

國 立 交 通 大 學

資訊工程系

博 士 論 文

延伸性與可適性在行動執行環境的研究

A study of extensibility and adaptability for mobile environment

研 究 生：高子漢

指導教授：袁賢銘 教授

中 華 民 國 九 十 五 年 六 月

延伸性與可適性在行動執行環境的研究

A study of extensibility and adaptability for mobile environment

研 究 生：高子漢 Student : Tzu-Han Kao

指導教授：袁賢銘 Advisor : Shyan-Ming Yuan

國 立 交 通 大 學

資 訊 工 程 系

博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

2

延 伸 性 與 可 適 性 在 行 動 執 行 環 境 的 研 究

學生：高子漢 指導教授：袁賢銘

國立交通大學資訊工程學系﹙研究所﹚博士班

摘 要

各種行動裝置日新月異。企業、娛樂、教育等應用都積極朝著隨時隨地透過任意

的行動裝置提供服務。這一個論文主要目標就是『加速開發者在各種行動裝置上

開發應用，讓使用者可以隨意更換不同設備，達到無所不在的使用情境。』

要達到此目的，我們針對幾種不同的行動執行環境。設計一 Framework:

U-CAF (Ubiquitous Context Adaptation Framework)，並且設計三個系統實作。探

討結合環境感知、元件調適以及 XML 轉化的技術達到此目標，

在三個系統實作 (CAAS, Ubi-Adapting, G2)中。在環境感知部分，我們運用

W3C CC/PP 以及 WAP UAProf，以及 RFID、Bluetooth 等技術。藉此我們可知道

使用者使用的設備以及環境資訊。呈現轉化模組：我們運用 XSLT/XPath 轉化技

術，將介面同時轉化成多種不同行動裝置上的 Web 呈現語言…等等。在元件調

適技術上，我們設計自動調適應用程式組成的演算法以及動態的重組應用程式結

構的能力。結合這些技術，使得系統上的行動應用程式具自我順應能力。

3

以 UbiAdapting 為例，我們在系統中設計了 Adapting Service Container 以及

Personal Mobile Agents。在前者，除了感知環境的呈現轉化功能以及感知環境後

的自我順應，系統開發人員或是服務的提拱者可以新增更多的感知環境服務。用

以增加系統感知使用設備後的隨需應變功能。

此技術目標在提供程式開發以及自我順應，應用服務建構者、數位內容以及

資訊提供者可以藉由不同的行動裝置，將資訊傳達給使用者。而使用者也可以就

所在的環境使用合適的設備存取這些服務。我們實作了幾個應用，像是圖書館、

電影查詢瀏覽，讓這些應用可以被自動地決定回傳給行動設備合適的內容。藉

此，使用者可以更換各種行動設備享受無所不在的使用情境。

4

A study of extensibility and adaptability for mobile environment

Student: Tzu-Han Kao Advisor: Shyan-Ming Yuan

Department of Computer Science
National Chiao Tung University

ABSTRACT

Wearable, handheld, and embedded or standalone intelligent devices are becoming

quite common and can support a diverse range of applications. In order to simplify

development of applications which can adapt to a variety of mobile devices, we

propose U-CAF (Ubiquitous Context Adaptation Framework). We want to provide

Rapid-development, Adaptability, Flexibility for programmers, seamless-use for

end-users, and Easy-upgrade for system developers in this framework. U-CAF

contains API, PUML/PGML, SDK, context awareness, adaptation, and transformation

mechanisms for application development on mobile execution environments. We

implement three systems: CAAS, Ubi-Adapting, G2 to realize our design. In the future,

we expect U-CAF to be enhanced for further development of widespread applications

for ubiquitous computing environments.

