

Chapter 3
Low-Power Design Approach

3.1 Overview

In recent years, portable devices such as cellular phones, video camcorders, personal

digital assistants and handheld digital TVs are becoming increasingly popular. The

portability requirement implies an important issue on power reduction. However, the

increased power consumption generally comes from the sophisticated algorithms and

architectural challenges. H.264/AVC is the dominant video coding algorithm and requires

high speed or high throughput solutions for real-time decoding demands. Many solutions

[40]-[42] feature to improve coding throughput and reduce data bus bandwidth. However,

this level of power consumption is still not applicable when multimedia capabilities are

offered in portable systems.

This chapter thoroughly describes low-power design techniques applicable to a

portable multimedia system. Figure 3.1 shows the power profiling of H.264/AVC video

decoding for mobile applications [43]. Only power profiling in H.264/AVC is shown here

since its power requirements are much higher than that in MPEG-2. In this figure, the

numbers in brackets represent the memory size used in that module. Motion compensation

and deblocking filter occupy large portions of this pie chart. The reasons are that the motion

compensation is the most computationally intensive process and the deblocking filter uses

large internal memory to remove long data dependencies. Therefore, there are two issues we

have noticed. First, reducing the storage size, such as register and memory, is a key to

achieving low-power consumption. Second, most of computations require memory accesses

59

to accomplish a data exchange between logic and memory, leading to the increment of

working frequency to meet the real-time decoding demand. Hence, it is obvious that

reducing the working frequency cuts data switching activity, resulting in less dynamic

power consumption. In the following, we will introduce a collection of low-power

techniques, including the reduced register number, improved memory system, and several

low-power building blocks.

Power Profiling of H.264 with QCIF@15fps

Misc. (8Kb)
18%

Intra Predictor (32Kb)
10%

Syntax Parser (2Kb)
5% CAVLC+IQ+IZZ+IDCT

(5Kb)
4%

Deblocking Filter
(132Kb)

34%

Motion
Compensation

(10Kb)
29%

Deblocking Filter (132Kb)
Motion Compensation (10Kb)
Misc. (8Kb)
Intra Predictor (32Kb)
Syntax Parser (2Kb)
CAVLC+IQ+IZZ+IDCT (5Kb)

Figure 3.1: Power profiling and memory usage in [43].

3.2 Reducing Pipeline Registers
It is obvious that reducing the number of registers cuts the logic and clock-tree power

dissipation. To this end, this section presents a new pipeline methodology to reduce the

number of pipelined registers at a cost of slight cycle increment. We first present the

traditional pipeline methodology and find that the number of pipeline registers relates to the

processing cycles of modules between two pipeline stages. After that, we propose a

domain-pipelined scalability (DPS) to reduce the numbers of registers.

3.2.1 Pipeline Methodology

60

Video processing tasks are a time-consuming process and usually computationally

challenging because the amount of data to be processed is voluminous. To improve the

processing times, pipelining is widely used for exploiting temporal concurrency. It allows a

chain of tasks to be divided into stages, with each stage handling results obtained from the

previous stage. Pipelining increases the processing throughput – the number of processes

completed per unit of time. The increase in processing throughput means that a procedure

runs faster and has lower total execution time. However, limitations on practical pipelining

arise from additional delay and power on pipelined registers. Those overheads relate to the

granularity of pipelining and thereby adversely impact the system power consumption.

Considering the video processes in combined MPEG-2 and H.264/AVC, the granularity

means the size of 4×4, 8×8 or 16×16 pixels for data transaction between modules. For

example, Figure 3.2 shows a data path from stream input to pixel output. CAVLC decoder,

inverse zig-zag/quantizer, and IDCT are three main functional units in this path. To decide

the granularity in Figure 3.2, Table 3.1 lists two performance indexes with different levels

of pipelined granularities from 4×4 sub-blocks to 16×16 macroblock. A fine-level pipelining,

4×4 sub-block levels, requires lesser registers but introduces many stalls or bubbles in each

4×4 level, leading to the increment of processing cycles. On the contrary, a coarse-level

pipelining, 16×16 macroblock levels, can reduce the pipelined stalls and bubbles but needs

numerous registers to accomplish the pipelining procedures. Hence, we can conclude that

the processing cycles and numbers of pipelined registers are often at odds. However,

traditional pipelined methods [41][44] didn’t consider the processing cycles and used fixed

number of pipelined registers over the whole design, leading to additional usage of

pipelined registers. In the following, we will present a domain-pipelined scalability (DPS)

to alleviate this problem. It takes the processing cycles into account when developing a

pipelined methodology in a video decoding system.

61

Figure 3.2: Pipelined path between stream inputs and residual pixels.

Table 3.1: Various pipelined granularities.

Parallelism Unit of Data Buffer Cost Processing Cycles

MB-Level 16×16 pixels ×16 Y cycles/MB

Block-Level 8×8 pixels ×4 1.19×Y cycles/MB

Subblock-Level 4×4 pixels ×1 1.26×Y cycles/MB

3.2.2 Domain-Pipelined Scalability

Figure 3.3 shows the data paths of H.264/AVC decoder prior to the deblocking filter.

The proposed DPS method partitions the paths into two pipelined domains. One of them

includes the cycle-critical path that consumes a great number of processing cycles from

stream inputs to outputs (e.g. motion compensation, deblocking filter, display I/F, as the

thick line of Figure 3.3(b) indicates), and the other includes the non-cycle-critical path that

demonstrates the path except for cycle-critical one (e.g. entropy decoder, IDCT, intra

prediction). Compared to the fixed 16×16 macroblock-level pipelining [41][44] in Figure

3.3(a), the proposed DPS method in Figure 3.3(b) allocates different pipelined granularities

with cycle-awareness. Actually, the numbers of processing cycles will impact the pipeline

methodology. For instance, we consider the pipeline level on 4×4 sub-blocks and 16×16

macro-blocks (MB) in Figure 3.4. The shaded and dotted regions represent the previous and

