesis, to perform a signed multiplicand

operated with a unsigned multiplier, and the product or the accumulator data is still

signed. Fig. 5.8 shows the comparison on dynamic range among signed, unsigned,

and mix-mode operation: mixed-mode benefits from both the TC representation and

a larger dynamic range.

 67

Fig. 5.8. Dynamic range comparison among signed, unsigned, and mixed-mode.

To implement mixed-mode multiplication, it’s exactly the same as the

modification done for unsigned mode. The multiplier is unsignedly represented;

zero-extension is performed. Hence, one extra PP for mixed-mode multiplication is

generated and accumulated in the PPRT. Since the result is signedly represented in

TC format, the extra PP does not ensure a positive result. Fig. 5.9 shows the PPA

that supports MAN/MAS operation, unsigned operation, and mixed-mode operation:

the correction PP for mixed-mode is located at the exactly same place of unsigned

correction PP; hence they are combine into a single PP, U_M, for unsigned and

mixed-mode correction.

As a result, three different numeric FXP data formats – signed, unsigned, and

mixed-mode – are integrated into the proposed designs. The overhead on PPRT, as

mentioned before, may sometimes be ignored; however there’s a little delay added

along the critical path since three possible operating modes are under consideration.

If mixed-mode is removed, the proposed designs will have even better performance.

 68

Fig. 5.9. An PPA supporting MAN/MAS, unsigned/mixed-mode operation.

5.2 Overflow/Underflow Check for FXP Numbers

5.2.1 Fixed-Point (FXP) Representation

Compared with floating point (FLP) representation, the fixed-point (FXP)

numeric format is say to be fixed since the radix point is assumed to be “fixed” at

some bit positions. Taking an N-bit stream for instance, if the “virtual” radix point is

at the right of LSB, it is exactly the same as how we interpret the integer data format,

and is denote as N.0 signed/unsigned integer format. To represent fractions, the radix

point can be set at any place except at the right of LSB. The weights of each bit

position to the left side of the radix point are larger than one; positions to the right

side, smaller. If there are k bits to the left side of the radix point, it is denoted as

k.(N-k) format. Most DSP processors use 0.N format to represent unsigned fractions

and 1.N-1 format for signed fractions.

 69

FXP representation also features that most mathematic/scientific operations

such as addition and multiplication shares integer arithmetic, i.e. even if a fraction

number is under consideration, the same adder or multiplier hardware still obtains

the correct answer, provided the result is correctly interpreted. For FLP processors,

the FLP datapath can not share FXP datapath since the FLP numbers is represented

in another data format such as IEEE-754 standard.

FXP representation has a narrower dynamic range than FLP representation, a

FXP processor; however, it is less expensive than a FLP processor. FXP processors

thereby prevail in DSP applications.

5.2.2 Maintaining Precision & Accuracy

In general, when multiplying two N-bit FXP operands, it takes 2N-bit to

represent the product without introducing any error. This is sometimes refereed to as

the law of conservation of bits [2]. The 2N-bit register will eventually be insufficient

if it is accumulated for some times. Even worse, what if we want to store the 2N-bit

result back to N-bit registers or memories? When the result of an arithmetic operation

exceeds the range of the destination register, important information can be lost.

These precision-related problems occur because the number of bits required to

represent the result exceed that of the intrinsic system data format. If not properly

controlled, the result goes wrong. Plenty of techniques are developed to resolve the

problem such as saturation, input-scaling, accumulator with guard bits, rounding,

and truncation. In the following text we’ll discuss saturation and rounding in detail

because they are frequent and almost supported in all DSP processors.

Considering the fact that addition and multiplication increase the operand

width and the full width result is impractical when operands go on, programmers have

 70

to decide the significant bits of the result. For a 2N-bit multiplier product in an N-bit

system, the higher half N bits are often viewed as the significant part for fractions

while lower half are often significant for integers. This selection retains higher

precision from the original data. However, N-bit data width can not fully represent a

2N-bit product; some inspections are thus required during half-part selection in order

to avoid error and maintain accuracy or higher precision.

Overflow/Underflow check is different between integers and fractions. In the

following section, a MAC unit operating on 16-bit FXP data (X and Y) and producing

a 32-bit product (M) that may be added or subtracted from a 40-bit accumulator (ACC)

will be used as an example to briefly explain how to perform overflow/underflow

check. The exampling MAC architecture is typical in modern DSP processors such as

in Analog Device’s Blackfin� DSP processors [27].

