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摘  要 

 

本論文提出一個高效能乘加器的設計方法。此乘加器除支援子字

組平行化功能之外，還能執行混模運算並具較有彈性的子字組設定。

我們提出了一個新的子字平行部份乘積陣列及一個創新的子字平行

部份乘積簡化樹以實現子字組平行化。為了利用原本的乘加器硬體，

子字組平行化乘加器僅需增加微量的延遲及些許的面積。我們提出的

乘加器可動態重組、可合成、可重覆使用且可驗證。我們實做並比較

我們的設計及先前的設計。實驗數據顯示，無論在設計延遲、所佔面

積、所耗功率，我們的方法在理論上及實務上都改善並且勝過舊方法。 
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ABSTRACT 
 

This thesis presents the design methodology of a high-performance 

reconfigurable multiplier-accumulator (MAC) capable of supporting sub-word 

parallelism (SWP) and additional features such as mixed-mode operation and flexible 

sub-word combination and mode assignment scheme. In order to perform SWP on the 

proposed scalar MAC, a new SWP partial product array and a novel speed-optimized 

SWP partial product reduction tree are proposed. With slight delay and some area 

overhead, the SWP MAC utilizes essentially the same hardware as the proposed 

scalar MAC. The whole design is dynamically reconfigurable, fully-synthesizable, 

reusable, and verifiable. The proposed designs and previous relevant works are 

implemented and compared. Experimental results demonstrate that the proposed SWP 

MAC design theoretically and practically improves and outperforms previous works 

in terms of critical path delay, area cost, and power consumption. 
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CHAPTER 1 
INTRODUCTION 
 

Multiply-accumulate (MAC) computation is one of the most frequent operations 

in DSP applications. A multiplier followed by an accumulator to integrate into a 

multiplier-accumulator (MAC) unit characterizes a DSP processor. A series of MAC 

operations has an arithmetic form like coefficient-data, inner product, or matrix 

computation, and which serves as the core operation in many DSP algorithms such as 

convolution, finite impulse response (FIR), fast Fourier transform (FFT), discrete 

cosine transform (DCT), and so many other DSP algorithms also demand extensive 

MAC operations. Multiplication (MUL), a basic essential arithmetic operation, is 

regarded as a special case of MAC operation processed in the same MAC unit [1], [2], 

[3]. Improvements in MAC design therefore significantly benefit the performance of 

the whole DSP processor according to Amdahl’s law. A high performance DSP 

processor desires a high speed MAC unit with reduced area, low power, and high 

computational throughput, decided by the specification. To facilitate a high speed 

MAC design, an architecture using radix-4 modified Booth encoding (MBE) [4] and 

Wallace partial product reduction tree (PPRT) [5] associated with a high speed 

carry-propagate adder (CPA) is prevalent. To increase the computational throughput, 

sub-word parallelism (SWP), a form of single-instruction-multiple-data (SIMD), 

helps by processing all sub-words (SWs) in parallel and hence providing a 

performance boost especially for multimedia applications that often require 

lower-precision operands [6]. 

Considering the short time to market of a product required in the very era of 

system-on-a-chip (SoC), a synthesizable, reusable, and verifiable silicon intellectual 
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property (SIP) with flexible user reconfigurability is popular and utilizes the design 

reuse concept to help accelerate system integration [7]. Some MAC designs improve 

the delay of CPA by prudently calculating the signal arrival time of each operand bit, 

and use the delay profile to configure a faster adder scheme [8], [9]. This indicates the 

adder scheme highly depends on the chosen cell library and thus usually not suitable 

for reusable designs. 

The previous SWP MAC designs are not speed optimized: the architecture in [6] 

does not use MBE, resulting more partial products to be accumulated and 

considerably increasing the latency. A modified Booth-encoded (MBE) MAC 

architecture in [10], [11] completes SWP using a technique called “shared 

segmentation” to arrange the partial product array (PPA); however, it forces a regular 

connection scheme for full-adders (FAs) in the Wallace PPRT, producing lower 

performance. In addition, the previous designs have a limited functionality either in 

data format or in SW flexibility. 

This thesis presents a synthesizable, reusable, and verifiable high-performance 

reconfigurable MAC design. The proposed SWP MAC design is obtained, with slight 

effort and small area overhead, by performing SWP on the proposed scalar design 

which comprises a high performance MBE, a speed optimized PPRT, and a high 

speed CPA. The proposed scalar design supports not only the signed operation but 

also the unsigned and a special mixed-mode operation which forces the multiplicand 

to be signed and multiplier to be unsigned. Mixed-mode operation provides a larger 

dynamic range for DSP applications. The proposed scalar design also has better 

performance in most cases compared with previous scalar MAC designs. As for SWP, 

the proposed SWP MAC utilizes a novel SWP PPA to advance the performance of 

SWP PPRT, and takes advantage of a new concept of carry-out masking to facilitate a 

speed optimized SWP PPRT. Concerning the CPA, a high-performance Fong adder 
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with SWP capability is integrated into the proposed scalar and SWP designs. The 

proposed scalar design is superior to related works in most cases while the proposed 

SWP MAC design not only outperforms previous works in terms of delay, area, and 

power consumption but also features a more flexible SW combination and mode 

assignment scheme. 

The remainder of this thesis is organized as follows: Chapter 2 briefly describes 

the previous works that are most relevant to the proposed designs. Chapter 3 details 

the design methodology of the proposed MAC designs and theoretically compares 

with previous works. Chapter 4 demonstrates and discusses the experimental results. 

Chapter 5 explains some important application notes concerning the utilization of the 

proposed designs. Chapter 6 concludes this thesis. Future works and bibliography are 

also provided afterward.
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CHAPTER 2 

PREVIOUS WORKS 
 

2.0 Overview 
In this chapter, we review some important previous work relevant to the 

proposed MAC architecture. Section 2.1 recalls fundamentals and algorithms of 

multiplication; Section 2.2 concisely describes some related works, theorems, and 

techniques; Section 2.3 summarizes the previous works and highlights the differences 

to be described in the next chapter. 

 

2.1 Prerequisites 

2.1.1 Simple Multiplication & Booth’s Algorithm 

Traditional binary multiplication flow is essentially the same as done in decimal 

multiplication: Logic AND operation is performed on a single bit of the multiplier 

with each bit of multiplicands; the temporal result, a partial product (PP), always 

equals the multiplicand itself or zero; the least-significant-bit (LSB) of the PP is 

aligned to the multiplier bit used. Consequently, if an m-bit by n-bit multiplication is 

executed, there will be n PPs each with m significant bits. After zero-extending or 

sign-extending each PP to the most and the least significant ends, an m-bit by n-bit 

rectangular partial product array (PPA) is formed. Accumulating all PPs produces the 

final multiplication result. Fig. 2.1 shows the simple multiplication flow of an 8-bit by 

8-bit multiplication. Roughly speaking, the number of the significant bits used (x-bit 

in PPA of Fig. 2.1) is proportional to the amount of hardware required [12]. 
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The flow above is somewhat redundant when a series of zeros shows in the 

multiplier; it can be further improved. In 1951, Booth introduces a binary 

multiplication algorithm on the grounds of the add-and-shift concept [12]: the 

consecutive bits in multiplier affect the generation of partial products. This 

algorithm is based on two’s complement system and thus performs signed 

multiplication. The fact that shifting alone is faster than addition followed by 

shifting makes Booth’s multiplication faster than traditional ones. Although Booth’s 

algorithm, also referred as radix-2 Booth’s algorithm, is not directly applied to 

modern arithmetic circuits, it serves as a basis in understanding the radix-4 version 

of this algorithm – modified Booth’s algorithm (MBA) [3]. 

Note that both simple multiplication and Booth’s algorithm produce a number 

of n PPs where n is the bit width of the multiplier, as the eight PPs shown in Fig. 2.1. 

 

 

Fig. 2.1. Simple multiplication flow. 
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2.1.2 Acceleration of Multiplication Flow 

The completion of multiplication involves two basic operations – partial 

product generation (PPG) and their accumulation. Consequently, reducing the 

number of PPs or accelerating their accumulation helps speed up multiplication [1]. 

The MBA for reducing the number of PPs will be detailed in the next section.  

Accumulation of all PPs implies a series of addition. In theory, we can use a 

series of carry-propagate adders (CPAs) to accumulate all PPs; the number of 

addition required is in proportion to the number of PPs. This naïve method is 

impractical because the delay of a CPA is considerable, let alone the number of PPs 

grows with the bit width of the multiplier. A better architecture for connecting CPAs 

exploits some parallelism; this is how we demonstrate in Fig. 2.1. However, the 

number of the CPA levels still relates to the number of the PPs, incurring longer 

delay.  

As a result, the partial product reduction tree (PPRT) is often utilized. There 

are plenty of algorithms dedicating to construct a PPRT [5], [14], [15]. One of the 

most popular constructions of PPRT is the Wallace Tree [5]: use full-adders (FAs), 

or say (3:2) counters [3], as the building blocks to perform carry-save addition 

(CSA). It does not work out the addition result at the middle levels of the tree; 

instead, it just saves each level’s carry-out and sum information of CSAs, avoiding 

the carry propagation which takes a long time. A PPRT, Wallace Tree included, often 

reduces many rows of PPs until only two rows remain; after summing these two 

final PPs using a CPA (carry-out demands 1-bit left shift), the product is obtained. 

A PPRT speeds up multiplication; multiplication flow is hence frequently 

sliced into three phases – partial product generation, partial product reduction tree, 

and carry-propagate adder. Fig. 2.2 exhibits the flow.  
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Fig. 2.2. Multiplication flow in three steps. 

 

2.1.3 Modified Booth’s Algorithm (MBA) 

As mentioned previously, the PPG is dependent with the pattern of multiplier, 

and the number of PPs is in proportion to the bit width of the multiplier. A PPG that 

creates a fewer number of PPs will allow the partial product summation to be faster 

and use less hardware. Given an n-bit multiplier, simple multiplication or Booth’s 

algorithm encodes and ignores/eliminates one multiplier bit for n times, and hence 

obtains n PPs.  

In 1961, MacSorley presents a radix-4 Booth’s algorithm based on the concept 

of original Booth’s algorithm and is refereed to as modified Booth algorithm (MBA) 

[4]. Due to the property of radix-4 system, two bits of multiplier are ignored after 

each encoding, and hence the number of PPs is reduced. Thanks to the property, 
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modified Booth’s encoding (MBE) generates fewer PPs, and is especially useful if 

groups of consecutive zeros and ones shown in the multiplier. Table 2.1 lists the 

corresponding behavior for all possible conditions of an encoding triplet [1]. MBA 

decreases the latency of multiplication through reduction of the number of the PPs 

and thus the reduction of the levels in the PPRT. 

A modified Booth encoded/recoded (we use “encode” in the remaining content) 

multiplier also consists of three parts: a modified Booth encoder (MBE) associated 

with the arrangement/alignment of partial product array (PPA) to do PPG, a lower 

PPRT to accumulate PPs to two, and a fast CPA to sum for the product. Fig. 2.3 

displays the execution flow of modified Booth encoded multiplication. 

The proposed architecture is theoretically based on MBA. Some most 

MBA-relevant works will be discussed in the following sections. 

 

Table 2.1. Selection table of modified Booth’s algorithm.  

Y2i+1 Y2i Y2i-1 Operation Explanation 

0 0 0 +0 string of 0's 

0 0 1 +X end of 1's 

0 1 0 +X a single 1 

0 1 1 +2X end of 1's 

1 0 0 -2X beginning of 1's 

1 0 1 -X a single 0 

1 1 0 -X beginning of 1's 

1 1 1 -0 string of 1's 

Note: 2i indicates the even bit positions; when i = 0, Y[-1] 
is assume to be zero 
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Fig. 2.3. Execution flow of MBE multiplication. 

 

2.2 Related Works 

2.2.1 Partial Product Generation (PPG) 

Partial product generation is divided into two parts - decoding the multiplicand 

in correspondence with the encoding of multiplier done by an MBE, and the 

arrangement and alignment on the MBE outputs to form the PPA. 

Concerning the MBE, [16] presents a comparison of energy dissipation among 

standard, compact, and race-free encoding schemes of an MBE. The race-free 
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scheme encoded MBE consumes least power because it balances the delay of 

internal signals and thus avoids glitches/sparks in the circuits. In [9] the race-free 

MBE is further optimized in terms of timing and area. The spirit of this 

implementation is to intentionally use “wrong” encoding signals at middle gate 

levels and corrects the error at final level. The temporal “wrong” logic enables more 

logic optimization compared to other encoding schemes, leading to a decrease in 

delay, reduction of area, and less consumption of power. Table 2.2, 2.3, and 2.4 list 

the truth table of standard, compact, and race-free MBE schemes, respectively. Fig. 

2.4 shows the improved encoder and decoder of the MBE in [9]. 

Table 2.2. Truth table of standard encoding. 

Y2i+1 Y2i Y2i-1 P1 P2 Z M1 M2 
0 0 0 0 0 1 0 0 

0 0 1 1 0 0 0 0 

0 1 0 1 0 0 0 0 

0 1 1 0 1 0 0 0 

1 0 0 0 0 0 0 1 

1 0 1 0 0 0 1 0 

1 1 0 0 0 0 1 0 

1 1 1 0 0 1 0 0 

 

Table 2.3. Truth table of compact encoding. 

