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The Design of the Autonomous Ratio-Memory Cellular

Nonlinear Network for Pattern Learning and Recognition

Student: Wei-Te Chou Advisor: Prof. Chung-Yu Wu

Department of Electronics Engineering & Institute of Electronics

National Chiao-Tung University

ABSTRACT

The associative memory is of significant attention in the field of pattern recognition and
recovery. It is proven that the cellular nonlinear network with the aid of ratio memory
(RMCNN) can be used to implement as a kind of.associative memory. However, there are still
some imperfections that require-further improvement: for the existing RMCNN system. For
example, the pattern recognition rate. of RMCNN drops quickly as the environmental noise
level raises. Moreover, the die area of the existing chip is too large (4.56mm x 3.90mm),
which might suffer from the impact of process variation more seriously. Therefore, the chip
area reduction and optimization are necessary.

A new type of CNN associative memory called the Autonomous Ratio-Memory Cellular
Nonlinear Network (ARMCNN) is proposed and analyzed. In the proposed ARMCNN, there
is no elapsed operation to perform weight enhancement as well. During recognition period,
the noisy input patterns are sent into cells as initial cell state voltages, which in comparison
with constantly injecting the noisy input patterns, yields a better recognition rate in
simulation.

During pattern learning period, the ratio weight is original generated by comparing the

four neighboring absolute weights with their mean value. The absolute weights that are bigger



than the mean value will remain. However, in ARMCNN, only the strongest absolute weights
will stay (might be more than one). Furthermore, the proposed ARMCNN inherits the features
of RMCNN such as, feature enhancement effect and no elapsed operation (EO). The ratio
weights are generated directly after pattern learned.

In this thesis, the circuit of ARMCNN w/o EO is designed and a 9x9 ARMCNN is
implemented using TSMC 0.35um 2P4M mixed-signal process. The die area, as compared
with the previous chip — RMCNN w/o elapsed operation, shrinks from 4.56mm x 3.90mm to
2.24mm x 2.24mm. It’s only 0.28 times as large as the previous chip under the same
technology process, which greatly reduces the impact of process variation. The experimental
results of recognizing all three patterns are successful. However, some imperfections of
pattern recovery still exist and will be discussed later in this thesis. The circuit is redesigned

to correct these imperfections.
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CHAPTER 1
INTRODUCTION

1.1 Background of Cellular Nonlinear Network

The cellular nonlinear network (CNN) introduced by Chua and Yang [1]-[2] has been
considered as one of the potential architecture in future nano-electronic systems. One of
CNN’s important applications is the associative memory. So far, some research works on the
applications of CNN as neural associative memories for pattern learning, recognition, and
association have been explored [3]-[9]. As to the hardware implementation, special learning
algorithm and digital hardware implementation for CNN were proposed in [8] to solve the
sensitivity problems caused by thelimited:-precision‘of analog weights. Also, the CMOS chip
implementation of CNN associative memory-was reported in [9].

The learning circuitry can be integrated-on-chip-with the CNN system. There are several
advantages of on-chip learning: 1) No"host computer is needed to perform the learning task
off-line. This makes the interface of neural system chips simpler for many practical
applications; 2) The spatial-variant template weights can be on-chip learned without being
loaded from outside to the CNN chips. In other words, the long loading time, complex global
interconnection between cells, and analog weight storage elements to perform the loading
operation for large numbers of spatial-variant template weights can be avoided; 3) The
adaptability to the process variations of CNN chips can be enhanced.

To implement the associative memories, both the ratio memory (RM) [10]-[22] and the
generalization of Hebb’s postulate of learning [23]-[24] have been incorporated with the CNN
structure to form the RMCNN with spaced-variant templates for pattern recognition. The use

of ratio-memory (RM) is to enhance important ratio weights and remove less important ones



through the effect of feature enhancement [10]-[22]. In the RMCNN of [10]-[13], the input
signal current is applied to the neuron throughout the recognition process and the initial state
of each neuron is set to zero. In this paper, the design of the Autonomous RMCNN [27] is
proposed to improve the recognition rate, which makes some modification on the Hebbian
learning rule. In addition, the input signal is stored as initial state of the cell and no constant

input applied to the neuron throughout the recognition process.

1.2 Review of Ratio Memory Cellular Nonlinear Network

1.2.1 Ratio memory Cellular Nonlinear Network with Elapsed Operation

In the previous work, ratio memory cellular nonlinear network (RMCNN), the cell state

Xij(t), its derivation Xy (t), and the cell output 1Y) for a regular cells can be expressed as
[1]-[2]
X; () =—x; (1) + Zaijkl Oy (6 + zbijkl (B, +z; Eq.(1.1)
C(k,I)ENr(i, j) C(k,I)ENr(is})
X; (1) if -1=x;(t) =+1
Y, (0 = Fx, (©)=1 +1 it x, (1) > +1 Eq.(1.2)
-1 it ox;(t)<-1

where Xxij(t) is the state of cell(i,j), and u(t) is the input of cell(k,l) in the r-neighborhood
system Nr(i, j) of the cell(i, j). In this thesis, i or k is the row number and j or | are the column
number of an MxN CNN cell array. So, cell(i,j) means the ith row and jth column cell. The
r-neighborhood system Nr(i, j) of the cell cell(i, j) is defined as the set of all cells including

cell(i, j) and its neighboring cells, which satisfy the following property.
N, (i, j) = {C(k,l)\lsk <M, 1<I <N, |k-i|+]l - j| Sr} [13]  Eq.(1.3)

The term r is called as the radius or the number of neighboring layer. In our design, ris 1.

aijla(t) is template A weight(coefficient) which correlates the cell output yi(t) to the cell state



Xij(t). bijia(t) is the template B weight(coefficient) which correlates the cell input uy to the cell
state x;; and z;; is the threshold or bias of cell(i,j).

The template B and the threshold zj; are constant and space-invariant. The setting is

0 0 0

B,()=|0 1 0 Eq.(1.4)
0 0 0

z,(t) =0 Eq.(1.5)

That means the input of every cell influences itself only. In a r-neighborhood system Nr(i,
J), the input of neighboring cell doesn’t influence the central cell. The threshold zj; is zero
everywhere. The template A is spatial-variant and time-variant[12]-[13], and the template Aj;
can be written as:
0 aij (i~1)j (0) 0

A (0)= Ajicj-1) (9) 0 jij+1) (0) Eq.(1.6)
0 a1y (0) 0

That means only four cell are.correlated to the central cell. They are up, down, left and
right side cells. In the original RMCNN with elapsed operation[13]. The weights in template
A can be produced by the blow equation.

ZJ'T upub dt

a, (0) = = Spuml Ea.(L7)

Kloe (i-2j, iG -1, iG+1),(+1)j Eq.(L8)

sumlzz

Kl

Eq.(1.9)

Zijui})uk‘,’dt

p=1

p p
Where i s the p-th pattern input of cell(i,j). Similarly, Ua' is the p-th pattern of cell(k,l).

The relationship between ij and ki is shown as Eq.(1.8) that is equivalent to . The To s the

learning time for the RMCNN to learn p-th pattern and the total learning time for the



T.=>T,

RMCNN to learn m patterns is P=L . ajju IS called as the ratio weight, and the
numerator of aijkl is called as the absolute-weight.

The boundary cells don’t correlate to four cells. For example, the boundary cells at
corners only correlate to two cells. Thus the boundary condition of the boundary cells can be

written as
X: (=0, u..(t)=0 Eq.(1.10)

The i*j* means this cell is a boundary cell.

This work has advantages of longer memory retention time, and the feature enhance
characteristic improves the recognition rate. However, the elapsed period changes as learning
patterns change, and thus the elapsed roperation*let the process of pattern recognition

inconvenient.
1.2.2 Ratio memory Cellular Nonlinear Network w/o Elapsed Operation

Due to the inconvenience of having elapsed operation, the RMCNN w/o elapsed
operation (EO) was proposed, which yields the same pattern recognition rates and simpler
circuit structure as compared with RMCNN with EO. It requires no additional elapsed period
to get the feature enhanced ratio weights. Indeed, the ratio weights are generated directly after
pattern learning. Moreover, RMCNN can have longer template-weight storage time or
equivalently pattern recognition time which is one of the advantages of RM. Due to the
feature enhancement effect of the RM, which well separates the learned weights and
decreases the insignificant weights to zero, more patterns can be stored and recognized in the
RMCNN as compared to the CNN associative memory without RM.

