

Chapter 4
Error-Robust Design Approach

4.1 Background

Of all modalities desirable for future mobile multimedia systems, high-quality motion

video over a reliable transmission is the most demanding. However, the transmitted visual

quality may suffer abruptly because the channel deteriorates due to fading, co-channel

interference, and signal attenuations [79]. On the other hand, the compressed video is

extremely vulnerable against transmission errors, since video coding schemes rely on

variable length codes (VLCs) for improving coding efficiency. With VLCs, the

channel-induced errors can have a detrimental effect on the received bit stream. This is

because a single bit that is received in error can influence the remaining bits in the stream

due to unchecked error propagation. This causes the VLC decoder to discard many properly

received data bits before synchronization is re-established. To deal with the transmission

errors over an error-prone channel, much effort has been invested to improve the

error-robustness in the source decoding procedures, such as error-resilient [72][73] tools,

error-detection [74]–[76] and error-concealment [76][77] algorithms. Although channel

coding can be used for error detection and correction to reduce the impact of

channel-induced errors, this is accomplished by adding redundant information to the data

stream for transmission and therefore introduces overhead to the transmitted bitstream. In

this chapter, we consider the error-robustness in the source decoding side instead of channel

coding and focus on the error detection and concealment method for improving the

error-robustness under the mobile environment.

100

4.2 Design Challenges
Variable length codes (VLCs), also called Huffman codes [78] are commonly used to

approach the entropy rate of a given data source. They are extensively used in recent image

and video coding standards including JPEG, MPEG-1/2/4 and the new design of

H.264/AVC. However, most of the VLC designs are highly sensitive to error disturbances

and suffers from error propagation in the remaining VLC symbols. Hence, a robust

transmission of VLC-based bitstream over mobile communication channels presents several

challenging problems that remain to be resolved. One of the most important problems is that

the success of error concealment techniques relies on the correct detection of erroneous

macroblocks (MBs). However, conventional syntax-based error detection methods [76][80]

may detect erroneous MBs late or even result in a failure of detection for a corrupted

bit-stream. This is because invalid codes may not occur when the input stream is corrupted,

and this stream may be decodable even in the presence of errors. Hence, one cannot find the

exact location of errors or correctly detect errors within the bit-stream. On the other hand,

error concealment is challenging as well due to both high-quality and low-complexity

requirements. Specifically, it operates on MB boundaries and performs smoothing

procedures to conceal the corrupted videos. In general, one may introduce two hardware

building blocks such as deblocking filter and error concealment modules in a video

decoding system. But, both modules include interpolating procedures to improve the visual

quality, and they will not execute at the same time. Hence, how to integrate both

functionalities into a single architecture without degrading visual quality is also a

challenging task when developing our error-robust video decoder.

Beyond the aforementioned challenges, mobile video transmission also leads to error

propagation on the frame level due to a motion-compensated coding method. They use the

previous encoded and reconstructed frame to predict the next frame. Therefore, the loss of

101

information in one frame has considerable impact on the quality of the subsequent frames

and this impact will be enlarged with prevalent frame-recompression methods [81]–[87]. In

general, a frame-recompression method is desirable for reducing the memory cost in frame

buffers. However, existing video-compression algorithms are not suitable for this kind of

frame recompression because their main objective is high coding efficiency rather than

error-robustness. On the other hand, existing solutions improve the compression efficiency

but sacrifice simplicity and low-latency advantages, and vice versa. Hence, it is of great

challenges to consider how to make a better compromise in different performance indexes.

4.2.1 System Highlights

In this work, we highlight three key points of our proposals in this error-roust video

decoder. One is the soft computing on the context-adaptive VLC decoder (CAVLD) for

improving the error detection capabilities. Another is the integration between error

concealment and deblocking filter in order to meet both low cost and high performance

requirements. The other is a new frame-recompression method to improve both power

awareness and error robustness.

Figure 4.1 summarizes the soft-input video decoding system based on our previous

work discussed in Chapters 2 and 3 of this dissertation. To deal with corrupted video

streams and improve the subject and objective visual quality, we first introduce soft

information based on the multi-level de-quantization process in each demodulated symbol.

Because a soft-input stream retains the data reliability and informs the decoder about

channel behaviors, it provides a reliable estimator to detect or localize the corrupted video.

To apply a soft-stream into the video decoding system, a soft context-adaptive variable

length decoder (CAVLD) has been newly designed and is capable of detecting erroneous

positions. It notifies error concealment that whether the corrupted macroblock (MB) occurs

102

or not. Therefore, the corrupted data can be early concealed and the objective and subjective

visual quality can be improved. On the other hand, we propose a joint architecture that

meets the functionalities of error concealment as well as deblocking filter. We share the

interpolating operations in both modules. As a result, this error-concealed deblocking filter

can reduce the implementation cost with comparable PSNR performance of existing

solutions. As for frame recompression method, an embedded compressor/de-compressor is

exploited to compress the pixel data decoded by H.264/AVC and thereby cut the external

DRAM power dissipation. This design features a power-aware design that can change the

operating condition for different power requirements. Moreover, this compression method is

aware of channel behavior by error-concealed deblocking filter. In other words, the

compression method can change the operating procedures when the corrupted video is

detected and concealed. Therefore, it achieves reduction of not only DRAM space but also

computational complexity.

Figure 4.1: Soft-input H.264/AVC decoding block diagram.

103

4.3 Soft CAVLC Decoder

4.3.1 Soft Decoding Concept

In most applications of variable length codes (VLCs) such as MPEG-x and H.26x

families, decoding is carried out bit by bit, with the input to the entropy decoder assumed to

be a sequence of “hard” bits about which no soft information is available. However, in noisy

environments, soft information can be associated with each information bit, either by direct

use of channel observations in the case of un-coded transmission [63], or through

soft-output channel decoders [64] when channel coding is applied. It is intuitive that this

soft information, if it can be exploited, can be used to correct the corrupted symbols and

thereby improve the performance of VLC decoding. Therefore, many researchers developed

various algorithms [63][65]–[67] to explore the possibility of using soft information.

Specifically, these algorithms improved the estimation of transmitted VLC symbol sequence

based on reliability (soft) values, and significant gains can be achieved over hard decisions.

However, those designs suffer from the large computation as well as memory storage.