Y2i+1 Y2i Y2i-1 P1 P2 Neg 
0 0 0 0 0 0 

0 0 1 1 0 0 

0 1 0 1 0 0 

0 1 1 0 1 0 

1 0 0 0 1 1 

1 0 1 1 0 1 

1 1 0 1 0 1 

1 1 1 0 0 1 
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Table 2.4. Truth table of race-free encoding. 

Y2i+1 Y2i Y2i-1 P1 P2 Neg Z 
0 0 0 0 1 0 1 

0 0 1 1 0 0 1 

0 1 0 1 0 0 0 

0 1 1 0 1 0 0 

1 0 0 0 1 1 0 

1 0 1 1 0 1 0 

1 1 0 1 0 1 1 

1 1 1 0 1 1 1 

 

 

Fig. 2.4. The MBE encoder and decoder in [9]. 

 

When MBA is used, the PPs are treated as signed numbers since three negative 

MBE outputs may be selected as listed in Table 2.1. This suggests sign extension be 

applied to every PP to ensure a correct result; however, sign extension needs to take 

considerable extra logic. To deal with, in [17], [18], [19], a technique called 

sign-encoding (SE) or sign-generation is provided and [12] gives this technique a 

general description. The concept of SE is depicted in Fig. 2.5 at the MSB end: It 

begins to presume all PPs are negative and hence one-extension is applied as shown 

in Fig. 2.5a. Since the extended ones are fixed in position, accumulating all extended 
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ones in advance produces {1,1} in front of the first PP and {1,0} for others, as 

shown in Fig. 2.5b. To correct the presumption, add one to the LSB of each 

sign-extension string, resulting in the logic in Fig. 2.5c. As a whole, SE exploits the 

predictability of sign-extension, and cleverly protects from the redundant extension 

bits simply for correctly representing a sign number. It takes only two or three SE 

bits, {p,n,n} for the first PP and {1,p} for others, in front of the original MSB of 

each PP where n stands for the original sign of each PP; p, the negation of n.  

We simulate a multiplier with or without using SE. While SE is used, the 

power consumption of the PPG and PPRT is saved up to one-third of that without 

using SE; the improvment rate grows as the bit width increases. 

Another problem arises when MBE selects a negative output. Since MBA 

treats the operands as signed numbers in two’s complement (TC) format, if a 

negative output is selected, we have to negate/two’s-complement the bit stream, 

implying a two’s complementer for negation is required. To complete the operation, 

the ones, also called hot-ones [19], are needed to be added after inverting (one’s 

complementing) the bit stream. It’s a waste to let these ones solely for TC be one of 

the PPRT inputs. Fortunately, due to MBA this can be prevented since the least 

significant bit (LSB) position of the present PP should align two bits far from the 

LSB of the preceding PP; two bits space {h,h} is saved and can be utilized to locate 

the hot-one from the preceding PP as shown in Fig. 2.5a at the LSB end. The 

hot-one may also left shift one bit if MBE selects 2x or -2x from the encoding table, 

but this takes no effort since two bits space are reserved. 

In case a random-valued multiplier is being encoded, the hot-one bit may show 

up in either left or right h position. This irregularity will increase the PPRT latency 

[9]. In [9], the authors also propose a skill – we refer it to “hot-one modification” in 

this paper– to regulate the LSB end of all PPs. Observing the fact that the hot-one 
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logic relates the LSB logic of the present PP as shown in Fig. 2.5b, a truth table as 

listed in Table 2.5 can be built; the new logic equation of two signals LSB_new and 

hot2 can be expressed as: 

2 1 2

2 1 2 - 1 2 2 1 2

_ ( )

2

i LSB i i

i i i i LSB i LSB

LSB new x y y

hot y y y y x y x

−

+ −

= ⋅ ⊕

= ⋅ + ⋅ + ⋅ + .         (2.1)                 

It arranges all hot-one bits to the left h positions (hot2) accompanied with the 

probable modification on the preceding LSB (LSB_new). As a result, Fig. 2.5c 

exhibits the arranged, shorter, parallelogram-shaped, more regular PPA to be 

accumulated in the PPRT.  

 

 

Fig. 2.5. Sign encoding and hot-one modification. 

 13 
 



Table 2.5. Truth table of LSB_new and hot2. 

LSB_old Y2i+1 Y2i Y2i-1 hot2 LSB_new 
0 0 0 0 0 0 

0 0 0 1 0 0 

0 0 1 0 0 0 

0 0 1 1 0 0 

0 1 0 0 1 0 

0 1 0 1 1 0 

0 1 1 0 1 0 

0 1 1 1 0 0 

1 0 0 0 0 0 

1 0 0 1 0 1 

1 0 1 0 0 1 

1 0 1 1 0 0 

1 1 0 0 1 0 

1 1 0 1 0 1 

1 1 1 0 0 1 

1 1 1 1 0 0 

 

2.2.2 Three-Dimensional-Method (TDM) PPRT 

In [8], Oklobdzija et al present a three-dimensional method (TDM) to build a 

speed optimized Wallace PPRT. The main idea of this speed optimization can be 

briefly depicted as Fig. 2.6: In Fig. 2.6a, a common logic implementation of an FA is 

shown. Without loss of generality, assuming a NAND gate delay to be 1 and an 

XOR gate delay to be 2, the delay of each input-to-output path can be calculated as 

shown in Fig. 2.6b. The longest path is from input a or input b to output sum; sum, 

therefore, is referred to as the “slow output” in contrast with the “fast output”, cout. 

cin is the “slow input” since it can wait for a slow output. Connecting a “slow 

output” to a signal requiring a “fast input” (e.g., a) produces the critical path! Take a 

two-level PPRT for example, the latency of the left configuration in Fig. 2.6c is 
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more balanced since it connects the “fast output” cout to a “fast input” b, while the 

regular configuration on the right side always connects sum to b, creating a critical 

path. Exploiting the concept to balance the uneven delay of all paths is the spirit of 

TDM. 

 

 

Fig. 2.6. The concept of TDM. 
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TDM requires the delay information of each cell used in the PPRT and then 

three-dimensionally constructs a speed optimized PPRT using the cells available. 

The thought of regulating the PPA in [9] stems from the fact that TDM is also 

implemented in their work. Irregularity of PPA diminishes the optimization of PPRT 

in accordance with TDM [9]. 

Since the TDM takes cell delay information as inputs, the optimized PPRT is 

cell-dependent and thereby library-dependent. Generally speaking, TDM is a sorting 

algorithm; we can implement a generator coded in high-level languages to facilitate 

the generation of the speed optimized PPRT. 

Later in [20], Oklobdzija et al. prove that TDM is truly optimized, not just 

improved.  

 

2.2.3 High-Speed Adders 

To complete fast multiplication, it must take a fast PPG, a speed optimized 

PPRT, and also a high-speed adder. In general, fast addition concerns the fast 

generation of carries or correct prediction of the behavior of carries. In this section, 

two fast addition schemes – carry-select addition and prefix addition – are 

introduced with conceptual description.  

Fig. 2.7 demonstrates an 8-bit example of a carry-select adder (CSKA) or a 

conditional-sum adder (CoSA): an operand is partitioned into several blocks (bit 

width can be fixed or variable). Instead of waiting carry-out from the block LSBs, a 

CSKA or CoSA duplicates blocks of MSBs, and calculates the sum of the two 

blocks in parallel by presuming the carry-in bit to be one or zero, respectively. Since 

the carry-in must be either one or zero, the correct answer can be selected from one 

of the two MSBs blocks. A two-to-one multiplexer (MUX2) can simply use the 
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carry-out from the LSBs block as the selection signal to pick the correct answer. 

This scheme is fast because every block in Fig 2.7 processes in parallel, so for the 

8-bit example, the critical path is the addition time of the LSBs block plus a MUX2 

selection time. However, since duplicated hardware is used, the area approximately 

doubles the normal case that uses only one MSBs block. 

 

 

Fig. 2.7. An 8-bit carry-select adder example. 

 

The other popular fashion of fast addition exploits carry lookahead concept 

that the behavior of carry is actually decided by the carry generation of current 

inputs or carry propagation of previous carry generation or carry-in. This makes it 

possible to anticipate the carry. The anticipatory signals are faster because they pass 

fewer gates, but it takes many more gates to anticipate the proper carry [21]. This 

concept can be further generalized to parallel prefix computation which observing 

that block-level generate/propagate signals can also be grouped using prefix 

operators [3]. 

Various parallel prefix addition schemes exist such as Brent-Kung [22] and 

Han-Carlson [23]. In general, the more the parallel-prefix operators are used, the 

faster the addition completes; however, the actual speed depends on implementation 

details. A high performance addition scheme on the grounds of Ling addition [24] is 

presented in [25]. It reduces one logic level over the original Ling Adder in theory 
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and also minimizes the fan-out of each prefix operator while implemented. In [26] 

the area is further reduced by fully exploiting the idea of hybrid addition. As a result, 

considering both in theory or implementation, a high-speed, area-minimized, hybrid 

Ling adder, which is called “Fong adder” for the remaining context, is presented in 

[26]. Fig. 2.8 shows a 32-bit architecture of the speed improved hybrid Ling adder 

[25]: The fan-out of each logic operator is properly taken care of and some modified 

carry-select adders (MCSAs) are used – the hybrid part – to obtain the result. Fig. 

2.9 shows the architecture of a 32-bit Fong adder: Compared to [25], MCSAs with 

large area are replaced with simple carry select adders (SCSAs) and a ripple-carry 

adder (RCA), resulting a smaller area cost. This is done by implementing some logic 

operators working in parallel with prefix operators in each level and hence 

introduces no timing overhead. Fig 2.10 shows the logic operators used in Fong 

adder.  

 
Fig. 2.8. Architecture of a 32-bit hybrid parallel-prefix/carry-select Ling adder. 

*This figure is a direct copy of Fig. 8 in [25] 
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Fig. 2.9. Architecture of a 32-bit scalar Fong adder.  
*This figure is a direct copy of Fig. 30 in [26] 

 

 
Fig. 2.10. Logic operators used in Fong adder.  
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2.2.4 Sub-Word Parallelism (SWP) 

The utilization of parallel processing leads to a boost in performance. It is a 

key feature among modern multimedia extensions and DSP processors [6]. A direct 

implementation of parallel processing is to duplicate hardware such as dual-MAC 

architecture in ADI-Blackfin® series [27] or quad-MAC architecture in TI-C6000® 

family [28] DSP processors to increase throughput. However, if given a 16-bit 

fixed-point (FXP) DSP processor designated for multimedia applications, the 

original 16-bit datapath is a waste and consumes unwanted power when 

lower-precision data such as 8-bit pixels are under processing. Duplicating hardware 

usually damages the hardware utilization rate. 

Sub-word parallelism (SWP) or sub-word parallel processing serves as a 

solution to improve hardware utilization rate and increases throughput by exploiting 

parallel processing concept. Viewed as a form of Single-Instruction-Multiple-Data 

(SIMD), SWP is a technique to divide an operand (hardware) into multiple 

lower-precision ones, conditionally uses the whole or part of the hardware, and 

thereby raises the hardware utilization rate without introducing significant overhead. 

For example the same 16-bit scalar hardware can simultaneously process two 8-bit 

data and hence double the throughput. 

In order for clear and precise explanation, we refer the terms SWP, vectorizing, 

slicing, segmenting, and partitioning to the same concept as described above, and 

sub-words (SWs), vectors, slices, segments, and elements are the same product after 

performing SWP. The term scalar represents a status without utilizing SWP. 

SWP concept is of great performance help [29], [30], and SWP datapath units 

are hence developed. If all units are sub-word parallelized, both scalar and SWP 

operations can be executed and the computing ability will magnificently increase 
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compared to a scalar only architecture. For example, [31], [32], [10], and [26], all 

propose an SWP adder architecture. 

Concerning our work, the SWP multiplier requires an SWP PPG, an SWP 

PPRT, and also an SWP CPA. The major difference between the scalar and the SWP 

architecture lies in the existence of the invisible “boundaries” between SWs. As for 

multiplication, involving PPs accumulation, the carry-out behavior of each SW 

should be manipulated. In this section, two SWP PPG methods are explained; SWP 

accumulation will be discussed and compared with the proposed design together in 

Chapter 3. 

A non-Booth encoded multiplier architecture [6], based on Baugh-Wooley 

algorithm [33], finds that most bits in the signed PPA overlap those in the unsigned 

PPA. Concerning SWP, it arranges the PPAs of different SWP modes as shown in 

Fig. 2.11: Observing that most bits in 8-bit SWP PPA P0, P1, P2,and P3 in Fig. 

2.11c are identical to those of 16-bit PPA P0 and P1 in Fig. 2.11b, or 32-bit scalar 

PPA P0 in Fig. 2.11a, it indicates most bits in different SWP modes can share with 

one another. The only effort is on each SW boundary and on managing fields of 

zeros (Z8 or Z16). Since the architecture is not modified Booth encoded, it has more 

PPs and has worse performance in terms of speed; however, a non-MBE architecture 

usually consumes less power [36]. This MUL/MAC architecture can further 

functionally integrate the sum-of-square operation into the same PPA without much 

overhead [34], resulting in a sub-word parallel multiplication and sum-of-square unit 

(SPMSSU) [35].  
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Fig. 2.11. A simplified PPA for 32 × 32 multiplication in different modes. 
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A 64-bit fixed-point (FXP) vector MAC architecture capable of supporting 

multiple precisions is presented in [10] and [11]; it can perform one 64 × 64, two 

32 × 32, four 16 × 16, or eight 8 × 8 bit signed/unsigned MAC operations using 

essentially the same hardware of a scalar 64-bit modified Booth encoded MAC. 