The equation used to distinguish which ratio weights increase and which ratio weights

4



decrease can be written as [24]

n

2 Vauy ®

Lo (1) = L5—— - Eq (1.11)

where I, (t) is the mean of absolute memory current and I, ; (t) is the jth absolute memory

current. Ifl,,;,(t) is larger thanl,, (t), ratio memory current increase gradually. Otherwise

the ratio weights decrease. So the increasing and decreasing ratio weights are detected. After

the comparing operation, the increasing weights are set an appropriate value (1,1/2,1/3 or 1/4)

and the decreasing weights are set zero directly This equation is used to determine the final

ratio weights directly rather than elapsed operation. The new Hebbian learning algorithm can

be written as blow:

Step 1 : find the absolute weights template A-Sij(p) after p patterns are learned

0 SSiji_1) j ( p) 0
Sij(p) = SSiji(j—l)(p) 0 Ssiji(j+1)(p)
0 SSii(ia1) | ( p) 0

$Sj0 (P+1) =55, (p) +U U™

(k,I) can be (i+1, ) or (i, j+1) or (i-1,j) or (i, j-1)
Step 2 : find the absolute mean of the absolute weights in a template

M, = mean(Z‘ssijk, ‘)
Step 3 : generate the ratio weights

Qg = if s,y > Mss

I:>NNr(i,J')

a. =0 if ss.

ijkl ikl < Mss

Where uf* and uj™ are the input of cell(i,j) and cell(k,l) respectively. The PN

Nr(i, j)

is



number of preserved weights in N(i,j) and r=1.

The measurement results from RMCNN w/o EO was as following. Three Chinese
characters were learned: — , =, and Y (they are one, two, and four, respectively).
Unfortunately, the pattern *[YI” failed to be recognized and recovered. Further investigation
into the cause of this imperfection showed that a small current influences the absolute weights
on the capacitor Cw during the pattern transferring period, which would lead to wrong
absolute weights and, thus, wrong ratio weights were generated and stored. Therefore, the
newly proposed ARMCNN chip has corrected this mistake. In addition, the die area of the
previous work RMCNN chip was considerable large (4.56mm x 3.90mm), which might suffer
from the impact of process variation more significantly. Therefore, the chip area reduction and

optimization is necessary.

1.3 Research Motivation and ThesSis-Organization

To improve the image pattern recognition rates of RMCNN, the autonomous
Ratio-Memory Cellular Nonlinear Network (ARMCNN) [27] is proposed and analyzed. In the
ARMCNN, the input currents of the noisy input patterns are used to pre-charge the capacitors
of neurons (C;j) to produce the initial cell state voltages at the beginning of the recognition
process. After pre-charging, all the input currents are removed from the neurons. Since no
B-template is used and the neuron capacitors store the initial state voltages, the proposed
RMCNN is called autonomous RMCNN (ARMCNN). The ARMCNN inherits the features of
RMCNN such as, feature enhancement effect and no elapsed operation (ratio weights are
generated directly after pattern learned). The mathematical analysis and simulations are
performed for both ARMCNN and RMCNN. It is shown that the ARMCNN has a higher
recognition rate, and more number of learned and recognized patterns.

6



The operational principle and circuit architecture of the proposed ARMCNN are
described in Chapter Two, where the prediction models of recognition rate are shown as well.
Chapter Three discusses the simulation results of ARMCNN, which includes the behavior
simulations using C/C++ and the transistor-level simulations using Hspice. Then in Chapter
Four, layout description and measurement environmental setup are mentioned. Finally, the
conclusion and future work are discussed in Chapter Five. As a demonstrative example, a
resolution 9x9 ARMCNN without elapsed operation (ARMCNN w/o EOQ) is realized in
TSMC 0.35um 2P4M Mixed-Signal technology. Both simulation and experimental results

have verified the superior characteristics of the ARMCNN system.



CHAPTER 2
ARCHITECTURE AND CIRCUITRY

2.1 Operational Principle and Architecture [27]

The architecture of ARMCNN is similar to that of RMCNN [1]-[4]. The operation
procedures of ARMCNN can be divided into three phases: the pattern learning phase, the
ratio-weights generation phase, and the pattern recognition phase. One difference between
ARMCNN and RMCNN is that in the recognition operation where the noisy pattern to be
recognized and recovered is treated as the initial values of cell state voltages in ARMCNN
and as the neuron input in RMCNN. The operational principle of ARMCNN is described
below.

In the autonomous ratio-memory. cellular_nonlinear network (ARMCNN), the dynamic

equations of the cell state voltage x; (t)."andrits'derivative x; '(t) can be expressed as

X (t) ==X (t)+ z %kl(t)
C(k,NeN?(i,j) ij
Y () = f (%;(0)) Eq.(2.2)
—U;R; < X; 0)< U;R;

Eq.(2.1)

where N°(i, j) is the set of r-neighboring cells N, (i, j) without the cell C(i,j). The

r-neighborhood system N, (i, j) of the cell C(i,j) is defined as the set of all cells
including C(i, j) and its neighboring cells, which satisfy the following property
N, (i, ) ={C(k,)[1<k <M 1<I<N |k—i|+|I-jl<r}

The term r is an integer called the radius of the neighborhood layer and r equal to one in our

design. Moreover, x;i(0) is the initial value of the cell state voltage and has a value of ujR;;



(-u;jRij) for a black (white) pixel and a mediate value for a grey pixel.
The coefficient a;(t) represents template A weight which correlates the cell output yi(t)
to the cell state xi(t). The template A is spatial-variant and time-variant [18]-[19], and the

template a;j(t) can be written as

0 Qi) j 0) 0

A (0) = | &0 (0) 0 i1y (0) Eq.(2.3)
0 I (V) 0

That means only four neighboring cells’ outputs are correlated to the central cell. The four
neighboring cells are up, down, left, and right side cells. Since the proposed ARMCNN has
the neuron capacitors to store the initial state voltages, no template B weight is used to
correlate the cell input uy to the cell state x;; and the template B coefficient is set to zero. That

is to say no constant input is injected during pattern recognition phase.

Bij (t) i

O O O
o O O

0
0 Eq.(2.4)
0

In the learning period, assume that there are m patterns to be learned in the ARMCNN.

The absolute weight sjju can be determined by the modified Hebbian rule as [1]-[4]
Sja = D Ujug Eq.(2.5)
p=1

Where ug is the pixel input at ith row and jth column of the pth pattern out of m input

patterns, u) is the pixel input in the set of N’(i, j). After learning all input patterns, the

absolute weight sjjq is to be compared with the strongest learned weight. Those weights that

are equal to the strongest absolute weight will stay and transform into the ratio weight ajjq as

1
PN

Nr (i, j)

Qijg =

Eq.(2.6)
Where PNy;(i,J) represents the number of preserved weights left. On the other hand, absoluted

weights that are less than the strongest learned weight will be set to zero and disregard. This



procedure determines and stores the final ratio weights between cells. The new Hebbian

learning algorithm can be written as following:

Step 1:  find the absolute weights template A s;j(p) after p patterns are learned

0 SSij(i1) j (p) 0
$;(P) = | SSji(jn(P) 0 SSjicjony (P) Eq.(2.7)
0 SSiianj (P) 0
Sija (P) = Sjja (P —1) + ufug Eq.(2.8)
(k,1) can be (i+1,j)or (i, j+1) or (i-1,j) or (i, j-1)

Step 2:  determine the global maximum value of the absolute weights in system
Gss = max("[ssy)
Step 3:  compare the absolute weights:with the. global maximum weight. Those equal to
the strongest absalute weights will stay. On the other hand, those less than the
strongest absolute'weights will-be set to zero.

Step 4:  transform the remaining absolute weights into the ratio weights

Qg = if ss;, =Gss

PN i jy Eq.(2.9)

8 =0 if ss;, <Gss

Where uf* and uj™ are the input of cell(ij) and cell(k,l) respectively. The PN, is
number of preserved weights in N.(i,j) and r = 1. The boundary cells are exceptional cases
since they do not correlate to the four neighboring cells: up, down, right, and left. They might
correlate to only two or three neighboring cells. Therefore, the condition of the boundary cells
can be expressed as

Xe t)=0, U t)=0 Eq.(2.10)
The notation "7 means this cell is a boundary cell.