5

Acknowledgement

終於換我寫博士論文致謝了。這真的要感謝很多人，從家人到朋友，從學校的師

長、學長、學弟妹到在這人生努力過程的伙伴們：民視、台灣 IBM、資策會、

工研院…，以及我參加過每一個活動，每一場比賽一起努力的學弟妹們，以及各

個參賽與活動的伙伴們。

在博士學位的修業過程中，父親 高進發先生、母親 劉幸珠女士的鼓勵與支

持，是我源源不絕的修業動力。記得在 2005 年暑假，一次去病房探望父親，在

病床上問我哪時候畢業，父親的眼裡泛著淚光。在當下的我也感到相當的不孝。

而母親總是在疲憊的工作之餘還有力氣關心在學校的我。真的很感謝你們的諄諄

教誨。我想可以拿到博士學位最開心的應該就是我的父母親。也期許自己可以有

一番作為，法天地，作『正』事以報答父母之恩。

在修業的過程中，不可或缺的角色我的哥哥 高子龍、以及我的弟弟 高子

璽。很感謝你們幫忙我修改論文投稿的英文文句。我還記得在 2003 年暑假時候，

跟我哥哥約一天中午在園區的一家餐廳修改論文，那年暑假短短的三個月我上了

一篇 Computer Science & Interface (CSI)的期刊論文。也奠定了論文累積點數的基

石。弟弟個性也是相當堅強，一個人到嘉義求學唸書，心理所想是自己工作可以

自給自足。在論文的寫作過程，弟弟每每不厭其煩的修改我的論文，也常糾正我

的英文謬誤。一篇論文修改後又接著一篇論文。而老弟也會我在洩氣時給我莫大

的肯定。很感謝我的兄弟在這研究所研讀其間的親情與支持。

交通大學資訊科學系分散式系統實驗室-- 我的研究所求學的實驗室。94 學

年度起，交通大學資訊學院成立，資訊科學系與資訊工程系合併。現稱交通大學

資訊工程系資訊科學與工程研究所分散式系統實驗室。我的指導教授 袁賢銘 教

授，同時也是這一個實驗室的主持人。老師的作風開放，而在這實驗室我也有很

大的發揮空間。在碩一、博一、博二、博三…一直到了博五。一路走來，跌跌撞

6

撞。感謝老師六年的指導以及在這實驗室也有機會指導學弟們。

在歷屆實驗室的學長、學弟妹。也是我攻讀博士論文不可或缺的角色。2000

年剛進實驗室，那時候的我的想法自卑而且也偏保守。很感謝當時鼓勵指導我的

學長 焦信達 學長、許瑞愷 學長、劉旨峰 學長，可以說是在碩士班時期給我很

多指導起及期許。如今 2006 年，學長們有已經結婚或有擔任國立大學的教授職

位。這也是我感到開心的地方。而伴隨著我在研究所修業期間的實驗室學長，就

是 葉秉哲 學長、鄭明俊 學長、林獻堂 學長、蕭存喻 學長、邱繼宏 學長、以

及 吳瑞祥 學長。秉哲學長不但學問技術高而且有著一個熱心助人的心，這也是

我學習效法的對象。學長也蠻關心我，除了在讀書會上的支持，在論文口試前後

的關切以及鼓勵。明俊學長，記得在碩研究所修業早期，常常有一些煩惱，也都

是找他聊天。繼宏學長，他也是一位很熱情的人，總是有很多點子在處理事情上。

存喻學長、瑞祥學長，在他們身上可以學到把計畫做好的方法。很感謝在那時候

大家在一起的聚餐去竹北吃東西的…等等歡樂時光、以及在攻讀期間的關心與鼓

勵。在他們身上我學習到了熱情、熱誠、技術、以及待人處事。

早期在碩一到博三期間，跟我一起實驗室的同學 周宜興、洪傳寶、以及 林

均翰。還有研究所 90 級學弟妹：林書慶 學弟、黃郁芳 學妹、姚立三 學弟、李

宣鋒 學弟；研究所 91 級學弟妹：沈聖博 學弟、洪崇凱 學弟、蔡明耀 學弟、

劉昀昇 學弟、陸振恩 學弟、蘇科旭 學弟；92 級學弟妹：顏志明 學弟、沈上

謙 學弟、於之均 學弟、林建豪 學弟、葉倫武 學弟、林慧雯 學妹以及 朱文如。

很懷念那時候大家在一起的時光。也謝謝你們在人生道路上的幫忙。研究所 93

級學弟們：陳勇宇 學弟、蔡紀暘 學弟、謝偉德 學弟、林家鋒 學弟、林良彥 學

弟、陳俊元 學弟、范志歆 學弟、李杰叢 學弟。謝謝大家在實驗室的相互幫忙。

紀暘 學弟與 勇宇 學弟跟我一起參加『教育部嵌入式軟體設計競賽』。也感謝學

弟們的有心。下面這文句是我在參加完幾個比賽之後的感悟。

7

比賽是一起努力的過程

偉德 學弟有一台很不錯的車，有時候也都麻煩 偉德。家鋒 學弟很謝謝你介紹

讓我認識交大領袖社以及交大禪學社。也謝謝在校內口試以及校外口試的幫忙。

在我研究所研讀中期與我合作就是工研院電通所 W100 的鄭博文 課長、楊淑芬

學姐、李卓俊 先生。

在攻讀博士的後期，那時候可以說是按耐不住自己想要想前衝的動力，同時

也想鍛鍊自己。在 2004 年底有機會認識寰震科技 林克仁 董事長、董事長特助

曾能壯先生、林耀珍 副總。並且與寰震伙伴以及友人 邱銘彰一起組織讀書會。

也感謝 王子彥、孫文駿、叢培侃、Jesse 的加油以及讀書會伙伴在這期間的鼓勵。

當然也感謝有良會到資策會作系統簡報，並認識資策會網多所 馮明惠 主任；以

及畢業前夕的工研院電通所 P 組的伙伴們。謝謝大家的幫忙與加油。

此同時，我也參加了大大小小的比賽，由北到南，由台灣到兩岸三地 (教育

部九十二學年度通訊專題製作競賽、2004 打造無限夢想行動家- 2004 通訊大賽、

2005 Microsoft Image CUP、教育部嵌入式軟體設計競賽、第一屆東森提案競賽、

以及 IBM 在兩岸三地所舉辦的『第二屆 IBM 杯高校校園創新設計大賽』。很感

謝在競賽中以起努力的伙伴們。在 2005 Microsoft Image CUP 的原資科 95 蔡宗

翰 學弟、林瑋璿 學弟、周鴻仁 學弟。感謝大家在競賽前一天夜晚的一起努力，

要謝謝 瑋璿父親的開車幫忙。

在第二屆 IBM 杯高校校園創新設計大賽，是我畢業前夕所參加的最後一場

比賽。要感謝的主要有一同參賽的學弟們、在這比賽中幫忙的伙伴、以及賽後相

互鼓勵加油的伙伴。逢甲資工 楊晉安 學弟，是一位有責任心、開朗、有學習熱

誠的學弟。我跟他是在 2005Microsoft Image CUP 認識，更一起參加 IBM 競賽的

伙伴。一起挺進北京決賽的還有我很喜歡的學弟們：資工 97 李柏明 學弟、原資

科 97 黃照展 學弟、資工 97 黃銘祥 學弟。也感謝幫忙的交大運管 97 李翼帆 學

8

弟。此外在此競賽過程，也感謝民視電視公司 侯銘罡 組長、楊國宏 先生以及

奈訊科技的 傅振倫 經理、陳建隆 經理的設備借用。更有台灣 IBM 的 吳明峰

經理、李敏宏 經理的鼓勵。以及台灣 IBM 前總經理 許朱勝 先生的道賀。也感

謝多位大中華地區的伙伴們，北京 IBM 的 湯利華 小姐的幫忙。賽後與各隊的

伙伴認識，甘肅蘭州大學的 程廣輝 學弟，南京南開大學的 王鋒 學弟、韓坪良

學弟，北京大學 秦辰 學弟還有很多大中華的好手們。廣輝也跟我一起共事到現

在，大家彼此相互加油鼓勵。在競賽的過程中，一步一步，從顛頗開始到學習如

何團隊合作以及領導組織，也在每一個過程中與大家分享、關懷。下面這文句是

在 2006 年 5 月 1 日寫下，也與大家共勉之

生命的精彩就是可以不斷的創造價值

而一段精彩就在於可以大家一起分享感動

在 2006 年初最後寫論文期間，也是畢業最為關鍵的時間。很感謝交大機械

97 曹育銘 學弟的開朗大小孩個性，彼此相互勉勵。他一步一步往上爬，年紀輕

但是有著一顆熱心以及助人心。感謝很多這時候認識的友人 王常威 學弟、劉駿

先生。謝謝 常威介紹好吃的東西，也謝謝 劉駿先生介紹讀書會以及伙伴給我認

識。還有很多我非常喜歡的學弟妹們。謝謝交大領袖社以及交大禪學社的伙伴立

欣 學妹、陳立先 學弟、黃貴笠 學弟、林柏伽 學弟、以及李孟樵 學弟、陳憲

磐 學弟、傅崇豪 學弟的加油。清大創研社的張仲瑋 學弟、施維濤 學弟、凱嶸

學弟、廖士霆 學弟、吳蘇容 學妹、李威寬 學弟、王孟倫 學弟、江承哲 學弟、

傅彥鈞 學弟、林冠志 學弟、莊欣儒 學妹。還有很多清大的學弟們：盧鈞鈺 學

弟、趙茂成 學弟、蕭百亨 學弟、陳松裕 學弟。團契的伙伴們：陳威霖 學弟、

黃語慧 學妹、純如姐、丁瑩潔 學妹、焜哥、品祥、京荃、金亮、慧賢、韋恩、

曉雯姐、游思遠的祝福與鼓勵。交大鍾鐸社的伙伴：陳彥堂 學弟、林聖瀚 學弟、

9

鍾欣儒 學妹、潘姒婷 學妹、吳祉嫻 學妹、李柏逸 學弟。還有系上的學弟妹們：

黃宏文 學弟、朱峰儀 學弟、陳奕全 學弟、田燦榮 學弟、鄭偉升 學弟、林宣

佑 學弟、蔡雅竹 學妹、林俊碩 學弟、林冠儒 學弟、辜博熙 學弟、陳健文 學

弟、許文峰 學弟、許裕明 學弟、陳力行 學弟、以及 郭書庭 學弟，感謝這些

學弟妹們的加油。沒有大家的加油，我想我的論文可能會遙遙無期。

 也謝謝我永遠的好朋友們，國中同學 黃天保、陳建雄 的鼓勵。我永遠記得

在台北捷運車站，兩位好友對於我畢業的期勉。以及高中一直到現在的朋友 陳

勇全、李孟坤、蔡秉宏、以及 李建泓。也謝謝你們來訪參加我在交大博士畢業

典禮。謝謝在研究所修業期間鼓舞的大學好朋友 張世昭、王景新、賴駿昇、以

及 蔣佳宏。

謝謝在我最後論文口試，陪伴我的委員們：曾憲雄 老師、陳俊穎 老師、施

仁忠 老師、郭譽申 老師、游寶達 老師、鄭憲忠 老師、張玉山 學長。感謝師

長的寶貴的建議。也勤勉自己更加精進堅實。

我以 2006 4/2 寫下的這段文做為此篇致謝文的結尾。歷史的顏色我們一起走

過，喜悅與分享，因為有大家。我很喜歡大家。也願與大家一起分享天籟、與自

然齊鳴、而與天地共舞。

『輸』的時候要撐的住

 施振榮
這有多少人可以作得到呢..？
超越 精進 反省 再出發 調整 掌握
在於開創、在於維持、在於可以『忍』

 我的心，我不知道這是一個什麼情況，在幾年後回想起來。
但我知道這是一個『拓荒』過程

 高 子 漢

交通大學 電資院 資訊工程系
資訊科學與工程研究所

2006 7/13

10

Table of Contents

Acknowledgement ...5
Table of Contents ...10
List of Figures ..12
List of Tables..14
Terminology...15
Chapter 1 Introduction ...16

1.1 The environment ..18
1.2 The problems ...19
1.3 Objectives ...20
1.4 Application Model ...21

1.4.1 The programming model...21
1.4.2 In an system implementation ..22
1.4.3 PUML/PGML and APIs..23

1.5 Solutions ..24
Chapter 2 Context adaptation...27

2.1 Context-awareness ...27
2.2 Context adaptation process ..31

2.2.1 Application structure...31
2.2.2 Attribute-based component decision algorithm34
2.2.3 Application Structure & Component Constraints42

Chapter 3 PUML/PGML Transformation ..45
3.1 Pervasive User Interface Markup Language (PUML)45

3.1.1 Conceptual view..45
3.1.2 The language description ..47
3.1.3 The elements of PUML...49

3.2 Pervasive LoGic Markup Language (PGML)..53
3.2.1 Design Principle..53
3.2.2 The design of PGML ..54

3.3 Leveraging XSLT/XPath Transformation..60
3.3.1 An overview of language transformation mechanism60
3.3.2 XSLT transformation procedure ...61

3.4 The use of combination of context adaptation and XSLT transformation67
Chapter 4 System implementation ...68

4.1 Context-Aware Adaptation Service (CAAS) ...68
4.1.1 Example scenario ..68

11

4.1.2 System overview...69
4.1.3 System architecture...70
4.1.4 Agent migration ..77

4.2 Ubi-Adapting ...93
4.3 Gateway of Gateway (G2)..95
4.4 Applications ...95

Chapter 5 Application development...95
5.1 PUML/PGML writing..95

5.1.1 Hand coding ..95
5.1.2 WYSIWYG...95
5.1.3 The generated code ...95

5.2 Application component and agent development ..95
Chapter 6 Related work ...95
Chapter 7 Conclusion and Future Work...95

12

List of Figures

FIG. 1 FORM-BASED APPLICATIONS: THE FOCUSED APPLICATIONS ..17
FIG. 2 DEVICE CAPABILITY DIVERSITY ...19
FIG. 3 THE PROBLEMS..20
FIG. 4 THE APPLICATION MODEL ..21
FIG. 5 A SYSTEM IMPLEMENTATION..22
FIG. 6 THE LANGUAGES AND APIS ...23
FIG. 7 THE SOLUTION WE PROPOSE ..26
FIG. 8. A SEGMENTATION OF NOKIA 8310’S WAP UAPROF PROFILE ..28
FIG. 9 RFID APPLICATION ..30
FIG. 10. THE BACK-END MODULE OF THE APPLICATION IMAGE GATHERING...32
FIG. 11. THE STRUCTURE OF THE APPLICATION IMAGEGATHERING ..33
FIG. 12 A COMPONENT DECISION TREE AND ITS LINKED COMPONENTS...36
FIG. 13 AN INSTANCE OF A COMPONENT DECISION TREE ON THE RIGHT-HAND SIDE, AND THE ASSOCIATED

COMPONENTS OF THE APPLICATION IMAGEGATHERING ON THE LEFT-HAND SIDE38
FIG. 14 THE IMPLEMENTATION (LINKING LIST) OF A DECISION TREE...40
FIG. 15. THE LINKING LIST OF THE DECISION TREE ILLUSTRATED IN FIGURE 1341
FIG. 16. THE CONCEPTUAL VIEW OF PUML ...47
FIG. 17. A TREE VIEW OF THE XML SCHEMA OF PGML...55
FIG. 18 THE XML SCHEMA DESCRIPTION OF THE <ADD> ELEMENT ..57
FIG. 19. THE PROCESSING FLOW OF PUML/PGML DOCUMENTS ...60
FIG. 20 INTEGRATING TRANSFORMATION AND ADAPTATION ...67
FIG. 21. AN OVERVIEW OF THE SYSTEM INFRASTRUCTURE...70
FIG. 22. THE INNER ARCHITECTURE OF THE CONTEXT-AWARE ADAPTATION FRAMEWORK........................71
FIG. 23 CLASSES OF COMPONENT MANAGER, COMPONENT FACTORY, AND APPLICATION CONTEXT75
FIG. 24. STATE TRANSITION DIAGRAM OF THE PERSONAL AGENT ...77
FIG. 25. AN INTERNAL VIEW OF A PERSONAL AGENT AND AN APPLICATION STRUCTURE79
FIG. 26. CASES OF USERS’ MOVEMENTS ...80
FIG. 27. THE SEQUENCE DIAGRAM OF ACPS..82
FIG. 28 THE SEQUENCE DIAGRAM OF ACPS WITH AGENT MIGRATION..83
FIG. 29 THE SEQUENCE DIAGRAM OF ACPS WITHOUT AGENT MIGRATION ...83
FIG. 30. THE STRUCTURE OF THE APPLICATION IMAGEGATHERING BY USING THREE STRATEGIES.85
FIG. 31. AGENT MIGRATION USING HAM...86
FIG. 32 AGENT MIGRATION USING FAM...88
FIG. 33 AGENT MIGRATION USING LAM ..90
FIG. 34 THE EXPERIMENTAL SETTING...92

13

FIG. 35 THE EXPERIMENTAL RESULTS ON HAM, FAM, LAM-B, AND LAM-W93
FIG. 36 THE ARCHITECTURE OF UBI-ADAPTING...94
FIG. 37 THE TESTED DEVICES ...94
FIG. 38 THE OVERVIEW OF THE G2..95
FIG. 39 PUML/PGML & AGENT DEVELOPMENT..95
FIG. 40 THE STEPS FOR DEVELOPMENT...95
FIG. 41 USING THE TOOLKIT FOR DEVELOPMENT..95
FIG. 42 THE TOOLKIT WE DESIGNED ...95
FIG. 43 THE TOP FIGURES ARE THE SIMULATING RESULTS OF THE WML CODE, AND THE BOTTOM IS THE

RESULT OF J2ME CODE GENERATED FROM THE CODE OF PUML/PGML..95
FIG. 44 THE CLASS DIAGRAM OF PROGRAMMING AGENTS AND BACK-END MODULES...............................95
FIG. 45 A GENERIC MODEL ...95
FIG. 46 AN OVERVIEW OF G2MR ..95
FIG. 47 THE COMPONENTS OF G2MR..95

14

List of Tables

TAB. 1 THE RELATIONSHIP OF SOLUTION AND OBJECTIVE...25
TAB. 2 THE TYPES OF CONTEXT INFORMATION ...27
TAB. 3 THREE CATEGORIES OF COMPONENTS...33
TAB. 4 THE RESULT OF THE FIRST FIVE STEPS OF TRANSFORMING THE PGML DOCUMENT INTO THE J2ME

MIDP CODE ...64
TAB. 5. THE MAPPINGS FROM PUML TAGS INTO MIDP EXPRESSIONS IN THE PUML-TO-J2ME

TRANSFORMATION STYLESHEET...66
TAB. 6. THE MAPPINGS FROM PUML TAGS INTO WML EXPRESSIONS IN THE PUML-TO-WML

TRANSFORMATION STYLESHEET...66
TAB. 7. THE RESULTS OF THE FIRST MEASUREMENT...92
TAB. 8. THE RESULTS OF THE SECOND MEASUREMENT...92
TAB. 9 THE REVOLUTION ...95
TAB. 10 THE APPLICATION DEMOS ...95
TAB. 11 THE RELATED WORK ...95
TAB. 12 THE SYSTEM WE IMPLEMENT AND THE FUTURE WORK..95

15

Terminology

Name Description Page
form-based
application

Component
an object, like java class in implementation

17

component An object has some computational logic
e.g. Java Object

33

function An container can contain one or more components,
and each component can implement the function

32

implement A component of the component in a function provide
computational logic for the function

32

application
An container contains at least one function

32

agent An object with some state can carry at least one
function

34

the front-end
module

The front-end module is the part running on the
mobile client side, such as WML, CHTML, etc.

31

the back-end
module

The back-end module is applications carried by agents 31

ASCC Application Structure and Component Constraints
An application profile description.

35

context
adaptation:

To adapt applications depending on users’ context

31

mobile execution
environment

WAP, J2ME, PersonalJava, and Microsoft CLI.

18

PUML Pervasive User-interface Markup Language
An XML-based UI description language

45

PGML Pervasive logic Markup Language
An XML-based logic description language

45

U-CAF Ubiquitous Context Adaptation Framework
The framework we design in this dissertation

25

CAAS Context-Aware Adaptation Service
A system we realize

68

Ubi-Adapting
A system we realize

93

G2 Gateway of gateway
A system we realize

95

G2MR Gateway of gateway with MHP and RFID
A system we realize

118

WYSIWYG What You See is What You Get
A function of toolkit

103

follow-me
Application capable of following users

111

16

Chapter 1

Introduction
With the progress of mobile technology, embedded systems and information

appliances have been developed; and various kinds of handsets, networked facilities,

and personal mobile devices enrich our lives. These technologies have been applied to

many fields. For example, there are networked TVs and home entertainment facilities

in home appliances; internet-capable PDAs, mobile phones, wearable computers in

personal mobile applications; and embedded servers in business applications.

Accordingly, context-aware applications, which adapt their behaviors to a changing

environment [1, 2] according to the context, such as indoor position, time of the day,

nearby equipment, and user activities [3], can be developed. Context-aware mobile

tourist guides [4] and location-aware shopping assistants [5] are two examples.

We can now foresee a ubiquitous computing environment [6] where a user can

retrieve his personal information through any nearby computing facility, such as

mobile and embedded computing devices, desktop computers, etc. In such an

environment, information presented on the devices can be adjusted according to the

context of these devices. One of the applications, called ImageGathering, where a

multimedia campus guidance system is built on a campus, can be taken as an example.

Wherever they are on campus, students can always inquire this system for the location

of a building by using a Java phone, PDA, or a laptop. Depending on the context of

the student’s device, a formatted image suitable for the student’s device can be

delivered to the student. When a visitor would like to enter some building on the

campus, he can use his Java phone for more information on that building, and then a

17

PNG image of 64x54 pixels will be sent to him. A notebook user can get a JEPG

image of 340x256 pixels.