Furthermore, although several reduced-complexity algorithms [68]–[71] have been

proposed to date, they are still unpractical for VLSI implementation. To implement soft

decoding into a hardware prototype, we translate the capabilities of soft decoding from error

correction to detection. Although this translation degrades the decoding performance, the

computational complexity can be greatly reduced and the detected information can be

further passed to post-processing procedures for the purpose of error concealments.

4.3.2 Soft VLC Decoding with Error Detection

Many researchers pay lots of attention to conceal the corrupted video content, but these

methods seem to have its limitation. They often assume that video errors have been

correctly located; otherwise error concealment method cannot be properly applied.

104

Therefore, detecting or localizing the erroneous position is of great importance, and thereby

becomes our major task prior to the error concealment discussed in next sub-section. In this

work, we exploit the soft information of channel observations to detect the erroneous

position in a macroblock (MB) level. In particular, we modify a SISO algorithm to improve

the capabilities of error detection instead of correction. In general, the SISO decoding

technique [71][88] is considered as an exhaustive decoding procedure to resist the error

disturbance in a noisy channel. It estimates and searches on the tree-like path in the

existence of additive white Gaussian noise (AWGN). However, a main drawback of this

approach is that many states have to be kept for correcting errors. It needs a great deal of

memory storage and computational complexity. Hence, it is inappropriate for VLSI

implementation. To avoid the penalty of large computation, we concentrate on the error

detection since there is no need to keep many states for correcting errors in trace-back

procedures. We only keep present states to detect that whether this video data is correct or

not. In the following, we show the modified SISO algorithm to improve the error detection

capabilities.

Before we address a general algorithm of the modified SISO, we use a graph

representation to help the understanding of soft VLC decoding. We give a simple example

to illustrate the behavior of soft VLC algorithm. Firstly, assume we have a simple VLC

table with only 3 symbols {0,10,11} and a packet that includes 3 bits (and equivalently 2

symbols) with content as ‘0 10’. After BPSK modulation, the modulated sequence is

{-1,+1,-1}. When the packet is transmitted over the AWGN channel, the received soft

bit-stream may become {-0.8, -0.05, -0.2} (i.e. an error occurred in the second bit). Figure

4.2 depicts the graph representation of this example. The path metric PM(i,j) denotes the

cumulative square difference of ith symbol and jth bit in each decoded symbol. The branch

metric BM(i,j) is the square difference between the received soft-stream and decoded

codewords. Moreover, the present PM is the summation of previous PM and present BM.

105

Each number inside square represents the decoded bit pointer. In Figure 4.2, we have to

keep 9-state to trace-back and correctly decode bitstream. However, the number of states

will increase exponentially with the increment of decoded symbols. To alleviate this

problem, we focus on error detection instead of correcting the errors. That is, there is no

need to keep each state for trace-back procedures. Previous PM value will be discarded and

contributes to the present PM value. We only keep the minimal PM of survival paths as our

detected candidate. Afterward, these PM values will be recursively updated until the end of

one macroblock (MB).

φ

φ

Figure 4.2: Soft VLC algorithm using graph representation.

When errors occur, a key observation is that the minimal BM will increase, indicating

the large square difference between received soft streams and decoded codewords. Figure

106

4.3 depicts the behavior of minimal BM in the 1st and 2nd macroblocks of one frame. The

minimal BM of 1st MB is very small because the received stream is correct while the 2nd

MB is corrupted by the channel disturbance, yielding the large BM value. In addition, to

enlarge the erroneous magnitude for detecting errors, we exploit the summation of BM over

one MB as a measurement of error detection. A formal statement of the detection algorithm

follows:

Soft Detection Algorithm:

Storage:
 {i, j} ({symbol, bit} index)
 PM(i,j), BM(i,j) (path metric, branch metric)

Initialization:
 {i, j} = {0,0} , 0 < i < N, 0 < j < B;
 PM(i,j) = 0; BM(i,j) = 0;

Recursion: Compute
PM(i+1,j’) = PM(i,j) + BM(i,j); j = j’ + code length
Error Measurement = PM(N-1,B-1) / B;

Although the PM value indicates the error behavior, each MB has different numbers of

coded bits due to the variable length characteristics. Hence, the PM has to be translated and

normalized by the number of coded bits. In Figure 4.3, this MB contains B bit and the

derived PM is divided by B as Eq. (4.1) listed. The threshold THR can be determined

through the simulation or channel behavior [75]. Hence, the detecting information

ERR_FLAG can be used as an enable signal to activate the post-processing unit such as

error concealment for improving visual quality.

1,
_

0,

PMif THR
BERR FLAG
PMif THR
B

⎧ >⎪⎪= ⎨
⎪ <
⎪⎩

 (4.1)

107

Figure 4.3: Soft VLC decoding path w/t and w/o errors.

4.3.3 Decoding Architecture

Before we address the soft decoding architecture of CAVLC decoder, we explain the

CAVLC decoding flow in a system point view. Under the condition of entropy decoder in

H.264/AVC, the input bit-stream will not always feed through CAVLC decoder since

sufficient processing cycles are required. Therefore, the issue and hold signal is located to

reduce the internal buffer and improve the operation throughput. In particular, we exploit

single-bit hold signal to indicate the bit-stream alignment instead of multi-bit code-length to

achieve low cost implementation. In Figure 4.4(a), a data transfer is accomplished when the

receiver doesn’t hold data input and transmitter sends issue signal for the notification in

advanced. Hence, this handshake mechanism deals with the hold of receiver and issue of

transmitter. This scheme is described as follows:

 Normally, the transmitter sends an issue signal to the receiver first. A data transfer

is completed when the transmitter disables a hold signal.

108

 However, if the issue is disabled, the receiver must hold the request and wait the

required data.

Instead of input register and barrel shifter, we use issue-hold signal to reduce cost and

realize system integration more smoothly by the handshake structure. In Figure 4.4(b),

H.264/AVC contains fix length, universal and context-adaptive VLC decoder in Extended

profile. UVLC and CAVLC are the critical part in terms of system performance, especially

in high bit-rate or low power video applications. The issue signal of entropy decoder will

activate when 2×2, 4×4, 8×8 or 16×16 coefficient encounters. Further, the hold signal can

be realized with an OR operation launched by UVLC, CAVLC, CABAC…etc. The input of

OR operation can be connected with other modules in H.264/AVC or the entropy decoder of

different video standards. Each modules enable hold signal when the operation module

cannot process a great data for a specified cycles. In general, the video stream buffer is

realized in most of video devices to support buffering process. After that, the output signal

including syntax and residual data will validate when the valid signal ties to high.

