
 

 
Chapter 2  
Joint MPEG-2 and H.264/AVC Decoder 
 
2.1 Background 

Multimedia raises some exceptionally interesting topics concerning interoperability. 

The most obvious issue concerning multimedia interoperability relates to format 

incompatibility. For example, prevalent MPEG standards are backward compatible. But, the 

advent of H.264/AVC and VC-1 cannot be backward compatible to the former H.26x and 

MPEG-x families of video coding standards. Moreover, in an application point of view, 

digital video broadcasting (DVB) project has paved the way for the introduction of 

MPEG-2 based digital TV service, known as DVB-T in many countries. Recently, DVB-H, 

a spin-off of the DVB-T standard, adopts the transmission of H.264/AVC for handheld 

digital TV due to its bandwidth-efficiency. DVB-H is totally backward compatible to 

DVB-T but is transmitted with different video contents (i.e. MPEG-2 vs. H.264/AVC). In 

other words, a generic problem of standard-incompatibility has emerged, resulting in the 

design challenge for the multimedia interoperability. 

Such a wealth of available standards inevitably produces incompatibility problem, 

commonly solved by directly combining or transcoding from one format to another. 

However, transcoding from one standard to another faces drifting error due to the mismatch 

of motion compensation, and needs additional hardware to re-encode and decode bit-stream, 

leading to problems of coding latency and processing power. Instead, a direct integration for 

different standards can be easily achieved without aforementioned problems but increases 

design cost. Moreover, we only consider decoding side and there is no need to transcode or 
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recompress one stream to another format. In this chapter, we aim at a combining or 

integrating method so as to improve hardware utilization and choose a well-known MPEG-2 

and newly-announced H.264/AVC as our decoding platform to support both video 

standards. 

 

2.2 Overview 
H.264/AVC aims at providing functionality similar to prevalent MPEG-2, but with 

significantly better coding performance. The improved performance comes from some new 

techniques such as spatial prediction in intra coding, adaptive block-size motion 

compensation, 4×4 integer transformation, context-adaptive entropy coding, and adaptive 

deblocking filtering. To integrate these new techniques of H.264/AVC into MPEG-2, a 

combined data flow is designed: it is composed of the residual path and predicted path 

shown in Figure 2.1. In the residual path, a context-adaptive variable length decoder 

(CAVLD) or VLD translates the received streams into symbols through a table-lookup 

method. The follow-up processes first reorder the symbols into a 2-dimentional block using 

inverse zig-zag (I-ZZ) scan, rescale (inverse quantization, or I-Q) the frequency-domain 

coefficients of a block, and then perform inverse discrete cosine transform (IDCT) to 

produce residual pixels. On the other hand, the macroblock type mb_type can be decoded by 

an MPEG-2/H.264 syntax parser and is defined to select the source of predicted pixels. 

These pixels come from either spatially predicted (intra prediction) or temporally predicted 

(motion compensation) blocks. The addition of predicted and residual blocks will be 

performed in a pixel-wise manner. Afterward, the filtered results are sent into external 

memory through synchronous DRAM (SDRAM) interface (I/F) for decoding subsequent 

frames. Moreover, a separate data path is utilized for onscreen display (OSD) through the 

display I/F. The results of the display engine are sent into the display monitor, in either 
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digital (CCIR656) or analog form. 
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Figure 2.1: System block diagram. 

 

Table 2.1 lists the similarity of each module. First, we implement a custom-built syntax 

parser and exploit a register sharing technique to reduce register numbers. Second, one 

codeword cannot be the prefix of another codeword in a table but this rule does not hold 

among different standards. Hence, most of VLC code-words can be merged in both 

standards. Third, intra prediction in MPEG-2 is just a sub-set of that in H.264/AVC since 

H.264/AVC features to employ the multi-directional prediction to improve coding efficiency. 

Fourth, motion compensations in both standards intend to perform interpolation procedures. 

Several adders and multipliers can be combined by applying resource sharing techniques. 

Although the aforementioned modules improve the hardware utilization, the inverse 

transforms between MPEG-2 and H.264/AVC are so diverse that they are difficult to 

combine. Similarly, the integration of deblocking filters has the same problem as well. In 

the following, we will go into the details in each functional block to address how to 

integrate both standards in an area-efficient manner. 
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Table 2.1: The similarity analysis of each key module. 