The delivery of the required image, depending on the context of device

capabilities and user preferences, dominates the functions of this ImageGathering

system. In addition, whatever device is used, users’ applications will still continue. A

user, for example, can use a desktop computer to check his daily report. When he

moves from room to room, information about his report can still be acquired by a

handheld PDA. In brief, we aim at providing a context-aware adaptive framework that

can not only adapt functions of applications which personally rely on the context of

the devices used, but also keep the executing states of applications even by using

different devices. In this research, we focus on form-based applications, shown as

Figure 1. the reasons are the screen of the client devices are small and the form

capable of interaction with users.

Fig. 1 Form-based applications: the focused applications

Text field

Label

http request

http reply

web servicemobile client

form-based
application

18

1.1 The environment

Mobile and wireless technologies have been changing over the past few years. Through

mobile and embedded devices, such as PDAs, palms, smart phones, and Java phones, people

can surf the content on the Internet. Besides, they can download and install applications from

a content provider’s server over the Internet, like Java game download. Currently there have

been four kinds of the mobile execution environments on plentiful mobile appliances. These

environments include WAP [7], J2ME [8][9], PersonalJava [10], and Microsoft CLI. In the

Microsoft .NET platform, the mobile runtime environment supported can be classified into: (1)

ASP .NET Mobile Pages [11] and (2) .NET Compact Framework [12]. The former attempts to

support major PDAs, cell phones, pagers, and other devices, while the latter surpports all

equipments running Pocket PC 2000, Pocket PC 2002, Pocket PC Phone Edition, etc. Called

Mobile Execution Environments (MExE) in the standard [13], these

environments—classmark 1 to 4—are defined by the 3GPP working groups. They stand for

WAP, J2ME, PJava, and Microsoft CLI, respectively (see Figure 1). In short, device

capabilities are diversity.

19

Fig. 2 Device capability diversity

1.2 The problems

Each of these mobile runtime environments has abundant resources and application interfaces

(APIs) for application developing. Nevertheless, in application developers’ points of view,

developing applications for certain platform of the execution environments, they difficultly

execute these applications on any other of the mobile execution environments. For example, a

J2ME application cannot be executed on a cellular phone merely with a WAE platform (the

runtime environment of WAP). Writing code of an application for each different platform is

not economy.

Our research aims to achieve the objective: applications can be designed without

concerning about what kind of the target mobile devices belongs to. In order to achieve goal,

we attempt to exploit transformation mechanism to convert a program in some programming

language into a program in another language. However, the programs, written in a language,

hold the characteristics of that language. To transform the code into another language is

The environments :
- WML/WAP
- J2ME
- Personal Java
- Microsoft CLI

W M L W M L S J2M E
M ID P

Ja va A W T M ic rosoft M obile
W e b F orm s

W ireless A pplication
Protocol Environm ent

(W A P)

Java 2 M icro Edition
(J2M E)

P ersonal Java
(P Java)

M icrosoft .NET
Com m on Runtim e

Environm ent (CLR)

Types：
- image type
- screen size
….

.

.

.

attributes

devices capability
diversity

The environments :
- WML/WAP
- J2ME
- Personal Java
- Microsoft CLI

W M L W M L S J2M E
M ID P

Ja va A W T M ic rosoft M obile
W e b F orm s

W ireless A pplication
Protocol Environm ent

(W A P)

Java 2 M icro Edition
(J2M E)

P ersonal Java
(P Java)

M icrosoft .NET
Com m on Runtim e

Environm ent (CLR)

The environments :
- WML/WAP
- J2ME
- Personal Java
- Microsoft CLI

W M L W M L S J2M E
M ID P

Ja va A W T M ic rosoft M obile
W e b F orm s

W ireless A pplication
Protocol Environm ent

(W A P)

Java 2 M icro Edition
(J2M E)

P ersonal Java
(P Java)

M icrosoft .NET
Com m on Runtim e

Environm ent (CLR)

W M L W M L S J2M E
M ID P

Ja va A W T M ic rosoft M obile
W e b F orm s

W ireless A pplication
Protocol Environm ent

(W A P)

Java 2 M icro Edition
(J2M E)

P ersonal Java
(P Java)

M icrosoft .NET
Com m on Runtim e

Environm ent (CLR)

Types：
- image type
- screen size
….

.

.

.

attributes

devices capability
diversity

20

complicated. For example, C++ has the property of multiple inheritance, but Java merely has

the property of single inherence. However, there two main problems: Resource Constraints

and Capability diversity are illustrated in Figure 3.

Fig. 3 The problems

1.3 Objectives

For programmers, we want provide Rapid-development, Adaptability, Flexibility. We

accelerate application development on several mobile execution environments.

Rapid-development means programmers can develop applications soon. Adaptability

means functions of applications are adapted rely on the context of the devices used by

the context-aware adaptive framework. Flexibility means we want to provide the

framework of which the migration behavior of mobile agents can be chosen by

programmers. For end-users, seamless-use means a user can change another device to

use and the executing status for this user still continue, even the capabilities of the

21

used device differ from the original one. For system developers, we want to provide

Easy-upgrade. The system can be upgraded soon, while new devices come.

1.4 Application Model

1.4.1 The programming model

We divide the application into two parts: the front-end module and back-end module.

The front-end module contains two main constituents: an image display that can show

images, and a requester that can send requests and receive the replied images. This

module executes on the client device. The back-end module consists several

constituents.

Fig. 4 The application model

22

1.4.2 In an system implementation

As shown in Figure 5, it illustrates Ubi-Adapting, a system implementation. From the

bottom to top, we can there are five modules implemented. They are Application

Profile, Context Profile, Context Awareness Module, Personal Agents, and Adapting

Service Module. Application Profile, Context Profile, and Context Awareness Module

are used in the context-awareness process of context adaptation. Adapting Service

Module can contain one of performers to perform some action, such as application

adaptation service and representation transformation service. On the top of the five

components, there are server side components of applications. In the mobile client

side, there are client modules in these environments: CHTML, personal Java, JavaME,

etc.

Fig. 5 A system implementation

A ppli ca tion

U ser I n t er fa c e

U se r In te rfac e
D e signer

A pp lic a ti on

S cr ip t

A pplic a tion

U se r In te rfac e
Com puta tion

Logic

Client-side
Sc rip t

R em ote
Se rve r -s ide

Se rvice

C om pota tion Logic
Progra m m er

Se rvice
Prov ide r

Se r vic e
Com po nen t s

A ppli ca tion

U ser I n t er fa c e

U se r In te rfac e
D e signer

A pp lic a ti on

S cr ip t

A pplic a tion

U se r In te rfac e
Com puta tion

Logic

Client-side
Sc rip t

R em ote
Se rve r -s ide

Se rvice

C om pota tion Logic
Progra m m er

Se rvice
Prov ide r

Se r vic e
Com po nen t s

mobile client
side

server
side

framework

23

1.4.3 PUML/PGML and APIs

In our programming model (Figure 6), we can use Pervasive User-interface Markup

Language (PUML) [14] and Pervasive loGic Markup Language (PGML) [14] to write

the code for the front-end module in the mobile client side. Several kinds of code

which can be run on the client environments will be generated. In the server side,

programmers can use API to construct agent and then to carry the server sides

components. In this way, agents can carrying the server side components and migrate

between different computers.

Fig. 6 The languages and APIs

Agent

1 <?xml version="1.0"?>
2
3 <puml:user-interface … >
4 <puml:board … >
5 <puml:logic-objects>
6 …
7 </puml:logic-objects>
8
9
10 <puml:picture … />
11
12 <puml:label … />
13
14 <puml:listpaper … />
15
16 <puml:action …>
17 …
18 </puml:action>
19 </puml:board>
20
21 <puml:layout … />
22 </puml:user-interface>

<pgml:add>
<pgml:operand select="a"/>
<pgml:operand select="b"/>

</pgml:add>

<pgml:add>
<pgml:operand value="5" type="int" />
<pgml:operand value="6" type="int"/>

</pgml:add>

<pgml:add result="s" >
<pgml:operand value="5" type="int" />
<pgml:operand value="6" type="int"/>

</pgml:add>

<pgml:add result="s" >
<pgml:add>
<pgml:operand value="3" type="int" />
<pgml:operand value="4" type="int"/>

</pgml:add>
<pgml:operand value="5" type="int"/>

</pgml:add>

mobile client side

server side

XHTML MP
programmer

Java script
programmer

Role

Example

A p pl i c a t io n

U s e r I n te r f a c e

U s e r In te r fa c e
D e s igne r

A p p l ic a t io n

S c r ip t

A pp lic a tion

U se r In te r fa c e
C om pu ta tion

L og ic

C lie n t-s id e
Sc r ip t

R e m o te
Se r ve r - s id e

S e r v ic e

C om po ta tio n L og ic
P rog r a m m e r

S e rv ic e
P rov ide r

S e r v ic e
C o m p o n e n ts

user interface
designer

logic
programmer

service
provider

video provider

applications

Agent

1 <?xml version="1.0"?>
2
3 <puml:user-interface … >
4 <puml:board … >
5 <puml:logic-objects>
6 …
7 </puml:logic-objects>
8
9
10 <puml:picture … />
11
12 <puml:label … />
13
14 <puml:listpaper … />
15
16 <puml:action …>
17 …
18 </puml:action>
19 </puml:board>
20
21 <puml:layout … />
22 </puml:user-interface>

<pgml:add>
<pgml:operand select="a"/>
<pgml:operand select="b"/>

</pgml:add>

<pgml:add>
<pgml:operand value="5" type="int" />
<pgml:operand value="6" type="int"/>

</pgml:add>

<pgml:add result="s" >
<pgml:operand value="5" type="int" />
<pgml:operand value="6" type="int"/>

</pgml:add>

<pgml:add result="s" >
<pgml:add>
<pgml:operand value="3" type="int" />
<pgml:operand value="4" type="int"/>

</pgml:add>
<pgml:operand value="5" type="int"/>

</pgml:add>

mobile client side

server side

XHTML MP
programmer

Java script
programmer

Role

Example

A p pl i c a t io n

U s e r I n te r f a c e

U s e r In te r fa c e
D e s igne r

A p p l ic a t io n

S c r ip t

A pp lic a tion

U se r In te r fa c e
C om pu ta tion

L og ic

C lie n t-s id e
Sc r ip t

R e m o te
Se r ve r - s id e

S e r v ic e

C om po ta tio n L og ic
P rog r a m m e r

S e rv ic e
P rov ide r

S e r v ic e
C o m p o n e n ts

user interface
designer

logic
programmer

service
provider

video provider

mobile client side

server side

XHTML MP
programmer

Java script
programmer

Role

Example

A p pl i c a t io n

U s e r I n te r f a c e

U s e r In te r fa c e
D e s igne r

A p p l ic a t io n

S c r ip t

A pp lic a tion

U se r In te r fa c e
C om pu ta tion

L og ic

C lie n t-s id e
Sc r ip t

R e m o te
Se r ve r - s id e

S e r v ic e

C om po ta tio n L og ic
P rog r a m m e r

S e rv ic e
P rov ide r

S e r v ic e
C o m p o n e n ts

user interface
designer

logic
programmer

service
provider

A p pl i c a t io n

U s e r I n te r f a c e

U s e r In te r fa c e
D e s igne r

A p p l ic a t io n

S c r ip t

A pp lic a tion

U se r In te r fa c e
C om pu ta tion

L og ic

C lie n t-s id e
Sc r ip t

R e m o te
Se r ve r - s id e

S e r v ic e

C om po ta tio n L og ic
P rog r a m m e r

S e rv ic e
P rov ide r

S e r v ic e
C o m p o n e n ts

user interface
designer

logic
programmer

service
provider

video provider

applications

PUML
(user interface)

PGML
(computation logic)

24

1.5 Solutions

We design U-CAF, Ubiquitous Context Adaptation Framework. Figure 7 illustrate this

framework. It is revised from X-CAF [15]. Ubiquitous Context Adaptation

Framework (U-CAF) contains software development kit and application programming

interface, and service components. In this framework, we design context adaptation

PUML/PGML translation, agent migration to approach our objectives.

SDKs and APIs:

We design mobile designer, which is a GUI-based UI authoring toolkit with the

visualized fashioning functions using drag-and-drop and WYSIWYG (What You See

Is What You Get) measures to accelerate the development of user interfaces of

applications on mobile execution environments. Currently, we have designed APIs for

the development of the front-end module (Figure 7) and the back-end module (Figure

7).

Context adaptation:

The use of the context profile to decide proper components [16][17] in application

adaptation is a critical issue. In this paper, we aim to develop an attribute-based

algorithm that decides components appropriately by using dynamic and static context

information (CC/PP and WAP UAProf profiles). These applied information will be

explained in Chapter 2.

PUML/PGML transformation:

One is named Pervasive User interface Markup Language (PUML), which can

describe user interfaces for applications on the small devices; the other is named

Pervasive loGic Markup Language (PGML) to represent the computational logic of

25

applications.

Agent migration:

As a result, certain components of an application with heavy computing load can be

enveloped into the back-end module and run at the server side. For follow-me, a

personal agent [16][17], which can not only be anchored at a certain server to serve its

owner, but also can carry back-end modules of applications as migrating among

servers with its owner. This provides the flexibility for application developments.