62

next decoding MB respectively. In the non-cycle-critical path, the introduced waiting cycles

or bubbles occur frequently on a 4×4 sub-block level. On the other hand, the motion

compensation, deblocking filter, and display I/F are performed on 16×16 MB level, in the

sense that it improves processing cycles since the waiting cycles are reduced and occur only

on each 16×16 level. Therefore, we choose 4×4 sub-block level pipeline to reduce the

pipelined register size in non-cycle-critical path. As for the cycle-critical path, we apply

16×16 MB level pipeline to reduce the processing cycles at the cost of acceptable increment

on pipeline registers. Therefore, we only apply the fine-level pipeline into the

non-cycle-critical path for reducing the pipeline registers. By contrast, the coarse-level

pipeline is utilized to eliminate the waiting cycles on the cycle-critical path. With regard to

the integration issue, a 4×4 sub-block is the smallest pipelined element in H.264/AVC while

an 8×8 block size is adopted by MPEG-2 video standard. Due to different pipelined sizes,

we utilize AND gates to disable un-used flip-flops according to the pipelined operation of

each standard in Figure 3.3(b). As a result, we optimize the pipeline granularities according

to the characteristics of processing cycles [43]. It is suitable for determining the optimized

pipelined levels during the system development. The detailed pipeline granularities are

listed in Table 3.2. Compared to the un-optimized 16×16-level pipelines [44], the proposed

DPS method reduces the number of pipelined registers by 37.5%, resulting in less power

dissipation.

63

(a)

(b)

Figure 3.3: (a) Traditional pipelined method and (b) two pipelined domains by using the

DPS method.

64

Figure 3.4: A data-path diagram of residual path by DPS.

Table 3.2: Different pipeline levels in each module.

Proposed Cycle

Characteristics
Key Module

MPEG-2 H.264/AVC

Intra Prediction N/A

VLD/CAVLD
Non-cycle-critical

path

4×4/8×8 IDCT
8×8

4×4

Motion Compensation

In/Post-Loop Filter Cycle-critical path

Display I/F

16×16 16×16

65

3.3 Improving the Memory Hierarchy

3.3.1 Background

While there has been much work studying memory performance for scientific and

general-purpose applications, this dissertation focuses on the need of H.264/AVC video

applications. H.264/AVC achieves high compression ratio since it adequately utilizes the

neighboring pixels to obtain a reliable predictor and reduce the prediction errors. Compared

to prevalent MPEG-x and H.26x video standards, H.264/AVC has a dependency on a long

past history of data and need much intermediate storage. Therefore, this highly data

correlation also leads to the design challenge on VLSI implementation in terms of memory

power as well as cost.

Improving the memory hierarchy or reducing the embedded SRAM size is very

effective for achieving low power dissipation because internal memories occupy about 70%

of core power in H.264/AVC video decoder [45]. To reduce power consumption on memory

modules, we aim at a memory hierarchy where copies of data from larger memories that

exhibit high data-correlation are stored to additional layers of smaller memories. In this way,

the great part of data accesses is moved to smaller memories and the significant power

savings can be achieved since accesses to smaller level of memory hierarchy are less power

consumption [46]. Thus, we propose three-level memory hierarchy named as content, slice

memory and synchronous DRAM (SDRAM) as depicted in Figure 3.5. Figure 3.5(a) shows

a three-level memory hierarchy where a slice SRAM is allocated for the storage with rows

of pixels since H.264/AVC features to access logically adjacent pixels in the vertical

direction. However, storing all pixels in rows of vertical pixels is unnecessary when the

following decoding procedures are unrelated to the upper neighboring pixels. Hence, we

further propose a line-pixel-lookahead (LPL) scheme in Figure 3.5(b) to eliminate the

un-used pixels, leading to the reduction of memory size. In the following, we address the

66

three-level of memory hierarchy and thereby illustrate how to exploit LPL scheme to further

reduce the memory size.

SDRAM SDRAM
32b 32b

Slice SRAM

3kb
VL-FIFO registers

32b

Intra
Pred.

Loop
Filter

Motion
Comp.

32b
bypass

6.1kb
Ping-pong SRAM

(a)

(b)

Figure 3.5: The (a) conventional [43] and (b) proposed memory hierarchy.

67

3.3.2 Content Memory

A content memory, the first level of memory hierarchy, includes ping-pong SRAM and

variable length FIFO (VL-FIFO) in Figure 3.6. Particularly, the ping-pong SRAM stores the

unfiltered pixels in one 16×16 MB prior to the deblocking filter. Its data word size is 32-bit

(4-pixel) and the address depth is decided by the YUV format (4:4:4, 4:2:2 or 4:2:0). For

4:2:0 format, there are 16 luma sub-blocks and 8 chroma sub-blocks. Moreover, it adopts

the ping-pong structure and stores two macro-blocks (MBs) to resolve the structural hazard

when reading and writing processes occur simultaneously. Hence, the content memory is of

size (16+8)×4×32×2 (6.1k). On the other hand, VL-FIFO stores the pixels value with a size

of one macroblock and is required to coordinate different data paths. In H.264/AVC, the

prediction path (e.g. intra prediction or motion compensation) and residual path (e.g.

CAVLC/IZ/IQ/IDCT) produces the output data with different timing budgets. The

synchronization problem is introduced since both of them should be synchronously added in

a pixel-wise manner. We develop a VL-FIFO to synchronize two paths prior to the

deblocking filter. As a result, they construct the first level of memory hierarchy in the

H.264/AVC decoding system.

Figure 3.6: VL-FIFO and ping-pong SRAM in the content memory.

68

3.3.3 Slice Memory

A slice memory, the second level of memory hierarchy, is required to store neighboring

pixels and prevent the data re-access from SDRAM since current decoded pixels in

H.264/AVC relate to the pixels previously decoded. Considering a frame size of N×M in

Figure 3.7(a), each square represents the 16×16 MB. Each MB contains 16 points and 4×4

pixels within each point. When following decoding procedures are performed from the MB

index B to B+1, the pixel data within upper and left neighbors will be updated as the arrows

indicate. Therefore, the shaded region should be kept when the decoding index is B+1. To

give a specific explanation, we take intra prediction and deblocking filter as an example. As

we know, intra predicted pixels rely on the upper one-pixel for a reliable predictor when

near-vertical prediction modes apply. As a result, pixels M and A~H should be kept when

decoding this 4×4 sub-block in Figure 3.7(b). Figure 3.7(c) indicates that deblocking filter

requires neighboring four-pixel (i.e. p0~p3) to execute filtering procedures. In sum, the intra

prediction and deblocking filter require one-row and four-row of pixels which construct the

data organization in the slice memory.

