
 

 

Chapter 4  
Error-Robust Design Approach 
 
4.1 Background 

Of all modalities desirable for future mobile multimedia systems, high-quality motion 

video over a reliable transmission is the most demanding. However, the transmitted visual 

quality may suffer abruptly because the channel deteriorates due to fading, co-channel 

interference, and signal attenuations [79]. On the other hand, the compressed video is 

extremely vulnerable against transmission errors, since video coding schemes rely on 

variable length codes (VLCs) for improving coding efficiency. With VLCs, the 

channel-induced errors can have a detrimental effect on the received bit stream. This is 

because a single bit that is received in error can influence the remaining bits in the stream 

due to unchecked error propagation. This causes the VLC decoder to discard many properly 

received data bits before synchronization is re-established. To deal with the transmission 

errors over an error-prone channel, much effort has been invested to improve the 

error-robustness in the source decoding procedures, such as error-resilient [72][73] tools, 

error-detection [74]–[76] and error-concealment [76][77] algorithms. Although channel 

coding can be used for error detection and correction to reduce the impact of 

channel-induced errors, this is accomplished by adding redundant information to the data 

stream for transmission and therefore introduces overhead to the transmitted bitstream. In 

this chapter, we consider the error-robustness in the source decoding side instead of channel 

coding and focus on the error detection and concealment method for improving the 

error-robustness under the mobile environment. 
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4.2 Design Challenges 
Variable length codes (VLCs), also called Huffman codes [78] are commonly used to 

approach the entropy rate of a given data source. They are extensively used in recent image 

and video coding standards including JPEG, MPEG-1/2/4 and the new design of 

H.264/AVC. However, most of the VLC designs are highly sensitive to error disturbances 

and suffers from error propagation in the remaining VLC symbols. Hence, a robust 

transmission of VLC-based bitstream over mobile communication channels presents several 

challenging problems that remain to be resolved. One of the most important problems is that 

the success of error concealment techniques relies on the correct detection of erroneous 

macroblocks (MBs). However, conventional syntax-based error detection methods [76][80] 

may detect erroneous MBs late or even result in a failure of detection for a corrupted 

bit-stream. This is because invalid codes may not occur when the input stream is corrupted, 

and this stream may be decodable even in the presence of errors. Hence, one cannot find the 

exact location of errors or correctly detect errors within the bit-stream. On the other hand, 

error concealment is challenging as well due to both high-quality and low-complexity 

requirements. Specifically, it operates on MB boundaries and performs smoothing 

procedures to conceal the corrupted videos. In general, one may introduce two hardware 

building blocks such as deblocking filter and error concealment modules in a video 

decoding system. But, both modules include interpolating procedures to improve the visual 

quality, and they will not execute at the same time. Hence, how to integrate both 

functionalities into a single architecture without degrading visual quality is also a 

challenging task when developing our error-robust video decoder. 

Beyond the aforementioned challenges, mobile video transmission also leads to error 

propagation on the frame level due to a motion-compensated coding method. They use the 

previous encoded and reconstructed frame to predict the next frame. Therefore, the loss of 
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information in one frame has considerable impact on the quality of the subsequent frames 

and this impact will be enlarged with prevalent frame-recompression methods [81]–[87]. In 

general, a frame-recompression method is desirable for reducing the memory cost in frame 

buffers. However, existing video-compression algorithms are not suitable for this kind of 

frame recompression because their main objective is high coding efficiency rather than 

error-robustness. On the other hand, existing solutions improve the compression efficiency 

but sacrifice simplicity and low-latency advantages, and vice versa. Hence, it is of great 

challenges to consider how to make a better compromise in different performance indexes. 

 

4.2.1 System Highlights 

In this work, we highlight three key points of our proposals in this error-roust video 

decoder. One is the soft computing on the context-adaptive VLC decoder (CAVLD) for 

improving the error detection capabilities. Another is the integration between error 

concealment and deblocking filter in order to meet both low cost and high performance 

requirements. The other is a new frame-recompression method to improve both power 

awareness and error robustness. 

Figure 4.1 summarizes the soft-input video decoding system based on our previous 

work discussed in Chapters 2 and 3 of this dissertation. To deal with corrupted video 

streams and improve the subject and objective visual quality, we first introduce soft 

information based on the multi-level de-quantization process in each demodulated symbol. 

Because a soft-input stream retains the data reliability and informs the decoder about 

channel behaviors, it provides a reliable estimator to detect or localize the corrupted video. 

To apply a soft-stream into the video decoding system, a soft context-adaptive variable 

length decoder (CAVLD) has been newly designed and is capable of detecting erroneous 

positions. It notifies error concealment that whether the corrupted macroblock (MB) occurs 
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or not. Therefore, the corrupted data can be early concealed and the objective and subjective 

visual quality can be improved. On the other hand, we propose a joint architecture that 

meets the functionalities of error concealment as well as deblocking filter. We share the 

interpolating operations in both modules. As a result, this error-concealed deblocking filter 

can reduce the implementation cost with comparable PSNR performance of existing 

solutions. As for frame recompression method, an embedded compressor/de-compressor is 

exploited to compress the pixel data decoded by H.264/AVC and thereby cut the external 

DRAM power dissipation. This design features a power-aware design that can change the 

operating condition for different power requirements. Moreover, this compression method is 

aware of channel behavior by error-concealed deblocking filter. In other words, the 

compression method can change the operating procedures when the corrupted video is 

detected and concealed. Therefore, it achieves reduction of not only DRAM space but also 

computational complexity. 

 

 

Figure 4.1: Soft-input H.264/AVC decoding block diagram. 
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4.3 Soft CAVLC Decoder 

4.3.1 Soft Decoding Concept 

In most applications of variable length codes (VLCs) such as MPEG-x and H.26x 

families, decoding is carried out bit by bit, with the input to the entropy decoder assumed to 

be a sequence of “hard” bits about which no soft information is available. However, in noisy 

environments, soft information can be associated with each information bit, either by direct 

use of channel observations in the case of un-coded transmission [63], or through 

soft-output channel decoders [64] when channel coding is applied. It is intuitive that this 

soft information, if it can be exploited, can be used to correct the corrupted symbols and 

thereby improve the performance of VLC decoding. Therefore, many researchers developed 

various algorithms [63][65]–[67] to explore the possibility of using soft information. 

