High-Performance Reconfigurable

Sub-Word Parallel Multiplier-Accumulator Design

High-Performance Reconfigurable

Sub-Word Parallel Multiplier-Accumulator Design

FopoA L HREk Student: Hung-Kuang Lin
hERE e kE #L Advisor: Dr. Juinn-Dar Huang
PR i - 4

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Electronics Engineering & Institute of Electronics

July 2006
Hsinchu, Taiwan, Republic of China

PERRY LT A

=
|4
o
(=
A=
o

=H
4
=
2
%
=H
4y
jt!
&
—\x‘]:

1 &

R R I RIS L A RS e L I

R SRS = B S IS i ﬁ‘;ﬁf 7 R f:E yye ﬁ*? B F ER T e

FPATEP R AT ATE o RREARM A R LR P EE G

T APk AT 2 P AR Jlgrze&:ijj_‘? R

High-Performance Reconfigurable

Sub-Word Parallel Multiplier-Accumulator Design

Student: Hung-Kuang Lin Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering &
Institute of Electronics
National Chiao Tung University

ABSTRACT

This thesis presents the design—methodology of a high-performance
reconfigurable multiplier-accumulator.. (MAC).* capable of supporting sub-word
parallelism (SWP) and additional features such as mixed-mode operation and flexible
sub-word combination and mode assignment scheme. In order to perform SWP on the
proposed scalar MAC, a new SWP partial product array and a novel speed-optimized
SWP partial product reduction tree are proposed. With slight delay and some area
overhead, the SWP MAC utilizes essentially the same hardware as the proposed
scalar MAC. The whole design is dynamically reconfigurable, fully-synthesizable,
reusable, and verifiable. The proposed designs and previous relevant works are
implemented and compared. Experimental results demonstrate that the proposed SWP
MAC design theoretically and practically improves and outperforms previous works

in terms of critical path delay, area cost, and power consumption.

ACKNOWLEDGMENT

=+ 2
2 ¥

HRFER®Y FAARR MR ERET tikp o

r 2 A ~ | P
7 E BT AL

7

217

TREZ RER EFm vty REAF I R

7)

4

B BLEFMEADARTHE o VAR I ACAR R EFFE -
WS auE R e RN BTy A
EEEOLE A A RHE ;4@;7—?;31%%‘15&\;,&3,5;7_ 2T Afd
RMEEL S P LR ERERE SRR BEE PR A
LAB3L17B & 2 B 5 FHlR P FE 3 &L i R4S B2
A B AR B AT Qe R EP AL (L BeauE D
#E P 329512 ¢ 326 - FEP x5 IS FE AR
BB oL B H s BB A P S PR B PR B F Wt L
EPROEE Gl F A SR A E S R T R ERE O RPR
AR o Bk R WS BN A A M- B o kehd # 2 gE
B EA- AR SRR ARS L ERRAZ G RGEP
ﬁﬂgﬁﬂﬁé?%é’ﬁg?*§@W%wo

2

il

)

MR N 2 G A AN R A

CONTENTS

ADSTract (CHINESE)ccvieiecicce e e I
Abstract (ENGliS)cooeeii e I
ACKNOWIEAGMENT ... Il
CONTENTS ..o nee e v
LiSt OF TaDIES ...oeoeeieee s Vil
LISt OF FIQUIES .o Vil
Chapter 1 IntroducCtion ...cliiiiv e i 1
Chapter 2 Previous WOFKS ... it 4

2.0 OVEIVIBW et et e o i e e e it e P e et e e e e e e et e e aenens 4

2.1 Prer@qUISITESeueeie it e et e e e e e e et ne e e e B

2.1.1 Simple Multiplication & Booth's Algorithmocoi i, 4
2.1.2 Acceleration of Multiplication FIOWcooiiiiiii i, 6
2.1.3 Modified Booth's Algorithm (MBA)cooiiiiiiiiii e 7
2.2 Related WOTKSt e e e e e e e e e 9
2.2.1 Partial Product Generation (PPG)ccoiiiiiii i, 9

2.2.2 Three-Dimensional-Method (TDM) PPRTccoviiiiiii e 14
2.2.3 High-Speed AdErsc.ovieiiiiii i i e, 1B
2.2.4 Sub-Word Parallelism (SWP)ccooiiiiiiiii i e 20

2.3 Summaries of Previous WOrkKScoooeeiiii i 26

Chapter 3 Proposed MAC DeSIgNScccocveueeiieniieeninniee e

B0 OVEIVIBW ..ttt et e e e et e e e e e et e et e e e e
3.1 Scalar MAC (SMAC) DESIgNviei it e e e e e
3.1.0 SPECITICALIONvt ittt e e e
3.1.1 Scalar Partial Product Generation (SPPG)ccoovveiiiiiviiiiiceiene,
3.1.2 Scalar Partial Product Reduction Tree (SPPRT)ccoviiiiiii i
3.1.3 Scalar Carry-Propagate Adder (SCPA)c.viviiiiiiii e,
3.1.4 Summaries of the Proposed Scalar MAC Designccocevvvinennnn.
3.2 Sub-Word Parallel MAC (SWP MAC) DeSigN.......ccvvviveieiiiiiiaienaenn,
3.2.0 SPECITICALIONvt ittt e e e e e e e e
3.2.1 Sub-Word Parallel MAC Execution FIOWccoooiiiiiiiiinnine.
3.2.2 Sub-Word Parallel PPG (SWPPG) i, .- ila e e e e
3.2.3 Sub-Word Parallel PPRT(SWPPRT) ..o e,
3.2.4 Sub-Word Parallel CPA (SWECPA) - dre e e e

3.2.5 Summaries of the Proposed SWP - MAC DesSigncovvvvviniennnnnn.

Chapter 4 Experimental Resultscccccooveviiii i

4.0 OVEIVIBW ...ttt it eit et e e et e e e et e e et e et a e e e e et e e e e
4.1 IMPIeMENTALIONv. ittt e e e e
4.2 Discussion of Experimental Resultscccoo i
O A =] VT
4.2.1 Delay COMPAIISONcuuieeiterie et e e et e et e e e e eae e
4.2.2 Area COMPAIISON ... uienet e et eee et e e a et et e e ae e et et e e een e

4.2.3 POWET COMPAIISONuiee et et e e e et et e e e e e eae e e ae e

34

34

35

36

43

46

49

50

50

51

51

52

55

Chapter 5 Application NOTEScccoociiiiiire e 60

B0 OV VIEW et ot e e e e e e e e e e e e B0

5.1 Functionality EnhanCementoooiiii it e e e 60
5.1.1 Multiply-Accumulate (MAC) Operationoooeeiieiiiniieineennnnnn 60
5.1.2 Multiply-Negate (MAN) Operationccooeiiriieiiiiieiieeneen, 62
5.1.3 Unsigned OPerationccoevuieiie it et e e e 65
5.1.4 Mixed-Mode OPerationccoveiiiiiiieiie e i e e e e ee s 67

5.2 Overflow/Underflow Check for FXP Numberscooeiiiiiiiiieen. 69
5.2.1 Fixed-Point (FXP) Representationccccvveiie i iiiiiiiiieienen, 69
5.2.2 Maintaining PreciSion & ACCUIACYoteuiiriieineainieiiane e eenann 70
5.2.3 Saturation & Overflow/Underflow. for Integersc.ooveiieennnnnn. 71
5.2.4 Rounding of FractionS. . . .o i it e e e e e 77

5.3 Reconfigurable Parameters SeIUP .. .oivieeie i vt 78

Chapter 6 CoNCIUSIONS ... i eeiifart e 82
FULUIE WOTKS ..o 83
BIDIOGrapiyooooeee 84

VI

LIST OF TABLES

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 2.5.

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 4.6.

Table 4.7.

Table 5.1.

Table 5.2.

Table 5.3.

Table 5.4.

Table 5.5.

Table 5.6.

Table 5.7.

Table 5.8.

Selection table of modified Booth’s algorithm ... 8
Truth table of standard encodingcooe i, 10
Truth table of compact encodingccoovviii i 10
Truth table of race-free encoding ..ol 11
Truth table of LSB new and hot2coooiiiiiiiiiiiiiii i 14
Specification of the proposed SMAC designccccevvviviveviveeennn. 27
Specification of the proposed SWP MAC deSignccvviieneeeneennns 35
Possible sub-word combinations of the proposed SWP MAC design 35

Truth table of sign encoding bits and sign bits of PPs 41
Environment setup for eXperiments ..oiie . ..cooeiie i 51
Critical path delay COMPAFISON vvishurin i it e eeene e e eeieieeeeanas 52
Delay overhead on performing-SWP-...oci . oeiie i e 54
Area COSt COMPATISON ... 2 fissnawsudih s « e neeeen e eeeen e aeeeenneaeeeenens 55
Area overhead on performing SWPccoiiiiii i 57
Power consumption COMPAriSONc.oueeureeusiiniaeeneaeaienineensaens D8
Power-delay characteristic comparisoncoveieeieviennen. ... 59
Pseudo MAC instruction types and notationscovevieivnnnns 72
Pseudo MAC instruction eXxamplesccveieiieiie e, 72
Some available modes for pseudo MAC instructions 73
Possible saturation conditions using the exampling architecture 76
Interface of the proposed desigNccvvvievie i, 79
Possible sub-word combinations of the proposed SWP MAC design 80

Configuration example of KILL signalccocoiiiiiviienvnen. 80

Configuration example of MODE signalcccooviiiii e nnn, 81

Vil

LIST OF FIGURES

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

2.1. Simple multiplication FIOW ..o
2.2. Multiplication flow in three Stepsccooe i,

2.3. Execution flow of MBE multiplicationcooooiiiiiiiiin e,

2.4. The MBE encoder and decoder in[9]coovviiiiiiiiiiii e
2.5. Sign encoding and hot-one modificationcoovei i
2.6. The concept Of TDM ..o e e e e,
2.7. An 8-bit carry-select adder example ...
2.8. Architecture of a 32-bit hybrid parallel-prefix/carry-select Ling adder
2.9. Architecture of a 32-bit scalar Fong addercoooviiiiiiiii e
2.10. Logic operators used inFONg adder .ooiie .o ii i,
2.11. A simplified PPA for 32 x.32 multiplication in different modes
2.12. Shared Segmentation PPA for-32x32-multiplication in different modes ...
3.1. Execution flow of the proposed.Scalar MAC designccccvnnne.
3.2. Decoding mcand 1000 in different modes when MBE selects -2x
3.3. FA cell used in the proposed SPPRTc..oiiiiiiiiiiiie e,
3.4. The proposed scalar architeCturecccooeiie i
3.5. Execution flow of the 32-bit proposed SWP MAC design
3.6. A 32-bit example of masking and multiplexing on the multiplier
3.7. Detailed view of the 32-bit proposed SWPPA with a selection example ...
3.8. SW combinations of the 32-bit proposed SWP MAC design
3.9. Breaking the FA carry-chain for SWP in SWPPRTc.cooiiiiiiinnnns
3.10. FA with carry-in masking used in [10]covvviiiiiiiie i
3.11. FA with carry-out masking used in the proposed design

3.12. Asimple 64-bit SWP addercccoiiiii e,

11

13

15

17

19

20

22

28

30

32

34

36

37

39

42

44

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

3.13. Architecture of a 32-bit Fong adder with reconfigurability
5.1. Execution flow of two approaches to completing MAC operation
52. MAN flow of method A ... e,
5.3. MAN flow of Mmethod Bcovniiiii i
5.4, MAN flow of method Coiiii i e,
5.5. An exampling PPA for MAN/MAS operations using method C
5.6. Adding a PP to perform unsigned operationc.ccovceveiieieiiinnnens.
5.7. Arepresentation problem on negation of unsigned numbers
5.8. Dynamic range comparison among signed, unsigned, and mixed-mode ...
5.9. A PPA supporting MAN/MAS, unsigned/mixed-mode operation
5.10. Effect with or without saturation when overflow/underflow occurs

5.11. Three different rounding'sehemes ... it oo,

62

63

64

65

66

67

68

CHAPTER 1
INTRODUCTION

Multiply-accumulate (MAC) computation is one of the most frequent operations
in DSP applications. A multiplier followed by an accumulator to integrate into a
multiplier-accumulator (MAC) unit characterizes a DSP processor. A series of MAC
operations has an arithmetic form like coefficient-data, inner product, or matrix
computation, and which serves as the core operation in many DSP algorithms such as
convolution, finite impulse response (FIR), fast Fourier transform (FFT), discrete
cosine transform (DCT), and so many other DSP algorithms also demand extensive
MAC operations. Multiplication (MUL), a basic. essential arithmetic operation, is
regarded as a special case of MAC. operation processed in the same MAC unit [1], [2],
[3]. Improvements in MAC design therefore-significantly benefit the performance of
the whole DSP processor according-to. Amdahl’s law. A high performance DSP
processor desires a high speed MAC unit with reduced area, low power, and high
computational throughput, decided by the specification. To facilitate a high speed
MAC design, an architecture using radix-4 modified Booth encoding (MBE) [4] and
Wallace partial product reduction tree (PPRT) [5] associated with a high speed
carry-propagate adder (CPA) is prevalent. To increase the computational throughput,
sub-word parallelism (SWP), a form of single-instruction-multiple-data (SIMD),
helps by processing all sub-words (SWs) in parallel and hence providing a
performance boost especially for multimedia applications that often require
lower-precision operands [6].

Considering the short time to market of a product required in the very era of

system-on-a-chip (SoC), a synthesizable, reusable, and verifiable silicon intellectual

property (SIP) with flexible user reconfigurability is popular and utilizes the design
reuse concept to help accelerate system integration [7]. Some MAC designs improve
the delay of CPA by prudently calculating the signal arrival time of each operand bit,
and use the delay profile to configure a faster adder scheme [8], [9]. This indicates the
adder scheme highly depends on the chosen cell library and thus usually not suitable
for reusable designs.

The previous SWP MAC designs are not speed optimized: the architecture in [6]
does not use MBE, resulting more partial products to be accumulated and
considerably increasing the latency. A modified Booth-encoded (MBE) MAC
architecture in [10], [11] completes SWP using a technique called “shared
segmentation” to arrange the partial product array (PPA); however, it forces a regular
connection scheme for full-adders (FAs) in the. Wallace PPRT, producing lower
performance. In addition, the previous designs have-a limited functionality either in
data format or in SW flexibility.

This thesis presents a synthesizable, reusable, and verifiable high-performance
reconfigurable MAC design. The proposed SWP MAC design is obtained, with slight
effort and small area overhead, by performing SWP on the proposed scalar design
which comprises a high performance MBE, a speed optimized PPRT, and a high
speed CPA. The proposed scalar design supports not only the signed operation but
also the unsigned and a special mixed-mode operation which forces the multiplicand
to be signed and multiplier to be unsigned. Mixed-mode operation provides a larger
dynamic range for DSP applications. The proposed scalar design also has better
performance in most cases compared with previous scalar MAC designs. As for SWP,
the proposed SWP MAC utilizes a novel SWP PPA to advance the performance of
SWP PPRT, and takes advantage of a new concept of carry-out masking to facilitate a

speed optimized SWP PPRT. Concerning the CPA, a high-performance Fong adder

with SWP capability is integrated into the proposed scalar and SWP designs. The
proposed scalar design is superior to related works in most cases while the proposed
SWP MAC design not only outperforms previous works in terms of delay, area, and
power consumption but also features a more flexible SW combination and mode
assignment scheme.

The remainder of this thesis is organized as follows: Chapter 2 briefly describes
the previous works that are most relevant to the proposed designs. Chapter 3 details
the design methodology of the proposed MAC designs and theoretically compares
with previous works. Chapter 4 demonstrates and discusses the experimental results.
Chapter 5 explains some important application notes concerning the utilization of the
proposed designs. Chapter 6 concludes this thesis. Future works and bibliography are

also provided afterward.

CHAPTER 2
PREVIOUS WORKS

2.0 Overview

In this chapter, we review some important previous work relevant to the
proposed MAC architecture. Section 2.1 recalls fundamentals and algorithms of
multiplication; Section 2.2 concisely describes some related works, theorems, and
techniques; Section 2.3 summarizes the previous works and highlights the differences

to be described in the next chapter.

2.1 Prerequisites

2.1.1 Simple Multiplication & Booth’s Algorithm

Traditional binary multiplication flow'is essentially the same as done in decimal
multiplication: Logic AND operation is performed on a single bit of the multiplier
with each bit of multiplicands; the temporal result, a partial product (PP), always
equals the multiplicand itself or zero; the least-significant-bit (LSB) of the PP is
aligned to the multiplier bit used. Consequently, if an m-bit by n-bit multiplication is
executed, there will be n PPs each with m significant bits. After zero-extending or
sign-extending each PP to the most and the least significant ends, an m-bit by n-bit
rectangular partial product array (PPA) is formed. Accumulating all PPs produces the
final multiplication result. Fig. 2.1 shows the simple multiplication flow of an 8-bit by
8-bit multiplication. Roughly speaking, the number of the significant bits used (x-bit

in PPA of Fig. 2.1) is proportional to the amount of hardware required [12].

The flow above is somewhat redundant when a series of zeros shows in the
multiplier; it can be further improved. In 1951, Booth introduces a binary
multiplication algorithm on the grounds of the add-and-shift concept [12]: the
consecutive bits in multiplier affect the generation of partial products. This
algorithm is based on two’s complement system and thus performs signed
multiplication. The fact that shifting alone is faster than addition followed by
shifting makes Booth’s multiplication faster than traditional ones. Although Booth’s
algorithm, also referred as radix-2 Booth’s algorithm, is not directly applied to
modern arithmetic circuits, it serves as a basis in understanding the radix-4 version
of this algorithm — modified Booth’s algorithm (MBA) [3].

Note that both simple multiplication and Booth’s algorithm produce a number

of n PPs where n is the bit width ofithe multiplier;as the eight PPs shown in Fig. 2.1.

multiplicand XXXXXXXX X

multiplier YYYYYYYY Y
1111110000000000 1
5432109876543210 @ Y ¥ ____

r

PPO1 |=— | Yl
| PPO2 (+— | YI2I
PPO3 i« | VD3I
| PPO4 [+ [Y1

I ¥ T operationonX
: 0 +0
: 1 +X
|
I PPG

Fig. 2.1. Simple multiplication flow.

