
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 1, JANUARY 2009 55

A Hybrid of Cooperative Particle Swarm
Optimization and Cultural Algorithm for Neural
Fuzzy Networks and Its Prediction Applications

Cheng-Jian Lin, Member, IEEE, Cheng-Hung Chen, Student Member, IEEE, and Chin-Teng Lin, Fellow, IEEE

Abstract—This study presents an evolutionary neural fuzzy net-
work, designed using the functional-link-based neural fuzzy net-
work (FLNFN) and a new evolutionary learning algorithm. This
new evolutionary learning algorithm is based on a hybrid of cooper-
ative particle swarm optimization and cultural algorithm. It is thus
called cultural cooperative particle swarm optimization (CCPSO).
The proposed CCPSO method, which uses cooperative behavior
among multiple swarms, can increase the global search capacity
using the belief space. Cooperative behavior involves a collection
of multiple swarms that interact by exchanging information to
solve a problem. The belief space is the information repository in
which the individuals can store their experiences such that other
individuals can learn from them indirectly. The proposed FLNFN
model uses functional link neural networks as the consequent part
of the fuzzy rules. This study uses orthogonal polynomials and
linearly independent functions in a functional expansion of the
functional link neural networks. The FLNFN model can generate
the consequent part of a nonlinear combination of input variables.
Finally, the proposed FLNFN with CCPSO (FLNFN-CCPSO) is
adopted in several predictive applications. Experimental results
have demonstrated that the proposed CCPSO method performs
well in predicting the time series problems.

Index Terms—Chaotic time series, cultural algorithm,
functional-link network, neural fuzzy network, particle swarm op-
timization, prediction.

I. INTRODUCTION

PREDICTION has been widely studied for many years as
time series analysis [1], [2]. Traditionally, prediction is

based on a statistical model that is either linear or nonlinear [3].
Recently, several studies have adopted neural fuzzy networks
to predict time series [4]–[6]. Researchers have discussed that
the network paradigm is a very useful model for predicting time
series and especially for predicting nonlinear time series.

Neural fuzzy networks [7]–[13] have become a popular re-
search topic. They bring the low-level learning and computa-
tional power of neural networks into fuzzy systems and bring
the high-level human-like thinking and reasoning of fuzzy sys-
tems to neural networks. In the typical TSK-type neural fuzzy

Manuscript received May 25, 2007; revised September 22, 2007. Current
version published December 22, 2008. This work was supported in part by the
National Science Council, Taiwan, R.O.C., under Grant NSC 95-2221-E-324-
028-MY2 and Grant NSC-96-2221-E-009-058, and in part by the Taiwan In-
formation Security Center (TWISC), under the National Science Council Grant
NSC96-2219-E-009-013. This paper was recommended by Associate Editor
X. Guan.

C. J. Lin is with the Department of Computer Science and Information En-
gineering, National Chin-Yi University of Technology, Taichung County 411,
Taiwan, R.O.C. (e-mail: cjlin@ncut.edu.tw).

C.-H. Chen and C.-T. Lin are with the Department of Electrical and Control
Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C.

Digital Object Identifier 10.1109/TSMCC.2008.2002333

network [8]–[13], which is a linear polynomial of input vari-
ables, the model output is approximated locally by the rule
hyperplanes. However, the traditional TSK-type neural fuzzy
network does not take full advantage of the mapping capabil-
ities that may be offered by the consequent part. Introducing
a nonlinear function, especially a neural structure, to the con-
sequent part of the fuzzy rules has yielded the NARA [14]
and the CANFIS [15] models. These models [14], [15] use
multilayer neural networks in the consequent part of the fuzzy
rules. Although the interpretability of the model is reduced,
the representational capability of the model is significantly im-
proved. However, the multilayer neural network has such dis-
advantages as slower convergence and greater computational
complexity. Therefore, we proposed the functional link neural
fuzzy network (FLNFN), which uses the functional link neural
network (FLNN) [16], [17] in the consequent part of the fuzzy
rules [18]. The FLNN is a single-layer neural structure that
is capable of forming arbitrarily complex decision regions by
generating nonlinear decision boundaries. Additionally, using
functional expansion effectively increases the dimensionality of
the input vector and the hyperplanes that are generated by the
FLNN provide a good discrimination capability in input data
space.

Training of the parameters is the main problem in design-
ing a neural fuzzy system. Backpropagation (BP) training is
commonly adopted to solve this problem. It is a powerful train-
ing technique that can be applied to networks with a forward
structure. Since the steepest descent approach is used in BP
training to minimize the error function, the algorithms may
reach the local minima very quickly and never find the global
solution.

The aforementioned disadvantages lead to suboptimal per-
formance, even for a favorable neural fuzzy network topology.
Therefore, technologies that can be used to train the system
parameters and find the global solution while optimizing the
overall structure, are required. Accordingly, a new optimization
algorithm, called particle swarm optimization (PSO), appears
to be better than the backpropagation algorithm. It is an evolu-
tionary computation technique that was developed by Kennedy
and Eberhart in 1995 [19], [20]. The underlying motivation for
the development of PSO algorithm is the social behavior of
animals, such as bird flocking, fish schooling and swarm the-
ory. PSO has been successfully applied to many optimization
problems, such as control problems [21]–[23] and feedforward
neural network design [24]–[28]. However, PSO suffers from
the burden of many dimensions, such that its performance falls

1094-6977/$25.00 © 2008 IEEE

56 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 1, JANUARY 2009

as the dimensionality of the search space increases. Therefore,
Bergh et al. [29] proposed a cooperative approach that em-
ploys cooperative behavior, called CPSO, which uses multiple
swarms to improve upon traditional PSO. However, the CPSO
still uses the formula (the local best position of each particle
and global best position in the swarm) of the traditional PSO
to evolve. The trajectory of each particle in the search space is
adjusted according to the local best position of the particle and
the global best position in the same search space, but it is unable
to yield high diversity of particles to increase search space. That
is, it is lacking enough capability to satisfy the requirements
of exploration [30], [31]. Therefore, the CPSO may find a sub-
optimal solution. Additionally, the cultural algorithm [32], [33]
can exploit the information of specific belief space to guide
the feasible search space and it can also change the direction
of each individual in solution space. Hence, the proposed cul-
tural cooperative particle swarm optimization (CCPSO) learn-
ing method, which combines the cooperative particle swarm
optimization and cultural algorithm, to increase global search
capacity, is proposed herein to avoid trapping in a suboptimal so-
lution and to ensure that a nearby global optimal solution can be
found.