Key Module MPEG-2  H.264/AVC  Similarity  

Syntax Parser Register-rich Register-rich Register-rich 

Entropy Decoder VLD Context-adaptive 
VLD 

variable length 
table 

Intra Prediction Frequency DC 
prediction 

Directional spatial 
prediction 

predictive 
coding 

Inverse DCT 8x8 cosine 
kernel 

4x4 integer kernel  

Luma Bilinear Half: 6-tap FIR 
Quarter: 6-tap 
FIR/Bilinear 

Motion 
Compensation 

Chroma Bilinear Bilinear 

bilinear 
interpolation 

Deblocking Filter N/A 
(user-defined) 

In-loop adaptive filter  

 

2.3 Syntax Parser 
First, syntax parser decodes the header information from a bitstream and provides 

several control signals to subsequent modules. It behaves as a finite state machine and is a 

register-rich unit. To efficiently share registers in the syntax parser of different standards, 

we implement a custom-built syntax parser instead of a platform-based solution. In general, 

registers for parameter storage and control circuits are two main components in a syntax 

parser design. Because video streams require a large amount of headers to parse the correct 

data, registers almost dominate the area as well as cost in the syntax parser. Considering a 

dual-standard integration, a video playback is realized by executing either MPEG-2 

decoding or H.264/AVC decoding. That is, there is always a set of syntax parser in an idle 

mode. Hence, we can share commonly-used registers in both standards for a cost-saving 

design approach. Table 2.2 shows the required registers in both standards. Because MPEG-2 
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is coded on an 8×8 block level, 4 times bigger than the 4×4 sub-block coding in H.264/AVC, 

the numbers of required registers in MPEG-2 are more than that in H.264/AVC. We share 

registers in three main modules (i.e. Slice_header, PictureParameterSet, 

SequenceParameterSet) of H.264/AVC with MPEG-2. Therefore, Experimental results 

reveal that the numbers of registers can be reduced by 26% compared to a separate design. 

 

Table 2.2: Number of register needed for MPEG-2/H.264 syntax parser 

MPEG-2 H.264/AVC 

Module # of Registers Module # of Register 

Macroblock 29 regs Macroblock 11 regs

Motion_vectors 25 regs Slice_data 17 regs

Picture_coding_ext 49 regs Slice_header 247 regs

Picture_header 36 regs PictureParameterSet 74 regs

Slice 8 regs SequenceParameterSet 127 regs

Sequence_header 1105 regs  

Total 1252 regs Total 476 regs

 

2.4 Context-Adaptive Variable Length Decoder 
The entropy coding in MPEG-2 and H.264/AVC is variable length coding (VLC) and 

context-adaptive variable length coding (CAVLC), respectively. Although the coding flows 

are widely different, both coding methods are based on variable length tables and can be 

merged to reduce the table size. The concept of VLC is to assigns shorter codewords to 

more frequent symbols, and vice versa. As for CAVLC, VLC tables for various elements are 

selected depending on previously coded coefficients. It results in the improvement of coding 

efficiency as compared to the traditional method that uses a single VLC table. Although 
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those VLC tables are defined in different standards, we can share those tables since each 

table will be enabled at different time slices. Hence, we develop a table-merging method (cf. 

[24]) to combine those tables in each standard or in different standards. 

 

2.4.1 Table-Merging Method 

The table-merging method is developed to merge different tables which are defined in 

one standard or different standards. There are two methods developed to merge tables. One 

is the codeword-merging and the other is the prefix-merging method. In the 

codeword-merging method, although most VLC coding tables are generated based on the 

Huffman procedure, one codeword still has high probability to exist in many coding tables. 

If this case occurs, it is unnecessary to duplicate the codeword information in memories for 

every table that uses this codeword. A codeword-merging method is applied to set this 

codeword as a merged codeword and reuse the codeword information when the coding 

tables are required. Therefore, the information redundancy among coding tables is exploited. 

The stored data are reduced from many identical codewords to one merged codeword. As 

for the prefix-merging method, according to the Huffman property, one codeword cannot be 

the prefix of another codeword in a table but this rule does not hold among different tables. 