5.2.3 Saturation & Overflow/Underflow for Integers

In Section 5.2.3 and 5.2.4, a set of pseudo assembly MAC instructions is

utilized to demonstrate the way to perform saturation or rounding. Table 5.1 lists the

basic instruction types and notations; Table 5.2 demonstrates some pseudo MAC

instruction examples; Table 5.3 details some available modes that can be supported

by the proposed MAC design.

As far as a FXP MAC is concerned, overflow/underflow may happen when

accumulating ACC to M. When overflow/underflow is asserted, saturation means that

the overflowed/underflowed data is not viewed as the final result; instead, to maintain

higher precision, incorrect data is replaced by the maximal/minimal representable

value (still incorrect). To take an example, consider adding base-10 numbers in a

system where numbers cannot be larger than two digits in size. If we add the numbers

 71

55, 30, and 20, the result is 5, because two digits are not sufficient for representing the

correct result of 105. If saturation mode is applied, we replace 5, which is 100 away

from the correct answer, with the maximal representable number 99, which is only 6

away from the correct result [2]. Saturation practically maintains higher accuracy. Fig.

5.10 shows the effect with or without saturation when overflow/underflow occurs.

Table 5.1. Pseudo MAC instruction types and notations.

Instruction Type Description
M.HF = X.HF * Y.HF (MODE); MUL to a data register half

M = X.HF * Y.HF (MODE); MUL to a data register

ACC +-= X.HF * Y.HF (MODE); MAC/MAS/MUL to ACC

M.HF = (ACC +-= X.HF * Y.HF) (MODE); MAC/MAS/MUL to ACC and a data register half

M = (ACC +-= X.HF * Y.HF) (MODE); MAC/MAS/MUL to ACC and a data register

Note: .HF stands for a register half; it is either .H for high part or .L for low part. (MODE) can

be chosen from Table 5.3; +-= stands for MAC/MAS/MUL operation, respectively.

Table 5.2. Pseudo MAC instruction examples.

Example Description

M.L = X.L * Y.H;
Multiply the lower half of X with the higher half of

Y; treat both operands as a signed fraction; store

the result to the lower half of M.

M = X.H * Y.H (SI);
Multiply the higher half of X with the higher half of

Y; treat both operands as a signed integer; store

the result to M.

M.H = (ACC = X.H * Y.L) (UF);
Multiply the higher half of X with the lower half of

Y; treat all operands as a unsigned fraction; store

the result to ACC and the higher half of M.

M = (ACC += X.L * Y.L) (MF);

Multiply the higher half of X with the higher half of

Y; accumulate in ACC; treat X, ACC, and M as a

signed fraction; Y, as a unsigned fraction; store the

result to ACC and M.

 72

Table 5.3. Some available modes for pseudo MAC instructions.

MODE 16-bit 32-bit

Default

Format: 1.15 * 1.15 -> 1.15
Range: 0x8000 ~ 0x7FFF
Meaning: Multiply two signed 1.15 format
numbers; after 1-bit left shift correction,
(accumulate and then) round and saturate the
result in signed 1.15 format, and store to a
register half.

Format: 1.15 * 1.15 -> 1.31
Range: 0x8000_0000 ~ 0x7FFF_FFFF
Meaning: Multiply two signed 1.15 format
numbers; after 1-bit left shift correction,
(accumulate and then) saturate the result in
signed 1.31 format, and store to a register.

Unsigned

Fraction

(UF)

Format: 0.16 * 0.16 -> 0.16
Range: 0x0000 ~ 0xFFFF
Meaning: Multiply two unsigned 0.16 format
numbers; (accumulate and then) round and
saturate the result in signed 0.16 format, and
store to a register half.

Format: 0.16 * 0.16 -> 0.32
Range: 0x0000_0000 ~ 0xFFFF_FFFF
Meaning: Multiply two unsigned 0.16 format
numbers; (accumulate and then) saturate the
result in unsigned 0.32 format, and store to a
register.

Signed

Integer

(SI)

Format: 16.0 * 16.0 -> 16.0
Range: 0x8000 ~ 0x7FFF
Meaning: Multiply two signed 16.0 format
numbers; (accumulate and then) saturate the
result in signed 16.0 format, and store to a
register half.