These papers also compare different SWP PPA methods and propose one called 

shared segmentation. The shared segmentation method exploits substantially the 

same concept as done in [6] (described in the preceding paragraph). Most bits in a 

vector mode overlap with those in another mode, producing similar SWP PPA as Fig. 

2.11. It also designs an SWP Wallace PPRT using a special FA at SW boundaries and 

an SWP CPA using 4-bit CLA blocks. Fig. 2.12 depicts a detailed 32-bit PPA 

example of the shared segmentation method: Fig. 2.12a, Fig. 2.12b, and Fig. 2.12c 

illustrates the PPA in 32-bit (scalar), 16-bit, and 8-bit vector mode, respectively. Fig. 

2.12d displays the PPs overlap among vector modes; it’s clearly shown in the figure 

that many bits take no effort on selection. It implies there’s no need to use a 32-bit, a 

16-bit and an 8-bit MBEs to generate three PPs and use three-to-one multiplexers 

(MUX3s) for selection; All that’s required is the 32-bit MBE output associated with 

some multiplexing at 16-bit and 8-bit vector boundaries.  

It just takes some timing and area overhead to “vectorize” a scalar MAC using 

shared segmentation method. However, this architecture limits the SW combination 

and places restrictions on constructing the vector PPRT. The vector CPA in this work 

can also be improved. As a result, the proposed SWP PPA resembles and improves 

the shared segmentation PPA described in this section. 
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Fig. 2.12. Shared Segmentation PPA for 32×32 multiplication in different modes. 
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2.3 Summaries of Previous Works 
The multiplication flow of a scalar MBE multiplier can be partitioned into 

three steps – PPG, PPRT, and CPA. For PPG, a race-free encoding scheme which 

outperforms other schemes in terms of timing, area, and power consumption is 

proposed. Sign encoding that prevents sign extension, and hot-one modification that 

integrates LSB with hot-ones both make the PPA more regular. PPRT often uses 

levels of FAs to perform carry-save addition, and TDM is an algorithm that helps 

construct a speed optimized PPRT. The number of PPs after the PPRT is reduced to 

two. A CPA is used to sum the two PPs to obtain the final product. SWP increases 

throughput and provides a performance boost in multimedia extensions or DSP 

processors. Without much overhead, SWP can be applied to MUL/MAC unit by 

rearranging PPA and the support of SWP accumulation. 

The proposed scalar and SWP designs improve and innovate while utilizing 

some previous works. We’ll describe the proposed designs in more detail in the next 

chapter.  
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CHAPTER 3 
PROPOSED MAC DESIGNS 
 

3.0 Overview 
In this chapter, the design methodology of the proposed MAC designs is 

elaborated. Section 3.1 presents the scalar version of the proposed MAC design: as 

described in Chapter 2, the MAC unit consists of three parts – PPG, PPRT, and CPA. 

Based on the scalar MAC architecture, Section 3.2 enunciates the sub-word parallel 

(SWP) version of the proposed MAC. The differences, improvements and innovations 

are compared or highlighted in each section and briefly summarized in Section 3.3. 

 

3.1 Scalar MAC (SMAC) Design 

3.1.0 Specification 

A high performance scalar MAC design which multiplies the N-bit multiplicand 

(mcand) by the N-bit multiplier (mlier) with/without accumulating a 2N-bit 

accumulator (accu) is proposed. It supports signed/unsigned/mixed-mode operation. 

Table 3.1 lists the specification of the proposed SMAC. Fig. 3.1 shows the proposed 

SMAC execution flow. To be noted, the carry-out of final result is also provided. 

Table 3.1. Specification of the proposed SMAC design. 

Operation: m_out = accu + mcand × mlier (mode) 
Bit Width of mcand 8/16/32/64 
Bit Width of mlier 8/16/32/64 
Bit Width of accu 16/32/64/128 

Bit Width of m_out 16/32/64/128 
Available modes 01:Signed/00:Unsigned/1?:Mixed-mode
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Fig. 3.1. Execution flow of the proposed Scalar MAC design. 

 

3.1.1 Scalar Partial Product Generation (SPPG) 

The first phase of SPPG, modified Booth encoding (MBE), is to encode the 

triplets chosen from the multiplier and then decodes the multiplicand with respect to 

MBA selection table (Table 2.1). The proposed scalar design favors the race-free 

concept in [16] that diminishes the energy dissipation, and benefits from the 

implementation in [9] which saves one logic level and reduces area. 

A special operating mode, mixed-mode, is integrated into the proposed scalar 

design. It forces the multiplicand and the accumulator to be signed, the multiplier to 

be unsigned, and produces a signed result after operation. Mixed-mode operation 

has a larger dynamic range, and will be explained in detail in Section 5.4. 

However, the MBE scheme in [9] only applies to signed operands. To support 

unsigned/mixed-mode operation, some modification must be performed on the MBE. 
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By specification, both unsigned and mixed mode treat mlier, the multiplier, as an 

unsigned number; however, due to two’s complement (TC) format natively utilized 

in MBA, the MSB of mlier is the negatively weighted sign bit. It implies N+1 bits 

are required in TC format to fully represent an N-bit unsigned number by forcing the 

(N+1)th bit, the new MSB and sign bit, to a zero. Owing to the existence of the extra 

zero, an always positive PP is generated to support unsigned/mixed-mode operation. 

This is why an N-bit DSP processor with an (N+1)-bit MAC unit supporting 

unsigned multiplication is frequent. 

Briefly speaking, two methods are used to generate the extra PP. The first 

method uses MBE to generate by assuming {0,0,m} as the extra encoding triplet 

where m stands for the MSB of mlier, resulting in a PP equal to zero or mcand since 

the extra triplet is always {0,0,0} or {0,0,1}. The other method uses a similar 

concept by observing when unsigned/mixed-mode is asserted, a multiplexer with a 

string of zeros and mcand as two inputs and m as the control signal can select the 

extra PP. The result should be identical with the first method. As a result, both 

methods help unsigned/mixed-mode operation while neither of them influences on 

signed operation since the MBE selection of the extra signed-extended triplet 

{m,m,m} or the selection of MUX2s always equals zero. Section 5.1 will detail the 

way to support unsigned and mixed-mode operation. 

Using either method, the logic of the extended triplet {s,s,m} or the extended 

bit s is dependent with m, the MSB of mlier, and the assigned mode under execution. 

If naming mode[1] as mix (1: mixed-mode; 0: signed/unsigned mode) as well as 

mode[0] as tc (1: signed-mode; 0: unsigned-mode), the logic of s is derived as: 

(~ )s m tc mix= ⋅ ⋅
. 

(3.1) 
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In the proposed SPPG, the first method is utilized; besides, signed encoding is 

also integrated into the MBE, resulting in an N-bit-input and (N+2)-bit-output MBE. 

Fig 3.2 demonstrates why the output PP requires two-bit extension: assume a 4-bit 

operand, 1000, is the mcand, and the current encoding triplet is {1,0,0} (-2x); it 

indicates the negation of mcand followed by one-bit left shift is to be performed. 

Due to the need of one-bit left shift, a 5-bit temporary data is required, as shown in 

the second and third rows in the figure. The bit in bit position 5 is used to save the 

correct sign that may shift out 5-bit data boundary. If the operating mode is different, 

this saved bit may differ even if LSBs are the same. Moreover, this bit is also useful 

for sign encoding. Six bits are hence required for correct representation. 

However, the logic of the extended two bits relates to the operating mode, two 

2-input AND gates (AND2) are needed at the most significant two bits of the mcand 

to generate these two extended bits. These AND2s are added in the decoder in Fig. 

2.4 while there’s no logic change on the remaining LSBs. This modification 

increases a little delay and is still area reduced. 

 

 

Fig. 3.2. Decoding mcand 1000 in different modes when MBE selects -2x. 
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The second phase of SPPG, arranging scalar partial product array (SPPA), is to 

properly arrange the PPs generated from MBE. Two techniques, sign encoding (SE) 

and hot-one modification, are used to arrange the proposed SPPA. 

As mentioned in Section 2.2.1, SE is done by replacing the sign-extension bits 

with {p,n,n} for the first PP and {1,p} for others, where n stands for the sign bit of 

the PP and p = ~n. This technique reduces the number of sign-extension bits to two 

or three and then considerably saves the area and power consumption as bit width 

grows. 

Hot-one modification aligns the hot-one bits, obtained by two’s 

complementing of the preceding PP, all to the left position (hot2) with a slight logic 

change on the LSB of the preceding PP. It makes the LSB end of the PPA shorter 

and regular. 

Both techniques help the proposed SMAC create a narrower-width SPPA 

which occupies less area, consumes less power, and assists the speed optimization of 

TDM PPRT. The proposed SPPG is architecturally similar to the PPG in [9]. 

 

3.1.2 Scalar Partial Product Reduction Tree (SPPRT) 

Three-dimensional method (TDM) [8] is utilized to construct the proposed 

SPPRT with the architecture of Wallace Tree. A full-adder (FA) is the basic cell to 

build levels of CSAs. Fig. 3.3 shows the FA cell used in the proposed SPPRT. 

Concerning TDM, it takes the delay information of each cell used in the tree. Instead 

of using logic cells like XOR, AND, and OR to build an FA, the SPPRT directly uses 

the standard high speed FA cell provided by the cell library. This helps not only 

simplify the generation algorithm but also estimate the delay more accurately. All 

that is required is to look up in the cell library databook [37] for the delay of six 
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paths in an FA (a-to-sum, b-to-sum, cin-to-sum, a-to-cout, b-to-cout, and cin-to-cout). 

A simple software generator is developed to connect the FAs in the SPPRT using 

TDM. 

TDM can be further optimized if the arrival time of each input bit of PPRT is 

given. It implies that this optimization is cell library dependent and hence and is 

hard to be reusable. Considering the proposed design, it is easy to obtain reusability. 

Although the delay information is cell library dependent, to look it up and send it 

into the software generator to rebuild another SPPRT is effortless since only a 

standard FA cell is used. However, it’s not suitable to use the whole input signal 

delay profile to build the SPPRT since the synthesizer may generate different SPPG 

netlist each time the timing constraint varies. The ever-changing delay profile makes 

the PPRT not speed optimized and perhaps not reusable. As a remedy, logic 

optimization is left for the synthesizer to make. Since the delay profile is 

unpredictable and eventually a kind of estimation, the proposed scalar design simply 

assumes all signals arrive to the SPPRT simultaneously, leading to a reusable TDM 

SPPRT. 

 

 

Fig. 3.3. FA cell used in the proposed SPPRT. 
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3.1.3 Scalar Carry-Propagate Adder (SCPA) 

Both adders in [8] and [9] exploit the input operand delay profile to configure 

a hybrid adder scheme to accelerate addition and reduce area. This again is cell 

library dependent and hence is hardly reusable. For the proposed scalar design, 

architectural optimization using delay profile is not recommended. Each bit of two 

operands of the SCPA hypothetically leaves the SPPRT and arrives at the same time. 

Fong adder [26] is implemented as the SCPA. The architecture of a 32-bit Fong 

adder has been shown in Fig. 2.9. There are three main reasons that Fong adder is 

utilized. First, it outperforms most other adders in terms of delay while it minimizes 

area cost compared to similar architectures. Second, the carry-out bit is provided so 

as to perform overflow/underflow check. Last but not least, Fong adder also 

supports SWP that meets our requirement with only a slight delay and area overhead. 

The proposed SWP scheme is described in Section 3.2.  

 

3.1.4 Summaries of the Proposed Scalar MAC Design 

Fig 3.4 displays the proposed scalar architecture. It is partitioned into SPPG, 

SPPRT, and SCPA. In SPPG, a race-free encoding scheme is utilized with a 

high-speed and area-reduced MBE implementation supporting signed, unsigned, and 

mixed-mode operation. Sign encoding and hot-one modification are applied on the 

proposed SPPA. In SPPRT, a speed optimized reusable PPRT exploiting TDM is 

built. As for SCPA, Fong adder is used. Note the figure actually shows the multiplier 

design. It can easily perform MAC operation simply by feeding the multiplication 

result into SPPRT as another PP. The proposed SWP design utilizes essentially the 

same hardware of the proposed scalar design. The way to perform SWP is described 

in the next section. 
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Fig. 3.4. The proposed scalar architecture. 

 

3.2 Sub-Word Parallel MAC (SWP MAC) Design 

3.2.0 Specification 

A high performance sub-word parallel MAC (SWP MAC) design based on the 

SMAC architecture is proposed. Table 3.2 lists the specification of the SWP MAC. 

Kill signals separate SWs and each SW independently processes in its unique mode. 

Table 3.3 lists the possible sub-word combinations. The detailed SWP 

reconfiguration scheme is provided in Section 5.3. 
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Table 3.2. Specification of the proposed SWP MAC design. 