This study presents an efficient CCPSO for the FLNFN in
several predictive applications. The proposed FLNFN model is
based on our previous research [18]. The FLNFN model, which
combines a neural fuzzy network with a functional link neu-
ral network, is designed to improve the accuracy of functional
approximation. The consequent part of the fuzzy rules that corre-
sponds to an FLNN comprises the functional expansion of input
variables. The orthogonal polynomials and linearly independent
functions are adopted as functional link neural network bases.
The proposed CCPSO is a hybrid method that combines co-
operative particle swarm optimization and cultural algorithms.
The CCPSO method with cooperative behavior among multiple
swarms increases the global search capacity using the belief
space. Cooperative behavior among multiple swarms involves
interaction by exchanging information with each other to solve a
problem. The belief space is the information repository in which
the individuals can store their experiences for other individuals
to learn from them indirectly. The advantages of the proposed
FLNFN-CCPSO method are as follows: 1) the consequent of
the fuzzy rules involves a nonlinear combination of input vari-
ables. This study uses a functional link neural network to the
consequent part of the fuzzy rules. The functional expansion in
the FLNFN model can yield the consequent part of a nonlinear
combination of input variables; 2) the proposed CCPSO with
cooperative behavior among multiple swarms can accelerate
the search and increase global search capacity using the belief
space; and 3) as demonstrated in Section V, the FLNFN-CCPSO
method is a more effective controller than the other methods.

The rest of this paper is organized as follows. Section II de-
scribes the basic concept of particle swarm optimization and
cultural algorithm. Section III presents the structure of the
functional-link-based neural fuzzy network. Next, Section IV
presents the cultural cooperative particle swarm optimization
method. Section V presents the results of the simulation of sev-
eral predictive applications. Section VI draws conclusions.

II. PARTICLE SWARM OPTIMIZATION

AND CULTURAL ALGORITHM

This section describes basic concepts concerning particle
swarm optimization and the cultural algorithm. The special-
ization property of particle swarm optimization and cultural
algorithm is consistent with the learning property of the neural
fuzzy network. Therefore, the development of a neural fuzzy
network based on particle swarm optimization and the cultural
algorithm is valuable.

A. Particle Swarm Optimization

In 1995, Kennedy and Eberhart introduced the particle swarm
optimization algorithm (PSO) [19], [20] in the field of social and
cognitive behavior. The PSO is a population-based optimization
approach, in which the population is called a swarm. Further-
more, each swarm consists of many particles. In the PSO, the
trajectory of each particle in the search space is adjusted by dy-
namically altering the velocity of each particle. Each particle has
a velocity vector �vi and a position vector �xi , which represents a
possible solution. Then, the particles move rapidly around and
search the solution space using the moving velocity of each par-
ticle. Each of these particle positions is scored to obtain a fitness
value, based on how to define the solution of the problem. The
local best position (Lbest) of each particle and the global best
position (Gbest) in the swarm are used to yield a new velocity
for each particle

�vi(k + 1) = ω × �vi(k) + φ1 × rand() × (Lbest − �xi(k))

+ φ2 × rand() × (Gbest − �xi(k)) (1)

where ω, φ1 , and φ2 are called the coefficient of the inertia
term, the cognitive term, and the society term, respectively. The
term �vi is limited to the range ±�vmax . If the velocity violates
this limit, then it is set to the actual limit.

Changing the velocity enables each particle to search around
its individual best position and global best position. Based on the
updated velocities, each particle changes its position according
to

→
xi(k + 1) =

→
xi(k) +

→
vi(k + 1). (2)

Fig. 1 presents the concept of the updated velocity using (1)
and (2).

B. Cultural Algorithm

Cultural algorithms [32], [33] involve acquiring the belief
space from the evolving population space and then exploiting
that information to guide the search. Fig. 2 presents the cultural
algorithm components. Cultural algorithms can be described in
terms of two basic components—belief space and the population
space. The belief space is the information repository in which
the individuals can store their experiences for other individuals
to learn from them indirectly. In cultural algorithms, the infor-
mation acquired by an individual can be shared with the entire
population, unlike in most evolutionary techniques, in which
the information can be shared only with the offspring of the

LIN et al.: HYBRID OF CPSO AND CULTURAL ALGORITHM 57

Fig. 1. Diagram of the updated velocity in the PSO.

Fig. 2. Framework of cultural algorithm.

individual. The population space comprises a set of possi-
ble solutions to the problem, and can be modeled using any
population-based approach. The belief space and the population
space are linked using a scheme that states rules that govern the
individuals of the population space that can contribute to the be-
lief space based on its experiences (according to the acceptance
function), and the belief space can influence the new individuals
of the population space (according to the influence function).

III. STRUCTURE OF FUNCTIONAL-LINK-BASED

NEURAL FUZZY NETWORK

This section describes the structure of functional link neural
networks and the structure of the FLNFN model. In functional
link neural networks, the input data usually incorporate high-
order effects, and thus, artificially increase the dimensions of the
input space. Accordingly, the input representation is enhanced
and linear separability is achieved in the extended space. The
FLNFN model adopted the functional link neural network gen-
erating complex nonlinear combination of input variables as the
consequent part of the fuzzy rules. The rest of this section details
these structures.

A. Functional Link Neural Networks

The functional link neural network is a single-layer network
in which the need for hidden layers is eliminated. While the
input variables generated by the linear links of neural networks
are linearly weighted, the functional link acts on an element
of input variables by generating a set of linearly independent
functions, which are suitable orthogonal polynomials for a

Fig. 3. Structure of the FLNN.

functional expansion, and then evaluating these functions
with the variables as the arguments. Therefore, the FLNN
structure considers trigonometric functions. For example, for a
2-D input X = [x1 , x2]T , the enhanced data are obtained by
using trigonometric functions as functional expansion Φ =
[1, x1 , sin(π x1), cos(π x1), . . . , x2 , sin(π x2), cos(π x2), . . .]T .
Thus, the input variables can be separated in the enhanced
space [16]. In the FLNN structure with reference to Fig. 3, a set
of basis functions Φ and a fixed number of weight parameters
W represent fW (x). The theory behind the FLNN for
multidimensional function approximation has been discussed
elsewhere [17] and is analyzed next.

Consider a set of basis functions B = {φk ∈ Φ(A)}k∈K ,
K = {1, 2, . . .} with the following properties; 1) φ1 = 1; 2)
the subset Bj = {φk ∈ B}M

k = 1
is a linearly independent set,

meaning that if
∑M

k=1 wkφk = 0, then wk = 0 for all k =

1, 2, . . . ,M ; and 3) supj

[∑j
k=1 ‖φk‖2

A

]1/2
< ∞.