10



Table 2.1 shows some sample template A of absolute-weights and ratio-weights. It is
clear that only the strongest absolute weights are set to one after comparing with the global
maximum absolute weight Gss, and the others are disregarded and set to zero. With the aid of
this technique, the template A suppresses the unimportant weights and enhances the
significant weights to get a feature enhance template. After the comparing operation, the
remaining weights are set to appropriate value (1, 1/2, 1/3 or 1/4) and the others are set to zero.

This equation determines the final ratio weights directly without elapsed operation.

Absolute-weights Absolute-weights
(learned) (enhancement) Ratio weights
0 2L 0
3 0 040 0 0 0
s _| 1 1 _ _
Z,4 3 0 3 2,, 710 0 W,, 0 0
1 07250 0 1 0
0 — 0
L 1 |
0 L 0
1 0 1 0 0 0
z5=lo0 o ;— 2,20 0 0 w,,=| 0 0
1 0 0 0 0 0 0
0 — 0
L 3 i
- . =
0 -3 0 . 0 0 0
1 1 1 1
2:2: I 0 I Lo, = 1 0 1 Wy, = 2— 0 2—
0
0 1 0 0 0 0
i 3 ]

Table 2.1 some sample template A of absolute-weights and ratio-weights

In this work, a 9x9 resolution ARMCNN is implemented and measured. Fig 2.1 shows

the block diagram of the ARMCNN w/o elapsed operation (EO) and the controlling
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relationship between every block. A 9x9 shift register is used to store image patterns. The
patterns are generated by pattern generator and are inputted into the shift registers in series.
Once an image pattern is stored in register completely, the pattern is inputted into ARMCNN
w/o EO in parallel for pattern learning. After all patterns are learned and ratio-weights are
generated, the ARMCNN w/o EO enters into recognition phase. The recognition result is
readout through the output stage, which is controlled by two decoders: Column_Decoder and
Row_Decoder. Since there is only one pin dedicated for output readout, the state of each cell

is outputted in series.

. Output in
Implement on chip series

- —_ — — — — 5
input patterns State voltage Selecting
in parallel of every cell columns
9x9 Shift o 9x9
registers | ARMCNN

'Y A ; A ) A
input patterns Controlling Selecting

in series signal row |

» Output stage | Decoder_C

Pattern |

generator Decoder_R

\

Contllolling

Fig 2.1 The block diagram of ARMCNN and controlling relationship between every block
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Fig 2.2 The general architecture of ARMCNN
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The general architecture of ARMCNN w/o EO and connections between cells and RMs
are shown as Fig 2.2. Each cell connects with four neighboring RMs (the UP, DOWN,
RIGHT, and LEFT). Every RM stores the ratio weight between two pixels. The detailed block

diagram of two neighboring cells and RM in between them is demonstrated in Fig. 2.3, where

cell(i,j) corresponds to the ith row and jth column cell, and up is the input voltage of cell(i,j)

of pth pattern. The block T1 and T3 are voltage-to-current converters. The block T2D is also
a V-l converter except that its output is in absolute current form. Moreover, T2D can detect
the sign of voltage state Vx;; and stored separately. The block W uses the technique of current
mirror to generate the output current of the cell by ratio (1x, 1/2x, 1/3x, and 1/4x). The ratio
current will be determined by the result of local counter, Counter_L, according to how many
weights are preserved. The capacitor Cw, stores the absolute weight during learning period
and the resultant voltage Vcy then transfers.into current form and the current comparator
COMP compares Vc,, with glebal maximum absolute weight in current. The comparator
COMP is a simple current comparator which:decides whether the ratio weight shall be kept.

The output of Counter_L is to control the' W to weight the output of each cell.

Cell(ij) | RM | celige))
— Counter| | Counterfg—
lCij /| COMPF. l
i
X ) come Uk
COMP clk2 |
Xkl
T3 T2D ~— T1
| clk3 |
clkl clkl Vref
— — re
clk4 W
) Vref—— |
Ck|§ _I' Cw iCij

Fig 2.3 The detailed architecture of ARMCNN
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The operation procedures of ARMCNN can be divided into three phases: learning,
ratio-weights generation, and recognition. In the learning period, clkl is set to high and clk2 is

set to low. The architecture in learning phase is shown in Fig 2.4, where cell(i,j) input voltage

of pth pattern ug is transferred into current lu; and sent to node x; . Current Iug can be

expressed as

lug, when uy >1.9v
Gm;, x (uy —1.5) when 1.5V <up <19V
lu; =<0 when uy =1.5v Eq.(2.11)
-Gmy, x (1.5-uf when LIV <uf <1.5v
—lug, when uy <1V

where Gmryy is the transconductance of V-1 Converter T1. The voltage level 1.5V is defined as

zero, so the current flows the opposite direction when up is larger or smaller than 1.5V. If

u; gets larger than 1.9V or less.than 1.1V; the output current lu? of T1 becomes saturated

and remains at lug,. In this work; lusg is-.chosen.to be the minimum required current to keep

the circuit work properly and is about 6:5uA.

Cell(ij) | RM | celk,l)
— Counter | Counterg—
lcij COMP Ckll
Uij Uk
| luj; Xij Xyl lu |
TI—= T2D T3 T2D— T1
clk3 J_ lyii Vi J_ clk3
I T | ’ LT |
Vref W W Vref

) m ’/ )
Cu 'NT o™ i

Fig 2.4 The architecture of AMCNN in learning phase
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The current lusy flows to the node x; and converts to a state voltage Vx; through the

resistor Rij and capacitor Cij, which are the resistance and capacitance associated with the

neuron cell(i,j). Then T2D outputs an absolute current ly7 and a sign sign(Vx;) according
to the stage voltage Vx. Since the function of T2D is similar to T1 and T2D has an

absolute-value circuit, the output current Iy and the sign(ly;) can be written as

1Y o when uy >1.9v
Gmy,p x (VX7 —1.5)  when 1.5V <uf <19V

ly; =40 when uy =1.5/
_GmTZD X (1.5_qup When 1.1V < Ulj) <1.5\/ Eq.(2.12)
=y, when uy <1V

(V) oV if VxP < 1.5V

sign(Vx; ) = / Eq.(2.13

7 av ifVxi > 16V “213)

where Gmryp is the trans-conductance of T2D and the current lysy is the saturated output
current of T2D. It is designed to be around 6.5uA as well. The different between T1 and T2D
is that ly;; always flows in the same direction whether Vx; is larger or smaller than 1.5V.
Moreover, the sign of Vx; is detected by a detector in T2D and sent to the block W.
According to the signs of two neighboring input voltage Vxij and VxKI, the output current
charges or discharges the capacitor Cw. W is the weighting circuit which transfers the input
current ly;j into ratios: 1x, 1/2x, 1/3x, 1/4x. In learning period, the block W is set to a default
state, which multiplies ly;; by 1/4. The reason of choosing 1/4x as the default state is that it
helps to control the length of learning time to charge or discharge the capacitor Cw. In

addition, the capacitor Cw is a 1.5pF poly-poly capacitor implemented on chip. The

15



capacitance value of Cw is chosen as a compromise between weight storage time and
capacitor chip area. The current lysy is chosen as the smallest current that can have the V-1
Converter operates regularly and is about 6.5UA in this work. The smaller the current lysy is,
the better control of the value of Vwijq on capacitor Cw can be. In this design, the learning
time of a pattern is set to 100ns.

After all patterns are learned, an absolute weight is generated and stored at the capacitor
Cw. If two neighboring cells are having positive relationship, for example if they are both in
black or both in white, the capacitor Cw between them is charged. On the other hand, if they
are having negative relationship, for example they are one in black and the other in white,

then the capacitor Cw is discharged. Thus the voltage Vwijq stored on Cw can be expressed as

Vvvijk,(p)Jr%Iysca\f\l)<t wensign.of Vi and \x, are the sane
VW, (p+1) = 1 Wsatxt Eq.(2.14)
Vvvijk,(p)—E wa when siogn of W ad \k, aen't te sane

The voltage Vwija(p) stored on the capacitor Cw represents the absolute weights after the pth

pattern is learned. Since the output current of block W is set to % ly., in learning period, and

there are two W blocks trying to charge or discharge the Cw at the same time, the voltage

changing is 1lysatxt( ., 1 lysatxt
2 Cw 4 Cw

j. The time for each pattern to be learned is 100ns in
this design.

The block T3 is also a V-1 Converter, which transfers the voltage Vwijq into the current
form I3 and sends this current to a simple current mode comparator COMP. The block
COMP compares I3 with a global maximum current lyax, Which is corresponding to the

largest value of absolute weight among the system. If Iy is equal or larger than Iyax, COMP

outputs a logic “high” signal to the local counter Counter_L., which means the ratio weight
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between the two pixels should be preserved. Otherwise, if I13 is less than lyax, COMP outputs
a logic “low” signal to Counter_L, which means the relation between the two pixels is not
strong enough and is of no interest.

