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自發性比例式記憶體細胞 

非線性網路之設計 

學生：周維德   指導教授：吳重雨 博士 

國立交通大學 

電子工程學系  電子研究所碩士班 

摘要 

在圖形辨識的領域中，聯想式記憶體是一種相當熱門的辨識方法，它能將含有雜訊

的圖形恢復成完美無雜訊的圖形，而比例式記憶細胞非線性網路已被證實可以作為一種

聯想式記憶的實現方法。而目前比例式記憶體非線性網路所面臨的挑戰即是如何提升其

在高雜訊的環境下的辨識率。 

本論文的主旨在於闡述自發性比例式記憶體細胞非線性網路（Autonomous 

Ratio-Memory Cellular Nonlinear Network，簡稱 ARMCNN）架構之分析與設計及其在

聯想式記憶及圖像辨識上之應用。所謂的自發性是指在辨識階段，帶有雜訊的輸入訊號

將在各個細胞存成初始電壓，而非一固定的輸入電壓。此外，本設計也具有免衰減操作

即可得到所需比例鍵值之優點。在圖形學習階段，過去的比例式記憶細胞非線性網路

（Ratio-Memory Cellular Neural Network，簡稱 RMCNN）比例鍵值產生方式是將絕對

鍵值（absolute weight）與細胞鄰近四邊的絕對鍵值平均值作比較，如果大於平均值，

則此鍵值將被保留，反之則忽略此鍵值。而新提出的 ARMCNN，是將細胞相鄰四邊的絕對

鍵值改為只保留最大的絕對鍵值。模擬結果證明自發性比例式記憶細胞非線性網路相較

於具有較高的辨識率。 

論文中除了以 Matlab 和 C 語言模擬自發性比例式記憶細胞非線性網路架構

（ARMCNN）及其在聯想式記憶和圖像辨識上之應用外，並實際以 TSMC 0.35um 2P4M 

Mixed-Signal 製程設計了一解析度為 9x9 的 ARMCNN 網路，並實現之且加以量測。本設
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計的單位面積在相同製程下，縮小為前一版設計─免衰減操作之 RMCNN 的 0.28 倍大（從

4.56mm x 3.90mm 縮小到 2.24mm x 2.24mm）。 

量測中所學習的三個圖形（一、二、四）皆可成功的辨識，而辨識中的一些瑕疵， 

也將在論文中進行探討。並從新設計電路，在 Hspice 模擬驗證新電路確實可以改善此

缺陷。
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The Design of the Autonomous Ratio-Memory Cellular 

Nonlinear Network for Pattern Learning and Recognition 

Student: Wei-Te Chou      Advisor: Prof. Chung-Yu Wu 

 

Department of Electronics Engineering & Institute of Electronics 

 National Chiao-Tung University 

 

ABSTRACT 

 

 The associative memory is of significant attention in the field of pattern recognition and 

recovery. It is proven that the cellular nonlinear network with the aid of ratio memory 

(RMCNN) can be used to implement as a kind of associative memory. However, there are still 

some imperfections that require further improvement for the existing RMCNN system. For 

example, the pattern recognition rate of RMCNN drops quickly as the environmental noise 

level raises. Moreover, the die area of the existing chip is too large (4.56mm x 3.90mm), 

which might suffer from the impact of process variation more seriously. Therefore, the chip 

area reduction and optimization are necessary. 

A new type of CNN associative memory called the Autonomous Ratio-Memory Cellular 

Nonlinear Network (ARMCNN) is proposed and analyzed. In the proposed ARMCNN, there 

is no elapsed operation to perform weight enhancement as well. During recognition period, 

the noisy input patterns are sent into cells as initial cell state voltages, which in comparison 

with constantly injecting the noisy input patterns, yields a better recognition rate in 

simulation.  

During pattern learning period, the ratio weight is original generated by comparing the 

four neighboring absolute weights with their mean value. The absolute weights that are bigger 
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than the mean value will remain. However, in ARMCNN, only the strongest absolute weights 

will stay (might be more than one). Furthermore, the proposed ARMCNN inherits the features 

of RMCNN such as, feature enhancement effect and no elapsed operation (EO). The ratio 

weights are generated directly after pattern learned.  

In this thesis, the circuit of ARMCNN w/o EO is designed and a 9x9 ARMCNN is 

implemented using TSMC 0.35um 2P4M mixed-signal process. The die area, as compared 

with the previous chip – RMCNN w/o elapsed operation, shrinks from 4.56mm x 3.90mm to 

2.24mm x 2.24mm. It’s only 0.28 times as large as the previous chip under the same 

technology process, which greatly reduces the impact of process variation. The experimental 

results of recognizing all three patterns are successful. However, some imperfections of 

pattern recovery still exist and will be discussed later in this thesis. The circuit is redesigned 

to correct these imperfections. 
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CHAPTER 1  

INTRODUCTION 
 
 
1.1 Background of Cellular Nonlinear Network 
 

The cellular nonlinear network (CNN) introduced by Chua and Yang [1]-[2] has been 

considered as one of the potential architecture in future nano-electronic systems. One of 

CNN’s important applications is the associative memory. So far, some research works on the 

applications of CNN as neural associative memories for pattern learning, recognition, and 

association have been explored [3]-[9]. As to the hardware implementation, special learning 

algorithm and digital hardware implementation for CNN were proposed in [8] to solve the 

sensitivity problems caused by the limited precision of analog weights. Also, the CMOS chip 

implementation of CNN associative memory was reported in [9]. 

The learning circuitry can be integrated on-chip with the CNN system. There are several 

advantages of on-chip learning: 1) No host computer is needed to perform the learning task 

off-line. This makes the interface of neural system chips simpler for many practical 

applications; 2) The spatial-variant template weights can be on-chip learned without being 

loaded from outside to the CNN chips. In other words, the long loading time, complex global 

interconnection between cells, and analog weight storage elements to perform the loading 

operation for large numbers of spatial-variant template weights can be avoided; 3) The 

adaptability to the process variations of CNN chips can be enhanced. 

To implement the associative memories, both the ratio memory (RM) [10]-[22] and the 

generalization of Hebb’s postulate of learning [23]-[24] have been incorporated with the CNN 

structure to form the RMCNN with spaced-variant templates for pattern recognition. The use 

of ratio-memory (RM) is to enhance important ratio weights and remove less important ones 
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through the effect of feature enhancement [10]-[22]. In the RMCNN of [10]-[13], the input 

signal current is applied to the neuron throughout the recognition process and the initial state 

of each neuron is set to zero. In this paper, the design of the Autonomous RMCNN [27] is 

proposed to improve the recognition rate, which makes some modification on the Hebbian 

learning rule. In addition, the input signal is stored as initial state of the cell and no constant 

input applied to the neuron throughout the recognition process. 

 
 
1.2 Review of Ratio Memory Cellular Nonlinear Network 
 
1.2.1 Ratio memory Cellular Nonlinear Network with Elapsed Operation 
 

In the previous work, ratio memory cellular nonlinear network (RMCNN), the cell state 

xij(t), its derivation )(txij , and the cell output )(tyij  for a regular cells can be expressed as 

[1]-[2] 

ij
jiNrlk

klijkl
jiNrlk

klijklijij zutbtytatxtx +++−= ∑∑
),( ∈ ),(C),( ∈ ),(C

)()()()()(
   

( )
⎪
⎩

⎪
⎨

⎧

−<−

+>+

+

==

 1)(     if                        1 

1)(     if                        1 

1≤)(≤1- if                   )(

)()(

tx

tx

txtx

txfty

ij

ij

ijij

ijij

   

where xij(t) is the state of cell(i,j), and ukl(t) is the input of cell(k,l) in the r-neighborhood 

system Nr(i, j) of the cell(i, j). In this thesis, i or k is the row number and j or l are the column 

number of an MxN CNN cell array. So, cell(i,j) means the ith row and jth column cell. The 

r-neighborhood system Nr(i, j) of the cell cell(i, j) is defined as the set of all cells including 

cell(i, j) and its neighboring cells, which satisfy the following property. 

{ }rjliklklkjiNr ≤-- N,≤≤M,1≤≤1 ),(C),( +=
 

The term r is called as the radius or the number of neighboring layer. In our design, r is 1. 

aijkl(t) is template A weight(coefficient) which correlates the cell output ykl(t) to the cell state 

Eq.(1.1) 

Eq.(1.2) 

[13]    Eq.(1.3) 
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xij(t). bijkl(t) is the template B weight(coefficient) which correlates the cell input ukl to the cell 

state xij and zij is the threshold or bias of cell(i,j). 