Specifically, these algorithms improved the estimation of transmitted VLC symbol sequence 

based on reliability (soft) values, and significant gains can be achieved over hard decisions. 

However, those designs suffer from the large computation as well as memory storage. 

Furthermore, although several reduced-complexity algorithms [68]–[71] have been 

proposed to date, they are still unpractical for VLSI implementation. To implement soft 

decoding into a hardware prototype, we translate the capabilities of soft decoding from error 

correction to detection. Although this translation degrades the decoding performance, the 

computational complexity can be greatly reduced and the detected information can be 

further passed to post-processing procedures for the purpose of error concealments. 

 

4.3.2 Soft VLC Decoding with Error Detection 

Many researchers pay lots of attention to conceal the corrupted video content, but these 

methods seem to have its limitation. They often assume that video errors have been 

correctly located; otherwise error concealment method cannot be properly applied. 
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Therefore, detecting or localizing the erroneous position is of great importance, and thereby 

becomes our major task prior to the error concealment discussed in next sub-section. In this 

work, we exploit the soft information of channel observations to detect the erroneous 

position in a macroblock (MB) level. In particular, we modify a SISO algorithm to improve 

the capabilities of error detection instead of correction. In general, the SISO decoding 

technique [71][88] is considered as an exhaustive decoding procedure to resist the error 

disturbance in a noisy channel. It estimates and searches on the tree-like path in the 

existence of additive white Gaussian noise (AWGN). However, a main drawback of this 

approach is that many states have to be kept for correcting errors. It needs a great deal of 

memory storage and computational complexity. Hence, it is inappropriate for VLSI 

implementation. To avoid the penalty of large computation, we concentrate on the error 

detection since there is no need to keep many states for correcting errors in trace-back 

procedures. We only keep present states to detect that whether this video data is correct or 

not. In the following, we show the modified SISO algorithm to improve the error detection 

capabilities. 

Before we address a general algorithm of the modified SISO, we use a graph 

representation to help the understanding of soft VLC decoding. We give a simple example 

to illustrate the behavior of soft VLC algorithm. Firstly, assume we have a simple VLC 

table with only 3 symbols {0,10,11} and a packet that includes 3 bits (and equivalently 2 

symbols) with content as ‘0 10’. After BPSK modulation, the modulated sequence is 

{-1,+1,-1}. When the packet is transmitted over the AWGN channel, the received soft 

bit-stream may become {-0.8, -0.05, -0.2} (i.e. an error occurred in the second bit). Figure 

4.2 depicts the graph representation of this example. The path metric PM(i,j) denotes the 

cumulative square difference of ith symbol and jth bit in each decoded symbol. The branch 

metric BM(i,j) is the square difference between the received soft-stream and decoded 

codewords. Moreover, the present PM is the summation of previous PM and present BM. 
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Each number inside square represents the decoded bit pointer. In Figure 4.2, we have to 

keep 9-state to trace-back and correctly decode bitstream. However, the number of states 

will increase exponentially with the increment of decoded symbols. To alleviate this 

problem, we focus on error detection instead of correcting the errors. That is, there is no 

need to keep each state for trace-back procedures. Previous PM value will be discarded and 

contributes to the present PM value. We only keep the minimal PM of survival paths as our 

detected candidate. Afterward, these PM values will be recursively updated until the end of 

one macroblock (MB). 

 

φ

φ

 
Figure 4.2: Soft VLC algorithm using graph representation. 

 

When errors occur, a key observation is that the minimal BM will increase, indicating 

the large square difference between received soft streams and decoded codewords. Figure 
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4.3 depicts the behavior of minimal BM in the 1st and 2nd macroblocks of one frame. The 

minimal BM of 1st MB is very small because the received stream is correct while the 2nd 

MB is corrupted by the channel disturbance, yielding the large BM value. In addition, to 

enlarge the erroneous magnitude for detecting errors, we exploit the summation of BM over 

one MB as a measurement of error detection. A formal statement of the detection algorithm 

follows: 

Soft Detection Algorithm: 

Storage: 
 {i, j}       ({symbol, bit} index) 
  PM(i,j), BM(i,j)    (path metric, branch metric) 

Initialization: 
 {i, j} = {0,0} , 0 < i < N, 0 < j < B; 
  PM(i,j) = 0;     BM(i,j) = 0; 

Recursion: Compute 
PM(i+1,j’) = PM(i,j) + BM(i,j);  j = j’ + code length 
Error Measurement = PM(N-1,B-1) / B; 

 

Although the PM value indicates the error behavior, each MB has different numbers of 

coded bits due to the variable length characteristics. Hence, the PM has to be translated and 

normalized by the number of coded bits. In Figure 4.3, this MB contains B bit and the 

derived PM is divided by B as Eq. (4.1) listed. The threshold THR can be determined 

through the simulation or channel behavior [75]. Hence, the detecting information 

ERR_FLAG can be used as an enable signal to activate the post-processing unit such as 

error concealment for improving visual quality. 

 

1,
_

0,

PMif THR
BERR FLAG
PMif THR
B

⎧ >⎪⎪= ⎨
⎪ <
⎪⎩

                                           (4.1) 
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Figure 4.3: Soft VLC decoding path w/t and w/o errors. 

 

4.3.3 Decoding Architecture 

Before we address the soft decoding architecture of CAVLC decoder, we explain the 

CAVLC decoding flow in a system point view. Under the condition of entropy decoder in 

H.264/AVC, the input bit-stream will not always feed through CAVLC decoder since 

sufficient processing cycles are required. Therefore, the issue and hold signal is located to 

reduce the internal buffer and improve the operation throughput. In particular, we exploit 

single-bit hold signal to indicate the bit-stream alignment instead of multi-bit code-length to 

achieve low cost implementation. In Figure 4.4(a), a data transfer is accomplished when the 

receiver doesn’t hold data input and transmitter sends issue signal for the notification in 

advanced. Hence, this handshake mechanism deals with the hold of receiver and issue of 

transmitter. This scheme is described as follows: 

 Normally, the transmitter sends an issue signal to the receiver first. A data transfer 

is completed when the transmitter disables a hold signal. 
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 However, if the issue is disabled, the receiver must hold the request and wait the 

required data. 