The interconnection between COMPs and Counter_L is described in Fig 2.5. Since
every cell connects with its four nearest neighbor cells, there are four COMPs in one cell.
Every COMP sends out a logic signal to Counter L. At the end of learning period,
Counter_L counts how many “logic high” signals are given from the four COMPs. If there is
(are) only one (two) “logic high”, that means only one (two) ratio weight should be preserved,

and so on. Then Counter_L controls the W to weight the output current of T2D as

1xly; (% Iyijj. Similarly, according to the total number of “logic high” signals are counted in

one cell, the Counter_L may control the block W to weight the output current of T2D as

' RM
|
G , r Cha
k nury gh — i
N COMP i
s
\
. i ¥ P Ir3 picHT
RM " comp |»| Counter L |« COMP | RM
- — -
Tt verr 7 Iy . Thtax
s X
y COMP .
-+ — = — A |
Ci; Lz I13_pown Coonn
|
RM

Fig 2.5 The inter-connection relationships between COMPs, Counter_L and RMs

%Iyij or %Iyij. Moreover, the logic output of COMP controls the switch sw_COMP as

shown in Fig 2.3. This behavior is known as no inter-relation between the two neighboring
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cells is generated, and thus the output contribution path of each other should be cut off. In
other words, the ratio weight between two pixels is zero. For example, if the logic output of
COMP between the two neighboring pixels is low, which means the ratio weight is zero, the
switch sw_COMP should be turn off. Therefore, the output contribution between these two
pixels is isolated in recognition period.

The ratio weight is generated as Counter_L counts up the total number of logic “high”
from COMPs and controls the block W with appropriate weighting. After that, the operation
enters into recognition phase. The architecture in recognition period is shown as Fig 2.6. As
shown in Fig 2.6, clkl is set to low and clk2 is set to high. The state of switches sw_COMP is

controlled by COMP. A noisy image pattern is inputted to perform recognition and recovery,

noi

and uy" represents the input voltage of noisy pattern of cell(i,j) and cell(k,I)

noi

where uj

respectively. They are inputted to~T1 and transfer to currents Iu{j‘Oi and lu}”. These currents

then convert to state voltages Vixi” and-Vxg" through the resistor Rj; (Ri) and capacitor Cj

(Cw). T2D converts state voltages into current Iyi?Oi and 1y . In accordance with the ratio
weights generated previously, the output current of each cell is weighted as 1x, 1/2x, 1/3x,
1/4x, and 0x, and contributes to its corresponding neighbor cells. For instance, if the weight is
set to 1x, it means only one (two) of the four neighbor cells is correlated to this cell. Thus
only one (two) neighbor cell will contribute its current output to the cell cell(i,j), and so on. In
the case where the two neighboring cells have no correlation to each other, the COMP wiill

output a logic “low” signal to the local counter, and this signal will turn off the output

contribution path between them as well.
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Fig 2.6 Architecture of ARMCNN in recognition period

According to KCL, the dynamic equations of the,cell state voltage Vx;(t) and its derivative

Vx; (t) can be expressed as Eq.(2.1) and Eq.(2:2). In addition to that, the weighting of output

currents can be derived from the following eguation:

Iw,, = Qg X 1Yy
111
aijk, El,E,g,Z,OrO Eq(215)

k,lei(j-1),i(j+1),(i-1)j,or(i+1)]

where a;,, is the template A ratio weight coefficient and generated by the block W. The

coefficient a;, can be 1, 1/2, 1/3, 1/4 or 0, which represents the number of preserved

weights for the cell is 1, 2, 3, 4 or 0, respectively. The current lw,, is the resultant current

that contributes to cell(i,j). It is equal to the output current ly,, of neighbor cell times the

coefiicient w, .
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2.2 Circuit Implementation

In this work, several circuits have been employed. The voltage-to-current converter and
current weighting circuit are discussed in section 2.2.1. Then a simple current mode
comparator is described in section 2.2.2. Section 2.2.3 talks about some digital components
such as counter, decoder, voltage detector and driver. They are necessary for some calculation
purpose. At last, the shift registers, which functions as the input pattern interface, and the

output stage circuits are described.

2.2.1 V-1 Converter

As shown in Fig 2.3, The block T1, T2D,.and T3 are all V-to-1 converters. The circuit of
T1 and state resistance R;; / capacitance Cj-are implemented as Fig. 2.7, where the MOS
dimension is written next to the MQOS name. Fhe unit of MOS dimension is in micro-meter
(um). In Fig 2.7, the left side of this circuit is a differential pair structure with the cascode
current mirror, and the right side of circuit is the state resistor / capacitor, formed by diode
load (MR1 and MR2) and MOS capacitor (Mc) respectively. The purpose of state resistors is
to limit the operating range. The voltage Vb1l is a constant bias voltage, which is set to 1.5V.
The reference voltage Vref is used to compare with input voltage and sets to 1.5V. If the input
voltage Vin is larger than Vref, the output current lo flows from left to right (M4 = M6 2>
MR2) and causes the stage voltage Vx; raise to 1.9V. On the other hand, if the input voltage
Vin is smaller than Vref, then the output current lo flows from right to left (MR1 = M2 2> M7)
and causes the stage voltage Vx;; drop to 1.1V. In other words, the state voltage Vx; is ranged

from 1.1V to 1.9V.
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Fig 2.7°T1: \oltage to current converter

Fig 2.8 is the circuit of T2D:block; a voltage to-absolute current converter. The left side
of T2D is a differential pair, which is the’same as T1, and the right side of T2D is the absolute
output current structure. The constant bias voltage Vb2 is 1.5V, and the constant bias voltage
Vb1 and the reference voltage Vref are the same as in T1. The operating principle of T2D is
that when the input voltage Vin is larger than Vref, the MOS M2 is cutoff and the current flows
from MOS M3 through M5 and M1 to M7. The cascode current mirror (M3 ~ M6) mirrors this
current to M4 and to the right side of T2D since MOS M2 is cutoff. Note that the parasitic
capacitor at the source of M10 (the input of inverter) is charged to high. Consequently, the
MOS M11 is shorted and M10 is cutoff. Therefore, the current lo flows through MOS M12 to
M14. The other cascode current mirror (M12 ~ M15) forces MOS M8 to flow the same
amount of current as MOS M14 does. At last the absolute output current lo,abs is mirrored

from the MOS M8 to M94. Note that the switches M10 and M11 will not turn on at the same
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time. This can be seen from the equation that for MOS M10 to be on: Va — Vp > Vth, that is
Vp < Va - Vth. But for MOS M11 to be on: Vp — Va > Vih, that is Vp > Va + Vih.
Accordingly, The switches M10 and M11 will not turn on at the same time. In addition, if the

differential pair provides no current flow into or out from node Vp, both switches are off.

——
— H
M3 M4 M8
(412) ﬂ }_ K @)  (12/2)
IBIAS

Vbl
GD s ul— |‘| - ]’MG (1.4/.35
- -

(41.35) 4138
Vp Va

Vin |<—_| L—>| Vref (4.2/.35)

M?L| = M |\|;2 hE S -

(3/.35) (31.35) M12 I<—_|=_ |<—_|=_M13
M7b ]| @8 L3 :] ~ 41.8)

| M7
@) [T Jaafes) | M15
12) 412)
-

Fig 2.8 T2D*Moltage to absolute current converter
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On the other hand, if the input voltage Vin is smaller than Vref, the MOS M1 is cutoff and
the cascode current mirror (M3 ~ M6) is off. Since M1 is operating in cutoff region and the
current source M7 is forcing a current of 6.5uA to flow to ground, the direction of the output
current lo is from right to left. Moreover, the parasitic capacitor at the source of M10 (the
input of inverter) is discharged to low. As a consequent, the MOS M10 is shorted and M11 is
cutoff. The other cascode current mirror (M12 ~ M15) is off as well. A current of 6.5UA is
flowing from M8 through M10 and M2 to M7. The absolute output current lo,abs is also
mirrored from the MOS M8 to M94. Note that in the both cases, the absolute output current
lo,abs is flowing in the same direction whether the input voltage Vin is larger than Vref or not.