 The template B and the threshold zij are constant and space-invariant. The setting is 

     

0 0 0
( ) 0 1 0        

0 0 0
ij t

⎡ ⎤
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⎢ ⎥⎣ ⎦

B

 

     ( ) 0       ijz t =  

That means the input of every cell influences itself only. In a r-neighborhood system Nr(i, 

j), the input of neighboring cell doesn’t influence the central cell. The threshold zij is zero 

everywhere. The template A is spatial-variant and time-variant[12]-[13], and the template Aij 

can be written as: 

( 1)

( 1) ( 1)
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That means only four cell are correlated to the central cell. They are up, down, left and 

right side cells. In the original RMCNN with elapsed operation[13]. The weights in template 

A can be produced by the blow equation. 
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Where 
p

iju  is the p-th pattern input of cell(i,j). Similarly, 
p
klu  is the p-th pattern of cell(k,l). 

The relationship between ij and kl is shown as Eq.(1.8) that is equivalent to . The PT  is the 

learning time for the RMCNN to learn p-th pattern and the total learning time for the 

Eq.(1.4) 

Eq.(1.5) 

Eq.(1.6) 

Eq.(1.7) 

Eq.(1.8) 

Eq.(1.9) 
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RMCNN to learn m patterns is 
∑
=

=
m

1p
PL TT

. aijkl is called as the ratio weight, and the 

numerator of aijkl is called as the absolute-weight. 

The boundary cells don’t correlate to four cells. For example, the boundary cells at 

corners only correlate to two cells. Thus the boundary condition of the boundary cells can be 

written as 

     )(    ,  )( ** 0tu0tx
jiji ** ==

 

The i*j* means this cell is a boundary cell. 

 

This work has advantages of longer memory retention time, and the feature enhance 

characteristic improves the recognition rate. However, the elapsed period changes as learning 

patterns change, and thus the elapsed operation let the process of pattern recognition 

inconvenient. 

 

1.2.2 Ratio memory Cellular Nonlinear Network w/o Elapsed Operation 
 

Due to the inconvenience of having elapsed operation, the RMCNN w/o elapsed 

operation (EO) was proposed, which yields the same pattern recognition rates and simpler 

circuit structure as compared with RMCNN with EO. It requires no additional elapsed period 

to get the feature enhanced ratio weights. Indeed, the ratio weights are generated directly after 

pattern learning. Moreover, RMCNN can have longer template-weight storage time or 

equivalently pattern recognition time which is one of the advantages of RM. Due to the 

feature enhancement effect of the RM, which well separates the learned weights and 

decreases the insignificant weights to zero, more patterns can be stored and recognized in the 

RMCNN as compared to the CNN associative memory without RM.  

The equation used to distinguish which ratio weights increase and which ratio weights 

Eq.(1.10) 
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decrease can be written as [24] 

        
( )

1
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∑

       Eq (1.11) 

where ( )MssI t is the mean of absolute memory current and ( ) ( )aw jI t is the jth absolute memory 

current. If ( ) ( )aw jI t is larger than ( )MssI t , ratio memory current increase gradually. Otherwise 

the ratio weights decrease. So the increasing and decreasing ratio weights are detected. After 

the comparing operation, the increasing weights are set an appropriate value (1,1/2,1/3 or 1/4) 

and the decreasing weights are set zero directly This equation is used to determine the final 

ratio weights directly rather than elapsed operation. The new Hebbian learning algorithm can 

be written as blow: 

 

Step 1 : find the absolute weights template A Sij(p) after p patterns are learned 
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Step 2 : find the absolute mean of the absolute weights in a template 

( )ss ijklM mean ss= ∑  

Step 3 : generate the ratio weights 
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Where 1p
iju +  and 1p

klu +  are the input of cell(i,j) and cell(k,l) respectively. The ( , )Nr i jPN  is 
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number of preserved weights in Nr(i,j) and r=1. 

The measurement results from RMCNN w/o EO was as following. Three Chinese 

characters were learned: 一 , 二 , and 四  (they are one, two, and four, respectively). 

Unfortunately, the pattern ’四’ failed to be recognized and recovered. Further investigation 

into the cause of this imperfection showed that a small current influences the absolute weights 

on the capacitor Cw during the pattern transferring period, which would lead to wrong 

absolute weights and, thus, wrong ratio weights were generated and stored. Therefore, the 

newly proposed ARMCNN chip has corrected this mistake. In addition, the die area of the 

previous work RMCNN chip was considerable large (4.56mm x 3.90mm), which might suffer 

from the impact of process variation more significantly. Therefore, the chip area reduction and 

optimization is necessary. 

 

 

1.3 Research Motivation and Thesis Organization 

 

To improve the image pattern recognition rates of RMCNN, the autonomous 

Ratio-Memory Cellular Nonlinear Network (ARMCNN) [27] is proposed and analyzed. In the 

ARMCNN, the input currents of the noisy input patterns are used to pre-charge the capacitors 

of neurons (Cij) to produce the initial cell state voltages at the beginning of the recognition 

process. After pre-charging, all the input currents are removed from the neurons. Since no 

B-template is used and the neuron capacitors store the initial state voltages, the proposed 

RMCNN is called autonomous RMCNN (ARMCNN). The ARMCNN inherits the features of 

RMCNN such as, feature enhancement effect and no elapsed operation (ratio weights are 

generated directly after pattern learned). The mathematical analysis and simulations are 

performed for both ARMCNN and RMCNN. It is shown that the ARMCNN has a higher 

recognition rate, and more number of learned and recognized patterns. 
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The operational principle and circuit architecture of the proposed ARMCNN are 

described in Chapter Two, where the prediction models of recognition rate are shown as well. 

Chapter Three discusses the simulation results of ARMCNN, which includes the behavior 

simulations using C/C++ and the transistor-level simulations using Hspice. Then in Chapter 

Four, layout description and measurement environmental setup are mentioned. Finally, the 

conclusion and future work are discussed in Chapter Five. As a demonstrative example, a 

resolution 9x9 ARMCNN without elapsed operation (ARMCNN w/o EO) is realized in 

TSMC 0.35um 2P4M Mixed-Signal technology. Both simulation and experimental results 

have verified the superior characteristics of the ARMCNN system. 
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CHAPTER 2   

ARCHITECTURE AND CIRCUITRY  

 
2.1 Operational Principle and Architecture [27] 

 

 The architecture of ARMCNN is similar to that of RMCNN [1]-[4]. The operation 

procedures of ARMCNN can be divided into three phases: the pattern learning phase, the 

ratio-weights generation phase, and the pattern recognition phase. One difference between 

ARMCNN and RMCNN is that in the recognition operation where the noisy pattern to be 

recognized and recovered is treated as the initial values of cell state voltages in ARMCNN 

and as the neuron input in RMCNN. The operational principle of ARMCNN is described 

below.  

 In the autonomous ratio-memory cellular nonlinear network (ARMCNN), the dynamic 

equations of the cell state voltage ( )ijx t  and its derivative 
.
( )ijx t  can be expressed as  

( )
0

.

( , ) ( , )

( )
( ) ( )

( ) ( )

(0)

r

ijkl kl
ij ij

C k l N i j ij

kl ij

ij ij ij ij ij

w y t
x t x t

C

y t f x t

u R x u R

∈

= − +

=

− ≤ ≤

∑

 

where 0( , )rN i j  is the set of r-neighboring cells ( , )rN i j  without the cell ( , )C i j . The 

r-neighborhood system ( , )rN i j  of the cell ( , )C i j  is defined as the set of all cells 

including ( , )C i j  and its neighboring cells, which satisfy the following property 

{ }( , ) ( , ) |1 ,1 ,| | | |rN i j C k l k M l N k i l j r= ≤ ≤ ≤ ≤ − + − ≤  

The term r is an integer called the radius of the neighborhood layer and r equal to one in our 

design. Moreover, xij(0) is the initial value of the cell state voltage and has a value of uijRij  

Eq.(2.1) 

Eq.(2.2) 
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(-uijRij) for a black (white) pixel and a mediate value for a grey pixel.  

The coefficient aij(t) represents template A weight which correlates the cell output ykl(t) 

to the cell state xij(t). The template A is spatial-variant and time-variant [18]-[19], and the 

template aij(t) can be written as 

( 1)

( 1) ( 1)

( 1)

0 (0) 0
(0)  (0) 0 (0)

0 (0) 0

ij i j

ij iji j iji j

ij i j

a
A a a

a

−

− +

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

That means only four neighboring cells’ outputs are correlated to the central cell. The four 

neighboring cells are up, down, left, and right side cells. Since the proposed ARMCNN has 

the neuron capacitors to store the initial state voltages, no template B weight is used to 

correlate the cell input ukl to the cell state xij and the template B coefficient is set to zero. That 

is to say no constant input is injected during pattern recognition phase.  