Section 1.3 introduces the means of the objectives. The following table shows

the relationship of objectives and solutions. To approach our objectives, we attempt

the technologies introduced above. The following table shows the methods we design.

These techniques will be explained in the later sections.

Tab. 1 the relationship of solution and objective

Solution

Rapid
Development

Adaptability Flexibility Seamless-use System
Easy-upgrade

SDK and API GUI toolkit &
API

Context
awareness

W3C CC/PP
WAP UAProf

 W3C CC/PP
WAP UAProf

Adaptation Context
adaptation

 Context
adaptation

Transformation PUML/PGML PUML/PGML PUML/PGML

Transformation
Stylesheet

Agent
Migration

 FAM, HAM,
LAM

objective

26

Fig. 7 The solution we propose

This paper is organized as follows. After an overall introduction to the context

adaptation and transformation framework, we show context adaptation in Chapter 2.

We will describe the essential aspects of PUML/PGML transformation in Chapter 3.

Chapter 4 presents a system implementation and then explains the software

development kit. In Chapter 5, we introduce the development steps on our system.

Then, some related works are listed in Chapter 6. Finally, we discuss related work and

conclusion.

(defrul e rul e1
(sche dule- user (who ?swh o) (btime ?bti me)

(et ime ? etim e) (w here ?swhere) (acti on ?actionID))
(enter- user (who ?who)
(time ? time)
(where ?wher e))

=>
(if

(and
(eq ?sw ho ?w ho)(< ?bt ime
?time) (> ?e time ?tim e)(
eq ?swh ere ? wher e))
then

(asse rt (a ctio n
(who ?w ho)
(action ?act ionI D)))
)

)

(defrul e rul e1
(sche dule- user (who ?swh o) (btime ?bti me)

(et ime ? etim e) (w here ?swhere) (acti on ?actionID))
(enter- user (who ?who)
(time ? time)
(where ?wher e))

=>
(if

(and
(eq ?sw ho ?w ho)(< ?bt ime
?time) (> ?e time ?tim e)(
eq ?swh ere ? wher e))
then

(asse rt (a ctio n
(who ?w ho)
(action ?act ionI D)))
)

)

<?xml version="1.0" encoding="UTF-8"?>
<ascc xmlns:ascc="http://dcsw3.cis.nctu.edu.tw/project/CMA" ...">
<application id="ImageGathering">
<function id="ImageRetriever">
<default idRef="JPEGRetriever"/>
<component id="JPEGRetriever" ...>
<constraints>
<prf:ImageCapable>Yes</prf:ImageCapable>
<prf:CcppAccept>image/jpeg</prf:CcppAccept>

</constraints>
</component>
<component id="GIFRetriever" ...>
<constraints>
<prf:ImageCapable>Yes</prf:ImageCapable>
<prf:CcppAccept>image/gif</prf:CcppAccept>

</constraints>
</component>
<component id="PNGRetriever" ...>
<constraints>
<prf:ImageCapable>Yes</prf:ImageCapable>
<prf:CcppAccept>image/png</prf:CcppAccept>
<prf:JavaPlatform>MIDP/1.0-compatible</prf:JavaPlatform>

</constraints>
</component>

</function>
...

</application>
</ascc>

Application

User Interface

User Interface
Designer

Application

Script

Application

User Interface
Computation

Logic

Client-side
Script

Remote
Server-side

Service

Compotation Logic
Programmer

Service
Provider

Service
Components

Application

User Interface

User Interface
Designer

Application

Script

Application

User Interface
Computation

Logic

Client-side
Script

Remote
Server-side

Service

Compotation Logic
Programmer

Service
Provider

Service
Components

Application

User Interface

User Interface
Designer

Application

Script

Application

User Interface
Computation

Logic

Client-side
Script

Remote
Server-side

Service

Compotation Logic
Programmer

Service
Provider

Service
Components

1. Software
Development Kit

2. Application
Programming Interface

3. Service

programmers

we

27

Chapter 2

Context adaptation
In this chapter, we will explain the context awareness and adaptation process we

attempt to use. We divide context information into to types. And to adapt applications,

we structure an application, and use XML-based profile to describe it. Section 2.1 and

2.2 explain context awareness and the process for adaptation, respectively.

2.1 Context-awareness

To approach context adaptation, we collect two kinds of context information. The

context information can be collected from many kinds of resources, such as http

request with CC/PP and WAProf information, and the detected information from

sensor devices, like, RFID. We divide them into two categories: Static and Dynamic,

shown in Table 2.

Tab. 2 the types of context information
 Semantic Media Format
Static context
information

device capability
Description

File Access /
Web Resources

W3C CC/PP
WAP UAProf

Dynamic
context
information

Context
information
detected
at runtime

RFID
ZigBee

internal format

The use of the context profile to decide proper components in application

adaptation is a critical issue. In this paper, we aim to develop an attribute-based

algorithm that decides components appropriately by using CC/PP and WAP UAProf

profiles.

28

Nokia8310

Hardware
Platform

Software
Platform

Network
Characteristics

BrowserUA

Wap
Characteristics

Push
Characteristics

prf:component

prf:component

prf:component

prf:component

prf:component

prf:component

prf:Keyboard

prf:NumberOfSoftKeys

prf:ScreenSize

prf:ScreenSizeChar

prf:StandardFont
Proportional

prf:Vendor

prf:Model

prf:TextInputCapable

rdf:type
http://www.wapforum.org/profiles/

UAPROF/ccppschema-
20010430#HardwarePlatform

PhoneKeypad

2

8310

Nokia

10x3

Yes

84x30

Yes

Fig. 8. A segmentation of Nokia 8310’s WAP UAProf profile

Figure 8 illustrates a profile of WAP UAProf in RDF format. The Resource

Description Framework (RDF) is a general-purpose language for representing

information on the Web. This description covers six parts describing some

characteristics of devices: Hardware Platform, Software Platform, Network

Characteristics, BrowserUA, WAP Characteristics, and Push Characteristics. As in

Figure 8, Hardware Platform specifies the hardware properties of devices. These

properties include prf:Keyboard, prf:NumberOfSoftKeys,

prf:ScreenSize, and prf:ScreenSizeChar, whose values can be

PhoneKeypad, 2, 84x30, or 10x3 respectively. Listing 1 demonstrates the XML

serialization form of the context profile in RDF.

29

Listing 1. The XML serialization form of the profile in Figure 8

1<?xml version="1.0"?>
2 <rdf:RDF ...>
3 <rdf:Description rdf:ID="Nokia8310">
4 <prf:component>
5 <rdf:Description rdf:ID="HardwarePlatform">
6 <rdf:type rdf:resource= "http://www.wapforum.org/profiles
7 /UAPROF/cppschema-20010430#HardwarePlatform"/>
8 <prf:Keyboard>PhoneKeypad</prf:Keyboard>
9 <prf:NumberOfSoftKeys>2</prf:NumberOfSoftKeys>
10 <prf:ScreenSize>84x30</prf:ScreenSize>
11 <prf:ScreenSizeChar>10x3</prf:ScreenSizeChar>
12 <prf:StandardFontProportional>
13 Yes
14 </prf:StandardFontProportional>
15 <prf:Vendor>Nokia</prf:Vendor>
16 <prf:Model>8310</prf:Model>
17 <prf:TextInputCapable>Yes</prf:TextInputCapable>
18 </rdf:Description>
19 </prf:component>
20 ...
21 </rdf:Description>
22 </rdf:RDF>

Figure 9 shows Gateway of Gateway (G2), a system we implemented. The

left-hand side is the RFID subsystem. There are three components containing tags,

locators, and a reader. A user takes a tag. A locator is placed in a location, like in a

room. When a user carrying tag enters a room, a locator will trigger this tag to send

the user’s ID information. Then the reader will receive this information.

30

Fig. 9 RFID application

31

2.2 Context adaptation process

2.2.1 Application structure

We divide the application into two parts: the front-end module and back-end module.

The front-end module contains two main constituents: an image display that can show

images, and a requester that can send requests and receive the replied images. This

module executes on the client device. The back-end module consists of four

constituents: Image Transmitter, Cache, Image Retriever, Transcoder, and Data Access.

In this module, Image Transmitter is responsible for receiving clients’ requests and

replying the required images. Image Retriever can obtain the requesting images from

the biological multimedia information provider through Data Access. Next, it will

pass the images to Transcoder for transforming images, such as image resizing, or to

the cache for subsequent retrieving of images immediately. The following lists the

possible procedures to retrieve the required images that the student wants to collect:

 1→2→3→4→5→6→12→13: The procedure means that when Image

Transmitter receives the user’s request, the required images are obtained from the

information provider.

 1→2→7→8→9→12→13: This process refers to obtaining the required image

from Cache.

 1→2→7→8→9→10→11→12→13: This indicates that passing the images to

Transcoder for resizing the images after Image Receiver gets the images in the

second bullet, and then transmitting the result to the requester.

Figure 11 shows an application, which is structured hierarchically. This

application is composed of more than one function that could be implemented by at

32

least one component. The application structure exhibited in Figure 10 can also be

expressed in the form of the two-level hierarchy demonstrated in Figure 11. As we can

see in Figure 11, each function links to candidate components. The function Image

Retriever, for example, links to three components, JPEG Retriever, GIF Retriever, or

PNG Retriever. This indicates that the function Image Retriever can be implemented

by the three components.

Image
Database

Voice
Database

Text
Database

Multimedia Repository

Video
Database

Multimedia Information
provider

Biological Information
Multimedia provider

2: request 3: retrieve

6: return

9: return 7: save

11: return 10: transform

12: return

4: obtain

5: return

8: retrieve

Requester

Image
Displayer

13: reply

Back-end module

Front-end
module

Image Gathering

Type 1 Component

Type 2 Component

Type 3 Component

Legend

1: request
Image

Transmitter
Image

Retriever

cache

Transcoder

DataAccess

Fig. 10. The back-end module of the application Image Gathering

Components, in our system, are classified into three categories: Type1, Type2,

and Type3. Type 1 components have the characteristics inclusive of stateful, relative,

and immoveable. The stateful property means that the component records some

particular data. For instance, Image Cache for the cache function belongs to this

category. In contrast, specifying the stateful property No means that the components

do not keep track of any particular data. If we declare a component as relative, it is

associated with certain resources, and these components have database or TCP/IP

connections. For example, the components of the function Data Access need to be

33

declared as this type, since it connects to the database of the multimedia provider over

the networks. Another moveable property is used to modify the components that fail

to be carried in agent migration.

ImageCacheSize
Tailor Resizer

Transcoder Cache
Image

Retriever

HTTP
Connector

Image
Transmitter

MS
Access

Data
Access

Image
Gathering

JPEG
Retriever

GIF
Retriever

PNG
Retriever

Application

Function

Component

Fig. 11. The structure of the application ImageGathering

Type 1 components are the components connecting to certain resources. As

demonstrated in Figure 10, candidate components of the function Data Access belong

to this type. Type 2 components are those components which can be moved. The

component Image Cache (in Listing 2) is declared as this type. Type 3 components are

usually certain algorithms or pure computational logics, such as the XML

transformation engine javax.xml.transform.Transformer. The following

table arranges the three types of components.

Tab. 3 Three categories of components

Type Stateful/
Stateless

Relative/
Irrelative

Movable/
Immovable

Example

Type 1 stateful Relative immoveable Database
Access

Type 2 stateful Irrelative moveable Cache

Type 3 stateless Irrelative moveable Transcoder

34

2.2.2 Attribute-based component decision algorithm

Take a profile Q for example. The profile Q includes a set of attributes, which can

be expressed as }1{ ni|ai ≤≤ , where ia and n denote an attribute and the total

number of the attributes in the profile individually. Let

}11|{)(, iikii vkandniavadomain
i

≤≤≤≤= indicate the domain of the attribute ia ,

and][iavalue to be the value of the attribute, where iv is the number of possible

values of ia . For instance, Listing xxx involves the attribute apableTextInputC , which

has yesapableTextInputCvalue =][and },{)(noyesapableTextInputCdomain = .

An agent body contains a number of applications. An application comprises one

or more functions mfunfunfun ...,,, 21 . Each of them can be implemented by at

least one component, i
r

ii
i

compcompcomp ...,,, 21 , where ni ≤≤1 and ir denotes

the number of the user-defined components implementing ifun . For example, 1fun

can be implemented by components 1
1comp and 1

2comp (illustrated in Figure 11).

Each component x
ycomp has a constraint set yxCS , , which contains zero or more

tuples),(, ikii ava , where ni ≤≤1 and |)(|1 ii adomaink ≤≤ , annotated under

each component shown in Figure 12. We can accomplish the testing of a component

to see if it can be chosen to implement its corresponding function by using this

constraint set. For a component x
ycomp , if for the given profile Q , x

ycomp can be

chosen, it must be true that each attribute value
ikiav , of),(, ikii ava in its yxCS ,

is equal to the value of the same attribute ia in Q . If so, we say that the component

is satisfied. For example, assume that a certain profile and two components 1
1comp

35

and 1
2comp , and the function 1fun are given. The component 1

1comp has the

constraint set)},{(yesleColorCapab and 1
2comp has)},{(noleColorCapab .