In addition to the intra prediction and deblocking filter, several modules require

neighboring pixels or syntax to construct the results, such as CAVLC, CABAC, motion

compensation, etc. Table 3.3 exhibits overall data organization in the slice memory. It

consists of pixel data or syntax flags per unit of one pixel, 4×4 sub-blocks or 16×16 MB. In

the pixel data, the size of slice memory depends on the frame width W as the shaded region

of Figure 3.7(a) indicates. Moreover, the size of pixel relates to the chrominance format C.F.

and pixel depth. Here, a 4:2:0 format and 8bits/pixel is assumed for simplicity. As for syntax

flags, it is required keeping the flag since the decoding procedures of H.264/AVC will

reference the previously decoded neighboring syntax flags. For instance, motion vector will

69

be generated from the previously decoded one. Besides, H.264/AVC develops adaptive

entropy coding method to achieve high compression ratio. In particular, CAVLC adaptively

selects coding table by nC calculated from the Coeff_Tokens of neighboring blocks.

CABAC adaptively estimates a large number of conditional probabilities through the

neighboring syntax flags such as MB_Type, CBP …etc. These adaptive schemes lead to the

highly data dependency and extra data storage for hardware implementation. In sum, the

total memory size achieves 190.8kb under the H.264/AVC video decoding with 1080HD

resolution and 4:2:0 chrominance formats.

(a)

(b)

70

(c)

Figure 3.7: The (a) slice memory in (b) intra prediction and (c) deblocking filter.

Table 3.3: Data organization in slice memory.

Memory Size
Level

(data per unit)
Content Formula(bits)

W= Frame Width
1080HD

4:2:0

Deblocking filter’s

upper neighbor pixel
4×W×C.F.9×8 122.8Kb

Pixel
Intra predictor’s

upper neighbor pixel
W×C.F.×8 30.7Kb

Motion vector’s

upper neighbor flag
2×(W/4)×10 9.6Kb

Sub-block
nC’s (CAVLC) upper

neighbor flag
(W/4)×5 2.4Kb

Macroblock

CBP, MBType, ..etc

(CABAC) upper

neighbor flag

(W/16)×10×16 19.2Kb

Total 184.7Kb

9 C.F. means chrominance format.

{4:4:4, 4:2:2, 4:2:0} C.F. = {3, 2, 2}

71

3.3.4 Synchronous DRAM

A synchronous DRAM (SDRAM), the third level of memory hierarchy, is widely used

for storing frame data. A 64Mb quad-bank SDRAM model adopted is Micron’s

MT48LC2M32B2 [47]. A simplified architecture is shown in Figure 3.8(a) where four

banks share the address and command buses and each bank has individual row decoder,

sense amplifier, and column decoder. The mode register stores several SDRAM operation

modes including burst length (BL), column address strobe (CAS) latency (abbreviated as

CL), or burst type (sequential/interleave). The content of mode register updates according to

commands issued from address buses. In sum, SDRAM can be treated as a 3-D structure

with the dimensions of bank, row, and column.

On the other hand, Figure 3.8(b) lists the features and configurations of this SDRAM

model. This SDRAM uses an internal pipelined architecture to achieve high-speed operation

and is a dynamic random access memory containing 67,108,864-bit. It is internally

configured as a quad-bank DRAM with a synchronous interface. Each of the 16,777,216-bit

is organized as 2,048 rows by 256 columns by 32 bits. Moreover, read and write accesses to

the SDRAM are burst oriented; accesses start at a selected location and continue for a

programmed number of locations. This SDRAM provides programmable READ and

WRITE burst lengths of 1, 2, 4, or 8 locations, or the full page, with a burst terminate option.

This SDRAM offer substantial advances in DRAM operating performance including

high-speed and low-cost implementation. Finally, we adopt it as the external frame buffer

for subsequent frame decoding in H.264/AVC.

72

Column decoderColumn decoderColumn decoder

Sense Amplifiers
with Row Buffer

Sense Amplifiers
with Row Buffer

Sense Amplifiers
with Row Buffer

BANK 0BANK 0BANK 0BANK 0

Sense Amplifiers
with Row Buffer

Column decoder

Control Logic

Mode
Register

CMD

ADDR Addr
Reg

DATA

(a)

MT48LC2M32B2 2Meg x 32

Configuration 512K x 32 x 4banks

Row Addressing 2K (A0 ~ A10)

Column Addressing 256 (A0 ~ A7)

Bank Addressing 4 (BA0, BA1)

CAS Latency (CL) 1, 2, and 3

Burst Length 1, 2, 4, 8, or full page

5ns (200MHz)

5.5ns (183MHz)

6ns (166MHz)
Timing (Cycle Time)

7ns (143MHz)

(b)

Figure 3.8: (a) Simplified architecture and (b) configuration of a 4-bank SDRAM.

73

3.3.5 Line-Pixel-Lookahead Method

Line-Pixel-Lookahead (LPL) scheme is proposed to exploit spatial pixel locality in

vertical direction and looks ahead before decoding the next line of pixel in order to improve

the access efficiency. Figure 3.9 depicts the LPL scheme and the related pseudo codes. In

particular, a reduced slice SRAM caches the pixels of upper neighbors, and a LPL scheme

predicts whether the follow-up pixel data should be kept or not. In the scope of this LPL

scheme, we only focus on the pixel-level of storage content since it occupied a large portion

of overall slice memory in Table 3.3. Therefore, only deblocking filter and intra prediction

will be considered in this dissertation. In the LPL scheme, the TAG prediction issues a

decoding TAG (D. TAG) that contains a pair of signals for the purpose of deblocking filter

and intra prediction units, and the D. TAG is equal to the neighboring TAG (N. TAG) after

buffering one row of TAGs. Two W/2-bit TAG buffers record each D. TAG, where W means

frame width. A TAG CMP (compare) unit perceives the contrast between N. TAG and D.

TAG. A prediction miss will be noticed via a request signal from the output of TAG CMP

when current D. TAG differs from N. TAG.