0 0 0
( )    0 0 0

0 0 0
ijB t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

In the learning period, assume that there are m patterns to be learned in the ARMCNN. 

The absolute weight sijkl can be determined by the modified Hebbian rule as [1]-[4] 

1

m
p p

ijkl ij kl
p

s u u
=

= ∑  

Where p
iju  is the pixel input at ith row and jth column of the pth pattern out of m input 

patterns, p
klu  is the pixel input in the set of 0( , )rN i j . After learning all input patterns, the 

absolute weight sijkl is to be compared with the strongest learned weight. Those weights that 

are equal to the strongest absolute weight will stay and transform into the ratio weight aijkl as 

( , )

1
ijkl

Nr i j

a
PN

=  

Where PNNr(i,j) represents the number of preserved weights left. On the other hand, absoluted 

weights that are less than the strongest learned weight will be set to zero and disregard. This 

Eq.(2.3) 

Eq.(2.5) 

Eq.(2.6) 

Eq.(2.4) 
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procedure determines and stores the final ratio weights between cells. The new Hebbian 

learning algorithm can be written as following: 

 

Step 1: find the absolute weights template A sij(p) after p patterns are learned 

     
( 1)

( 1) ( 1)

( 1)

0 ( ) 0
( )    ( ) 0 ( )

0 ( ) 0

ij i j

ij iji j iji j

ij i j

ss p
s p ss p ss p

ss p

−

− +

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

    ( ) ( 1) p p
ijkl ijkl ij kls p s p u u= − +  

( , )   ( 1, )  ( , 1)  ( -1, )  ( , -1)k l can be i j or i j or i j or i j+ +  

Step 2: determine the global maximum value of the absolute weights in system 

max( )ijklGss ss= ∑  

Step 3: compare the absolute weights with the global maximum weight. Those equal to 

the strongest absolute weights will stay. On the other hand, those less than the 

strongest absolute weights will be set to zero. 

Step 4: transform the remaining absolute weights into the ratio weights 

( , )

1   if   

0                if  ss

ijkl ijkl
Nr i j

ijkl ijkl

a ss Gss
PN

a Gss

⎧ = =⎪
⎨
⎪ = <⎩

 

Where 1p
iju +  and 1p

klu +  are the input of cell(i,j) and cell(k,l) respectively. The ( , )Nr i jPN  is 

number of preserved weights in Nr(i,j) and r = 1. The boundary cells are exceptional cases 

since they do not correlate to the four neighboring cells: up, down, right, and left. They might 

correlate to only two or three neighboring cells. Therefore, the condition of the boundary cells 

can be expressed as 

* *( ) 0  ,    ( ) 0     * *i j i j
x t u t= =  

The notation * *
i j  means this cell is a boundary cell. 

Eq.(2.7) 

Eq.(2.8) 

Eq.(2.10)

Eq.(2.9)
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 Table 2.1 shows some sample template A of absolute-weights and ratio-weights. It is 

clear that only the strongest absolute weights are set to one after comparing with the global 

maximum absolute weight Gss, and the others are disregarded and set to zero. With the aid of 

this technique, the template A suppresses the unimportant weights and enhances the 

significant weights to get a feature enhance template. After the comparing operation, the 

remaining weights are set to appropriate value (1, 1/2, 1/3 or 1/4) and the others are set to zero. 

This equation determines the final ratio weights directly without elapsed operation. 

 

Absolute-weights 

(learned) 

Absolute-weights 

(enhancement) Ratio weights 

#
4 4z =

10 0
3

1 10
3 3

10 0
1

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 4 4z =
0 0 0
0 0 0
0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 4 4w =
0 0 0
0 0 0  
0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

#
5 1z =

10 0
1

10 0
3

10 0
3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
5 1z =

0 1 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 5 1w =
0 1 0
0 0 0  
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

#
6 2z =

10 0
3

1 10
1 1

10 0
3

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 6 2z =
0 0 0
1 0 1
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 6 2w =

0 0 0
1 10
2 2
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Table 2.1 some sample template A of absolute-weights and ratio-weights 

 

In this work, a 9x9 resolution ARMCNN is implemented and measured. Fig 2.1 shows 

the block diagram of the ARMCNN w/o elapsed operation (EO) and the controlling 



 12

relationship between every block. A 9x9 shift register is used to store image patterns. The 

patterns are generated by pattern generator and are inputted into the shift registers in series. 

Once an image pattern is stored in register completely, the pattern is inputted into ARMCNN 

w/o EO in parallel for pattern learning. After all patterns are learned and ratio-weights are 

generated, the ARMCNN w/o EO enters into recognition phase. The recognition result is 

readout through the output stage, which is controlled by two decoders: Column_Decoder and 

Row_Decoder. Since there is only one pin dedicated for output readout, the state of each cell 

is outputted in series. 

 

 

 

 

 

 

 

Fig 2.1 The block diagram of ARMCNN and controlling relationship between every block 

 

 

Fig 2.2 The general architecture of ARMCNN 

9x9 Shift 
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ARMCNN

Pattern 
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Decoder_C

input patterns 
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State voltage 
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Selecting 
columns

Selecting 
row

Controlling 
signal

input patterns 
in series

Controlling 
signal

Output in 
seriesImplement on chip
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The general architecture of ARMCNN w/o EO and connections between cells and RMs 

are shown as Fig 2.2. Each cell connects with four neighboring RMs (the UP, DOWN, 

RIGHT, and LEFT). Every RM stores the ratio weight between two pixels. The detailed block 

diagram of two neighboring cells and RM in between them is demonstrated in Fig. 2.3, where 

cell(i,j) corresponds to the ith row and jth column cell, and p
iju  is the input voltage of cell(i,j) 

of pth pattern. The block T1 and T3 are voltage-to-current converters. The block T2D is also 

a V-I converter except that its output is in absolute current form. Moreover, T2D can detect 

the sign of voltage state Vxij and stored separately. The block W uses the technique of current 

mirror to generate the output current of the cell by ratio (1x, 1/2x, 1/3x, and 1/4x). The ratio 

current will be determined by the result of local counter, Counter_L, according to how many 

weights are preserved. The capacitor Cw stores the absolute weight during learning period 

and the resultant voltage Vcw then transfers into current form and the current comparator 

COMP compares Vcw with global maximum absolute weight in current. The comparator 

COMP is a simple current comparator which decides whether the ratio weight shall be kept. 

The output of Counter_L is to control the W to weight the output of each cell. 

 

T1 T2D

WVref

T1T2D

W

T3

Counter

clk1 clk1

clk2

clk2

clk3 clk3

Cw

COMP

Counter

Vref
clk4

COMP

COMP

Vref

Cell(i,j) Cell(k,l)RM

uij ukl

xij xkl

cij

ckl cij

 
Fig 2.3 The detailed architecture of ARMCNN 
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The operation procedures of ARMCNN can be divided into three phases: learning, 

ratio-weights generation, and recognition. In the learning period, clk1 is set to high and clk2 is 

set to low. The architecture in learning phase is shown in Fig 2.4, where cell(i,j) input voltage 

of pth pattern p
iju  is transferred into current ijIu  and sent to node ijx . Current p

ijIu  can be 

expressed as  

1

1

1.9

( 1.5)          1.5 1.9

0                                  1.5

(1.5 )        1.1 1.5

                            1

p
sat ij

p p
T ij ij

p
ij ij

p p
T ij ij

p
sat ij

Iu when u V

Gm u when V u V

Iu when u V

Gm u when V u V

Iu when u

>

× − < <

= =

− × − < <

− < .1V

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 

where GmT1 is the transconductance of V-I Converter T1. The voltage level 1.5V is defined as 

zero, so the current flows the opposite direction when p
iju  is larger or smaller than 1.5V. If 

p
iju  gets larger than 1.9V or less than 1.1V, the output current p

ijIu  of T1 becomes saturated 

and remains at Iusat. In this work, Iusat is chosen to be the minimum required current to keep 

the circuit work properly and is about 6.5uA. 