Because the value of the same attribute leColorCapab in this profile is yes , 1
1comp

is satisfied. 1
1comp can be chosen to implement 1fun accordingly. A constraint set,

in implementation, can be established by a <constraints> element in the ASCC

description. As in Listing 2, Lines 9-10 describe two elements,

<prf:ImageCapable> and <prf:CcppAccept>. Therefore, the component

1
1comp is declared suitable for processing JPEG files. As a result, the constraint set

)}/,(),,{(1,1 jpegimageCcppAcceptyesageCapableImCS = will be generated.

A component decision tree can be seen as a tree hierarchy. It comprises a number

of attribute nodes, each of which has several branches linked to other attribute nodes

as its child nodes. Let
idian , indicate an attribute node, which is semantically

equivalent to the attribute ia with the same name in the given profile Q. Let
ikiav ,

denote a branch of an attribute node
idian , , where |)(|1 ii adomaink ≤≤ , id is

between 1 and the component number at the same level in a tree, and ni ≤≤1 .

Each attribute node
idian , has a linked component set

idiLC , that includes the

components associated via dotted lines in the component decision tree, illustrated in

Figure 12. As in the figure, the linked component sets of the attribute nodes 1,3an

and 2,3an are },{ 1,21,11,3 compcompLC = and }{ 2,22,3 compLC = respectively.

36

.

.

.

Function Component Component Decision Tree

1fun
1
1comp

1
2comp

2
1comp

2
2comp

1,1av 2,1av1,1an

1,2an

1,3an

1,2av 2,2av

1,3av 2,3av
2,3an

1,3av 2,3av

2,2an

3,3an

1,2av 2,2av

1,3av 2,3av
4,3an

1,3av 2,3av

cursor
2fun

)},(),,{(2,222,11 avaava

)},(),,{(1,221,11 avaava

)},{(1,22 ava

)},{(2,22 ava

Fig. 12 A component decision tree and its linked components

To operate a component decision tree, there are a pointer cursor, and two

operations,),(
1,1, ++ ii didi ananEXTN capable of moving cursor from an attribute

node
idian , to its child node

1,1 ++ idian , and)(
1,1 ++ idianISITV representing cursor

visiting an attribute node
1,1 ++ idian . Taking Figure 11 for example, the pointer cursor

will point to the attribute 1,3an since the operation),(1,31,2 ananEXTN is applied.

Thereupon 1,3an is visited, denoted by)(1,3anISITV . Furthermore, let t denote a

traverse from the root to a certain leaf node. A traverse t, a sequence of ()ISITV and

()EXTN , can be expressed as SEQ(t)=<)(1,1anISITV ,),(
2,21,1 dananEXTN ,

)(
2,2 danISITV ,),(

32 ,3,2 dd ananEXTN , ...,),(
1,1, ++ ii didi ananEXTN , ...,

)(, ndnanISITV >. In Figure 12, for instance, a traverse t starts from the attribute node

1,1an to the attribute node 1,3an . Thus, SEQ(t) is equal to <)(1,1anISITV ,

),(1,21,1 ananEXTN ,)(1,2anISITV ,),(1,31,2 ananEXTN ,)(1,3anISITV >.

Accordingly, while a traverse t is built, the linked component set
idiLC , of each

37

attribute node
idian , visited can be united to establish a proper component set

)()(,

)()(
,

,

i

idi
i

di

TSEQinanISITwhere
dandieachfor

anLCtP

V

U= .

For example, suppose that there is a profile {ImageCapable, CCPPAccept,

JavaPlatform, ...}, and their domains can be expressed domain(ImageCapable)={yes,

no}, domain(CCPPAccept)={yes, no}, etc. Figure 13 demonstrates the structure of

functions and components of an application. The function Image Retriever can be

implemented by three components: JPEGRetriever, GIFRetriever, and PNGRetriever.

The constraint set of the first component is 1,1CS ={(ColorCapable, yes),

(CcppAccept, image/jpeg)}, and that of the second component is

2,1CS ={(ColorCapable, yes), (CcppAccept, image/gif)}. Moreover, in the component

decision tree, each attribute node
idian , has a number of branches and a linked

component set
idiLC , . As in Figure 13, the attribute node ImageCapable has two

branches, yes and no. The attribute node CCPPAccept has three branches

encompassing image/jpeg, image/gif, and image/png. In addition, the attribute node

1,3an is JavaPlatform whose linked component set is 1,3LC ={JPEGRetriever}, and

that of 2,3an is }{2,3 everImageRetriLC = .

Let us assume that a traverse t is made by moving cursor from the root 1,1an

(ImageCapable) to the leaf node 1,3an (JavaPlatform). As a result, the sequence

SEQ(t)=<VISIT(ImageCapable), NEXT(ImageCapable, CCPPAccept),

VISIT(CCPPAccept), NEXT(CCPPAccept, JavaPlatform), VISIT(JavaPlatform)> and

the proper component set of t, P(t)={JPEGRetriever} are established.

38

 Function Component Component Decision Tree

JPEG
Retriever

GIF
Retriever

PNG
Retriever

Image
Capable

CCPP
Accept

Java
Platform

yes

image/jpeg
image/gif

MIDP/1.0-
compatible

image/png

no

Java
Platform

Java
Platform

Image
Retriever

)},(

) ,{(

image/jpegCcppAccept

,yesleColorCapab

)},({ image/figCcppAccept

)}1.0,(

),,(

) ,{(

e-compatiblMIDP/rmJavaPlatfo

image/figCcppAccept

,yesleColorCapab

cursor

Fig. 13 An instance of a component decision tree on the right-hand side, and the
associated components of the application ImageGathering on the left-hand side

The problem of how to decide a proper component to implement each function f,

if given an application p and each function f of the application p?; or of how to adapt

an application p, can be solved through the attribute-based component decision

algorithm. This is because SEQ(t) and P(t) will be generated after traversing from the

root to a leaf node. In SEQ(t),),(
1,1, ++ ii didi ananEXTN implies)(, idianISITV and

][, idianvalue =
idiav , . Therefore, if a component x

ycomp exists in P(t), then iki,∀

][, idianvalue =
idiav , =][iavalue , where idian , = ia and ia in yxCS , . In other

words, for a traverse t the proper component set P(t) contains the components, which

are satisfied. Specifically speaking, given an application, if the suitable component

exists for each function, this component can be chosen from P(t). Moreover, if there

are two or more suitable components at the same time, the last-examined component

will be chosen as default. This algorithm solves the problem and eliminates the need

for traversing a tree from the root to a leaf node. Once sufficient components exist in

the proper component set P(t), traversing a component decision tree can terminate at

39

some internal attribute node which is not a leaf node.

In implementation, instead of realizing this algorithm by using the data structure

tree, we realize this algorithm by means of a linking list. The reason for this is that

using the tree as the data structure consumes more memory space to choose proper

components. For each attribute node
idian , at the same level of a component

decision tree, the information recorded for the nodes seems different, except for the

linked component set
idiLC , . However, they are essentially identical. Take the

previous profile Q and the tree in Figure 12 for example. At level 3, 1,3an , 2,3an ,

3,3an , and 4,3an are semantically equivalent to the attribute 3a in the profile Q.

Therefore, to implement the concept tree, we use a linking list. In this way, for each

level in a tree, attribute nodes
idian , , for all id , where ni ≤≤1 and ii vd ≤≤1 ,

are regarded as one node in a linking list. Figure 14 represents a linking list that starts

from the root attribute node connecting to its child attribute node in the tree as the

next node, which also links to its child node as the next node, and so on. This

hierarchy of the linking list equals that of the component decision tree. In this list, an

attribute node ian has two links: one connects to a child attribute node 1+ian ; the

other binds its linked component set (a hash table in practice). In Figure 14, for

example, the linking list, kept by a table index, starts from the attribute node 1an to

the attribute 4an , each of which binds a linked component set. For instance, the

attribute node 3an retains a link component set containing two components 1
1comp

and 1
2comp .

40

Fig. 14 The implementation (linking list) of a decision tree

Figure 15 illustrates the implementation of the component decision tree (Figure

12). Symmetrically, by traversing from the root node Image Capable to the node Java

Platform, the proper component JPEG Retriever for the function Image Retriever can

be decided.

Component Decision Tree

Table
Index

Attribute
Node

Linked
Component
Hash Table

Function
1

fun

Component 1
1comp 1

2comp 1
3comp

2an 4an 1 an 3an

41

Component Decision Tree

Table
Index

Attribute
Node

Linked
Component
Hash Table

Function

Component
JPEG

Retriever
GIF

Retriever
PNG

Retriever

Image
Capable

CCPP
Accept

Java
Platform

Image
Retriever

)},(

) ,{(

image/jpegCcppAccept

,yesleColorCapab)},({ image/figCcppAccept

)}compatible-MIDP/1.0orm,(JavaPlatf

),,(

) ,{(

image/figCcppAccept

,yesleColorCapab

Fig. 15. The linking list of the decision tree illustrated in Figure 13

In our system, we apply an attribute-based component decision algorithm to the

application adaptation. Applications carried by the agent are adapted when the agent

migrates to a new CAAS server. Implementing the component decision tree by a

linking list simplifies the maintenance of attribute nodes. The space complexity is the

sum of linked component hash tables | idi
idall
LC ,∑ | for all i, where Mi ≤<1 . It is

less than Mnm * , where mn is the number of attributes, and M is the size of the

max linked component hash table. Besides, M is a constant. Therefore, the space

complexity is)(mnO .

In terms of time complexity, the time complexity is constant for the

attribute-based algorithm as the processing time does not depend on the number of

components. By contrast, we can consider a simple algorithm that decides proper

components by examining each component. Thus, we inspect the constraint set

42

yxCS , for each component x
ycomp . This costs)(mc nnO ∗ worst-case time, where

cn denotes the total number of components of an application, and mn =max(| yxCS , |)

indicates the total number of attributes. The cost of the attribute-based algorithm is

merely affected by the length of the linking list (the height of the component decision

tree). In addition, the link can be built from the attributes in yxCS , for all

components x
ycomp in an application instead of generating from all attributes in a

given profile. Therefore, its time complexity costs mn =max(| yxCS , |). This means

that the time complexity is dominated by the size of the max constraint set. As it can

be seen, using the attribute-based algorithm to support decisions about component

selection, facilitates programming of adaptive applications. It can support a large scale

system with a large number of diverse implementations of particular functions.

2.2.3 Application Structure & Component

Constraints

In order to enable this framework to be aware of the structures of applications, we

define Application Structure and Component Constraints (ASCC), an application

profile description. Listing 2 illustrates the ASCC profile of the application

ImageGathering.

43

Listing 2. The ASCC profile to describe structure of ImageGathering

1 <?xml version="1.0"?>
2 <ascc xmlns:ascc=http://dcsw3.cis.nctu.edu.tw/project/CAAS ...>
3 <application id="ImageGathering">
4 <function id="ImageRetriever">
5 <default idref="JPEGRetriever"/>
6 <component id="JPEGRetriever" priority="51%"
7 stateful="No" relative="No" carried=”No”>
8 <constraints>
9 <prf:ImageCapable>Yes</prf:ImageCapable>
10 <prf:CcppAccept>image/jpeg</prf:CcppAccept>
11 </constraints>
12 </component>
13 <component id="GIFRetriever" priority="50%"
14 stateful="No" relative="No" carried=”No”>
15 <constraints>
16 <prf:ImageCapable>Yes</prf:ImageCapable>
17 <prf:CcppAccept>image/gif</prf:CcppAccept>
18 </constraints>
19 </component>
20 <component id="PNGRetriever" priority="50%"
21 stateless="No" relative="No" carried=”No”>
22 <constraints>
23 <prf:ImageCapable>Yes</prf:ImageCapable>
24 <prf:CcppAccept>image/png</prf:CcppAccept>
25 <prf:JavaPlatform>MIDP/1.0-compatible</prf:JavaPlatform>
26 </constraints>
27 </component>
28 </function>
29 <function id="Transcoder">
30 <default idref="SizeTailor"/>
31 <component id="SizeTailor" priority="50%"
32 stateful="No" relative="No" carried=”No”>
33 <component id="ColorTransformer" priority="50%"
34 stateful="No" relative="No" carried=”No”>
35 </function>
36 <function id="Cache">
37 <component id="ImageCache"
38 stateful="Yes" relative="No" carried=”Yes”>
39 </function>
40 <function id="DataAccess">
41 <component id="MSAccess" stateful="Yes" relative="Yes">
42 </function>
43 <function id="ImageTransmitter">
44 <component id="HTTPConnector"
46 stateful="Yes" relative="Yes"/>
47 </function>
48 </application>
49</ascc>

As we can see in Listing 2, the <application> element includes five

<function> elements, which can describe the five functions. In each

<function>, the candidate components can be specified. Lines 4-28, for instance,

44

declare that <component id=”JPEGRetriever” ...>, <component

id=”GIFRetriever” ...>, and <component id=”PNGRetriever ” ...>

can implement the Image Retriever function. In advance, within a <component>

element, the properties, stateful, relative, and carried, can be used to set

components stateful/stateless, relative/irrelative, and carried/un-carried respectively.