Let B = {φk}M
k = 1

be a set of basis functions to be considered,
as shown in Fig. 3. The FLNN comprises M basis functions
{φ1 , φ2 , . . . , φM } ∈ B. The linear sum of the jth node is given
by

ŷj =
M∑

k=1

wkjφk (X) (3)

whereX ∈ A ⊂ �N ,X = [x1 , x2 , . . . , xN]T is the input vector,
and Wj = [w1j , w2j , . . . , wM j] is the weight vector associated
with the jth output of the FLNN. ŷj denotes the local output of
the FLNN structure and the consequent part of the jth fuzzy rule
in the FLNFN model. Thus, (3) can be expressed in matrix form
as ŷj = WjΦ, where Φ = [φ1(x), φ2(x), . . . , φM (x)]T is the
basis function vector, which is the output of the functional ex-
pansion block. The m-dimensional linear output may be given
by ŷ = WΦ, where ŷ = [ŷ1 , ŷ2 , . . . , ŷm]T , m denotes the num-
ber of functional link bases, which equals the number of fuzzy
rules in the FLNFN model, and W is a (m × M)-dimensional
weight matrix of the FLNN given by W = [w1 ,w2 , . . . ,wm]T .
The jth output of the FLNN is given by ŷ′

j = ρ(ŷj), where
the nonlinear function ρ(·) = tanh(·). Thus, the m-dimensional
output vector is given by

Ŷ = ρ(ŷ) = fW (x) (4)

where Ŷdenotes the output of the FLNN.

58 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 1, JANUARY 2009

Fig. 4. Structure of the proposed FLNFN model.

B. Structure of the FLNFN Model

This subsection describes the FLNFN model, which uses a
nonlinear combination of input variables (FLNN). Each fuzzy
rule corresponds to a sub-FLNN, comprising a functional link.
Fig. 4 presents the structure of the proposed FLNFN model.
The FLNFN model realizes a fuzzy if-then rule in the following
form.

Rulej : IF x1 is A1j and x2 is A2j . . . and xi is Aij . . . and
xN]is AN j

THEN ŷj =
M∑

k=1

wkjφk

= w1j φ1 + w2j φ2 + . . . + wM jφM (5)

where xi and ŷj are the input and local output variables, respec-
tively; Aij is the linguistic term of the precondition part with
Gaussian membership function; N is the number of input vari-
ables; wkj is the link weight of the local output; φk is the basis
trigonometric function of input variables; M is the number of
basis function, and Rulej is the jth fuzzy rule.

The operation functions of the nodes in each layer of the
FLNFN model are now described. In the following description,
u(l) denotes the output of a node in the lth layer.

No computation is performed in layer 1. Each node in this
layer only transmits input values to the next layer directly

u
(1)
i = xi. (6)

Each fuzzy set Aij is described here by a Gaussian member-
ship function. Therefore, the calculated membership value in
layer 2 is

u
(2)
ij = exp

(
− [u(1)

i − mij]2

σ2
ij

)
(7)

where mij and σij are the mean and variance of the Gaussian
membership function, respectively, of the jth term of the ith
input variable xi .

Nodes in layer 3 receive 1-D membership degrees of the
associated rule from the nodes of a set in layer 2. Here,
the product operator described earlier is adopted to perform
the precondition part of the fuzzy rules. As a result, the output
function of each inference node is

u
(3)
j =

∏
i

u
(2)
ij (8)

where the
∏

i u
(2)
ij of a rule node represents the firing strength

of its corresponding rule.
Nodes in layer 4 are called consequent nodes. The input to a

node in layer 4 is the output from layer 3, and the other inputs
are calculated from a functional link neural network that has not
used the function tanh(·), as shown in Fig. 4. For such a node

u
(4)
j = u

(3)
j ×

M∑
k=1

wkjφk (9)

LIN et al.: HYBRID OF CPSO AND CULTURAL ALGORITHM 59

where wkj is the corresponding link weight of func-
tional link neural network and φk is the functional
expansion of input variables. The functional expansion
uses a trigonometric polynomial basis function, given by
[x1 sin(π x1) cos(π x1)x2 sin(π x2) cos(π x2)] for 2-D input
variables. Therefore, M is the number of basis functions,
M = 3 × N , where N is the number of input variables. More-
over, the output nodes of functional link neural network depend
on the number of fuzzy rules of the FLNFN model.

The output node in layer 5 integrates all of the actions rec-
ommended by layers 3 and 4 and acts as a defuzzifier with

y = u(5) =

R∑
j=1

u
(4)
j

R∑
j=1

u
(3)
j

=

R∑
j=1

u
(3)
j

(
M∑

k=1
wkjφk

)
R∑

j=1
u

(3)
j

=

R∑
j=1

u
(3)
j ŷj

R∑
j=1

u
(3)
j

(10)
where R is the number of fuzzy rules, and y is the output of the
FLNFN model.

IV. LEARNING ALGORITHMS FOR THE FLNFN MODEL

This section describes the proposed CCPSO method. Before
the CCPSO method is designed, CPSO [29] that differs from
the traditional PSO is introduced.

The traditional PSO uses one swarm of particles defined by
the P -dimensional vectors to evolve. The CPSO method can
change traditional PSO into P swarms of 1-D vectors, such that
each swarm represents a dimension of the original problem.
Fig. 5(a) and (b) shows the framework of the traditional PSO
and CPSO method. The key point is that, instead of using one
swarm (of I particles) to find the optimal P -dimensional vec-
tor, the vector is split into its components so that P swarms (of
I particles each) optimize a 1-D vector. Notably, the function
that is being optimized still requires a P -dimension vector to
be evaluated. However, if each swarm represents only a single
dimension of the search space, it cannot directly compute the
fitness of the individuals of a single population considered in
isolation. A context vector is required to provide a suitable con-
text in which the individuals of a population can be evaluated.
To calculate the fitness for all particles in swarm, the other P -1
components in the context vector keep constant values, while the
pth component of the context vector is replaced, in turn, by each
particle from the pth swarm. Additionally, each swarm aims to
optimize a single component of the solution vector essentially
solving a 1-D optimization problem. Unfortunately, the CPSO
still employs just the local best position and the global best po-
sition of the traditional PSO to evolution process. Therefore, the
CPSO may fall into a suboptimal solution. The CCPSO learning
method, which combines the cooperative particle swarm opti-
mization and the cultural algorithm to increase the global search
capacity, is proposed to avoid trapping in a suboptimal solution
and to ensure the ability to search for a near-global optimal
solution.

The CCPSO method is characteristic of the cooperative par-
ticle swarm optimization and cultural algorithm. Fig. 6 shows
the framework of the proposed CCPSO learning method, which

Fig. 5. Framework of (a) PSO and (b) CPSO.

is based on a CPSO all of whose parameters are simultaneously
tuned using the brief space of the culture algorithm (CA). The
CCPSO method can strengthen the global search capability. If
50-dimensional vectors are used in the original PSO, then the
vectors in CCPSO can be changed into 50 swarms of 1-D vec-
tors. In the original PSO, the particle can exhibit 50 variations
in each generation, whereas the CCPSO offers 50 × 50 = 2500
different combinations in each generation. Additionally, each
position of the CCPSO can be adjusted not only using the belief
space that stores the paragons of each swarm, but also by search-
ing around the local best solution and the global best solution.
In the aforementioned scheme, the proposed CCPSO method
can avoid falling into a suboptimal solution and ensure that the
approximate global optimal solution can be found.