 

T1 T2D

W

xij

Vref

T1T2D

W

T3

Counter

clk3 clk3

Cw

COMP

Counter

Vref

Cell(i,j) Cell(k,l)RM

Iuij

uij ukl
Iuklxkl

Iyij Iykl

Iwij Iwkl

cklcij

ckl cij

 

Fig 2.4 The architecture of AMCNN in learning phase 

Eq.(2.11) 
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 The current Iusat flows to the node ijx  and converts to a state voltage p
ijVx  through the 

resistor Rij and capacitor Cij, which are the resistance and capacitance associated with the 

neuron cell(i,j). Then T2D outputs an absolute current p
ijIy  and a sign sign( p

ijVx ) according 

to the stage voltage p
ijVx . Since the function of T2D is similar to T1 and T2D has an 

absolute-value circuit, the output current p
ijIy  and the sign( p

ijIy ) can be written as 

 

2

2

1.9

( 1.5)      1.5 1.9

0                                   1.5

(1.5 )    1.1 1.5

                            1.1

p
sat ij

p p
T D ij ij

p
ij ij

p p
T D ij ij

p
sat ij

Iy when u V

Gm Vx when V u V

Iy when u V

Gm Vx when V u V

Iy when u V

>

× − < <

= =

− × − < <

− <

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

 

 

0 1.5
( )

3V                         1.5

p
ij

ij p
ij

V if Vx V
sign Vx

if Vx V

⎧ <⎪= ⎨
>⎪⎩

 

 

where GmT2D is the trans-conductance of T2D and the current Iysat is the saturated output 

current of T2D. It is designed to be around 6.5uA as well. The different between T1 and T2D 

is that Iyij always flows in the same direction whether Vxij is larger or smaller than 1.5V. 

Moreover, the sign of Vxij is detected by a detector in T2D and sent to the block W. 

According to the signs of two neighboring input voltage Vxij and Vxkl, the output current 

charges or discharges the capacitor Cw. W is the weighting circuit which transfers the input 

current Iyij into ratios: 1x, 1/2x, 1/3x, 1/4x. In learning period, the block W is set to a default 

state, which multiplies Iyij by 1/4. The reason of choosing 1/4x as the default state is that it 

helps to control the length of learning time to charge or discharge the capacitor Cw. In 

addition, the capacitor Cw is a 1.5pF poly-poly capacitor implemented on chip. The 

Eq.(2.12)

Eq.(2.13)
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capacitance value of Cw is chosen as a compromise between weight storage time and 

capacitor chip area. The current Iysat is chosen as the smallest current that can have the V-I 

Converter operates regularly and is about 6.5uA in this work. The smaller the current Iysat is, 

the better control of the value of Vwijkl on capacitor Cw can be. In this design, the learning 

time of a pattern is set to 100ns. 

 After all patterns are learned, an absolute weight is generated and stored at the capacitor 

Cw. If two neighboring cells are having positive relationship, for example if they are both in 

black or both in white, the capacitor Cw between them is charged. On the other hand, if they 

are having negative relationship, for example they are one in black and the other in white, 

then the capacitor Cw is discharged. Thus the voltage Vwijkl stored on Cw can be expressed as 

 

1( )
2( 1)
1( )
2

ijkl

ijkl

ijkl

Iysat tVw p
CwVw p

Iysat tVw p
Cw

×⎧ +⎪⎪+ = ⎨ ×⎪ −
⎪⎩

  
'

ij kl

ij kl

when sign of Vx and Vx are the same

when sign of Vx and Vx aren t the same
 

 

The voltage Vwijkl(p) stored on the capacitor Cw represents the absolute weights after the pth 

pattern is learned. Since the output current of block W is set to 1
4 satIy  in learning period, and 

there are two W blocks trying to charge or discharge the Cw at the same time, the voltage 

changing is 1 12
2 4

Iysat t Iysat t
Cw Cw

× ×⎛ ⎞= ×⎜ ⎟
⎝ ⎠

. The time for each pattern to be learned is 100ns in 

this design. 

 The block T3 is also a V-I Converter, which transfers the voltage Vwijkl into the current 

form IT3 and sends this current to a simple current mode comparator COMP. The block 

COMP compares IT3 with a global maximum current IMAX, which is corresponding to the 

largest value of absolute weight among the system. If IT3 is equal or larger than IMAX, COMP 

outputs a logic “high” signal to the local counter Counter_L, which means the ratio weight 

Eq.(2.14)
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between the two pixels should be preserved. Otherwise, if IT3 is less than IMAX, COMP outputs 

a logic “low” signal to Counter_L, which means the relation between the two pixels is not 

strong enough and is of no interest. 

 The interconnection between COMPs and Counter_L is described in Fig 2.5. Since 

every cell connects with its four nearest neighbor cells, there are four COMPs in one cell. 

Every COMP sends out a logic signal to Counter_L. At the end of learning period, 

Counter_L counts how many “logic high” signals are given from the four COMPs. If there is 

(are) only one (two) “logic high”, that means only one (two) ratio weight should be preserved, 

and so on. Then Counter_L controls the W to weight the output current of T2D as 

11
2ij ijIy Iy⎛ ⎞× ⎜ ⎟

⎝ ⎠
. Similarly, according to the total number of “logic high” signals are counted in 

one cell, the Counter_L may control the block W to weight the output current of T2D as  

 

 

Fig 2.5 The inter-connection relationships between COMPs, Counter_L and RMs 

 

1
3 ijIy  or 1

4 ijIy . Moreover, the logic output of COMP controls the switch sw_COMP as 

shown in Fig 2.3. This behavior is known as no inter-relation between the two neighboring 
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cells is generated, and thus the output contribution path of each other should be cut off. In 

other words, the ratio weight between two pixels is zero. For example, if the logic output of 

COMP between the two neighboring pixels is low, which means the ratio weight is zero, the 

switch sw_COMP should be turn off. Therefore, the output contribution between these two 

pixels is isolated in recognition period. 

The ratio weight is generated as Counter_L counts up the total number of logic “high” 

from COMPs and controls the block W with appropriate weighting. After that, the operation 

enters into recognition phase. The architecture in recognition period is shown as Fig 2.6. As 

shown in Fig 2.6, clk1 is set to low and clk2 is set to high. The state of switches sw_COMP is 

controlled by COMP. A noisy image pattern is inputted to perform recognition and recovery, 

where noi
iju  and noi

klu  represents the input voltage of noisy pattern of cell(i,j) and cell(k,l) 

respectively. They are inputted to T1 and transfer to currents noi
ijIu  and noi

klIu . These currents 

then convert to state voltages noi
ijVx  and noi

klVx  through the resistor Rij (Rkl) and capacitor Cij 

(Ckl). T2D converts state voltages into current noi
ijIy  and noi

klIy . In accordance with the ratio 

weights generated previously, the output current of each cell is weighted as 1x, 1/2x, 1/3x, 

1/4x, and 0x, and contributes to its corresponding neighbor cells. For instance, if the weight is 

set to 1x, it means only one (two) of the four neighbor cells is correlated to this cell. Thus 

only one (two) neighbor cell will contribute its current output to the cell cell(i,j), and so on. In 

the case where the two neighboring cells have no correlation to each other, the COMP will 

output a logic “low” signal to the local counter, and this signal will turn off the output 

contribution path between them as well. 
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Fig 2.6 Architecture of ARMCNN in recognition period 

 

According to KCL, the dynamic equations of the cell state voltage ( )ijVx t  and its derivative 

.
( )ijVx t  can be expressed as Eq.(2.1) and Eq.(2.2). In addition to that, the weighting of output 

currents can be derived from the following equation: 

 

1 1 11, , , , 0
2 3 4

, ( 1), ( 1), ( 1) , ( 1)

kl ijkl kl

ijkl

Iw a Iy

a or

k l i j i j i j or i j

= ×

∈

∈ − + − +

 

 

where ijkla  is the template A ratio weight coefficient and generated by the block W. The 

coefficient ijkla  can be 1, 1/2, 1/3, 1/4 or 0, which represents the number of preserved 

weights for the cell is 1, 2, 3, 4 or 0, respectively. The current klIw  is the resultant current 

that contributes to cell(i,j). It is equal to the output current klIy  of neighbor cell times the 

coefiicient ijklw . 

 

Eq.(2.15)
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2.2 Circuit Implementation 

 

In this work, several circuits have been employed. The voltage-to-current converter and 

current weighting circuit are discussed in section 2.2.1. Then a simple current mode 

comparator is described in section 2.2.2. Section 2.2.3 talks about some digital components 

such as counter, decoder, voltage detector and driver. They are necessary for some calculation 

purpose. At last, the shift registers, which functions as the input pattern interface, and the 

output stage circuits are described. 