The priority property concerns the priority of a component, one of which is

chosen in each application adaptation. Furthermore, to set a component as a default

component for a function, we can use the element <default>. If we want to set a

component implementing the function which cannot be replaced with others, we can

use the property “unchanging=’Yes’”.

45

Chapter 3

PUML/PGML

Transformation

In this chapter, we will show the design of PUML and PGML, the intermediate

languages for transformation. After the introduction, we will explain the

transformation mechanism, and then the use of the mechanism context adaptation and

PUML/PGML transformation.

3.1 Pervasive User Interface Markup Language

(PUML)

3.1.1 Conceptual view

The principles of designing PUML including: (1) user interface abstracting; (2)

intermediate language fashioning, and (3) OO (Object-oriented) [19] conceptualizing.

To achieve the first, we analyze the characteristics of primary languages, including

WML 1.1 [20], J2ME MIDP v1.0 [21], on the small and mobile devices. User

interfaces of applications can be divided into two classes roughly. One is plentiful

category; the other is fundamental category. User interfaces in the former has

abundant widgets to display UI controls. User interfaces of the applications running

on PCs, for instance, contains menu bar, tool bar widgets, etc. In addition, displaying

46

HTML documents on the desktop of PCs has a variety of modules, involving Frames

module, Applet module, and etc. Respecting user interfaces on the screen of the small

and mobile device, there are not a wide variety of widgets to render UI controls. It

merely consists of basic presenting modules, such as Form module, Image module.

 In this paper, we attempt designing form-based user interfaces to investigate

device independence of the applications on the small and embedded devices. There

are three primary reasons. First, the form module is the basic interaction component

of user interfaces. Second, it is the module which is in the intersection of the UI

components of J2ME and WML applications. It means that the widgets in the

intersection module can be rendered both on the user interfaces of WML and J2ME

applications. For example, bottom belongs to this kind of the widgets. Scroll bar,

however, does not reside in the intersection, because it is incapable to be displayed on

either one of them. Finally, to explore problems in approaching device independence

via simple target languages, we can comprehend the use of markup languages to

approach device independence easily. Moreover, we can gradually add other modules

to enrich the PUML capabilities.

 From the above considerations, we design PUML as a form-based user interface

markup language. A user interface description of PUML comprises several containers.

Each of the containers contains the basic widgets including label, text filed,

single-choice listing, multi-choice listing, picture, and action. The following figure

shows the conceptual view of PUML. The next section will detail the widgets and

document structure of PUML, and a table shows the XML schema of PUML .

47

 Action

1. …
2. …
3. …
…

ˇ

ˇ

1. …
2. …
3. …
…

Text Field

LabelLabel

Multi-choice
Listing

Container

Single-choice
Listing

Picture

Fig. 16. The conceptual view of PUML

In terms of the second point, without doubt the language based on XML can

serve as an intermediate and transformable language, explained in Section 1. In the

third of the principles, we wish that writing PUML and PGML codes is in

object-oriented manner. In such a way, programmers can write the PUML/PGML

more intuitionally. Additionally, applications can be designed by applying the

object-oriented analysis. For the reason, we design that to use a PGML description,

e.g. a .pgml file, in a PGML document as an object used in Java [22]. The detail will

be detailed in the following sections.

3.1.2 The language description

By exploiting XML, in PUML we define <puml:label>, <puml:textnote>,

<puml:listpaper>, <puml:picture>, and <puml:action> to stand for

label, text field, list, image, and action, respectively. These elements are the widgets

which are involved in a <puml:board> container. Listing 3 illustrates the

document structure of a user interface description using PUML. The DTD [23][24] of

PUML can be referred in Appendix B.

The <puml:user-interface> element has three types of child elements,

which are <puml:logic-objects>, <puml:board>, and <puml:layout>.

48

The <puml:logic-objects> element is used to declare the logic object,

e.g. .pgml file, and the name used in a PUML document. A <puml:board>

element can contain <puml:textnote>, <puml:listpaper>,

<puml:label>, <puml:picture>, and <puml:action> elements; besides,

each of the child elements can occur more than once. All of these elements can be

rendered into UI controls capable of interacting with users. The detail of these

elements will be explained in the next section.

A <puml:layout> element can specify the layout of the boards in a PUML

document. On smart phones or some mobile devices, it has no effect, because their

screens cannot display two or more boards meantime. However, if the description is

migrated to be rendered on the screen of PCs, displaying of these boards is in disorder.

Hence, we design the <puml:layout> element to state the arrangement of boards

for extending the capability of PUML in the future. Other details concerning the

elements will be explained in the next two sections.

49

Listing 3. An overview of the document structure of PUML:

1 <?xml version="1.0"?>
2
3 <puml:user-interface … >
4
5 <puml:logic-objects>
6 …
7 </puml:logic-objects>
8
9 <puml:board … >
10 <puml:logic-objects>
11 …
12 </puml:logic-objects>
13
14 <puml:textnote … />
15
16 <puml:picture … />
17
18 <puml:label … />
19
20 <puml:listpaper … />
21
22 <puml:action …>
23 …
24 </puml:action>
25 </puml:board>
26
27 <puml:board …>
28 …
29 </puml:board>
30
31 <puml:layout … />
32 </puml:user-interface>

3.1.3 The elements of PUML

The top level elements are <puml:logic-objects>, <puml:board>, and

<puml:layout>. A PUML document can has at most one <puml:layout>

element. As mention in last section, it can be used to specify how to layout the board

in that document. <puml:logic-objects> involves several

<puml:object> elements, each of which declares a PGML document used in

<puml:board> elements. Besides, the <puml:logic-objects> element can

be directly applied into <puml:board> element. When a

50

<puml:logic-objects> element is used in a board, the visibility scope of the

<puml:object> elements, declared within the <puml:logic-objects>

element, is limited in this board. It means that the names of the <puml:object>

elements, each of which stands for a PGML file, can be used in the board container

only. <puml:board>, as mentioned above, is the basic container element, which

includes the following child elements: <puml:picture>, <puml:label>,

<puml:textnote>, <puml:listpaper>, <puml:action>, and

<puml:logic-objects>. Moreover, it has the three attributes: name, title,

and seqNo. The name attribute can be used to identify a board of the boards

described in a PUML document. For the attribute, some value must be assigned by

programmers. Concerning the meaning of the seqNo attribute, the seqNo attribute

specify its priority. If the value of this attribute were 0, the board would be displayed

first. If it were 1, the board, displayed on the screen, would follow the first one, and

vise versa.

 A <puml:picture> element, in a <puml:board> … <puml:board>

block, can be used to show an image. It has four attributes: name, source,

altText, and align attributes. A source attribute can be assigned to locate an

image, which is specified to be exhibited. altText is the attribute which can be set a

text value so as to be shown instead when the image cannot be displayed. The align

attribute points the alignment of the image. Three attribute, left, center, and

right, could be chosen to assign to this attribute.

A <puml:label> is similar to the label of the windows on the PCs. It can

display a read-only text string on the screen. Its main attribute is showText, which

can be assigned a string value to be displayed on the screen. We can use this element

to show some title or prompt information. Oppositely, <puml:textnote> can get

51

a string from the user’s input. Namely, it allows users to input a certain value. Besides

this attribute, the type attribute of the element can be assigned two values: text

and password. If we set the attribute text, the value of the element would be

rendered into the input value on the screen directly. If we set the attribute password,

the value will be displayed with a character * to replace each character in the original

string. It signifies that displaying of the input value is encrypted.

The <puml:listpaper> element serves as a choice group for picking a

single item of a listing, or selecting a group of options among the items of the listing.

The child content, within the element, includes at least one <puml:item> element

as the optional items. To make the element be a multiple-choice or single-choice

listing control, the mode attribute of the element can be set multi or single,

respectively. Sharing the same function with the name attribute mentioned above, the

iname attribute is assigned an ID for the element. Specifically, it emphasizes that it is

a variable recording index values of the chosen items, instead of the values

themselves. The ivalue attribute is the attribute which records indexes of the

chosen <puml:item> elements in the <puml:listpaper> block. In single

mode, the index value is an integer, counted from 1. The index value, differently,

records a string value that could be 1, 1;2, 1;3, 1;3;4, and so on. As regards

<puml:item> elements, each of them has a showText attribute displaying a

prompt text to users, a value attribute recording the value of the item, and a

selected attribute indicating whether it has been chosen.

<puml:action> elements can bind the events, which are triggered by the

widgets of a PUML document, to the event-handling method of a PGML document.

On the user interfaces of WAP-capable phones or J2ME smart-phones, it is rendered

into a push item, which can be selected by users. For example, it could be a bottom if

52

it is displayed on the user interface of PCs. Child elements of the element could be

<puml:use-object>, <puml:change>, and <puml:nextboard>. Using

<puml:use-object> can declare that a name of an object, e.g. a PUML

document, and the object owns a method to handle the events caused by the trigger of

the action (shown as Line 3 in Listing 4). An object can be used in the board, if

declared in this board or in the root element <puml:user-interface> via

<puml:use-object> and <puml:object> elements. It means that the object,

like a global variable, can be used in each of the <puml:board> elements within

the <puml:user-interface> region.

To input parameters into a method, we can use <puml:param> elements as the

child elements of the <puml:use-object>. Every <puml:param> element has

a name and a value attribute; besides, the arrangement of the <puml:param> needs

to conform to the order of the arguments of this method. Particularly, the usage of the

attributes in a <puml:param> is either using only a select attribute, or using an

attribute pair (type and value) alternatively. In the former, the select attribute

can be assigned the value which refers to the name attribute of some widget element

declared in the same board. It indicates that using this element as a variable; besides,

the value attribute of this element can be retrieved at runtime. Alternatively, the latter

can be used if programmers would like to input a value to the method directly. Line

5-8 and Line 10-12 in Listing 3 illustrate the two examples of using the select

element and the type and value pair, respectively. In addition, the returned value

from the method can update the attribute value of some widget which is specified by

means of the <puml:change> element, shown in Line 14-19. Respecting the

<puml:nextboard> element (Line 21), an name of some board can be assigned to

the goto attribute of the element. It can change the screen to display the board

53

specified, when its parent element <puml:action> is triggered.

Listing 4. Examples of <puml:use-object>, <puml:param>, and <puml:change>

1 <puml:action name="action" showText="actionDemo">
2
3 <puml:use-object name="object1" method="getRandNum" />
4
5 <puml:use-object name="object1" method="getMax">
6 <puml:param select="note1" />
7 <puml:param select="note2" />
8 </puml:use-object>
9
10 <puml:use-object name="object1" method="getAbsVal">
11 <puml:param type="int" value="-1" />
12 </puml:use-object>
13
14 <puml:change container="board1" component="note2" update="value">
15 <puml:use-object name="object1" method="getMax">
16 <puml:param select="note1" />
17 <puml:param select="note2" />
18 </puml:use-object>
19 </puml:change>
20
21 <puml:nextboard goto="board2" />
22
23 </puml:action>

3.2 Pervasive LoGic Markup Language (PGML)

3.2.1 Design Principle

In [15], we mentioned the markup language of the event-handling logic. Currently, we

have revised the language and rename it Pervasive loGic Markup Language (PGML).

We endeavor to enable the language to support a wide range of devices to approach

device independence. Initially, we concentrate on applying the language to the small

and mobile devices. Like PUML, the design principles of the language we consider

are: (1) computation generalizing, (2) intermediate language fashioning, and (3) OO

conceptualizing.

54

The first means that, logic languages, such as C, Java, or WML Script, have the

primary statements to declare variables and function blocks, and flow-control and

condition-control mechanisms to complete basic computation. Therefore, we abstract

the primary expressions and statements to define PGML. The second and third points

are explained in Section 1 and 2.1. From the three points, we make PGML own the

following capabilities:

 The object-oriented concept

 Local and global variables declaration

 Mathematical, logical, and boolean expressions

 Flow-control and condition-control statements

 Method declarations.

3.2.2 The design of PGML

Peripherally the features of PGML and PUML are different, but essentially the two

languages have the same intention. PGML aims to describe the computational logic in

the XML format. The computational logic is a section of an application, containing

mathematical, comparison computations, and method invocations, etc. Figure 17

demonstrates a PGML object in a tree view of the XML Schema [25]. An object, e.g.

a PGML file, is composed of a variable declaration <declaration> and a least

one method <method>. Listing 5 shows an overview of the PGML document

structure.