Figure 4.4: The (a) handshake structure and (b) entropy decoder in H.264/AVC.

109

Figure 4.5 describes the proposed soft CAVLD block diagram with embedded error

detection capability. The gray portion indicates the modifications to support the error

detection capability. The soft CAVLD consists of four main functional units: codeword

partitioning unit, soft VLC decoder, error detection, and output buffer. First, a codeword

partition method will be discussed in next sub-section and soft VLC decoder implements the

decoding behavior discussed in the previous sub-section. We don’t apply soft decoding on

the level and Trailing1_sign since they can be decoded through 1’s detection and fixed

length decoder respectively. Second, error detection realizes Eq. (4.1) that extracts the PM

value from soft decoder to decide whether this MB is corrupted or not. Third, the output

buffer converts the data in a parallel fashion. In the following, we present two architectural

breakthrough involved in this soft CAVLC decoder. One is the codeword partition method

and the other is fully-parallel architecture for reducing the soft decoding complexity.

maxNumCoeff[4:0]
issue_cavlc

Buffering

R
un

B

uf
fe

r
Le

ve
l

B
uf

fe
r

C
oe

ffN
um

Lo
gi

c

*R. B.: Run Before
*T. Z.: Total Zeros
*L. : Level
*T. S.: Trailing1 Sign
*C. T.: Coeff_Token

Coeff

S/P
Logic

Soft CAVLC Decoder

Soft VLC Decoder
Coeff_valid

Bits hold

So
ft-

in
pu

t s
tr

ea
m

nC

*C. T. Soft
Decoder

*T. S.
Decoder

*L.
Decoder

*T. Z. Soft
Decoder

*R. B. Soft
Decoder

err_flagError
Detection

co
di

ng
ru

n
co

di
ng

da
ta

Codeword
Partitioning

Controller

Figure 4.5: Soft CAVLD block diagram.

110

4.3.3.1 Code-Word Partitioning

The codeword partitioning can be considered as a pre-processing module in front of

VLC decoder. Based on the characteristics of leading-0/1 in each VLC codeword, we

simply partition bit-stream into the coding RUN as well as DATA. In Figure 4.6(a), the

coding RUN extracts the number of zeros or ones that it detects, and assigns the remainder

of bit-stream as the coding DATA. We use coding DATA instead of total codeword to reduce

the VLC decoding complexity since only coding data is needed to be uniquely decodable.

We show a simple example in Figure 4.6(b) for the illustration of codeword

partitioning. We assumed that the input bit-stream is ‘00000101’ and the number of

leading-0 can be obtained easily (i.e. five). After that, we extract the remainder bit-stream

and dispatch it to the 12-bit shifter. Furthermore, we hierarchically target the decoded

symbol from the given nC and RUN. The 4-bit zero counter and 12-bit shifter have to be

reset when the decoded symbols are obtained. As a result, we search the codeword in a

small group (i.e. gray region of Figure 4.6(b)) instead of large entry such as 62 in a

Coeff_Token coding table [1]. Therefore, based on the proposed codeword partitioning, we

can easily decode bitstream by the partitioned coding RUN and DATA and thereby reduce

the complexity in the module of VLC decoder.

(a)

111

(b)

Figure 4.6: The (a) codeword partitioning and (b) partial Coeff_Token coding table [1].

4.3.3.2 Fully-Parallel Design

To meet the real-time transmission over an error-prone environment, we exploit a fully

parallel architecture to improve the decoding throughput. Figure 4.7(a) shows the soft VLC

decoding block diagram. Specifically, each BM unit simultaneously calculates the square

difference between received soft streams and decoded codewords. It is performed in a

parallel fashion without cycle penalties. After that, the compare unit (CMP) searches the

minimal BM as the detected candidate. The minimal BM is accumulated in each clock cycle

and thereby stored into PM registers. When the decoding index reaches the end of MB, the

PM value is sent into error detection block to judge whether this MB is correct. As for the

BM unit, Figure 4.7(b) describes the BM unit in case of a decoded codeword {000101}. The

BM unit calculates the square difference between received 16-level soft streams and

decoded code-words. Hence, it executes the subtraction, multiplication, addition, and

constant division to obtain the BM value.

Although the hardware complexity of soft CAVLD is considerably high, this is the first

112

trial to realize the soft decoding using hardware building blocks [89]. It is synthesized using

0.18μm Artisan cell library by Synopsys Design Compiler. Under the timing constraint of

20ns, the synthesized gate counts approximately reach 80k. In the future, this area penalty

can be greatly reduced by compromising the area and processing cycles or merging the

identical codewords to reduce the number of BM units.

(a)

(b)

Figure 4.7: (a) Soft VLC decoder block diagram and (b) associated BM architecture.

113

4.3.4 Performance Evaluation

In Figure 4.8, we verify the proposed soft CAVLD coupled with error detection

capability over the AWGN channel using BPSK modulation. First, the input sequence is

encoded by H.264/AVC Extended profile with a data partition. In the data partition mode,

we have assumed that the texture part, composed of a sequence of VLC code-words, is

corrupted by AWGN. The other parts are of error-free due to the protection of channel

coding. This assumption can be achieved by exploiting the unequal error protection (UEP)

and rate-compatible punctured convolutional codes (RCPC codes [90]). Furthermore, the

coded stream is transmitted via BPSK modulation. In the BPSK modulation, the modulated

symbol is either +1 or -1. After the channel corruption, the demodulated signal will become

0 or 1 in the hard decision scheme. But, if we exploit the quantizer to implement the soft

decision method, the demodulated symbol will range from 0 to 2q-1 [138]. The bit number q

is used to quantize the symbol and determined by channel and application. After the channel

deterioration, the corrupted stream is determined by the number of de-quantization levels

(hard: 2-level; soft: N-level). Hence, we use the soft output of quantizer as our input

bit-stream of soft CAVLD. The soft CAVLD can overlook the bit-errors from the quantizer

of physical layers since we assumed that an UDP-Lite protocol [91] is applied to our

simulation model. Specifically, we partition all of data transaction into the 5 layers of OSI

(Open System Interconnection) model in Figure 4.9. In the wireless network or mobile

transmission, we assume that UDP-Lite of transport layer and UEP of link layer are

provided. Further, we exploit the soft bit-stream after the N-level quantizer and overlook the

soft bit-error of physical layer into the application layer. Based on the above statements, we

are going to evaluate the proposed design on the H.264/UDP-Lite/UEP/AWGN in the next

paragraph.