(a)

74

for(i=0;i<W/4;i++)
{ Step1: Generate decoding tag and buffered.
 D. TAG(i) = F(pre_mode, bS);

Step2: write the D. TAG into Buffer
 and Slice memory. }

Step3: when encountering the next line of
 pixel.
for(j=0;j<W/4;j++)
{ Step4: reading the N. TAG data from TAG
 buffer.

N. TAG(j) = (if requiring upper
 neighbor) ? 1:0;

Step5: comparing the TAG value.
 if(N. TAG(j) == D. TAG(j)) req. = 0; (hit)
 else req. = 1; (i.e. miss)
}

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(b)

Figure 3.9: The (a) data flow and (b) related pseudo code in the LPL scheme.

To illustrate how the LPL scheme works, we partition it into two steps: 1) TAG

prediction and 2) TAG buffer. Figure 3.10 depicts the detailed circuit of the TAG prediction.

The prediction step forecasts data accesses needed in advance, so a specific piece of data is

pre-stored in the SRAM before it is actually desired by the follow-up decoding processes. A

key observation is that not all upper neighboring pixels need to be pre-stored when they are

determined as a “near-horizontal prediction mode” in intra prediction or a “SKIP mode” in

deblocking filter. To realize the above behavior, we extract intra prediction mode, boundary

strength (bS) and related header information from syntax parser as arrowed input signals.

Each non-arrowed input is hard-coded and can be referenced by H.264/AVC [1]. In the case

of a TAG buffer, it is of size 2W-bit and implemented by a single read and write port

register file. The N. TAG will be read first from TAG buffer for the TAG comparison.

Afterward, the D. TAG signal writes into TAG buffer for follow-up operations in next rows.

Both reading and writing procedures are activated in different time slots to ensure that the

75

TAG signal previously written to the buffer can be read back without error.

Figure 3.11 describes the 4×4 intra prediction behavior of the LPL scheme through an

example with a frame size of 48×32. Each square represents a 4×4 sub-block labeled by a

1-bit TAG signal. In the N. TAG field, we tag the 4×4 pixel data when a vertical prediction

mode is applied. Furthermore, the un-tagged pixel will be discarded via wen (see the

reduced slice SRAM in Figure 3.9(a)), resulting in reducing memory size. The memory

word-length is fixed at 8-bit and a scaling factor f is introduced to scale the address depth at

design time. Thus, the memory size is scalable and proportional to W/f (instead of W in

Table 3.3) without degrading performance when the prediction hits (i.e. D. TAG equals N.

TAG). However, an error of prediction may occur (i.e. miss) so we need to fetch the missed

data from the external memory. The miss rate stands for a probability of missing events and

is equal to the number of miss over one row of TAG. Although we reduce the memory size

from W×8 to (W/f)×8 bits, 16.7% (i.e. 2/12) of miss rates are its penalties in this example.

Therefore, it is indispensable to making a better compromise between the introduced miss

rate and the scaling factor f.

Intra_4x4_Horizontal

D. TAG
(Intra Prediction)

Intra_4x4_Horizontal_Up
Intra_16x16_Horizontal

MUX

Intra_Chroma_Horizontal

MUX

SKIP bS

D. TAG
(In-Loop Filter)

OR

== ==

== ==

==

a b

out

out = (a==b) ? 1 : 0;

Figure 3.10: The proposed prediction circuit for TAG prediction.

76

Figure 3.11: Data organization between slice pixel SRAM and TAG prediction.

3.3.6 Performance Evaluation

To apply the proposed LPL scheme to a practical video sequence, we first adopt two

different types of video resolution to highlight the probability of missed rate and the

reduction of external memory power. After that, we model the external memory power

through the power calculator. It proves that the proposed three-level memory hierarchy

greatly reduces the external memory power with a cost of slight internal memory power

increment. Moreover, the increased memory power can be further reduced by LPL scheme.

3.3.6.1 Miss rate analysis

As compared to the original slice memory in Figure 3.5(a), the internal memory size

can be reduced (see Figure 3.5(b)) with a penalty of slight miss rate increment. Because an

error of prediction may occur, an additional penalty is introduced to re-fetch the missed data

from external memory, leading to the increment of external memory bandwidth as well as

77

power consumption. To alleviate this problem, we first analyze the relationship between the

probability of miss events and external memory size. Figure 3.12 depicts the miss rate

analysis with high-definition (1920×1088) and CIF (352×288) video resolution, and “αW”

means that it’s proportional to the frame width W. In this figure, we omit two extreme

values and only plot the miss rate when scaling factor f ranges from 2 to 32. In particular,

one extreme case is that miss rate equals zero when the factor f is fixed at one [48]. The

other case occurs when the design [49] removes the second level of memory hierarchy (i.e.

slice memory), leading to a 100% of miss rate. Hence, we can conclude that memory size

and miss rate are often at odd and two extreme designs are far from a near-optimal value in

terms of memory size and miss rate. Although increasing internal memory size achieves

lower miss rate and external bandwidth, it suffers from the high memory cost and

manufactured defects. Thus, inappropriate memory size will be harmful to the memory size

and power consumption. In our design, we provide several design alternatives via factor f

when developing a memory hierarchy at the design time. Therefore, we can achieve a better

trade-off between miss rate and memory size. However, the goal of this section is to achieve

low-power consumption through the memory hierarchy. To this end, we translate the miss

rate into the memory bandwidth via Eq. (3.1) and Eq. (3.2). We adopt a memory power

calculator to compute the memory power consumption from the available bandwidth in the

next sub-section.

of 4x4 sub-block accesses # of write accesses # of read accesses miss rate= + × (3.1)

of 4x4 sub-block accesses bytes frameBandwidth(Bytes/sec) 16
frame 4x4 sub-block sec

= × × (3.2)

78

0 0.5 1 1.5 2 2.5 3 3.5
x 104

0

20

40

60

80

100 Stefan@1080HD

Memory size (bits)

M
is

s
R

at
e

(%
)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

150kbps
450kbps
1.5Mbps

150kbps
450kbps
1.5Mbps

Mother & Daughter@CIF

Figure 3.12: Miss rate analysis with different scaling factors f.