The detailed flowchart of the proposed CCPSO method is
presented in Fig. 7. The foremost step in CCPSO is the coding of

60 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 1, JANUARY 2009

Fig. 6. Framework of the proposed CCPSO learning method.

Fig. 7. Flowchart of the proposed CCPSO learning method.

the neural fuzzy network into a particle. Fig. 8 shows an example
of the coding of parameters of neural fuzzy network into a
particle, where i and j represent the ith input variable and the jth
rule, respectively. In this study, a Gaussian membership function

Fig. 8. Coding FLNFN model into a particle in the proposed CCPSO.

is adopted with variables that represent the mean and deviation
of the membership function. Fig. 8 represents the neural fuzzy
network given by (5), where mij and σij are the mean and
deviation of a Gaussian membership function, respectively, and
wkj represents the corresponding link weight of the consequent
part that is connected to the jth rule node. In this study, a real
number represents the position of each particle.

The learning process is described step-by-step as follows.
Step 1: Create initial swarms
Before the CCPSO method is applied, every position xp,i(t)

must be created randomly in the range [0, 1], where p = 1, 2,
. . ., P represents the pth swarm, i = 1, 2, . . ., I represents the
ith particle, and t denotes the tth generation.

Step 2: Create initial belief space
The belief space is the information repository in which the

particles can store their experiences for other particles to learn
from them indirectly. Create P belief space, Bp (p = 1, 2, . . .,
P). Each initial Bp is defined as an empty set.

Step 3: Update every position
Step 3.1: Evaluate the performance function of each Particle i

The fitness function is used to evaluate the performance func-
tion of each particle. The fitness function is defined as follows

F =

√√√√ 1
D

D∑
d=1

(yd − yd)2 (11)

LIN et al.: HYBRID OF CPSO AND CULTURAL ALGORITHM 61

where yd represents the dth model output; yd represents the dth
desired output, and D represents the number of input data.

Step 3.2: Update local best position Lp,i and global best
position Gp

The local best position Lp,i is the best previous position that
yielded the best fitness value of the pth swarm of the ith particle,
and the global best position Gp is generated by the whole local
best position. In Step 3.2, the first step updates the local best
position. Compare the fitness value of each current particle with
that of its local best position. If the fitness value of the current
particle exceeds those of its local best position, then the local
best position is replaced with the position of the current particle.
The second step updates the global best position. Compare the
fitness value of all particles in their local best positions with that
of the particle in the global best position. If the fitness value of
the particle in the local best position is better than those of the
particles in the global best position, then the global best position
is replaced with the current local best position

Lp,i(t + 1) =
{

xp,i(t), if F (xp,i(t)) < F (Lp,i(t))

Lp,i(t), if F (xp,i(t)) ≥ F (Lp,i(t))

Gp(t + 1) = arg min
Lp , i

F (Lp,i(t + 1)), 1 ≤ i ≤ I. (12)

Step 3.3: Adjust each belief space Bp using an acceptance
function

The first part of Step 3.3 sorts these particles in each Swarmp

in the order of increasing fitness. Then, the paragon of each
Swarmp is put into the belief space Bp using an acceptance
function. This function yields the number of particles that are
used to adjust each belief space, and is as follows. The number
of accepted particles decreases as the number of generations
increases

Naccepted = n% × I +
n%
t

× I (13)

where n% is a parameter that is set by the user, and must specify
the top performing 20% [34]; I is the number of particles, and
t represents the tth generation. The second step adjusts Bp .
The interval of belief space BIp is defined asBIp = [lp , up] =
{x|lp ≤ x ≤ up, x ∈ �}, where lp is the lower bound on belief
space Bp and up is the upper bound on belief space Bp . Then, the
position of each particle in Bp is compared with the lower bound
lp . If the position of the particle is smaller than the lower bound
lp , then the lower bound lp is replaced with the current position.
Furthermore, the position of each particle in the Bp is compared
with the upper bound up . If the position of the particle is greater
than the upper bound up , then the upper bound up is replaced
with the current position. These rules are given as follows:

lp =
{

xp,i , if xp,i ≤ lp

lp , otherwise

up =
{

xp,i , if xp,i ≥ up

up , otherwise.
(14)

Step 3.4: Generate each new Swarmp using
lp , up , Lp,i , and Gp

In Step 3.4, the first step adjusts every position of each Swarmp

using an influence function (15). This step can change the direc-
tion of each particle in solution space, not easily being trapped
at a local optimum. Then, the second step updates the velocity
and position of each particle to generate the each new Swarmp

using (16) and (17)

xp,i(t)=
{

xp,i(t) + |Rand() × (up − lp)| if xp,i < lp

xp,i(t) − |Rand() × (up − lp)| if xp,i > up

(15)

vp,i(t + 1) = w× vp,i(t)+ c1×Rand()× [Lp,i(t + 1)−xp,i(t)]

+ c2 × Rand() × [Gp(t + 1) − xp,i(t)] (16)

xp,i(t + 1) = xp,i(t) + vp,i(t + 1) (17)

where c1 and c2 denote acceleration coefficients; Rand() is
generated from a uniform distribution in the range [0, 1], and w
controls the magnitude of vp,i(t).

V. EXPERIMENTAL RESULTS

This section discusses three examples that were considered to
evaluate the FLNFN model with the CCPSO learning method.
The first example involves predicting a chaotic signal that has
been described in [7]; the second example involves predicting a
chaotic time series [4], and the third example involves forecast-
ing the number of sunspots [5].

A. Example 1: Prediction of a Chaotic Signal

In this example, an FLNFN model with a CCPSO learning
method (FLNFN-CCPSO) was used to predict a chaotic signal.
The classical time series prediction problem is a one-step-ahead
prediction that has been described in [7]. The following equation
describes the logistic function:

x(k + 1) = ax(k)(1 − x(k)). (18)

The behavior of the time series generated by this equation
depends critically on parameter a. If a < 1, then the system
has a single fixed point at the origin, and from a random ini-
tial value between [0, 1], the time series collapses to a constant
value. For a > 3, the system generates a periodic attractor. At
a ≥ 3.6, the system becomes chaotic. In this example, a was
set to 3.8. The first 60 pairs (from x(1) to x(60)), with initial
valuex(1) = 0.001, were the training dataset, while the remain-
ing 100 pairs (from x(1) to x(100)), with initial value x(1) =
0.9, were the testing dataset used to validate the proposed
method.