Format: 16.0 * 16.0 -> 32.0
Range: 0x8000_0000~ 0x7FFF_FFFF
Meaning: Multiply two signed 16.0 format
numbers; (accumulate and then) saturate the
result in signed 32.0 format, and store to a
register.

Unsigned

Integer

(UI)

Format: 16.0 * 16.0 -> 16.0
Range: 0x0000 ~ 0xFFFF
Meaning: Multiply two unsigned 16.0 format
numbers; (accumulate and then) saturate the
result in unsigned 16.0 format, and store to a
register half.

Format: 16.0 * 16.0 -> 16.0
Range: 0x0000_0000 ~ 0xFFFF_FFFF
Meaning: Multiply two unsigned 16.0 format
numbers; (accumulate and then) saturate the
result in unsigned 32.0 format and store to a
register.

Truncation

(T)

Format: 1.15 * 1.15 -> 1.15
Range: 0x8000 ~ 0x7FFF
Meaning: Multiply two signed 1.15 format
numbers; after 1-bit left shift correction,;
(accumulate and then) truncate (and saturate)
the result in signed 1.15 format and store to a
register half.

Truncation is meaning less for 32-bit result;
Same as Default mode

Unsigned

Fraction

with

Truncation

(TUF)

Format: 0.16 * 0.16 -> 0.16
Range: 0x0000 ~ 0xFFFF
Meaning: Multiply two unsigned 0.16 format
numbers; (accumulate and then) truncate (and
saturate) the result in signed 0.16 format, and
store to a register half.

Truncation is meaning less for 32-bit result;
Same as unsigned fraction mode.

Mixed Mode

Fraction

(MF)

Format: 1.15 * 0.16 -> 1.15
Range: 0x8000 ~ 0x7FFFF
Meaning: Multiply a signed 1.15 format number
with an unsigned 0.16 format number;
(accumulate and then) round and saturate the
result in signed 1.15 format, and store to a
register half.

Format: 1.15 * 0.16 -> 1.31
Range: 0x8000_0000 ~ 0x7FFF_FFFF
Meaning: Multiply a signed 1.15 format number
with an unsigned 0.16 format number;
(accumulate and then) saturate the result in
signed 1.31 format, and store to a register.

Mixed Mode

Integer

(MI)

Format: 16.0 * 16.0 -> 16.0
Range: 0x8000 ~ 0x7FFF
Meaning: Multiply a signed 16.0 format number
with an unsigned 16.0 format number;
(accumulate and then) saturate the result in
signed 16.0 format, and store to a register half.

Format: 16.0 * 16.0 -> 32.0
Range: 0x8000_0000 ~ 0x7FFF_FFFF
Meaning: Multiply a signed 16.0 format number
with an unsigned 16.0 format number;
(accumulate and then) saturate the result in
signed 32.0 format and store to a register.

 73

Fig. 5.10. Effect with or without saturation when overflow/underflow occurs.

Possible saturation conditions are listed in Table 5.4 and described as follows:

 40-bit signed integer: Overflow/Underflow may occur when

accumulating M to ACC. The check scheme is identical to that for signed

addition. If two operands are with the same sign, the sign of the result is

inspected. Overflow happens when two positive numbers sum to a

negative result; it is saturated to the maximum of the 40.0 signed integer

format, 0x7F_FFFF_FFFF. Underflow happens when two negative

numbers sum to a positive result; it should saturate to the minimum,

0x80_0000_0000.

 32-bit signed integer: The system may store the 40-bit MAC result to M;

overflow/underflow happens when the 40-bit ACC can not be fully

represented. It occurs when ACC[39:32], the guard bits, are not all the

same as ACC[31], the sign bit. If ACC[39:31] equal to 9 ones or 9 zeros,

saturation is unnecessary; if not, ACC[39] decides saturated value. The

maximum of a 32.0 signed integer is 0x7FFF_FFFF; the minimal,

0x8000_0000.

 74

 16-bit signed integer: The system may store the 40-bit MAC result to

M.H or M.L from M[15:0] or ACC[15:0]. If one of the bits in M[31:16]

or ACC[39:16] doesn’t equal the sign bit, M[15] or ACC[15], it

indicates the 32-/40-bit result is different from the 16-bit result and

thereby overflow/underflow happens, i.e. if M[31:15] or ACC[39:15] are

all ones or all zeros, no saturation is required; if not, M[31] or ACC[39]

determines the saturated value. The maximum of a 16.0 signed integer is

0x7FFF; the minimum, 0x8000.