Instead of input register and barrel shifter, we use issue-hold signal to reduce cost and 

realize system integration more smoothly by the handshake structure. In Figure 4.4(b), 

H.264/AVC contains fix length, universal and context-adaptive VLC decoder in Extended 

profile. UVLC and CAVLC are the critical part in terms of system performance, especially 

in high bit-rate or low power video applications. The issue signal of entropy decoder will 

activate when 2×2, 4×4, 8×8 or 16×16 coefficient encounters. Further, the hold signal can 

be realized with an OR operation launched by UVLC, CAVLC, CABAC…etc. The input of 

OR operation can be connected with other modules in H.264/AVC or the entropy decoder of 

different video standards. Each modules enable hold signal when the operation module 

cannot process a great data for a specified cycles. In general, the video stream buffer is 

realized in most of video devices to support buffering process. After that, the output signal 

including syntax and residual data will validate when the valid signal ties to high. 

 

 
Figure 4.4: The (a) handshake structure and (b) entropy decoder in H.264/AVC. 
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Figure 4.5 describes the proposed soft CAVLD block diagram with embedded error 

detection capability. The gray portion indicates the modifications to support the error 

detection capability. The soft CAVLD consists of four main functional units: codeword 

partitioning unit, soft VLC decoder, error detection, and output buffer. First, a codeword 

partition method will be discussed in next sub-section and soft VLC decoder implements the 

decoding behavior discussed in the previous sub-section. We don’t apply soft decoding on 

the level and Trailing1_sign since they can be decoded through 1’s detection and fixed 

length decoder respectively. Second, error detection realizes Eq. (4.1) that extracts the PM 

value from soft decoder to decide whether this MB is corrupted or not. Third, the output 

buffer converts the data in a parallel fashion. In the following, we present two architectural 

breakthrough involved in this soft CAVLC decoder. One is the codeword partition method 

and the other is fully-parallel architecture for reducing the soft decoding complexity. 
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Figure 4.5: Soft CAVLD block diagram. 
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4.3.3.1 Code-Word Partitioning 

The codeword partitioning can be considered as a pre-processing module in front of 

VLC decoder. Based on the characteristics of leading-0/1 in each VLC codeword, we 

simply partition bit-stream into the coding RUN as well as DATA. In Figure 4.6(a), the 

coding RUN extracts the number of zeros or ones that it detects, and assigns the remainder 

of bit-stream as the coding DATA. We use coding DATA instead of total codeword to reduce 

the VLC decoding complexity since only coding data is needed to be uniquely decodable. 

We show a simple example in Figure 4.6(b) for the illustration of codeword 

partitioning. We assumed that the input bit-stream is ‘00000101’ and the number of 

leading-0 can be obtained easily (i.e. five). After that, we extract the remainder bit-stream 

and dispatch it to the 12-bit shifter. Furthermore, we hierarchically target the decoded 

symbol from the given nC and RUN. The 4-bit zero counter and 12-bit shifter have to be 

reset when the decoded symbols are obtained. As a result, we search the codeword in a 

small group (i.e. gray region of Figure 4.6(b)) instead of large entry such as 62 in a 

Coeff_Token coding table [1]. Therefore, based on the proposed codeword partitioning, we 

can easily decode bitstream by the partitioned coding RUN and DATA and thereby reduce 

the complexity in the module of VLC decoder. 

 

 
(a) 

111 



 

 

(b) 

Figure 4.6: The (a) codeword partitioning and (b) partial Coeff_Token coding table [1]. 

 

4.3.3.2 Fully-Parallel Design 

To meet the real-time transmission over an error-prone environment, we exploit a fully 

parallel architecture to improve the decoding throughput. Figure 4.7(a) shows the soft VLC 

decoding block diagram. Specifically, each BM unit simultaneously calculates the square 

difference between received soft streams and decoded codewords. It is performed in a 

parallel fashion without cycle penalties. After that, the compare unit (CMP) searches the 

minimal BM as the detected candidate. The minimal BM is accumulated in each clock cycle 

and thereby stored into PM registers. When the decoding index reaches the end of MB, the 

PM value is sent into error detection block to judge whether this MB is correct. As for the 

BM unit, Figure 4.7(b) describes the BM unit in case of a decoded codeword {000101}. The 

BM unit calculates the square difference between received 16-level soft streams and 

decoded code-words. Hence, it executes the subtraction, multiplication, addition, and 

constant division to obtain the BM value. 

Although the hardware complexity of soft CAVLD is considerably high, this is the first 
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trial to realize the soft decoding using hardware building blocks [89]. It is synthesized using 

0.18μm Artisan cell library by Synopsys Design Compiler. Under the timing constraint of 

20ns, the synthesized gate counts approximately reach 80k. In the future, this area penalty 

can be greatly reduced by compromising the area and processing cycles or merging the 

identical codewords to reduce the number of BM units. 

 

 
(a) 

 
(b) 

Figure 4.7: (a) Soft VLC decoder block diagram and (b) associated BM architecture. 
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4.3.4 Performance Evaluation 

In Figure 4.8, we verify the proposed soft CAVLD coupled with error detection 

capability over the AWGN channel using BPSK modulation. First, the input sequence is 

encoded by H.264/AVC Extended profile with a data partition. In the data partition mode, 

we have assumed that the texture part, composed of a sequence of VLC code-words, is 

corrupted by AWGN. The other parts are of error-free due to the protection of channel 

coding. This assumption can be achieved by exploiting the unequal error protection (UEP) 

and rate-compatible punctured convolutional codes (RCPC codes [90]). Furthermore, the 

coded stream is transmitted via BPSK modulation. In the BPSK modulation, the modulated 

symbol is either +1 or -1. After the channel corruption, the demodulated signal will become 

0 or 1 in the hard decision scheme. But, if we exploit the quantizer to implement the soft 

decision method, the demodulated symbol will range from 0 to 2q-1 [138]. The bit number q 

is used to quantize the symbol and determined by channel and application. After the channel 

deterioration, the corrupted stream is determined by the number of de-quantization levels 

(hard: 2-level; soft: N-level). Hence, we use the soft output of quantizer as our input 

bit-stream of soft CAVLD. The soft CAVLD can overlook the bit-errors from the quantizer 

of physical layers since we assumed that an UDP-Lite protocol [91] is applied to our 

simulation model. Specifically, we partition all of data transaction into the 5 layers of OSI 

(Open System Interconnection) model in Figure 4.9. In the wireless network or mobile 

transmission, we assume that UDP-Lite of transport layer and UEP of link layer are 

provided. Further, we exploit the soft bit-stream after the N-level quantizer and overlook the 

soft bit-error of physical layer into the application layer. Based on the above statements, we 

are going to evaluate the proposed design on the H.264/UDP-Lite/UEP/AWGN in the next 

paragraph. 
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Figure 4.8: The overall simulation environment of the soft detection over H.264/AVC. 