In this example, several particles will be found to minimize the
fitness value using the proposed FLNFN-CCPSO method. The
learning stage involved parameter learning using the CCPSO
method. The coefficient ω was set to 0.4. The cognitive coef-
ficient c1 1.6, and the society coefficient c2 was set to 2. The
swarm sizes were set to 50. The learning proceeded for 1000
generations, and was repeated 50 times. After 1000 genera-
tions, the final average rms error of the predicted output is about
0.002285. In this example, three fuzzy rules are adopted. They

62 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 1, JANUARY 2009

Fig. 9. (a) Predictions of the proposed method. (b) Prediction errors of the proposed method. (c) Predictions of the PSO [19]. (d) Prediction errors of the PSO.
(e) Predictions of the CPSO [29]. (f) Prediction errors of the CPSO.

LIN et al.: HYBRID OF CPSO AND CULTURAL ALGORITHM 63

are shown as follows.

Rule1 : IF x is µ(0.763596, 19.0781)

THEN ŷ1 = −0.846419 + 0.840237x

+ 0.0103279cos(π x) + 1.61874 sin(π x)

− 0.364635x

Rule2 : IF x is µ(0.235112, 0.307009)

THEN ŷ1 = 0.145784− 0.961044x− 0.146496cos(π x)

+ 0.857966 sin(π x) + 6.62004x

Rule3 : IF x is µ(0.771367, 0.351594)

THEN ŷ1 = 0.727383 + 0.625871x + 1.00717cos(π x)

+ 2.25003 sin(π x) + 0.178136x

where µ(mij , σij) represents a Gaussian membership function
with mean mij and deviation σij in the ith input variable and
the jth rule. Fig. 9(a) plots the predictions of the desired output
and the model output in 1000 generations of learning. The solid
line represents the desired output of the time series, and the no-
tation “∗” represents the output of the FLNFN-CCPSO method.
Fig. 9(b) presents the prediction errors of the proposed method.
The experimental results demonstrate the perfect predictive ca-
pability of theFLNFN-CCPSO method.

In this example, PSO [19] and CPSO [29] were applied to
the same problem to show the effectiveness and efficiency of
the FLNFN model with the CCPSO learning method. In the
PSO and CPSO, the swarm sizes were set to 50. The coefficient
ω was set to 0.4. The cognitive coefficient c1 was set to 1.6, and
the society coefficient c2 was set to 2. Three rules were applied
to construct the fuzzy model. In the PSO [19] and CPSO [29],
learning proceeded for 1000 generations, and was performed
50 times.

The performance of the FLNFN model with CCPSO learning
was compared with the performance of other methods. First,
the performance of the FLNFN-CCPSO method was compared
with that of the PSO [19]. Fig. 9(c) plots the results predicted
using PSO. Fig. 9(d) presents the prediction errors of the PSO.
Second, CPSO [29] is adopted to solve the predictive problem.
Fig. 9(e) and (f) plots the results and the errors of the CPSO. As
presented in Fig. 9, the results predicted by the FLNFN model
with the CCPSO learning method are better than those predicted
by other methods.

Fig. 10 plots the learning curves of the best performance of
the FLNFN model with the CCPSO learning method, PSO [19],
and CPSO [29]. This figure indicates that the proposed method
converges quickly and yields a lower rms error than the other
methods. Computer simulations indicated that the proposed
method outperforms other methods. The best performance of
the CCPSO was compared with that of the PSO [19] and
CPSO [29]. Table I compares the results. The comparison indi-
cates that the rms error of training and predicting for the FLNFN-
CCPSO method is better than those obtained using other
methods.

Fig. 10. Learning curves of the proposed method, PSO [19] and CPSO [29].

TABLE I
COMPARISON OF THE BEST PERFORMANCE OF THE

CCPSO, PSO, AND CPSO IN EXAMPLE 1

B. Example 2: Prediction of Chaotic Time Series

The Mackey–Glass chaotic time series x(t) was generated
using the following delay differential equation

dx(t)
dt

=
0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t). (19)

Crowder [4] extracted 1000 input–output data pairs {x, yd}
using four past values of x(t)

[x(t − 18), x(t − 12), x(t − 6), x(t);x(t + 6)] (20)

where τ = 17 and x(0) = 1.2. Four inputs to the FLNFN-CCPSO
method, corresponded to these values of x(t), and one output
was x(t + ∆t), where ∆t is a time interval into the future. The
first 500 pairs (from x(1) to x(500)) were the training dataset,
while the remaining 500 pairs (from x(501) to x(1000)) were
the testing data used to validate the proposed method.

The learning stage entered parameter learning through the
CCPSO method. The coefficient ω was set to 0.4. The cognitive
coefficient c1 was set to 1.6, and the society coefficient c2 was
set to 2. The swarm sizes were set to 50. The learning proceeded
for 1000 generations, and was performed 50 times. In this
example, three fuzzy rules are applied. They are as follows

Rule1 : IF x1 is µ(0.452959,−5.36833) and

x2 is µ(−0.10799, 0.768855) and

x3 is µ(−0.850613,−3.60999) and

x4 is µ(1.09886, 0.495632)

THEN ŷ1 = 2.20613 + 0.580829x1 + 0.391061 cos(πx1)

+ 0.332886 sin(π x1) − 4.68232x2

− 5.05388 cos(π x2) + 1.73753 sin(π x2)

64 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 1, JANUARY 2009

− 0.656754x3 + 1.71626 cos(π x3)

+ 0.0923789 sin(π x3) + 4.93925x4

− 0.416084 cos(π x4) + 1.45935 sin(π x4)

+ 0.990628x1x2x3x4

Rule2 : IF x1 is µ(−0.596747,−0.896165) and

x2 is µ(0.841226, 1.1499) and

x3 is µ(0.20028, 0.310169) and

x4 is µ(1.01531, 0.524704)

THEN ŷ1 = 0.683119 + 0.649552x1

+ 1.74121 cos(π x1) − 4.32156 sin(π x1)

+ 0.200504x2 − 2.74432 cos(π x2)

+ 1.18918 sin(π x2) + 0.519391x3

+ 0.641173 cos(π x3) + 3.17329 sin(π x3)

− 0.22503x4 + 0.524293 cos(π x4)

+ 0.685239 sin(π x4)

− 0.127742x1x2x3x4

Rule3 : IF x1 is µ(1.03417, 0.919468) and

x2 is µ(−0.115958, 1.69308) and

x3 is µ(−0.114371, 1.1357) and

x4 is µ(−0.152534, 0.74255)

THEN ŷ1 = 0.58632 − 1.28024x1

− 0.180169 cos(π x1) − 0.470873 sin(π x1)

− 0.530146x2 − 0.597328 cos(π x2)

+ 0.156929 sin(π x2) + 0.176057x3

+ 0.0405789 cos(π x3) + 1.09262 sin(π x3)

+ 0.353992x4 − 0.437468 cos(π x4)

− 1.09654 sin(π x4)

+ 0.479358x1x2x3x4

where µ(mij , σij) represents a Gaussian membership function
with mean mij and deviation σij in the ith input variable and
the jth rule. The final rms error of the prediction output is about
0.008424. Fig. 11(a) plots the prediction outputs of the chaotic
time series from x(501) to x(1000), when 500 training data
from x(1) to x(500) were used. Fig. 11(b) plots the prediction
errors between the proposed model and the desired output.