 40-bit unsigned integer: The logic of the carry-out bit of the 40-bit CPA

is equivalent to the logic of this overflow condition since it indicates 40

bits are not enough for representation. Underflow occurs when operating

MAN/MAS operation with a negative result; this should use one extra bit

to check as shown in Fig. 5.7. If supported, it resembles the underflow of

40-bit signed integer. The maximum of a 40.0 unsigned integer is

0xFF_FFFF_FFFF; the minimum, 0x00_0000_0000.

 32-bit unsigned integer: Overflow concerns the positive sign extension

and the carry-out of the 40-bit CPA. It demands the 9-bit value

{cout,ACC[39:32]} equals zero. Underflow check resembles that of

32-bit signed integer. As a note, multiplication in this case asserts no

overflow due to the law of conservation of bits. The maximum of a 32.0

unsigned integer is 0xFFFF_FFFF; the minimum, 0x0000_0000.

 16-bit unsigned integer: Similar to 32-bit unsigned integer overflow

check, it requires to check whether each of the 25 bits, {cout,ACC[39:16]}

or each of the 16 bits, M[31:16], equals zero, depending on the source.

Underflow check resembles that of 16-bit signed integer. The maximum

of a 16.0 unsigned integer is 0xFFFF; the minimum, 0x0000.

 75

Table 5.4. Possible saturation conditions using the exampling architecture.

Type Width Overflow Max. Underflow Min.

40 M[31]=ACC[39]=0 and
result ACC[39]=1 0x7fffffffff

M[31]=ACC[39]=1
and
result ACC[39]=0

0x8000000000

e.g.

ACC += X.L * Y.L (SI);
// ACC_old = 0x 7fc0000000;
// X.L = 0x8000;
// Y.L = 0x8000;
/*M= 0x40000000; The
accumulated result is
0x8000000000 which overflows.
The result should saturate to
0x7fffffffff */

ACC += X.L * Y.L (SI);
// ACC_old = 0x8000000000;
// X.L = 0x0001;
// Y.L = 0xffff;
/* M = 0xffffffff; The accumulated result
is 0x7fffffffff which underflows. The result
should saturate to 0x8000000000 */

32 ^ACC[39:31]=1 and
ACC[39] = 0 0x7fffffff ^ACC[39:31]=1 and

ACC[39] = 1 0x80000000

e.g.
M = (ACC += X.L * Y.L) (SI);
// ACC_new = 0x 7fc0000000;
/* Overflow condition asserts; the
result saturates to 0x7fffffff */

M = (ACC += X.L * Y.L) (SI);
// ACC_new = 0x8000000000;
/* Underrflow condition asserts; the
result saturates to 0x80000000 */

16
^ACC[39:15] = 1 and
ACC[39] = 0, or
^M[31:15] = 1 and
M[31] = 0

0x7fff
^ACC[39:15] = 1 and
ACC[39] = 1, or
^M[31:15] = 1 and
M[31] = 1

0x8000

SI

e.g.

M.L = X.L * Y.H (SI);
// X.L = 0x8000;
// Y.H = 0x8000;
/* M = 0x40000000; Overflow
asserts; the result saturates to
0x7fff */

M.L = X.L * Y.H (SI);
// X.L = 0x0004;
// Y.H = 0x8000;
/* M = 0xffff0000; Underflow asserts; the
result saturates to 0x8000 */

40 cout = 1; 0xffffffffff depends on system 0x0000000000

e.g.

ACC += X.L * Y.L (UI);
// ACC_old= 0xffc0000000;
// X.L = 0x8000;
// Y.L = 0x8000;
/* M = 0x40000000; The carry-out
of the accumulated result is 1 which
overflows. The result saturates to
0xffffffffff */

ACC -= X.L * Y.L (UI);
// ACC_old= 0x0000000000;
// X.L = 0x0001;
// Y.L = 0x0001;
/* M = 0x00000001; ACC_new equals -1
in decimal which saturates to
0x0000000000 */

32 |{cout,ACC[39:32]}=1 0xffffffff depends on system 0x00000000

e.g.
M = (ACC += X.L * Y.L) (UI);
// ACC_new= 0x0200000000;
/* Overflow asserts; the result
saturates to 0xffffffff */

M = (ACC -= X.L * Y.L) (UI);
/* M = 0x00000001; ACC_new equals -1
in decimal which saturates to
0x00000000 */

16
|{cout,ACC[39:16]}=1;
or
|M[31:16] = 1

0xffff depends on system 0x0000

UI

e.g.