2.1.2 Acceleration of Multiplication Flow

The completion of multiplication involves two basic operations — partial
product generation (PPG) and their accumulation. Consequently, reducing the
number of PPs or accelerating their accumulation helps speed up multiplication [1].
The MBA for reducing the number of PPs will be detailed in the next section.

Accumulation of all PPs implies a series of addition. In theory, we can use a
series of carry-propagate adders (CPAs) to accumulate all PPs; the number of
addition required is in proportion to the number of PPs. This naive method is
impractical because the delay of a CPA is considerable, let alone the number of PPs
grows with the bit width of the multiplier. A better architecture for connecting CPAs
exploits some parallelism; this is how we. demonstrate in Fig. 2.1. However, the
number of the CPA levels still relates toithe number of the PPs, incurring longer
delay.

As a result, the partial product-reduction tree-(PPRT) is often utilized. There
are plenty of algorithms dedicating to‘construct a PPRT [5], [14], [15]. One of the
most popular constructions of PPRT is the Wallace Tree [5]: use full-adders (FAs),
or say (3:2) counters [3], as the building blocks to perform carry-save addition
(CSA). It does not work out the addition result at the middle levels of the tree;
instead, it just saves each level’s carry-out and sum information of CSAs, avoiding
the carry propagation which takes a long time. A PPRT, Wallace Tree included, often
reduces many rows of PPs until only two rows remain; after summing these two
final PPs using a CPA (carry-out demands 1-bit left shift), the product is obtained.

A PPRT speeds up multiplication; multiplication flow is hence frequently
sliced into three phases — partial product generation, partial product reduction tree,

and carry-propagate adder. Fig. 2.2 exhibits the flow.

multiplicand multiplier

l l

Partial Product Generator (PPG)

PPO|PP] PPi

Y k4 h h r h r

Partial Product Reduction Tree (PPRT)

i.:-'.iI‘I"j..’-{'_‘llll'.“r SUm

==l]

¥ k4

Carry Propagation Adder (CPA)

v

product

Fig. 2.2. Multiplication flow in three steps.

2.1.3 Modified Booth’s Algorithm (MBA)

As mentioned previously, the PPG is dependent with the pattern of multiplier,
and the number of PPs is in proportion to the bit width of the multiplier. A PPG that
creates a fewer number of PPs will allow the partial product summation to be faster
and use less hardware. Given an n-bit multiplier, simple multiplication or Booth’s
algorithm encodes and ignores/eliminates one multiplier bit for n times, and hence
obtains n PPs.

In 1961, MacSorley presents a radix-4 Booth’s algorithm based on the concept
of original Booth’s algorithm and is refereed to as modified Booth algorithm (MBA)
[4]. Due to the property of radix-4 system, two bits of multiplier are ignored after

each encoding, and hence the number of PPs is reduced. Thanks to the property,

modified Booth’s encoding (MBE) generates fewer PPs, and is especially useful if
groups of consecutive zeros and ones shown in the multiplier. Table 2.1 lists the
corresponding behavior for all possible conditions of an encoding triplet [1]. MBA
decreases the latency of multiplication through reduction of the number of the PPs
and thus the reduction of the levels in the PPRT.

A modified Booth encoded/recoded (we use “encode” in the remaining content)
multiplier also consists of three parts: a modified Booth encoder (MBE) associated
with the arrangement/alignment of partial product array (PPA) to do PPG, a lower
PPRT to accumulate PPs to two, and a fast CPA to sum for the product. Fig. 2.3
displays the execution flow of modified Booth encoded multiplication.

The proposed architecture is theoretically based on MBA. Some most

MBA-relevant works will be discussed in the following sections.

Table 2.1. Selection table of modified Booth’s algorithm.

Y2i+1 Yoi Y2i-1 |[Operation Explanation
0 0 0 +0 string of 0's
0 0 1 +X end of 1's
0 1 0 +X a single 1
0 1 1 +2X endof 1's
1 0 0 -2X beginning of 1's
1 0 1 -X a single 0
1 1 0 -X beginning of 1's
1 1 1 -0 string of 1's
Note: 2i indicates the even bit positions; when i = 0, Y[-1]
IS assume to be zero

mu]t]'plicxnd HAKXH XA XA KA KA KKK
multiplier YYYYYYYYYYYYYYYY

33222222222211111111110000000000
10987654321098765432109876543210

Y10]
Y[1]
Y[2]
Y[3]
Y]4]
Y[5]

é .
-
N

Y[8]

Y|9]

Y[10]

y[11]

]
]
]
]
]
]
I
I
]
]
]
I
]
I
]
]
]
]
]
]
]
]
]
]
I
]
]
I
Y[12] I
I
]
]
]
]
]
]
]
]
]
]
]
I
I
I
]
]
]
]
]
]
]
]
]
]
]
]
I

Y[13]
Y[14]
Y[15]

MBE TABLE
Yai+1 Yz Yz | PP out

0 0
X

—— D D O O
— et
[

-

Fig. 2.3. Execution flow of MBE multiplication.

2.2 Related Works

2.2.1 Partial Product Generation (PPG)

Partial product generation is divided into two parts - decoding the multiplicand
in correspondence with the encoding of multiplier done by an MBE, and the
arrangement and alignment on the MBE outputs to form the PPA.

Concerning the MBE, [16] presents a comparison of energy dissipation among

standard, compact, and race-free encoding schemes of an MBE. The race-free

scheme encoded MBE consumes least power because it balances the delay of
internal signals and thus avoids glitches/sparks in the circuits. In [9] the race-free
MBE is further optimized in terms of timing and area. The spirit of this
implementation is to intentionally use “wrong” encoding signals at middle gate
levels and corrects the error at final level. The temporal “wrong” logic enables more
logic optimization compared to other encoding schemes, leading to a decrease in
delay, reduction of area, and less consumption of power. Table 2.2, 2.3, and 2.4 list
the truth table of standard, compact, and race-free MBE schemes, respectively. Fig.

2.4 shows the improved encoder and decoder of the MBE in [9].

Table 2.2. Truth table of standard encoding.

Yai+1 Yoai Yai-1 P1 P2 Z M1 M2
0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0
1 0 0 0 0 0 0 1
1 0 1 0 0 0 1 0
1 1 0 0 0 0 1 0
1 1 1 0 0 1 0 0

Table 2.3. Truth table of compact encoding.

Y2i+1 Yoi Y2i-1 P1 P2 Neg
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 0 1
1 1 1 0 0 1

10

Table 2.4. Truth table of race-free encoding.

Yi+1 Yoai Yai-1 P1 P2 Neg Z
0 0 0 0 1 0 1
0 0 1 1 0 0 1
0 1 0 1 0 0 0
0 1 1 0 1 0 0
1 0 0 0 1 1 0
1 0 1 1 0 1 0
1 1 0 1 0 1 1
1 1 1 0 1 1 1

Xj X1
\- g {______________:.__N e P 1Neg
21+1 L ﬂg
Y 2in1 ﬁ %
P1

Y2) :
P2
Z
Pl

72l

Encoder

T

Fig. 2.4. The MBE encoder and decoder in [9].

When MBA is used, the PPs are treated as signed numbers since three negative
MBE outputs may be selected as listed in Table 2.1. This suggests sign extension be
applied to every PP to ensure a correct result; however, sign extension needs to take
considerable extra logic. To deal with, in [17], [18], [19], a technique called
sign-encoding (SE) or sign-generation is provided and [12] gives this technique a
general description. The concept of SE is depicted in Fig. 2.5 at the MSB end: It
begins to presume all PPs are negative and hence one-extension is applied as shown

in Fig. 2.5a. Since the extended ones are fixed in position, accumulating all extended

11

ones in advance produces {1,1} in front of the first PP and {1,0} for others, as
shown in Fig. 2.5b. To correct the presumption, add one to the LSB of each
sign-extension string, resulting in the logic in Fig. 2.5c. As a whole, SE exploits the
predictability of sign-extension, and cleverly protects from the redundant extension
bits simply for correctly representing a sign number. It takes only two or three SE
bits, {p,n,n} for the first PP and {1,p} for others, in front of the original MSB of
each PP where n stands for the original sign of each PP; p, the negation of ».

We simulate a multiplier with or without using SE. While SE is used, the
power consumption of the PPG and PPRT is saved up to one-third of that without
using SE; the improvment rate grows as the bit width increases.

Another problem arises when MBE selects a negative output. Since MBA
treats the operands as signed numbers in two’s. complement (TC) format, if a
negative output is selected, we have to negate/two’s-complement the bit stream,
implying a two’s complementer-for negation-is-required. To complete the operation,
the ones, also called hot-ones [19], are.needed to be added after inverting (one’s
complementing) the bit stream. It’s a waste to let these ones solely for TC be one of
the PPRT inputs. Fortunately, due to MBA this can be prevented since the least
significant bit (LSB) position of the present PP should align two bits far from the
LSB of the preceding PP; two bits space {4,/} is saved and can be utilized to locate
the hot-one from the preceding PP as shown in Fig. 2.5a at the LSB end. The
hot-one may also left shift one bit if MBE selects 2x or -2x from the encoding table,
but this takes no effort since two bits space are reserved.

In case a random-valued multiplier is being encoded, the hot-one bit may show
up in either left or right % position. This irregularity will increase the PPRT latency
[9]. In [9], the authors also propose a skill — we refer it to “hot-one modification” in

this paper— to regulate the LSB end of all PPs. Observing the fact that the hot-one

12

logic relates the LSB logic of the present PP as shown in Fig. 2.5b, a truth table as
listed in Table 2.5 can be built; the new logic equation of two signals LSB_new and
hot2 can be expressed as:

LSB _new: = x5+ (2 1@ y2)

h012:yzi+1'y2,'—1+y2i'yz,>1+XLSB'yz,'+XLss. (21)

It arranges all hot-one bits to the left # positions (hot2) accompanied with the
probable modification on the preceding LSB (LSB_new). As a result, Fig. 2.5c
exhibits the arranged, shorter, parallelogram-shaped, more regular PPA to be

accumulated in the PPRT.

1111110000000000
5432109876543210
Sign extension ﬂ.lllllll:prtxxxxxx?:_xl PPOO
by assuming }‘I.lllllxxxxxxxxx 1.7 PPO1
negative ’ L 11kxxxxx ¢hh.”. PP02
MSBs '
]H:ucxxxxxxaqﬂ}.’. =. PPO3
....... Lhel Lol Two
possible hor
(a) positions
1111110000000000
PPOO
Accumulate
all extended PPO1
5 PPO3
LSB should
also be
integrated
(b)
1111110000000000
5432109876543210
Conditionally/pnn ! PPOO
add a one to ——m= KA KKFIT PPO1
R PPO2
L,p-L,I’l 1f1gfm . PPO3
the actual sign £
Regular »
and /&

({c}

Fig. 2.5. Sign encoding and hot-one modification.

13

Table 2.5. Truth table of LSB_new and hot2.

LSB_old| Y2+ Yoai Y2i-1 hot2 |LSB_new
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 1 1 0
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 0 1
1 0 1 0 0 1
1 0 1 1 0 0
1 1 0 0 1 0
1 1 0 1 0 1
1 1 1 0 0 1
1 1 1 1 0 0

2.2.2 Three-Dimensional-Method (TDM) PPRT

In [8], Oklobdzija et al present a three-dimensional method (TDM) to build a
speed optimized Wallace PPRT. The main idea of this speed optimization can be
briefly depicted as Fig. 2.6: In Fig. 2.6a, a common logic implementation of an FA is
shown. Without loss of generality, assuming a NAND gate delay to be 1 and an
XOR gate delay to be 2, the delay of each input-to-output path can be calculated as
shown in Fig. 2.6b. The longest path is from input @ or input 4 to output sum; sum,
therefore, is referred to as the “slow output” in contrast with the “fast output”, cout.
cin is the “slow input” since it can wait for a slow output. Connecting a “slow
output” to a signal requiring a “fast input” (e.g., @) produces the critical path! Take a

two-level PPRT for example, the latency of the left configuration in Fig. 2.6¢ is

14

more balanced since it connects the “fast output” cout to a “fast input” b, while the

regular configuration on the right side always connects sum to b, creating a critical

path. Exploiting the concept to balance the uneven delay of all paths is the spirit of

TDM.
r -------------------- = r ____________________ il
[
b: A D_>I sum _ b :) JUm
: : £ mf’m{' “ s):pw-autpm
| —1 ' | s
| | FA | i | FA
[' [I
| L] : | z :
cin : I cout cin : 2" : ola | cout
[
: : sfﬂw-iilgpm f?is!—ﬂmjpm
[| 1
| | | - |
o — _____FA o _____FA
D:) d — Sum Cil'l — SUm
b = sum a —= cout
b —= cout
¢in — cout
(a) (b
0 0 0 0 0 L‘J l[0
Tl 7% b ocinl
|0
|y FA
5 rn: | cout sum:
. 'F T r'
- e, , l b o_o__4
to next : r l : I fo next v : : : b o |
| I e | |
column | F ! : FA : column L FA '
{coafimmepn [couiRg o, amyfcoutsum,
6 X 6 6 6 6
. crifical path
Regular Optimized
connection]

(c)

Fig. 2.6. The concept of TDM.

15

TDM requires the delay information of each cell used in the PPRT and then
three-dimensionally constructs a speed optimized PPRT using the cells available.
The thought of regulating the PPA in [9] stems from the fact that TDM is also
implemented in their work. Irregularity of PPA diminishes the optimization of PPRT
in accordance with TDM [9].

Since the TDM takes cell delay information as inputs, the optimized PPRT is
cell-dependent and thereby library-dependent. Generally speaking, TDM is a sorting
algorithm; we can implement a generator coded in high-level languages to facilitate
the generation of the speed optimized PPRT.

Later in [20], Oklobdzija et al. prove that TDM is truly optimized, not just

improved.

2.2.3 High-Speed Adders

To complete fast multiplication, it must take-a fast PPG, a speed optimized
PPRT, and also a high-speed adder.“Inigeneral, fast addition concerns the fast
generation of carries or correct prediction of the behavior of carries. In this section,
two fast addition schemes — carry-select addition and prefix addition — are
introduced with conceptual description.

Fig. 2.7 demonstrates an 8-bit example of a carry-select adder (CSKA) or a
conditional-sum adder (CoSA): an operand is partitioned into several blocks (bit
width can be fixed or variable). Instead of waiting carry-out from the block LSBs, a
CSKA or CoSA duplicates blocks of MSBs, and calculates the sum of the two
blocks in parallel by presuming the carry-in bit to be one or zero, respectively. Since
the carry-in must be either one or zero, the correct answer can be selected from one

of the two MSBs blocks. A two-to-one multiplexer (MUX2) can simply use the

16

carry-out from the LSBs block as the selection signal to pick the correct answer.
This scheme is fast because every block in Fig 2.7 processes in parallel, so for the
8-bit example, the critical path is the addition time of the LSBs block plus a MUX2
selection time. However, since duplicated hardware is used, the area approximately

doubles the normal case that uses only one MSBs block.

a[T4] BT 1 A[T] B[Ta] 0 A[R0] B[30] cin

MSBs 1 MSBs 0 LSBs

Sum_1[7:4] Sum_{1[7:4]

Cout_L5B

Sum|7:4] Sum[3:0]

Fig. 2.7. An 8-bit:carry-select adder example.

The other popular fashion of fast-addition exploits carry lookahead concept
that the behavior of carry is actually decided by the carry generation of current
inputs or carry propagation of previous carry generation or carry-in. This makes it
possible to anticipate the carry. The anticipatory signals are faster because they pass
fewer gates, but it takes many more gates to anticipate the proper carry [21]. This
concept can be further generalized to parallel prefix computation which observing
that block-level generate/propagate signals can also be grouped using prefix
operators [3].

Various parallel prefix addition schemes exist such as Brent-Kung [22] and
Han-Carlson [23]. In general, the more the parallel-prefix operators are used, the
faster the addition completes; however, the actual speed depends on implementation
details. A high performance addition scheme on the grounds of Ling addition [24] is

presented in [25]. It reduces one logic level over the original Ling Adder in theory

17

and also minimizes the fan-out of each prefix operator while implemented. In [26]
the area is further reduced by fully exploiting the idea of hybrid addition. As a result,
considering both in theory or implementation, a high-speed, area-minimized, hybrid
Ling adder, which is called “Fong adder” for the remaining context, is presented in
[26]. Fig. 2.8 shows a 32-bit architecture of the speed improved hybrid Ling adder
[25]: The fan-out of each logic operator is properly taken care of and some modified
carry-select adders (MCSAS) are used — the hybrid part — to obtain the result. Fig.
2.9 shows the architecture of a 32-bit Fong adder: Compared to [25], MCSAs with
large area are replaced with simple carry select adders (SCSAs) and a ripple-carry
adder (RCA), resulting a smaller area cost. This is done by implementing some logic
operators working in parallel with prefix operators in each level and hence

introduces no timing overhead. Fig 2.10 shows the logic operators used in Fong

adder.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211 10 9 B 7 6 5 4 3 2 1 0O
v
.
i’/
.J/‘-
(3
L]]
(G, P)
."" -’.-; 3 n o197 NG 13 11 °* 30 5 03 1
‘) . J_L._!'_ __:r_ Y v v
| 4b-MCSA ’_:h MCSA 1!1“ / |4b—M S.A
28 26 24 20 18 16 K 12 10 &
| - | o i i L
¥ Y ¥ P L A . = /
4b-MCSA |a/ 4b-MCSA [a— | 4b-MCSA
‘ L &
BB g $,,8, S8 .
b 7307287267 2220718 16 v 898,58
¥31 829 827 525 8§23 89, 840545 5158135 59 785838

Fig. 2.8. Architecture of a 32-bit hybrid parallel-prefix/carry-select Ling adder.
*This figure is a direct copy of Fig. 8 in [25]

18

-~
~
-

=

31 30 29 28 27 26 25 M 23 22 21 20 19 18 17 I6 15 14 13 12

S esI ey
OB :zrooooo SO0
&/ |

’4—

’-—

.4— -
’-F @
Ooa
o Su
K
’-— “
K
O
oS
’47 =

ﬂ

R
Clgd_m.pp)
‘ O S x
] | |telpl)
4

\
\\
R=
A
y

Al
|
il

m—— <L
3 (22,2}
H31 c27 c19 cl1 C3| =
S28 S20 s12
3 -
so9| ¢ | (€2R.p28) s21 (220,p20) s13 (g12.p12) 4(8
COUT(C31) Cb -~ E <! S
si0| A (220,p29) 72 (g2i1.p21) s14| s (glp.pl3) 55 ‘:
| (230,930 hren (G A apiay C7 s6 | | (25-535)
s3] 4 £3p,p30) §23 (822,p22) SI5| | (glg.pl4) ¢ 4
c23 4 <7 (gf),ﬁ»())
S24 SI6| 8 S8 | 8
24) C | @ppe S espm
P : glpp . oR.p
S17| s f sg | s f
p2s) s 17.p17 A (£9.p9)
. sig| | | (eifplD s10| | :
- 4 N 4 [
20.p26) 19 (glB.pl8) i (210,p10)
- - !
Fig. 2.9. Architecture of a,32-bit scalar Fong adder.
*This figureis a direct copy of Fig. 30 in [26]
<> : gi.pi di,generator B : logic cell 2 for reconfigurability : 2 2-input AND Gate

gi break_i

a1 bi ai bi ai bi

7YY

i pi pi pi

gim pi_m
@ ¢ associative operator for cin Hﬂ : logic cell 3 for reconfigurability + 1 2-input AND Gate
. gi' pi pi* Pi
cin p0 break_i Hi* pi
el
_‘ ‘
Ci
go_m po_m
gim pi_m @ : associative operator

P* m G* n

B logic cell 1 for reconfigurability
‘ : Gi*,Pi* generator

break i o - G* m P* m P* n
pipi-1 gigi-l T
g pi
G* k P* k
Pi* Gi*
gi_m pi_m O : buffer

Fig. 2.10. Logic operators used in Fong adder.