In this example, as in Example 1, the performance of the
FLNFN model with the CCPSO learning method was compared
to that of other methods. In the PSO [19] and CPSO [29], the
parameters are the same as in Example 1. Three rules are set
to construct the fuzzy model. The learning proceeded for 1000
generations, and was performed 50 times. Fig. 11(c) and (d)
plots the predictions and the prediction errors of the PSO [19].
Fig. 11(e) and (f) plots the predictions and the prediction er-

Fig. 11. (a) Prediction results of the proposed method. (b) Prediction errors
of the proposed method. (c) Prediction results of the PSO [19]. (d) Prediction
errors of the PSO. (e) Prediction results of the CPSO [29]. (f) Prediction errors
of the CPSO. (g) Prediction results of the DE [35]. (h) Prediction errors of the
DE. (i) Prediction results of the GA [38]. (j) Prediction errors of the GA.

rors of the CPSO [29]. Fig. 11(g) and (h) plots the predictions
and the prediction errors of differential evolution (DE) [35].
Fig. 11(i) and (j) plots the predictions and the prediction errors
of the genetic algorithm (GA). Fig. 12 plots the learning curves
of the best performance of the FLNFN model with CCPSO,
PSO [19], CPSO [29], DE [35], and GA [38] learning methods.
The proposed CCPSO method yields better prediction results
than the other methods. Table II compares the best performance

LIN et al.: HYBRID OF CPSO AND CULTURAL ALGORITHM 65

Fig. 12. Learning curves of the best performance of the proposed method,
PSO [19], CPSO [29], DE [35], and GA [38].

TABLE II
COMPARISON OF THE BEST PERFORMANCE OF THE CCPSO,

PSO, CPSO, DE, AND GA IN EXAMPLE 2

TABLE III
COMPARISON OF THE PERFORMANCE OF VARIOUS EXISTING MODELS

of the CCPSO with those of the PSO [19], CPSO [29], DE [35],
and GA [38]. Table III lists the generalization capabilities of
the other methods [4], [36], [37]. The generalization capabili-
ties were measured by using each model to predict 500 points
immediately following the training dataset. The results show
that the proposed FLNFN-CCPSO method offers a smaller rms
error than the other methods.

C. Example 3: Forecast of the Number of Sunspots

The number of sunspots varied nonlinearly from 1700 to
2004, in nonstationary, and non-Gaussian cycles that are dif-
ficult to predict [5]. In this example, the FLNFN model with
the CCPSO learning method was used to forecast the number
of sunspots The inputs xi of the FLNFN-CCPSO method are
defined as x1(t) = yd

1 (t − 1), x2(t) = yd
1 (t − 2) and x3(t) =

yd
1 (t − 3), where t represents the year and yd

1 (t) represents the
number of sunspots in the year t. In this example, the num-
ber of sunspots of the first 151 years (from 1703 to 1853) was
used to train the FLNFN-CCPSO method while the number of

sunspots of all 302 years (from 1703 to 2004) was used to test
the FLNFN-CCPSO method.

The learning stage involved parameter learning by the CCPSO
method. The coefficient ω was set to 0.4. The cognitive coeffi-
cient c1 was set to 1.6, and the society coefficient c2 was set to
2. The swarm sizes were set to 50. The learning proceeded for
1000 generations, and was performed 50 times. In this example,
three fuzzy rules are applied. They are as follows:

Rule 1: IF x1 is µ(0.845312, 0.508771) and

x2 is µ(0.90418, 0.451389) and

x3 is µ(−0.0895866, 1.06449)

THEN ŷ1 = −3.35896 − 0.436238x1 + 1.4272 cos(π x1)

− 0.417788 sin(π x1) + 2.19244x2

− 0.32409 cos(π x2) + 0.2113 sin(π x2)

− 1.36183x3 − 0.480986 cos(π x3)

+ 2.59738 sin(π x3) − 0.361671(x1x2x3)

Rule 2: IF x1 is µ(1.44016, 0.616583) and

x2 is µ(0.314697, 7.34735) and

x3 is µ(2.38597, 1.31093)

THEN ŷ1 = 1.88537 + 1.78931x1

+ 1.73373 cos(π x1) + 2.86658 sin(π x1)

+ 4.53188x2 − 3.75512 cos(π x2)

− 7.18406 sin(π x2) + 0.868682x3

− 0.541793 cos(π x3) + 1.52449 sin(π x3)

+ 0.763891(x1x2x3)

Rule 3: IF x1 is µ(0.115385, 0.93777) and

x2 is µ(0.326872, 1.02448) and

x3 is µ(0.984958, 0.403378)

THEN ŷ1 = 1.56458 + 0.703153x1

+ 0.0115128 cos(π x1) − 0.119185 sin(π x1)

− 0.0263568x2 − 0.681762 cos(π x2)

+ 0.478785 sin(π x2) + 7.0577x3

− 0.808627 cos(π x3) + 0.462158 sin(π x3)

+ 10.6957(x1x2x3)

where µ(mij , σij) represents a Gaussian membership function
with mean mij and deviation σij in the ith input variable and
the jth rule. The final rms error of the forecast output is about
10.337347. Fig. 13(a) presents the forecast outputs for years
1703–2004, using 151 training data from years 1703 to 1853.
Fig. 13(b) plots the forecast errors between the proposed model
and the desired output.

In this example, as in Examples 1 and 2, the performance
of the FLNFN model with the CCPSO learning method was

66 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 1, JANUARY 2009

Fig. 13. (a) Forecast results of the proposed method. (b) Forecast errors of the
proposed method. (c) Forecast results of the PSO [19]. (d) Forecast errors of
the PSO. (e) Forecast results of the CPSO [29]. (f) Forecast errors of the CPSO.
(g) Forecast results of the DE [35]. (h) Forecast errors of the DE. (i) Forecast
results of the GA. (j) Forecast errors of the GA [38].

compared with that of the other methods. In PSO [19] and
CPSO [29], the parameters are the same as in Examples 1 and 2.
Three rules are used to construct the fuzzy model. The learning
proceeded for 1000 generations, and was performed 50 times.
Fig. 13(c) and (d) plot the forecast results and the forecast errors
of the PSO [19]. Fig. 13(e) and (f) plots the forecast results and
the forecast errors of the CPSO [29]. Fig. 13(g) and (h) plots the
forecast results and the forecast errors of the DE [35]. Fig. 13(i)

Fig. 14. Learning curves of the best performance of the proposed method,
PSO [19], CPSO [29], DE [33], and GA [38].