 

Contents OSI Layers
Application – MPEG Application Layer

Transport – UDP or UDP-Lite Transport Layer
Network – IP Network Layer

UEP – RCPC Codes Link Layer
Soft Information Physical Layer

Figure 4.9: Overlooking bit errors in the application layer. 

 

The simulation results exhibit that the errors can be early detected through the 

proposed soft decoding algorithm. On the other hand, the errors can be detected by the 

abnormal syntax parsing or unknown codewords. It has been named as hard detection [80] 

in this dissertation. To clarify the performance between hard and soft detection, we consider 

the first I-frame of foreman with QCIF resolution (i.e. 99 MBs) as a test benchmark. Figure 

4.10 shows the path metric over bits (i.e. PM/B) in terms of MB index. According to Eq. 

(4.1), large PM/B indicates that errors may occur in this MB, resulting in large PM/B values. 

In Figure 4.10, there is a peak in MB #83. In other words, we declare that the following 
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MBs (including MB #83) are corrupted due to the error propagations. However, the detected 

index is 94 (>83) through the hard detection. That is, the duration between MB #83 and #93 

are neglected and cannot be concealed by post-processing units. Due to the improvement on 

error detection, the associated decoded visual quality has been shown in Table 4.1. We 

assumed that simple error concealment is applied and it will be activated when the detection 

algorithm notices that errors occur. The Table 4.1 shows that more than 1dB of PSNR 

improvement can be gained when the BER and THR equals 2.7×10-3 and 18, respectively. 

To quantify the performance of error detection, we exploit a metric of the error 

distance that indicates the distance between the exact error-position and detected one. Table 

4.2 shows the error distance of three different video sequences under 10-3 and 10-4 of BERs. 

The proposed soft detection has the small distance in average. That is, it can early detect the 

corrupted MBs as compared to hard detection [80]. Hence, these MBs can be concealed 

from neighboring pixels before displaying on monitors. 
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Figure 4.10: A histogram of PM/B in terms of macroblocks (MB). 
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Table 4.1: Subjective and objective visual comparison. 

AWGN+BPSK (BER=2.7×10-3, THR=18) 

 Hard detection [80] + EC Proposed + EC 

Subjective 

Quality 

Objective 

PSNR 
23.93dB 25.34dB 

 

Table 4.2: Performance measurement of detection capabilities. 

Error Distance (unit: average no. of MBs) 

QCIF, all I frames Hard detection [80] Proposed [89]

Foreman 7.1 3.5 

Suzie 14.6 4.8 BER=10-3 

Akiyo 13.7 3.3 

Foreman 10.4 7.6 

Suzie 12.8 7.5 BER=10-4 

Akiyo 12.5 3.2 

 

4.4 Error-Concealed Deblocking Filter 

4.4.1 Design Background 

As mentioned in Chapter 4.2, the problem of lost data in block-coded images due to 

imperfect communication channels needs to be solved. Error concealment (EC) intends to 
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ameliorate the impact of channel impairments by utilizing neighboring information in order 

to provide subjectively acceptable restoration of damaged picture regions. Specifically, the 

EC scheme attempts to recover the corrupted macroblocks (MBs) by exploiting pixel data 

from spatially [93]–[95] or temporally [96]–[98] adjacent blocks. The temporal schemes 

conceal the corrupted MBs by exploiting the data in the adjacent frames while spatial 

schemes hide the corrupted regions by the neighboring pixels in the current decoded frame. 

In general, a successful spatial interpolation is necessary for hiding the effect of missing 

blocks in still images and video frames. Temporal interpolation, or replenishment, by itself 

is not always adequate for concealing errors in video sequences. This is especially true for 

video sequences with irregular motion, abrupt scene changes, and intra-coded image frames. 

To the viewer, a poor spatial concealment of erroneous regions leads to the error 

propagation in the subsequent frames. Hence, compared to temporal EC, spatial EC is of 

great importance and challenges. Thereafter, we focus on the spatial EC for concealing 

corrupted region of image frames. 

Using a deblocking filter for improving visual quality [92] is more or less helpful in 

the block-based video transmission over an error-prone environment. The reason is that the 

functionalities of deblocking filters are similar to that of spatial error concealment since 

both modules smooth the block boundaries by a pre-defined interpolating procedure. In 

particular, the error concealment will be disabled when the bit-streams are of error-free. On 

the contrary, the deblocking filter can be turned off when the error has been detected from 

soft CAVLC decoder. Therein, deblocking filter can be replaced with error concealment 

module for improving visual quality. In other words, both deblocking filter and error 

concealment will not activate simultaneously. Hence, the goal of our proposal is to realize 

an area-efficient design to combine both deblocking filter and error concealment. In the 

following, we develop a new error concealment method which can be easily integrated into 

deblocking filter of H.264/AVC. 
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4.4.2 Error-Concealed Deblocking Filter (ECDF) 

To improve the hardware utilization between deblocking filter and error concealment, 

we develop an error-concealed deblocking filter (ECDF) in our error-robust video decoder. 

The detailed block diagram is depicted in Figure 4.11 which consists of three main 

components as depicted in shaded regions. The detected information, the output of soft 

CAVLD, plays a key role to switch the functionality and decides that ECDF is operated on 

either error concealment or deblocking filter mode. Moreover, edge detection, replacement, 

and smoothing procedures can be considered as add-on modules for changing the operating 

process when encountering erroneous pixels. Edge detection fetches the neighboring and 

decoded pixels from slice memory and pixel buffers respectively to predict the edge 

characteristics. Replacement receives the edge information and determines the replaced 

pixel. A concealed strength module determines the filtering strength and replaces the bS 

defined in H.264/AVC [1]. In the following, we will address each module in details. 