Frequently, a short codeword in one table will be the prefix of a long codeword in other 

tables. When these codewords are found, a prefix-merging method is undertaken by storing 

the long codeword as a merged VLC codeword and the lengths of the VLC codewords in 

each table. As a result, the information redundancy among tables is further exploited. 

To help the understanding of this merged process, Figure 2.2 demonstrates the 

table-merging method through the CAVLC table that maps coeff_token to TotalCoeff and 

TrailingOnes. Figure 2.2(a) and (b) are two VLC tables and 27-bit (6+7+7+7) are required 

for storing codeword information. By applying prefix-merging and codeword-merging 
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methods, the required space for merged table is reduced to 22-bit in Figure 2.2(c). In 

addition to codeword information, additional table information, which is to recover VLC 

coding tables from merged table, is stored since it’s hard to distinguish which table is used 

to generate a merged codeword. Hence, every VLC code-length of all tables has to be stored 

individually and will not be reused even though table-merging method is applied. To further 

suppress the code-length information, we exploit differential code-length instead. It 

represents the distance between the code-length of merged and individual codewords. 

Moreover, to select the merged codeword of VLC tables quickly, a valid bit is utilized to 

indicate whether a merged codeword belongs to the table. Therefore, in Figure 2.2(c), the 

additional table information is required to facilitate the decoding process and the merged 

table size is reduced from 27 to 22 bits. 

A table merging process is accomplished by applying both codeword-merging and 

prefix-merging methods to the codewords of all AC transform coefficient (TCOEF) tables 

in MPEG-2 and five VLC tables (i.e. Run_Before, Total_Zeros, Levels, Trailing1_Sign, and 

Coeff_Token) in H.264/AVC. Considering those tables, decoded symbols have been stored 

into memory and cannot be combined. If we only consider the number of bits in codewords, 

there are 370 and 759 bits in MPEG-2 VLC and H.264/AVC CAVLC coding tables, 

respectively. After applying the table merging method, total numbers of codewords have 

been reduced to 936 bits which is approximately 80% of a separate design (370+759 = 

1,129 bits). 
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Figure 2.2: (a)(b) VLC tables in CAVLC and (c) the merged table. 

 

2.5 Intra Prediction 
Intra prediction is a well-known method to predict the pixel value based on values 

previously coded in one frame. This prediction can be carried out in either spatial or 

temporal domain. Prevalent MPEG-2 exploits intra prediction in the frequency domain such 

as DC prediction after the DCT transformation while H.264/AVC performs intra prediction 

in the spatial domain prior to the DCT. Both standards require subtraction operation for 

predictive coding, and those operations can be shared without any structural conflict. 
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However, considering the integration between MPEG-2 and H.264/AVC, the percentage of 

resource sharing is considerably low because the hardware cost in the intra prediction of 

MPEG-2 is far less than that of H.264/AVC. On the other hand, the intra prediction can be 

not only integrated among different standards but also combined with inter prediction in 

H.264/AVC video standards. This combined intra/inter prediction engine can be realized 

because prediction scheme will be enabled in either intra or inter predicted manner. Hence, 

we address how to achieve this integration between intra and inter prediction (i.e. motion 

compensation) in H.264/AVC. 

 

2.5.1 Combined Intra/Inter Prediction 

This sub-section demonstrates a new architecture for combining intra and inter 

predictions in H.264/AVC video decoder. This architecture is proposed by Li et al. [25] for 

a cost reduction approach. As we know, H.264/AVC simultaneously incorporates inter and 

intra predictions to remove temporal and spatial redundancy. Both predictions require 

intensive FIR filtering processes and can share operating elements since each macroblock is 

coded in either inter or intra mode. In addition, because the prediction mode of each 

macroblock is known in advance, a combined architecture achieves better hardware 

utilization compared with the separate design. Figure 2.3 gives an overview of this 

combined architecture. We address how to implement the combined method in an 

H.264/AVC decoding flow and didn’t go into the details of the combined FIR filter [25]. As 

shown, in inter prediction mode, the input comes from the motion compensated buffer. 

Herein, we assume that the data is already transferred from frame memory to local buffer. 

On the other hand, the data is inputted from a row store buffer that keeps boundary pixels in 

adjacent block when intra prediction mode is applied. Li et al. [25] also highlights this 

design contribution by comparing with other leading-edge approaches where the intra and 
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inter predictions are realized separately. Considering the number of adders, experimental 

results reveal that 22~88% of cost reduction can be achieved. 
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Figure 2.3: Overview of combined intra and inter predictions. 