TABLE IV
COMPARISON OF THE BEST PERFORMANCE OF

CCPSO, PSO, AND CPSO IN EXAMPLE 3

TABLE V
COMPARISON OF THE PERFORMANCE OF VARIOUS EXISTING MODELS

and (j) plots the forecast results and the forecast errors of the GA.
Fig. 14 plots the learning curves of the best performance of the
FLNFN model with CCPSO, PSO, CPSO, DE, and GA learning.
The proposed CCPSO learning method yields better forecast
results than the other methods. Table IV presents the best rms
errors of training and forecasting for the CCPSO, PSO [19],
CPSO [29], DE [35], and GA [38] learning methods. Table V
lists the generalization capabilities of other methods [36], [37].
As presented in Tables IV and V, the proposed FLNFN-CCPSO
method outperforms the other methods.

VI. CONCLUSION

This study proposes an efficient cultural cooperative par-
ticle swarm optimization learning method for the functional-
link-based neural fuzzy network in predictive applications. The
FLNFN model can generate the consequent part of a nonlinear
combination of input variables. The proposed CCPSO method
with cooperative behavior among multiple swarms increases the
global search capacity using the belief space. The advantages
of the proposed FLNFN-CCPSO method are as follows. 1) The
consequent of the fuzzy rules is a nonlinear combination of input
variables. This study uses the functional link neural network to
the consequent part of the fuzzy rules. The functional expansion
in the FLNFN model can yield the consequent part of a nonlinear
combination of input variables; 2) the proposed CCPSO with
cooperative behavior among multiple swarms can accelerate
the search and increase global search capacity using the belief

LIN et al.: HYBRID OF CPSO AND CULTURAL ALGORITHM 67

space. The experimental results demonstrate that the CCPSO
method can obtain a smaller rms error than the generally used
PSO and CPSO for solving time series prediction problems.

Although the FLNFN-CCPSO method can perform better
than the other methods, there is an advanced topic to the pro-
posed FLNFN-CCPSO method. In this study, the number of
rules is predefined. In future studies, it would be better if the
proposed method has the ability to determine the number of
fuzzy rules.

REFERENCES

[1] J. E. Box and G. M. Jenkins, Time Series Analysis, Forecasting and Con-
trol. San Francisco, CA: Holden Day, 1970.

[2] H. Tong, Non-linear Time Series: A Dynamical System Approach. Lon-
don, U.K.: Oxford Univ. Press, 1990.

[3] M. Li, K. Mehrotra, C. Mohan, and S. Ranka, “Sunspot numbers forecast-
ing using neural networks,” in Proc. IEEE Int. Conf., Sep. 1990, vol. 1,
pp. 524–529.

[4] R. S. Cowder, “Predicting the Mackey–Glass time series with cascade-
correlation learning,” in Proc. 1990 Connect. Models Summer Sch.,
pp. 117–123.

[5] S. H. Ling, F. H. F. Leung, H. K. Lam, Y. S. Lee, and P. K. S. Tam, “A novel
genetic-algorithm-based neural network for short-term load forecasting,”
IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 793–799, Aug. 2003.

[6] N. K. Kasabov and Q. Song, “DENFIS: Dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,” IEEE
Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, Apr. 2002.

[7] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy Syner-
gism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall, May
1996.

[8] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-
plications to modeling and control,” IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, no. 1, pp. 116–132, Jan./Feb. 1985.

[9] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, May/Jun.
1993.

[10] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy
inference network and its applications,” IEEE Trans. Fuzzy Syst., vol. 6,
no. 1, pp. 12–31, Feb. 1998.

[11] C. Li and C. Y. Lee, “Self-organizing neuro-fuzzy system for control of
unknown plants,” IEEE Trans. Fuzzy Syst., vol. 11, no. 1, pp. 135–150,
Feb. 2003.

[12] F. Sun, Z. Sun, L. Li, and H. X. Li, “Neuro-fuzzy adaptive control based on
dynamic inversion for robotic manipulators,” Fuzzy Sets Syst., vol. 134,
pp. 117–133, 2003.

[13] P. P. Angelov and D. P. Filev, “An approach to online identification of
Takagi–Sugeno fuzzy models,” IEEE Trans. Syst., Man, Cybern., vol. 34,
no. 1, pp. 484–498, Feb. 2004.

[14] H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, “Neural networks designed
on approximate reasoning architecture and their application,” IEEE Trans.
Neural Netw., vol. 3, no. 5, pp. 752–759, Sep. 1992.

[15] E. Mizutani and J.-S.R. Jang, “Coactive neural fuzzy modeling,” in Proc.
Int. Conf. Neural Netw., 1995, pp. 760–765.

[16] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks. Reading,
MA: Addison-Wesley, 1989.

[17] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of non-
linear dynamic systems using functional link artificial neural networks,”
IEEE Trans. Syst., Man, Cybern., vol. 29, no. 2, pp. 254–262, Apr. 1999.

[18] C. H. Chen, C. T. Lin, and C. J. Lin, “A functional-link-based fuzzy
neural network for temperature control,” in Proc. 2007 IEEE Symp. Found.
Comput. Intell., Honolulu, HI, Apr. 1–5, 2007, pp. 53–58.

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE
Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[20] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Hum. Sci., Oct. 1995, pp. 39–
43.

[21] Z. L. Gaing, “A particle swarm optimization approach for optimum design
of PID controller in AVR system,” IEEE Trans. Energy Convers., vol. 19,
no. 2, pp. 384–391, Jun. 2004.

[22] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, “A
particle swarm optimization for reactive power and voltage control con-
sidering voltage security assessment,” IEEE Trans. Power Syst., vol. 15,
no. 4, pp. 1232–1239, Nov. 2000.

[23] M. A. Abido, “Optimal design of power-system stabilizers using parti-
cle swarm optimization,” IEEE Trans. Energy Convers., vol. 17, no. 3,
pp. 406–413, Sep. 2002.

[24] C. F. Juang, “A hybrid of genetic algorithm and particle swarm optimiza-
tion for recurrent network design,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 34, no. 2, pp. 997–1006, Apr. 2004.

[25] R. Mendes, P. Cortez, M. Rocha, and J. Neves, “Particle swarms for
feedforward neural network training,” in Proc. 2002 Int. Joint Conf. Neural
Netw., pp. 1895–1899.

[26] H. M. Feng, “Self-generation RBFNs using evolutional PSO learning,”
Neurocomputing, vol. 70, no. 1–3, pp. 241–251, Dec. 2006.