Therefore, the T2D is called a voltage to absolute current converter.
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The weight circuit is shown in Fig 2.9, which is to generate the desired ratio of the
output current from T2D. The possible current ratios are: 1x, 1/2x, 1/3x, 1/4x. In practical
design, the weight circuit is directly combined with T2D to form the desired ratio. Note that

the MOS M94 in Fig 2.8 and the MOS M94 in Fig 2.9 are the same. Since we wish the

[ Vinca = !
" . clk3
| Vinnio > :
C
Ve . Vit !
T e T —

M94 M91 M92 M93 ::I (4/2)
312) 312) 3/2) (312)+(1/2)
)
drh =Tk iy > B

ﬁDﬂ *Hﬂt i

Mdummy M40
(1.2/.35) (212)

DRIVER
T
1
i
DRIVER
T
1

4L
L
71|

=

Fig 2.9 Weight: Generation of ratio current

generated current ratios to be précised, the MOS M91, M92, M93, and M94 do not use
minimum length so as to avoid the impact of channel length modulation. The four current
paths are controlled by the circuit DRIVER. There is at most one path flowing to the MOS
M40 at a time and the other three paths are conducting to the ground through a dummy MOS
Mdummy. Note that during the period of pattern transferring, all four paths are conducted to
the ground through the MOS Mdummy to ensure no charging / discharging behavior toward
the capacitor Cw. The use of Mdummy and DRIVER corrects the mistake made by the
previous design. The upper part of weight circuit is a sign detector, which detect the sign of
state voltages of the neighbor neuron and itself. If two neighbor neurons are having the same
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sign, then XOR outputs a logic low to turn on the MOS M52 and M53 and turn off the MOS
M54 and M55. This will charge the capacitor Cw. On the other hand, if two neighbor neurons
are having different signs, XOR outputs a logic high to turn on the MOS M54 and M55 and
turn off the MOS M52 and M53. This will discharge the capacitor Cw. The detailed circuitry

of Detector and DRIVER will be described in section 2.2.3.

2.2.2 Comparator (with T3)

The V-1 converter T3 is the same as T2D except that T3 is followed by a current mode
comparator and T2D is followed by a weight circuit. The schematic diagram of T3 with a
current mode comparator is shown in Fig 2.10. The output of the V-I converter T3 is sent

directly to the comparator COMP. The comparatorwe choose here is a simple current mode
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Fig 2.10 The schematlc o?(]/ } converter T3 and current mode comparator COMP

comparator. The reason we go for simple structure is to save the area of the whole chip. Its

operating principle is as following, if the output current of T3, lors, is larger than or equal to
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the global maximum current, Imax, which means the absolute weight should be preserved, the
logic output of COMP is high. On the other hand, if the output current of T3 is smaller than
the global maximum current Imax, which means the absolute weight is of no significance, the
logic output of COMP is low. Since we want to achieve that the output of COMP is high if
lors is equal to Imax, the sizes of Mn2 and Mn4 are designed to be a little smaller than Mn1l

and Mn2. Doing so makes the logic output is high even if lor; equals to Imax.

o) ol: [:
—] —

-[? — ' Mcl |I<—_-l— Mc2
» (2.21.4) . (2/.4)
B [

— ! Me3. ' Mc4
(2.2/1) (2/1)
P

Fig 2.11 The dimension of the current'mode comparator COMP

2.2.3 Digital Components

In the ARMCNN system, there are also some digital components being employed to
achieve desired functions. For instance, the local counter Counter_L is to count up the total
number of preserved weights in a cell. The global counter Counter_G is to control the
switches swl ~ sw6, which is described later in this section. The voltage detector Detector is
to detect the value of state voltage and output a logic signal (low or high). The last one is the
weight selection circuit Driver. Driver decides which of the four current paths are conducted.
The decision made is depending on the 2-bit logic output of the local counter Counter_L.. In

this section, all digital circuitries are discussed one by one in detail.
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CLK —— > Clk > Clk
Reset Reset 6 |— Reset 6

Fig 2.12 The schematic diagram of the counters in this chip

Counter

In Fig 2.13, the counters Counter L and Counter G are both formed by two
asynchronous reset flip-flops as shown in Fig 2.12. The schematic diagram of the
asynchronous flip flop is demonstrated in“Fig'2:14. Instead of using digital flip-flop (DFF),
using asynchronous reset flop-flops can ‘ensure correct function under slow operating speed.
In addition, it does not have the-static power consumption problem as DFF does. The switch
S_en enables the counting operation-and it can be described in Fig 2.15, where CLK is clock
signal and RST is reset signal. If the signal RST is set to low, b0 and bl are always low. The
signal S_en must set to high during the counting operation. If not, b0 and b1 do not change
even if CLK is oscillating. Note that signal b0 represents the logic output of the counter’s LSB
bit while signal bO_bar represents its compliment and signal b1 represents the logic output of

the counter’s MSB bit while signal b1_bar represents its compliment.

o L
jg— L.

_lr_
4 s

Fig 2.13 The schematic diagram of the asynchronous flip-flop
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(b) Global Counter

There are six switches used in the local counters and they are controlled by the combination

logic from the global counter. This can be simplified by using only four switches in the local

counters. The four outputs, “b0, bObar, b1ybdbar”, ¢an be used to control the four switches in

the local counters. This not only reduce the number of Sswitches used, but also simplified the

layout routing.
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Fig 2.15 A counting example of the counter
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Detector

The detector is used to detect the voltage level of each state voltage and transform to a
logic signal (either high or low). As a result, the logic signal can be handled by the
combinational logic. The detector is formed by a tri-state element and a simple inverter as
shown in Fig 2.16. Since the input voltage to the detector is an analog signal ranging from 1V
~ 2V, a simple inverter train structure will lead to constant current leakage because both the
PMOS and the NMOS are on at the same time for the first inverter. Therefore, the use of
tri-state buffer avoids the problem of the constant current leakage but at the expense of an

additional controlling signal VB1.

<
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Fig 2.16 The schematic diagram of the detector and the tri-state buffer

Driver

The driver circuit is to control the current ratio paths of the weight circuit. It allows only
one path to charge / discharge the capacitor Cw while the other three paths are conducted to
the ground. In addition, during the pattern transferring period, the capacitor Cw should not be
charged / discharged. Therefore, the driver circuit should conduct all four paths to the ground.
This can be done by ORing the signals clkl and clk2. The signals clkl and clk2 represent the

learning period and the recognition period respectively. Consequently, ORing clkl and clk2
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outputs a logic signal control and it is true when either of them is logic high, which means the
signal control will be high during learning and recognition only. The signal control will be

low during the pattern transferring period. Please refer to Fig 2.17.

Vdetect
D1 —
clk2 D&}—D& Bc D
control
clkl Vdetect
Driver DB

Fig 2.17 The schematic diagram of the driver circuit

A NAND gate generates a logic low only if its inputs are all low. The three inputs of the
NAND gate are: D1, DO, and contralsiThe'signal, control is described earlier and the signals
D1 and DO are the output result of the local counter Counter_L. The combination of the
signals D1 and DO and their compliments decides which of the four ratio paths are conducted
to the capacitor Cw while the other three ratio paths-are conducted to the ground. Note that the
logic output D is to control the path to the capacitor Cw, and logic output DB is to control the
path to the ground.

As shown in Fig 2.18, the default state (D1, DO: 11) of the weight circuit is set to ly;;
multiplies by 1/4. All states returns to default state if the signal reset is triggered. According to

the output of the counter, the state is changed as following:

If counts one, the state changes to (D1, DO: 00), with the ratio set to ly;; by 1.

If counts two, the state changes to (D1, DO: 01), with the ratio set to lyj; by% :
If counts three, the state changes to (D1, DO: 10), with the ratio set to ly;; by%.

If counts four, state changes back (D1, DO: 11), with the ratio set to ly; by% :

29



ratio: 1x

Fig 2.18 The state diagram with corresponding ratios

Decoder

Since there is only one output pin used

in this work, two 4-bit = decoders,
Decoder Row and Decoder_Column, are
implemented to control the switches of the
output stage. It allows only one of the state
voltages of the 9x9 neurons to output at a
time. Decoder_Column controls column
switches SWeci1 ~ SWeig (SWea1 ~ SWeog,
SWes1 ~ SWesg ...etc.) while Deocder Row
controls row switches SWgr; ~ SWkg. This
structure allows every pixel to be read out
one by one. The schematics for both
decoders are the same. As shown in Fig 2.19,
the decoder is formed by nine 4-input AND

gates and four inverter-string type of buffers.