Operation: m_out = accu + mcand × mlier (mode)(kill)
Bit Width of mcand 8/16/32/64 
Bit Width of mlier 8/16/32/64 
Bit Width of accu 16/32/64/128 

Bit Width of m_out 16/32/64/128 
Bit Width of a Basic SW Input:8/Output:16 

Bit Width of Each Kill 1 
Bit Width of Each Mode 2 

Available mode 01:Signed/00:Unsigned/1?:Mixed-mode; 
independence among all sub-words 

 

Table 3.3. Possible sub-word combinations of the proposed SWP MAC design. 

Possible Sub-Word Combinations 

(16) 
16-bit 

(8,8) 
(32) 

(8,8,8,8) 
(8,8,16) 
(16,16) 

32-bit 

(16,8,8) 

64-bit A 64-bit SWP MAC is viewed consisting of two independent 
32-bit SWP MACs; it has 5×5=25 possible combinations  

 

3.2.1 Sub-Word Parallel MAC Execution Flow 

Fig 3.5 shows the execution flow of the proposed SWP MAC: it is still 

partitioned into three main parts – SWPPG, SWPPRT, and SWCPA. To apply SWP, 

some modification should be made in each part – mostly lies in the preprocessing of 

SWPPG. SWPPG is described in Section 3.2.2; SWP accumulation is divided into 
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SWPPRT and SWCPA and explained in Section 3.2.3 and 3.2.4, respectively. 

 

Fig. 3.5. Execution flow of the 32-bit proposed SWP MAC design. 

 

3.2.2 Sub-Word Parallel PPG (SWPPG) 

The proposed SWPPG has an identical MBE scheme as used in scalar PPG. 

The difference lies in the preprocessing on the input operands and the arrangement 

of the sub-word parallel partial product array (SWPPA). The additional logic for 

SWP processes mostly in parallel with the SPPG; this enhancement incurs only a 
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slight timing overhead and some area overhead. 

Operand preprocessing consists of two parts – masking and multiplexing on 

the multiplier and multiplexing on the multiplicand. Fig 3.6 shows a 32-bit example 

of masking and multiplexing on the multiplier: The bottom SW_0 is the 32-bit 

multiplier in scalar mode. There is a zero assumed to the right of the LSB for the use 

of first encoding triplet while there are two s0 bits, for the use of 

unsigned/mixed-mode operation, extended to the left of MSB where s0 is generated 

according to Eq. (3.1). These bits are necessary to complete MBE operation. When 

SWP modes are under execution, the assumed zero and the extend s bits should be 

appended to each SW as done in scalar mode. For instance in the top row of Fig.3.6, 

zeros are assumed at mlier[-1], mlier[7], mlier[15], and mlier[23], and s bits are 

extended to the left of each SW’s MSB. This modification results in 3-bit overlap 

between SWs, and some bits differ among SWP modes. Therefore mode-dependent 

multiplexing (selection) or zero-masking are required at these bit positions. 

 

 

Fig. 3.6. A 32-bit example of masking and multiplexing on the multiplier. 

 

To take an example, the fifth encoding triplet in 32-bit or 16-bit mode is 

mlier[9:7]; in 8-bit mode, mlier[7] should be masked to a zero, resulting a 

{mlier[9:8],0} encoding triplet. This demonstrates the necessity of zero-masking 
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between SW boundaries. Concerning multiplier multiplexing, it is important to note 

that the overlapped triplets {s0,s0,mlier[7]} between SW_0 and SW_1 in 8-bit mode 

for the use of unsigned/mixed-mode correction, is not sent to the MBE; instead, the 

correction PP is generated, simply using an 8-bit MUX2. This multiplexing 

eliminates the ambiguity in selecting which triplet to MBE. The MSB of SW_0, 

mlier[7] in this case, is the selection signal of the MUX2, i.e. when mlier[7] equals 

1-bit one, mcand[7:0] as correction PP for SW_0 is required. The same idea can be 

applied to each SW boundary, avoiding using some 8-bit or 16-bit MBEs to generate 

correction PPs. All this is required is the scalar 32-bit MBEs. 

As for preprocessing on multiplicand, the proposed SWPPA arranges PPA of 

each SW similar to what has been explained in Section 2.2.4. Some bits overlap and 

remain the same among different SWP modes while some bits, especially bits at SW 

boundaries, vary and require mode-dependent multiplexing (selection). The 

difference is in sign encoding (SE) bits plus one bit saved for the sign of PP and the 

hot-one modification bits. Fig. 3.7 shows the detailed view of the 32-bit proposed 

SWP PPA: Fig 3.7a shows the SWP PPA in scalar mode in which we can see 17 PPs 

including accumulator; SE bits and hot-one modification bits are also shown. Fig 

3.7b displays the SWP PPA in 16-bit mode: the SE bits and the sign-bit of PP08 

shares those of scalar PP08 while the hot-one modification bits don’t share; in 

contrast, PP01 has a same hot-one modification bits while it differs in SE bits and 

the sign-bit. Fig 3.7c depicts the 8-bit SWP PPA. Clearly, it tells that the difference 

mainly lies at SW boundaries. Fig 3.7d exemplifies the selection of PP01 among 

different modes. Although there exists three modes, only three bit positions actually 

require a 3-to-1 multiplexer (MUX3) for selection; some take AND2s or MUX2s 

while some do not demand any selection. As a note, even in the 64-bit proposed 

SWP design, the proposed SWP PPA requires still MUX3s for worst-case positions. 
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Fig. 3.7. Detailed view of the 32-bit proposed SWPPA with a selection example. 
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Therefore the preprocessing on multiplicand concerns the generation of SE bits, 

sign bits of PPs, and hot-one modification bits of each SW and their selection among 

modes. Table 3.4 lists the truth table of SE bits and sign bits of PPs used in the 

proposed SWP design. Table 2.5 and Eq. (2.1) have shown the logic of hot-one 

modification bits. These bits are generated in parallel with scalar MBE without 

introducing any timing overhead since their logic is not as complicated as an MBE. 

The area overhead, as demonstrated in Fig. 3.7d, is not huge since most bits share 

those in the scalar PPA. 

 

Table 3.4. Truth table of sign encoding bits and sign bits of PPs. 

n s 
tc Y2i+1 Y2i Y2i-1 

m=0 m=1 m=0 m=1 
0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 1 1 0 0 0 1 

0 1 0 0 1 1 1 0 

0 1 0 1 1 1 1 1 

0 1 1 0 1 1 1 1 

0 1 1 1 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 1 0 1 0 1 

1 0 1 0 0 1 0 1 

1 0 1 1 0 1 0 1 

1 1 0 0 1 0 1 0 

1 1 0 1 1 0 1 0 

1 1 1 0 1 0 1 0 

1 1 1 1 0 0 0 0 

tc: 1:signed/0:unsigned; Y: multiplier; m: MSB of SW;  
s: sign of corresponding PP; n: SE bit 
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Thanks to this SWP PPA, the proposed architecture offers more flexible SW 

combination schemes than previous works if both SWPPRT and SWCPA also 

support. The SWP combination scheme is controlled by the pre-decoded input kill 

signals. The pre-decoding is performed in parallel with the scalar MBE and thereby 

does not incur timing overhead. Fig. 3.8 shows the SWP schemes of the 32-bit 

proposed SWP design: Each kill signal conditionally enables/disables the 

carry-chain. Three kill signals provide 8 SW combinations; however, if 

{kill2,kill1,kill0} equals {0,0,1}, {1,0,0}, or {1,0,1}, the middle 16-bit SW obtains a 

fault PPA since the corresponding PPA has never been generated in this region. Fig. 

3.8a to Fig. 3.8e shows the possible five SW combinations; Fig. 3.8f displays an 

invalid SW combination scheme. For 64-bit design using the proposed architecture, 

two 32-bit SW halves process in parallel, offering a total of 25 (5×5) different SW 

combinations.  

 

Fig. 3.8. SW combinations of the 32-bit proposed SWP MAC design. 
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The proposed SWP design is characterized by SWP mode assignment as well; 

each SW has its own operating mode. To take an example, if a 32-bit SWP operates 

in 8-bit SWP mode as sketched in Fig. 3.8b, the four SWs don’t have to perform the 

same signed/unsigned/mixed-mode MAC operation at the same time. Instead, each 

SW assigns its unique mode signal, and a total of 81 (3×3×3×3) different SW mode 

assignment schemes are allowed. Moreover a central mode signal assigned to all 

SWs, as used in [10], introduces high fan-out, and which consequently requires 

buffer insertion. SWP mode assignment ameliorates high fan-out. 

Although this modification increases some input ports and places some 

restrictions on mode assignment, it provides reconfigurability and flexibility for the 

proposed design. Compared to the 64-bit proposed design, [10] offers only four SW 

combinations and all SWs should operate in a same central mode, and mixed-mode 

is not supported. 

 

3.2.3 Sub-Word Parallel PPRT (SWPPRT) 

To add SWP in the scalar PPRT, the behavior of carries traversing SW 

boundaries requires careful manipulation. On the whole, it involves carry-killing 

(blocking, breaking, disabling, etc) at SW boundaries on each level in the SWPPRT. 

Both the proposed SWPPRT and the VPPRT in [10] exploit Wallace CSA Tree, 

using an FA as the basic building block. It implies both designs judiciously manage 

the carry-out or carry-in of FAs to conditionally break the carry-chain. For example, 

Fig. 3.9 sketches an image at a SW boundary: Assuming FA_0 is at the MSB of 

SW_0 and FA_1 is at the LSB of SW_1, there are two ideas to break the 

carry-chain – ignoring the carry-in of FA_1 or disabling the carry-out of FA_0. It 

implies new FA cells are required, without glue logic, for the use at SW boundaries. 
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Fig. 3.9. Breaking the FA carry-chain for SWP in SWPPRT. 

 

The first idea is utilized in [10]. Considering an FA used at the LSB of SW_1, 

the signal cin receives the FA carry-out from MSB of the previous SW_0, and hence 

requires masking on cin using the signal kill. Fig 3.10 shows the FA with carry-in 

masking used in [10]. This method does not create a new critical path since the paths 

cin to sum and cin to cout are fast as shown in Fig. 2.6a. Combining cin with kill 

using NAND2 incurs no significant delay since the extra gate is in parallel with 

others. This claim is somehow misleading because it implicitly assumes the delays 

of all signals are balanced and thereby an FA is always assumed to have its longest 

path latency all the time. This is often not the case with the real circuit since uneven 

delay among paths do exist, facilitating the speed optimization using TDM [8]. If 

using the FA scheme at SW boundaries, in Fig. 3.9 cout of FA_0 “must” connect to 

cin of FA_1 and sum of FA_0 “must” connect to a or b of FA_1. This restricted 

scheme creates a longer critical path going through all sum signals and all a/b 

signals since it eliminates the use of TDM to optimize the delay. Furthermore, on the 

middle levels of Wallace CSA Tree, a lack in cin signals for connection of cout 

signals is possible and other FA cells may be required. 
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Fig. 3.10. FA with carry-in masking used in [10]. 

 

The proposed design utilizes a different idea. Since uneven path latency does 

exist in the proposed SPPRT, TDM can still be utilized. Generally speaking, the 

more a flexible signal connection is available, the more the speed of a PPRT is 

optimized. The proposed SWPPRT concerns conditionally disabling the carry-out as 

shown in Fig. 3.9. A possible realization of FA with carry-out masking used at the 

MSB of SW_0 is shown in Fig. 3.11.  

 

 

Fig. 3.11. FA with carry-out masking used in the proposed design. 
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Whenever kill is asserted, cout must be zero. This modification does not add 

extra delay to the original FA critical path; however it creates some longer paths 

compared to the scalar PPRT. It thereby slightly reduces the SPPRT performance 

since the original FA cells at each MSB of SWs should be replaced by new cells. 

This method allows flexible FA connection; TDM is thus still feasible. The 

proposed SWPPRT outperforms the VPPRT in [10] in theory since TDM speed 

optimization can still be applied. The SWPPRT has nearly the same performance as 

the SPPRT. Delay information of the new FA cell is required for TDM; for simplicity, 

we assume the new FA cell has identical delay information with the original FA cell.  

To configure the SW combination scheme, SWPPRT requires identical kill 

signals fed into SWPPA. If properly assigned and connected at SW boundaries, the 

SWPPRT supports equivalent SW combinations as configured in SWPPA.  

 

3.2.4 Sub-Word Parallel CPA (SWCPA) 

There are various SWP adder schemes. The basic idea again is to break the 

carry-chain across SW boundaries. An easy approach to breaking the carry-chain is to 

conditionally insert one-bit zero between SWs to both operands. This annihilates the 

carry-chain. When a carry is required, a 1-bit one is simply inserted between SWs to 

either operand, serving as propagate signal without affecting the result. This approach 

is less relevant to the adder architecture; however, the delay overhead is considerable 

as bit width grows. If taking consecutive 16 bits as a basic adder block size, a 32-bit 

SWP adder requires one inserted bit; a 64-bit adder, three; a 128-bit adder, seven. This 

enlarges the bit width of the CPA to a number unequal to the power of two, and which 

deteriorates the performance of CPA since in most architectures the block size usually 

equals the power of two. Fig 3.12 sketches a simple 64-bit SWP adder scheme. The 

kill signal controls the annihilate or propagate behavior of the carry. 
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Fig. 3.12. A simple 64-bit SWP adder. 