19

2.2.4 Sub-Word Parallelism (SWP)

The utilization of parallel processing leads to a boost in performance. It is a
key feature among modern multimedia extensions and DSP processors [6]. A direct
implementation of parallel processing is to duplicate hardware such as dual-MAC
architecture in ADI-Blackfin® series [27] or quad-MAC architecture in TI-C6000®
family [28] DSP processors to increase throughput. However, if given a 16-bit
fixed-point (FXP) DSP processor designated for multimedia applications, the
original 16-bit datapath is a waste and consumes unwanted power when
lower-precision data such as 8-bit pixels are under processing. Duplicating hardware
usually damages the hardware utilization rate.

Sub-word parallelism (SWP) or, sub-word parallel processing serves as a
solution to improve hardware utilization rate and increases throughput by exploiting
parallel processing concept. Viewed as a form of Single-Instruction-Multiple-Data
(SIMD), SWP is a technique™to ‘divide--an operand (hardware) into multiple
lower-precision ones, conditionally uses the*whole or part of the hardware, and
thereby raises the hardware utilization rate without introducing significant overhead.
For example the same 16-bit scalar hardware can simultaneously process two 8-bit
data and hence double the throughput.

In order for clear and precise explanation, we refer the terms SWP, vectorizing,
slicing, segmenting, and partitioning to the same concept as described above, and
sub-words (SWs), vectors, slices, segments, and elements are the same product after
performing SWP. The term scalar represents a status without utilizing SWP.

SWP concept is of great performance help [29], [30], and SWP datapath units
are hence developed. If all units are sub-word parallelized, both scalar and SWP

operations can be executed and the computing ability will magnificently increase

20

compared to a scalar only architecture. For example, [31], [32], [10], and [26], all
propose an SWP adder architecture.

Concerning our work, the SWP multiplier requires an SWP PPG, an SWP
PPRT, and also an SWP CPA. The major difference between the scalar and the SWP
architecture lies in the existence of the invisible “boundaries” between SWs. As for
multiplication, involving PPs accumulation, the carry-out behavior of each SW
should be manipulated. In this section, two SWP PPG methods are explained; SWP
accumulation will be discussed and compared with the proposed design together in
Chapter 3.

A non-Booth encoded multiplier architecture [6], based on Baugh-Wooley
algorithm [33], finds that most bits in the signed PPA overlap those in the unsigned
PPA. Concerning SWP, it arranges the PPAs of different SWP modes as shown in
Fig. 2.11: Observing that most-bits in 8-bit.SWP PPA P0, PI, P2,and P3 in Fig.
2.11c are identical to those of 16-bit.PPA.PO-and P7 in Fig. 2.11b, or 32-bit scalar
PPA PO in Fig. 2.11a, it indicates most.bits.in-different SWP modes can share with
one another. The only effort is on each SW boundary and on managing fields of
zeros (Z8 or Z16). Since the architecture is not modified Booth encoded, it has more
PPs and has worse performance in terms of speed; however, a non-MBE architecture
usually consumes less power [36]. This MUL/MAC architecture can further
functionally integrate the sum-of-square operation into the same PPA without much
overhead [34], resulting in a sub-word parallel multiplication and sum-of-square unit

(SPMSSU) [35].

21

32

I A |
I 5 |
']
P=A>=B
- [EE) —
(a)
16 16
| Al ‘ A0 |
| B1 ‘ BO |
Z16 Py
Bl Z16
Pl =Al1xBl PO = A0 = B0
o 32 - 32 -
(b}
] 8]]
| A3 | A2 | Al | A0 |
| B3 | B2 | B1 | BO |
Z8 PO
Z16
P>1 sy
] P2
Z16
B P

P3 — A3 = B3 |P2=A_2><B2 Pl—=A1>xH1 PO = AQ = BO

16 16 16 16
— — J— -

(<)

Fig. 2.11. A simplified PPA for 32 x 32 multiplication in different modes.

22

A 64-bit fixed-point (FXP) vector MAC architecture capable of supporting
multiple precisions is presented in [10] and [11]; it can perform one 64 x 64, two
32 x 32, four 16 x 16, or eight 8 x 8 bit signed/unsigned MAC operations using
essentially the same hardware of a scalar 64-bit modified Booth encoded MAC.
These papers also compare different SWP PPA methods and propose one called
shared segmentation. The shared segmentation method exploits substantially the
same concept as done in [6] (described in the preceding paragraph). Most bits in a
vector mode overlap with those in another mode, producing similar SWP PPA as Fig.
2.11. It also designs an SWP Wallace PPRT using a special FA at SW boundaries and
an SWP CPA using 4-bit CLA blocks. Fig. 2.12 depicts a detailed 32-bit PPA
example of the shared segmentation method: Fig. 2.12a, Fig. 2.12b, and Fig. 2.12c
illustrates the PPA in 32-bit (scalar); 16-bit, and 8=bit vector mode, respectively. Fig.
2.12d displays the PPs overlap among vector.modes;-it’s clearly shown in the figure
that many bits take no effort on selection.-It-implies there’s no need to use a 32-bit, a
16-bit and an 8-bit MBEs to generate-three PPs and use three-to-one multiplexers
(MUX3s) for selection; All that’s required is the 32-bit MBE output associated with
some multiplexing at 16-bit and 8-bit vector boundaries.

It just takes some timing and area overhead to “vectorize” a scalar MAC using
shared segmentation method. However, this architecture limits the SW combination
and places restrictions on constructing the vector PPRT. The vector CPA in this work
can also be improved. As a result, the proposed SWP PPA resembles and improves

the shared segmentation PPA described in this section.

23

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

LEGEND:
null bits or 0
% : significance bits from PPG
e : sign encoding bits
h : hot-ones
I_3: significance bit arrays

(a)

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210
.. EEEXXXKXKKXXKKXKKXXKK |
.. CeeXXXXXXXXXXXXXXXxxhh |
.. ceeXXXXXXXXXXxXXxxxxxhh. .
e e e . e RXXXXXXXXXEXXXXEhh, . .. |
................................eeexXxXxxXxxxxxxxxxxxxxhh......
................................ . .e@exXXXXXXXxxxxxxxxxxhh.
................................ CeeXXXXXXXXXXXxXxxxxhh........ ..
................................ CXXXXXXXXXXXXXXXxXxhh............

[memems BeRR XX RXNEXRKKIKRKIIN . | o o o o i i o i
(S eaaxXXXARXXINNXIXKARIANIL . . |
:,..,eeexxxxxxxxxxxxxxxxxhh
I EEOXXEXAEXXXRRRXRXXRININN ., .+ o o o o o i i i i i v

LEGEND:
: null bits or 0
¥ : significance bixs from PPG
3 sign encoding bixs
h : hox-ones
I_7: significance bit arrays

. 216

24

PPOO
PPO1
PPO2
PPO3
PPO4
PPO5S
PPO6
PPO7
PPOB
PPO9
PP10
EFFP1l1l
PP12
PP13
PP14
PP15

PPOO
FPPO1
PPO2
PFO3
PP04
PPOS
PPO6
PPO7
PPO8
PPO9
PP10
PP11
PP12
PP13
PP14
PP15

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

.. . CEAXXXXXXXXX |
... .eeexxxxxxxxxhh'
.. eeXXXXxXxxxhh. i
.. exxxxxxxxxhh, . . .
................................... T 333 L PR Y
................................. .eeexxxxxxxxxhhl.
................................ eexxxxxxxxxhh. |................
................................ xxxxxxxxxhh. .. |................
.................. e BBOEERRREERRL < 4o Al o At AR oA Ao A A oA A
................. NEE XX AERRRRERILI /A v Ao v A v AR s A
................ e e A O W A g S A S S S Ay
................ DRI R A | A A I A S L

e e G Tt P ot 2 < 1 i o A R AR R

e

Ieeexxxxxxxxxnn.. ..
ARSI | A A A

o ___

LEGEND:

. : null bits or 0

X : significance bits from PPG

e : sign encoding bits

h : hot-ones

3. significant bit array

: Zle

—: Z8

©

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

.......................... boaxxxxxxxxxxxxﬂhxxxhxxxhxxxkxxxxxxxhd PP01 32-bit mode
.......................... Cieaniennns e JBOXRRXXRXXKEXXXXXXXDE PPO1 16-bit mode
... Jpeexirxxxxxxxhhl PPl B-bit mode
| Y A
\ AND2 [voxs [annz oz |
Y]
.......................... |22222222222222222 2220 22222222 222222227 PROL
LEGEND
. @ null bits or 0 [J: direct selection
% : significance bits from PPG [: selection requires a 2-input AND gate (AND2)
e : sign encoding bits []: selection requires & 2-input multiplexer (MUX2)
h : hot-ones []: selection requires a 3-input multiplexer (MUX3)
z : output PP bits after selection

(d)

PPO1
PPO2
PPO3
PP04
PPO5
PPO6
PPO7
PPOB
PP09
PP10
PP11
PP12
PP13
PP14
PP15

selection

Fig. 2.12. Shared Segmentation PPA for 32x32 multiplication in different modes.

25

2.3 Summaries of Previous Works

The multiplication flow of a scalar MBE multiplier can be partitioned into
three steps — PPG, PPRT, and CPA. For PPG, a race-free encoding scheme which
outperforms other schemes in terms of timing, area, and power consumption is
proposed. Sign encoding that prevents sign extension, and hot-one modification that
integrates LSB with hot-ones both make the PPA more regular. PPRT often uses
levels of FAs to perform carry-save addition, and TDM is an algorithm that helps
construct a speed optimized PPRT. The number of PPs after the PPRT is reduced to
two. A CPA is used to sum the two PPs to obtain the final product. SWP increases
throughput and provides a performance boost in multimedia extensions or DSP
processors. Without much overhead, SWP. can be applied to MUL/MAC unit by
rearranging PPA and the support of SWP:accumulation.

The proposed scalar and :SWP designs improve and innovate while utilizing
some previous works. We’ll describe-the proposed designs in more detail in the next

chapter.

26

CHAPTER 3
PROPOSED MAC DESIGNS

3.0 Overview

In this chapter, the design methodology of the proposed MAC designs is
elaborated. Section 3.1 presents the scalar version of the proposed MAC design: as
described in Chapter 2, the MAC unit consists of three parts — PPG, PPRT, and CPA.
Based on the scalar MAC architecture, Section 3.2 enunciates the sub-word parallel
(SWP) version of the proposed MAC. The differences, improvements and innovations

are compared or highlighted in each section.and briefly summarized in Section 3.3.

3.1 Scalar MAC (SMAC) Design

3.1.0 Specification

A high performance scalar MAC design which multiplies the N-bit multiplicand
(mcand) by the N-bit multiplier (mlier) with/without accumulating a 2N-bit
accumulator (accu) is proposed. It supports signed/unsigned/mixed-mode operation.
Table 3.1 lists the specification of the proposed SMAC. Fig. 3.1 shows the proposed

SMAC execution flow. To be noted, the carry-out of final result is also provided.

Table 3.1. Specification of the proposed SMAC design.

Operation: m_out = accu + mcand x mlier (mode)

Bit Width of mcand 8/16/32/64
Bit Width of mlier 8/16/32/64
Bit Width of accu 16/32/64/128
Bit Width of m_out 16/32/64/128
Available modes 01:Signed/00:Unsigned/1?:Mixed-mode

27

meand mlier mode accu - [+
r Y k
MBE - high-speed,
SPPA - sign- area-reduced, race-
encoding, hot-one) free, capable of
modification : unsigned/mixed-
< mode operation
SPPG
YYY YYYY ;
SPPRT - speed aptimized Wallace Tree using
TDM
A 4 Y
SCPA - Fong adder
m_out

cout

Fig. 3.1. Execution flow of the propoesed:Scalar MAC design.

3.1.1 Scalar Partial Product Generation (SPPG)

The first phase of SPPG, modified Booth encoding (MBE), is to encode the
triplets chosen from the multiplier and then decodes the multiplicand with respect to
MBA selection table (Table 2.1). The proposed scalar design favors the race-free
concept in [16] that diminishes the energy dissipation, and benefits from the
implementation in [9] which saves one logic level and reduces area.

A special operating mode, mixed-mode, is integrated into the proposed scalar
design. It forces the multiplicand and the accumulator to be signed, the multiplier to
be unsigned, and produces a signed result after operation. Mixed-mode operation
has a larger dynamic range, and will be explained in detail in Section 5.4.

However, the MBE scheme in [9] only applies to signed operands. To support

unsigned/mixed-mode operation, some modification must be performed on the MBE.

28

By specification, both unsigned and mixed mode treat mlier, the multiplier, as an
unsigned number; however, due to two’s complement (TC) format natively utilized
in MBA, the MSB of mlier is the negatively weighted sign bit. It implies N+1 bits
are required in TC format to fully represent an N-bit unsigned number by forcing the
(N+1)th bit, the new MSB and sign bit, to a zero. Owing to the existence of the extra
zero, an always positive PP is generated to support unsigned/mixed-mode operation.
This is why an N-bit DSP processor with an (N+1)-bit MAC unit supporting
unsigned multiplication is frequent.

Briefly speaking, two methods are used to generate the extra PP. The first
method uses MBE to generate by assuming {0,0,m} as the extra encoding triplet
where m stands for the MSB of mlier, resulting in a PP equal to zero or mcand since
the extra triplet is always {0,0,0} or {0,0,1}. The other method uses a similar
concept by observing when unsigned/mixed-mode is asserted, a multiplexer with a
string of zeros and mcand as two inputs-and- as, the control signal can select the
extra PP. The result should be identical with the first method. As a result, both
methods help unsigned/mixed-mode operation while neither of them influences on
signed operation since the MBE selection of the extra signed-extended triplet
{m,m,m} or the selection of MUX2s always equals zero. Section 5.1 will detail the
way to support unsigned and mixed-mode operation.

Using either method, the logic of the extended triplet {s,s,m} or the extended
bit s is dependent with m, the MSB of mlier, and the assigned mode under execution.
If naming mode[1] as mix (1. mixed-mode; 0: signed/unsigned mode) as well as

mode[0] as tc (1: signed-mode; 0: unsigned-mode), the logic of s is derived as:
s=m-tc-(~ mix)

(3.1)

29

In the proposed SPPG, the first method is utilized; besides, signed encoding is
also integrated into the MBE, resulting in an N-bit-input and (N+2)-bit-output MBE.
Fig 3.2 demonstrates why the output PP requires two-bit extension: assume a 4-bit
operand, 1000, is the mcand, and the current encoding triplet is {1,0,0} (-2x); it
indicates the negation of mcand followed by one-bit left shift is to be performed.
Due to the need of one-bit left shift, a 5-bit temporary data is required, as shown in
the second and third rows in the figure. The bit in bit position 5 is used to save the
correct sign that may shift out 5-bit data boundary. If the operating mode is different,
this saved bit may differ even if LSBs are the same. Moreover, this bit is also useful
for sign encoding. Six bits are hence required for correct representation.

However, the logic of the extended two bits relates to the operating mode, two
2-input AND gates (AND?2) are needed at the maost significant two bits of the mcand
to generate these two extended-bits. These AND2s are added in the decoder in Fig.
2.4 while there’s no logic change.on-the-remaining LSBs. This modification

increases a little delay and is still area reduced:

3 2 1 0 3 2 1 0
sign— ZEIo=-
extension I /] i] extension i]] {
negation ! i 0] fl negation (/] !]) 0
left-shift () I 0]] left-shift ! ! {0 i i
i I i i] () i I i] () i
5 4 3 2 1 0 5 4 3 2 1 0
siened/mixed- .
& sign-bit unsigned mode
mode

Fig. 3.2. Decoding mcand 1000 in different modes when MBE selects -2x.

30

The second phase of SPPG, arranging scalar partial product array (SPPA), is to
properly arrange the PPs generated from MBE. Two techniques, sign encoding (SE)
and hot-one modification, are used to arrange the proposed SPPA.

As mentioned in Section 2.2.1, SE is done by replacing the sign-extension bits
with {p,n,n} for the first PP and {1,p} for others, where » stands for the sign bit of
the PP and p = ~n. This technique reduces the number of sign-extension bits to two
or three and then considerably saves the area and power consumption as bit width
grows.