[27] Y. Song, Z. Chen, and Z. Yuan, “New chaotic PSO-based neural network
predictive control for nonlinear process,” IEEE Trans. Neural Netw.,
vol. 18, no. 2, pp. 595–601, Mar. 2007.

[28] X. Cai, N. Zhang, G. K. Venayagamoorthy, and D. C. Wunsch, “Time
series prediction with recurrent neural networks trained by a hybrid PSO-
EA algorithm,” Neurocomputing, vol. 70, no. 13–15, pp. 2342–2353,
Aug. 2007.

[29] F. Van Den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[30] A. Silva, A. Neves, and E. Costa, “An empirical comparison of particle
swarm and predator prey optimization,” in Lecture Notes in Computer
Science, 2002, vol. 2464, pp. 103–110.

[31] M. Mansour, S. F. Mekhamer, and N. El-Sherif El-Kharbawe, “A modified
particle swarm optimizer for the coordination of directional overcurrent
relays,” IEEE Trans. Power Del., vol. 22, no. 3, pp. 1400–1410, Jul. 2007.

[32] R. G. Reynolds, “An introduction to cultural algorithms,” in Proc. 3rd
Annu. Conf. Evol. Program., A. V. Sebald and L. J. Fogel, Eds. River
Edge, NJ: World Scientific, 1994, pp. 131–139.

[33] X. Jin and R. G. Reynolds, “Using knowledge-based evolutionary com-
putation to solve nonlinear constraint optimization problems: A cultural
algorithm approach,” in Proc. IEEE Congr. Evol. Comput., Washington,
DC, 1999, pp. 1672–1678.

[34] S. M. Saleem, “Knowledge-based solution to dynamic optimization prob-
lems using cultural algorithms,” Ph.D. dissertation, Wayne State Univ.,
Detroit, MI, 2001.

[35] R. Storn, “System design by constraint adaptation and differential evolu-
tion,” IEEE Trans. Evol. Comput., vol. 3, no. 1, pp. 22–34, Apr. 1999.

[36] C. L. Karr, “Design of an adaptive fuzzy logic controller using a genetic
algorithm,” in Proc. 4th Conf. Genet. Algorithms, 1991, pp. 450–457.

[37] C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning
through symbiotic evolution for fuzzy controller design,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 290–302, Apr. 2000.

[38] D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

Cheng-Jian Lin (S’93–M’95) received the B.S. de-
gree in electrical engineering from Tatung University,
Taipei, Taiwan, R.O.C., in 1986, and the M.S. and
Ph.D. degrees in electrical and control engineering
from the National Chiao Tung University, Hsinchu,
Taiwan, in 1991 and 1996, respectively.

From April 1996 to July 1999, he was an Associate
Professor in the Department of Electronic Engineer-
ing, Nan-Kai College, Nantou, Taiwan. From August
1999 to January 2005, he was an Associate Professor
in the Department of Computer Science and Infor-

mation Engineering, Chaoyang University of Technology, Taichung, Taiwan,
where from February 2005 to July 2007, he was a full Professor. Currently, he
is a full Professor in the Department of Electrical Engineering, National Uni-
versity of Kaohsiung, Kaohsiung, Taiwan. From 2001 to 2005, he served as the
Chairman of the Department of Computer Science and Information Engineer-
ing, Chaoyang University of Technology, where, from 2005 to 2007, he served
as the Library Director of Poding Memorial Library. He is the author or coauthor
of more than 150 papers published in referred journals and conference proceed-
ings. His current research interests include soft computing, pattern recognition,
intelligent control, image processing, bioinformatics, and field-programmable
gate array design.

Prof. Lin is a member of the Phi Tau Phi. He is also a member of the
Chinese Fuzzy Systems Association, the Chinese Automation Association, the
Taiwanese Association for Artificial Intelligence (TAAI), the Institute of Elec-
tronics, Information, and Communication Engineers, and the IEEE Computa-
tional Intelligence Society. He is an Executive Committee Member of the TAAI.
He has served as the Associate Editor of the International Journal of Applied
Science and Engineering from 2002 to 2005.

68 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 1, JANUARY 2009

Cheng-Hung Chen (S’07) was born in Kaohsiung,
Taiwan, R.O.C., in 1979. He received the B.S. and
M.S. degrees in computer science and information
engineering from the Chaoyang University of Tech-
nology, Taichung, Taiwan, in 2002 and 2004, respec-
tively. He is currently working toward the Ph.D. de-
gree in electrical and control engineering at National
Chiao-Tung University, Hsinchu, Taiwan.

His current research interests include fuzzy sys-
tems, neural networks, evolutionary algorithms, in-
telligent control, and pattern recognition.

Chin-Teng Lin (S’88–M’91–SM’99–F’05) received
the B.S. degree in control engineering from National
Chiao-Tung University (NCTU), Hsinchu, Taiwan,
R.O.C., in 1996, and the M.S.E.E. and Ph.D. de-
grees in electrical engineering from Purdue Uni-
versity, West Lafayette, IN, in 1989 and 1992,
respectively.

Since August 1992, he has been with the Col-
lege of Electrical Engineering and Computer Science,
NCTU, where he is currently the Provost of Aca-
demic Affairs and the Chair Professor of electrical

and control engineering. He has served as the Founding Dean of the Computer
Science College of NCTU from 2005 to 2007. He is the author or coauthor of
more than 110 journal papers, including about 80 IEEE Transactions papers.
He is the author of a textbook Neural Fuzzy Systems (Prentice-Hall, 1996) and
Neural Fuzzy Control Systems with Structure and Parameter Learning (World
Scientific, 1994). His current research interests include intelligent technology,
soft computing, brain–computer interface, intelligent transportation systems,
robotics and intelligent sensing, and nanobioinformation technologies and cog-
nitive science.

Prof. Lin is a member of Tau Beta Pi, Eta Kappa Nu, and Phi Kappa Phi hon-
orary societies. He was a Member of the Board of Governors BoG of the IEEE
Systems, Man, Cybernetics Society (SMCS) from 2003 to 2005, and is the cur-
rent BoG member of the IEEE Circuits and Systems Society (CASS). He was the
IEEE Distinguished Lecturer from 2003 to 2005. He also serves as the Deputy
Editor-in-Chief (EIC) of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS,
PART II now. He was the Program Chair of the 2006 IEEE International Con-
ference on Systems, Man, and Cybernetics held in Taipei. He was the President
of the Board of Government of the Asia Pacific Neural Networks Assembly
from 2004 to 2005. He has been the recipient of several awards including the
Outstanding Research Award granted by the National Science Council (NSC),
Taiwan, since 1997 to present, the Outstanding Professor Award granted by the
Chinese Institute of Engineering in 2000, and the 2002 Taiwan Outstanding
Information Technology Expert Award. He was also elected to be one of 38th
Ten Outstanding Rising Stars in Taiwan in 2000.