LSB
RAO

buffer: v

MSB

RAI RA2 RA3

10 1o o 1o
AND gate
o
¢ RO
L
’7
-
o R1
° }
’7
| J
? |
R2
®
.
o :
¢ R9

Fig 2.19 The schematic of the 4-bit decoders
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2.2.4 Output Stage and Input Pattern Interface

In this work, the circuit of the output stage is used because there is only one pin available
for output. Therefore, the 9x9 neurons (total 81 neurons) share the same output pin. The
schematic diagram of the output stage is shown in Fig 2.20, where the nodes xi; ~ Xgg are the
node x; in Fig 2.3. The MOS M11 ~ M99 perform as level shifters to drive the parasitical
capacitance of the switches and metal line. The switches SWc11 ~ SWcgg and SWgy ~ SWgg are
controlled by Decoder_Column and Decoder_Row respectively. The state voltage of each
pixel is readout one by one. The arrow with a circle enclosed represents a current source. In
the output stage, all pixels share the same current source. Since only one pixel is conducted at
a time, one current source is enough for this design. Furthermore, using few current sources
saves more power consumption. The unit-gain buffer is a negative feedback OP-amp and is
used to drive the loading of the output pad. The circuit of the unit gain buffer is described in

Fig 2.21.

SWri

ol e

il Ut ] ]

Xu Xis Xio SWrz

unity-gain
buffer  Output

N
Wt W) W
hﬂﬂ hﬁﬁ hﬂg -
VDD VDD VDD
L "t el w ] 6.5UA
Xos X2

®
®
° py

SWro

W W' W -
Vpphf{iﬂ. .?Dhl_lj”’”hfﬂ
Wil L oWl

M98
Fig 2.20 The schematic diagram of the output stage

M21
Xo

Xo Xog
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Vin
(80/0.7)

Fig 2.21 The circuit diagram of the unit gain buffer

In this work, since we have to input any arbitrary learning patterns, the shift registers are
used as pattern input interface. As shown in Fig 2.22, each block represents a static flip-flop.
The operation of learning period is demonstrated here. In the beginning of the learning period,
the control signals clk3 and newp are turned on-and the node ptn inputs the learning patterns
pixel by pixel. After the clock of:flip-flops, DEF, oscillates nine times (because the cell array
is nine), the signal pin turns on to input-the learning pattern into each pixel. Before the signal
pin turns on, the signal newp turns off te.prevent the pattern changes due to a glitch. After the
pattern is learned, the operation above is repeated again so as to input the next pattern.
Depending on the total number of patterns to be learned, the operation above is repeated until

all patterns are learned.

Ui Ui Ujj Uij+1 Uig Ui
\l \T_ clk3 Ipin I Cuin i \% clk3 l
ptn D Q D ol— N—p o 1o  o}—

DFF > Clk eeo° > Clk . l newp > Clk ez > Clk

noi noi
reset 1 Reset Q| Reset Q Reset Q| Reset Q|
Vnoi—o Vnoi —°R

R
I CNoi

Fig 2.22 The pattern input interface formed by the shift registers
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Fig 2.23 (a) is one part of Fig 2.22, which is the input stage of single pixel. Fig 2.23(b)
shows how to mix the innocent learning pattern with noise in recognition period. The
capacitor Cyy is an embedded poly-poly capacitance with magnitude 0.45pF and the
capacitor Cyoy is also an embedded poly-poly capacitance with magnitude 0.1pF. In the
learning period, the capacitor Cyoy is pre-charged to a voltage level Vo, and the control signal
noi always turns off. In the beginning of the recognition period, the noisy pattern is inputted
to perform recognition and recovery. This is done by storing the innocent learning pattern in
the shift registers first, then turning off the signal clk3 to isolate each static flip-flop. While
the signal noi turns on, the behavior of charge sharing occurs between the capacitors Cyy and
Cnoi- As a result, the resultant voltage on the node Uij can be achieved by adjusting the

capacitance ratio of Cyy and Cyo.

Uij
Ujia
| Cui I _ _
N ck3 \_ pinnéwp = Noisy Pattern Generation
ptnl D Q —o\o————o\o—— D Q=
DFFt —p> Clk 3 noi \{ D> Clk 3
rese Reset Reset
Q\/noi—°F>’— - CNOi T T CUin
= 0.1pF 0.45pF

Fig 2.23 (a) The input stage of a pixel (b) The structure used to mix the pattern with noise

2.2.5 Circuit for Global Maximum Absolute Weight Determination

The preservation of the absolute weight is determined by comparing it with a global
maximum absolute weight. If the weight is less than the global maximum absolute weight, the
weight is set to zero. Otherwise, the weight will be preserved. As a consequent, a circuit is

designed to determine the global maximum absolute weight. The global maximum absolute
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weight is in current form since the comparator COMP is a current comparator. This circuit is
a replica of the cell we used in the system, except it’s a simplified version which consists
circuits that determined the maximum current. The circuits are: the V-l converter T2D, the

current weighting circuit W and the capacitor Cw.

pad pad

Y X

Jvn T
12D T3
clkl Vey
- Vref E‘I:kL D_F%j

'fCW

Fig 2.24 The circuit to determine the-global maximum absolute weight

To generate the absolute weights, we set \; = 3V (or 0V) and turn the switch Msw on
and off three times. The resultant.veltage stored on capacitor Cw (Vcw) is the global
maximum absolute weight and can be readout through a unity-gain buffer to pad Vcw. The
voltage Vcw then converts into current Ir3 through block T3. In measurement, an Opamp

together with a resistor to form a close loop can be used to measure the current I3,

V.., —Vref
|, =v1a = I Eq.(2.16)
R
IT3
_>
AVAVAY,
PAD
Cl — VT3
—D
Vref >—A+

Fig 2.25 The off-chip current measuring circuit
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CHAPTER 3
SIMULATION RESULTS

3.1 Behavior Simulation Results [27]

Base upon the mathematical equations of a 9x9 resolution ARMCNN system, behavior
simulations are performed using the program C/C++. One hundred noisy patterns of a
character are generated for a fixed standard deviation of noise level. The recognition rate (RR)
of a group of m patterns is defined to be the number of successful recognitions divided by 100
X m at a fixed standard deviation of noise level. The patterns for learning are Chinese
characters “one”, “two”, and “four”’, which-are.shown in Fig 3.1. The recognition rates of both

the traditional RMCNN and autonomous RMCNN are tompared in section 3.1.1.

Fig 3.1 The Chinese Characters “one”, “two”, and “four”

The simulated recognition rates (RR) versus the standard deviation of noise level are
shown in Fig 3.2. It can be seen from Fig 3.2 that the proposed ARMCNN can recognize at
most four patterns. If five patterns are learned and recognized, the RR drops to zero. The RR

of ARMCNN is slightly increased as the number of patterns to be recognized is decreased. In
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comparison with the traditional RMCNN, the RR of ARMCNN is much greater than that of

RMCNN for o >0.3.

0.8

=
&
T

RMCHNN,

{ONE, TWO, FOUR)
o ARMCHN,

{ONE, TWO, FOUR)

Recognition Rate
o
.

=
ra

of B e e .

Li] 01 02 03 a4 05 0.6 o7 0.8 0.9
Starvlard Deviation of Mose Level l;lﬂ_:-

Fig 3.2 The recognition rates of recognizing Chinese characters ONE, TWO, FOUR, and at

different input approaches.

3.2 Hspice Simulation Results

The simulation of V-1 Converter T1 and the state resistor / capacitor (Rij / Cij) is shown
in Fig 3.3. The tail current is chosen as the minimum current that can have the operation
function properly. In this work, the tail current is set as SuA. The transferring curve shows that
the input voltage of T1 is linear between 1.2V ~ 1.8V. If the input voltage range of T1 exceeds
this range (i.e. smaller than 1.2V or larger than 1.8V), the output voltage of T1 is saturated (i.e.
1.2V or 1.8V, respectively). As a consequent, the voltage level 1.8V (1.2V) is defined as +1

(-1). The output voltage is then used as the input voltage for T2D.
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Fig 3.3 The Transferring curve of the V-1 Converter T1 and State Resistor / Capacitor

Fig 3.4 describes the simulation results of V-1 Converter T2D. Since the output of T2D is

in the form of the absolute current; the flowing direction of the output current is the same

whether the input voltage of T2D is_larger or smaller-than 1.5V. In addition, the transferring

curve is symmetric at voltage 1.5V. Note that the output current of T2D and the output result

of the current multiplied by one in weighting circuit are of a little voltage difference. This is

due to the effect of different Vds seen by the PMOS M8 in T2D and the PMOS M94 in W

block.