M.L = X.L * Y.H (UI);
// X.L = 0x0002;
// Y.H = 0xffff;
/* M = 0x0001fffc; Overflow asserts;
the result saturates to 0xffff */

M.L = (ACC -= X.L * Y.L) (UI);
/* M = 0x00000001; ACC_new equals -1
in decimal which saturates to 0x0000 */

 76

5.2.4 Rounding of Fractions

Unlike integers, the significant bits of fractions are the higher half. If it is to

store back a 2N-bit result to an N-bit register, the system eventually discards the

lower N bits. However, in order to maintain higher precision, some techniques are

developed to deal with such condition and in general called rounding.

There are three chief rounding schemes: biased-rounding, unbiased-rounding,

and truncation. For biased and unbiased rounding, if the lower half to be discarded

is larger than a half, the system rounds up, i.e. it adds one to the new LSB, M[16] or

ACC[16]; when it is smaller than a half, the system rounds down by simply

discarding the lower half. The two rounding schemes differ only in the case that the

lower half equals the midpoint value. For biased rounding, this value is always

rounded up; biased rounding thereby always rounds to the nearest 0 or 1 and is also

nicknamed round-to-nearest. The result on average is biased to a value slightly

larger than a half. Unbiased rounding, also called round-to-nearest-even, has a

different way to deal with the midpoint value. It rounds the value to the nearest even

point, and the rounding direction depends on the LSB of the higher half, M[15] or

ACC[15], not always upward. This scheme consequently has no bias if the system

process on random data, and is also called convergent rounding.

Considering DSP algorithms, we often use unbiased rounding scheme to round

fractions; however, some application such as GSM algorithm uses biased rounding

[27]. It requires some logic to perform rounding before writing the result to a system

register half. If the destination register bit width is long enough, rounding is

meaningless.

An easiest way to avoid any rounding logic is to totally get rid of the lower

half. This technique is referred to as truncation and sometimes called round-to-zero.

 77

In contrast with the other two schemes, truncation is biased downward to a smaller

average. Fig. 5.11 depicts three rounding schemes.

Fig. 5.11. Three different rounding schemes.

5.3 Reconfigurable Parameters Setup
The proposed design has been detailed in previous sections; this section

describes the way to reconfigure the parameters of the proposed design in tabular

form. Table 5.5 lists the I/O interface of the proposed design. Table 5.6, identical to

Table 3.3, lists again the possible SW combination schemes of the proposed design.

Table 5.7 and Table 5.8 give some examples to configure the kill and mode signals,

respectively. Some points or exception to be noticed are list as notes at the bottom of

each Table.

 78

Table 5.5. Interface of the proposed design.

MAC Scalar 16-bit 32-bit 64-bit
MULTIPLICAND mcand[N-1:0] mcand[15:0] mcand[31:0] mcand[63:0]

MULTIPLIER mlier[N-1:0] mlier[15:0] mlier[31:0] mlier[63:0]
ACCUMULATOR accu[2N-1:0] accu[31:0] accu[63:0] accu[127:0]

MODE mode[1:0]
mode_v0[1:0]
mode_v1[1:0]

mode_v0[1:0]
mode_v1[1:0]
mode_v2[1:0]
mode_v3[1:0]

mode_v0[1:0]
mode_v1[1:0]
mode_v2[1:0]
mode_v3[1:0]
mode_v4[1:0]
mode_v5[1:0]
mode_v6[1:0]
mode_v7[1:0]

KILL N/A kill
kill0
kill1
kill2

kill0
kill1
kill2
kill3
kill4
kill5
kill6

RESULT m_out[2N-1:0] m_out[31:0] m_out[63:0] m_out[127:0]

CARRY-OUT cout
cout_v0

cout

cout_v0
cout_v1
cout_v2

cout

cout_v0
cout_v1
cout_v2
cout_v3
cout_v4
cout_v5
cout_v6

cout
Note: N is the bit width of scalar input operands
Note: v0, v1, …, v7 indicate SWs in order; v7 aligns to MSB; v0, LSB
Note: For all MODE signal: 1?: mixed-mode; 00: unsigned; 01: signed
Note: kill is inserted between SWs; kill2 between v2 and v3, and the like

 79

Table 5.6. Possible sub-word combinations of the proposed SWP MAC design.