Hot-one modification aligns the hot-one bits, obtained by two’s
complementing of the preceding PP, all to the left position (%0t2) with a slight logic
change on the LSB of the preceding PP. It makes the LSB end of the PPA shorter
and regular.

Both techniques help the proposed: SMAC create a narrower-width SPPA
which occupies less area, consumes less-power,-and assists the speed optimization of

TDM PPRT. The proposed SPPG is-architecturally similar to the PPG in [9].

3.1.2 Scalar Partial Product Reduction Tree (SPPRT)

Three-dimensional method (TDM) [8] is utilized to construct the proposed
SPPRT with the architecture of Wallace Tree. A full-adder (FA) is the basic cell to
build levels of CSAs. Fig. 3.3 shows the FA cell used in the proposed SPPRT.
Concerning TDM, it takes the delay information of each cell used in the tree. Instead
of using logic cells like XOR, AND, and OR to build an FA, the SPPRT directly uses
the standard high speed FA cell provided by the cell library. This helps not only
simplify the generation algorithm but also estimate the delay more accurately. All

that is required is to look up in the cell library databook [37] for the delay of six

31

paths in an FA (a-to-sum, b-to-sum, cin-t0-sum, a-t0-cout, b-to-cout, and cin-to-cout).
A simple software generator is developed to connect the FAs in the SPPRT using
TDM.

TDM can be further optimized if the arrival time of each input bit of PPRT is
given. It implies that this optimization is cell library dependent and hence and is
hard to be reusable. Considering the proposed design, it is easy to obtain reusability.
Although the delay information is cell library dependent, to look it up and send it
into the software generator to rebuild another SPPRT is effortless since only a
standard FA cell is used. However, it’s not suitable to use the whole input signal
delay profile to build the SPPRT since the synthesizer may generate different SPPG
netlist each time the timing constraint varies. The ever-changing delay profile makes
the PPRT not speed optimized .and perhaps not reusable. As a remedy, logic
optimization is left for the synthesizer to make. Since the delay profile is
unpredictable and eventually a kind of-estimation, the proposed scalar design simply
assumes all signals arrive to the SPPRT. simultaneously, leading to a reusable TDM

SPPRT.

cout

Fig. 3.3. FA cell used in the proposed SPPRT.

32

3.1.3 Scalar Carry-Propagate Adder (SCPA)

Both adders in [8] and [9] exploit the input operand delay profile to configure
a hybrid adder scheme to accelerate addition and reduce area. This again is cell
library dependent and hence is hardly reusable. For the proposed scalar design,
architectural optimization using delay profile is not recommended. Each bit of two
operands of the SCPA hypothetically leaves the SPPRT and arrives at the same time.
Fong adder [26] is implemented as the SCPA. The architecture of a 32-bit Fong
adder has been shown in Fig. 2.9. There are three main reasons that Fong adder is
utilized. First, it outperforms most other adders in terms of delay while it minimizes
area cost compared to similar architectures. Second, the carry-out bit is provided so
as to perform overflow/underflow check. Last but not least, Fong adder also
supports SWP that meets our requirement:with only.a slight delay and area overhead.

The proposed SWP scheme is described in Section 3.2.

3.1.4 Summaries of the Proposed Scalar MAC Design

Fig 3.4 displays the proposed scalar architecture. It is partitioned into SPPG,
SPPRT, and SCPA. In SPPG, a race-free encoding scheme is utilized with a
high-speed and area-reduced MBE implementation supporting signed, unsigned, and
mixed-mode operation. Sign encoding and hot-one modification are applied on the
proposed SPPA. In SPPRT, a speed optimized reusable PPRT exploiting TDM is
built. As for SCPA, Fong adder is used. Note the figure actually shows the multiplier
design. It can easily perform MAC operation simply by feeding the multiplication
result into SPPRT as another PP. The proposed SWP design utilizes essentially the
same hardware of the proposed scalar design. The way to perform SWP is described

in the next section.

33

Y[0]
Y1
Y[2]
Y[3]
Y[4]
Y[5]

é i
e
N

33222222222211111111110000000000
10987654321098765432109876543210

Y([8]
Y[9|
Y[10]
Y[11]
Y[12]
Y[13]
Y[14]
Y[15]
MBE TABLE
[Y2airr Y2 Yz | PP out

0 0 0 0
X

X
2x
2%
X
X

1 0

SPPG

MBE:race-free, reduced area,
fewer logic levels
PPA: sign encoding, hot-one
maodification

sign-
encoding

r——

|

| PPRT

I TDM: speed optimized Wallace
I Carry-Save Adders Tree

CPA/ACCUMULATOR

Fong Adder: high speed, reduced area

(=T — R —

T]
N

\ 4
Z[31:0]

Fig. 3.4. The proposed scalar architecture.

3.2 Sub-Word Parallel MAC (SWP MAC) Design

3.2.0 Specification

A high performance sub-word parallel MAC (SWP MAC) design based on the
SMAC architecture is proposed. Table 3.2 lists the specification of the SWP MAC.
Kill signals separate SWs and each SW independently processes in its unique mode.
Table 3.3 |lists the possible sub-word combinations. The detailed SWP

reconfiguration scheme is provided in Section 5.3.

34

Table 3.2. Specification of the proposed SWP MAC design.

Operation: m_out = accu + mcand x mlier (mode)(kill)

Bit Width of mcand 8/16/32/64
Bit Width of mlier 8/16/32/64
Bit Width of accu 16/32/64/128
Bit Width of m_out 16/32/64/128
Bit Width of a Basic SW Input:8/Output:16
Bit Width of Each Kill 1
Bit Width of Each Mode 2
Available mode 01':Signed/00:Unsigned/l?:Mixed-mode;
independence among all sub-words

Table 3.3. Possible sub-word combinations of the proposed SWP MAC design.

Possible Sub-Word Combinations

16-bit (16)

(8.8)

(32)

(8.8.,8,8)

32-bit (8,8,16)

(16,16)

(16,8,8)

A 64-bit SWP MAC is viewed consisting of two independent

64-bit 55 it SWP MACs: it has 5x5=25 possible combinations

3.2.1 Sub-Word Parallel MAC Execution Flow

Fig 3.5 shows the execution flow of the proposed SWP MAC: it is still
partitioned into three main parts — SWPPG, SWPPRT, and SWCPA. To apply SWP,
some modification should be made in each part — mostly lies in the preprocessing of

SWPPG. SWPPG is described in Section 3.2.2; SWP accumulation is divided into

35

SWPPRT and SWCPA and explained in Section 3.2.3 and 3.2.4, respectively.

meand mlier moce > kill2 aceu [
mode_v2 killl
mode vl killoy
mode v}

L 4 k k r

Preprocessing - some multiplexing on
multiplicand and masking on multiplier

YYYVYVYY vy
—

SWPPA - arrange
each SW to
appropriate position

MBE identical to
scalar MBE

SWPPG
YYY = YYwy v

SWPPRT - SWP speed optimized Wallace PPRT

v A J

SWCPA - Fong adder with SWP

v

mout
cout
cout vl
cout vl
cout v0

Fig. 3.5. Execution flow of the 32-bit proposed SWP MAC design.

3.2.2 Sub-Word Parallel PPG (SWPPG)

The proposed SWPPG has an identical MBE scheme as used in scalar PPG.
The difference lies in the preprocessing on the input operands and the arrangement
of the sub-word parallel partial product array (SWPPA). The additional logic for

SWP processes mostly in parallel with the SPPG; this enhancement incurs only a

36

slight timing overhead and some area overhead.

Operand preprocessing consists of two parts — masking and multiplexing on
the multiplier and multiplexing on the multiplicand. Fig 3.6 shows a 32-bit example
of masking and multiplexing on the multiplier: The bottom SW 0 is the 32-bit
multiplier in scalar mode. There is a zero assumed to the right of the LSB for the use
of first encoding triplet while there are two s0 bits, for the use of
unsigned/mixed-mode operation, extended to the left of MSB where s0 is generated
according to Eq. (3.1). These bits are necessary to complete MBE operation. When
SWP modes are under execution, the assumed zero and the extend s bits should be
appended to each SW as done in scalar mode. For instance in the top row of Fig.3.6,
zeros are assumed at mlier[-1], mlier[7], mlier[15], and mlier[23], and s bits are
extended to the left of each SW’s:MSB. This maodification results in 3-bit overlap
between SWs, and some bits differ.among SWP mades. Therefore mode-dependent

multiplexing (selection) or zero-masking-are-required at these bit positions.

- SWw2 - SWo —
|.-:2[52 mlier[23:16] 0 | |sa|sa mlier[7:0]] al
&-bir [=3]=3] miser(ii:zq o [s1]=2 mlier[15:8] o
— I —m — S]] —
-— SW 0
IsOI:O mlier[15:0] |i|
16-bir |s1]=1] mlier[31:16] 0|
-~ SW T —_—
32-bit [s0]s0] mlier[31:0] [o]
- SW 0 >

Fig. 3.6. A 32-bit example of masking and multiplexing on the multiplier.

To take an example, the fifth encoding triplet in 32-bit or 16-bit mode is
mlier[9:7]; in 8-bit mode, mlier[7] should be masked to a zero, resulting a

{mlier[9:8],0} encoding triplet. This demonstrates the necessity of zero-masking

37

between SW boundaries. Concerning multiplier multiplexing, it is important to note
that the overlapped triplets {s0,s0,mlier/7]} between SW 0 and SW 1 in 8-bit mode
for the use of unsigned/mixed-mode correction, is not sent to the MBE; instead, the
correction PP is generated, simply using an 8-bit MUX2. This multiplexing
eliminates the ambiguity in selecting which triplet to MBE. The MSB of SW 0,
mlier[7] in this case, is the selection signal of the MUX2, i.e. when mlier/7] equals
1-bit one, mcand[7:0] as correction PP for SW 0 is required. The same idea can be
applied to each SW boundary, avoiding using some 8-bit or 16-bit MBESs to generate
correction PPs. All this is required is the scalar 32-bit MBEs.

As for preprocessing on multiplicand, the proposed SWPPA arranges PPA of
each SW similar to what has been explained in Section 2.2.4. Some bits overlap and
remain the same among different SWP modes while some bits, especially bits at SW
boundaries, vary and require mode-dependent multiplexing (selection). The
difference is in sign encoding (SE) bits‘plus.one bit saved for the sign of PP and the
hot-one modification bits. Fig. 3.7 shows the detailed view of the 32-bit proposed
SWP PPA: Fig 3.7a shows the SWP PPA in scalar mode in which we can see 17 PPs
including accumulator; SE bits and hot-one modification bits are also shown. Fig
3.7b displays the SWP PPA in 16-bit mode: the SE bits and the sign-bit of PP08
shares those of scalar PPO8 while the hot-one modification bits don’t share; in
contrast, PPO1 has a same hot-one modification bits while it differs in SE bits and
the sign-bit. Fig 3.7c depicts the 8-bit SWP PPA. Clearly, it tells that the difference
mainly lies at SW boundaries. Fig 3.7d exemplifies the selection of PPO1 among
different modes. Although there exists three modes, only three bit positions actually
require a 3-to-1 multiplexer (MUX3) for selection; some take AND2s or MUX2s
while some do not demand any selection. As a note, even in the 64-bit proposed

SWP design, the proposed SWP PPA requires still MUX3s for worst-case positions.

38

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

... PNNXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX| PP00

e _IPRXXXKRKRKXXXXXXXRXRXRXKXKXKXXXKXXN . | PPOL

I s T T T T Ipareaareaa R Rnnateoaenxxh .| PRO2
et i i DR i ik s ek e a) DDOS
s as e r ey I PRRRKKKR KKK KKKK KK KX KK KKK KK KRKKKKD , | PP04
il DRGGCCGOOCRKRERIGOO . .| PPOS
:;;:;;;:;;;:;;ﬁh@ﬁEEEEEE@EEE@EE@@EE@@EEE@E@L;;;:;;;:J PPO6
e e e TENEET T O R R R RN e | PRO7
[t et g e o 40 pUCCSERA KGR CK AEAA ER E KA R R v s en s memin]l PROB
| £rie sy s MPIROEE R IR AR KRN KI IR RIERER R = 1 iy 1 wjaliy poniivy £e)] PPOD
| & mtee o v D PERIIIORRXI AR X R KR IRHIIIK R IAKIKIIKR 2 o 00 20 2npvonnnee] PPLO
[Ee R R R R = PPl
s IDRRX KRR KKK KA KKK KKK KR KKK RKKKKIKKKD . . oo v eno vz eee e | PP12
(=R PEREERR R e OO S S S sn e s e PP13
- IPXXXEX XXX KK KX LKA KKK KKKKKKKKKKKXIKD e vne ez nn:. .| PPL4
BLatS n el il 2 S s L0 2 et 22t 0 T P | PP15

|xmxmxmxmxmxmxmi . UM
B A XX EE KKK K KKK K AKX KK X KX KT KKK K AXKE X EXKE KK KE XX XEEEXXEREKK | ACC

LEGEND :
: null bits or 0

x : significance bit from PPG

n : sign fo each PP in scalar mode

P : ~n

h : hot2

[Cl:significant bits arrays (a)

2 A L T
6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

.. cddtxxxxxxxxxxxxxxxx] PPOO
... lctxxxxxxxxxxxxxxxxh. | PPO1
... lotxxxxxxxxxxxxxxxxh. .. | PP02

e e L lotxxxexxxxxxxxxxxxh, | PP03
..................................... lotxxxxxxxxxxxxxxxxh.......| PP04
................................ ... lotxxxxxxxxxxxxxxxxh.........| PP05
................................ .l CEXXAKAXKKXKXKXKXXKXN. | PPO6
................................ ctxxxxxxxxzxxxxzxxh.............] PPO7
[Retarases L PRANXXXXXKXRXXEXKKEEG. © 0o v i v vn i v aa s ias s v PPOB
........... PR R RRRARRRRROT | i i i e wdis| PEOB
e PRERRERRRRERRREERGE © « L < < e i i PP10
!T e I PXXXRKXKKKKRKKKKNGL - -+« o oo v e eme e e e eeie e e e PP11l
e P R N R N I ETT. & e L o o o o o e e o o e o R PP12
R T N e S T
|Tfp“xx§:?x"xx§£x'ﬁ£x‘x‘q§.‘.‘.‘.‘..‘.‘.‘.‘. PP14
|§Ex?:ﬂ'£x?:ﬂ'£x"iﬁa?q}_.f._i_ff.*_—f PP15
Izﬁ_nc_x;ﬁ_x_x;::x_x_x;; T RRARKRRRRKKRRRKKN - . . L. UM

lxxxxxxxxxxxnmnmnmﬂmxmxmxmxmxmxmxu ACC

LEGEND :

. ¢ null bits or 0 c : p-bit for 16-bit mode
x : significance bit from PPG d : n-bit for 16-bit mode
n : sign fo each PP in scalar mode t : MSE of PP

p:~n g : LSB new for 16-bit mode
h : hot2 r : hot2 for 16-bit mode
—3: significant bit array —: Zle

(b)

39

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

................................

................................

|||||||||||||||||||

PPOO

.. lasxxxxxxxxh.

| PPO1

.lasxxxxxxxxh. ..

| PPO2

asxxxxxxxxh

PPO3

... coddtxxxxxxxil

... lobxxxxxxxij,

dotxxxxxxxij. . .
CLEXXXXXKL]

PPO4
PPO5
PPO6
PPO7

....abbsxxxxxxxg

... lasxxxxxxxqgr.

.lasxxxxxxxqgr. . .

SXXXXXXXJr

- .. PINXXXXXKXKL
- - . lpxsxrxxxl .
I.lpxz-:xxxxxxij...
L?xxxxxxxxij

PPOB
PPO9
PP10
PP11
PP12
PP13
PP14
PP15

LEGEND :

: LSB new for 8-bit mode
: hot2 for B-bit mode

(c)

6666555555555544444444443333333333222222222211111111110000000000
3210987654321098765432109876543210987654321098765432109876543210

IPTYITTY!TTTYYT

vxxiu;xxﬂmauqquutxxxxh.]

. Jlethzxxgxxxkxxxxxxxh .|

|||||||||||||||||||||||||||

oo Jlaskexxxxxxh |

|||||

'

[AND2

InunIANm Imml

Y *

1y

........................... lzz22222222222228222p 22292220 222222222

PPO1

: null bits or 0
: significance bits from PPG

,¢ @ sign encoding bits
,8 : MSB of temp PP
: hot2

=
— M

{

noao

direct selection

selection requires a 2-input multiplexer
selection requires a 3-input multiplexer
: output PP bits after selection

i null bits or 0 c : p-bit for 16-bit mode

x significance bit from PPG d : n-bit for 16-bit mode

n sign fo each PP in scalar mode t : MSB of temp PP at 1l6-bit mode
P ~I g : LSB new for 16-bit mode

h : hot2 r : hot2 for 16-bit mode

a: p-bit for 8-bit mode —3: significant bit array

b: n-bit for 8-bit mode J: 16

s: MSB of temp PP at 8-bit mode : 28

i

3

PP01l 32-bit mode
PP01 16-bit mode
PP0l B8-bit mode

selection

selection requires a 2-input AND gate (AND2)

(MUX2
(MUX3)

Fig. 3.7. Detailed view of the 32-bit proposed SWPPA with a selection example.

40

Therefore the preprocessing on multiplicand concerns the generation of SE bits,
sign bits of PPs, and hot-one modification bits of each SW and their selection among
modes. Table 3.4 lists the truth table of SE bits and sign bits of PPs used in the
proposed SWP design. Table 2.5 and Eqg. (2.1) have shown the logic of hot-one
modification bits. These bits are generated in parallel with scalar MBE without
introducing any timing overhead since their logic is not as complicated as an MBE.
The area overhead, as demonstrated in Fig. 3.7d, is not huge since most bits share

those in the scalar PPA.