 

 
Figure 4.11: The block diagram of the proposed ECDF. 
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4.4.2.1 Edge Detection 

In general, a directional interpolation (DI) [95] is an important process to spatial error 

concealments. One important step for use of directional interpolation is to correctly find the 

edge trend that goes through the distorted area. To this end, Sobel [107] edge detector has 

been chosen due to its circularity property, which gives more accurate angle estimates over 

the standard gradient operator. More accurate but computationally cumbersome operators, 

such as the canny edge detector [108], cannot be used because of real-time and VLSI 

implementation constraints. Here, Sobel mask is shown in Eqs. (4.4)-(4.6) and used to 

determine the magnitude of gradient |G| and edge slope of existing edge in the neighboring 

4×4 sub-blocks. Sx and Sy indicate the Sobel operator in horizontal and vertical directions 

while F represents a 3×3 pixel mask in one frame. After that, we use the information of 

gradient to predict the edge trends of corrupted 4×4 sub-blocks. 
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4.4.2.2 Replacement 

Based on the aforementioned edge information, we rank it as four different kinds of 

edge degrees: 0o, 45o, 90o, and 135o. These degrees determine the corrupted pixels which 

are replaced by neighboring ones. Figure 4.12 depicts the replacement of corrupted pixels in 

the gray regions. Because the corrupted pixels have been detected by soft CAVLD, we first 

replace it with neighboring pixels based on the received edge information. Then, the 
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replaced pixels feed into the edge filter to smooth the block boundary and improve the 

visual quality. 

 

                (a)                             (b) 
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                (c)                             (d) 

Figure 4.12: Four kinds of replacing modes: (a) 90o, (b) 0o, (c) 45o, (d) 135o. 

 

4.4.2.3 Concealed Strength 

When encountering erroneous pixels, the boundary strength is fixed at strong mode 

prior to the 1-D edge filter. We name the boundary strength of erroneous data as concealed 

strength. As we know, boundary strength (i.e. bS) defines the filtering strength and impacts 

the number of filtering taps. There are two filtering modes defined in H.264/AVC: strong 

and weak modes. In particular, an edge filter in strong and weak mode relates to six and 

four pixels of each 4x4 sub-block boundary, respectively. In other words, edge filter in 

strong mode obtain better smoothing results due to large number of filtering taps. Therefore, 

we let the boundary strength (bS) as a strong mode when the soft CAVLC decoder found 

that the decoded pixels is corrupted. 
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4.4.3 Performance Evaluations 

We verify the proposed ECDF over the JM9.8 simulated platform with flexible 

macroblock ordering (FMO) modes. FMO modifies the way how pictures are partitioned 

into slices and macroblocks by utilizing the concept of slice groups. Each slice group is a 

set of macroblocks defined by a macroblock to slice group map, which is specified by the 

content of the picture parameter set and some information from slice headers. Figure 4.13 

depicts the corrupted frame using FMO with a checker-board type of mapping. By FMO, a 

post-processing unit, error concealment, can easily improve the visual quality through the 

neighboring pixels.  

 

Figure 4.13: A corrupted frame when using FMO with checker-board type. 

 

In Figure 4.14, we consider a “foreman” test sequence with CIF resolution and QP=28 

in order to perceive the contrast between traditional bilinear interpolation (BI) and the 

proposed ECDF. Simulation results show that the proposed ECDF additionally gains 1.34dB 

against the BI method. Moreover, the ECDF shares the pixel buffers and edge filter in 

Figure 4.11. Under a 100MHz of working frequency in 0.18μm CMOS process, the 

synthesized gate counts are reduced to 22.74K which is about 70% of original design 

without exploiting any resource sharing. Overall, the ECDF is not only compatible to 

prevalent deblocking filter defined by H.264/AVC but also achieves low cost 
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implementation with comparable PSNR performance. 

 

 

(a)                              (b) 

Figure 4.14: Subjective quality comparison between the (a) proposed algorithm and (b) BI. 

 

4.5 Embedded Compressor/De-compressor 

4.5.1 Literature Reviews 

Recently, with continuing increases in high-quality video playback requirements, the 

increased memory capacity becomes a primary penalty in the design of mobile multimedia 

system. The memory stores image frame and is usually implemented by DRAM. However, 

the introduced memory power consumption is so high that many researchers [81]–[87] pay 

much attention on the compressor and de-compressor for reducing memory capacity as well 

as power dissipation. In terms of characteristics, these compressors can be divided into two 

classes: on-the-fly [81]–[83] and embedded [84]–[87] compression. The on-the-fly 

compression can be considered as a post processing unit and the embedded compression is 

involved in a typical video coding/decoding flow. In this sub-section, we aim at an 

embedded compression design that is heavily involved in the H.264/AVC video decoding 

system. Although an existing design [86] has realized an embedded compression for 

H.264/AVC, it introduces two problems in practical implementation. First, it exploits a 
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complex CAVLC and intra compensation to share the resource, leading to high complexity 

and the problem of the hardware scheduling. Second, a highly compressed bitstream stored 

in frame buffers suffers an addressing problem when the modules require the reference 

macroblock in frame buffers under a given decoding index and motion vector. Moreover 

this highly-compressed data will adversely impact the quality when channel deteriorates. On 

the other hand, in terms of compressed algorithm, the aforementioned techniques can be 

partitioned into two groups again: lossy and lossless compression. The performance of 

lossless compression is limited while lossy compression achieves higher compression ratio 

but leads to quality degradation due to the error propagation (i.e. drift effect [84]). However, 

Bourge et al. [100] present a re-compression method with graceful quality degradation by 

measuring a metric of JND (Just Noticeable Difference [101]). The ideal JND provides each 

signal being represented with a threshold level of error visibility, below which 

reconstruction errors are rendered imperceptible. Although a graceful degradation is tolerant 

for the end-users by JND, it is still hard to convince all viewers of this quality acceptability. 

Hence, to optimize the performance between lossy and lossless methods, a recent research 

[87] proposed a multi-mode compression method by adopting a set-partitioning in 

hierarchical trees (SPIHT [102]) algorithm to support both lossy and lossless compression. 

Because a SPIHT algorithm features to simply reach lossy/lossless compression, fixed 

compression ratio, rate and quality control, it has been adopted for a purpose of frame 

re-compression. However, the challenge of this algorithm is the numerous memory cost and 

computational power. Although [87] presented an efficient architecture, it cannot reach 

high-definition real-time compression/decompression due to the extensive processing 

cycles. 