 

2.6 Inverse Discrete Cosine Transform 
A major focus in integrating MPEG-2 and H.264/AVC is IDCT since it faces the most 

diverse algorithms over the whole design. As shown in Figure 2.4, the IDCT kernel of 

H.264/AVC is a 4×4 integer transform kernel, but that of MPEG-2 is an 8×8 cosine 

transform kernel. Due to an algorithmic difference with respect to transform size and kernel 

characteristics, a shared IDCT structure presents a great challenge and existing solutions 

usually contain two individual IDCT modules without sharing. Although a recent work, 

Park et al. [26], presents a flexible transform processor for multi-CODECs, they only 

combine transpose memories without efficiently integrating different transform kernels. In 

Figure 2.5, we exploit two 8-point IDCTs for row and column transforms, respectively, and 
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an 8×8 pixel buffer for matrix transposition. Furthermore, considering the data path in IDCT, 

the specifications of H.264/AVC and MPEG-2 guarantee that 16-bit and 12-bit arithmetic 

are enough respectively. As for the combining issue, by allocating the lowest required bit 

width to data paths and registers, the accuracy of each functional unit is 16-bit and thereby 

meets IEEE std. 1180-1990 requirement [27]. Each data bus requires four paths and stands 

for four-pixel (i.e. 4×16-bit) operation where the dotted lines realize the 4×4 IDCT in 

H.264/AVC. We make use of a recursive algorithm to extract the lower orders of 

transformation matrix for solving the problem of different transform size. Hence, the 8×8 

IDCT in MPEG-2 can also be performed in a 4×4 fashion and one-fourth of pixel buffers 

are shared for different IDCT operations. Moreover, we develop a multiple constant 

multiplier (MCM) structure to efficiently share several operation units (e.g. additions and 

shifts). In the following, we demonstrate how to exploit the recursive algorithm and MCM 

structure to improve the hardware utilization. 
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Figure 2.4: Two inverse kernels for (a) MPEG-2 and (b) H.264/AVC. 
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Figure 2.5: 4×4/8×8 IDCT core block diagram. 

 

2.6.1 Recursive Algorithm 

To efficiently integrate 8×8 transform size into 4×4, a recursive algorithm was 

preliminarily presented by Hsieh S. Hou in 1987 [28] and exploited to improve the 

hardware utilization in algorithmic levels. In this algorithm, the 8-point IDCT can be 

computed using 4-point IDCT recursively. In other words, N-point IDCT can be 

decomposed into an N/2-point IDCT by reordering even and odd coefficients and 

selectively storing IDCT results into pixel buffers. This allows us to generate 8-point IDCT 

from lower-order 4-point IDCTs [28]. Therefore, this 4-point IDCT can be simultaneously 

shared both in MPEG-2 and H.264/AVC, and the problem of different transform size can be 

resolved. We show the partitioned process of MPEG-2 8×8 IDCT in the following equation 

(N=8). 
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2.6.2 Multiple Constant Multiplication 

MPEG-2 8×8 kernel features a floating point operation while H.264/AVC 4×4 kernel is 

an integer operation. Although 8×8 IDCT intends to use multipliers to realize inverse 

transforms, we replace these multiplications with a series of shifts and additions. In 

particular, we exploit the common sub-expression sharing techniques for solving multiple 

constant multiplication (MCM) problems [29]. That is, we can expand constant 

multiplications with shift operations and additions and share the common ones. Therefore, 

these operating units can be shared with 4×4 IDCT to reduce silicon area. Moreover, 

because both standards require addition and the input bit-width of adders in H.264/AVC is 

smaller than those in MPEG-2, the common terms of addition can be reused between 

MPEG-2 and H.264/AVC. Therefore, 8×8 IDCT is carried out in a 4×4 fashion, and 

one-fourth of pipelined buffer can be reused in different standards. Finally, this proposal 

saves 15% gate-count than the one without exploiting any hardware sharing. 