Table 3.4. Truth table of sign encoding bits and sign bits of PPs.

tc Y2i+1 Y2i Y2i-1 L >
m=0 | m=1 | m=0 | m=1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 1
0 1 0 0 1 1 1 0
0 1 0 1 1 1 1 1
0 1 1 0 1 1 1 1
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 1
1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 0
1 1 1 0 1 0 1 0
1 1 1 1 0 0 0 0
tc: 1:signed/O:unsigned; Y: multiplier; m: MSB of SW;
s: sign of corresponding PP; n: SE bit

41

Thanks to this SWP PPA, the proposed architecture offers more flexible SW
combination schemes than previous works if both SWPPRT and SWCPA also
support. The SWP combination scheme is controlled by the pre-decoded input kill
signals. The pre-decoding is performed in parallel with the scalar MBE and thereby
does not incur timing overhead. Fig. 3.8 shows the SWP schemes of the 32-bit
proposed SWP design: Each kil[signal conditionally enables/disables the
carry-chain. Three kill signals provide 8 SW combinations; however, if
{kill2 killl kill0} equals {0,0,1}, {1,0,0}, or {1,0,1}, the middle 16-bit SW obtains a
fault PPA since the corresponding PPA has never been generated in this region. Fig.
3.8a to Fig. 3.8e shows the possible five SW combinations; Fig. 3.8f displays an
invalid SW combination scheme. For 64-bit design using the proposed architecture,
two 32-bit SW halves process in parallel, offering a total of 25 (5x5) different SW

combinations.

kill2 killl kill()
v v v 0
[SW3 Je| SW2 | SWwi Je SWo] (32)scalar
(a)
kill2 killl kilit)
v ! i v/
[sw3 B4 sw2 B swi Bg Swao] (8.8.8.8)
(b)
kill2 killl kill()
v 0 Iy v 0
EERT IEGEE X EECIARAEE 4 BT s R T e | (16.16)
(c)
kill2 killl kill0)
v 0 Iy v !
[Sw3 | Sw2 g Swi B Swo | (16.8.8)
(d)
kill2 killl kill0)
v ! Iy + 0
[Sw3 DG Sw2 B Swi l«| SWo | (8.8.16)
(e)
kill2 killl kill0)
B — L -
[sw 3 J{ sw2 |-(;| swi Bbg swo | invalid
(f

x Assign &ill = 1 to block carry-chain

Fig. 3.8. SW combinations of the 32-bit proposed SWP MAC design.

42

The proposed SWP design is characterized by SWP mode assignment as well;
each SW has its own operating mode. To take an example, if a 32-bit SWP operates
in 8-bit SWP mode as sketched in Fig. 3.8b, the four SWs don’t have to perform the
same signed/unsigned/mixed-mode MAC operation at the same time. Instead, each
SW assigns its unique mode signal, and a total of 81 (3x3x3x3) different SW mode
assignment schemes are allowed. Moreover a central mode signal assigned to all
SWs, as used in [10], introduces high fan-out, and which consequently requires
buffer insertion. SWP mode assignment ameliorates high fan-out.

Although this modification increases some input ports and places some
restrictions on mode assignment, it provides reconfigurability and flexibility for the
proposed design. Compared to the 64-bit proposed design, [10] offers only four SW
combinations and all SWs should.operate in a same central mode, and mixed-mode

IS not supported.

3.2.3 Sub-Word Parallel PPRT(SWPPRT)

To add SWP in the scalar PPRT, the behavior of carries traversing SW
boundaries requires careful manipulation. On the whole, it involves carry-killing
(blocking, breaking, disabling, etc) at SW boundaries on each level in the SWPPRT.
Both the proposed SWPPRT and the VPPRT in [10] exploit Wallace CSA Tree,
using an FA as the basic building block. It implies both designs judiciously manage
the carry-out or carry-in of FAs to conditionally break the carry-chain. For example,
Fig. 3.9 sketches an image at a SW boundary: Assuming F4 0 is at the MSB of
SW 0 and FA 1 is at the LSB of SW I, there are two ideas to break the
carry-chain — ignoring the carry-in of FA_1 or disabling the carry-out of F4 0. It

implies new FA cells are required, without glue logic, for the use at SW boundaries.

43

Ignore !\Disablc

carry-im | carry-out

N

Fig. 3.9. Breaking the FA carry-chain for SWP in SWPPRT.

The first idea is utilized in [10]. Considering an FA used at the LSB of SW_1,
the signal cin receives the FA carry-out from MSB of the previous SW_0, and hence
requires masking on cin using the signal-4ill. Fig 3.10 shows the FA with carry-in
masking used in [10]. This method does not create a mew critical path since the paths
cin to sum and cin to cout are fast.as shown in Fig. 2.6a. Combining cin with kill
using NAND?2 incurs no significant delay since the extra gate is in parallel with
others. This claim is somehow misleading because it implicitly assumes the delays
of all signals are balanced and thereby an FA is always assumed to have its longest
path latency all the time. This is often not the case with the real circuit since uneven
delay among paths do exist, facilitating the speed optimization using TDM [8]. If
using the FA scheme at SW boundaries, in Fig. 3.9 cout of FA_0 “must” connect to
cin of FA_1 and sum of FA_0 “must” connect to a or b of FA_1. This restricted
scheme creates a longer critical path going through all sum signals and all a/b
signals since it eliminates the use of TDM to optimize the delay. Furthermore, on the
middle levels of Wallace CSA Tree, a lack in cin signals for connection of cout

signals is possible and other FA cells may be required.

44

Fig. 3.10. FA with carry-in masking used in [10].

The proposed design utilizes a different idea. Since uneven path latency does
exist in the proposed SPPRT, TDM canustill be utilized. Generally speaking, the
more a flexible signal connection is available, the ‘more the speed of a PPRT is
optimized. The proposed SWPPRT cohcerns conditionally disabling the carry-out as
shown in Fig. 3.9. A possible realization of FA with carry-out masking used at the

MSB of SW_0 is shown in Fig. 3.11.

Fig. 3.11. FA with carry-out masking used in the proposed design.

45

Whenever £kill is asserted, cout must be zero. This modification does not add
extra delay to the original FA critical path; however it creates some longer paths
compared to the scalar PPRT. It thereby slightly reduces the SPPRT performance
since the original FA cells at each MSB of SWs should be replaced by new cells.

This method allows flexible FA connection; TDM is thus still feasible. The
proposed SWPPRT outperforms the VPPRT in [10] in theory since TDM speed
optimization can still be applied. The SWPPRT has nearly the same performance as
the SPPRT. Delay information of the new FA cell is required for TDM; for simplicity,
we assume the new FA cell has identical delay information with the original FA cell.

To configure the SW combination scheme, SWPPRT requires identical kill
signals fed into SWPPA. If properly assigned and connected at SW boundaries, the

SWPPRT supports equivalent SW.combinations as.configured in SWPPA.

3.2.4 Sub-Word Parallel CPA(SWCPA)

There are various SWP adder schemes. The basic idea again is to break the
carry-chain across SW boundaries. An easy approach to breaking the carry-chain is to
conditionally insert one-bit zero between SWs to both operands. This annihilates the
carry-chain. When a carry is required, a 1-bit one is simply inserted between SWs to
either operand, serving as propagate signal without affecting the result. This approach
is less relevant to the adder architecture; however, the delay overhead is considerable
as bit width grows. If taking consecutive 16 bits as a basic adder block size, a 32-bit
SWP adder requires one inserted bit; a 64-bit adder, three; a 128-bit adder, seven. This
enlarges the bit width of the CPA to a number unequal to the power of two, and which
deteriorates the performance of CPA since in most architectures the block size usually
equals the power of two. Fig 3.12 sketches a simple 64-bit SWP adder scheme. The

kill signal controls the annihilate or propagate behavior of the carry.

46

[A[63:48] [k [A[47:32] [k [A[31:16] [k [A[15:0] |

| B[63:48] |0 | B[47:32] [0 | B[31:16] |0] B[15:0] |

| 67-bit CPA |
l—{ C[63:48] | C[47:32] | C[31:16] | C[15:0] |

v Y Y

cout cout v2 cout vl cout v0 — ~kill

Fig. 3.12. A simple 64-bit SWP adder.

AN SWP adder using 4-bit carry-lookahead generator (CLG) is implemented
in [10]. Similar to the SWP method in VPPRT, an AND?2 is added to mask the
carry-in of the CLG without additional delay. This CLA logic is expressed as:

coutQ= g0+ p0-cin-(~ kill)
coutl= gl+ g0- pl+ pQspl-cin:(~ kill)
cout2=g2+gl- p2+g0-pl-p2+ p0- pl- p2-cin-(~ kill)
2[3:0]=g3+g2-p3+gl- p2-p3+2¢0-
pl3:0]= p0- pl- p2- p3;
(3.2)
where g/3:0] and p/3:0] stand for 4-bit CLG generate and propagate signal from bit

0 to bit 3, respectively. This adder enjoys the merits of a scalar CLA without large
overhead.

As for Fong adder exploited in the proposed SCPA, it also enhances for SWP
with minor area and timing overhead because extra operators for breaking the
carry-chain are added only at boundary bit positions and work in parallel with the
original operators as shown in Fig. 3.13. Fong adder is capable of supporting flexible
SW combinations with a basic block size. Concerning the proposed SWP MAC design,
we choose a size of 16 bits for lowest granularity. The break signals in Fong adder
control the behavior of carries across SW boundaries, and thus configure the SWP

scheme. The logic of break signals are identical to ki// signals used in the proposed

47

SWP MAC, and hence meets our specification without any efforts. The carry-out

signal of each SW is provided for further possible use. As far as the carry-in signal cin

of each SW is concerned, Fong adder sets some restrictions to configure scalar or

SWP schemes; however, using our design methodology, the negation of kill signals

equal the cin signals of Fong adder at the corresponding bit positions. Compared with

SWP CLA design in [10], Fong adder has better performance in terms of delay and

area since the optimized Ling addition is essentially faster than CLA by reducing one

logic level, and the hybrid adder architecture contributes to a smaller area. The

advantage manifests itself as the bit width increases [26].

31030 29 28 27 26 25 24 2322 20 20 19 18 17 16 15 14 13 12 11 10 9 8 76 5 4 3 2 1 0 Cin
é#%éﬁ#* Y v TY Ot T YT Yy ioroy
&2 &2
Cin
0| o -
) C (40 mp0)
«-S.L A q—‘i
sa | I|etep)
-« 4
&1 &1 &1 _&I 3 (g2,p2)
y . " C3| - 4—‘
cout | C27 c19 Cll
; cout b2 cout_b0)
cout_ bl R
s28| g sl s cout |
1 ¢ | @pe2®) c | €pr2o *‘—S],, g | (elpp12) S48
9| s s =Rk S |
< y ' 2 p2 _ | 3 55| s | &Y
. A (g2p.p29) s22| A (g21.p21) si3| s (glp.pl3) N
— | | Cls R o] a6 (25.p5)
R [EJP.DEO} sa| r [glr‘pllj | suf | (51@141 | 56 x‘z
831 (o) R 7 (gfxﬁ»ﬁ}
4 sis| s | S5 ss| s <
S (© *—c
825 C (e28.p24) s17| s (H]F:P](’] sg | s (}:’F-PS}
$ A * A
. (226,p25) . (glfpl7 . (29.p9)
s6| A sis| | | &P 10| |
& 5 |
527 JL (22p.p26) . a STIRES o 4| (e10p10)

Fig. 3.13. Architecture of a 32-bit Fong adder with reconfigurability.

*This figure is a direct copy of Fig. 47 in [26]

4

8

3.2.5 Summaries of the Proposed SWP MAC Design

Based on the proposed scalar MAC design, the proposed SWP MAC applies
SWP to SPPG, SPPRT and SCPA. In SPPG, SWP is done by preprocessing on
operands and carefully arranging the SWPPA. In SPPRT, SWP is done by replacing
SW boundary FA cells with a new FA supporting carry-out masking. For SCPA,
Fong adder performs SWP by adding some logic operators working in parallel with
original operators. The timing and area overhead mostly lies in SWPPG since
multiplexing and masking requires several levels of logic. As for SWPPRT, the
novel method still facilitates the use of TDM to generate SWP speed optimized
Wallace Tree. The SWP Fong adder has nearly the same performance as a scalar
Fong adder. Due to the support of SWPPG, SWPPRT, and SWCPA, the proposed
SWP MAC not only theoretically outperforms. [10] but also innovatively features

more flexible SW combination and-mode assignment schemes.

49

CHAPTER 4
EXPERIMENTAL RESULTS

4.0 Overview

In this chapter, we provide the experimental results of the proposed design.
Section 4.1 elaborates the environment for implementation. Section 4.2 provides the

data and statistics of the experiment and discusses the experimental results.

4.1 Implementation

To acquire delay and area estimates, the scalar architecture in [10] consisting
of an MBE with the encoding scheme in Table.2.2; a regularly connected Wallace
PPRT, and a CPA using 4-bitZCLA blocks Is rebuilt; Synopsys DesignWare IPs
(DWIPs) [38] = DW02_mult (scalar-multiplier) and' DW02 prod suml (scalar MAC)
using wall synthesis model (MBE-Wallace architecture) — are also chosen for
synthetical result comparison. VMAC in [10], an SWP MAC design, is rebuilt for
comparison. All designs are implemented in Verilog HDL on register transfer level
(RTL) with a same coding style, and then synthesized using Synoposys Design
Compiler [39] in Artisan 0.18 um standard cell library for UMC 0.18 um silicon
technology with and a relatively conservative wireload model wi70. The FA cell
used in PPRT and the delay information for TDM algorithm exploit the cell
ADDFHX4, a high speed standard FA cell [37]. All other cells are optimized by the
synthesizer. Synopsys PrimePower [40] is used for power analysis. In order to prove
the correctness of functionality, all designs are simulated by Cadence Verilog-XL

simulator [41] with patterns cycling through all possible combinations, and the

50

results are compared to behavior models in Verilog format provided by DWIP. As
for verification, Novas nLint [42] is used for design rule check with a reusable rule
set according to [7]; TransEDA Verification Navigator [43], for code coverage
analysis; Cadence Conformal equivalence checker [44], for logic equivalence
(formality) checking between original designs and gate-level netlists. These EDA
tools ensure the robustness of designs. Table 4.1 lists the environment for out

experiment.

Table 4.1. Environment setup for experiments.

Simulation Environment

Coding Verilog HDL

Simulator Cadence Verilog® -XL:

Synthesizer Synopsys:Design:Compiler®

Power Analyzer |Synopsys PrimePower®

Cell Library Artisan UMC 0.18 um technology

Wire Load Model [UMC wi10

Verification

Design Rule Check |Novas nLint® with strict rule set

Equivalence Check |[Cadence Encounter™ Conformal® Equivalence Checker

Coverage Analysis [TransEDA Verification Navigator®

4.2 Discussion of Experimental Results

4.2.0 Overview

All results are shown in tabular form with discuss under the tables; besides, the
improvement rate of each comparison relative to the proposed design are also
provided in percentage.

The result of critical path delay in worst case, area cost at critical timing, and

power consumption will be reported and compared at the following sections.

51

4.2.1 Delay Comparison

Table 4.2 reports the critical path delay in nano-second of all designs in worst
case: Table 4.2a lists the delay of scalar multiplier designs; Table 4.2b lists the delay
of scalar MAC designs; Table 4.2c lists the delay of SWP multiplier designs; Table

4.2d lists the delay of SWP MAC designs.

Table 4.2. Critical path delay comparison.

(a). Scalar multiplier designs.

Proposed
- DWO01_mult (wall) SMUL in [10] SI:IIUL

8-bit 4.06 13.79% 4.35 19.54% 3.50
16-bit 5.25 10.48% 5.92 20.61% 4.70
32-bit 6.18 5.83% 761 23.52% 5.82
64-bit 7.40 6.35% 9.11 23.93% 6.93

(b). Sealar MAC designs.

DW02 d 1 P d
_prod_sum SMAC in [10] ropose
(wall) SMAC

8-bit 4.31 16.01% 4.74 23.63% 3.62
16-bit 5.55 12.97% 6.43 24.88% 4.83
32-bit 6.50 10.15% 7.65 23.66% 5.84
64-bit 7.81 11.01% 9.37 25.83% 6.95

These two tables clearly show the high-speed advantage of the proposed scalar
design. The proposed design on average accelerates DWIPs by approximately 10%
and [10] by more than 20%. TDM PPRT contributes the most while Fong adder also
has a relatively short delay. The delay of the proposed SPPG is a little longer due to
the enhancement for mixed-mode. If removed, the proposed design will have an

even better performance. The design in [10] is the slowest since TDM is not applied,;

52

DWIPs outperform [10] by instantiating the same high speed FA ADDFHX4 cells
from the cell library. The delay difference between each two rows in each table is
approximately the same since doubling the bit width incurs two more levels of CSA
delay into PPRT which is about 1.2 ns in this case. In two tables the corresponding
entry relates since adding an accumulator into PPRT incurs one more level of CSA

delay or sometimes no delay; this is the feature of Wallace Tree.

(c). SWP multiplier designs.

. Proposed
Proposed SMUL VMUL in [10] SWP MUL

16-bit 4.70 -2.98% 6.02 19.60% 4.84
32-bit 5.82 -5.15% 7.75 21.03% 6.12
64-bit 6.93 -4.33% 9.31 22.34% 7.23

(d). SWP.MAC designs.

Proposed
- Proposed SMAC VMAC in [10] sw: A

16-bit 4.83 -4.14% 6.56 23.32% 5.03
32-bit 5.84 -5.82% 7.82 20.97% 6.18
64-bit 6.95 -4.60% 9.65 24.66% 7.27

Table 4.2c and Table 4.2d manifest the high-speed feature of the proposed
SWP designs. In all cases, they outperform the SWP designs in [10], and even
outperform the scalar designs of DWIPs. The theoretical benefits of the proposed
SWPPRT using TDM are also realized. The delay of the proposed scalar design is
also compared. It is clear that our SWP method incurs less than 6% timing overhead.

Table 4.3 reports the delay overhead on performing SWP. Table 4.3a shows the

case with the designs in [10]. Table 4.3b shows the case with the proposed designs.

53

Table 4.3. Delay overhead on performing SWP.

(a). Designs in [10].