 

 

2.2.1 V-I Converter 

 

As shown in Fig 2.3, The block T1, T2D, and T3 are all V-to-I converters. The circuit of 

T1 and state resistance Rij / capacitance Cij are implemented as Fig. 2.7, where the MOS 

dimension is written next to the MOS name. The unit of MOS dimension is in micro-meter 

(um). In Fig 2.7, the left side of this circuit is a differential pair structure with the cascode 

current mirror, and the right side of circuit is the state resistor / capacitor, formed by diode 

load (MR1 and MR2) and MOS capacitor (Mc) respectively. The purpose of state resistors is 

to limit the operating range. The voltage Vb1 is a constant bias voltage, which is set to 1.5V. 

The reference voltage Vref is used to compare with input voltage and sets to 1.5V. If the input 

voltage Vin is larger than Vref, the output current Io flows from left to right (M4  M6  

MR2) and causes the stage voltage Vxij raise to 1.9V. On the other hand, if the input voltage 

Vin is smaller than Vref, then the output current Io flows from right to left (MR1  M2  M7) 

and causes the stage voltage Vxij drop to 1.1V. In other words, the state voltage Vxij is ranged 

from 1.1V to 1.9V. 
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Fig 2.7 T1: Voltage to current converter 

 

Fig 2.8 is the circuit of T2D block, a voltage to absolute current converter. The left side 

of T2D is a differential pair, which is the same as T1, and the right side of T2D is the absolute 

output current structure. The constant bias voltage Vb2 is 1.5V, and the constant bias voltage 

Vb1 and the reference voltage Vref are the same as in T1. The operating principle of T2D is 

that when the input voltage Vin is larger than Vref, the MOS M2 is cutoff and the current flows 

from MOS M3 through M5 and M1 to M7. The cascode current mirror (M3 ~ M6) mirrors this 

current to M4 and to the right side of T2D since MOS M2 is cutoff. Note that the parasitic 

capacitor at the source of M10 (the input of inverter) is charged to high. Consequently, the 

MOS M11 is shorted and M10 is cutoff. Therefore, the current Io flows through MOS M12 to 

M14. The other cascode current mirror (M12 ~ M15) forces MOS M8 to flow the same 

amount of current as MOS M14 does. At last the absolute output current Io,abs is mirrored 

from the MOS M8 to M94. Note that the switches M10 and M11 will not turn on at the same 

Io 
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time. This can be seen from the equation that for MOS M10 to be on: Va – Vp > Vth, that is 

Vp < Va – Vth. But for MOS M11 to be on: Vp – Va > Vth, that is Vp > Va + Vth. 

Accordingly, The switches M10 and M11 will not turn on at the same time. In addition, if the 

differential pair provides no current flow into or out from node Vp, both switches are off. 

 

 

Fig 2.8 T2D: Voltage to absolute current converter 

 

On the other hand, if the input voltage Vin is smaller than Vref, the MOS M1 is cutoff and 

the cascode current mirror (M3 ~ M6) is off. Since M1 is operating in cutoff region and the 

current source M7 is forcing a current of 6.5uA to flow to ground, the direction of the output 

current Io is from right to left. Moreover, the parasitic capacitor at the source of M10 (the 

input of inverter) is discharged to low. As a consequent, the MOS M10 is shorted and M11 is 

cutoff. The other cascode current mirror (M12 ~ M15) is off as well. A current of 6.5uA is 

flowing from M8 through M10 and M2 to M7. The absolute output current Io,abs is also 

mirrored from the MOS M8 to M94. Note that in the both cases, the absolute output current 

Io,abs is flowing in the same direction whether the input voltage Vin is larger than Vref or not. 

Therefore, the T2D is called a voltage to absolute current converter. 
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The weight circuit is shown in Fig 2.9, which is to generate the desired ratio of the 

output current from T2D. The possible current ratios are: 1x, 1/2x, 1/3x, 1/4x. In practical 

design, the weight circuit is directly combined with T2D to form the desired ratio. Note that 

the MOS M94 in Fig 2.8 and the MOS M94 in Fig 2.9 are the same. Since we wish the 
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Fig 2.9 Weight: Generation of ratio current 

 

generated current ratios to be précised, the MOS M91, M92, M93, and M94 do not use 

minimum length so as to avoid the impact of channel length modulation. The four current 

paths are controlled by the circuit DRIVER. There is at most one path flowing to the MOS 

M40 at a time and the other three paths are conducting to the ground through a dummy MOS 

Mdummy. Note that during the period of pattern transferring, all four paths are conducted to 

the ground through the MOS Mdummy to ensure no charging / discharging behavior toward 

the capacitor Cw. The use of Mdummy and DRIVER corrects the mistake made by the 

previous design. The upper part of weight circuit is a sign detector, which detect the sign of 

state voltages of the neighbor neuron and itself. If two neighbor neurons are having the same 

Sign Detector 

1x 1/4x 1/2x 1/3x 
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sign, then XOR outputs a logic low to turn on the MOS M52 and M53 and turn off the MOS 

M54 and M55. This will charge the capacitor Cw. On the other hand, if two neighbor neurons 

are having different signs, XOR outputs a logic high to turn on the MOS M54 and M55 and 

turn off the MOS M52 and M53. This will discharge the capacitor Cw. The detailed circuitry 

of Detector and DRIVER will be described in section 2.2.3. 

 

2.2.2 Comparator (with T3) 

 

The V-I converter T3 is the same as T2D except that T3 is followed by a current mode 

comparator and T2D is followed by a weight circuit. The schematic diagram of T3 with a 

current mode comparator is shown in Fig 2.10. The output of the V-I converter T3 is sent 

directly to the comparator COMP. The comparator we choose here is a simple current mode  

 

 

Fig 2.10 The schematic of V-to-I converter T3 and current mode comparator COMP 

 

comparator. The reason we go for simple structure is to save the area of the whole chip. Its 

operating principle is as following, if the output current of T3, IoT3, is larger than or equal to 

V-I Converter 

Comparator 
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the global maximum current, Imax, which means the absolute weight should be preserved, the 

logic output of COMP is high. On the other hand, if the output current of T3 is smaller than 

the global maximum current Imax, which means the absolute weight is of no significance, the 

logic output of COMP is low. Since we want to achieve that the output of COMP is high if 

IoT3 is equal to Imax, the sizes of Mn2 and Mn4 are designed to be a little smaller than Mn1 

and Mn2. Doing so makes the logic output is high even if IoT3 equals to Imax. 

 

Mc3
(2.2/1)

Mc4
(2/1)

Mc1
(2.2/.4)

Mc2
(2/.4)

IREF IT3

 
Fig 2.11 The dimension of the current mode comparator COMP 

 

2.2.3 Digital Components 

 

In the ARMCNN system, there are also some digital components being employed to 

achieve desired functions. For instance, the local counter Counter_L is to count up the total 

number of preserved weights in a cell. The global counter Counter_G is to control the 

switches sw1 ~ sw6, which is described later in this section. The voltage detector Detector is 

to detect the value of state voltage and output a logic signal (low or high). The last one is the 

weight selection circuit Driver. Driver decides which of the four current paths are conducted. 

The decision made is depending on the 2-bit logic output of the local counter Counter_L. In 

this section, all digital circuitries are discussed one by one in detail.  
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Fig 2.12 The schematic diagram of the counters in this chip 

 

Counter 

 

In Fig 2.13, the counters Counter_L and Counter_G are both formed by two 

asynchronous reset flip-flops as shown in Fig 2.12. The schematic diagram of the 

asynchronous flip flop is demonstrated in Fig 2.14. Instead of using digital flip-flop (DFF), 

using asynchronous reset flop-flops can ensure correct function under slow operating speed. 

In addition, it does not have the static power consumption problem as DFF does. The switch 

S_en enables the counting operation and it can be described in Fig 2.15, where CLK is clock 

signal and RST is reset signal. If the signal RST is set to low, b0 and b1 are always low. The 

signal S_en must set to high during the counting operation. If not, b0 and b1 do not change 

even if CLK is oscillating. Note that signal b0 represents the logic output of the counter’s LSB 

bit while signal b0_bar represents its compliment and signal b1 represents the logic output of 

the counter’s MSB bit while signal b1_bar represents its compliment.  

 

Fig 2.13 The schematic diagram of the asynchronous flip-flop 
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Fig 2.14 (a) Local Counter      (b) Global Counter 

 

There are six switches used in the local counters and they are controlled by the combination 

logic from the global counter. This can be simplified by using only four switches in the local 

counters. The four outputs, “b0, b0bar, b1, b1bar”, can be used to control the four switches in 

the local counters. This not only reduce the number of switches used, but also simplified the 

layout routing. 