114

Header, MV
Coeff.

Data Partition {A,B}

Data Partition {C}

*Overlooking bit-error in the application layer

Figure 4.8: The overall simulation environment of the soft detection over H.264/AVC.

Contents OSI Layers
Application – MPEG Application Layer

Transport – UDP or UDP-Lite Transport Layer
Network – IP Network Layer

UEP – RCPC Codes Link Layer
Soft Information Physical Layer

Figure 4.9: Overlooking bit errors in the application layer.

The simulation results exhibit that the errors can be early detected through the

proposed soft decoding algorithm. On the other hand, the errors can be detected by the

abnormal syntax parsing or unknown codewords. It has been named as hard detection [80]

in this dissertation. To clarify the performance between hard and soft detection, we consider

the first I-frame of foreman with QCIF resolution (i.e. 99 MBs) as a test benchmark. Figure

4.10 shows the path metric over bits (i.e. PM/B) in terms of MB index. According to Eq.

(4.1), large PM/B indicates that errors may occur in this MB, resulting in large PM/B values.

In Figure 4.10, there is a peak in MB #83. In other words, we declare that the following

115

MBs (including MB #83) are corrupted due to the error propagations. However, the detected

index is 94 (>83) through the hard detection. That is, the duration between MB #83 and #93

are neglected and cannot be concealed by post-processing units. Due to the improvement on

error detection, the associated decoded visual quality has been shown in Table 4.1. We

assumed that simple error concealment is applied and it will be activated when the detection

algorithm notices that errors occur. The Table 4.1 shows that more than 1dB of PSNR

improvement can be gained when the BER and THR equals 2.7×10-3 and 18, respectively.

To quantify the performance of error detection, we exploit a metric of the error

distance that indicates the distance between the exact error-position and detected one. Table

4.2 shows the error distance of three different video sequences under 10-3 and 10-4 of BERs.

The proposed soft detection has the small distance in average. That is, it can early detect the

corrupted MBs as compared to hard detection [80]. Hence, these MBs can be concealed

from neighboring pixels before displaying on monitors.

0
2
4
6
8

10
12
14
16
18
20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

MB index

Pa
th

 M
et

ric
/B

Figure 4.10: A histogram of PM/B in terms of macroblocks (MB).

116

Table 4.1: Subjective and objective visual comparison.

AWGN+BPSK (BER=2.7×10-3, THR=18)

 Hard detection [80] + EC Proposed + EC

Subjective

Quality

Objective

PSNR
23.93dB 25.34dB

Table 4.2: Performance measurement of detection capabilities.

Error Distance (unit: average no. of MBs)

QCIF, all I frames Hard detection [80] Proposed [89]

Foreman 7.1 3.5

Suzie 14.6 4.8 BER=10-3

Akiyo 13.7 3.3

Foreman 10.4 7.6

Suzie 12.8 7.5 BER=10-4

Akiyo 12.5 3.2

4.4 Error-Concealed Deblocking Filter

4.4.1 Design Background

As mentioned in Chapter 4.2, the problem of lost data in block-coded images due to

imperfect communication channels needs to be solved. Error concealment (EC) intends to
117

ameliorate the impact of channel impairments by utilizing neighboring information in order

to provide subjectively acceptable restoration of damaged picture regions. Specifically, the

EC scheme attempts to recover the corrupted macroblocks (MBs) by exploiting pixel data

from spatially [93]–[95] or temporally [96]–[98] adjacent blocks. The temporal schemes

conceal the corrupted MBs by exploiting the data in the adjacent frames while spatial

schemes hide the corrupted regions by the neighboring pixels in the current decoded frame.

In general, a successful spatial interpolation is necessary for hiding the effect of missing

blocks in still images and video frames. Temporal interpolation, or replenishment, by itself

is not always adequate for concealing errors in video sequences. This is especially true for

video sequences with irregular motion, abrupt scene changes, and intra-coded image frames.

To the viewer, a poor spatial concealment of erroneous regions leads to the error

propagation in the subsequent frames. Hence, compared to temporal EC, spatial EC is of

great importance and challenges. Thereafter, we focus on the spatial EC for concealing

corrupted region of image frames.

Using a deblocking filter for improving visual quality [92] is more or less helpful in

the block-based video transmission over an error-prone environment. The reason is that the

functionalities of deblocking filters are similar to that of spatial error concealment since

both modules smooth the block boundaries by a pre-defined interpolating procedure. In

particular, the error concealment will be disabled when the bit-streams are of error-free. On

the contrary, the deblocking filter can be turned off when the error has been detected from

soft CAVLC decoder. Therein, deblocking filter can be replaced with error concealment

module for improving visual quality. In other words, both deblocking filter and error

concealment will not activate simultaneously. Hence, the goal of our proposal is to realize

an area-efficient design to combine both deblocking filter and error concealment. In the

following, we develop a new error concealment method which can be easily integrated into

deblocking filter of H.264/AVC.

118

4.4.2 Error-Concealed Deblocking Filter (ECDF)

To improve the hardware utilization between deblocking filter and error concealment,

we develop an error-concealed deblocking filter (ECDF) in our error-robust video decoder.

The detailed block diagram is depicted in Figure 4.11 which consists of three main

components as depicted in shaded regions. The detected information, the output of soft

CAVLD, plays a key role to switch the functionality and decides that ECDF is operated on

either error concealment or deblocking filter mode. Moreover, edge detection, replacement,

and smoothing procedures can be considered as add-on modules for changing the operating

process when encountering erroneous pixels. Edge detection fetches the neighboring and

decoded pixels from slice memory and pixel buffers respectively to predict the edge

characteristics. Replacement receives the edge information and determines the replaced

pixel. A concealed strength module determines the filtering strength and replaces the bS

defined in H.264/AVC [1]. In the following, we will address each module in details.

Figure 4.11: The block diagram of the proposed ECDF.