- SMUL | VMUL Overhead| SMAC | VMAC Overhead
8-bit 4.35 N/A N/A 4.74 N/A N/A
16-bit 5.92 6.02 1.69% 6.43 6.56 2.02%
32-bit 7.61 7.75 1.84% 7.65 7.82 2.22%
64-bit 9.11 9.31 2.20% 9.37 9.65 2.99%
(b). The proposed designs.
SWP SWP
SMUL MUL Overhead| SMAC MAC Overhead
8-bit 3.50 N/A N/A 3.62 N/A N/A
16-bit 4.70 4.84 2.98% 4.83 5.03 4.14%
32-bit 5.82 6.12 5.15% 5.84 6.18 5.82%
64-bit 6.93 7.23 4.33% 6.95 7.27 4.60%

8-bit SWP designs are not available since a size of 8-bit is chosen as the

multiplier/MAC basic block. The SWP 8-bit design is thus equivalent to a scalar

8-Dbit design.

These two tables indicate that the delay overhead on performing SWP in [10]

is less than the proposed design. Both the shared segmentation method and the

proposed design incurs at most a MUX3 delay for the SWPPA, and both CPA

designs have a similar overhead on SWP. This condition thereby infers the decrease

in SWPPRT performance since a lower performance FA cell is used to replace the

FAs at SW boundaries with a same estimation of delay profile. The degradation of

TDM is reasonable; however, the actual delay still significantly outperforms [10].

[10] with a smaller delay overhead is not good because it implicitly assumes all FA

54

cells introduce a critical timing. The PPRT performance in both scalar and SWP

designs is said to be equally slow.

4.2.2 Area Comparison

Table 4.4 reports the area cost in square-micro-meter of all designs at critical
timing: Table 4.4a lists the area cost scalar multiplier designs; Table 4.4b lists the
area cost of scalar MAC designs; Table 4.4c lists the area cost of SWP multiplier

designs; Table 4.4d lists the area cost of SWP MAC designs.

Table 4.4. Area cost comparison.

(a). Scalarrhultiplier.designs.

- DWO01_mult (wall) SMUL in [10] Proposed

8-bit 11104+ | -20:81%-15202 | 11.76% 13415
16-bit 39587 -3.15% 51217 | 20.27% 40835
32-bit 133335 | -317% '| 183334 | 24.97% 137563
64-bit 469149 | -3.57% | 710822 | 31.64% 485917

(b). Scalar MAC designs.

DW02_prod_sum1

(wall) SMAC in [10] Proposed

13734 | -15.26% | 18422 | 14.07% 15830

43070 -6.57% 59010 | 22.22% 45898

141897 | -4.25% | 196640 | 24.77% 147932

496389 | -3.43% | 709248 | 27.61% 513423

These two tables show that the proposed design has nearly the same area cost

except for 8-bit, compared with DWIPs. This can be explained that for the 8-bit

55

design, the area overhead for mixed-mode weighs heavily due to the area is still
small, and the area reduction advantage of Fong adder is obscure. The effect of
hybrid adder architecture manifests itself as bit width increases while the proposed
MBE features area reduction as well. The proposed design is faster and enhanced
with mixed-mode operation with approximately the same area. The proposed design
significantly outperforms [10] owing to different MBE and PPRT schemes. When
doubling the bit width, the area becomes three to four times as large as the original
area, and which meets theoretical inference. In two tables the corresponding entry
relates since adding an longer accumulator into PPRT incurs one more level of

longer CSA logic, and is also with a multiple of three to four as the size doubles.

(c). SWP multiplier designs.

. Proposed
Proposed SMUL VMUL in [10] SWP MUL

16-bit 40835 “11.-23,85% 59282 | 15.04% 50368
32-bit 137563 | “23i49%41210162 | 19.17% 169883
64-bit 485917 | -24.61% | 813822 | 25.60% 605508

(d). SWP MAC designs.

Proposed
- Proposed SMAC | VMAC in [10] sw:MAc

16-bit 45898 | -20.91% | 66825 | 16.96% 55494
32-bit 147932 | -21.21% | 222638 | 19.46% 179302
64-bit 513423 | -22.19% | 818144 | 23.32% 627349

These two tables demonstrate that the proposed SWP design outperforms the
design of [10] in terms of area cost with approximately 20% overhead. Most

overhead is introduced by the SWPPG. Although the proposed SWPPA avoids using

56

dedicated MBEs to generate PP for each bit width, sign encoding bits, sign bit,
hot-one modification bits still need to be generated by designated logic. The area
overhead for SWPPRT and SWCPA is not considerable, especially as bit width

grows.

Table 4.5 reports the area overhead on performing SWP. Table 4.5a shows the

case with the designs in [10] while Table 4.5b shows the case with the proposed

designs.

Table 4.5. Area overhead on performing SWP.

(a). Designs in [10].

- SMUL | VMUL [Overhead| SMAC | VMAC |Overhead
8-bit 15202 N/A N/A 18422 N/A N/A
16-bit 51217 |-69282 -15:76% | 59010 | 66825 | 13.24%
32-bit 183334 | 210162 | 14.63% | 196640 | 222638 | 13.22%
64-bit 710822 | 8138221 :14:49% | 709248 | 818144 | 15.35%

(b). The proposed design.
SWP SWP
SMUL MUL Overhead| SMAC MAC Overhead
8-bit 13415 N/A N/A 15830 N/A N/A
16-bit 40835 | 50368 | 23.35% | 45898 | 55494 | 20.91%
32-bit 137563 | 169883 | 23.49% | 147932 | 179302 | 21.21%
64-bit 485917 | 605508 | 24.61% (513423|627349| 22.19%

These two tables imply that the proposed SWP design has less than double of

57

the overhead of [10]. This is reasonable since hot-one modification is applied to

each SW boundary in each mode. It’s a trade-off between speed optimized PPRT and

a reduced area SWPPA.

4.2.3 Power Comparison

Estimation of power consumption is performed by PrimePower [40]. For designs

of a same size, an identical file with a number of 10,000 random patterns plays as the

stimulus for estimation. Power estimation is only applied to MAC designs. Simulation

results of scalar designs and the proposed SWP design executed in 8-bit SWP mode

are reported in milli-Watt in Table 4.6: Table 4.6a lists the power consumption at

critical timing as shown in Table 4.2 whereas Table 4.6b lists the power consumption

of the same designs processed at a relatively loose timing of 20 nano-second.

Table 4.6. Rower consumption comparison.

(a). Power consumption-at critical timing.

DWO02_prod_sum1

SMAC in [10] SWP MAC SMAC
(wall)
8-bit 4.03 | 17.44% | 3.21 -6.30% N/A 3.43
16-bit 15.22 | 88.41% | 8.99 11.27% | 9.48 | 17.39% | 8.08
32-bit 34.30 | 45.90% | 27.28 | 16.04% |28.52|21.31% | 23.51
64-bit 153.70 | 92.61% | 87.89 | 10.14% |97.97|22.77% | 79.80
(b). Power consumption at T = 20 (ns).
DWO02 prod sumi
SMAC in [10] —proa_su SWP MAC SMAC
(wall)
8-bit 0.96 | 53.62% 0.69 11.47% N/A 0.62
16-bit 4.90 | 150.46% | 2.50 27.76% | 2.39 | 22.24% | 1.96
32-bit 13.14| 90.99% 8.88 29.10% | 8.83 | 28.34% | 6.88
64-bit 72.07 | 159.43% | 34.37 | 23.72% |35.67|28.40% | 27.78

58

Except for the 8-bit comparison with DWIP at critical timing, the proposed

designs enjoy a less power consumption. The proposed scalar designs outperform

DWIPs even if the area cost of the proposed design is a little bit larger. For some

cases, the proposed SWP designs even outperform scalar DWIPs. Race-free

encoding for the MBE accounts for the phenomenon.

The proposed design thereby is high-speed, moderate-area, and power-reduced.

The power-delay (PD) characteristic is also calculated and listed in Table 4.7 to

demonstrate the superiority of the proposed design.

Table 4.7. Power-delay characteristic comparison.

DWO02_prod_sum1

SWP MAC | SMAC

(wall)
8-bit 19.09 | 63.77% |, 13:85 4. 11:56% N/A 12.41
16-bit 97.86 |150.83%| 49.88 .+ 27.86% | 47.70 |22.25%| 39.02
32-bit 262.40 | 91.11% | 174.32 | 29.15% |176.25|28.37%| 137.30
64-bit 1440.17)159.67%|~686:42 23.77% |712.24|28.42%| 554.61

59

CHAPTER S
APPLICATION NOTES

5.0 Overview

In this chapter, we discuss some important application issues when utilizing
the proposed MAC design. Section 5.1 details some frequently used DSP arithmetic
operations that can be easily enhanced or extended using the proposed architecture;
Section 5.2 provides some overflow/underflow check skills with respect to some
common fixed-point (FXP) number representation formats for DSP applications;
Section 5.3 describes the way to flexibly. reconfigure parameters of the proposed

designs to meet users’ requirement.

5.1 Functionality Enhancement

5.1.1 Multiply-Accumulate (MAC) Operation

MAC operation is a DSP frequently used operation and is essentially the same
as multiplication. Multiplication is treated as a special-case MAC operation without
accumulation. A dedicated MAC unit is usually developed to integrate MAC
operation with multiplication. In order to implement MAC operation in
multiplication time, there are essentially two approaches:

1. Integrating accumulator data into PPRT as another PP.

1. Adding accumulator data after multiplication.

It seems approach I can considerably reduce the delay along the critical path
since it does not incur another CPA delay as approach II does. Instead, approach I

takes only a level of CSA delay or in some cases no delay; for example, A PPRT

60

with five or six inputs both take three CSA levels for reduction; this is the

characteristic of Wallace Tree. Fig. 5.1 illustrates the flow of these two approaches.

Multiplicand Multiplier Multiplicand Multiplier

h A L Y A

FyY ¥y
FYYy

Partial Product Modified Booth Partial Product

Generator] . : Generator
(PPG) * | Encoder (MBE) (PPG)

Madified Booth
Encoder (MBE)

Fy
Y

YYY FYYY ¥ YYY YYYY

Partial Product Reduction Tree (PPRT)

Partial Product Reduction Tree (PPRT)

Y Y
Carry Propagation Adder | (CPAL)

Y Y Y ¢ ‘
Carry Propagation Adder ., o ., Accumulator
(CPAYAccumulator (ACC) - Carry Propagation Adder 2 (CPA2) (ACC)
MAC Result MAC Result
Approach [Approach If

Fig. 5.1. Execution flow of two approaches.toe completing MAC operation.

However, if a MAC unit with complicated modes and functionalities for DSP
application is under consideration, approach II is sometimes a better alternative
because modification on inputs or maybe some internal temporal signals must be
performed to meet the specification assigned. It takes more and complex control
signals when using approach I to control the temporal data since the all PPG, PPRT,
and CPA may require their own control signals. The generation of control signals not
only influences performance but increases the design complexity. The choice
between approach I and approach I1 is a tradeoff.

As a reminder, the input and output (I/0O) of PPRT is often a good place to

insert pipeline registers if needed.

61

5.1.2 Multiply-Negate (MAN) Operation

In practical, sometimes the negated multiplication result is required. For
example, many DSP processors supports MAC operation with the negated
multiplication result (this is another example why we may use approach II in the
preceding section). This multiply-negate (MAN) or multiply-subtract (MAS)
operation has different implementation. Three different feasible methods are
described as follows:

A. Negation/Two’s complement is performed after multiplication: This is a
naive method since a two’s complementer consisting of an inverter
associated with an incrementer will unavoidably be used along the critical
path. To improve, we can negate the final two partial products from the
bottom level of CSA output in"PPRT.and simply use another level of CSA
to sum the special ‘2*solely for two’s complementing use. An incrementer
delay is therefore replaced-with-a‘level of CSA delay. The naive flow and

the improved flow are shownin'Fig. 5.2.

X Y X Y

77 2 77 X2

: sum carry-out
. yearry-out L |
CPA Inverter 1 1 ‘ Inverter
7 sum’ l l carry-out’
A J Y Y
Two's Complementer CSA
neg_sum neg-
8 | J carry-out
= CPA
-£
naive flow improved flow

Fig. 5.2. MAN flow of method A.

62

B. Negation/Two’s complement is manipulated by user: Compared with
method A, we now pay attention to the input end. If we can negate either
the multiplicand or the multiplier before multiplication, we will get the
negated result afterwards. Intuitively, this can be done by performing two’s
complement on one of the two operands, but this again jeopardizes the
performance. Fig. 5.3 shows this modification on input. Another way is to
use an instruction such as negation to deal with the problem; unfortunately,
it takes one or more clock cycles. The last resort is to mental-calculate the

negated operand; this way, however, loses dynamics and user-friendliness.

X Y

'

Twao's Complementer

ST carry-out

Fig. 5.3. MAN flow of method B.

C. Negation/Two's complement is performed in multiplication run time: \\le

are to perform:

C=—(4xB). (5.1)

63

By deduction and inspection, Eq. (5.1) is re-written as:
C=(-A)xB. (5.2)

Now replace -4 by —4 +1; we can rewrite Eq. (5.2) as:
C=(-A)xB=(—A4+1)xB=(—A)xB+B. (5.3)

Eqg. (5.3) indicates we can conditionally invert the multiplicand and
simply view the multiplier as another PP. Fortunately sometimes the
existence of the extra PP doesn’t introduce any timing overhead. This is
the characteristic of Wallace PPRT. Fig. 5.4 shows the flow of method C
and Fig. 5.5 depicts an example of PPA when MAN/MAS operation is
under execution. Note the accumulator (4CC) and the sign-extended
multiplier for negation (Mlier) are added at the bottom of the original

PPA.

Inverter

Fig. 5.4. MAN flow of method C.

64

33222222222211111111110000000000
10987654321098765432109876543210

<]

... .PRNNUDGOOGOKRRIEIN PPOD .
ST PR RPN IpXXXXXXXXXXXXXXXxxh. PPO1 \
g I e Pp02
o lpRxRRRRRGOUGGGGKAR . - PPO3
o Ipatoooaoaad - PRO4
M I PXXXXXXXXXXXXXXXXXh.] PP05

e I eDIIrEDN0y rros
S RRHKHKKKRRKRRRRKAN .. .- --... 5 PPOT

|SSSSSSEBESS55555YYYYYYYYYYYYIIYN Mlier

(ZE777ZR2 222 222220222 222222222% ACC

s

se

?
NS

TRREEREEER

-

Fig. 5.5. An exampling PPA for MAN/MAS operations using method C.

5.1.3 Unsigned Operatibn

Substantially, all signals in a‘circuit-or-design are simply bit streams; the
meaning of a bit stream depends on how a.user treats or interprets. For a digital
system, unsigned number representation is native and important; for example, most
floating point formats represent numbers in a sign magnitude form, completely
separating the mantissa (significance) multiplication from the sign handling [12].
Therefore unsigned multiplication must be supported in a DSP multiplier.

Booth’s algorithm and modified Booth’s algorithm were originally developed
to cope with signed multiplication in TC format. The proposed design, based on
MBA, then requires some modification to support unsigned multiplication. Section
3.1 has introduced two ways to support unsigned/mixed-mode operation by
generating an extra PP. They are supplemented as follows.

The first way generates the extra PP by the MBE, assuming {0,0,m} as the

encoding triplet where m stands for the MSB of the multiplier. The triplet then

65

always equals {0,0,0} or {0,0,1}, and the extra PP thereby always equals zero or the
unsigned multiplicand. After proper alignment, this PP helps unsigned multiplication
since the extra PP ensures a positive result. This modification has no influence on
signed mode since sign-extension of m is performed, and {m,m,m} is sent to the
MBE. The extra PP is hence destined to zero and does not affect the result.

The other way renders that in TC format, the MSB of each operand is the
negatively-weighted sign bit. If using TC format to represent an unsigned number,
one extra bit is required as the new MSB and sign for each operand. If unsigned
mode is under execution, the new MSB is zero-filled; otherwise, sign extension is
still applied and does not affect TC representation.

Either way has a similar idea that the negatively-weighted sign bit should be
especially taken care of by appending extra bits. The logic of the appending bits for
the extra triplet using the first way.equal the.logic of the new MSB and sign in the
second way, and which has been expressed-in. Eq.(3.1). Fig. 5.6 shows the PPA
enhanced with unsigned multiplication:.a PP-U/"M, generated from either way for

correction, locates at the bottom of the PPA.

Y[12]
Y[13]
Y[14]
Y[15]

0

Y[0]
33222222222211111111110000000000 Y[1]
10987654321098765432109876543210 Yi2]
... DOMOOGKXXXXXEXLOOXN PPOO s
.- - lpxsooooaxxxxxxxxxxh . PPO1 /{ YIs)
___ZCl.- Ipzweoocccooaaxxxh__ PR02 ©_{[Vig)
(-~ Ipxxxxmooooooaakxxh -1 PPO3 Y7l
o Ipssmmooooaaaath - - Lo 0 PPO4 < YIS
SETpE===assseceseasRngsonaar “05 ~—_f] ok
I pXRRXRRKRRKKKKHHHKN PPO6 \{ vii1]

0

Fig. 5.6. Adding a PP to perform unsigned operation.

66

Appended operand bits are necessary not only for supporting unsigned MAC
operation but also for performing MAN operation (described in Section 5.2) on
unsigned numbers. The reason is demonstrated in Fig.5.7: Actually, it takes N+1 bits
to represent an N-bit unsigned number after negation. Therefore, it is also of great
help when performing the MAN/MAS operations on unsigned numbers.

The difference of the two ways lies in the number of appended bits for each
operand. Considering the bit width of the generated PP from the MBE, the proposed
design appends two bits for each PP as shown in Fig. 3.2. Either way thereby has no

difference in the PPA, PPRT and CPA.

Unsigned Signed
(+9o 1 0|0 1 » Two's Complementer - 0 1 1 L (+7ho)4
(+9)10 (1] 1 0 0 1 | Two's Complementer O 1 0 0] (-9No @]

Fig. 5.7. A representation problem on negation of unsigned numbers.

5.1.4 Mixed-Mode Operation

Sign magnitude and TC are two different attempts on representing negative
numbers. Both formats, inevitably, trade the MSB significance for a sign bit. This
loses the dynamic range especially when representing unsigned numbers since the
MSBs should always be zero-filled.