3.3.6.2 Memory power modeling

To analyze the power consumption of proposed memory hierarchy, we describe the

power modeling through a memory power calculator. In general, the power consumption of

memory hierarchy can be considered as a summation of on-chip and off-chip memory

power in Eq. (3.3). Furthermore, memory accesses are the most power consuming operation

[50] and dominate the overall power budget on the internal memory. The power consumed

on memory accesses is a function of memory size, the access frequency and technology etc.

In the following, we assumed that the on-chip power is linearly proportional to the access

frequency [51] and the memory size. Therefore, the simplified power model described by

Eq. (3.4) suffices for the purpose of evaluating the power effect on memory hierarchy.

As for off-chip memory, the power modeling becomes more complicated. Not only

79

data access but also I/O and background power should be concerned (see Eq. (3.3)).

Specifically, we adopt Micron’s system-power calculator [52] to model DRAM power. To

estimate the power consumption, it is necessary to understand the basic functionality of

DRAM in Figure 3.8. In particular, once the clock enables, commands can be sent to the

DRAM module. Typically, the first command is ACTIVE (ACT). The ACT command selects

a bank and transfers the cell data into the sense amplifier. The data stays in the sense

amplifiers until a PRECHARGE (PRE) command to the same bank restores the data to the

cells in the array. When data is stored in the sense amplifier, READ and WRITE commands

may take place. When a READ command issues, the data is driven through the I/O gating to

the internal read latch. Once in the latch, it is multiplexed onto the output drivers. Moreover,

the REFRESH (REF) operation is normally distributed evenly over time, because the

memory cells of a DRAM store the data information in small capacitors that lose their

charge over time. Based on the aforementioned behavior, we can conclude that DRAM

power mainly comes from the operations in access, I/O and background modes. The access

power dissipation comes from the READ and WRITE commands. I/O power consumes on

I/O pins (i.e. DQ) when READ commands issue. Furthermore, PRE command in standby

and power-down modes and REF commands contribute the power dissipation of

background operations. Therefore, based on the power modeling in both on-chip and

off-chip memories, we will show the simulation results as follows.

(total on chip off chip access access IO BG)P P P P P P P− −= + = + + + (3.3)

(, # ,on chip access access word ddP P f F Length of word V− = = ×) (3.4)

As mentioned before, we exploit memory size and power calculator as the SRAM and

DRAM power indexes. An observation is that the curve between internal SRAM and

80

external DRAM power consumption is shown in Figure 3.13. Let’s illustrate this property

by choosing Micron’s SDRAM model (i.e. MT48LC2M32B2) with CAS latency = 2, BL =

1 and tCK = 7ns. In X-axis, there are several design alternatives according to the factor f. In

other words, we provide a scalable solution with a trade-off at the architectural design time.

As a result, a better compromise can be constrained by the minimal distance from origin (i.e.

f = 8) since it achieves smaller SRAM size as well as SDRAM power dissipation. Note that

this property can also be applied to DDR/DDR2 memory for high-resolution video decoding

when adopting the proposed memory hierarchy with LPL scheme.

Figure 3.13: Analysis of power dissipation on external SDRAM and internal SRAM.

Figure 3.14 shows a power saving through the three-level memory hierarchy with the

LPL scheme. The traditional three-level memory hierarchy [43] in middle bar is just a

special case when a scaling factor f equals one. While it reduces power dissipation by 44%,

the SRAM power penalty is considerably high. To further reduce the SRAM power

consumption, we propose the LPL scheme to make a better compromise from the

81

observation in Figure 3.13. Although the right-hand bar increases the SDRAM power by

4mW, the SRAM power in the right-hand bar can be greatly reduced to ()1 88 f =∵ of

that in the middle bar. Moreover, introduced gate count for LPL scheme is very small and

occupies only 4% of system area. Hence, the LPL scheme further gains 11% power

dissipation. Altogether, three-level memory hierarchy and LPL scheme achieve 51% power

saving. To further report the power consumption in the DRAM module, Figure 3.14(b)

exhibits the power profiling and shows that there are 14mW of access power excessively

consumed in SDRAM. This is because motion compensation requires large read access

times from external memory. Additionally, it should be noted that the metric of SDRAM’s

power consumption can be further optimized through mobile DRAM [53] or other

leading-edge DRAM designs [54]-[56]. In our simulation, we just choose a preliminary

Synchronous DRAM to verify the power performance in a system point of view. Therefore,

the power improvement will become more prominent when the low-power DRAM module

can be applied.

M
em

or
y

Po
w

er
 D

is
si

pa
tio

n

(a)

82

Power Profile (mW)

3.8
11.3

14

I/O Power

Access Power

Background Power

(b)

Figure 3.14: (a) Power saving on memory hierarchy and (b) DRAM power profiling.

3.4 Eliminating Memory Access Times
Under an identical design specification, reduction of memory-access times leads to

operations with lower system clock rate and voltage and thus lower power consumption.

Based on the complexity profiling of H.264/AVC joint model (JM) software via Intel®

VTune performance analyzer [57], both motion compensation and de-blocking filter are the

most computation-intensive operations in H.264/AVC [58]. To lower the required working

frequency for low-power demands, we first analyze the decoding ordering which affects the

access efficiency in both intra and inter prediction modules. Then, we propose new

architectures to reduce both processing cycles and memory access times in computationally

critical modules of H.264/AVC.

3.4.1 1×4 and 4×1 Decoding Ordering

According to the decoding flow in H.264/AVC specification [6], a 4×4 sub-block is the

smallest processing unit. To efficiently transfer 4×4 pixel data among modules, we discuss

two strategies to organize the word-length for data transactions. One is a 4×1 row-by-row

decoding ordering, and the other is a 1×4 column-by-column decoding ordering. Although

83

the 1×4 is similar to the 4×1 within a 4×4 sub-block, the decoding orders in a 16×16

macroblock (MB) are widely different. Figure 3.15(a) and (b) show the 4×1 and 1×4

decoding orderings in one MB, respectively. Compared to the 4×1 row-by-row decoding

ordering, the 1×4 column-by-column decoding ordering provides a better data structure,

reducing the processing cycles on intra and inter prediction modules. For example, an intra

prediction module requires left neighboring pixels to spatially create the predicted pixels.