 

2.7 Motion Compensation 
When considering motion compensation between MPEG-2 and H.264/AVC, we notice 

two major differences: prediction size and interpolated resolution. The prediction size in 

MPEG-2 is fixed to 16×16 pixels while H.264/AVC supports variable block size from 

16×16 to 4×4 (i.e. 16×16, 8×16, 16×8, 8×8, 4×8, 8×4, 4×4). Hence, the block size in 

MPEG-2 can be considered as a sub-set of that in H.264/AVC. On the other hand, the 

interpolated resolution in MPEG-2 and H.264/AVC is up to half-pel (i.e. 1/2) and eighth-pel 
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(i.e. 1/8) respectively. Hence, we can conclude that motion compensation in H.264/AVC 

outperforms that in MPEG-2 because H.264/AVC has variable block sizes and finer 

predictive resolutions. Moreover, motion compensation in MPEG-2 is just a sub-set of that 

in H.264/AVC and can be easily merged. In the following, we will address the 

register-sharing in interpolator design for solving the integration issue. 

 

2.7.1 Hybrid MPEG-2/H.264 Interpolator Design 

A major challenge of combined motion compensation engine is interpolator. In this 

sub-section, we will focus on storage and arithmetic module sharing to minimize area/cost 

overhead. For macroblock-based fractional motion compensation in MPEG-2, each 16×16 

macroblock needs 17×17 interpolation windows to interpolate fractional samples. Each 

macroblock can be partitioned into four 8×8 blocks with 9×9 interpolation window of which 

size is identical to that of H.264/AVC luma interpolation window for each 4×4 sub-block. 

Additionally, in Table 2.1, the bilinear filter for H.264/AVC luma quarter-pel interpolation 

can be shared with that for MPEG-2 half-pel interpolation. Considering a separate 1-D luma 

interpolator [30] in Figure 2.6, the content buffer represents storage to execute a 

content-swap operation in one cycle and part of registers and bilinear filters, which are 

shaded, can be shared with MPEG-2’s interpolator. 

In addition to the integration between MPEG-2 and H.264/AVC, the luma and chroma 

interpolator of H.264/AVC can be shared as well since chroma interpolation processes are 

carried out after luma interpolation. Figure 2.7 shows the combined interpolator design. 

Specifically, both luma and chroma interpolators have similar interpolation processes and 

require a great number of addition operations. Hence, the adders can be reused for different 

interpolation processes. As a result, based on 0.18-μm technology, the proposal reduced the 

gate count by 20% as compared to a separate interpolator design under a working frequency 
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of 100MHz. 

 

 

Figure 2.6: Shared local registers and bilinear filters for MPEG-2 and H.264/AVC. 
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Figure 2.7: Combined luma/chroma interpolator design in H.264/AVC. 

 

2.8 Deblocking Filter 

2.8.1 Background 

Deblocking schemes can be divided into two classes: in-loop and post-loop 

de-blocking filters. An in-loop filter is standardized by H.264/AVC and a post-loop filter 

follows the prevalent MPEG-x family standards. Hence, the goal of this research is to 

integrate in-loop and post-loop filter in a hardware-sharing fashion. Figure 2.8 outlines 

existing deblocking filters in terms of filtering types and standardization. In general, 

post-loop de-blocking filters [32][33] are executed outside the DPCM loop. They need extra 

frame buffer to store filtered frame and induce the issues of computation for VLSI 

implementation. In contrast, the in-loop de-blocking filter [31] operates inside the loop and 

thus is normative in the standardization process. It feeds through the filtered results into the 
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reference frames for subsequent frame decoding. The PSNR performance of in-loop filter 

outperforms that of post-loop filter but offers a significant complexity due to its high 

adaptivity and smaller filtering size (4×4). Moreover, considering the integration issue, 

although existing solutions [35][36] propose a unique algorithm to meet both in-loop and 

post-loop filters, those algorithms are not adopted by existing video standards and perform 

the post-loop filter with extra frame buffer. To alleviate aforementioned problems, we derive 

a new algorithm that can be reconfigured as an in-loop or post-loop filtering processes. 

Specifically, we propose an in/post-loop algorithm to easily meet different standard 

requirements. Due to the non-standardization of post-loop filters, it provides several design 

choices to develop an integration-oriented algorithm. Furthermore, we develop the 8×8 

post-loop filter with macroblock-based instead of frame-based filtering structure. There is 

no need to buffer the whole frame in advance. As a result, the modified post-loop filter 

achieves area-efficiency and is easily to be integrated into in-loop de-blocking filter. In the 

following, we detail the design method to support both standard-compliant in-loop and 

informative post-loop filters. 