-2u

o

Current | (lin)

-y ]

-

f ]

1/4x ISAT
1/3x ISAT

1/2X lsat

1X Isar

: 1.5
Voltage ¥ (in) (WOLTS)

Fig 3.4 The Transferring curve of the V-1 Converter T2D and the Weighting Circuit W
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The DC simulation results of the current comparator COMP is shown in Fig 3.5. The
input current I,y is swept and the reference current Iger is kept as constant. The figure shows
that as the input current gets larger than the reference current, the comparator generates a
logic ‘high’ signal (Vout2) to the local counter. On the other hand, as the input current is less
than the reference current, the comparator generates a logic ‘low’ signal to the local counter.
The comparator is purposely designed such that if the absolute-weight current is equal to the
reference current, the ratio weights is preserved as well. Therefore, the MOS dimension of the

comparator is designed to output a logic ‘high’ signal even I,y is slightly smaller than Irg.

: i Ax 42] 0.35nm FEE
7 & |2
D000 1 G _ref) ] :
Dizgw0 v iwout) — 651 I —
ID0:sw 0 tvont) é N 2 -:E:
D0zswrlal( and E 6u 4| © %
= ] 1 E
~ 550 ]
RS [—i— o
L B e B B LB e B
4 > an .51 fn f.5m T
- Current 3 (in) (AMPEPS)

Fig 3.5 The Simulation Result of Comparator COMP

The OP-Amp is employed here to function as the unit gain buffer. Fig 3.6 shows the

frequency response of the OP-Amp
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Fig 3.6 The Frequency Response of the OP-Amp that performed as unit gain buffer
Fig 3.7 below shows the absolute weight generation of three correlated patterns in the

learning phase. The absolute weight generation can be conducted by the following equations

Isat = 6uA, Cw =1.9pF, t =100ns Eq. (3.5)
Isat xt
Vcw(p+1):Vcw(p)+2x%C— Eq. (3.6)
w
1.6uUAx100ns Eq. (3.7)

Vew(p +2) = 1.5V-42x 1.67V

1.9pF

where the term lIsat is the output current from the weighting circuit, the term Cw is the
capacitor that stored the absolute weight. The learning period t is adjustable; therefore, we

could adjust this interval to obtain the appropriate voltage level on the capacitor Cw. In this

experiment, the learning period t is set to 100ns. Note that in Eq.(3.6), the term % Isat is

set as the initial amount of current flowing out of the W block during the learning phase. The
Eq.(3.6) describes the voltage level on the capacitor Cw after (p+1)th pattern is learned,
which is the original voltage on the Cw, Vcw(p), and adds up the two neighboring current
output from the W block. The resultant voltage of Vcw(p+1) is shown in Eq.(3.7). The
absolute weight generation of three reverse correlated patterns in the learning phase is

demonstrated in Fig 3.8 as well.
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Fig 3.7 The absolute weight generation of three correlated patterns in the learning phase
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Fig 3.8 The absolute weight generation of three reverse correlated patterns in the learning
phase

The post simulations of the 9x9 resolution ARMCNN system are performed using the
tool UltraSim, which is dedicated for transient analysis and very suitable for this work. The
pre-simulation results of the 9x9 resolution ARMCNN system are shown in Fig 3.9, Fig 3.10,
Fig 3.11 with the Chinese characters “[ ~ ~ ~ — 7, respectively.

First we define the voltage level at output stage. The state voltage ranges from 1.2V to
1.8V, which has a voltage difference of 0.6V. However, due to the nonlinearity of the output
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stage (level-shifter), the voltage difference is only 0.54V, with 0.97V represents a black pixel
and 0.43V represents a white pixel.

Considering several factors that influence the accuracy of the current ratio such as,
process variation, biasing signals being disturbed by the controlling signals, layout and
routing, and the designed current ratio turns out to be inaccurate and varies at most 7.3%
during the post-simulation. Therefore, a tolerance must be defined to clarify whether the
recognition operation fails or it’s the inaccurate current ratio that leads to the imperfection.

According to the factors listed above, a tolerance is defined as 10% of the output voltage

Define:  Black pixel — 0.92V

Input waveform Postsim Result o
White pixel — 0.48V
Black 0.97V
0.88V
Noise LA
Level 0.70V
0.61V
0.52V
Postsim Waveform White L0
P Colli Col2 i Col3 i Cold '} Col5 i Col6 i Col7 i Col8 i Col9
=7 \“1—“—? e . § T . i - 5 - .

L R+ -1 2R el Black

M! j"4.,j1*ui1— _ILLH.L i1 jiu,uiL..___jL — | White

v v g -
=< 1 = x5 .- .- = o

e =3

Fig 3.9 (a) Noisy pattern “[“” (b) Post-sim recognition result of (a)

difference, which is 0.054V. Thus, as long as the signal is greater than 0.97V — 0.05V = 0.92V,

the pixel is black. On the other hand, as long as the signal is smaller than 0.43V + 0.05V =

0.48V, the pixel is white.
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Fig 3.10 (a) Noisy pattern “— ” (b) Post-sim recognition result of (a)

Define.  Black pixel — 0.92V
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White pixel — 0.48V
Black 0.97V
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Level 0.70%
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Fig 3.11 (a) Noisy pattern “— ” (b) Post-sim recognition result of (a)
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CHAPTER 4
EXPERIMENTAL RESULTS

4.1 Layout Description

In this work, a 9x9 resolution ARMCNN is constructed. In Fig 4.1(a), the layout of one
cell and two neighboring RM bocks is demonstrated, which can be better described by the
symbolic illustration in Fig 4.1(b). The total area of one cell and two RM blocks is about
205um x 185um, which compares with the previous work, the tradition RMCNN, shrinks
about 50% of area (400umx250um) The power consumption is as following: digital

' o

consumes about 160uA and analog consumes about -300UA at most.

- Illl\‘ \..\F'_
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::_ |’r }
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| =

=

..l
R Analog Power Digital Signal Lines

Digital Power

W/ainht | \Aoinht LI
PATCHOHER = vweIgnt

shift

. switch
register

T3 R|| CwR

T3 U|| CwR

\Alnimhe MY
vveiyric_

Tl RC | |T2D

Analog Signal Lines

(a) (b)
Fig 4.1(a) The layout of one cell and two neighboring RM blocks (b) The symbolic

illustration of one cell and two neighboring RM blocks
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Fig 4.2(a) The die photo of this chip (b) The symbolic illustration of this chip

The total area of this whole chﬂa IS 2 2_{mm»m2 24mm, where the TSMC standard pads
Q.r;- [ .-‘ \,_
including the ESD device, pre- dflx/er['éh eétpﬁarwé‘r -are employed. The package diagram is
S

shown in Fig 4.3 and the packag’é IS Gé?pms:t&@fﬂ' he total area included the ESD pads is

[t Ny 1k :
I.-\. '|

only 0.28 times of the traditional Rf\?leN_(A.Semm X 3.90mm).

NI

Fig 4.3 The package diagram of the ARMCNN

45



4.2 Experimental Environment Setup

The experimental environment is set-up as shown in Fig 4.4. The controlling signals and
input pattern signals are generated by the pattern generator of HP/Agilent 16702A, in which
the clock rate is set to 20MHz and the rising / falling time of a signal is about 4.5ns. The
output waveform of each cell is read-out in series by the oscilloscope TDK 3054B. The

supply voltage is 3V.