119

4.4.2.1 Edge Detection

In general, a directional interpolation (DI) [95] is an important process to spatial error

concealments. One important step for use of directional interpolation is to correctly find the

edge trend that goes through the distorted area. To this end, Sobel [107] edge detector has

been chosen due to its circularity property, which gives more accurate angle estimates over

the standard gradient operator. More accurate but computationally cumbersome operators,

such as the canny edge detector [108], cannot be used because of real-time and VLSI

implementation constraints. Here, Sobel mask is shown in Eqs. (4.4)-(4.6) and used to

determine the magnitude of gradient |G| and edge slope of existing edge in the neighboring

4×4 sub-blocks. Sx and Sy indicate the Sobel operator in horizontal and vertical directions

while F represents a 3×3 pixel mask in one frame. After that, we use the information of

gradient to predict the edge trends of corrupted 4×4 sub-blocks.

1, 1 , 1 1, 1

1, , 1,

1, 1 , 1 1, 1

1 0 1 1 2 1
2 0 2 , 0 0 0 ,
1 0 1 1 2 1

i j i j i j

x y i j i j

i j i j i j

p p p
S S F p p

p p p

− − − + −

−

− + + + +

i jp +

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= − = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (4.4)

,T
x x y yG S F G S F= =i T i (4.5)

[] 22 , y
x y

x

G
G G G slope

G
⎡ ⎤= + =⎣ ⎦ (4.6)

4.4.2.2 Replacement

Based on the aforementioned edge information, we rank it as four different kinds of

edge degrees: 0o, 45o, 90o, and 135o. These degrees determine the corrupted pixels which

are replaced by neighboring ones. Figure 4.12 depicts the replacement of corrupted pixels in

the gray regions. Because the corrupted pixels have been detected by soft CAVLD, we first

replace it with neighboring pixels based on the received edge information. Then, the

120

replaced pixels feed into the edge filter to smooth the block boundary and improve the

visual quality.

 (a) (b)

F G H I

A
B
C
D
E J K L M

B
C
D
E

C
D
E
F

D
E
F
G

E
F
G
H

F G H I

A
B
C
D
E J K L M

J
I
H
G

K
J
I
H

L
K
J
I

M
L
K
J

 (c) (d)

Figure 4.12: Four kinds of replacing modes: (a) 90o, (b) 0o, (c) 45o, (d) 135o.

4.4.2.3 Concealed Strength

When encountering erroneous pixels, the boundary strength is fixed at strong mode

prior to the 1-D edge filter. We name the boundary strength of erroneous data as concealed

strength. As we know, boundary strength (i.e. bS) defines the filtering strength and impacts

the number of filtering taps. There are two filtering modes defined in H.264/AVC: strong

and weak modes. In particular, an edge filter in strong and weak mode relates to six and

four pixels of each 4x4 sub-block boundary, respectively. In other words, edge filter in

strong mode obtain better smoothing results due to large number of filtering taps. Therefore,

we let the boundary strength (bS) as a strong mode when the soft CAVLC decoder found

that the decoded pixels is corrupted.

121

4.4.3 Performance Evaluations

We verify the proposed ECDF over the JM9.8 simulated platform with flexible

macroblock ordering (FMO) modes. FMO modifies the way how pictures are partitioned

into slices and macroblocks by utilizing the concept of slice groups. Each slice group is a

set of macroblocks defined by a macroblock to slice group map, which is specified by the

content of the picture parameter set and some information from slice headers. Figure 4.13

depicts the corrupted frame using FMO with a checker-board type of mapping. By FMO, a

post-processing unit, error concealment, can easily improve the visual quality through the

neighboring pixels.

Figure 4.13: A corrupted frame when using FMO with checker-board type.

In Figure 4.14, we consider a “foreman” test sequence with CIF resolution and QP=28

in order to perceive the contrast between traditional bilinear interpolation (BI) and the

proposed ECDF. Simulation results show that the proposed ECDF additionally gains 1.34dB

against the BI method. Moreover, the ECDF shares the pixel buffers and edge filter in

Figure 4.11. Under a 100MHz of working frequency in 0.18μm CMOS process, the

synthesized gate counts are reduced to 22.74K which is about 70% of original design

without exploiting any resource sharing. Overall, the ECDF is not only compatible to

prevalent deblocking filter defined by H.264/AVC but also achieves low cost

122

implementation with comparable PSNR performance.

(a) (b)

Figure 4.14: Subjective quality comparison between the (a) proposed algorithm and (b) BI.

4.5 Embedded Compressor/De-compressor

4.5.1 Literature Reviews

Recently, with continuing increases in high-quality video playback requirements, the

increased memory capacity becomes a primary penalty in the design of mobile multimedia

system. The memory stores image frame and is usually implemented by DRAM. However,

the introduced memory power consumption is so high that many researchers [81]–[87] pay

much attention on the compressor and de-compressor for reducing memory capacity as well

as power dissipation. In terms of characteristics, these compressors can be divided into two

classes: on-the-fly [81]–[83] and embedded [84]–[87] compression. The on-the-fly

compression can be considered as a post processing unit and the embedded compression is

involved in a typical video coding/decoding flow. In this sub-section, we aim at an

embedded compression design that is heavily involved in the H.264/AVC video decoding

system. Although an existing design [86] has realized an embedded compression for

H.264/AVC, it introduces two problems in practical implementation. First, it exploits a

123

complex CAVLC and intra compensation to share the resource, leading to high complexity

and the problem of the hardware scheduling. Second, a highly compressed bitstream stored

in frame buffers suffers an addressing problem when the modules require the reference

macroblock in frame buffers under a given decoding index and motion vector. Moreover

this highly-compressed data will adversely impact the quality when channel deteriorates. On

the other hand, in terms of compressed algorithm, the aforementioned techniques can be

partitioned into two groups again: lossy and lossless compression. The performance of

lossless compression is limited while lossy compression achieves higher compression ratio

but leads to quality degradation due to the error propagation (i.e. drift effect [84]). However,

Bourge et al. [100] present a re-compression method with graceful quality degradation by

measuring a metric of JND (Just Noticeable Difference [101]). The ideal JND provides each

signal being represented with a threshold level of error visibility, below which

reconstruction errors are rendered imperceptible. Although a graceful degradation is tolerant

for the end-users by JND, it is still hard to convince all viewers of this quality acceptability.

Hence, to optimize the performance between lossy and lossless methods, a recent research

[87] proposed a multi-mode compression method by adopting a set-partitioning in

hierarchical trees (SPIHT [102]) algorithm to support both lossy and lossless compression.