These neighboring pixels can be easily fetched through the 1×4 ordering since they are

organized in a column-wise manner. As for the inter prediction module, extra initialization

cycles are required when the thread in Figure 3.15 makes a turn. Therefore, the access times

are related to the frequency of turning events. The results proved that the 1×4

column-by-column decoding ordering reuses the neighboring pixels and reduces the turning

events, yielding the cycle reduction of 17% and 28% in intra and inter prediction modules

respectively [59].

0
1
2
3
8
9
10
11
32
33
34
35

36
37
38
39

47
46
45
44

43
42
41
40

15
14
13
12
7
6
5
4 16

17
18
19

20
21
22
23

48
49
50
51
56
57
58
59 63

62
61
60
55
54
53
52
31
30
29
28

27
26
25
24

(a)

84

(b)

Figure 3.15: Different data orders in (a) 4×1 and (b) 1×4 decoding orders.

3.4.2 Motion Compensation

It is obvious that reducing the processing cycles in the motion compensation (MC)

module can improve the system performance since it is a system bottleneck compared to

other modules. In particular, the interpolation unit in MC is always the most

time-consuming module. In the following, we propose a horizontal-switch approach to

reuse the neighboring pixels for the interpolator design so as to reduce the external memory

access times. More detailed discussion about motion compensation can be found in the

master thesis of my junior member [139].

3.4.2.1 Horizontal-switch technique

Interpolation unit is always the most time-consuming module in whole motion

compensation core. A great deal of memory accesses degrade decoding throughput

especially in the features of variable block size and quarter-pel resolution. To reduce

85

memory access times, it is necessary to increase data reuse probability for overlapped

regions of neighboring interpolation windows. To this end, we apply a data buffer to each

shift register for luma interpolators. Furthermore, a chroma interpolator has a similar

behavior with a luma interpolator and both of them can be simplified into a

multiplication-free design approach [30]. Specifically, in Figure 3.16(a)(b), a dotted line

shows the different scan orders in one luma macroblock, and the number in each square

represents the decoding orders defined by H.264/AVC [6]. In Figure 3.16(a), a 2×2 raster

scan is compliant to H.264/AVC, but extra cycles for data initialization are required when

the dotted line turns. Compared to the 2×2 raster scan, a 4×4 raster scan features less

turning events but violates H.264/AVC standard. Since standard-limitation and

cycle-efficiency are often at odds, an extended 2×2 raster scan has been proposed to

improve decoding performance in Figure 3.16(c). In particular, content registers, 6×9 pixel

buffers, attached to shift registers for the interpolator are adopted. When sub-block #1 is

decoded, overlapped windows in the right-hand side are stored into background of pixel

buffers. These buffers switch into foreground when decoding index moves to sub-block #3.

Therefore, in the decoding of sub-block #4, the left overlapped window can be reused from

the content registers instead of external memory, and the overall processing cycles can be

reduced. Compared to the conventional design [41], the proposed motion compensation

requires additional 6×9 pixel buffers (1% cost of MC) but saves 30% of access times.

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

2x2 raster scan 4x4 raster scan

 (a) (b)

86

(c)

Figure 3.16: Different scan orders in motion compensation: (a) 2×2 raster scan; (b) 4×4

raster scan; (c) extended 2x2 raster scan.

3.4.2.2 Efficient Memory Interface

Although we increase the reuse probability to reduce the access frequency to the

external memory, the external memory interface has to cooperate with the MC to improve

the overall access efficiency. In our design, two external frame memories are allowed for

writing decoded data and reading reference data reciprocally at the same time. Compared

with SRAM, SDRAM is adopted due to the cost and power issues. However, SDRAM also

introduces the longer access latency and degrades the decoding throughput because of the

internal pipeline architectures and 3D structure of banks, rows and column characteristics

(see Figure 3.8). To solve the above problems, an efficient memory interface is introduced

to overlap and re-schedule each access commands to improve the bandwidth utilization. A

64Mb quad-bank SDRAM model adopted is Micron’s MT48LC2M32B2 [47] and Figure

3.17 illustrates our memory interface design. This interface is composed of the bank

controller, memory scheduler, and several read/write buffers. Each bank controller generates

87

suitable commands for read/write processes. The memory scheduler collects these

commands then sends re-scheduled commands to external SDRAM. Read and write data

buffers store burst data, and read/write command queues are designed to hold successive

commands. The read and write processes are activated in a parallel fashion and switch at

frame levels. Based on this memory interface, the experimental results exhibit that the

processing cycles per MB for QCIF@30fps decoding range from 288 to 512 for various

video sequences.

Figure 3.17: A block diagram of the proposed memory controller.

3.4.3 Deblocking Filter

In addition to the motion compensation, deblocking filter should be considered in

terms of complexity and memory accesses. In general, deblocking filter contributes about

one-third of the computational complexity at the H.264/AVC video decoder [137]. It

operates each filtering process on the 4×4 boundaries instead of the 8×8 boundaries in

filters of H.263 or MPEG-4 video standards. Therefore, a large number of memory accesses

are its penalty for the low-power portable applications. In the following, we present a hybrid

filtering schedule to reduce the access frequency to memory modules for improving the

88

access efficiency.

3.4.3.1 Hybrid Filtering Schedule

We propose a hybrid filtering schedule to reuse the intermediate data and thereby

eliminate the additional memory accesses when deblocking filters change the filtered edges

from vertical to horizontal direction. It reduces one-half of processing cycles with slight

increment of buffer cost. Figure 3.18(a) describes the filtering order where vertical edges

are filtered first, followed by horizontal edges. Each square is sized to 4×4 pixel data. The

number within rectangles represents the processing order in one luma macroblock. A direct

approach may induce a drawback that intermediate data have to be stored and loaded again

when altering the filtered directions. For example, considering the gray region, the edge #1

will be filtered first followed by the edge #5. After that, the processing data in gray region

cannot be reused since the distance between vertical and horizontal edges (i.e. #5 vs. #17)

becomes longer. Therefore, the memory accesses are required in both vertical and horizontal

directions. To cope with this problem, we propose a hybrid scheduler without affecting the

standard-defined data dependency in Figure 3.18(b) where un-shaded numbers are carried

out in 8×8 post-loop filters. Considering the orders in the black region to perceive a contrast,

the black region can be reused because the orders between different directions become close.