  

AN SWP adder using 4-bit carry-lookahead generator (CLG) is implemented 

in [10]. Similar to the SWP method in VPPRT, an AND2 is added to mask the 

carry-in of the CLG without additional delay. This CLA logic is expressed as: 

0 0 0 (~ )
1 1 0 1 0 1 (~ )
2 2 1 2 0 1 2 0 1 2 (~

[3: 0] 3 2 3 1 2 3 0
[3: 0] 0 1 2 3,

cout g p cin kill
cout g g p p p cin kill
cout g g p g p p p p p cin kill
g g g p g p p g
p p p p p

= + ⋅ ⋅
= + ⋅ + ⋅ ⋅ ⋅
= + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
= + ⋅ + ⋅ ⋅ + ⋅
= ⋅ ⋅ ⋅

)

 
(3.2) 

where g[3:0] and p[3:0] stand for 4-bit CLG generate and propagate signal from bit 

0 to bit 3, respectively. This adder enjoys the merits of a scalar CLA without large 

overhead. 

As for Fong adder exploited in the proposed SCPA, it also enhances for SWP 

with minor area and timing overhead because extra operators for breaking the 

carry-chain are added only at boundary bit positions and work in parallel with the 

original operators as shown in Fig. 3.13. Fong adder is capable of supporting flexible 

SW combinations with a basic block size. Concerning the proposed SWP MAC design, 

we choose a size of 16 bits for lowest granularity. The break signals in Fong adder 

control the behavior of carries across SW boundaries, and thus configure the SWP 

scheme. The logic of break signals are identical to kill signals used in the proposed 
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SWP MAC, and hence meets our specification without any efforts. The carry-out 

signal of each SW is provided for further possible use. As far as the carry-in signal cin 

of each SW is concerned, Fong adder sets some restrictions to configure scalar or 

SWP schemes; however, using our design methodology, the negation of kill signals 

equal the cin signals of Fong adder at the corresponding bit positions. Compared with 

SWP CLA design in [10], Fong adder has better performance in terms of delay and 

area since the optimized Ling addition is essentially faster than CLA by reducing one 

logic level, and the hybrid adder architecture contributes to a smaller area. The 

advantage manifests itself as the bit width increases [26]. 

 

 

 
Fig. 3.13. Architecture of a 32-bit Fong adder with reconfigurability. 

*This figure is a direct copy of Fig. 47 in [26] 
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3.2.5 Summaries of the Proposed SWP MAC Design 

Based on the proposed scalar MAC design, the proposed SWP MAC applies 

SWP to SPPG, SPPRT and SCPA. In SPPG, SWP is done by preprocessing on 

operands and carefully arranging the SWPPA. In SPPRT, SWP is done by replacing 

SW boundary FA cells with a new FA supporting carry-out masking. For SCPA, 

Fong adder performs SWP by adding some logic operators working in parallel with 

original operators. The timing and area overhead mostly lies in SWPPG since 

multiplexing and masking requires several levels of logic. As for SWPPRT, the 

novel method still facilitates the use of TDM to generate SWP speed optimized 

Wallace Tree. The SWP Fong adder has nearly the same performance as a scalar 

Fong adder. Due to the support of SWPPG, SWPPRT, and SWCPA, the proposed 

SWP MAC not only theoretically outperforms [10] but also innovatively features 

more flexible SW combination and mode assignment schemes. 
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CHAPTER 4 
EXPERIMENTAL RESULTS 
 

4.0 Overview 
In this chapter, we provide the experimental results of the proposed design. 

Section 4.1 elaborates the environment for implementation. Section 4.2 provides the 

data and statistics of the experiment and discusses the experimental results.  

 

4.1 Implementation 
To acquire delay and area estimates, the scalar architecture in [10] consisting 

of an MBE with the encoding scheme in Table 2.2, a regularly connected Wallace 

PPRT, and a CPA using 4-bit CLA blocks is rebuilt; Synopsys DesignWare IPs 

(DWIPs) [38] – DW02_mult (scalar multiplier) and DW02_prod_sum1 (scalar MAC) 

using wall synthesis model (MBE-Wallace architecture) – are also chosen for 

synthetical result comparison. VMAC in [10], an SWP MAC design, is rebuilt for 

comparison. All designs are implemented in Verilog HDL on register transfer level 

(RTL) with a same coding style, and then synthesized using Synoposys Design 

Compiler [39] in Artisan 0.18 um standard cell library for UMC 0.18 um silicon 

technology with and a relatively conservative wireload model wl10. The FA cell 

used in PPRT and the delay information for TDM algorithm exploit the cell 

ADDFHX4, a high speed standard FA cell [37]. All other cells are optimized by the 

synthesizer. Synopsys PrimePower [40] is used for power analysis. In order to prove 

the correctness of functionality, all designs are simulated by Cadence Verilog-XL 

simulator [41] with patterns cycling through all possible combinations, and the 
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results are compared to behavior models in Verilog format provided by DWIP. As 

for verification, Novas nLint [42] is used for design rule check with a reusable rule 

set according to [7]; TransEDA Verification Navigator [43], for code coverage 

analysis; Cadence Conformal equivalence checker [44], for logic equivalence 

(formality) checking between original designs and gate-level netlists. These EDA 

tools ensure the robustness of designs. Table 4.1 lists the environment for out 

experiment. 

 

Table 4.1. Environment setup for experiments. 

Simulation Environment 
Coding Verilog HDL  

Simulator Cadence Verilog® -XL 
Synthesizer Synopsys Design Compiler®  

Power Analyzer Synopsys PrimePower® 
Cell Library Artisan UMC 0.18 μm technology 

Wire Load Model UMC wl10 

Verification  
Design Rule Check Novas nLint®  with strict rule set 
Equivalence Check Cadence Encounter™ Conformal® Equivalence Checker
Coverage Analysis TransEDA Verification Navigator® 

 

4.2 Discussion of Experimental Results 

4.2.0 Overview 

All results are shown in tabular form with discuss under the tables; besides, the 

improvement rate of each comparison relative to the proposed design are also 

provided in percentage. 

The result of critical path delay in worst case, area cost at critical timing, and 

power consumption will be reported and compared at the following sections.  
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4.2.1 Delay Comparison 

Table 4.2 reports the critical path delay in nano-second of all designs in worst 

case: Table 4.2a lists the delay of scalar multiplier designs; Table 4.2b lists the delay 

of scalar MAC designs; Table 4.2c lists the delay of SWP multiplier designs; Table 

4.2d lists the delay of SWP MAC designs.   

 

Table 4.2. Critical path delay comparison. 

(a). Scalar multiplier designs. 

Max Delay of 
SMUL(ns) 

DW01_mult (wall) SMUL in [10] 
Proposed

 SMUL 
8-bit 4.06  13.79% 4.35 19.54% 3.50 

16-bit 5.25 10.48% 5.92 20.61% 4.70 
32-bit 6.18 5.83% 7.61 23.52% 5.82 
64-bit 7.40 6.35% 9.11 23.93% 6.93 

 

(b). Scalar MAC designs. 

Max Delay of 
SMAC(ns) 

DW02_prod_sum1
(wall) 

SMAC in [10] 
Proposed 

SMAC 
8-bit 4.31 16.01% 4.74 23.63% 3.62 

16-bit 5.55 12.97% 6.43 24.88% 4.83 
32-bit 6.50 10.15% 7.65 23.66% 5.84 
64-bit 7.81 11.01% 9.37 25.83% 6.95 

 

These two tables clearly show the high-speed advantage of the proposed scalar 

design. The proposed design on average accelerates DWIPs by approximately 10% 

and [10] by more than 20%. TDM PPRT contributes the most while Fong adder also 

has a relatively short delay. The delay of the proposed SPPG is a little longer due to 

the enhancement for mixed-mode. If removed, the proposed design will have an 

even better performance. The design in [10] is the slowest since TDM is not applied; 
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DWIPs outperform [10] by instantiating the same high speed FA ADDFHX4 cells 

from the cell library. The delay difference between each two rows in each table is 

approximately the same since doubling the bit width incurs two more levels of CSA 

delay into PPRT which is about 1.2 ns in this case. In two tables the corresponding 

entry relates since adding an accumulator into PPRT incurs one more level of CSA 

delay or sometimes no delay; this is the feature of Wallace Tree. 

 

(c). SWP multiplier designs. 

Max Delay of 
SWP MUL(ns) 

Proposed SMUL VMUL in [10] 
Proposed 
SWP MUL

16-bit 4.70 -2.98% 6.02 19.60% 4.84 
32-bit 5.82 -5.15% 7.75 21.03% 6.12 
64-bit 6.93 -4.33% 9.31 22.34% 7.23 

 

(d). SWP MAC designs. 

Max Delay of 
SWP MAC(ns) 

Proposed SMAC VMAC in [10] 
Proposed 
SWP MAC

16-bit 4.83 -4.14% 6.56 23.32% 5.03 
32-bit 5.84 -5.82% 7.82 20.97% 6.18 
64-bit 6.95 -4.60% 9.65 24.66% 7.27 

 

Table 4.2c and Table 4.2d manifest the high-speed feature of the proposed 

SWP designs. In all cases, they outperform the SWP designs in [10], and even 

outperform the scalar designs of DWIPs. The theoretical benefits of the proposed 

SWPPRT using TDM are also realized. The delay of the proposed scalar design is 

also compared. It is clear that our SWP method incurs less than 6% timing overhead. 

Table 4.3 reports the delay overhead on performing SWP. Table 4.3a shows the 

case with the designs in [10]. Table 4.3b shows the case with the proposed designs. 
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Table 4.3. Delay overhead on performing SWP. 

(a). Designs in [10]. 

SWP Delay  
Overhead of [10] 

SMUL VMUL Overhead SMAC VMAC Overhead

8-bit 4.35 N/A N/A 4.74 N/A N/A 
16-bit 5.92 6.02 1.69% 6.43 6.56 2.02% 
32-bit 7.61 7.75 1.84% 7.65 7.82 2.22% 
64-bit 9.11 9.31 2.20% 9.37 9.65 2.99% 

 

(b). The proposed designs. 

SWP Delay  
Overhead of 
the proposed 

SMUL 
SWP 
MUL 

Overhead SMAC
SWP 
MAC 

Overhead

8-bit 3.50 N/A N/A 3.62 N/A N/A 
16-bit 4.70 4.84 2.98% 4.83 5.03 4.14% 
32-bit 5.82 6.12 5.15% 5.84 6.18 5.82% 
64-bit 6.93 7.23 4.33% 6.95 7.27 4.60% 

 

8-bit SWP designs are not available since a size of 8-bit is chosen as the 

multiplier/MAC basic block. The SWP 8-bit design is thus equivalent to a scalar 

8-bit design. 

These two tables indicate that the delay overhead on performing SWP in [10] 

is less than the proposed design. Both the shared segmentation method and the 

proposed design incurs at most a MUX3 delay for the SWPPA, and both CPA 

designs have a similar overhead on SWP. This condition thereby infers the decrease 

in SWPPRT performance since a lower performance FA cell is used to replace the 

FAs at SW boundaries with a same estimation of delay profile. The degradation of 

TDM is reasonable; however, the actual delay still significantly outperforms [10]. 

[10] with a smaller delay overhead is not good because it implicitly assumes all FA 
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cells introduce a critical timing. The PPRT performance in both scalar and SWP 

designs is said to be equally slow.  

 

4.2.2 Area Comparison 

Table 4.4 reports the area cost in square-micro-meter of all designs at critical 

timing: Table 4.4a lists the area cost scalar multiplier designs; Table 4.4b lists the 

area cost of scalar MAC designs; Table 4.4c lists the area cost of SWP multiplier 

designs; Table 4.4d lists the area cost of SWP MAC designs.  

 

Table 4.4. Area cost comparison. 

(a). Scalar multiplier designs. 

Total Cell Area of 
SMUL (μm²) 

DW01_mult (wall) SMUL in [10] Proposed 

8-bit 11104 -20.81% 15202 11.76% 13415 
16-bit 39587 -3.15% 51217 20.27% 40835 
32-bit 133335 -3.17% 183334 24.97% 137563 
64-bit 469149 -3.57% 710822 31.64% 485917 

 

(b). Scalar MAC designs. 

Total Cell Area of 
SMAC (μm²) 

DW02_prod_sum1
(wall) 

SMAC in [10] Proposed 

8-bit 13734 -15.26% 18422 14.07% 15830 
16-bit 43070 -6.57% 59010 22.22% 45898 
32-bit 141897 -4.25% 196640 24.77% 147932 
64-bit 496389 -3.43% 709248 27.61% 513423 

 

These two tables show that the proposed design has nearly the same area cost 

except for 8-bit, compared with DWIPs. This can be explained that for the 8-bit 
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design, the area overhead for mixed-mode weighs heavily due to the area is still 

small, and the area reduction advantage of Fong adder is obscure. The effect of 

hybrid adder architecture manifests itself as bit width increases while the proposed 

MBE features area reduction as well. The proposed design is faster and enhanced 

with mixed-mode operation with approximately the same area. The proposed design 

significantly outperforms [10] owing to different MBE and PPRT schemes. When 

doubling the bit width, the area becomes three to four times as large as the original 

area, and which meets theoretical inference. In two tables the corresponding entry 

relates since adding an longer accumulator into PPRT incurs one more level of 

longer CSA logic, and is also with a multiple of three to four as the size doubles. 

 

(c). SWP multiplier designs. 