Until now, we first review the existing methods due to a great diversity of existing 

algorithms. In the following, we focus on the embedded compression to support both lossy 

and lossless features in order to highlight our contributions. The goal of this design is to 
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implement low-complexity VLSI architecture for reducing DRAM capacity. Moreover, it 

provides a power-aware [99] feature which scales DRAM power consumption in response 

to changing operating conditions. As a result, it adaptively modifies the compression 

behavior to balance the performance between compression ratio and battery lifetimes. To 

meet the design goal of this chapter, this design further considers the channel behavior when 

compressing frame pixels. That is, it is robust to channel disturbance by the received pixels 

and detected information via the aforementioned ECDF and soft CAVLC decoder 

respectively. 

 

4.5.2 Power-Aware and Error-Robust Features 

Figure 4.15 depicts the block diagram of the proposed compressor/de-compressor 

embedded in H.264/AVC video decoding system. Two 4MB synchronous DRAM (SDRAM) 

modules are exploited for writing decoded data and reading reference data reciprocally at 

the same time. To cut the frequency of data transaction between internal modules and 

external SDRAM, a compressor receives filtered pixels and thereby encodes them into a 

reduced form. A de-compressor fetches the compressed data from SDRAM and performs 

decoding procedures to reconstruct the pixels for motion compensation. Moreover, to 

enhance the power-awareness on SDRAM modules, the host processor notifies the 

compressor/de-compressor to change the power modes when the battery monitor unit 

detects the voltage drop of battery. Specifically, we adopt a truncation and insertion scheme 

to the least significant bit of frame pixels for changing the compression ratio according to 

the battery lifetime. On the other hand, the proposed compression receives the erroneous 

information from the soft CAVLD or ECDF for reducing the compressed complexity. In 

particular, this information notifies the compressor of the error occurrence. After that, 

erroneous skipping method skips erroneous portion of a frame to reduce the computational 
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complexity while erroneous padding method inserts the neighboring pixel to reconstruct the 

concealed data. In sum, the proposal not only reduces the external memory space 

requirement but also adapts the memory power consumption to battery status and eliminates 

the computation in the presence of errors within one frame. 

 

 
Figure 4.15: System block diagram of compressor/de-compressor. 

 

4.5.2.1 Power Awareness by Least Significant Bit (LSB) 

Truncation/Insertion 

We adopt a simple LSB substitution [103] to not only support lossy/lossless features 

but also achieve power awareness in the frame re-compression design. In general, the frame 

re-compression techniques can be divided into lossy and lossless methods. A lossy 
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compression greatly improves the performance but sacrifices the visual quality while a 

lossless compression retains the image quality but the performance improvement may be 

very mild. Hence, the contradiction exists between the compression ratio (bits/pixel) and 

visual quality. To make a better compromise, we choose an LSB truncation scheme to 

support both lossless and lossy compression. Specifically, the number of truncated LSB (i.e. 

variable k in Table 4.3) adversely impacts the image quality. Lossless compression can be 

considered as a special case when k is fixed at zero. In Table 4.3, Chan et al. [103] 

summarized the performance degradation in the worst case. Note that these WPSNR are 

different from traditional PSNR metric which is measured by comparing the truncated 

frames with original raw frames. Here, WPSNR considered the worst case based on the 

equation in the 1st row of Table 4.3. Therefore, the quality degradation is not less than that 

in the worst case. 

 

Table 4.3: WPSNR for LSB truncation [103]. 

( ) ( )
2

10
25510 log
2 1worst k

PSNR dB= ×
−

 

k 1 2 3 4 5 

WPSNR (dB)14 48.13 38.59 31.23 24.61 18.3 

bits/pixel 7-bpp 6-bpp 5-bpp 4-bpp 3-bpp 

 

In addition to the lossy/lossless features, the LSB truncation scheme also adapts 

compression ratio (bits/pixel or bpp) in Table 4.3, resulting in scalable data bandwidth as 

well as DRAM power consumption when power requirements change. It is advantageous to 

implement compressor/de-compressor with DRAM power scalability through the variable 

                                                 
14 WPSNR: PSNR in the worst case 
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number of truncated bit plane (i.e. variable k). Hence, considering an H.264/AVC decoded 

video, our design provides memory power-awareness and scales memory power through 

variable k for graceful quality degradation. On the other hand, because the truncated errors 

propagate into subsequent frames through motion compensation, we exploit a post-upgrade 

equation to alleviate the quality degradation, where Eqs. (4.2) and (4.3) represent truncation 

and insertion procedures in compressor and de-compressor respectively. In Eq. (4.2), the 

pixel A is defined as filtered raw pixels while pixel a2 represents the truncated pixel written 

into SDRAM. Considering the k-bit LSB truncation case, if the truncated errors (i.e. A % 2k) 

are larger than one half of 2k, the pixel A rounds the kth bit in order to decrease the 

truncation errors. In the de-compression side of Eq. (4.3), we insert k zeros into the LSB of 

a2. The detailed results of truncation errors will be reported in Chapter 4.5.5. 
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4.5.2.2 Error Robustness by Erroneous Skipping/Padding 

We employ an erroneous skipping/padding technique to cope with the corrupted frame 

in the compression/de-compression module. Figure 4.16 demonstrates the behavior of the 

erroneous skipping/padding methods. Considering a corrupted frame in Figure 4.16(a), 

errors occur in MB index k and propagate into the following MBs of this frame. We 

assumed that the erroneous position has been correctly detected by soft CAVLC decoder in 

MB levels. Therefore, there is no need to re-compress the corrupted pixels in the 

compression side. The compressor skips corrupted data for reducing the complexity in the 

presence of errors as Figure 4.16(b) illustrates. Moreover, to correctly re-construct the pixel 
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data in the de-compression side, we additionally write the skip information into buffers. On 

the other hand, the compressed data are read from external SDRAM and thereby dispatched 

into de-compressor or pixel padding according to the skip information. Figure 4.16(c) 

depicts the de-compression behavior. The pixel padding module references the concealed 

algorithm in ECDF and reconstructs the skipped pixel from SDRAM. Both compressor and 

de-compressor are performed in MB levels for further system integration. 