Because a SPIHT algorithm features to simply reach lossy/lossless compression, fixed

compression ratio, rate and quality control, it has been adopted for a purpose of frame

re-compression. However, the challenge of this algorithm is the numerous memory cost and

computational power. Although [87] presented an efficient architecture, it cannot reach

high-definition real-time compression/decompression due to the extensive processing

cycles.

Until now, we first review the existing methods due to a great diversity of existing

algorithms. In the following, we focus on the embedded compression to support both lossy

and lossless features in order to highlight our contributions. The goal of this design is to

124

implement low-complexity VLSI architecture for reducing DRAM capacity. Moreover, it

provides a power-aware [99] feature which scales DRAM power consumption in response

to changing operating conditions. As a result, it adaptively modifies the compression

behavior to balance the performance between compression ratio and battery lifetimes. To

meet the design goal of this chapter, this design further considers the channel behavior when

compressing frame pixels. That is, it is robust to channel disturbance by the received pixels

and detected information via the aforementioned ECDF and soft CAVLC decoder

respectively.

4.5.2 Power-Aware and Error-Robust Features

Figure 4.15 depicts the block diagram of the proposed compressor/de-compressor

embedded in H.264/AVC video decoding system. Two 4MB synchronous DRAM (SDRAM)

modules are exploited for writing decoded data and reading reference data reciprocally at

the same time. To cut the frequency of data transaction between internal modules and

external SDRAM, a compressor receives filtered pixels and thereby encodes them into a

reduced form. A de-compressor fetches the compressed data from SDRAM and performs

decoding procedures to reconstruct the pixels for motion compensation. Moreover, to

enhance the power-awareness on SDRAM modules, the host processor notifies the

compressor/de-compressor to change the power modes when the battery monitor unit

detects the voltage drop of battery. Specifically, we adopt a truncation and insertion scheme

to the least significant bit of frame pixels for changing the compression ratio according to

the battery lifetime. On the other hand, the proposed compression receives the erroneous

information from the soft CAVLD or ECDF for reducing the compressed complexity. In

particular, this information notifies the compressor of the error occurrence. After that,

erroneous skipping method skips erroneous portion of a frame to reduce the computational

125

complexity while erroneous padding method inserts the neighboring pixel to reconstruct the

concealed data. In sum, the proposal not only reduces the external memory space

requirement but also adapts the memory power consumption to battery status and eliminates

the computation in the presence of errors within one frame.

Figure 4.15: System block diagram of compressor/de-compressor.

4.5.2.1 Power Awareness by Least Significant Bit (LSB)

Truncation/Insertion

We adopt a simple LSB substitution [103] to not only support lossy/lossless features

but also achieve power awareness in the frame re-compression design. In general, the frame

re-compression techniques can be divided into lossy and lossless methods. A lossy

126

compression greatly improves the performance but sacrifices the visual quality while a

lossless compression retains the image quality but the performance improvement may be

very mild. Hence, the contradiction exists between the compression ratio (bits/pixel) and

visual quality. To make a better compromise, we choose an LSB truncation scheme to

support both lossless and lossy compression. Specifically, the number of truncated LSB (i.e.

variable k in Table 4.3) adversely impacts the image quality. Lossless compression can be

considered as a special case when k is fixed at zero. In Table 4.3, Chan et al. [103]

summarized the performance degradation in the worst case. Note that these WPSNR are

different from traditional PSNR metric which is measured by comparing the truncated

frames with original raw frames. Here, WPSNR considered the worst case based on the

equation in the 1st row of Table 4.3. Therefore, the quality degradation is not less than that

in the worst case.

Table 4.3: WPSNR for LSB truncation [103].

() ()
2

10
25510 log
2 1worst k

PSNR dB= ×
−

k 1 2 3 4 5

WPSNR (dB)14 48.13 38.59 31.23 24.61 18.3

bits/pixel 7-bpp 6-bpp 5-bpp 4-bpp 3-bpp

In addition to the lossy/lossless features, the LSB truncation scheme also adapts

compression ratio (bits/pixel or bpp) in Table 4.3, resulting in scalable data bandwidth as

well as DRAM power consumption when power requirements change. It is advantageous to

implement compressor/de-compressor with DRAM power scalability through the variable

14 WPSNR: PSNR in the worst case

127

number of truncated bit plane (i.e. variable k). Hence, considering an H.264/AVC decoded

video, our design provides memory power-awareness and scales memory power through

variable k for graceful quality degradation. On the other hand, because the truncated errors

propagate into subsequent frames through motion compensation, we exploit a post-upgrade

equation to alleviate the quality degradation, where Eqs. (4.2) and (4.3) represent truncation

and insertion procedures in compressor and de-compressor respectively. In Eq. (4.2), the

pixel A is defined as filtered raw pixels while pixel a2 represents the truncated pixel written

into SDRAM. Considering the k-bit LSB truncation case, if the truncated errors (i.e. A % 2k)

are larger than one half of 2k, the pixel A rounds the kth bit in order to decrease the

truncation errors. In the de-compression side of Eq. (4.3), we insert k zeros into the LSB of

a2. The detailed results of truncation errors will be reported in Chapter 4.5.5.

()()−⎧ = ≥ +⎪
⎨

=⎪⎩ �

1
1

2 1

%2 2 ? 2 : ;

;

k k ka A A

a a k

A
 (4.2)

= �2 ;a a k (4.3)

4.5.2.2 Error Robustness by Erroneous Skipping/Padding

We employ an erroneous skipping/padding technique to cope with the corrupted frame

in the compression/de-compression module. Figure 4.16 demonstrates the behavior of the

erroneous skipping/padding methods. Considering a corrupted frame in Figure 4.16(a),

errors occur in MB index k and propagate into the following MBs of this frame. We

assumed that the erroneous position has been correctly detected by soft CAVLC decoder in

MB levels. Therefore, there is no need to re-compress the corrupted pixels in the

compression side. The compressor skips corrupted data for reducing the complexity in the

presence of errors as Figure 4.16(b) illustrates. Moreover, to correctly re-construct the pixel

128

data in the de-compression side, we additionally write the skip information into buffers. On

the other hand, the compressed data are read from external SDRAM and thereby dispatched

into de-compressor or pixel padding according to the skip information. Figure 4.16(c)

depicts the de-compression behavior. The pixel padding module references the concealed

algorithm in ECDF and reconstructs the skipped pixel from SDRAM. Both compressor and

de-compressor are performed in MB levels for further system integration.