Therefore, the proposal prevents the data re-access for different directions and reuses the

intermediate pixels to reduce the processing cycles.

Though B. Sheng et al. [60] also proposed a novel schedule to reduce the processing

cycles, this schedule requires eight 4×4 sub-blocks as the kept buffers. To reduce this buffer

size, we partition each MB into two main parts (i.e. Deblocking Filter-MB-Upper or Lower)

in Figure 3.19(a), and each part is composed of eight time indices to realize the filtering

procedure in Figure 3.19(b). Each bold line represents the edge to be filtered in the

89

corresponding time index. As a result, our kept buffer size is reduced to four 4×4 sub-blocks

where is located on shaded regions. By the same way, the proposed schedule is performed

on the chroma MB as well.

(a)

(b)

Figure 3.18: Filtering orders in (a) standard-defined and (b) proposed filtering schedule.

90

Figure 3.19: The (a) partitioned MB and (b) each time index for hybrid filtering schedule.

To apply the hybrid filtering schedule to a dedicated hardware, a new architecture of

deblocking filter is presented in this sub-section. Figure 3.20(a) shows the proposed design

with block diagram and data flow representations. Specifically, deblocking filter receives

the data from ping-pong SRAM (see Figure 3.6), extracts the neighboring pixel from slice

SRAM and writes the filtering results into external frame buffer. A detailed illustration of

ping-pong SRAM, slice SRAM and external memory have been made in Section 3.3. The

shaded-arrows denote the data flow inside the de-blocking filter unit, and the black-arrows

denote the data flow outside. The pixel buffer contains four 4×4 pixel values and is used to

store the intermediate pixel value when applying the proposed hybrid filtering schedule.

The detailed architecture of deblocking filters has been redrawn in Figure 3.20(b). All

signals are 32-bit wide and possess the 1×4 row-by-row data organization. There are four

input signals {wt_B_0, wt_B_1, wt_B_2, wt_B_3} to write the buffers with four 4×4

sub-blocks. Further, there are three output signals {rd_B_0, rd_B_1, rd_B_2} to perform the

edge filter and then write to the frame memory, pixel buffer or slice SRAM. By the same

91

naming rule, each data flow represents the writing/reading to/from the storage module

including ping-pong (P-P) memory, slice SRAM, or external frame memory. Specifically,

we use one MB with 48 edges of in-loop filter as an example to demonstrate the filtering

behavior in Figure 3.20(b). It can be divided into two main parts:

 Write Process is a writing mechanism through the signal {wt_Slice_0~2, wt_I/F_0~1,

wt_B_0~3}.

 Read Process is a reading mechanism through the signal {rd_Slice_0~1, rd_P-P_0,

rd_B_0~2}.

The key idea of the high-throughput architecture is that the ping-pong memory is

exploited only for the reading processes. In Figure 3.20(b), the writing signal, wt_Slice_0, is

activated on the edges 6, 10, 14 and 16 because the lower sub-blocks become the upper

neighboring sub-blocks of DF-MB_L (see Figure 3.19(a)). Therefore, the wt_Slice writes

the filtering results into slice memory for follow-up filtering processes. For the wt_EXT, it

writes filtered data into the external memory or display interface. For instance, wt_EXT_0

will be activated on each filtering process on horizontal edges except for the edge of

activated signal wt_Slice_1 and wt_B_0, since wt_EXT_0, wt_Slice_1 and wt_B_0 have the

same root-signal of q’_Pixel. On the other hand, the reading signal, rd_Slice_0, is activated

on vertical edges while the rd_Slice_1 is valid on horizontal edges. In addition, the

rd_P-P_0 directly feeds through the pixel buffers. In other words, P-P memory is employed

for the reading processes, and there is no need to write the filtered results into the P-P

memory in one direction and thereby read them in another direction. Therefore, the proposal

exploits four 4×4 buffers to reuse the intermediate pixel and eliminate the writing accesses

to the P-P memory.

92

Direct
Display I/F

External
Memory I/F

Intra/Inter
Prediction

96x32

Slice SRAM

Pixel Buffer
(four 4x4

sub-block)

Tr
ip

le
 P

-i-
P-

o
Ed

ge
Fi

lte
r

De-Blocking
Filter Unit

q0~3

p0~3

q0~3

p0~3

｀

｀

+IDCT

Triple-Mode
Decision & Control

Pi
ng

-P
on

g
SR

A
M

4:2:0

96x32

(a)

(b)

Figure 3.20: The (a) block diagram and (b) architecture for the proposed deblocking filter.

3.4.3.2 Cycle Analysis

To clarify the cycle reduction of proposed hybrid filtering schedule, we formulate

processing cycles in Eqs. (3.5) and (3.6) where C.C. means cycle counts. The overall cycles

of deblocking filters can be considered as a combination of the pre-process, filter-process

93

and post-process. The pre-process is an initial stage which loads neighboring pixel from

external into slice memory while the post-process is a write-back stage which writes filtered

results from slice memory to external memory. In the filter-process, the processing cycles

include slice or ping-pong Memory to pixel Buffers (i.e. Mslice/pp-to-Bpixel), generic

filtering, and pixel Buffers to slice Memory (i.e. Bpixel-to-Mslice). The processing cycles

of the generic filtering are 4×(32+16) which become a lower bound to fulfill filtering

processes if the rest of processing cycles are zero in an ideal case.

Pre-process Filter-Process Post-Process misc.

Pre-process initial Mexternal-to-Mslice

Post-Process write back Mslice-to-Mexternal

Total Cycle Counts =

.

.

+ + +

= =

= =

C C C C C C C C

C C C C C C

C C C C C C

 (3.5)

Filter-Process Luma Filter Chroma Filter Mslice/pp-to-Bpixel

generic Bpixel-to-Mslice generic

.