 

 
(a) 

 

                   (b)                                 (c) 

Figure 4.16: (a) a corrupted frame and error-robust (b) compressor and (c) de-compressor. 
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4.5.3 New Compressor/De-compressor for H.264/AVC 

The objective of this design is to compress the pixel data for reducing external memory 

space based on the visual, intra-pixel, and coding redundancy. First, in the visual 

redundancy, we adopt the LSB truncation in each bit-plane of pixels. Because there are 

different contributions to total image appearance, only higher order bits contain visually 

significant data and the other bit planes contribute the more subtle details. This idea is 

presented for power-awareness in Chapter 4.5.2.1 and widely used for image watermarking 

and data hiding [103] applications. Therefore, it not only features power awareness but also 

reduces the visual redundancy. Second, the intra-pixel redundancy exploits the spatial 

locality and is implemented by differential pulse coded modulation (DPCM). Third, a 

truncated Huffman table is applied to remove the coding redundancy. Overall, the detailed 

block diagrams of the proposed compressor/de-compressor have been re-drawn in Figure 

4.17 and the associated illustrations have been made in the following sub-sections. 

 

 

(a) 
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(b) 

Figure 4.17: Proposed (a) compressor and (b) de-compressor. 

 

4.5.3.1 DPCM and Scanning Pattern Control 

A simple and well-known method for redundancy reduction was to predict the pixel 

values based on the values previously coded, and code the prediction error. This method is 

called differential pulse code modulation (DPCM). In general, best predictors are those 

from the neighboring pixels. It is of upmost importance with respect to how to determine 

the predictors. In this design, we propose a scanning pattern control technique to create a 

better predictor based on intra prediction modes. In H.264/AVC, there are 9 and 4 intra 4×4 

and 16×16 prediction modes respectively. In Table 4.4, we translate all prediction modes 

into two classes: horizontal and vertical scanning pattern for simplicity. The predictor of 

horizontal scanning pattern comes from the left neighboring pixels while the vertical 

scanning pattern predicts the current pixel based on upper neighboring pixels. The detailed 

block diagram of prediction method is depicted in Figure 4.18. To guarantee the equivalence 

between compressor and de-compressor, we need an additional buffer with 3.1Kb to keep 

the scanning control of one frame. Therefore, the scanning control not only comes from the 
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Table 4.4 for data compression but also writes into SRAM storage for subsequent frame 

de-compressions. 

 

Table 4.4: Horizontal and vertical scanning patterns. 

Prediction types Prediction modes Scanning Ctrl 

Intra 4×4 
Horizontal, Horizontal-down, 

Horizontal-up 

Intra 16×16 Horizontal 

Horizontal 

Intra 4×4 

Vertical, DC, diagonal down-left, 

diagonal down-right, vertical-right, 

vertical-left 

Intra 16×16 Vertical, DC, plane 

Vertical 

 

 

Figure 4.18: The horizontal and vertical scanning control. 
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4.5.3.2 Truncated Huffman Tables 

Although an arithmetic coding is the best-known lossless coding method, it requires 

expensive iterative coding and decoding procedures and consumes large computing power.  

On the other hand, because the Huffman code may result in a long codeword and 

computationally-intensive coding and decoding, we adopt truncated Huffman code to 

translate the differential pixel into a specified codeword for a low-complexity design 

approach. The truncated Huffman table is listed in Table 4.5. Specifically, the raw pixel 

ranges from 0 to 255 while the ranges of differential pixels are -255~255. To suppress the 

data range and reduce the number of codewords, we apply LSB truncation variable k as 2 

without great loss of generality. Hence, the range of differential values becomes -63~63. As 

for different k, this coded table can also be generated by training numerous video sequences. 

 

Table 4.5: Truncated Huffman tables. 

Differential values Code-word Code-length 

0 0 1 

-1,+1 11x0 3 

-3,-2,+2,+3 101x0x1 5 

-11,…,-4,+4,…,+11 1001x0x1x2x3 8 

-63,…,-12,+12,…,+63 1000x0x1x2x3x4x5x6 11 

 

After receiving the codewords from the truncated Huffman table, we apply a data 

packing to send the packed results into a data word-line on SDRAM. Figure 4.19(a) depicts 

the SDRAM organization and each word-length is of size 25-bit where first 1-bit is a TAG 

signal and the following 24-bit means pixel payloads. We assume LSB truncation k equals 2 
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and each un-compressed pixel is of size 6-bit. The 1-bit TAG indicates whether the 

following payloads have been compressed or not. Figure 4.19(b) shows three kinds of data 

formats in one 4×4 sub-block. One is four 4-pixels without compression (i.e. 8-bpp) and 

another is two 8-pixels with compression (i.e. 3-bpp). The other is two 4-pixels and one 

8-pixel with partial compression (i.e. 4.5-bpp). In Figure 4.19(b), TAGi means the TAG 

signal in the ith entry of SDRAM. We first collect four successive TAGs, and thereby pack 

and send these streams into SDRAM. In the de-compressor side, the four successive TAG 

signals received can be used to unpack the compressed data into the raw pixel data. 

 

 

              (a)                                        (b) 

Figure 4.19: (a) SDRAM organization and (b) data packing in 4x4 pixels. 

 

4.5.4 Virtual-to-Physical Address Mapping Technique 

Because the motion compensation module requires the reference pixel values in 

SDRAM based on a given decoding index and motion vector, a highly compressed pixel is 

difficult for data addressing from SDRAM [100]. To facilitate the SDRAM data addressing, 

we propose a virtual-to-physical address mapping technique in Figure 4.20. The address 
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calculation computes the base address under a given virtual address. However, because we 

store the pixel data into SDRAM in a compressed way, the calculated address will not be 

equal to the real one. Therefore, we need a translation buffer to look-up the offset address 

for indicating each physical address on a macro-block level. 

 

 

Figure 4.20: A virtual to physical address mapping. 

 

4.5.5 Performance Evaluation 

Although the truncated LSB k greatly impacts the visual quality, we can use 

post-upgrade equation to improve the visual quality. Figure 4.21 shows the performance 

degradation with and without exploiting post-upgrade method. In the simulated conditions 

on H.264/AVC main profile, QCIF, mother & daughter sequence, and 15 INTRA PERIOD, 

the post-upgrade method averagely achieves 4dB of PSNR improvement compared to the 

preliminary design without exploiting the post-upgrade method. Moreover, a detailed 

comparison with other leading edge approaches, such as Golomb-Rice [84], ADPCM [104], 

and DCT-cut [105] based compression, can be made for the further research. 

We exploit a metric (bits per pixels, a.k.a. bpp) to analyze the compressed performance. 