(a)

 (b) (c)

Figure 4.16: (a) a corrupted frame and error-robust (b) compressor and (c) de-compressor.

129

4.5.3 New Compressor/De-compressor for H.264/AVC

The objective of this design is to compress the pixel data for reducing external memory

space based on the visual, intra-pixel, and coding redundancy. First, in the visual

redundancy, we adopt the LSB truncation in each bit-plane of pixels. Because there are

different contributions to total image appearance, only higher order bits contain visually

significant data and the other bit planes contribute the more subtle details. This idea is

presented for power-awareness in Chapter 4.5.2.1 and widely used for image watermarking

and data hiding [103] applications. Therefore, it not only features power awareness but also

reduces the visual redundancy. Second, the intra-pixel redundancy exploits the spatial

locality and is implemented by differential pulse coded modulation (DPCM). Third, a

truncated Huffman table is applied to remove the coding redundancy. Overall, the detailed

block diagrams of the proposed compressor/de-compressor have been re-drawn in Figure

4.17 and the associated illustrations have been made in the following sub-sections.

(a)

130

(b)

Figure 4.17: Proposed (a) compressor and (b) de-compressor.

4.5.3.1 DPCM and Scanning Pattern Control

A simple and well-known method for redundancy reduction was to predict the pixel

values based on the values previously coded, and code the prediction error. This method is

called differential pulse code modulation (DPCM). In general, best predictors are those

from the neighboring pixels. It is of upmost importance with respect to how to determine

the predictors. In this design, we propose a scanning pattern control technique to create a

better predictor based on intra prediction modes. In H.264/AVC, there are 9 and 4 intra 4×4

and 16×16 prediction modes respectively. In Table 4.4, we translate all prediction modes

into two classes: horizontal and vertical scanning pattern for simplicity. The predictor of

horizontal scanning pattern comes from the left neighboring pixels while the vertical

scanning pattern predicts the current pixel based on upper neighboring pixels. The detailed

block diagram of prediction method is depicted in Figure 4.18. To guarantee the equivalence

between compressor and de-compressor, we need an additional buffer with 3.1Kb to keep

the scanning control of one frame. Therefore, the scanning control not only comes from the

131

Table 4.4 for data compression but also writes into SRAM storage for subsequent frame

de-compressions.

Table 4.4: Horizontal and vertical scanning patterns.

Prediction types Prediction modes Scanning Ctrl

Intra 4×4
Horizontal, Horizontal-down,

Horizontal-up

Intra 16×16 Horizontal

Horizontal

Intra 4×4

Vertical, DC, diagonal down-left,

diagonal down-right, vertical-right,

vertical-left

Intra 16×16 Vertical, DC, plane

Vertical

Figure 4.18: The horizontal and vertical scanning control.
132

4.5.3.2 Truncated Huffman Tables

Although an arithmetic coding is the best-known lossless coding method, it requires

expensive iterative coding and decoding procedures and consumes large computing power.

On the other hand, because the Huffman code may result in a long codeword and

computationally-intensive coding and decoding, we adopt truncated Huffman code to

translate the differential pixel into a specified codeword for a low-complexity design

approach. The truncated Huffman table is listed in Table 4.5. Specifically, the raw pixel

ranges from 0 to 255 while the ranges of differential pixels are -255~255. To suppress the

data range and reduce the number of codewords, we apply LSB truncation variable k as 2

without great loss of generality. Hence, the range of differential values becomes -63~63. As

for different k, this coded table can also be generated by training numerous video sequences.

Table 4.5: Truncated Huffman tables.

Differential values Code-word Code-length

0 0 1

-1,+1 11x0 3

-3,-2,+2,+3 101x0x1 5

-11,…,-4,+4,…,+11 1001x0x1x2x3 8

-63,…,-12,+12,…,+63 1000x0x1x2x3x4x5x6 11

After receiving the codewords from the truncated Huffman table, we apply a data

packing to send the packed results into a data word-line on SDRAM. Figure 4.19(a) depicts

the SDRAM organization and each word-length is of size 25-bit where first 1-bit is a TAG

signal and the following 24-bit means pixel payloads. We assume LSB truncation k equals 2

133

and each un-compressed pixel is of size 6-bit. The 1-bit TAG indicates whether the

following payloads have been compressed or not. Figure 4.19(b) shows three kinds of data

formats in one 4×4 sub-block. One is four 4-pixels without compression (i.e. 8-bpp) and

another is two 8-pixels with compression (i.e. 3-bpp). The other is two 4-pixels and one

8-pixel with partial compression (i.e. 4.5-bpp). In Figure 4.19(b), TAGi means the TAG

signal in the ith entry of SDRAM. We first collect four successive TAGs, and thereby pack

and send these streams into SDRAM. In the de-compressor side, the four successive TAG

signals received can be used to unpack the compressed data into the raw pixel data.

 (a) (b)

Figure 4.19: (a) SDRAM organization and (b) data packing in 4x4 pixels.

4.5.4 Virtual-to-Physical Address Mapping Technique

Because the motion compensation module requires the reference pixel values in

SDRAM based on a given decoding index and motion vector, a highly compressed pixel is

difficult for data addressing from SDRAM [100]. To facilitate the SDRAM data addressing,

we propose a virtual-to-physical address mapping technique in Figure 4.20. The address

134

calculation computes the base address under a given virtual address. However, because we

store the pixel data into SDRAM in a compressed way, the calculated address will not be

equal to the real one. Therefore, we need a translation buffer to look-up the offset address

for indicating each physical address on a macro-block level.

Figure 4.20: A virtual to physical address mapping.

4.5.5 Performance Evaluation

Although the truncated LSB k greatly impacts the visual quality, we can use

post-upgrade equation to improve the visual quality. Figure 4.21 shows the performance

degradation with and without exploiting post-upgrade method. In the simulated conditions

on H.264/AVC main profile, QCIF, mother & daughter sequence, and 15 INTRA PERIOD,

the post-upgrade method averagely achieves 4dB of PSNR improvement compared to the

preliminary design without exploiting the post-upgrade method. Moreover, a detailed

comparison with other leading edge approaches, such as Golomb-Rice [84], ADPCM [104],

and DCT-cut [105] based compression, can be made for the further research.

We exploit a metric (bits per pixels, a.k.a. bpp) to analyze the compressed performance.