To retain a larger dynamic range, some DSP processors [27] support a special
operation mode, called mixed-mode in this thesis, to perform a signed multiplicand
operated with a unsigned multiplier, and the product or the accumulator data is still
signed. Fig. 5.8 shows the comparison on dynamic range among signed, unsigned,
and mix-mode operation: mixed-mode benefits from both the TC representation and

a larger dynamic range.

67

Signed Signed Signed

-

MAX [T fofoloxiifololol=ofrjofolololo]o 8%.8 = +64
Signed < Signed Signed Signed
0\ 8 1 7 0 O 2 I 74 1. 7 7 2 1 7 Rl 7 1 0 0 1 1 v o 1 8%+ = 56
. Unsigned Unsigned Unsigned
MAX Lo fr = frfrfofojololi| +15%+15=4225
Unsignedy Unsigned Unsigned Unsianed
MIN L0000 X 0f0]lofol=]0f0of0]0|0]0]0]0 0*¥0=0
: Signed Unsigned Signed
MAX [o[t efrfejtl=]ofr|rfoft{ofolt] +7%+15=+105
Mixed- Signed Unsigned Signed
MIN 0 O 1 o 1 Y Y 0) |) LF+15 =120

Fig. 5.8. Dynamic range comparison among signed, unsigned, and mixed-mode.

To implement mixed-mode multiplication, it’s exactly the same as the
modification done for unsigned mode. The multiplier is unsignedly represented;
zero-extension is performed. Hence, one extra PP.for mixed-mode multiplication is
generated and accumulated in the PPRT. Since the result is signedly represented in
TC format, the extra PP does not ensure-a-positive-result. Fig. 5.9 shows the PPA
that supports MAN/MAS operation; unsigned-operation, and mixed-mode operation:
the correction PP for mixed-mode is located at the exactly same place of unsigned
correction PP; hence they are combine into a single PP, U M, for unsigned and
mixed-mode correction.

As a result, three different numeric FXP data formats — signed, unsigned, and
mixed-mode — are integrated into the proposed designs. The overhead on PPRT, as
mentioned before, may sometimes be ignored; however there’s a little delay added
along the critical path since three possible operating modes are under consideration.

If mixed-mode is removed, the proposed designs will have even better performance.

68

Y|0]
33222222222211111111110000000000 Y[1]
10987654321098765432109876543210 Y2
DDl PINXKKKKXXXXXXXXXXXK PPOO i
RS M Geea GG Rt 3
[l R PN ;lE’E’E"_"_@_"‘E‘E‘E‘EE{"E’E’E}E@ﬂ PPO1 /{ Y|5]
T - I PRROODOOXXXXXXXXA .| PPO2 /{ Vio|
... pREEEOODGKKXXRXXXA .| PPO3 v[7]
S IpRRRRRRRRROOGKKRRR - PPO4 a—] VI8
SITMAMSSSECRIRGETRTE 705 .. [yl
I pXXHK XXX XRRIRODOOKR . - - - __..| PPO6 i)
OO0 KKIIOODO ... ____.| PPO7 \{ Viiz]
OO XXM ...~ ... UM V(i3]
SSSEEEE33355555yyyVVYVYIITTTIIY ”ller‘\i YL
G N

{}

Fig. 5.9. An PPA supporting.MAN/MAS; unsigned/mixed-mode operation.

5.2 Overflow/Underflow*Check for FXP Numbers

5.2.1 Fixed-Point (FXP) Representation

Compared with floating point (FLP) representation, the fixed-point (FXP)
numeric format is say to be fixed since the radix point is assumed to be “fixed” at
some bit positions. Taking an N-bit stream for instance, if the “virtual” radix point is
at the right of LSB, it is exactly the same as how we interpret the integer data format,
and is denote as V.0 signed/unsigned integer format. To represent fractions, the radix
point can be set at any place except at the right of LSB. The weights of each bit
position to the left side of the radix point are larger than one; positions to the right
side, smaller. If there are k bits to the left side of the radix point, it is denoted as
k.(N-k) format. Most DSP processors use 0.N format to represent unsigned fractions

and /.N-1 format for signed fractions.

69

FXP representation also features that most mathematic/scientific operations
such as addition and multiplication shares integer arithmetic, i.e. even if a fraction
number is under consideration, the same adder or multiplier hardware still obtains
the correct answer, provided the result is correctly interpreted. For FLP processors,
the FLP datapath can not share FXP datapath since the FLP numbers is represented
in another data format such as IEEE-754 standard.

FXP representation has a narrower dynamic range than FLP representation, a
FXP processor; however, it is less expensive than a FLP processor. FXP processors

thereby prevail in DSP applications.

5.2.2 Maintaining Precision & Accuracy

In general, when multiplying two;N<bit FXP operands, it takes 2N-bit to
represent the product without introducing any error. This is sometimes refereed to as
the law of conservation of bits [2]. The 2N=bit-register will eventually be insufficient
if it is accumulated for some times. Even worse, what if we want to store the 2/N-bit
result back to N-bit registers or memories? When the result of an arithmetic operation
exceeds the range of the destination register, important information can be lost.

These precision-related problems occur because the number of bits required to
represent the result exceed that of the intrinsic system data format. If not properly
controlled, the result goes wrong. Plenty of techniques are developed to resolve the
problem such as saturation, input-scaling, accumulator with guard bits, rounding,
and truncation. In the following text we’ll discuss saturation and rounding in detail
because they are frequent and almost supported in all DSP processors.

Considering the fact that addition and multiplication increase the operand

width and the full width result is impractical when operands go on, programmers have

70

to decide the significant bits of the result. For a 2N-bit multiplier product in an N-bit
system, the higher half N bits are often viewed as the significant part for fractions
while lower half are often significant for integers. This selection retains higher
precision from the original data. However, N-bit data width can not fully represent a
2N-bit product; some inspections are thus required during half-part selection in order
to avoid error and maintain accuracy or higher precision.

Overflow/Underflow check is different between integers and fractions. In the
following section, a MAC unit operating on 16-bit FXP data (X and Y) and producing
a 32-bit product (M) that may be added or subtracted from a 40-bit accumulator (4CC)
will be used as an example to briefly explain how to perform overflow/underflow
check. The exampling MAC architecture is typical in modern DSP processors such as

in Analog Device’s Blackfin™ DSP processors [27].

5.2.3 Saturation & Overflow/Underflow for Integers

In Section 5.2.3 and 5.2.4, a set of pseudo assembly MAC instructions is
utilized to demonstrate the way to perform saturation or rounding. Table 5.1 lists the
basic instruction types and notations; Table 5.2 demonstrates some pseudo MAC
instruction examples; Table 5.3 details some available modes that can be supported
by the proposed MAC design.

As far as a FXP MAC is concerned, overflow/underflow may happen when
accumulating 4CC to M. When overflow/underflow is asserted, saturation means that
the overflowed/underflowed data is not viewed as the final result; instead, to maintain
higher precision, incorrect data is replaced by the maximal/minimal representable
value (still incorrect). To take an example, consider adding base-10 numbers in a

system where numbers cannot be larger than two digits in size. If we add the numbers

71

55, 30, and 20, the result is 5, because two digits are not sufficient for representing the

correct result of 105. If saturation mode is applied, we replace 5, which is 100 away

from the correct answer, with the maximal representable number 99, which is only 6

away from the correct result [2]. Saturation practically maintains higher accuracy. Fig.

5.10 shows the effect with or without saturation when overflow/underflow occurs.

Table 5.1. Pseudo MAC instruction types and notations.

Instruction Type

Description

M.HF = X_HF * Y_HF (MODE);

MUL to a data register half

M = X.HF * Y_.HF (MODE);

MUL to a data register

ACC +-= X_HF * Y.HF (MODE);

MAC/MAS/MUL to ACC

M.HF = (ACC +-= X_.HF * Y_HF) (MODE) ; [MAC/MAS/MUL to ACC and a data register half

M = (ACC +-= X.HF * Y_HF) (MODE).;MAC/MAS/MUL to ACC and a data register

Note: .HF stands for a register half; it:is either .H for high part or .L for low part. (MODE) can
be chosen from Table 5.3; +-= stands for MAC/MAS/MUL-operation, respectively.

Table 5.2. Pseudo MAC.instruction examples.

Example

Description

M.L = X.L * Y.H;

Multiply the lower half of X with the higher half of
Y; treat both operands as a signed fraction; store

the result to the lower half of M.

M = X.H * Y.H (SD;

Multiply the higher half of X with the higher half of
Y; treat both operands as a signed integer; store

the result to M.

M.H=(ACC=X.H*Y.L) (UF);

Multiply the higher half of X with the lower half of
Y; treat all operands as a unsigned fraction; store
the result to ACC and the higher half of M.

M = (ACC += X.L * Y_L) (MF);

Multiply the higher half of X with the higher half of
Y; accumulate in ACC; treat X, ACC, and M as a
signed fraction; Y, as a unsigned fraction; store the
result to ACC and M.

72

Table 5.3. Some available modes for pseudo MAC instructions.

MODE 16-bit 32-bit
Format: 1.15* 1.15 -> 1.15
Format: 1.15*1.15->1.31
Range: 0x8000 ~ Ox7FFF
) .) Range: 0x8000_0000 ~ Ox7FFF_FFFF
Meaning: Multiply two signed 1.15 format Meaning: Mulioly two sianed 1.15 format
Default |numbers; after 1-bit left shift correction, g Py) g L)
numbers; after 1-bit left shift correction,
(accumulate and then) round and saturate the)
. (accumulate and then) saturate the result in
result in signed 1.15 format, and store to a| .)
) signed 1.31 format, and store to a register.
register half.
Format: 0.16 * 0.16 -> 0.16 Format: 0.16 * 0.16 -> 0.32
unsi gned Range: 0x0000 ~ OXFFFF Range: 0x0000_0000 ~ OxFFFF_FFFF
= Meaning: Multiply two unsigned 0.16 format|Meaning: Multiply two unsigned 0.16 format
Fraction 9 Py g g: VLT 9

(UF)

numbers; (accumulate and then) round and
saturate the result in signed 0.16 format, and
store to a register half.

numbers; (accumulate and then) saturate the
result in unsigned 0.32 format, and store to a
register.

Signed
Integer

GO

Format: 16.0 * 16.0 -> 16.0

Range: 0x8000 ~ Ox7FFF

Meaning: Multiply two signed 16.0 format
numbers; (accumulate and then) saturate the
result in signed 16.0 format, and store to a
register half.

Format: 16.0 * 16.0 -> 32.0

Range: 0x8000_0000~ Ox7FFF_FFFF
Meaning: Multiply two signed 16.0 format
numbers; (accumulate and then) saturate the
result in signed 32.0 format, and store to a
register.

Unsigned
Integer

un

Format: 16.0 * 16.0 -> 16.0

Range: 0x0000 ~ OxFFFF

Meaning: Multiply two unsigned 16.0 format
numbers; (accumulate ;and then) 'saturatethe
result in unsigned 16.0 format,-and store toa
register half.

Format: 16.0 * 16.0 -> 16.0

Range: 0x0000_0000 ~ OXFFFF_FFFF
Meaning: Multiply two unsigned 16.0 format
numbers; (accumulate and then) saturate the
result in unsigned 32.0 format and store to a
register.

Truncation

M

Format: 1.15* 1.15 ->1.15

Range: 0x8000 ~ Ox7FFF

Meaning: Multiply two* signed 1.15 format
numbers; after 1-bit left", shift.. correction;;
(accumulate and then) truncate (and saturate)
the result in signed 1.15 format and store to a
register half.

Truncation is meaning less for 32-bit result;
Same as Default mode

Unsigned
Format: 0.16 * 0.16 -> 0.16
Fraction |Rrange: 0x0000 ~ OXFFFF
with Meaning: Multiply two unsigned 0.16 format|Truncation is meaning less for 32-bit result;
numbers; (accumulate and then) truncate (and|Same as unsigned fraction mode.
Truncat10n|saturate) the result in signed 0.16 format, and
(TU F) store to a register half.
Format: 1.15 * 0.16 -> 1.15
Range: 0x8000 ~ Ox7FFFF Format: 1.1570.16 > 1.31
Mixed Mode| 2"%* S Range: 0x8000_0000 ~ OX7FFF_FFFF
Meaning: Multiply a signed 1.15 format number Meaning: Multiolv a sianed 1.15 format number
Fraction |with an unsigned 0.16 format number;| . g Py g '
with an unsigned 0.16 format number;

(MF)

(accumulate and then) round and saturate the
result in signed 1.15 format, and store to a
register half.

(accumulate and then) saturate the result in
signed 1.31 format, and store to a register.

Mixed Mode
Integer

1))

Format: 16.0 * 16.0 -> 16.0

Range: 0x8000 ~ Ox7FFF
Meaning: Multiply a signed 16.0 format number
with an unsigned 16.0 format number;

(accumulate and then) saturate the result in
signed 16.0 format, and store to a register half.

Format: 16.0 * 16.0 -> 32.0

Range: 0x8000_0000 ~ Ox7FFF_FFFF
Meaning: Multiply a signed 16.0 format number|
with an unsigned 16.0 format number;
(accumulate and then) saturate the result in
signed 32.0 format and store to a register.

73

A A
MAX underfow MAX underfow

/ 2NN N
AN

overflow MIN gverflow MIN
overflow without saturation underflow without saturation
A A
______ MAX :«_mmm here o MAX|
0 - 0 >
777777 MIN " MIN| saturate here

overflow with saturation underflow with saturation

Fig. 5.10. Effect with or without saturation when overflow/underflow occurs.

Possible saturation conditions are listed in Table 5.4 and described as follows:

>

40-bit signed integer: Overflow/Underflow may occur when
accumulating M to-ACC. The check scheme is identical to that for signed
addition. If two operands.are-with-the same sign, the sign of the result is
inspected. Overflow happens_when two positive numbers sum to a
negative result; it is saturated to the maximum of the 40.0 signed integer
format, Ox7F_FFFF_FFFF. Underflow happens when two negative
numbers sum to a positive result; it should saturate to the minimum,
0x80_0000_0000.

32-bit signed integer: The system may store the 40-bit MAC result to M;
overflow/underflow happens when the 40-bit ACC can not be fully
represented. It occurs when ACC/39:32], the guard bits, are not all the
same as ACC/31], the sign bit. If ACC/39:31] equal to 9 ones or 9 zeros,
saturation is unnecessary; if not, ACC/39] decides saturated value. The
maximum of a 32.0 signed integer is Ox7FFF_FFFF; the minimal,

0x8000_0000.

74

>

16-bit signed integer: The system may store the 40-bit MAC result to
M.H or M.L from M[15:0] or ACC/[15:0]. If one of the bits in M/31:16]
or ACC/[39:16] doesn’t equal the sign bit, M/[15] or ACC[15], it
indicates the 32-/40-bit result is different from the 16-bit result and
thereby overflow/underflow happens, i.e. if M/31:15] or ACC[39:15] are
all ones or all zeros, no saturation is required; if not, M/31] or ACC/39]
determines the saturated value. The maximum of a 16.0 signed integer is
Ox7FFF; the minimum, 0x8000.

40-bit unsigned integer: The logic of the carry-out bit of the 40-bit CPA
is equivalent to the logic of this overflow condition since it indicates 40
bits are not enough for representation. Underflow occurs when operating
MAN/MAS operation.with a negative.result; this should use one extra bit
to check as shown in Fig. 5.7. If supported, it resembles the underflow of
40-bit signed integer. The-maximum -of a 40.0 unsigned integer is
OXFF_FFFF_FFFF; the‘minimum;0x00_0000_0000.

32-bit unsigned integer: Overflow concerns the positive sign extension
and the carry-out of the 40-bit CPA. It demands the 9-bit value
{cout, ACC[39:32]} equals zero. Underflow check resembles that of
32-bit signed integer. As a note, multiplication in this case asserts no
overflow due to the law of conservation of bits. The maximum of a 32.0
unsigned integer is OXFFFF_FFFF; the minimum, 0x0000_0000.

16-bit unsigned integer: Similar to 32-bit unsigned integer overflow
check, it requires to check whether each of the 25 bits, {cout, ACC[39:16]}
or each of the 16 bits, M/31:16], equals zero, depending on the source.
Underflow check resembles that of 16-bit signed integer. The maximum

of a 16.0 unsigned integer is OXFFFF; the minimum, 0x0000.

75

Table 5.4. Possible saturation conditions using the exampling architecture.