 

 
Figure 2.8: Various types of de-blocking filters 
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2.8.2 Algorithmic Preview 

Due to a great diversity of deblocking filters in different standards, we tabulate each 

feature in Table 2.3. The filtering control decides the filtering order and the size of filtered 

boundaries. In general, most deblocking filters obey an order that executes on the horizontal 

edges first followed by the vertical edges. But, this order is different from that defined in 

H.264/AVC. As for the filtered boundary, the in-loop filter of H.264/AVC is applied to each 

boundary of 4×4 sub-block while the post-loop filter is executed on that of 8×8 block. With 

regard to the in-loop de-blocking filter in VC-1 [37], it is performed on the block 

boundaries of 4×4, 4×8, 8×4, and 8×8. However, no matter how they locate, those 

boundaries are easily accomplished since the 4×4 sub-block boundary is the smallest edge 

and all boundaries can be considered as a super-set of 4×4 sub-block. 

 

Table 2.3: Features of deblocking filter in different standards. 

Deblocking Filter In-Loop Filter Post-Loop Filter 

Standardization Normative Informative 

STANDARD H.264/ 

AVC 

WMV-9/ 

VC-1 

MPEG-4 

(Annex F.3) 

H.263 

(Annex J)

Filtering Order Vertical 

First 

Horizontal  

First 

Horizontal  

First 

Horizontal 

First 

Filtering 

Control 

Filtered Boundary 4×4 4×4/4×8/8×4/8×8 8×8 8×8 

Strength/Mode 5/2 2/1 2/2 12/1 Filtering 

Process No. of input pixels 8 8 10 4 

 

Filtering processes can be divided into three main parts. The first part of processes is 

the strength decision. It governs the filtering intensity in that edge. H.264/AVC employs a 
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boundary strength (i.e. bS spreads from 0 to 4, 5-strength) to calculate the strength in each 

filtering mode. VC-1 adopts the edge_strength (i.e. only true or false, 2-strength) to realize 

the strength decision [37]. Moreover, MPEG-4 and H.263 feature 2-strength (i.e. eq_cnt>=6 

or eq_cnt<6) and 12-strength (i.e. strength=1~12) decisions respectively. The second part of 

processes is the mode decision which is comprised of strong and weak modes. For instance, 

in MPEG-4 Annex F.3 [38], Kim et al. [32] exploited smooth regions and default modes as 

strong and weak modes respectively. In H.264/AVC, List et al. [31] applied strong and weak 

modes when the boundary strength (i.e. bS) is equal to or less than 4 respectively. Excluding 

two mode decisions, there is one mode decision in VC-1 [37] and H.263 Annex J [39]. A 

third part of filtering processes is the edge filter. It operates on a specified edge, and smooth 

out the discontinuities with pre-defined coefficients. In general, the numbers of input pixels 

are related to the filtering performance as well as computational complexity. The in-loop 

filter takes 4-pixel on either side of the edge. The post-loop filter in MPEG-4 and H.263 

requires 5-pixel and 2-pixel on either side respectively. However, only partial pixels will be 

modified. Figure 2.9 depicts the pixels that are involved in a filtering operation and the 

modified pixels for output. After previewing aforementioned features, we conclude that 

there are great diversities in those filters. Hence, a combined in/post-loop filter algorithm is 

of great challenge for saving design cost. 

 

Figure 2.9: The modified and related pixels in the process of edge filter. 
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2.8.3 In/Post-loop Algorithm 

Using a single algorithm to realize in-loop or post-loop filter is inferior since the 

source of blocking artifacts comes from a distinct quantization process, IDCT kernel and the 

motion compensated algorithm between MPEG-2 and H.264/AVC. From the experimental 

results, the quality improvement is very mild (only 0.04dB) when we replace a post-loop 

filter with an in-loop filter. To cope with this problem, we propose an integration-oriented 

algorithm which tightly combines H.264/AVC in-loop filter with MPEG-4 post-loop filter. 

Note that we choose the filter defined by MPEG-4 Annex F.3 as a MPEG-2 post-loop filter. 