HP/Agilent
e’ 167024
Controlling bus
S ¥ 33bits
output L

TDK 3054B

Fig 4.4 The setup of experimental environment

The timing diagram of these control signals is demonstrated in Fig 4.5, where Clk1
determines the duration to charge / discharge the capacitor CW that stored the absolute weight.
While CIk2 is high, the system is operating in the pattern recognition mode. On the other hand,
while CIk3 is high, the system is operating in the pattern learning mode. Clk4 is functioned as
a reset signal, which reset the weight stored on the capacitor CW to 1.5V. DFF triggers the
static flip-flop to shift in the input pattern column by column. The signals newp and pin are

functioned as below. When the newp is low, the connection between shift registers is cut off.
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Thus, the data in shift registers won’t be altered by the glitch from the signal DFF. When
newp is high, the shift registers is able to transfer the learning patterns. Consequently, the
signal DFF oscillates only when newp is high. The signal pin allows the pattern that stored in
shift register to input into each cell. Since the operations of learning and recognition are
described with figures in Chapter Two, here we are not going to repeat that again. After three
patterns are learned, the ratio weights are generated in “Ratio Weight Generation” phase. The
signal Cou_L and Cou_G oscillate four times to change the output of Counter_L and
Counter_G from 00 - 01 - 10 - 11 sequentially, where Counter_G’s output controls the
switch S_enl ~ S _en6 and Counter_L’s output controls Sw_a ~ Sw_f to turn on one by one.
The signals noi and pin together become high to generate the noisy pattern into cells. Then the
circuit enters into recognition phase to recover the noisy pattern. Table 4.1 describes the

function and age of all controlling signals.
Ratio Weight

. Generation .
Learning Recognition

<= Phase =70 '::><:' A Phase =
Clk1 | ! !
clk2 | E E ||
clks | | i L]
Clk4 | | |
orr | J0VO0GOEJOOUIVIRE SOOUCTmI U
newp | | || || [ | [ |
pin | |
noi ! !
Cou_L | | FLHRH: |

Cou G

—
—
—
pr—
p—

Fig 4.5 The timing diagram of the controlling signals
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Control Signals Function

Clk1 High: to charge / discharge the stored weight on CW

Low: the path between cells and CW is cut off

Clk2 High: recognition mode starts

Low: recognition mode stops

Clk3 High: pattern transferring starts

Low: pattern transferring stops

Clk4 High: stored weights reset to 1.5V

Low: do not reset

DFF Drive the shift registers that store the learning patterns

newp High: the shift register is able to transfer the patterns

Low: the shift register is unable to transfer the patterns

pin High: the pattern stored in shift registers inputs into cells

Low: the path betweensshift registers and cells is cut off

noi High: the pattern-in-shift registers becomes noisy

Low: isolate the noise and innocent pattern in shift register

Cou L Drive the local counter in each cell

Cou_ G Drive the global counter

Table 4.1 The function of each control signals

4.3 Experimental Results

The output stage is described in Chapter Two. Note that there is only one pad used to
read out the state voltage of all 81 pixels. Therefore, a column decoder and a row decoder are

employed here to read out all 81 pixels one by one in series.
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The summary comparison of this work - ARMCNN w/o EO and the previous work —

RMCNN w/o EO is shown in Table 4.2. Note that both of them do not have elapsed operation.

Previous Work This Work
Technology 0.35um 2P4M 0.35um 2P4M
Mixed-Signal Process | Mixed-Signal Process
Resolution 9 x 9 cells 9 x 9 cells
No. of RM blocks 144 RMs 144 RMs
1 pixels 1 cell + 2 RMs 1 cell + 2 RMs
Single pixel area 400um x 250um 205um x 185um
RMCNN 9x9 array (include pad) | 4560 um x 3900um 2240 x 2240
Number of Pins 81 pins 51 pins
Power supply 3V 3V
Learning power dissipation N/A (large) 102mW
Recognition power dissipation 87mw 72mwW
Quiescent power dissipation N/A:(large) 39mw
Readout time 100ns 100ns
Power Lines N/A Analog: 2 pairs
Digital: 2 pairs
Ext. 1/0: 1 pairs

Table 4.2 the summary comparison of this work and the previous work

The output voltage levels of black and white are defined in section 3.2, where black pixel
is0.97V - 0.05V = 0.92V and white pixel is 0.43V + 0.05V = 0.48V.

The output of each pixel is read out column by column sequentially. The first column is
read from top to bottom and then the second column and so on. Fig 4.6 shows the noisy input
pattern “pP4” that is feed in for recognition and recovery and its presim and measurement
result. Fig 4.7 and Fig 4.8 are the input patterns, the pre-simulation results, and the

measurement results of the case “~ ” and “— ”, respectively.
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Fig 4.6 (a) noisy pattern “P4” is inputted for recovery (b) (c) experimental result of

recognition and recovery
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Fig 4.7 (a) noisy pattern “~ ” is inputted for recovery (b) (c) experimental result of

recognition and recovery
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Fig 4.8 (a) noisy pattern “— s inputted for récovery (b) (c) experimental result of
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4.4 Cause of the Imperfect Experiment Result
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The measurement results of all three characters show imperfection on the first row and
the second row first column, which also appears in the post-simulation. Further investigation
found that because in this work, a pixel consists of one cell and two RM blocks (UP and
LEFT). Therefore, after 9 x 9 cell arrays are put together, there will have redundant RM
blocks on the leftmost and the topmost cells, which might generated the undesired weights.
Fig 4.9 shows the top left 3 x 3 cell arrays, where the number inside the circle means the cell
output’s contribution factor to its neighbors and the lines between cells means two cells are
having relation. If the leftmost and the topmost cells’ color never change, then unwanted
weights will be generated on the redundant RM blocks. Fig 4.10 (a) is the desired ratio
weights of 3 x 3 cell arrays in Fig 4.9. Fig 4.10 (b) shows how the redundant RM blocks
contributes the undesired weights and lead to wrong ratio weights.

To solve this problem, redundant RM blocks must be removed to avoid undesired

weights contributed from redundant RM blocks:

Desired ratio weights Actual ratio weights

Fig 4.10 (a) desired ratio weights of Fig 4.9 (b) actual ratio weights due to redundant

RM blocks
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Fig 4.11 is the presim recognition result of pattern ‘P4’ for both the original design and
the modified design. It is clear that in the modified version of design, the imperfection on

every column’s first element is fixed. Fig 4.12 and Fig 4.13 are the presim recognition result

of pattern *~ “and ‘- ’

Presim waveform of the Original Circaits
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Fig 4.12 Presim results of pattern *— * for the original design and the modified design.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

A novel Autonomous RMCNN without elapsed operation is implemented. The modified
Hebbian learning rule with strongest weight comparison is proposed. The new design not only
inherits the advantage of the RMCNN, such as longer memory time, and image feature
enhancement, but also the die area shrinks to only 0.28 times of the original design, which
makes it feasible to be implemented on chip. Furthermore, all three patterns “~ ~ — ~ 4" can
be successfully recognized and recovery.

During recognition phase, the noisy input now precharges into state capacitor rather than
constantly injects to cells, which ds.‘proven to -improve the recognition rate as the
environmental noise raises. In addition, the proposed Hebbian learning rule ensures only the
strongest weights remains instead of comparing with a mean value of abs weight in a local
matrix.

The ARMCNN does not require additional elapsed phase to achieve the feature
enhancement of the ratio weight. The ARMCNN uses logic operation to generate the feature
enhance ratio weights directly after patterns are learned, which simplifies the complexity of
the design and reduce the operation time. More importantly, it yields the same recognition
rate comparing with the design with elapsed operation.

The total number of the learning patterns of ARMCNN is three. They are Chinese

characters one, two and three (—~ ~~ ). According to the simulation results by C language,
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ARMCNN vyields a better recognition rate when the environmental noise increases and when
the total number of the learning patterns increases to four.

In addition, the design has fixed the problem that a small current charges / discharges the
stored weights during pattern transferring. The dynamic flip-flop (DFF) in the previous work,
RMCNN w/o EO has caused dc power consumption problem. Thus, in this work, the DFF has
been replaced by the static flip-flop. Besides, the detector circuit is also modified to cutoff a

huge amount of quiescent power (from 32mW to 4mW).

5.2 Future Work

The ARMCNN w/o EO in this thesis can recognize all of the three patterns. However,
the redundant RM blocks cause some imperfection-on the boundary cells. The modified
circuit should be taped out again. Moreover,.there are six switches used in the local counters
and they are controlled by the combination logic from the global counter. However, the total
number of switches used in the local counters can reduce to four. By doing so, we can make
the layout routing easier. The controlling signals and total number of pins used are still too
many (51 pins in this work), which makes the measurement and design more complicate. It is
possible to reduce 9 input pins to 1 input pins and on-chip generated 3 reference voltage of
(1/2 VDD). Some controlling signals can be combined together to reduce the control signals
used. It can reduce 13 pins. The idea of replacing circuits for learning behavior and ratio
weights generation with digital circuits might greatly reduce the die area. Because now we use
many capacitors to store the weights and many analog circuits to perform learning behavior, it
not only takes space, but also increase the possibility of getting errors. The total elements
saved are: 144 capacitors (>1pF), 144 T3 and 144 COMP circuits, 81 T1 and T2D circuits.
Accordingly, it can reduce about a half of the chip area.
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