Note that we provide several design alternatives via the variable k. In addition to the lossless

performance (i.e. k=0), we choose k (i.e. number of truncated bits) as 2 without great loss of

135

generality and use JM8.2 as our simulated platform. Finally, the detailed results are listed in

Table 4.6. The proposed compressor/de-compressor simply exploits the DPCM and

table-look-up method. It achieves 3.87-bpp at most when decoding the “Suzie” sequences

with QCIF resolution, 100 frames, 15fps, 15 INTRA PERIOD and 2-bit LSB truncation.

From the subjective point of view, we capture the 55th frame to give a comparison in Table

4.7.

24
26
28
30
32
34
36
38
40

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

frame #

PS
N

R k=0
k=2w/t post-upgrade
k=2w/o post-upgrade

Figure 4.21: Objective visual quality for post-upgrade equation.

Table 4.6: Compression performance for various sequences.

H.264/AVC Main Profile, QCIF, QP=28, 15fps, Intra period = 15

Sequence Foreman Mother & Daughter Suzie Akiyo

PSNR 35.98 36.76 37.42 37.78
k = 0

bpp 6.51 6.25 5.87 5.96

PSNR 34.14 35.44 35.52 36.73
k = 2

bpp 4.51 4.25 3.87 3.96

136

Table 4.7: The subjective quality comparison.

Suzie

sequence
w/o compression

compressed

with k = 0

compressed

with k = 2

55th frame

bpp 8-bpp 5.87-bpp 3.87-bpp

PSNR 37.42dB 37.42dB 35.52dB

Table 4.8: Hardware Summary.

Item Specification

Function Compressor De-compressor

Process 0.18μm

Working Frequency 100MHz

Internal Memory Size 3.1Kb

Gate Counts 7.4K 6.7K

Processing Cycles/4×4 4-6 cycles ~ 8 cycles

k = 0 16.14mW @ 5.87bpp, 37.42dB SDRAM

Power k = 2 10.64mW @ 3.87bpp, 35.52dB

Table 4.8 shows the hardware summary of the proposed compressor/de-compressor.

After synthesizing based on UMC 0.18μm CMOS technology, the total gate counts are

14.1K excluding the memory. Additionally, the processing cycles are less than 8 on both

compressor and de-compressor. Therefore, it achieves both low complexity as well as

latency requirements. In addition to the data reduction through compressor/de-compressor,
137

the proposed LSB truncation scheme can be considered as a power-aware unit that can

change the compression behavior to meet the battery lifetime requirements. In general,

compressed data will reduce the memory capacity, bandwidth and hence power

consumption. In Eq. (4.4), the SDRAM bus bandwidth can be deduced through the bits
pixel

(i.e. bpp). Moreover, different bandwidth requirements also impact the memory power

consumption. Therefore, the reduction of compressed data can lower the associated DRAM

power requirements. We choose CAS latency = 2, BL = 1, tCK = 7ns as our SDRAM model

configuration [47]. Specifically, we adopt the system-power calculator [52] as an off-chip

power model and use “Suzie” (QCIF) as our test sequence and encode it at 150kbps and

15fps for mobile applications. Table 4.8 exhibits that the power consumption on SDRAM

ranges from 10.64mW to 16.14mW. The corresponding compression ratio and visual quality

are shown as well. That is, this design can modify its compression behavior based on the

current power availability for providing power-awareness features.

bitsbandwidth frame width frame height frame rate
pixel

= × × × (4.4)

Compared to the SPIHT-based compression method [87], the proposal achieves low

complexity as well as processing cycles with comparable compressed performance. Table

4.9 exhibits the detailed comparison in terms of compression ratio as well as complexity.

Although [87] achieves higher compression ratio and lesser PSNR drop, it’s computational

complexity in terms of cost and processing time is considerable. We propose a

DPCM-based compression method to reduce the DRAM capacity without extensively

adding cost overhead in a system point of view. The proposal simply use DPCM and

Huffman table to reduce the processing cycles in the compression and de-compression sides.

Moreover, it adapts the DRAM power by changing the number of truncated LSB. Hence,

138

we present low-complexity VLSI architecture to compress the pixel data for cutting the

memory capacity and bandwidth requirements. Although the compression ratio in

DPCM-based approach is less than [87], a further research can be studied for making a

compromise between compressed ratio and computational complexity.

Table 4.9: Performance comparison.

Item Proposed Cheng et al. [87]

Compressed Algorithm DPCM-based SPIHT-based

Lossless/Lossy Supported Supported

Compression Ratio
3.87~6.51bpp

(Variable)

2bpp and 4bpp

(Fixed)

PSNR Drop (cf. Foreman)
1.84dB/4.51bpp

(H.264 QP=28)

0dB/4bpp and 1.1dB/2bpp

(MPEG-4, QP=15)

Process 0.18μm 0.18μm

Internal Memory Size 3.1Kb 10.24Kb

Gate Counts 14.1K 26.93K

Working Frequency 100MHz 30MHz

Encode 0.8μs Processing

Time per MB Decode 1.28μs
18μs

4.6 Summary
Many transmission channels cause severe challenges for streaming or broadcasting

video due to bit errors or packet loss. To combating transmission errors, this chapter

thoroughly addresses three techniques for improving visual quality and power awareness.

139

First of all, we point out the importance of error detection. Specifically, inaccurate

detections lead to poor performance in error concealment module. We propose a novel

CAVLC decoder with soft computing method. In particular, we introduce the soft-decision

information to localize the erroneous position at macroblock (MB) levels. This method

compares and selects the minimal square difference between the received soft streams and

decoded codewords. The corrupted MBs can be early detected and thereby concealed from

neighboring pixels. After presenting the soft CAVLC decoder with error detection

capabilities, we further introduce a simple error concealment which is tightly combined into

the deblocking filter module. The key idea is that both error concealment and deblocking

filter will not be activated at the same time. Hence, we develop an error-concealed

deblocking filter (ECDF) to improve both hardware utilization and visual quality. On the

other hand, we develop a frame re-compression method to cut the bus bandwidth and

DRAM capacity. Specifically, we simply use DPCM and table-look-up method to improve

the compression ratio. We exploit H.264/AVC’s intra prediction modes to find a better

predictor. Additionally, this compression technique not only considers the power awareness

but also error robustness features for a robust transmission of video data. To summarize, the

aforementioned techniques not only improve the error-robustness of this video decoder but

also feature simple architectures for further VLSI integration.

140