Specifically, we keep the filtered boundaries of 4×4 and 8×8 in the in-loop and post-loop 

filters respectively. Additionally, to unify into a single architecture, the filtering order in 

post-loop filters has been changed from horizontal to vertical edges first. With regard to 

filtering processes, a triple-mode decision and triple pixel-in-pixel-out edge filter are 

proposed in the following sub-section so as to improve the hardware utilization. Moreover, 

they provide an easy exchange of different filter types without greatly changing a hardware 

prototype. 

 

2.8.3.1 Triple-mode decision 

A triple-mode decision adopts a SKIP mode and resource sharing technique to reduce 

filtering complexity and integration cost respectively. Firstly, this decision has been applied 

to H.264/AVC and employs strong, weak and SKIP modes according to the boundary 

strength (bS). As to the post-loop filter in MPEG-4, Kim et al. [32] exploited the threshold 

T2 as 6 to distinguish between default (i.e. weak) and DC offset (i.e. strong) modes. 

However, it is very time-consuming because there is no skip conditions applied and all 8×8 

block boundaries execute filtering processes. To alleviate this problem, we introduce 
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another threshold T3 to reduce the computation in Figure 2.10. Moreover, since fixed 

thresholds {T2, T3} cannot achieve better performance, we use the header information (e.g. 

MVD, CBP, MB_TYPE) to adjust the thresholds dynamically. In Table 2.4, we propose a 

compound decision method to share the hardware resource since MPEG-4’s {T2, T3} 

resemble H.264/AVC’s {bS, α, β, tC0}. Moreover, we found that different bit rates contribute 

to the difference of the threshold T2. Introducing a term of tT2 as a function of QP makes it 

more robust in terms of the bit rate variations. In conclusion, the proposal reduces not only 

the computation through the SKIP mode but also the integration cost by the compound 

method. 

 

  

Figure 2.10: A triple-mode decision of the in/post-loop filter. 
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Table 2.4: A compound method for the strength decision. 

In/Post-loop Decision Method In-loop Post-loop 

Block modes and conditions Semantics bS T3 T2 

One of the blocks is intra and 

the edge is a macroblock edge 

MB_TYPE==INTRA 

&& MB Edge 

4 T3i* T2i* 

One of the blocks is intra MB_TYPE==INTRA 3 T3i T2i 

One of the blocks has coded 

residuals 

CBP != 0 2 T3i+1 T2i+1 

Difference of block motion ≧ 4 

at luma sample difference 

MVDx≧4 || MVDy 

≧4 

1 T3i+2 T2i+1 

Else Else 0 T3i+2 T2i+1+tT2(QP)

T3i*, T2i*: the initial value of T3 and T2. 

 

2.8.3.2 Triple pixel-in-pixel-out edge filter 

We develop a triple P-i-P-o edge filter to reduce the integration cost. In the post-loop 

mode, the edge filter retains default mode and discards the DC offset mode because the 

default mode is of the prime concern while the DC offset mode is broadly similar to the 

strong mode of the in-loop filter. That is, we can replace the edge filter of DC offset mode 

with that of “bS=4” (strong mode) for an integration-oriented design approach. We change 

the approximated DCT kernel (i.e. [2 -5 5 -2]) to [2 -4 4 -2]. As a result, we make use of 

shifters instead of constant multipliers. Moreover, to merge the edge filter in the weak mode, 

we modify the numbers of input pixels to 8 pixels in the post-loop filter. Thus, the numbers 

of input pixels in the in-loop and post-loop filters are equivalent. Specifically, Figure 2.11 

depicts the detailed circuit of the weak filter. Generally, it needs a great number of 

operations and greatly influences the visual quality. It takes 4-pixel (i.e. p0~p3, q0~q3) on 
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either side of the boundary to realize interpolation procedures. In particular, a pixel-wise 

difference is applied, and a delta metric is generated. A CLIP8 operation limits the delta 

metric between y (i.e. Upper Bound) and x (i.e. Lower Bound). Finally, the CLIP’s outputs 

add and subtract the raw pixels to obtain the filtered results. Because the weak filter is the 

most quality-intensive process in the deblocking filter, we share most of operations except 

“Delta Generation” and make a better trade-off between visual quality and area efficiency. 