 

 

Fig 2.15 A counting example of the counter 
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Detector 

 

The detector is used to detect the voltage level of each state voltage and transform to a 

logic signal (either high or low). As a result, the logic signal can be handled by the 

combinational logic. The detector is formed by a tri-state element and a simple inverter as 

shown in Fig 2.16. Since the input voltage to the detector is an analog signal ranging from 1V 

~ 2V, a simple inverter train structure will lead to constant current leakage because both the 

PMOS and the NMOS are on at the same time for the first inverter. Therefore, the use of 

tri-state buffer avoids the problem of the constant current leakage but at the expense of an 

additional controlling signal VB1. 

 
Fig 2.16 The schematic diagram of the detector and the tri-state buffer 

 

Driver 

 

The driver circuit is to control the current ratio paths of the weight circuit. It allows only 

one path to charge / discharge the capacitor Cw while the other three paths are conducted to 

the ground. In addition, during the pattern transferring period, the capacitor Cw should not be 

charged / discharged. Therefore, the driver circuit should conduct all four paths to the ground. 

This can be done by ORing the signals clk1 and clk2. The signals clk1 and clk2 represent the 

learning period and the recognition period respectively. Consequently, ORing clk1 and clk2 
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outputs a logic signal control and it is true when either of them is logic high, which means the 

signal control will be high during learning and recognition only. The signal control will be 

low during the pattern transferring period. Please refer to Fig 2.17. 

 
Fig 2.17 The schematic diagram of the driver circuit 

 

 A NAND gate generates a logic low only if its inputs are all low. The three inputs of the 

NAND gate are: D1, D0, and control. The signal control is described earlier and the signals 

D1 and D0 are the output result of the local counter Counter_L. The combination of the 

signals D1 and D0 and their compliments decides which of the four ratio paths are conducted 

to the capacitor Cw while the other three ratio paths are conducted to the ground. Note that the 

logic output D is to control the path to the capacitor Cw, and logic output DB is to control the 

path to the ground. 

 As shown in Fig 2.18, the default state (D1, D0: 11) of the weight circuit is set to Iyij 

multiplies by 1/4. All states returns to default state if the signal reset is triggered. According to 

the output of the counter, the state is changed as following: 

 

If counts one, the state changes to (D1, D0: 00), with the ratio set to Iyij by 1.  

If counts two, the state changes to (D1, D0: 01), with the ratio set to Iyij by 1
2 .  

If counts three, the state changes to (D1, D0: 10), with the ratio set to Iyij by 1
3 . 

If counts four, state changes back (D1, D0: 11), with the ratio set to Iyij by 1
4 . 
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Fig 2.18 The state diagram with corresponding ratios 

 

Decoder 

 

Since there is only one output pin used 

in this work, two 4-bit decoders, 

Decoder_Row and Decoder_Column, are 

implemented to control the switches of the 

output stage. It allows only one of the state 

voltages of the 9x9 neurons to output at a 

time. Decoder_Column controls column 

switches SWC11 ~ SWC19 (SWC21 ~ SWC29, 

SWC31 ~ SWC39 …etc.) while Deocder_Row 

controls row switches SWR1 ~ SWR9. This 

structure allows every pixel to be read out 

one by one. The schematics for both 

decoders are the same. As shown in Fig 2.19, 

the decoder is formed by nine 4-input AND 

gates and four inverter-string type of buffers. 

    

 
Fig 2.19 The schematic of the 4-bit decoders 
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2.2.4 Output Stage and Input Pattern Interface 

 

In this work, the circuit of the output stage is used because there is only one pin available 

for output. Therefore, the 9x9 neurons (total 81 neurons) share the same output pin. The 

schematic diagram of the output stage is shown in Fig 2.20, where the nodes x11 ~ x99 are the 

node xij in Fig 2.3. The MOS M11 ~ M99 perform as level shifters to drive the parasitical 

capacitance of the switches and metal line. The switches SWC11 ~ SWC99 and SWR1 ~ SWR9 are 

controlled by Decoder_Column and Decoder_Row respectively. The state voltage of each 

pixel is readout one by one. The arrow with a circle enclosed represents a current source. In 

the output stage, all pixels share the same current source. Since only one pixel is conducted at 

a time, one current source is enough for this design. Furthermore, using few current sources 

saves more power consumption. The unit-gain buffer is a negative feedback OP-amp and is 

used to drive the loading of the output pad. The circuit of the unit gain buffer is described in 

Fig 2.21. 

 
Fig 2.20 The schematic diagram of the output stage 

6.5uA 
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80uA

VDD

Vin Vout
(80/0.7) (80/0.7)

(80/0.7) (80/0.7)

 
Fig 2.21 The circuit diagram of the unit gain buffer 

 

 In this work, since we have to input any arbitrary learning patterns, the shift registers are 

used as pattern input interface. As shown in Fig 2.22, each block represents a static flip-flop. 

The operation of learning period is demonstrated here. In the beginning of the learning period, 

the control signals clk3 and newp are turned on and the node ptn inputs the learning patterns 

pixel by pixel. After the clock of flip-flops, DFF, oscillates nine times (because the cell array 

is nine), the signal pin turns on to input the learning pattern into each pixel. Before the signal 

pin turns on, the signal newp turns off to prevent the pattern changes due to a glitch. After the 

pattern is learned, the operation above is repeated again so as to input the next pattern. 

Depending on the total number of patterns to be learned, the operation above is repeated until 

all patterns are learned. 
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Fig 2.22 The pattern input interface formed by the shift registers 
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Fig 2.23 (a) is one part of Fig 2.22, which is the input stage of single pixel. Fig 2.23(b) 

shows how to mix the innocent learning pattern with noise in recognition period. The 

capacitor CUIN is an embedded poly-poly capacitance with magnitude 0.45pF and the 

capacitor CNOI is also an embedded poly-poly capacitance with magnitude 0.1pF. In the 

learning period, the capacitor CNOI is pre-charged to a voltage level VNOI and the control signal 

noi always turns off. In the beginning of the recognition period, the noisy pattern is inputted 

to perform recognition and recovery. This is done by storing the innocent learning pattern in 

the shift registers first, then turning off the signal clk3 to isolate each static flip-flop. While 

the signal noi turns on, the behavior of charge sharing occurs between the capacitors CUIN and 

CNOI. As a result, the resultant voltage on the node Uij can be achieved by adjusting the 

capacitance ratio of CUIN and CNOI. 

D Q
Clk

Reset Q

D Q
Clk

Reset Q

Uij

pin newpclk3

noi

R
Vnoi

Uij-1

ptn1
DFF
reset

CUin

CNoi

  

CNoi CUin
0.1pF 0.45pF

Noisy Pattern Generation

 

Fig 2.23 (a) The input stage of a pixel (b) The structure used to mix the pattern with noise 

 

2.2.5 Circuit for Global Maximum Absolute Weight Determination 

 

The preservation of the absolute weight is determined by comparing it with a global 

maximum absolute weight. If the weight is less than the global maximum absolute weight, the 

weight is set to zero. Otherwise, the weight will be preserved. As a consequent, a circuit is 

designed to determine the global maximum absolute weight. The global maximum absolute 
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weight is in current form since the comparator COMP is a current comparator. This circuit is 

a replica of the cell we used in the system, except it’s a simplified version which consists 

circuits that determined the maximum current. The circuits are: the V-I converter T2D, the 

current weighting circuit W and the capacitor Cw.  

 

 

 

 

 

 

 

Fig 2.24 The circuit to determine the global maximum absolute weight 

 

To generate the absolute weights, we set VIN = 3V (or 0V) and turn the switch Msw on 

and off three times. The resultant voltage stored on capacitor Cw (Vcw) is the global 

maximum absolute weight and can be readout through a unity-gain buffer to pad Vcw. The 

voltage Vcw then converts into current IT3 through block T3. In measurement, an Opamp 

together with a resistor to form a close loop can be used to measure the current IT3, 

3
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V VrefI
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Fig 2.25 The off-chip current measuring circuit 
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CHAPTER 3 

SIMULATION RESULTS 
 
 

3.1 Behavior Simulation Results [27] 

  

      Base upon the mathematical equations of a 9x9 resolution ARMCNN system, behavior 

simulations are performed using the program C/C++. One hundred noisy patterns of a 

character are generated for a fixed standard deviation of noise level. The recognition rate (RR) 

of a group of m patterns is defined to be the number of successful recognitions divided by 100 

x m at a fixed standard deviation of noise level. The patterns for learning are Chinese 

characters “one”, “two”, and “four”, which are shown in Fig 3.1. The recognition rates of both 

the traditional RMCNN and autonomous RMCNN are compared in section 3.1.1.  