Note that we provide several design alternatives via the variable k. In addition to the lossless 

performance (i.e. k=0), we choose k (i.e. number of truncated bits) as 2 without great loss of 
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generality and use JM8.2 as our simulated platform. Finally, the detailed results are listed in 

Table 4.6. The proposed compressor/de-compressor simply exploits the DPCM and 

table-look-up method. It achieves 3.87-bpp at most when decoding the “Suzie” sequences 

with QCIF resolution, 100 frames, 15fps, 15 INTRA PERIOD and 2-bit LSB truncation. 

From the subjective point of view, we capture the 55th frame to give a comparison in Table 

4.7. 
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Figure 4.21: Objective visual quality for post-upgrade equation. 

 

Table 4.6: Compression performance for various sequences. 

H.264/AVC Main Profile, QCIF, QP=28, 15fps, Intra period = 15 

Sequence Foreman Mother & Daughter Suzie Akiyo 

PSNR 35.98 36.76 37.42 37.78 
k = 0 

bpp 6.51 6.25 5.87 5.96 

PSNR 34.14 35.44 35.52 36.73 
k = 2 

bpp 4.51 4.25 3.87 3.96 
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Table 4.7: The subjective quality comparison. 

Suzie 

sequence 
w/o compression 

compressed  

with k = 0 

compressed 

with k = 2 

55th frame 

 

bpp 8-bpp 5.87-bpp 3.87-bpp 

PSNR 37.42dB 37.42dB 35.52dB 

 

Table 4.8: Hardware Summary. 

Item Specification 

Function Compressor De-compressor 

Process 0.18μm 

Working Frequency 100MHz 

Internal Memory Size 3.1Kb 

Gate Counts 7.4K 6.7K 

Processing Cycles/4×4 4-6 cycles ~ 8 cycles 

k = 0 16.14mW @ 5.87bpp, 37.42dB SDRAM 

Power k = 2 10.64mW @ 3.87bpp, 35.52dB 

 

Table 4.8 shows the hardware summary of the proposed compressor/de-compressor. 

After synthesizing based on UMC 0.18μm CMOS technology, the total gate counts are 

14.1K excluding the memory. Additionally, the processing cycles are less than 8 on both 

compressor and de-compressor. Therefore, it achieves both low complexity as well as 

latency requirements. In addition to the data reduction through compressor/de-compressor, 
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the proposed LSB truncation scheme can be considered as a power-aware unit that can 

change the compression behavior to meet the battery lifetime requirements. In general, 

compressed data will reduce the memory capacity, bandwidth and hence power 

consumption. In Eq. (4.4), the SDRAM bus bandwidth can be deduced through the bits
pixel

 

(i.e. bpp). Moreover, different bandwidth requirements also impact the memory power 

consumption. Therefore, the reduction of compressed data can lower the associated DRAM 

power requirements. We choose CAS latency = 2, BL = 1, tCK = 7ns as our SDRAM model 

configuration [47]. Specifically, we adopt the system-power calculator [52] as an off-chip 

power model and use “Suzie” (QCIF) as our test sequence and encode it at 150kbps and 

15fps for mobile applications. Table 4.8 exhibits that the power consumption on SDRAM 

ranges from 10.64mW to 16.14mW. The corresponding compression ratio and visual quality 

are shown as well. That is, this design can modify its compression behavior based on the 

current power availability for providing power-awareness features. 

 

bitsbandwidth frame width frame height frame rate
pixel

= × × ×                    (4.4) 

 

Compared to the SPIHT-based compression method [87], the proposal achieves low 

complexity as well as processing cycles with comparable compressed performance. Table 

4.9 exhibits the detailed comparison in terms of compression ratio as well as complexity. 

Although [87] achieves higher compression ratio and lesser PSNR drop, it’s computational 

complexity in terms of cost and processing time is considerable. We propose a 

DPCM-based compression method to reduce the DRAM capacity without extensively 

adding cost overhead in a system point of view. The proposal simply use DPCM and 

Huffman table to reduce the processing cycles in the compression and de-compression sides. 

Moreover, it adapts the DRAM power by changing the number of truncated LSB. Hence, 
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we present low-complexity VLSI architecture to compress the pixel data for cutting the 

memory capacity and bandwidth requirements. Although the compression ratio in 

DPCM-based approach is less than [87], a further research can be studied for making a 

compromise between compressed ratio and computational complexity.  

 

Table 4.9: Performance comparison. 

Item Proposed Cheng et al. [87]

Compressed Algorithm DPCM-based SPIHT-based 

Lossless/Lossy Supported Supported 

Compression Ratio 
3.87~6.51bpp 

(Variable) 

2bpp and 4bpp 

(Fixed) 

PSNR Drop (cf. Foreman) 
1.84dB/4.51bpp 

(H.264 QP=28) 

0dB/4bpp and 1.1dB/2bpp

(MPEG-4, QP=15) 

Process 0.18μm 0.18μm 

Internal Memory Size 3.1Kb 10.24Kb 

Gate Counts 14.1K 26.93K 

Working Frequency 100MHz 30MHz 

Encode 0.8μs Processing 

Time per MB Decode 1.28μs 
18μs 

 

 

4.6 Summary 
Many transmission channels cause severe challenges for streaming or broadcasting 

video due to bit errors or packet loss. To combating transmission errors, this chapter 

thoroughly addresses three techniques for improving visual quality and power awareness. 
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First of all, we point out the importance of error detection. Specifically, inaccurate 

detections lead to poor performance in error concealment module. We propose a novel 

CAVLC decoder with soft computing method. In particular, we introduce the soft-decision 

information to localize the erroneous position at macroblock (MB) levels. This method 

compares and selects the minimal square difference between the received soft streams and 

decoded codewords. The corrupted MBs can be early detected and thereby concealed from 

neighboring pixels. After presenting the soft CAVLC decoder with error detection 

capabilities, we further introduce a simple error concealment which is tightly combined into 

the deblocking filter module. The key idea is that both error concealment and deblocking 

filter will not be activated at the same time. Hence, we develop an error-concealed 

deblocking filter (ECDF) to improve both hardware utilization and visual quality. On the 

other hand, we develop a frame re-compression method to cut the bus bandwidth and 

DRAM capacity. Specifically, we simply use DPCM and table-look-up method to improve 

the compression ratio. We exploit H.264/AVC’s intra prediction modes to find a better 

predictor. Additionally, this compression technique not only considers the power awareness 

but also error robustness features for a robust transmission of video data. To summarize, the 

aforementioned techniques not only improve the error-robustness of this video decoder but 

also feature simple architectures for further VLSI integration. 

140 