Total Cell Area of 
SWP MUL (μm²) 

Proposed SMUL VMUL in [10] 
Proposed 
SWP MUL 

16-bit 40835 -23.35% 59282 15.04% 50368 
32-bit 137563 -23.49% 210162 19.17% 169883 
64-bit 485917 -24.61% 813822 25.60% 605508 

  

(d). SWP MAC designs. 

Total Cell Area of 
SWP MAC (μm²) 

Proposed SMAC VMAC in [10] 
Proposed 
SWP MAC 

16-bit 45898 -20.91% 66825 16.96% 55494 
32-bit 147932 -21.21% 222638 19.46% 179302 
64-bit 513423 -22.19% 818144 23.32% 627349 

 

These two tables demonstrate that the proposed SWP design outperforms the 

design of [10] in terms of area cost with approximately 20% overhead. Most 

overhead is introduced by the SWPPG. Although the proposed SWPPA avoids using 
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dedicated MBEs to generate PP for each bit width, sign encoding bits, sign bit, 

hot-one modification bits still need to be generated by designated logic. The area 

overhead for SWPPRT and SWCPA is not considerable, especially as bit width 

grows. 

 

Table 4.5 reports the area overhead on performing SWP. Table 4.5a shows the 

case with the designs in [10] while Table 4.5b shows the case with the proposed 

designs. 

 

Table 4.5. Area overhead on performing SWP. 

(a). Designs in [10]. 

SWP Area  
Overhead of [10] 

SMUL VMUL Overhead SMAC VMAC Overhead

8-bit 15202 N/A N/A 18422 N/A N/A 
16-bit 51217 59282 15.75% 59010 66825 13.24% 
32-bit 183334 210162 14.63% 196640 222638 13.22% 
64-bit 710822 813822 14.49% 709248 818144 15.35% 

 

(b). The proposed design. 

SWP Area  
Overhead of 
the proposed 

SMUL 
SWP 
MUL 

Overhead SMAC
SWP 
MAC 

Overhead

8-bit 13415 N/A N/A 15830 N/A N/A 
16-bit 40835 50368 23.35% 45898 55494 20.91% 
32-bit 137563 169883 23.49% 147932 179302 21.21% 
64-bit 485917 605508 24.61% 513423 627349 22.19% 

 

These two tables imply that the proposed SWP design has less than double of 

the overhead of [10]. This is reasonable since hot-one modification is applied to 
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each SW boundary in each mode. It’s a trade-off between speed optimized PPRT and 

a reduced area SWPPA.  

 

4.2.3 Power Comparison 

Estimation of power consumption is performed by PrimePower [40]. For designs 

of a same size, an identical file with a number of 10,000 random patterns plays as the 

stimulus for estimation. Power estimation is only applied to MAC designs. Simulation 

results of scalar designs and the proposed SWP design executed in 8-bit SWP mode 

are reported in milli-Watt in Table 4.6: Table 4.6a lists the power consumption at 

critical timing as shown in Table 4.2 whereas Table 4.6b lists the power consumption 

of the same designs processed at a relatively loose timing of 20 nano-second. 

 

Table 4.6. Power consumption comparison. 

(a). Power consumption at critical timing. 

Power at 
Tcrit. (mW) 

SMAC in [10] 
DW02_prod_sum1

(wall) 
SWP MAC SMAC

8-bit 4.03  17.44% 3.21 -6.30% N/A 3.43 
16-bit 15.22  88.41% 8.99 11.27% 9.48 17.39% 8.08 
32-bit 34.30  45.90% 27.28 16.04% 28.52 21.31% 23.51 
64-bit 153.70 92.61% 87.89 10.14% 97.97 22.77% 79.80 

 

(b). Power consumption at T = 20 (ns). 

Power at 
T = 20ns 

(mW) 
SMAC in [10] 

DW02_prod_sum1
(wall) 

SWP MAC SMAC

8-bit 0.96  53.62% 0.69 11.47% N/A 0.62 
16-bit 4.90  150.46% 2.50 27.76% 2.39 22.24% 1.96 
32-bit 13.14 90.99% 8.88 29.10% 8.83 28.34% 6.88 
64-bit 72.07 159.43% 34.37 23.72% 35.67 28.40% 27.78 
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Except for the 8-bit comparison with DWIP at critical timing, the proposed 

designs enjoy a less power consumption. The proposed scalar designs outperform 

DWIPs even if the area cost of the proposed design is a little bit larger. For some 

cases, the proposed SWP designs even outperform scalar DWIPs. Race-free 

encoding for the MBE accounts for the phenomenon. 

The proposed design thereby is high-speed, moderate-area, and power-reduced. 

The power-delay (PD) characteristic is also calculated and listed in Table 4.7 to 

demonstrate the superiority of the proposed design. 

 

Table 4.7. Power-delay characteristic comparison. 

Power-Delay 
(mW-ns) 

SMAC in [10] 
DW02_prod_sum1

(wall) 
SWP MAC SMAC

8-bit 19.09  53.77% 13.85 11.56% N/A 12.41 
16-bit 97.86  150.83% 49.88 27.85% 47.70 22.25% 39.02 
32-bit 262.40 91.11% 177.32 29.15% 176.25 28.37% 137.30 
64-bit 1440.17 159.67% 686.42 23.77% 712.24 28.42% 554.61 
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CHAPTER 5 
APPLICATION NOTES 
 

5.0 Overview 
In this chapter, we discuss some important application issues when utilizing 

the proposed MAC design. Section 5.1 details some frequently used DSP arithmetic 

operations that can be easily enhanced or extended using the proposed architecture; 

Section 5.2 provides some overflow/underflow check skills with respect to some 

common fixed-point (FXP) number representation formats for DSP applications; 

Section 5.3 describes the way to flexibly reconfigure parameters of the proposed 

designs to meet users’ requirement. 

 

5.1 Functionality Enhancement  

5.1.1 Multiply-Accumulate (MAC) Operation 

MAC operation is a DSP frequently used operation and is essentially the same 

as multiplication. Multiplication is treated as a special-case MAC operation without 

accumulation. A dedicated MAC unit is usually developed to integrate MAC 

operation with multiplication. In order to implement MAC operation in 

multiplication time, there are essentially two approaches:  

I. Integrating accumulator data into PPRT as another PP.  

II. Adding accumulator data after multiplication. 

It seems approach I can considerably reduce the delay along the critical path 

since it does not incur another CPA delay as approach II does. Instead, approach I 

takes only a level of CSA delay or in some cases no delay; for example, A PPRT 
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with five or six inputs both take three CSA levels for reduction; this is the 

characteristic of Wallace Tree. Fig. 5.1 illustrates the flow of these two approaches. 

 

 Fig. 5.1. Execution flow of two approaches to completing MAC operation. 

 

However, if a MAC unit with complicated modes and functionalities for DSP 

application is under consideration, approach II is sometimes a better alternative 

because modification on inputs or maybe some internal temporal signals must be 

performed to meet the specification assigned. It takes more and complex control 

signals when using approach I to control the temporal data since the all PPG, PPRT, 

and CPA may require their own control signals. The generation of control signals not 

only influences performance but increases the design complexity. The choice 

between approach I and approach II is a tradeoff.  

As a reminder, the input and output (I/O) of PPRT is often a good place to 

insert pipeline registers if needed.  
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5.1.2 Multiply-Negate (MAN) Operation 

In practical, sometimes the negated multiplication result is required. For 

example, many DSP processors supports MAC operation with the negated 

multiplication result (this is another example why we may use approach II in the 

preceding section). This multiply-negate (MAN) or multiply-subtract (MAS) 

operation has different implementation. Three different feasible methods are 

described as follows:  

A. Negation/Two’s complement is performed after multiplication: This is a 

naïve method since a two’s complementer consisting of an inverter 

associated with an incrementer will unavoidably be used along the critical 

path. To improve, we can negate the final two partial products from the 

bottom level of CSA output in PPRT and simply use another level of CSA 

to sum the special ‘2’ solely for two’s complementing use. An incrementer 

delay is therefore replaced with a level of CSA delay. The naïve flow and 

the improved flow are shown in Fig. 5.2. 

 

Fig. 5.2. MAN flow of method A. 
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B. Negation/Two’s complement is manipulated by user: Compared with 

method A, we now pay attention to the input end. If we can negate either 

the multiplicand or the multiplier before multiplication, we will get the 

negated result afterwards. Intuitively, this can be done by performing two’s 

complement on one of the two operands, but this again jeopardizes the 

performance. Fig. 5.3 shows this modification on input. Another way is to 

use an instruction such as negation to deal with the problem; unfortunately, 

it takes one or more clock cycles. The last resort is to mental-calculate the 

negated operand; this way, however, loses dynamics and user-friendliness. 

 

 

Fig. 5.3. MAN flow of method B. 

 

C. Negation/Two’s complement is performed in multiplication run time: We 

are to perform: 

                          )( BAC ×−= .                      (5.1) 
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By deduction and inspection, Eq. (5.1) is re-written as: 

                      BAC ×−= )( .                      (5.2) 

Now replace –A by 1+¬A ; we can rewrite Eq. (5.2) as: 

          BBABABAC +×¬=×+¬=×−= )()1()( .          (5.3) 

Eq. (5.3) indicates we can conditionally invert the multiplicand and 

simply view the multiplier as another PP. Fortunately sometimes the 

existence of the extra PP doesn’t introduce any timing overhead. This is 

the characteristic of Wallace PPRT. Fig. 5.4 shows the flow of method C 

and Fig. 5.5 depicts an example of PPA when MAN/MAS operation is 

under execution. Note the accumulator (ACC) and the sign-extended 

multiplier for negation (Mlier) are added at the bottom of the original 

PPA. 

 

 

Fig. 5.4. MAN flow of method C. 
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Fig. 5.5. An exampling PPA for MAN/MAS operations using method C. 

 

5.1.3 Unsigned Operation 

Substantially, all signals in a circuit or design are simply bit streams; the 

meaning of a bit stream depends on how a user treats or interprets. For a digital 

system, unsigned number representation is native and important; for example, most 

floating point formats represent numbers in a sign magnitude form, completely 

separating the mantissa (significance) multiplication from the sign handling [12]. 

Therefore unsigned multiplication must be supported in a DSP multiplier. 

Booth’s algorithm and modified Booth’s algorithm were originally developed 

to cope with signed multiplication in TC format. The proposed design, based on 

MBA, then requires some modification to support unsigned multiplication. Section 

3.1 has introduced two ways to support unsigned/mixed-mode operation by 

generating an extra PP. They are supplemented as follows. 

The first way generates the extra PP by the MBE, assuming {0,0,m} as the 

encoding triplet where m stands for the MSB of the multiplier. The triplet then 
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always equals {0,0,0} or {0,0,1}, and the extra PP thereby always equals zero or the 

unsigned multiplicand. After proper alignment, this PP helps unsigned multiplication 

since the extra PP ensures a positive result. This modification has no influence on 

signed mode since sign-extension of m is performed, and {m,m,m} is sent to the 

MBE. The extra PP is hence destined to zero and does not affect the result. 

The other way renders that in TC format, the MSB of each operand is the 

negatively-weighted sign bit. If using TC format to represent an unsigned number, 

one extra bit is required as the new MSB and sign for each operand. If unsigned 

mode is under execution, the new MSB is zero-filled; otherwise, sign extension is 

still applied and does not affect TC representation. 

Either way has a similar idea that the negatively-weighted sign bit should be 

especially taken care of by appending extra bits. The logic of the appending bits for 

the extra triplet using the first way equal the logic of the new MSB and sign in the 

second way, and which has been expressed in Eq. (3.1). Fig. 5.6 shows the PPA 

enhanced with unsigned multiplication: a PP U_M, generated from either way for 

correction, locates at the bottom of the PPA.  

 

 

Fig. 5.6. Adding a PP to perform unsigned operation. 
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Appended operand bits are necessary not only for supporting unsigned MAC 

operation but also for performing MAN operation (described in Section 5.2) on 

unsigned numbers. The reason is demonstrated in Fig.5.7: Actually, it takes N+1 bits 

to represent an N-bit unsigned number after negation. Therefore, it is also of great 

help when performing the MAN/MAS operations on unsigned numbers. 

The difference of the two ways lies in the number of appended bits for each 

operand. Considering the bit width of the generated PP from the MBE, the proposed 

design appends two bits for each PP as shown in Fig. 3.2. Either way thereby has no 

difference in the PPA, PPRT and CPA.  

 

Fig. 5.7. A representation problem on negation of unsigned numbers. 

 

5.1.4 Mixed-Mode Operation 

Sign magnitude and TC are two different attempts on representing negative 

numbers. Both formats, inevitably, trade the MSB significance for a sign bit. This 

loses the dynamic range especially when representing unsigned numbers since the 

MSBs should always be zero-filled.  

To retain a larger dynamic range, some DSP processors [27] support a special 

operation mode, called mixed-mode in this thesis, to perform a signed multiplicand 

operated with a unsigned multiplier, and the product or the accumulator data is still 

signed. Fig. 5.8 shows the comparison on dynamic range among signed, unsigned, 

and mix-mode operation: mixed-mode benefits from both the TC representation and 

a larger dynamic range. 
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Fig. 5.8. Dynamic range comparison among signed, unsigned, and mixed-mode. 