Possible Sub-Word Combinations

(16)
16-bit

(8,8)
(32)

(8,8,8,8)
(8,8,16)
(16,16)

32-bit

(16,8,8)

64-bit
A 64-bit SWP MAC is viewed consisting of two
independent 32-bit SWP MACs; it then has
5×5 = 25 possible combinations

Table 5.7. Configuration example of KILL signal.

KILL kill6 kill5 kill4 kill3 kill2 kill1 kill0
16-bit SWP MAC

(16) N/A N/A N/A N/A N/A N/A 0
(8,8) N/A N/A N/A N/A N/A N/A 1

32-bit SWP MAC
(32) N/A N/A N/A N/A 0 0 0

(16,16) N/A N/A N/A N/A 0 1 0
(8,8,8,8) N/A N/A N/A N/A 1 1 1
(8,8,16) N/A N/A N/A N/A 1 1 0

64-bit SWP MAC
(64) 0 0 0 0 0 0 0

(32,32) 0 0 0 1 0 0 0
(16,16,16,16) 0 1 0 1 0 1 0

(8,8,8,8,8,8,8,8) 1 1 1 1 1 1 1
(16,16,32) 0 1 0 1 0 0 0

(8,8,8,8,32) 1 1 1 1 0 0 0
(8,8,16,32) 1 1 0 1 0 0 0

Note: List only some possible conditions
Note: An illegal input will be redirected to scalar mode by default

 80

Table 5.8. Configuration example of MODE signal.

MODE SW_7 SW_6 SW_5 SW_4 SW_3 SW_2 SW_1 SW_0

16-bit SWP MAC
(16) N/A N/A N/A N/A N/A N/A ○ ╳

(8,8) N/A N/A N/A N/A N/A N/A ○ ○

32-bit SWP_MAC
(32) N/A N/A N/A N/A ○ ╳ ╳ ╳

(16,16) N/A N/A N/A N/A ○ ╳ ○ ╳

(8,8,8,8) N/A N/A N/A N/A ○ ○ ○ ○

(8,8,16) N/A N/A N/A N/A ○ ○ ○ ╳

64-bit SWP MAC
(64) ○ ╳ ╳ ╳ ╳ ╳ ╳ ╳

(32,32) ○ ╳ ╳ ╳ ○ ╳ ╳ ╳

(16,16,16,16) ○ ╳ ○ ╳ ○ ╳ ○ ╳

(8,8,8,8,8,8,8,8) ○ ○ ○ ○ ○ ○ ○ ○

(16,16,32) ○ ╳ ○ ╳ ○ ╳ ╳ ╳

(8,8,8,8,32) ○ ○ ○ ○ ○ ╳ ╳ ╳

(8,8,16,32) ○ ○ ○ ╳ ○ ╳ ╳ ╳

○: Configurable
╳: Can't configure;should be identical with the nearest ○ on the left side
Note: Incorrect assignment of mode may cause a wrong result

 81

CHAPTER 6
CONCLUSIONS

In this thesis, we present the design methodology of a high-performance

reconfigurable modified Booth encoded MAC unit. It is capable of supporting

sub-word parallel (SWP) operation which enhances computational throughput of

many DSP algorithms especially for multimedia applications. The scalar version of

the proposed design comprises a high-speed, area-reduced, and race-free MBE; a

speed optimized Wallace PPRT using TDM; and a high speed, area-minimized Fong

adder. Using essentially the same hardware, SWP is performed on the scalar MAC

by applying some preprocessing to operands associated with a new arrangement of

the SWPPA, and with the support of carry-chain blocking when accumulating all

partial products. A novel full-adder carry-out masking concept is proposed to build

the SWPPRT, facilitating the use of TDM. The SWP version Fong adder inherits its

scalar merits and supports identical SW combinations with our requirement. The

proposed SWP design innovatively features the flexible sub-word combination and

mode assignment scheme with nearly same delay and modest area overhead

compared with the proposed scalar design. The proposed designs are

fully-synthesizable in a reusable and verifiable design style. Experimental results

demonstrate that the proposed scalar and SWP designs, for most cases, outperform

the designs of DesignWare® IP [38] and of [10] in terms of critical path delay, area

cost, and power consumption.