Type | Width Overflow Max. Underflow Min.
_ _ M[31]=ACC[39]=1
40 r'\g[fullg‘AACCCC[é%?]_‘lo and o, 7ttt |and 0x8000000000
B result ACC[39]=0

ACC += X.L * Y.L (SI);

/I ACC_old = 0x 7fc0000000;
/I X.LL = 0x8000;

/I'Y.L = 0x8000;

ACC +=X.L* Y.L (SI);
/I ACC_old = 0x8000000000;
/I X.L = 0x0001;

e.g. |*M= 0x40000000; Thel|/l Y.L = Oxffff;
accumulated result is|/* M = Oxffffffff; The accumulated result
0x8000000000 which overflows.|is Ox7fffffffff which underflows. The result
The result should saturate to|should saturate to 0x8000000000 */
OX7fffFFFF */
~ACC[39:31]=1 and ~ACC[39:31]=1 and

32 ACC[39] = 0 OX7fffffff ACC[39] = 1 0x80000000

| M = (ACC +=X.L*Y.L) (SI); M = (ACC += X.L*Y.L) (SI);

e /[l ACC_new = 0x 7fc0000000; /I ACC_new = 0x8000000000;

‘9 | Overflow condition asserts; the|/* Underrflow condition asserts; the
result saturates to Ox7fffffff */ result saturates to 0x80000000 */
NACC[39:15] =1 and AACC[39:15] =1 and
ACC[39] =0, or ACC[39] =1, or

16 IaM[@EL:15] = 1and o0 (X aiE115] = 1and |0X8000
M[31]=0 M[31] =1
M.L = X.L *Y.H (S); = *)

//XL=Ox8000'() M.L='X.L *Y.H (SI);
/I'Y-H = 0x8000:) 2, = 0004
e.g. | | = ! : H = 0x :
{a\sseMrtS'_ th%m?eos%?t()ogétu%\t’géﬂOtvc\)' /=M = 0xffff0000; Underflow asserts; the
OXTHff * /’ result saturates to 0x8000 */
40 |cout=1; Oxffffffffff |depends on system |0x0000000000
ACC += X.L* Y.L (UI); _ %)
Z } ACC -= X.L*Y.L (Ul);
J ACC_old Oxffe0000000; /I ACC_ old= 0x0000000000:
e.0. | 1 — !) Y.L = 0x0001;
f* M = 0x40000000; The carry-out /* M = 0x00000001; ACC_new equals -1
of the accumulated result is 1 which in decimal which saturates _ to
overflows. The result saturates to 0x0000000000 */
OXFFFFFFFF */ X
32 ||{cout,ACC[39:32]}=1 |Oxfffftfff depends on system |0x00000000
M = (ACC += X.L *Y.L) (Ul); M = (ACC -= X.L *Y.L) (Ul);
ul e /l ACC_new= 0x0200000000; /* M = 0x00000001; ACC_new equals -1
9|+ Overflow asserts; the resultlin decimal which saturates to
saturates to OXxffffffff */ 0x00000000 */
[{cout,ACC[39:16]}=1;

16 |or Oxffff depends on system |0x0000
IM[31:16] =1
M.L = X.L *Y.H (Ul);

/I X.L = 0x0002; M.L = (ACC -= X.L*Y.L) (Ul);
e.g. |/l Y.H = Oxffff; /* M = 0x00000001; ACC_new equals -1

/* M = 0x0001fffc; Overflow asserts;
the result saturates to Oxffff */

in decimal which saturates to 0x0000 */

76

5.2.4 Rounding of Fractions

Unlike integers, the significant bits of fractions are the higher half. If it is to
store back a 2N-bit result to an N-bit register, the system eventually discards the
lower N bits. However, in order to maintain higher precision, some techniques are
developed to deal with such condition and in general called rounding.

There are three chief rounding schemes: biased-rounding, unbiased-rounding,
and truncation. For biased and unbiased rounding, if the lower half to be discarded
is larger than a half, the system rounds up, i.e. it adds one to the new LSB, M/16] or
ACC[16]; when it is smaller than a half, the system rounds down by simply
discarding the lower half. The two rounding schemes differ only in the case that the
lower half equals the midpoint value, [For biased rounding, this value is always
rounded up; biased rounding thereby alwaysrounds.to the nearest 0 or 1 and is also
nicknamed round-to-nearest. The result on-average is biased to a value slightly
larger than a half. Unbiased rounding, also-called round-to-nearest-even, has a
different way to deal with the midpoint value. It rounds the value to the nearest even
point, and the rounding direction depends on the LSB of the higher half, M/15] or
ACC[15], not always upward. This scheme consequently has no bias if the system
process on random data, and is also called convergent rounding.

Considering DSP algorithms, we often use unbiased rounding scheme to round
fractions; however, some application such as GSM algorithm uses biased rounding
[27]. It requires some logic to perform rounding before writing the result to a system
register half. If the destination register bit width is long enough, rounding is
meaningless.

An easiest way to avoid any rounding logic is to totally get rid of the lower

half. This technique is referred to as truncation and sometimes called round-to-zero.

77

In contrast with the other two schemes, truncation is biased downward to a smaller

average. Fig. 5.11 depicts three rounding schemes.

ALTL | Al6] | ALS] [AL4] | AL3]] ALZ] | A[L] | ALO]

rounding

—_— =

R{3] [R2] | R[1] | R|O]

Biased (Round-to-Nearest)
R[3:0] = A[7:4] + A[3]:

Unbiased (Round-to-Nearest-Even/Convergent)
If (A[3:0] != 1000)
R[3:0] = A[7:4] + A[3]:
If (A[3:0]= 1000)
E[3:0] = A[7:4] + A[4];

Truncation (Round-to-Zero)
EB[3:0] = A[7:4);

Fig. 5.11. Three different rounding schemes.

5.3 Reconfigurable Parameters Setup

The proposed design has been detailed in previous sections; this section
describes the way to reconfigure the parameters of the proposed design in tabular
form. Table 5.5 lists the 1/O interface of the proposed design. Table 5.6, identical to
Table 3.3, lists again the possible SW combination schemes of the proposed design.
Table 5.7 and Table 5.8 give some examples to configure the kill and mode signals,
respectively. Some points or exception to be noticed are list as notes at the bottom of

each Table.

78

Table 5.5. Interface of the proposed design.

MAC Scalar 16-bit 32-bit 64-bit
MULTIPLICAND | mcand[N-1:0] | mcand[15:0] | mcand[31:0] | mcand[63:0]
MULTIPLIER | mlier[N-1:0] | mlier[15:0] | mlier[31:0] | mlier[63:0]
ACCUMULATOR)| accu[2N-1:0] | accu[31:0] | accu[63:0] | accu[127:0]
mode_VvO0[1:0]
mode_v1[1:0]
mode_v0[1:0]jmode_v2[1:0]
MODE mode[1:0] mode_v0[1:0]jmode_v1[1:0]jmode_v3[1:0]
mode_v1[1:0]jmode_v2[1:0]/mode_v4[1:0]
mode_v3[1:0]jmode_v5[1:0]
mode_v6[1:0]
mode_v7[1:0]
killo
killl
killo kill2
KILL N/A Kill kill1 kill3
kill2 kill4
kill5
killé
RESULT m_out[2N-1:0}{-m_out[31:0] | m_out[63:0] |m_out[127:0]
cout_VvO
cout_vl
cout_vO cout_v2
CARRY-OUT cout cout_vO cout vl cout_v3
cout cout_v2 cout_v4
cout cout_v5
cout_v6
cout

Note: N is the bit width of scalar input operands
Note: vO, v1, ..., v7 indicate SWs in order; v7 aligns to MSB; vO, LSB
Note: For all MODE signal: 1?: mixed-mode; 00: unsigned; 01: signed
Note: kill is inserted between SWs; kill2 between v2 and v3, and the like

79

Table 5.6. Possible sub-word combinations of the proposed SWP MAC design.

Possible Sub-Word Combinations

(16)

16-bit

(8.8)

(32)

(8,8,8,8)

32-bit

(8,8,16)

(16,16)

(16,8,8)

64-bit

A 64-bit SWP MAC is viewed consisting of two
independent 32-bit SWP MACs; it then has
5x5 = 25 possible combinations

Table 5.7. Configuration.example of KILL signal.

KILL kille kill5 kill4 kill3 kill2 kill1 killO
16-bit SWP MAC
(16) N/A N/A N/A N/A N/A N/A 0
(8,8) NA | NATITTINIAY] N/A | NIA | N/A 1
32-bit SWP MAC
(32) N/A N/A N/A N/A 0 0 0
(16,16) N/A N/A N/A N/A 0 1 0
(8,8,8,8) N/A N/A N/A N/A 1 1 1
(8,8,16) N/A N/A N/A N/A 1 1 0
64-bit SWP MAC
(64) 0 0 0 0 0 0 0
(32,32) 0 0 0 1 0 0 0
(16,16,16,16) | © 1 0 1 0 1 0
(8,8,8,8,8,8,8,8) 1 1 1 1 1 1 1
(16,16,32) 0 1 0 1 0 0 0
(8,8,8,8,32) 1 1 1 1 0 0 0
(8,8,16,32) 1 1 0 1 0 0 0

Note: List only some possible conditions
Note: An illegal input will be redirected to scalar mode by default

80

Table 5.8. Configuration example of MODE signal.

MODE SW 7 |SW6|SW5|SW4|SW3|SW2|SW1|SWDO
iebtswemac]
(16) N/A | NJA | NJA | NJA | NA | NA | O X
(8,8) N/A | NJA | NJA | N/A | NA | NA | O O
B2bitswp vac |
(32) N/A | NJA | NA | NA | O X X X
(16,16) N/A | NJA | NA | NA | O X O X
(8,8,8,8) N/A | NNA | NA | NNA | O O O O
(8,8,16) N/A | NA | NA | NA | O O O X
e4bitswevac]
(64) O X | X X X X X X
(32,32) O X | X X O X X X
(16,16,16,16) | O | X | O X O X O X
(8,8,8,8,8,8,8,8) O O O, 1dhn O O O O O
161632) | O | X O | X O | X | X | X
888832 | O | Ol OO | X | X | X
881632 | O | & O "X [F0 | X | X | X
O: Configurable - - “'—;‘ ' 3

'L-_ "'\-""

L 4
: Can't configure;should be |ﬂ§znt""éal wﬂfph’@hearest (O on the left side
Note: Incorrect assignment of mode mﬁyﬁeéuse a wrong result

81

CHAPTER 6
CONCLUSIONS

In this thesis, we present the design methodology of a high-performance
reconfigurable modified Booth encoded MAC unit. It is capable of supporting
sub-word parallel (SWP) operation which enhances computational throughput of
many DSP algorithms especially for multimedia applications. The scalar version of
the proposed design comprises a high-speed, area-reduced, and race-free MBE; a
speed optimized Wallace PPRT using TDM; and a high speed, area-minimized Fong
adder. Using essentially the same hardware, SWP is performed on the scalar MAC
by applying some preprocessing to-operands assaciated with a new arrangement of
the SWPPA, and with the support.of carry-chain blocking when accumulating all
partial products. A novel full-adder carry-out-masking concept is proposed to build
the SWPPRT, facilitating the use o TBM. The SWP version Fong adder inherits its
scalar merits and supports identical SW combinations with our requirement. The
proposed SWP design innovatively features the flexible sub-word combination and
mode assignment scheme with nearly same delay and modest area overhead
compared with the proposed scalar design. The proposed designs are
fully-synthesizable in a reusable and verifiable design style. Experimental results
demonstrate that the proposed scalar and SWP designs, for most cases, outperform
the designs of DesignWare® IP [38] and of [10] in terms of critical path delay, area

cost, and power consumption.

82

FUTURE WORKS

We are developing a generator to generate the RTL codes of the proposed
MAC designs in Verilog HDL format. Testbench for verification, synthesis script,
and user’s manual will also be generated. All output files depend on the user
reconfigurable inputs. We are also analyzing the pros and cons of replacing the
scalar MAC units in multiple-MAC DSP processors by a proposed SWP MAC in

order to design a high-performance MAC unit.

83

BIBLIOGRAPHY

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation, pp. 698, pp. 484, pp. 488, John Wiley & Sons, 1999.

P. Lapsley, J. Bier, A. Shoham and E. Lee, DSP Processor Fundamentals:
Architectures and Features, p. 9, p. 35, p. 47, Berkeley Design Technology Inc.,
1996

B. Parhami, Computer Arithmetic Algorithms and Hardware Design, pp.
204-205, pp. 149-151, pp. 133-134, pp. 98-99, Oxford University Press, New
York, 2000.

O. L. MacSorley, "High-speed arithmetic-in binary computers”, Proc. IRE, vol.
49, pp. 67-91, 1961.

C. Wallace, “A Suggestion for a Fast Multiplier,” /IEEE Trans. on Electronic
Computers, vol.13, pp. 14-17, 1964:

S. Kirithivasan and M. J. Schulte, “Multiplier Architectures for Media
Processing,” Proc. 37th Asilomar Conf. Signals, Systems, and Computers, pp.
2193-2197, Nov. 2003.

M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-Chip
Designs, Kluwer Academic Publishers, third edition, 2002.

V. G. Oklobdzija, D. Villeger, and S. S. Liu, "A Method for Speed Optimized
Partial Product Reduction and Generation of Fast Parallel Multipliers Using an
Algorithmic Approach,” IEEE Trans. Computers, vol. 45, no. 3, pp. 294--305,
March 1996.

W.-C. Yeh and C.-W. Jen, “High-Speed Booth Encoded Parallel Multiplier

84

http://doi.ieeecomputersociety.org/10.1109/12.863039

Design,” IEEE Trans. Computers, vol. 49, no. 7, pp. 692-701, July 2000.

[10] A. Danysh and D. Tan, "Architecture and Implementation of a Vector/SIMD
Multiply-Accumulate Unit," [EEE Transactions on Computers,
vol. 54, no. 3, pp. 284-293, Mar., 2005.

[11] D. Tan, A. Danysh, M. Liebelt, "Multiple-Precision Fixed-Point Vector
Multiply-Accumulator Using Shared Segmentation," arith, p. 12, 16th IEEE
Symposium on Computer Arithmetic (ARITH-16 '03), 2003.

[12] G. W. Bewick, "Fast Multiplication: Algorithms and Implementation,” PhD
dissertation, pp. 14-16, appendix A, pp. 13-14, Stanford University, Department
of Electrical Engineering, Feb., 1994,

[13] A. D. Booth, "A Signed Binary Multiplication Technique,” Quarterly J.
Mechanical and Applied Maths, Vol. 4, pp.'236-240, 1951.

[14] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, pages
349-356, March 1965.

[15] M. Santoro, “Design and Clocking of WLSI Multipliers”, PhD dissertation,
Stanford University, Department of Electrical Engineering, 1989.

[16] R. Fried, "Minimizing Energy Dissipation in High-Speed Multipliers,” Proc.
1997 Int'l Symp. Low Power Electronics and Design, pp. 214-219, 1997.

[17] M. Annaratone and W. Z. Shen, “The Design of an LSI Booth Multiplier,”
Carnegie Mellon University Thesis report (CS), no. 150, 1984.

[18] A. A. Farooqui and V. G. Oklobdzija, “General Data-Path Organization of a
MAC Unit for VLSI Implementation of DSP Processors,” Proc. 1998 IEEE
Int'l Symp. Circuits and Systems, vol. 2, pp. 260-263, 1998.

[19] S. Vassiliadis, E.M. Schwarz, and B.M. Sung, “Hard-Wired Multipliers with
Encoded Partial Products,” IEEE Trans. Computers, vol. 40, no. 11, pp.

1181-1197, Nov. 1991,

85

http://doi.ieeecomputersociety.org/10.1109/12.863039

[20] P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Optimal circuits for
parallel multipliers,” IEEE Transactions on Computers, Vol. 47, no. 3, pp.
273-285, Mar. 1998.

[21] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, pp241-249, Morgan Kaufman Publishers, Inc.,
2nd Edition, 1998.

[22] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Transactions on Computers, Vol. 31, no. 3 pp.260-264, 1982.

[23] T. Han, D. A. Carlson, and Steven P. Levitan, “Fast Area Efficient VLSI
Adders,” IEEE International Conference on Computer Design, pages 418-422,
October 1987.

[24] H Ling, "High-Speed Binary-Adder," IBM'J. Res. Develop., vol. 25, no. 3,
ppl56-166, May 1981.

[25] G. Dimitrakopoulos and D. Nikolos,~High-Speed Parallel-Prefix VLSI Ling
Adders,” IEEE Trans. Computers;Nol. 54, No0.2, Feb. 2005.

[26] Y. -C. Fong, "A High-Speed Area-Minimized Reconfigurable Adder Design,"
Master’s thesis, National Chiao Tung University, Department of Electronics
Engineering, Jul. 2006.

[27] Analog Devices, Blackfin® Processor Hardware Reference, revision 3.0, Sep.,
2004. Available from www.analog.com.

[28] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide,
revision F, Oct. 2000. Available from www.ti.com.

[29] C. G. Lee and M. G. Stoodley, “Simple Vector Microprocessors for Multimedia
Applications,” Proc. 31st Ann. ACM/IEEE Int’l Symp. Microarchitecture, pp.
25-36, 1998.

[30] R. B. Lee, “Multimedia Extensions for General-Purpose Processors,” Proc.

86

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Signal Processing Systems (SIPS ’97), pp. 9-23, Nov. 1997.

N. Burgess, “PAPA—Packed Arithmetic on a Prefix Adder For Multimedia
Applications,” Proc. IEEE Int’l Conf. Application-Specific Systems,
Architectures and Processors, pp. 197-207, July 2002.

A. A. Farooqui, V. G. Oklobdzija, and F. Chehrazi, “Multiplexer Based Adder
for Media Signal Processing,” Proc. 1999 Int’l Symp. VLSI Technnology,
Systems, and Applications, pp 100-103, June 1999.

C. R. Baugh and B. A. Wooley, "A two's complement parallel array
multiplication algorithm,” IEEE Transactions on Computers, Vol. 22, pp.
1045--1047, December 1973.

M. J. Schulte, L. P. Marquette, S. Krithivasan, E. G. Walters, and J. Glossner,
“Combined Multiplication and Sum-of-Squares Units,” Proceedings of the
IEEE International Conference on Application-Specific Systems, Architectures,
and Processors, pp. 204-214, June,;-2003.

Shankar Krithivasan, MichaelJ::Schulte; John Glossner, "A Subword-Parallel
Multiplication and Sum-of-Squares Unit," isvisi, p. 273, IEEE Computer
Society Annual Symposium on VLSI Emerging Trends in VLSI Systems Design
(ISVLSI'04), 2004.

T. K. Callaway and E. E. Swamlander, Jr., “Power-Delay Characteristics of
CMOS Multipliers,” Proceedings of rhe 13rh IEEE Siaworium 011 Cornpurer
Arirhmeric, pp. 26-32, 1997.

Artisan Components, UMC 0.18um L180 Process 1.8-Volt Sage-XTMStandard
Cell Library Databook, release 2.0, pp. 32-33, Nov. 2003.

Synopsys Inc., DesignWare® Building Block IP Documentation Overview, Jan.

17, 2005.

[39] Synopsys Inc., Design Compiler® User Guide, version W-2004. 12, Dec.,

87

2004.

[40] Synopsys Inc., PrimePower® Manual, version W-2004. 12, Dec., 2004.

[41] Cadence Design Systems Inc., Verilog®-XL User Guide, version 3.4, Jan.,
2002.

[42] Novas Software Inc., nLint® User Guide and Tutorial, version 2.2, Dec., 2004.

[43] TransEDA Technology Ltd., Verification Navigator® User Guide, version
2005.03, Mar., 2005.

[44] Cadence Design Systems Inc., Encounter™ Conformal® Equivalence

Checking User Guide, version 5.1, June, 2005.

88