. . . . , . . 32 4 16 4 192

= + =

+ + = × + × =

C C C C C C C C

C C C C where C C
 (3.6)

Based on the proposed hybrid filtering schedule, the overall cycles are 243 and close to

a lower bound of processing cycles. Based on the aforementioned three-level memory

hierarchy, the neighboring pixel can be fetched from the slice memory instead of external

DRAM, and the filtered results are written into the external memory without going through

the slice memory. As a result, the cycle counts of the pre-process and post-process can be

eliminated. In the filter-process stage, the evaluated cycle counts are 148 cycles for luma

MB and 88 cycles for chroma MB. Specifically, we take 8 cycles (DF-MB-U + DF-MB-L)

in the Mslice/pp-to-Bpixel stage. There are 4×32 cycles required to filter horizontal and

vertical edges in a luma MB. Moreover, we need 12 cycles (i.e. Bpixel-to-Mslice) to write

the filtered results for the edges {16,30,32}. Overall, we need 148 (i.e. 8+4×32+12) cycles

to accomplish filtering processes in a luma MB. By the same analysis, we need 88 (i.e.

4+4×8+8=44 for each chroma) cycles in a chroma MB. Therefore, there are total 243 (ie.

148+88+7) cycles with extra 7 cycles for the data hazard. The cycle overheads in the control

94

logic can be neglected since it acts as a pipelined fashion. In addition, the processing cycles

of the post-loop filter are identical to that of the in-loop filter because they share the same

architecture and control flows in Section 2.8.3. In conclusion, 243 cycles are close to a

lower bound (192 cycles) by the proposed schedule. For clarity, we make a detailed

comparison in Table 3.4. We choose single-port architecture [61] and worst case processing

cycle [62] for a fair comparison. We don’t consider an extreme case (e.g. group of picture:

1I+149P, skip mode occurred frequently) because all designs can eliminate the processing

cycles on the skip mode through an extra add-on module. In sum, compared with the

existing approaches [60]-[62], the proposed architecture saves about one-half of processing

cycles per MB.

Table 3.4: The cycle analysis of the de-blocking filter.

Cycle Counts [61] [62]10 [60]11 Proposed

Vertical / Horizontal Separate Separate Hybrid Hybrid

Pre-process (Initial) stage 160 N/A 64 0

Horizontal 128 106
Luma

Vertical 200 106
128 148

Horizontal 64 74

Filter-process

Stage
Chroma

Vertical 112 74
64 88

Post-process (write-back) stage 160 N/A 160 0

Misc. 54 N/A 30 7

Total 878 360+N/A 446 243

10 We only consider the worst case and exclude the effect of mode decision for a fair comparison.
11 Authors didn’t report the processing overheads between the internal memory and kept buffers.

95

To enhance the system performance, this VLSI solution for deblocking filter is

designed to achieve reduced processing cycles. The proposal is implemented using a

0.18μm CMOS process. Excluding the internal memory, the synthesized gate counts are

21.1K which is reduced to 70% of the original design that realize in-loop or post-loop

filtering process separately. Moreover, it achieves 4×105 MB/sec of throughput rates when

operating at 100MHz. Finally, Table 3.5 reveals that the throughput rates of the proposed

design are about 1.5~2.5 times larger than that of existing approaches [60]-[62].

Table 3.5: A hardware summary for the deblocking filter.

Cycle Counts [61] [60] [62] Proposed

Function in-loop in-loop in-loop in/post-loop

Kept Data Size 2×4×4

sub-blocks

8×4×4

sub-blocks

2×4×4

sub-blocks

4×4×4

sub-blocks

Memory

Organization

1) 96×32 + 64×32

2) External MEM

1) 96×32×2 + 64×32

2) External MEM

1) 96×32

2) External MEM

1) 96×32×2

2) 2(N+12)×3212

3) External MEM

Processing Cycles 878 446 360+N/A 243

Process 0.25μm 0.25μm 0.18μm 0.18μm

Gate Counts 20.66K 24K 11.8K 21.1K (in/post)

Clock Rate 100MHz 100MHz 100MHz 100MHz

Filtering

Throughput13

1.6×105 MB/sec 2.2×105 MB/sec 2.6×105 MB/sec 4×105 MB/sec

12 N: frame width
13 Throughput: Macro-Block/sec = Clock Rate

Processing Cycles

96

3.4.4 Performance Evaluation

Let’s make a brief summary in terms of processing cycles in Figure 3.21. In the

beginning, we propose several techniques to reduce the processing cycles in the MC. They

are the 1×4 decoding ordering, horizontal-switch method, and efficient memory interface.

Therefore, the processing cycles are reduced by 37% as compared to conventional designs.

Next, the processing cycles on the MC module decrease, whereas the deblocking filter

becomes the cycle bottleneck from the system point of view. To further reduce the

processing cycles, the hybrid filtering schedule and LPL prediction methods are proposed to

improve the memory access efficiency and a 34% of cycle reduction can be further obtained

compared to the previous design stage.

Figure 3.21: Processing cycle breakdown in each architectural design phase.

97

3.5 Summary
To summarize the low-power techniques discussed in this chapter, Figure 3.22 shows

the composition of the power consumption when the dual-video decoder runs at H.264/AVC

mode and meets the real-time decoding requirements of QCIF@15fps. By applying

domain-pipelined scalability (DPS), three-level memory hierarchy and LPL methods, the

CLK and SRAM power are reduced due to optimized register and memory allocations. The

DPS method greatly reduces the clock tree power while LPL method is exploited to keep

the useful pixels, leading to the elimination of additional accesses to SDRAM. It greatly

reduces the on-chip memory power due to the reduction of memory size and access

frequency. Moreover, further reduction is obtained through the low-power architectures

including the motion compensation and deblocking filter modules. a content-switched MC

and hybrid-scheduled DF lower the required working frequency at a cost of slight buffer

increment. A dedicated SDRAM interface is presented to improve the access efficiency and

reduce the external bandwidth. Therefore, the power dissipation is dramatically reduced. As

a result, the overall design approximately reduces power dissipation by 68% as compared to

the conventional design approach.

98

Figure 3.22: Power reduction of proposed MPEG-2/H.264/AVC video decoder.

*Note1: Power reduction of the “Low-Power MC and DF” technique is based on the
assumption of neglecting power overhead due to cost increment.
*Note2: Memory power reduction of “LPL” technique only addressed the memory usage in

deblocking filter and intra prediction instead of overall memory usage of H.264/AVC.

99