55

Fig. 17. A tree view of the XML Schema of PGML

Listing 5. The document structure of PGML:

1 <?xml version="1.0"?>
2 <pgml:object … >
3
4 <pgml:declaration>
5 …
6 <variable …>
7 …
8 </pgml:declaration>
9
10 <pgml:method … >
11
12 <pgml:in> … </pgml:in>
13
14 <pgml:declaration> … </pgml:declaration>
15
16 <pgml:action … >
17 …
18 <pgml:if> … </pgml:if>
19 <for> … </for>
20 <assign … > … </assign>
21 …
22 <pgml:return … />
23 </pgml:action>
24
25 </pgml:method>
26
27 </pgml:object>

To explain expressing computational logic in XML in advance, we take four simple

examples of <add>, shown in the following listing. Line 2-5, Line 7-10, and Line 12-15

denotes that a+b, 5+6, and s=5+6, respectively. In detail, Figure 18 presents that an <add>

contains two child elements as its operands. One of the two elements could be one in the

elements of the MathExpression Group, or in those of the OperandGroup group, such

as the <operand> element. One of them, for example, can be a <add> element (Line

56

17-23), and consequently the code of PGML will be transformed into s=(3+4)+5. Other

cases of using PGML and converting PGML expressions into the Java syntax are illustrated in

Appendix A.

Listing 6. The document structure of PGML:

1
2 <pgml:add>
3 <pgml:operand select="a"/>
4 <pgml:operand select="b"/>
5 </pgml:add>
6
7 <pgml:add>
8 <pgml:operand value="5" type="int" />
9 <pgml:operand value="6" type="int"/>
10 </pgml:add>
11
12 <pgml:add result="s" >
13 <pgml:operand value="5" type="int" />
14 <pgml:operand value="6" type="int"/>
15 </pgml:add>
16
17 <pgml:add result="s" >
18 <pgml:add>
19 <pgml:operand value="3" type="int" />
20 <pgml:operand value="4" type="int"/>
21 </pgml:add>
22 <pgml:operand value="5" type="int"/>
23 </pgml:add>

57

Fig. 18 the XML Schema description of the <add> element

By composing these statements in the functions of a PGML document, each of

these can be specified to deal with an event triggered by a widget of the user interface.

A statement is composed of several expressions, each of which is a series of variables,

operators, and method calls. Through PGML, a logic programmer can write

compound expressions by combining expressions to construct the logic section of an

application in the XML format. For example, a programmer layouts a button on the

user interface of an application, and he can write the addTwoNum() method in the

PGML document to handle the button pressed, shown as listing 7.

Programmers can use PGML elements to write the computational logic. For

instance, the <pgml:method> element expresses a method declaration block. The

<pgml:in> element contains some child elements, which are the arguments needed

passing into this method. In PGML, there is a element <pgml:init> similar to the

<pgml:in> element. Differently, it is used to declare and initiate the local variables

58

in a flow-control element <pgml:for>…</pgml:for>, or a method declaration

block <pgml:method>…</pgml:method>. The following listing demonstrates a

PGML example, and Listing 8 shows the Java source program transformed from the

PGML code. The detail related to the transformation mechanism will be explained in

the next section.

Listing 7. A method declaration in PGML:

1 <?xml version="1.0"?>
2 <pgml:object name="addTwoNum" version="1.0"
3 xmlns:pgml="http://dcsw3.cis.nctu.edu.tw/Project/
4 pervasive/PGML/" >
5
6 <pgml:method name="sum" visibility="public" return-type="int">
7
8 <pgml:in>
9 <pgml:variable name="num1" type="int" />
10 <pgml:variable name="num2" type="int" />
11 </pgml:in>
12
13 <pgml:action>
14 <pgml:return>
15 <pgml:add>
16 <pgml:operand select="num1" />
17 <pgml:operand select="num2" />
18 </pgml:add>
19 </pgml:return>
20 </pgml:action>
21
22 </pgml:method>
23
24</pgml:object>

59

Listing 8. The Java code transformed from the PGML document in Listing 7:

1 package SumExample;
2 import SumExample.*;
3 import java.lang.Integer;
4 import java.lang.String;
5
6 public class addTwoNum {
8 public addTwoNum(){ }
9 public int sum(String sys_num1, String sys_num2){
10 int num1= Integer.parseInt(sys_num1);
11 int num2= Integer.parseInt(sys_num2);
12 return (num1 + num2);
13 }
14 }

60

3.3 Leveraging XSLT/XPath Transformation

3.3.1 An overview of language transformation

mechanism

PUML/PGML
Well-formedness
and Validating

Checking

DTD/
XML Shema

PUML/PGML
Transforming

PUML/PGML
Compiling

PUML/PGML
Parsing

PUML
document

PUMLPUMLWML/WMLS
Codes

Transformation
StyleSheets

PGML
document

Source Tree Result Trees

User Interface
Designer

Computational
Logic Programmer

PUMLPUMLJ2ME MIDP
Codes

Fig. 19. The processing flow of PUML/PGML documents

In [18], we attempted the context-aware adaptation first time by using CC/PP and XSLT. Then

we have refined that and designed PUML and PGML for context aware adaptation and

transformation. Figure 19 is the overview of transforming the PUML and PGML documents

into the J2ME and WML languages. To transform PUML/PGML, we provide a basic

development toolkit involving PUML/PGML checker, PUML/PGML parser, PUML/PGML

transformer, and MExE Language Compiler to complete the transformation process. The

process contains the following four main steps:

PUML/PGML well-formedness checking and validating: When finishing writing a

PUML/PGML document, a programmer can use the development toolkit to check the

well-formedness and validity for the PUML/PGML document.

61

PUML/PGML parsing: With no error found in the document, the document will be

parses into a DOM tree.

PUML/PGML transforming: The PUML/PGML transformer, deriving form the

transformation engine Xalan-Java 2.5.1 [63], is capable of transforming the tree into the

result trees through each transformation stylesheet for the target languages. Each of

stream results (javax.xml.transform. stream.StreamResult) formed form

a result tree is generated. Besides, the stream results are serialized into source programs.

The transformation procedure will be explained in the next section.

PUML/PGML compiling: MExE Language Compiler (mexe-compiler) can compile

each of the source programs generated into its specific executable code. For example,

for the J2ME and PJava platforms, a Java source program (a .java file) generated is

compiled into Java bytecodes (.class files). Nonetheless, not all the generated source

programs need to be compiled. .wml (WML) and .wmls (WML Script) codes need no

compilation, since they can be interpreted by user agents of client devices. From this

point, if the source programs of Java were generated, they would be compiled into

executable codes by the mexe-compiler. Otherwise, when the programs of WML and

WML Script are generated, they are not compiled.

3.3.2 XSLT transformation procedure

This section will explain how to achieve transforming PUML and PGML documents through

XSLT/XPath [63]. To explain the mechanism, we use Listing 5 as the input PGML document

and the PGMLtoJ2MEMIDP.xsl stylescheet capable of transforming a PGML document into a

J2ME document. Retrieving from the stylesheet, four templates, <xsl:template

match="/">, <xsl:template match="pgml:object">, <xsl:template

62

match="pgml:method">, <xsl:template match="pgml:in">, and

<xsl:template match="pgml:variable"> are shown in Listing 7.

The inputted PGML document is parsed into a source tree. Then, the transformer would

traverse the nodes of the input source tree from the root node to the leaves. At the beginning,

the first template will be fired once the root node is encountered. A J2ME code, which is

described within the <xsl:template match="/"> … </xsl:template>, is

generated thereupon. In XSLT, <xsl:value-of … /> can be used to retrieve the name of

the node which is visited, and the values of the attributes of this node; moreover, the

<xsl:apply-templates … /> instruction is used to process all of the children of the

current visited node, and to fire the matching templates successively.

In this way, the code generated is illustrated in Step 1 of Table 1. The other four steps

demonstrate generating the J2ME code from the input PGML document by applying the last

four templates, exhibited in Listing 7. Step 2 will occur when the transformer visits the root

element <puml:object>. Step 3 shows that the <puml:method> node is visited, and

next the a code of the sum() method is outputted via the <xsl:template

match="pgml:method"> template (Line 21-30 in Listing 7). In the template,

<xsl:value-of select="@name"/> is used to obtain the value of the name of

<pgml:method name="sum" … > (Line 6 in Listing 5). Afterwards, <xsl:template

match="pgml:variable"> will be applied to generate the code of the argument of the

method. After the transformer has completed traversing the input PGML document, the code

which is shown in Listing 6 will be generated eventually.

63

Listing 9. Four templates in the PGML-to-J2MEMIDP transformation stylesheet

1 <xsl:template match="/">
2 <xsl:text>package </xsl:text>
3 <xsl:value-of select="$pgml:packageName"/>
4 <xsl:text>;</xsl:text>
5 import <xsl:value-of select="$pgml:packageName"/>.*;
6 import java.lang.Integer;
7 import java.lang.String;
8 <xsl:apply-templates select="pgml:object"/>
9 </xsl:template>
10
11 <xsl:template match="pgml:object">
12 public class <xsl:value-of select="@name"/> {
13 <xsl:apply-templates select="pgml:declaration" />
14 public <xsl:value-of select="@name" />(){}
15 <xsl:for-each select="pgml:method">
16 <xsl:apply-templates select="." />
17 </xsl:for-each>
18 }
19 </xsl:template>
20
21 <xsl:template match="pgml:method">
22 <xsl:value-of select="@visibility"/>
23 <xsl:value-of select="@return-type"/>
24 <xsl:value-of select="@name"/>(<xsl:apply-templates
25 select="pgml:in"/>){
26 <xsl:apply-templates select="pgml:declaration"/>
27 <xsl:call-template name="declarationTempVar" />
28 <xsl:apply-templates select="pgml:action"/>
29 }
30 </xsl:template>
31
32 <xsl:template match="pgml:in">
33 <xsl:for-each select="pgml:variable">
34 <xsl:apply-templates select="."/>
35 <xsl:if test="not(position()=last())">
36 <xsl:text>, </xsl:text>
37 </xsl:if>
38 </xsl:for-each>
39 </xsl:template>
40
41 <xsl:template match="pgml:variable">
42
43 <xsl:choose>
44
45 <xsl:when test="node()">
46 <xsl:value-of select="@type"/>
47 <xsl:value-of select="@name"/>
48 <xsl:text>=</xsl:text>
49 <xsl:apply-templates/>
50 </xsl:when>
51

64

52 <xsl:otherwise>
53 <xsl:if test="not(name(..)='pgml:in')">
54 <xsl:value-of select="@type"/>
55 <xsl:text> </xsl:text>
56 <xsl:value-of select="@name"/>
57 <xsl:if test="@value">
58 <xsl:text>=</xsl:text>
59 <xsl:call-template name="process-type-of-value"/>
60 </xsl:if>
61 </xsl:if>
62 <xsl:if test="name(..)='pgml:in'">
63 <xsl:text>String sys_</xsl:text>
64 <xsl:value-of select="@name"/>
65 </xsl:if>
66 </xsl:otherwise>
67
68 </xsl:choose>
69
70 <xsl:call-template name="test-statement-end" />
71
72 </xsl:template>
73 …

Tab. 4 The result of the first five steps of transforming the PGML document into the
J2ME MIDP code

No. of
Step

Matching template J2ME MIDP code generated

Step 1
/

package SumExample;

import SumExample.*;
import
java.lang.Integer;
import java.lang.String;

Step 2

<object>

package SumExample;

import SumExample.*;
import
java.lang.Integer;
import java.lang.String;

public class addTwoNum {
public addTwoNum(){}

}
Step 3

<method>

import SumExample.*;
import
java.lang.Integer;
import java.lang.String;

public class addTwoNum {
public addTwoNum(){ }
public int sum(){ }

}

65

Step 4

<in>

import SumExample.*;
import
java.lang.Integer;
import java.lang.String;

public class addTwoNum {
public addTwoNum(){ }
public int sum(,){ }

}

Step 5

<variable>

import SumExample.*;
import
java.lang.Integer;
import java.lang.String;

public class addTwoNum {
public addTwoNum(){ }
public int sum(
String sys_num1,){ }

}

… … …

Similarly, we apply the XSLT/XPath technique to transform PUML documents. We

define two transformation stylesheets, PUMLtoWML.xsl for transforming PUML documents

into WML codes, and PUMLtoJ2MEMIDP.xsl for transforming the same inputs into J2ME

MIDP codes. Table 2 lists the mappings of the elements of the user interface from the PUML

elements to its related J2ME MIDP expressions, which is used in PUMLtoJ2MEMIDP.xsl.

Table 3 indicates the same PUML elements and the associated WML tags which the PUML

elements are converted into.