 82

FUTURE WORKS

We are developing a generator to generate the RTL codes of the proposed

MAC designs in Verilog HDL format. Testbench for verification, synthesis script,

and user’s manual will also be generated. All output files depend on the user

reconfigurable inputs. We are also analyzing the pros and cons of replacing the

scalar MAC units in multiple-MAC DSP processors by a proposed SWP MAC in

order to design a high-performance MAC unit.

 83

BIBLIOGRAPHY

[1] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and

Implementation, pp. 698, pp. 484, pp. 488, John Wiley & Sons, 1999.

[2] P. Lapsley, J. Bier, A. Shoham and E. Lee, DSP Processor Fundamentals:

Architectures and Features, p. 9, p. 35, p. 47, Berkeley Design Technology Inc.,

1996

[3] B. Parhami, Computer Arithmetic Algorithms and Hardware Design, pp.

204-205, pp. 149-151, pp. 133-134, pp. 98-99, Oxford University Press, New

York, 2000.

[4] O. L. MacSorley, "High-speed arithmetic in binary computers", Proc. IRE, vol.

49, pp. 67-91, 1961.

[5] C. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. on Electronic

Computers, vol.13, pp. 14-17, 1964.

[6] S. Krithivasan and M. J. Schulte, “Multiplier Architectures for Media

Processing,” Proc. 37th Asilomar Conf. Signals, Systems, and Computers, pp.

2193-2197, Nov. 2003.

[7] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-Chip

Designs, Kluwer Academic Publishers, third edition, 2002.

[8] V. G. Oklobdzija, D. Villeger, and S. S. Liu, "A Method for Speed Optimized

Partial Product Reduction and Generation of Fast Parallel Multipliers Using an

Algorithmic Approach," IEEE Trans. Computers, vol. 45, no. 3, pp. 294--305,

March 1996.

[9] W.-C. Yeh and C.-W. Jen, “High-Speed Booth Encoded Parallel Multiplier

 84

http://doi.ieeecomputersociety.org/10.1109/12.863039

Design,” IEEE Trans. Computers, vol. 49, no. 7, pp. 692-701, July 2000.

[10] A. Danysh and D. Tan, "Architecture and Implementation of a Vector/SIMD

Multiply-Accumulate Unit," IEEE Transactions on Computers,

vol. 54, no. 3, pp. 284-293, Mar., 2005.

[11] D. Tan, A. Danysh, M. Liebelt, "Multiple-Precision Fixed-Point Vector

Multiply-Accumulator Using Shared Segmentation," arith, p. 12, 16th IEEE

Symposium on Computer Arithmetic (ARITH-16 '03), 2003.

[12] G. W. Bewick, "Fast Multiplication: Algorithms and Implementation," PhD

dissertation, pp. 14-16, appendix A, pp. 13-14, Stanford University, Department

of Electrical Engineering, Feb., 1994.

[13] A. D. Booth, "A Signed Binary Multiplication Technique," Quarterly J.

Mechanical and Applied Math., vol. 4, pp. 236-240, 1951.

[14] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, pages

349-356, March 1965.

[15] M. Santoro, “Design and Clocking of VLSI Multipliers”, PhD dissertation,

Stanford University, Department of Electrical Engineering, 1989.

[16] R. Fried, "Minimizing Energy Dissipation in High-Speed Multipliers," Proc.

1997 Int'l Symp. Low Power Electronics and Design, pp. 214-219, 1997.

[17] M. Annaratone and W. Z. Shen, “The Design of an LSI Booth Multiplier,”

Carnegie Mellon University Thesis report (CS), no. 150, 1984.

[18] A. A. Farooqui and V. G. Oklobdzija, “General Data-Path Organization of a

MAC Unit for VLSI Implementation of DSP Processors,” Proc. 1998 IEEE

Int'l Symp. Circuits and Systems, vol. 2, pp. 260-263, 1998.

[19] S. Vassiliadis, E.M. Schwarz, and B.M. Sung, “Hard-Wired Multipliers with

Encoded Partial Products,” IEEE Trans. Computers, vol. 40, no. 11, pp.

1181-1197, Nov. 1991.