 

 

 

 

 

 

Fig 3.1 The Chinese Characters “one”, “two”, and “four” 

 

The simulated recognition rates (RR) versus the standard deviation of noise level are 

shown in Fig 3.2. It can be seen from Fig 3.2 that the proposed ARMCNN can recognize at 

most four patterns. If five patterns are learned and recognized, the RR drops to zero. The RR 

of ARMCNN is slightly increased as the number of patterns to be recognized is decreased. In 
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comparison with the traditional RMCNN, the RR of ARMCNN is much greater than that of 

RMCNN for 0.3σ > . 

 

 

Fig 3.2 The recognition rates of recognizing Chinese characters ONE, TWO, FOUR, and at 

different input approaches. 

 

 

3.2 Hspice Simulation Results 

 

 The simulation of V-I Converter T1 and the state resistor / capacitor (Rij / Cij) is shown 

in Fig 3.3. The tail current is chosen as the minimum current that can have the operation 

function properly. In this work, the tail current is set as 5uA. The transferring curve shows that 

the input voltage of T1 is linear between 1.2V ~ 1.8V. If the input voltage range of T1 exceeds 

this range (i.e. smaller than 1.2V or larger than 1.8V), the output voltage of T1 is saturated (i.e. 

1.2V or 1.8V, respectively). As a consequent, the voltage level 1.8V (1.2V) is defined as +1 

(-1). The output voltage is then used as the input voltage for T2D. 
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Fig 3.3 The Transferring curve of the V-I Converter T1 and State Resistor / Capacitor 

 

 Fig 3.4 describes the simulation results of V-I Converter T2D. Since the output of T2D is 

in the form of the absolute current, the flowing direction of the output current is the same 

whether the input voltage of T2D is larger or smaller than 1.5V. In addition, the transferring 

curve is symmetric at voltage 1.5V. Note that the output current of T2D and the output result 

of the current multiplied by one in weighting circuit are of a little voltage difference. This is 

due to the effect of different Vds seen by the PMOS M8 in T2D and the PMOS M94 in W 

block. 

 

Fig 3.4 The Transferring curve of the V-I Converter T2D and the Weighting Circuit W 

Input Range 
for T2D 

(1.2V ~ 1.8V)

1/4x ISAT
1/3x ISAT
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 The DC simulation results of the current comparator COMP is shown in Fig 3.5. The 

input current IIN is swept and the reference current IREF is kept as constant. The figure shows 

that as the input current gets larger than the reference current, the comparator generates a 

logic ‘high’ signal (Vout2) to the local counter. On the other hand, as the input current is less 

than the reference current, the comparator generates a logic ‘low’ signal to the local counter. 

The comparator is purposely designed such that if the absolute-weight current is equal to the 

reference current, the ratio weights is preserved as well. Therefore, the MOS dimension of the 

comparator is designed to output a logic ‘high’ signal even IIN is slightly smaller than IREF. 

 

 

Fig 3.5 The Simulation Result of Comparator COMP 

 

 The OP-Amp is employed here to function as the unit gain buffer. Fig 3.6 shows the 

frequency response of the OP-Amp 
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Fig 3.6 The Frequency Response of the OP-Amp that performed as unit gain buffer 

 Fig 3.7 below shows the absolute weight generation of three correlated patterns in the 

learning phase. The absolute weight generation can be conducted by the following equations 

 

6 ,  1.9 ,  100
1
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where the term Isat is the output current from the weighting circuit, the term Cw is the 

capacitor that stored the absolute weight. The learning period t is adjustable; therefore, we 

could adjust this interval to obtain the appropriate voltage level on the capacitor Cw. In this 

experiment, the learning period t is set to 100ns. Note that in Eq.(3.6), the term 1
4 Isat  is 

set as the initial amount of current flowing out of the W block during the learning phase. The 

Eq.(3.6) describes the voltage level on the capacitor Cw after (p+1)th pattern is learned, 

which is the original voltage on the Cw, Vcw(p), and adds up the two neighboring current 

output from the W block. The resultant voltage of Vcw(p+1) is shown in Eq.(3.7). The 

absolute weight generation of three reverse correlated patterns in the learning phase is 

demonstrated in Fig 3.8 as well. 

Eq. (3.5) 

Eq. (3.6) 

Eq. (3.7) 
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Fig 3.7 The absolute weight generation of three correlated patterns in the learning phase 

 

 

Fig 3.8 The absolute weight generation of three reverse correlated patterns in the learning 

phase 

 The post simulations of the 9x9 resolution ARMCNN system are performed using the 

tool UltraSim, which is dedicated for transient analysis and very suitable for this work. The 

pre-simulation results of the 9x9 resolution ARMCNN system are shown in Fig 3.9, Fig 3.10, 

Fig 3.11 with the Chinese characters “四、二、一”, respectively. 

First we define the voltage level at output stage. The state voltage ranges from 1.2V to 

1.8V, which has a voltage difference of 0.6V. However, due to the nonlinearity of the output 



 42

stage (level-shifter), the voltage difference is only 0.54V, with 0.97V represents a black pixel 

and 0.43V represents a white pixel. 

Considering several factors that influence the accuracy of the current ratio such as, 

process variation, biasing signals being disturbed by the controlling signals, layout and 

routing, and the designed current ratio turns out to be inaccurate and varies at most 7.3% 

during the post-simulation. Therefore, a tolerance must be defined to clarify whether the 

recognition operation fails or it’s the inaccurate current ratio that leads to the imperfection. 

According to the factors listed above, a tolerance is defined as 10% of the output voltage 

 

 
Fig 3.9 (a) Noisy pattern “四” (b) Post-sim recognition result of (a) 

 

difference, which is 0.054V. Thus, as long as the signal is greater than 0.97V – 0.05V = 0.92V, 

the pixel is black. On the other hand, as long as the signal is smaller than 0.43V + 0.05V = 

0.48V, the pixel is white. 
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Fig 3.10 (a) Noisy pattern “二” (b) Post-sim recognition result of (a) 

 

 
Fig 3.11 (a) Noisy pattern “一” (b) Post-sim recognition result of (a) 
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 CHAPTER 4 

EXPERIMENTAL RESULTS 
 
 

4.1 Layout Description 

 

 In this work, a 9x9 resolution ARMCNN is constructed. In Fig 4.1(a), the layout of one 

cell and two neighboring RM bocks is demonstrated, which can be better described by the 

symbolic illustration in Fig 4.1(b). The total area of one cell and two RM blocks is about 

205um x 185um, which compares with the previous work, the tradition RMCNN, shrinks 

about 50% of area (400umx250um). The power consumption is as following: digital 

consumes about 160uA and analog consumes about 300uA at most. 

 

 

 
Fig 4.1(a) The layout of one cell and two neighboring RM blocks (b) The symbolic 

illustration of one cell and two neighboring RM blocks 
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Fig 4.2(a) The die photo of this chip       (b) The symbolic illustration of this chip 

 

The total area of this whole chip is 2.24mm x 2.24mm, where the TSMC standard pads 

including the ESD device, pre-driver and post-driver are employed. The package diagram is 

shown in Fig 4.3 and the package is 68 pins LCC68. The total area included the ESD pads is 

only 0.28 times of the traditional RMCNN (4.56mm x 3.90mm). 

 

 

 

 

 

 

 

 

 

Fig 4.3 The package diagram of the ARMCNN 
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4.2 Experimental Environment Setup 

 

The experimental environment is set-up as shown in Fig 4.4. The controlling signals and 

input pattern signals are generated by the pattern generator of HP/Agilent 16702A, in which 

the clock rate is set to 20MHz and the rising / falling time of a signal is about 4.5ns. The 

output waveform of each cell is read-out in series by the oscilloscope TDK 3054B. The 

supply voltage is 3V. 

 

 

Fig 4.4 The setup of experimental environment 

 

The timing diagram of these control signals is demonstrated in Fig 4.5, where Clk1 

determines the duration to charge / discharge the capacitor CW that stored the absolute weight. 

While Clk2 is high, the system is operating in the pattern recognition mode. On the other hand, 

while Clk3 is high, the system is operating in the pattern learning mode. Clk4 is functioned as 

a reset signal, which reset the weight stored on the capacitor CW to 1.5V. DFF triggers the 

static flip-flop to shift in the input pattern column by column. The signals newp and pin are 

functioned as below. When the newp is low, the connection between shift registers is cut off. 
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Thus, the data in shift registers won’t be altered by the glitch from the signal DFF. When 

newp is high, the shift registers is able to transfer the learning patterns. Consequently, the 

signal DFF oscillates only when newp is high. The signal pin allows the pattern that stored in 

shift register to input into each cell. Since the operations of learning and recognition are 

described with figures in Chapter Two, here we are not going to repeat that again. After three 

patterns are learned, the ratio weights are generated in “Ratio Weight Generation” phase. The 

signal Cou_L and Cou_G oscillate four times to change the output of Counter_L and 

Counter_G from 00  01  10  11 sequentially, where Counter_G’s output controls the 

switch S_en1 ~ S_en6 and Counter_L’s output controls Sw_a ~ Sw_f to turn on one by one. 