 

To implement mixed-mode multiplication, it’s exactly the same as the 

modification done for unsigned mode. The multiplier is unsignedly represented; 

zero-extension is performed. Hence, one extra PP for mixed-mode multiplication is 

generated and accumulated in the PPRT. Since the result is signedly represented in 

TC format, the extra PP does not ensure a positive result. Fig. 5.9 shows the PPA 

that supports MAN/MAS operation, unsigned operation, and mixed-mode operation: 

the correction PP for mixed-mode is located at the exactly same place of unsigned 

correction PP; hence they are combine into a single PP, U_M, for unsigned and 

mixed-mode correction.  

As a result, three different numeric FXP data formats – signed, unsigned, and 

mixed-mode – are integrated into the proposed designs. The overhead on PPRT, as 

mentioned before, may sometimes be ignored; however there’s a little delay added 

along the critical path since three possible operating modes are under consideration. 

If mixed-mode is removed, the proposed designs will have even better performance.   
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Fig. 5.9. An PPA supporting MAN/MAS, unsigned/mixed-mode operation. 

 

5.2 Overflow/Underflow Check for FXP Numbers 

5.2.1 Fixed-Point (FXP) Representation 

Compared with floating point (FLP) representation, the fixed-point (FXP) 

numeric format is say to be fixed since the radix point is assumed to be “fixed” at 

some bit positions. Taking an N-bit stream for instance, if the “virtual” radix point is 

at the right of LSB, it is exactly the same as how we interpret the integer data format, 

and is denote as N.0 signed/unsigned integer format. To represent fractions, the radix 

point can be set at any place except at the right of LSB. The weights of each bit 

position to the left side of the radix point are larger than one; positions to the right 

side, smaller. If there are k bits to the left side of the radix point, it is denoted as 

k.(N-k) format. Most DSP processors use 0.N format to represent unsigned fractions 

and 1.N-1 format for signed fractions. 
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FXP representation also features that most mathematic/scientific operations 

such as addition and multiplication shares integer arithmetic, i.e. even if a fraction 

number is under consideration, the same adder or multiplier hardware still obtains 

the correct answer, provided the result is correctly interpreted. For FLP processors, 

the FLP datapath can not share FXP datapath since the FLP numbers is represented 

in another data format such as IEEE-754 standard. 

FXP representation has a narrower dynamic range than FLP representation, a 

FXP processor; however, it is less expensive than a FLP processor. FXP processors 

thereby prevail in DSP applications. 

 

5.2.2 Maintaining Precision & Accuracy 

In general, when multiplying two N-bit FXP operands, it takes 2N-bit to 

represent the product without introducing any error. This is sometimes refereed to as 

the law of conservation of bits [2]. The 2N-bit register will eventually be insufficient 

if it is accumulated for some times. Even worse, what if we want to store the 2N-bit 

result back to N-bit registers or memories? When the result of an arithmetic operation 

exceeds the range of the destination register, important information can be lost. 

These precision-related problems occur because the number of bits required to 

represent the result exceed that of the intrinsic system data format. If not properly 

controlled, the result goes wrong. Plenty of techniques are developed to resolve the 

problem such as saturation, input-scaling, accumulator with guard bits, rounding, 

and truncation. In the following text we’ll discuss saturation and rounding in detail 

because they are frequent and almost supported in all DSP processors.  

Considering the fact that addition and multiplication increase the operand 

width and the full width result is impractical when operands go on, programmers have 
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to decide the significant bits of the result. For a 2N-bit multiplier product in an N-bit 

system, the higher half N bits are often viewed as the significant part for fractions 

while lower half are often significant for integers. This selection retains higher 

precision from the original data. However, N-bit data width can not fully represent a 

2N-bit product; some inspections are thus required during half-part selection in order 

to avoid error and maintain accuracy or higher precision.  

Overflow/Underflow check is different between integers and fractions. In the 

following section, a MAC unit operating on 16-bit FXP data (X and Y) and producing 

a 32-bit product (M) that may be added or subtracted from a 40-bit accumulator (ACC) 

will be used as an example to briefly explain how to perform overflow/underflow 

check. The exampling MAC architecture is typical in modern DSP processors such as 

in Analog Device’s Blackfin� DSP processors [27]. 

 

5.2.3 Saturation & Overflow/Underflow for Integers 

In Section 5.2.3 and 5.2.4, a set of pseudo assembly MAC instructions is 

utilized to demonstrate the way to perform saturation or rounding. Table 5.1 lists the 

basic instruction types and notations; Table 5.2 demonstrates some pseudo MAC 

instruction examples; Table 5.3 details some available modes that can be supported 

by the proposed MAC design.  

As far as a FXP MAC is concerned, overflow/underflow may happen when 

accumulating ACC to M. When overflow/underflow is asserted, saturation means that 

the overflowed/underflowed data is not viewed as the final result; instead, to maintain 

higher precision, incorrect data is replaced by the maximal/minimal representable 

value (still incorrect). To take an example, consider adding base-10 numbers in a 

system where numbers cannot be larger than two digits in size. If we add the numbers 
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55, 30, and 20, the result is 5, because two digits are not sufficient for representing the 

correct result of 105. If saturation mode is applied, we replace 5, which is 100 away 

from the correct answer, with the maximal representable number 99, which is only 6 

away from the correct result [2]. Saturation practically maintains higher accuracy. Fig. 

5.10 shows the effect with or without saturation when overflow/underflow occurs. 

 

Table 5.1. Pseudo MAC instruction types and notations. 

Instruction Type Description 
M.HF = X.HF * Y.HF (MODE); MUL to a data register half 

M = X.HF * Y.HF (MODE); MUL to a data register 

ACC +-= X.HF * Y.HF (MODE); MAC/MAS/MUL to ACC 

M.HF = (ACC +-= X.HF * Y.HF) (MODE); MAC/MAS/MUL to ACC and a data register half

M = (ACC +-= X.HF * Y.HF) (MODE); MAC/MAS/MUL to ACC and a data register 

Note: .HF stands for a register half; it is either .H for high part or .L for low part. (MODE) can 

be chosen from Table 5.3; +-= stands for MAC/MAS/MUL operation, respectively. 

 

Table 5.2. Pseudo MAC instruction examples. 

Example Description 

M.L = X.L * Y.H;  
Multiply the lower half of X with the higher half of 

Y; treat both operands as a signed fraction; store 

the result to the lower half of M. 

M = X.H * Y.H (SI); 
Multiply the higher half of X with the higher half of 

Y; treat both operands as a signed integer; store 

the result to M. 

M.H = (ACC = X.H * Y.L) (UF);
Multiply the higher half of X with the lower half of 

Y; treat all operands as a unsigned fraction; store 

the result to ACC and the higher half of M. 

M = (ACC += X.L * Y.L) (MF);

Multiply the higher half of X with the higher half of 

Y; accumulate in ACC; treat X, ACC, and M as a 

signed fraction; Y, as a unsigned fraction; store the 

result to ACC and M. 
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Table 5.3. Some available modes for pseudo MAC instructions.  

MODE 16-bit 32-bit 

Default 

Format: 1.15 * 1.15 -> 1.15 
Range: 0x8000 ~ 0x7FFF 
Meaning: Multiply two signed 1.15 format 
numbers; after 1-bit left shift correction, 
(accumulate and then) round and saturate the 
result in signed 1.15 format, and store to a 
register half. 

Format: 1.15 * 1.15 -> 1.31 
Range: 0x8000_0000 ~ 0x7FFF_FFFF 
Meaning: Multiply two signed 1.15 format 
numbers; after 1-bit left shift correction, 
(accumulate and then) saturate the result in 
signed 1.31 format, and store to a register. 

Unsigned  

Fraction  

(UF) 

Format: 0.16 * 0.16 -> 0.16 
Range: 0x0000 ~ 0xFFFF 
Meaning: Multiply two unsigned 0.16 format 
numbers; (accumulate and then) round and 
saturate the result in signed 0.16 format, and 
store to a register half. 

Format: 0.16 * 0.16 -> 0.32 
Range: 0x0000_0000 ~ 0xFFFF_FFFF 
Meaning: Multiply two unsigned 0.16 format 
numbers; (accumulate and then) saturate the 
result in unsigned 0.32 format, and store to a 
register. 

Signed  

Integer 

(SI) 

Format: 16.0 * 16.0 -> 16.0 
Range: 0x8000 ~ 0x7FFF 
Meaning: Multiply two signed 16.0 format 
numbers; (accumulate and then) saturate the 
result in signed 16.0 format, and store to a 
register half. 

Format: 16.0 * 16.0 -> 32.0 
Range: 0x8000_0000~ 0x7FFF_FFFF 
Meaning: Multiply two signed 16.0 format 
numbers; (accumulate and then) saturate the 
result in signed 32.0 format, and store to a 
register. 

Unsigned  

Integer 

(UI) 

Format: 16.0 * 16.0 -> 16.0 
Range: 0x0000 ~ 0xFFFF 
Meaning: Multiply two unsigned 16.0 format 
numbers; (accumulate and then) saturate the
result in unsigned 16.0 format, and store to a 
register half. 

Format: 16.0 * 16.0 -> 16.0 
Range: 0x0000_0000 ~ 0xFFFF_FFFF 
Meaning: Multiply two unsigned 16.0 format 
numbers; (accumulate and then) saturate the 
result in unsigned 32.0 format and store to a 
register. 

Truncation 

(T) 

Format: 1.15 * 1.15 -> 1.15 
Range: 0x8000 ~ 0x7FFF 
Meaning: Multiply two signed 1.15 format 
numbers; after 1-bit left shift correction,; 
(accumulate and then) truncate (and saturate)
the result in signed 1.15 format and store to a 
register half. 

Truncation is meaning less for 32-bit result; 
Same as Default mode 

Unsigned 

Fraction  

with 

Truncation 

(TUF) 

Format: 0.16 * 0.16 -> 0.16 
Range: 0x0000 ~ 0xFFFF 
Meaning: Multiply two unsigned 0.16 format 
numbers; (accumulate and then) truncate (and 
saturate) the result in signed 0.16 format, and 
store to a register half. 

Truncation is meaning less for 32-bit result; 
Same as unsigned fraction mode. 

Mixed Mode 

Fraction 

(MF) 

Format: 1.15 * 0.16 -> 1.15 
Range: 0x8000 ~ 0x7FFFF 
Meaning: Multiply a signed 1.15 format number 
with an unsigned 0.16 format number; 
(accumulate and then) round and saturate the 
result in signed 1.15 format, and store to a 
register half. 

Format: 1.15 * 0.16 -> 1.31 
Range: 0x8000_0000 ~ 0x7FFF_FFFF 
Meaning: Multiply a signed 1.15 format number 
with an unsigned 0.16 format number; 
(accumulate and then) saturate the result in 
signed 1.31 format, and store to a register. 

Mixed Mode 

Integer 

(MI) 

Format: 16.0 * 16.0 -> 16.0 
Range: 0x8000 ~ 0x7FFF 
Meaning: Multiply a signed 16.0 format number 
with an unsigned 16.0 format number; 
(accumulate and then) saturate the result in
signed 16.0 format, and store to a register half.

Format: 16.0 * 16.0 -> 32.0 
Range: 0x8000_0000 ~ 0x7FFF_FFFF 
Meaning: Multiply a signed 16.0 format number 
with an unsigned 16.0 format number; 
(accumulate and then) saturate the result in 
signed 32.0 format and store to a register. 
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Fig. 5.10. Effect with or without saturation when overflow/underflow occurs. 

 

Possible saturation conditions are listed in Table 5.4 and described as follows: 

 40-bit signed integer: Overflow/Underflow may occur when 

accumulating M to ACC. The check scheme is identical to that for signed 

addition. If two operands are with the same sign, the sign of the result is 

inspected. Overflow happens when two positive numbers sum to a 

negative result; it is saturated to the maximum of the 40.0 signed integer 

format, 0x7F_FFFF_FFFF. Underflow happens when two negative 

numbers sum to a positive result; it should saturate to the minimum, 

0x80_0000_0000. 

 32-bit signed integer: The system may store the 40-bit MAC result to M; 

overflow/underflow happens when the 40-bit ACC can not be fully 

represented. It occurs when ACC[39:32], the guard bits, are not all the 

same as ACC[31], the sign bit. If ACC[39:31] equal to 9 ones or 9 zeros, 

saturation is unnecessary; if not, ACC[39] decides saturated value. The 

maximum of a 32.0 signed integer is 0x7FFF_FFFF; the minimal, 

0x8000_0000. 
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 16-bit signed integer: The system may store the 40-bit MAC result to 

M.H or M.L from M[15:0] or ACC[15:0]. If one of the bits in M[31:16] 

or  ACC[39:16] doesn’t equal the sign bit, M[15] or ACC[15], it 

indicates the 32-/40-bit result is different from the 16-bit result and 

thereby overflow/underflow happens, i.e. if M[31:15] or ACC[39:15] are 

all ones or all zeros, no saturation is required; if not, M[31] or ACC[39] 

determines the saturated value. The maximum of a 16.0 signed integer is 

0x7FFF; the minimum, 0x8000. 

 40-bit unsigned integer: The logic of the carry-out bit of the 40-bit CPA 

is equivalent to the logic of this overflow condition since it indicates 40 

bits are not enough for representation. Underflow occurs when operating 

MAN/MAS operation with a negative result; this should use one extra bit 

to check as shown in Fig. 5.7. If supported, it resembles the underflow of 

40-bit signed integer. The maximum of a 40.0 unsigned integer is 

0xFF_FFFF_FFFF; the minimum, 0x00_0000_0000. 