 85

http://doi.ieeecomputersociety.org/10.1109/12.863039

[20] P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Optimal circuits for

parallel multipliers,” IEEE Transactions on Computers, vol. 47, no. 3, pp.

273-285, Mar. 1998.

[21] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, pp241-249, Morgan Kaufman Publishers, Inc.,

2nd Edition, 1998.

[22] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE

Transactions on Computers, vol. 31, no. 3 pp.260-264, 1982.

[23] T. Han, D. A. Carlson, and Steven P. Levitan, “Fast Area Efficient VLSI

Adders,” IEEE International Conference on Computer Design, pages 418-422,

October 1987.

[24] H Ling, "High-Speed Binary Adder," IBM J. Res. Develop., vol. 25, no. 3,

pp156-166, May 1981.

[25] G. Dimitrakopoulos and D. Nikolos, “High-Speed Parallel-Prefix VLSI Ling

Adders,” IEEE Trans. Computers, vol. 54, No.2, Feb. 2005.

[26] Y. -C. Fong, "A High-Speed Area-Minimized Reconfigurable Adder Design,"

Master’s thesis, National Chiao Tung University, Department of Electronics

Engineering, Jul. 2006.

[27] Analog Devices, Blackfin® Processor Hardware Reference, revision 3.0, Sep.,

2004. Available from www.analog.com.

[28] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide,

revision F, Oct. 2000. Available from www.ti.com.

[29] C. G. Lee and M. G. Stoodley, “Simple Vector Microprocessors for Multimedia

Applications,” Proc. 31st Ann. ACM/IEEE Int’l Symp. Microarchitecture, pp.

25-36, 1998.

[30] R. B. Lee, “Multimedia Extensions for General-Purpose Processors,” Proc.

 86

Signal Processing Systems (SIPS ’97), pp. 9-23, Nov. 1997.

[31] N. Burgess, “PAPA—Packed Arithmetic on a Prefix Adder For Multimedia

Applications,” Proc. IEEE Int’l Conf. Application-Specific Systems,

Architectures and Processors, pp. 197-207, July 2002.

[32] A. A. Farooqui, V. G. Oklobdzija, and F. Chehrazi, “Multiplexer Based Adder

for Media Signal Processing,” Proc. 1999 Int’l Symp. VLSI Technnology,

Systems, and Applications, pp 100-103, June 1999.

[33] C. R. Baugh and B. A. Wooley, "A two's complement parallel array

multiplication algorithm," IEEE Transactions on Computers, vol. 22, pp.

1045--1047, December 1973.

[34] M. J. Schulte, L. P. Marquette, S. Krithivasan, E. G. Walters, and J. Glossner,

“Combined Multiplication and Sum-of-Squares Units,” Proceedings of the

IEEE International Conference on Application-Specific Systems, Architectures,

and Processors, pp. 204–214, June, 2003.

[35] Shankar Krithivasan, Michael J. Schulte, John Glossner, "A Subword-Parallel

Multiplication and Sum-of-Squares Unit," isvlsi, p. 273, IEEE Computer

Society Annual Symposium on VLSI Emerging Trends in VLSI Systems Design

(ISVLSI'04), 2004.

[36] T. K. Callaway and E. E. Swamlander, Jr., “Power-Delay Characteristics of

CMOS Multipliers,” Proceedings of rhe 13rh IEEE Siaworium 011 Cornpurer

Arirhmeric, pp. 26-32, 1997.

[37] Artisan Components, UMC 0.18μm L180 Process 1.8-Volt Sage-XTMStandard

Cell Library Databook, release 2.0, pp. 32-33, Nov. 2003.

[38] Synopsys Inc., DesignWare® Building Block IP Documentation Overview, Jan.

17, 2005.

[39] Synopsys Inc., Design Compiler® User Guide, version W-2004. 12, Dec.,

 87

2004.

[40] Synopsys Inc., PrimePower® Manual, version W-2004. 12, Dec., 2004.

[41] Cadence Design Systems Inc., Verilog®-XL User Guide, version 3.4, Jan.,

2002.

[42] Novas Software Inc., nLint® User Guide and Tutorial, version 2.2, Dec., 2004.

[43] TransEDA Technology Ltd., Verification Navigator® User Guide, version

2005.03, Mar., 2005.

[44] Cadence Design Systems Inc., Encounter™ Conformal® Equivalence

Checking User Guide, version 5.1, June, 2005.

 88