The signals noi and pin together become high to generate the noisy pattern into cells. Then the 

circuit enters into recognition phase to recover the noisy pattern. Table 4.1 describes the 

function and age of all controlling signals. 

 

 

 
Fig 4.5 The timing diagram of the controlling signals 
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Control Signals Function 

Clk1 High: to charge / discharge the stored weight on CW 

Low: the path between cells and CW is cut off 

Clk2 High: recognition mode starts 

Low: recognition mode stops 

Clk3 High: pattern transferring starts 

Low: pattern transferring stops 

Clk4 High: stored weights reset to 1.5V 

Low: do not reset 

DFF Drive the shift registers that store the learning patterns 

newp High: the shift register is able to transfer the patterns 

Low: the shift register is unable to transfer the patterns 

pin High: the pattern stored in shift registers inputs into cells 

Low: the path between shift registers and cells is cut off 

noi High: the pattern in shift registers becomes noisy 

Low: isolate the noise and innocent pattern in shift register 

Cou_L Drive the local counter in each cell 

Cou_G Drive the global counter 

Table 4.1 The function of each control signals 

 

4.3 Experimental Results 

 

   The output stage is described in Chapter Two. Note that there is only one pad used to 

read out the state voltage of all 81 pixels. Therefore, a column decoder and a row decoder are 

employed here to read out all 81 pixels one by one in series.  
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 The summary comparison of this work - ARMCNN w/o EO and the previous work – 

RMCNN w/o EO is shown in Table 4.2. Note that both of them do not have elapsed operation. 

 
 Previous Work This Work 

Technology 0.35um 2P4M 
Mixed-Signal Process

0.35um 2P4M 
Mixed-Signal Process

Resolution 9 x 9 cells 9 x 9 cells 
No. of RM blocks 144 RMs 144 RMs 

1 pixels 1 cell + 2 RMs 1 cell + 2 RMs 
Single pixel area 400um x 250um 205um x 185um 

RMCNN 9x9 array (include pad) 4560 um x 3900um 2240 x 2240 
Number of Pins 81 pins 51 pins 
Power supply 3V 3V 

Learning power dissipation N/A (large) 102mW 
Recognition power dissipation 87mW 72mW 
Quiescent power dissipation N/A (large) 39mW 

Readout time 100ns 100ns 
Power Lines N/A Analog: 2 pairs 

Digital: 2 pairs 
Ext. I/O: 1 pairs 

Table 4.2 the summary comparison of this work and the previous work 

 

The output voltage levels of black and white are defined in section 3.2, where black pixel 

is 0.97V – 0.05V = 0.92V and white pixel is 0.43V + 0.05V = 0.48V. 

The output of each pixel is read out column by column sequentially. The first column is 

read from top to bottom and then the second column and so on. Fig 4.6 shows the noisy input 

pattern “四” that is feed in for recognition and recovery and its presim and measurement 

result. Fig 4.7 and Fig 4.8 are the input patterns, the pre-simulation results, and the 

measurement results of the case “二” and “一”, respectively. 
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Fig 4.6 (a) noisy pattern “四” is inputted for recovery (b) (c) experimental result of 

recognition and recovery 

 
Fig 4.7 (a) noisy pattern “二” is inputted for recovery (b) (c) experimental result of 

recognition and recovery 

(a) (b) 

(c) 
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Fig 4.8 (a) noisy pattern “一” is inputted for recovery (b) (c) experimental result of 

recognition and recovery 

 

4.4 Cause of the Imperfect Experiment Result 

 

 

Fig 4.9 The diagram of the top left 3 x 3 cell arrays 
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The measurement results of all three characters show imperfection on the first row and 

the second row first column, which also appears in the post-simulation. Further investigation 

found that because in this work, a pixel consists of one cell and two RM blocks (UP and 

LEFT). Therefore, after 9 x 9 cell arrays are put together, there will have redundant RM 

blocks on the leftmost and the topmost cells, which might generated the undesired weights.  

Fig 4.9 shows the top left 3 x 3 cell arrays, where the number inside the circle means the cell 

output’s contribution factor to its neighbors and the lines between cells means two cells are 

having relation. If the leftmost and the topmost cells’ color never change, then unwanted 

weights will be generated on the redundant RM blocks. Fig 4.10 (a) is the desired ratio 

weights of 3 x 3 cell arrays in Fig 4.9. Fig 4.10 (b) shows how the redundant RM blocks 

contributes the undesired weights and lead to wrong ratio weights.  

To solve this problem, redundant RM blocks must be removed to avoid undesired 

weights contributed from redundant RM blocks. 

 

   

Fig 4.10 (a) desired ratio weights of Fig 4.9     (b) actual ratio weights due to redundant  

RM blocks 
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Fig 4.11 is the presim recognition result of pattern ‘四’ for both the original design and 

the modified design. It is clear that in the modified version of design, the imperfection on 

every column’s first element is fixed. Fig 4.12 and Fig 4.13 are the presim recognition result 

of pattern ‘二’ and ‘一’. 

 

 

Fig 4.11 Presim results of pattern ‘四’ for the original design and the modified design. 

 

 

Fig 4.12 Presim results of pattern ‘二’ for the original design and the modified design. 
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Fig 4.13 Presim results of pattern ‘一’ for the original design and the modified design. 
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 CHAPTER 5  

CONCLUSION AND FUTURE WORK 
 
 

5.1 Conclusion 

 

 A novel Autonomous RMCNN without elapsed operation is implemented. The modified 

Hebbian learning rule with strongest weight comparison is proposed. The new design not only 

inherits the advantage of the RMCNN, such as longer memory time, and image feature 

enhancement, but also the die area shrinks to only 0.28 times of the original design, which 

makes it feasible to be implemented on chip. Furthermore, all three patterns “一、二、四” can 

be successfully recognized and recovery. 

 During recognition phase, the noisy input now precharges into state capacitor rather than 

constantly injects to cells, which is proven to improve the recognition rate as the 

environmental noise raises. In addition, the proposed Hebbian learning rule ensures only the 

strongest weights remains instead of comparing with a mean value of abs weight in a local 

matrix. 

The ARMCNN does not require additional elapsed phase to achieve the feature 

enhancement of the ratio weight. The ARMCNN uses logic operation to generate the feature 

enhance ratio weights directly after patterns are learned, which simplifies the complexity of 

the design and reduce the operation time. More importantly, it yields the same recognition 

rate comparing with the design with elapsed operation. 

 The total number of the learning patterns of ARMCNN is three. They are Chinese 

characters one, two and three （一、二、四）. According to the simulation results by C language, 
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ARMCNN yields a better recognition rate when the environmental noise increases and when 

the total number of the learning patterns increases to four. 

 In addition, the design has fixed the problem that a small current charges / discharges the 

stored weights during pattern transferring. The dynamic flip-flop (DFF) in the previous work, 

RMCNN w/o EO has caused dc power consumption problem. Thus, in this work, the DFF has 

been replaced by the static flip-flop. Besides, the detector circuit is also modified to cutoff a 

huge amount of quiescent power (from 32mW to 4mW). 

 

 

5.2 Future Work 

  

The ARMCNN w/o EO in this thesis can recognize all of the three patterns. However, 

the redundant RM blocks cause some imperfection on the boundary cells. The modified 

circuit should be taped out again. Moreover, there are six switches used in the local counters 

and they are controlled by the combination logic from the global counter. However, the total 

number of switches used in the local counters can reduce to four. By doing so, we can make 

the layout routing easier. The controlling signals and total number of pins used are still too 

many (51 pins in this work), which makes the measurement and design more complicate. It is 

possible to reduce 9 input pins to 1 input pins and on-chip generated 3 reference voltage of 

(1/2 VDD). Some controlling signals can be combined together to reduce the control signals 

used. It can reduce 13 pins. The idea of replacing circuits for learning behavior and ratio 

weights generation with digital circuits might greatly reduce the die area. Because now we use 

many capacitors to store the weights and many analog circuits to perform learning behavior, it 

not only takes space, but also increase the possibility of getting errors. The total elements 

saved are: 144 capacitors (>1pF), 144 T3 and 144 COMP circuits, 81 T1 and T2D circuits. 

Accordingly, it can reduce about a half of the chip area.
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