As a result, the synthesized logic gate counts can be reduced by 30% compared to the 

preliminary design that implements in-loop or post-loop filter separately. In conclusion, 

three data flows (i.e. strong, weak and SKIP) and related pseudo codes are highlighted in 

Figure 2.12, and some modifications are made on the post-loop filter to improve the 

integration efficiency. These modifications definitely reduce the integration overhead with a 

penalty of slight performance loss and will be addressed in the next sub-section. 

 

 
 Figure 2.11: Triple P-i-P-o edge filter in weak mode. 

                                                 

8 CLIP(x,y,z)=  
⎪
⎩

⎪
⎨

⎧
>
<

otherwise;
;
;

z
yzy
xzx

53 



 

 

.....

 

           (a)                                     (b) 

Figure 2.12: The (a) data flow and (b) pseudo code of the in/post-loop algorithm. 

 

2.8.4 Performance Evaluation 

The modifications of the post-loop filter improve the integration efficiency at a cost of 

slight performance degradation. For the experiments of MPEG-4’s post-loop filter, the 

thresholds of T2i=5 and T3i=0 (see Table 2.4) are employed without loss of generality. 

Furthermore, we adopt Table 2.5 as the induced term of tT2. QP stands for “quantizer 

precision”, and we use 5-bit as a default value that ranges from 0 to 31. All alterations of the 

MPEG-4’s post-loop algorithm have been addressed, and specific results are given in Table 

2.6. All sequences are defined in CIF (352×288) and INTRA PERIOD 15 with 30fps 

throughout 300 frames. We show that the performance degradation is less than 0.05dB as 

compared to the MPEG-4’s post-loop filter [38]. From the subjective point of view, we 

capture the 20th frame to give a comparison in Figure 2.13. 
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Table 2.5: Values of tT2 with a function of QP. 

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tT2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

Table 2.5(continued): Values of tT2 with a function of QP.  

QP 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 2.6: The post-loop filtering performance in terms of luma PSNR. 

MPEG-4 Decoder PSNR-Y [dB] 

Bit Rate CIF Sequence w/o filter MPEG-4 Annex F.3 filter Proposed 

Table 32.01519 32.13722 32.13138 

Mobile calendar 24.97704 25.00832 25.04150 

Mother & daughter 38.73812 39.00201 39.02740 

150kbps 

Stefan 27.02727 27.14439 27.10813 

Table 37.11400 37.18894 37.19088 

Mobile calendar 27.43971 27.49859 27.48667 

Mother & daughter 42.85162 42.99503 42.99579 

450kbps 

Stefan 30.63070 30.77906 30.72632 

Table 42.83698 42.84450 42.87695 

Mobile calendar 34.50489 34.57378 34.56172 

Mother & daughter 46.33545 46.48835 46.44548 

1500kbps 

Stefan 38.36032 38.48165 38.44038 
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(a) w/o filter. 

             

(b) Original filter in MPEG-4. 

             

(c) Proposed. 

Figure 2.13: The subjective quality comparison. 
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2.9 Summary 
Figure 2.14 summaries our work on combined MPEG-2/H.264 video decoder. First, a 

register-sharing technique efficiently reduces the required storage. Second, a table-merging 

method combines the identical codeword and prefix among tables for saving table size. 

Third, although area on MPEG-2 DC prediction is far less than H.264/AVC intra prediction, 

combined intra/inter prediction is a good point for further area reduction. Fourth, IDCT is 

the most diverse algorithm over the whole modules. A recursive algorithm and multiple 

constant multiplication techniques are presented to improve the hardware utilization in an 

algorithmic level. Fifth, interpolators require a great deal of adders and are the most 

area-critical module in the motion compensation design. To cope with this problem, a 

combined luma/chroma interpolator is proposed. Finally, a combined algorithm for 

simultaneously meeting in-loop and post-loop deblocking filters is presented to save area. 

To this end, we propose a triple-mode decision and triple P-i-P-o edge filter to realize the 

in/post-loop algorithm. Experimental results exhibits that 30% of area reduction is achieved 

without great loss of visual quality. Let’s sum up aforementioned cost reduction. Figure 2.14 

shows that 20% of area reduction can be achieved in a system point of view. Moreover, this 

low-cost design approach is applicable for multi-standard applications, such as HD-DVD 

and DVB-H systems. 
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Figure 2.14: A cost summary of dual MPEG-2/H.264/AVC video decoder. 
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