 32-bit unsigned integer: Overflow concerns the positive sign extension 

and the carry-out of the 40-bit CPA. It demands the 9-bit value 

{cout,ACC[39:32]} equals zero. Underflow check resembles that of 

32-bit signed integer. As a note, multiplication in this case asserts no 

overflow due to the law of conservation of bits. The maximum of a 32.0 

unsigned integer is 0xFFFF_FFFF; the minimum, 0x0000_0000. 

 16-bit unsigned integer: Similar to 32-bit unsigned integer overflow 

check, it requires to check whether each of the 25 bits, {cout,ACC[39:16]} 

or each of the 16 bits, M[31:16], equals zero, depending on the source. 

Underflow check resembles that of 16-bit signed integer. The maximum 

of a 16.0 unsigned integer is 0xFFFF; the minimum, 0x0000. 

 75 
 



Table 5.4. Possible saturation conditions using the exampling architecture. 

Type Width Overflow Max. Underflow Min. 

40 M[31]=ACC[39]=0 and
result ACC[39]=1 0x7fffffffff 

M[31]=ACC[39]=1 
and 
result ACC[39]=0 

0x8000000000 

e.g. 

ACC += X.L * Y.L (SI); 
// ACC_old = 0x 7fc0000000; 
// X.L = 0x8000; 
// Y.L = 0x8000; 
/*M= 0x40000000; The 
accumulated result is 
0x8000000000 which overflows. 
The result should saturate to 
0x7fffffffff */ 

ACC += X.L * Y.L (SI); 
// ACC_old = 0x8000000000; 
// X.L = 0x0001; 
// Y.L = 0xffff; 
/* M = 0xffffffff; The accumulated result 
is 0x7fffffffff which underflows. The result 
should saturate to 0x8000000000 */ 

32 ^ACC[39:31]=1 and 
ACC[39] = 0 0x7fffffff ^ACC[39:31]=1 and 

ACC[39] = 1 0x80000000 

e.g. 
M = (ACC += X.L * Y.L) (SI); 
// ACC_new = 0x 7fc0000000; 
/* Overflow condition asserts; the 
result saturates to 0x7fffffff */ 

M = (ACC += X.L * Y.L) (SI); 
// ACC_new = 0x8000000000; 
/* Underrflow condition asserts; the 
result saturates to 0x80000000 */ 

16 
^ACC[39:15] = 1 and 
ACC[39] = 0, or 
^M[31:15] = 1 and 
M[31] = 0 

0x7fff 
^ACC[39:15] = 1 and
ACC[39] = 1, or 
^M[31:15] = 1 and 
M[31] = 1 

0x8000 

SI 

e.g. 

M.L = X.L * Y.H (SI); 
// X.L = 0x8000; 
// Y.H = 0x8000; 
/* M = 0x40000000; Overflow 
asserts; the result saturates to 
0x7fff */ 

M.L = X.L * Y.H (SI); 
// X.L = 0x0004; 
// Y.H = 0x8000; 
/* M = 0xffff0000; Underflow asserts; the 
result saturates to 0x8000 */ 

40 cout = 1; 0xffffffffff depends on system 0x0000000000 

e.g. 

ACC += X.L * Y.L (UI); 
// ACC_old= 0xffc0000000; 
// X.L = 0x8000; 
// Y.L = 0x8000; 
/* M = 0x40000000; The carry-out 
of the accumulated result is 1 which 
overflows. The result saturates to 
0xffffffffff */ 

ACC -= X.L * Y.L (UI); 
// ACC_old= 0x0000000000; 
// X.L = 0x0001; 
// Y.L = 0x0001; 
/* M = 0x00000001; ACC_new equals -1 
in decimal which saturates to 
0x0000000000 */ 

32 |{cout,ACC[39:32]}=1 0xffffffff depends on system 0x00000000 

e.g. 
M = (ACC += X.L * Y.L) (UI); 
// ACC_new= 0x0200000000; 
/* Overflow asserts; the result 
saturates to 0xffffffff */ 

M = (ACC -= X.L * Y.L) (UI); 
/* M = 0x00000001; ACC_new equals -1 
in decimal which saturates to 
0x00000000 */ 

16 
|{cout,ACC[39:16]}=1; 
or 
|M[31:16] = 1 

0xffff depends on system 0x0000 

UI 

e.g. 

M.L = X.L * Y.H (UI); 
// X.L = 0x0002; 
// Y.H = 0xffff; 
/* M = 0x0001fffc; Overflow asserts; 
the result saturates to 0xffff */ 

M.L = (ACC -= X.L * Y.L) (UI); 
/* M = 0x00000001; ACC_new equals -1 
in decimal which saturates to 0x0000 */
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5.2.4 Rounding of Fractions 

Unlike integers, the significant bits of fractions are the higher half. If it is to 

store back a 2N-bit result to an N-bit register, the system eventually discards the 

lower N bits. However, in order to maintain higher precision, some techniques are 

developed to deal with such condition and in general called rounding. 

There are three chief rounding schemes: biased-rounding, unbiased-rounding, 

and truncation. For biased and unbiased rounding, if the lower half to be discarded 

is larger than a half, the system rounds up, i.e. it adds one to the new LSB, M[16] or  

ACC[16]; when it is smaller than a half, the system rounds down by simply 

discarding the lower half. The two rounding schemes differ only in the case that the 

lower half equals the midpoint value. For biased rounding, this value is always 

rounded up; biased rounding thereby always rounds to the nearest 0 or 1 and is also 

nicknamed round-to-nearest. The result on average is biased to a value slightly 

larger than a half. Unbiased rounding, also called round-to-nearest-even, has a 

different way to deal with the midpoint value. It rounds the value to the nearest even 

point, and the rounding direction depends on the LSB of the higher half, M[15] or 

ACC[15], not always upward. This scheme consequently has no bias if the system 

process on random data, and is also called convergent rounding. 

Considering DSP algorithms, we often use unbiased rounding scheme to round 

fractions; however, some application such as GSM algorithm uses biased rounding 

[27]. It requires some logic to perform rounding before writing the result to a system 

register half. If the destination register bit width is long enough, rounding is 

meaningless. 

An easiest way to avoid any rounding logic is to totally get rid of the lower 

half. This technique is referred to as truncation and sometimes called round-to-zero. 
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In contrast with the other two schemes, truncation is biased downward to a smaller 

average. Fig. 5.11 depicts three rounding schemes.  

 

 

Fig. 5.11. Three different rounding schemes. 

 

5.3 Reconfigurable Parameters Setup 
The proposed design has been detailed in previous sections; this section 

describes the way to reconfigure the parameters of the proposed design in tabular 

form. Table 5.5 lists the I/O interface of the proposed design. Table 5.6, identical to 

Table 3.3, lists again the possible SW combination schemes of the proposed design. 

Table 5.7 and Table 5.8 give some examples to configure the kill and mode signals, 

respectively. Some points or exception to be noticed are list as notes at the bottom of 

each Table.  
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Table 5.5. Interface of the proposed design. 

MAC Scalar 16-bit 32-bit 64-bit 
MULTIPLICAND mcand[N-1:0] mcand[15:0] mcand[31:0] mcand[63:0]

MULTIPLIER mlier[N-1:0] mlier[15:0] mlier[31:0] mlier[63:0]
ACCUMULATOR accu[2N-1:0] accu[31:0] accu[63:0] accu[127:0]

MODE mode[1:0] 
mode_v0[1:0]
mode_v1[1:0]

mode_v0[1:0] 
mode_v1[1:0] 
mode_v2[1:0] 
mode_v3[1:0] 

mode_v0[1:0]
mode_v1[1:0]
mode_v2[1:0]
mode_v3[1:0]
mode_v4[1:0]
mode_v5[1:0]
mode_v6[1:0]
mode_v7[1:0]

KILL N/A kill 
kill0 
kill1 
kill2 

kill0 
kill1 
kill2 
kill3 
kill4 
kill5 
kill6 

RESULT m_out[2N-1:0] m_out[31:0] m_out[63:0] m_out[127:0]

CARRY-OUT cout 
cout_v0 

cout 

cout_v0 
cout_v1 
cout_v2 

cout 

cout_v0 
cout_v1 
cout_v2 
cout_v3 
cout_v4 
cout_v5 
cout_v6 

cout 
Note: N is the bit width of scalar input operands 
Note: v0, v1, …, v7 indicate SWs in order; v7 aligns to MSB; v0, LSB 
Note: For all MODE signal: 1?: mixed-mode; 00: unsigned; 01: signed 
Note: kill is inserted between SWs; kill2 between v2 and v3, and the like  
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Table 5.6. Possible sub-word combinations of the proposed SWP MAC design. 

Possible Sub-Word Combinations 

(16) 
16-bit 

(8,8) 
(32) 

(8,8,8,8) 
(8,8,16) 
(16,16) 

32-bit 

(16,8,8) 

64-bit 
A 64-bit SWP MAC is viewed consisting of two 
independent 32-bit SWP MACs; it then has 
5×5 = 25 possible combinations  

 

Table 5.7. Configuration example of KILL signal. 

KILL kill6 kill5 kill4 kill3 kill2 kill1 kill0 
16-bit SWP MAC 

(16) N/A N/A N/A N/A N/A N/A 0 
(8,8) N/A N/A N/A N/A N/A N/A 1 

32-bit SWP MAC 
(32) N/A N/A N/A N/A 0 0 0 

(16,16) N/A N/A N/A N/A 0 1 0 
(8,8,8,8) N/A N/A N/A N/A 1 1 1 
(8,8,16) N/A N/A N/A N/A 1 1 0 

64-bit SWP MAC 
(64) 0 0 0 0 0 0 0 

(32,32) 0 0 0 1 0 0 0 
(16,16,16,16) 0 1 0 1 0 1 0 

(8,8,8,8,8,8,8,8) 1 1 1 1 1 1 1 
(16,16,32) 0 1 0 1 0 0 0 

(8,8,8,8,32) 1 1 1 1 0 0 0 
(8,8,16,32) 1 1 0 1 0 0 0 

Note: List only some possible conditions 
Note: An illegal input will be redirected to scalar mode by default 
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Table 5.8. Configuration example of MODE signal. 

MODE SW_7 SW_6 SW_5 SW_4 SW_3 SW_2 SW_1 SW_0

16-bit SWP MAC 
(16) N/A N/A N/A N/A N/A N/A ○ ╳ 

(8,8) N/A N/A N/A N/A N/A N/A ○ ○ 

32-bit SWP_MAC 
(32) N/A N/A N/A N/A ○ ╳ ╳ ╳ 

(16,16) N/A N/A N/A N/A ○ ╳ ○ ╳ 

(8,8,8,8) N/A N/A N/A N/A ○ ○ ○ ○ 

(8,8,16) N/A N/A N/A N/A ○ ○ ○ ╳ 

64-bit SWP MAC 
(64) ○ ╳ ╳ ╳ ╳ ╳ ╳ ╳ 

(32,32) ○ ╳ ╳ ╳ ○ ╳ ╳ ╳ 

(16,16,16,16) ○ ╳ ○ ╳ ○ ╳ ○ ╳ 

(8,8,8,8,8,8,8,8) ○ ○ ○ ○ ○ ○ ○ ○ 

(16,16,32) ○ ╳ ○ ╳ ○ ╳ ╳ ╳ 

(8,8,8,8,32) ○ ○ ○ ○ ○ ╳ ╳ ╳ 

(8,8,16,32) ○ ○ ○ ╳ ○ ╳ ╳ ╳ 

○: Configurable 
╳: Can't configure;should be identical with the nearest ○ on the left side 
Note: Incorrect assignment of mode may cause a wrong result 
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CHAPTER 6 
CONCLUSIONS 
 

In this thesis, we present the design methodology of a high-performance 

reconfigurable modified Booth encoded MAC unit. It is capable of supporting 

sub-word parallel (SWP) operation which enhances computational throughput of 

many DSP algorithms especially for multimedia applications. The scalar version of 

the proposed design comprises a high-speed, area-reduced, and race-free MBE; a 

speed optimized Wallace PPRT using TDM; and a high speed, area-minimized Fong 

adder. Using essentially the same hardware, SWP is performed on the scalar MAC 

by applying some preprocessing to operands associated with a new arrangement of 

the SWPPA, and with the support of carry-chain blocking when accumulating all 

partial products. A novel full-adder carry-out masking concept is proposed to build 

the SWPPRT, facilitating the use of TDM. The SWP version Fong adder inherits its 

scalar merits and supports identical SW combinations with our requirement. The 

proposed SWP design innovatively features the flexible sub-word combination and 

mode assignment scheme with nearly same delay and modest area overhead 

compared with the proposed scalar design. The proposed designs are 

fully-synthesizable in a reusable and verifiable design style. Experimental results 

demonstrate that the proposed scalar and SWP designs, for most cases, outperform 

the designs of DesignWare® IP [38] and of [10] in terms of critical path delay, area 

cost, and power consumption. 
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FUTURE WORKS 
 

We are developing a generator to generate the RTL codes of the proposed 

MAC designs in Verilog HDL format. Testbench for verification, synthesis script, 

and user’s manual will also be generated. All output files depend on the user 

reconfigurable inputs. We are also analyzing the pros and cons of replacing the 

scalar MAC units in multiple-MAC DSP processors by a proposed SWP MAC in 

order to design a high-performance MAC unit. 
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