66

Tab. 5. The mappings from PUML tags into MIDP expressions in the PUML-to-J2ME
transformation stylesheet

 PUML Tag WML
Root element <user-interface> <wml>

Container <board> <card …> … </card>

Text String <label> <label … />

Text Field <textnote> <input … />

Selection List <listapper> <select …> … </select>

List Item <item> <option … />

Image Display <picture>

Action Trigger <action> <do>
 <go … />
</do>

Tab. 6. The mappings from PUML tags into WML expressions in the PUML-to-WML
transformation stylesheet

 PUML Tag MIDP Expression
Root element <user-interface> javax.microedition.lcdui.MIDlet

Container <board> javax.microedition.lcdui.Form

Text String <label> javax.microedition.lcdui.StringItem

Text Field <textnote> javax.microedition.lcdui.TextField

Selection List <listapper>
<item>
…

</listpaper>

javax.microedition.lcdui.ChoiceGroup

Image Display <picture> javax.microedition.lcdui.ImageItem

Action Trigger <action> javax.microedition.lcdui.Command

67

3.4 The use of combination of context adaptation and

XSLT transformation

Figure 20 illustrates our capability of combining the transformation and adaptation

schemes. This figure shows that the function Page Generate can be implemented by

three components: XHTML MP Generator, WML Generator, and CHTML Generator.

Each component is implemented by using XML transformation engine. Through the

use of different stylesheets, these generators can generate the target languages. This

method can be used in an application serving users the displayed pages in those

different target languages.

Fig. 20 Integrating transformation and adaptation

68

Chapter 4

System implementation

This chapter will introduce three system implementations. Section 4.1 explains

Context Aware Adaptation Service (CAAS) [16]. Section 4.2 and 4.3 introduce

Ubi-Adapting and G2 respectively.

4.1 Context-Aware Adaptation Service (CAAS)

4.1.1 Example scenario

The last section has mentioned the main objectives and our focuses. In this section,

we explain the architecture and components of our framework. Figure 21 illustrates a

scenario of an application, which can be developed by our framework. Assume that in

a campus there is a wired Ethernet and IEEE 802.11 built; users can surf the Internet

via the networks. In the campus, a student, who wants to gather the butterfly pictures,

can collect the information from the biological multimedia information provider via

his personal computer when he is in his laboratory. Then, when he goes out for a

meeting (the arrow indicates the direction of his moving), he can use a PDA to

continue collecting the images. His work also can be kept on by borrowing a

notebook from his colleague, after arriving in the meeting room.

 This scenario involves two critical techniques. First, the image can be resized

suitably according to the context of the device. Second, the collection status can be

kept on executing without interruption after changing his device, and even if he is

69

moving. In order to approach it, we attempt to design our framework can provide the

following functionalities, described below:

 It can divide a program of the application into two modules: one is back-end

module running at the server side for retrieving the images and transmitting the

images to users’ devices; the other is front-end modules executed on users’

devices for representing the gathered images, shown in Figure 18.

 Numerous computing transformation and adaptation algorithms needing heavy

computational resources will be enveloped in the back module to execute at

server side instead of running the whole program on the devices. Thus, the

restriction of application development by the limitation of resources on devices

can be reduced.

 The system can change the transformation and adaptation component of the

application to others appropriately depending on what devices users use.

 The back-end module can move with the user.

4.1.2 System overview

Figure 21 exhibits the infrastructure of our system. There are three main components:

context-aware adaptation, repository service, and client. The client devices can be the

mobile and embedded appliances or stationary computers, such as PCs, PDAs, laptops,

smart phones, Java phones, etc. A front-end module for each user can be executed on

its owner’s device. Underlying the devices, the access networks include wireless

IEEE 802.11x networks, 2.5/3G telecommunication networks. At the server side, there

is a context-aware adaptation server (CAAS server) in each local area network (LAN).

In our design we do not assert that each LAN must have a CAAS server, but if we

assume there is a server in a LAN. The application can benefit by that when a user

70

enters this local area network, his personal agent can carry back-end modules and

migrate to a nearby server close to him. Besides CAAS servers, there is a repository

service, which supplies CAAS servers with the registered users’ information and

structure descriptions of deployed applications.

Meeting RoomWireless Campus

Laboratory

Internet

Repository Service

JAVA Phones

LaptopPersonal Computer

2.5G / 3G Network

Context-Aware
Adaptation Server

Wireless LAN

Ethernet

Access Point

Context-Aware Adaptation Service

Repository Service

Client

Work Station

PDA

Beck-end module

Font-end module
Biological multimedia
information provider

Biological Multimedia
Information Provider

Legend

Fig. 21. An overview of the system infrastructure

4.1.3 System architecture

Figure 21 demonstrates the infrastructure of our system. Internally, there are three

primary constituents, client, context-aware service, and repository service, which

correspond to Client Tier, Context-aware Service Tier, and Repository Service Tier

respectively, presented in Figure 22.

71

KVM

J2ME
Configuration

MIDP

CC/PP
Negotiator

User Agent

Front-end
Module 3

JVM

J2ME
Configuration

CC/PP
Negotiator

User Agent

Front -end
Module 1

Front-end
Module 2

Foundation Profile

Personal, RMI, CDC Profiles

Repository Service

Client Tier

.

.

.

Context-Aware Adaptation Service Tier Repository Service Tier

Application
Information
Repository

UserAgent - CAAS Interaction Communication

Inter-CAAS Communication

DataAccessAgent - Repository Communication

Database Access

Repository
Service

Manager

Personal
Information
Repository

Profile
Repository

CAAS
Registry

Back-end Module 1

C
lient Interaction A

gent

D
ata A

ccess A
gent

Context-Aware Adaptation Server 1

Component
Manager

Agent
Manager

Personal Agent
Pool

Component
Factory

Designated
Personal Agents

Request Solver

Profile Processor

Server
Communication

Agent

Context-Aware Adaptation Service

CAAS Registry

Profile Cache

.

.

.

Personal Java
Environment

J2ME
Environment

J2SE
Environment

JVM

J2SE

CC/PP
Negotiator

User Agent

Front-end
Module n

Optional Java API

Back-end Module 2 Back-end Module 3. . .

Context
Manager

J2SE
Environment

Back-end Module 4

C
lient Interaction A

gent

D
ata A

ccess A
gent

Context-Aware Adaptation Server 2

Component
Manager

Agent
Manager

Personal Agent
Pool

Component
Factory

Designated
Personal Agents

Request Solver

Profile Processor

Server
Communication

Agent

Context-Aware Adaptation Service

CAAS Registry

Profile Cache

Back-end Module 5 Back-end Module n. . .

Context
Manager

Legend

Fig. 22. The inner architecture of the context-aware adaptation framework

Client tier:

This tier contains various mobile, handheld, or stationary computing appliances. As in

Figure 22, the devices cover J2ME-capable phones, PJava-capable PDAs, and

J2SE-runable laptops or personal computers. PJava, J2ME [8][9], and J2SE are the

Java virtual machines for the different kinds of operating systems and hardware

environments. Each of them has some particular configuration profiles. In J2ME,

KVM, J2ME Configuration, and MIDP are involved. In addition to the functions of

J2ME, PJava includes Configuration, Foundation Profile, Personal RMI, CDC

Profiles yet, whereas the J2SE environment comprises JVM and optional Java API,

furthermore.

72

A device can send a registering message with its context profile to inform a

CAAS server of its capabilities, and a front-end module on the device can invoke the

methods of their back-end modules via remote dynamic invocation (explained in

Section 6). To implement these mechanisms, two components of our system serve on

the client devices. One is User Agent that provides the UserAgent API to invoke

the methods of back-end modules. The other is CC/PP Negotiator, which can transmit

its device’s CC/PP profile embedded in a registering message to a CAAS server, when

the user’s device initially connects to this server. This messaging is based on the

CC/PP content negotiation protocol [26[27][29]. Intrinsically, messages of the

negotiation protocol can be sent by wrapping them in HTTP request/reply messages.

Listed below is RDF/XML [28][30][31] serialization of a context profile contained in

the messages, and illustrates that the number of pixel is 16 in the hardware component

of a user device.

Listing 10. A CC/PP profile

GET /ccpp/html/ HTTP/1.1
...
<?xml version="1.0"?>

<rdf:RDF ...>
<rdf:Description rdf:ID="MyDeviceProfile">

<prf:component>
<rdf:Description rdf:ID="HardwarePlatform">

 <rdf:type rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
20010426#HardwarePlatform"/>

<prf:BitsPerPixel>16</prf:BitsPerPixel>
</rdf:Description>

 </prf:component>
 </rdf:Description>

</rdf:RDF>

73

Context-aware adaptation service tier:

This tier is composed of at least one CAAS servers that can support migration of

agents, execution of back-end modules, and adaptation of applications. Any two

CAAS servers connect with each other via Remote Method Invocation (Java RMI)

and IP multicasting. A RMI connection built to serialize objects and to transmit the

serialized objects over networks, can provide agent migration and remote procedure

call. Through the connection, personal agents can carry their owners’ back-end

modules and migrate from one CAAS server to another. Depending on different

considerations of applications, there are two modes (synchronous/asynchronous)

designed to control the conjunction between a user and his personal agent. Setting

synchronous mode leads the personal agent to migrate with its owner. However, the

agent anchors at its resident server when asynchronous mode is set; the personal agent

will not migrate wherever its owner arrives.

Nevertheless, how to construct the connection between the servers is a problem.

In our system, we exploit IP multicast among servers to make each server listen to the

same IP multicast address. Accordingly, a common communication channel is formed

for transmitting multicast messages between the servers. On the channel, there are two

types of messages transmitted in this system. One of them is the message, which is

sent for constructing RMI links between any two servers; the other is the one that is

received by all servers for broadcasting notifications of deployment of applications. In

implementation, the multicast connection is constructed at the initiation of this system;

namely, all servers have the connection before constructing RMI connections. Thus, a

server can build a RMI channel to connect with another by broadcasting a joining

message to other servers through IP multicast. Servers receiving this message will

reply with its IP address/port and server information. Afterwards, upon the server

74

receives a reply, it will construct a connection to the servers that replied messages.

Furthermore, CAAS servers are capable of performing application adaptation– a

process to decide proper components for the carried application– on the applications

carried by the agents migrated from other servers. An image transformation function,

for instance, can be implemented by two candidate components: BMP-to-PNG and

BMP-to-JPEG components. The former will be applied when the requesting client

device is a J2ME-capable phone. While the user uses a desktop computer instead, the

latter component can be chosen to implement this function.

A CAAS server principally includes the four constituents: client interaction

agent, context manager, agent manager, and component manager. Client interaction

agent serves as an interactor, which communicates with CC/PP negotiators on user

devices, can transmit messages of the CC/PP negotiation protocol and those of remote

dynamic invocation.

For communicating with user agents on client devices and adapting application

based on contextual information, context manager plays the role to negotiate initial

registration with the CC/PP protocol and to parse the embedded CC/PP profiles

further. To handle these profiles, we exploit DELI service [33] and Jena API [34] to

implement two sub-components of a context manager. One is request solver, which is

capable of unpacking HTTP1.1 request messages to retrieve the CC/PP profiles; the

other is profile processor, which can parse the CC/PP profile. In addition, all of the

parsed profiles will be collected into profile cache; thus, devices can transmit the

changed part to the service instead.

Agent manager, in a server, is capable of constructing personal agents and

maintaining these agents. Additionally, it can control an agent’s lifecycle, and invoke

the corresponding method related to state change of the lifecycle. In order to save the

75

cost of constructing agents, and to immediately respond to user devices when

reconnecting soon, agent pool is built to store agents constructed beforehand, and

recycle the appointed ones back, respectively.

Component manager supplies the agent manager with the classes needing to be

constructed in application adaptation. The reasons for constructing classes and the

procedure will be explained in Section 4.4. Figure 23 presents the internal classes for

creating the object instances to construct agents, applications, and components by

createAgent(), createApplication(), and ceateComponent()

respectively (explained in Section xxx). Also, an ApplicationContext class,

which contains application structure table, component decision tree, and changed

component table, etc, can support application adaptation and component construction.

1 *

1

1

+createAgent()
+...()

ComponentManager

+createAgentClass()
+createApplicationClass()
+createComponentClass()
+...()

ComponentFactor

+getComponent()
+getChangedComponent()
+getComponentContext()
+...()

ApplicationContext

Fig. 23 Classes of component manager, component factory, and application context

 Between any two CAAS servers, the connections constructed by server

communication agents include an IP multicast channel and an RMI connection. Two

CAAS servers can use the IP multicast channel to build a RMI connection for offering

agent migration and remote method invocation.

Data access agent has the function of requesting and receiving data from the

repository service. Between a CAAS server and the repository service, except for the

76

IP multicast, there is a connection built by using URLClassLoader.

URLClassLoader is a Java class capable of loading classes from remote computers;

it will be used if the required classes do not exist in the creation of the user-defined

classes.

Repository service tier:

This tier plays the database and directory service role in our system. Three categories

of information are stored. They include application information, personal information

and context profiles, shown in Figure 22. Additionally, it stores the classes and ASCC

files of the applications deployed. Note that an Application Structure & Component

Constraints (ASCC) profile, designed in this framework, is an XML-based profile to

describe application structures and component information. When a programmer has

finished developing an application, he can pack the code of the application into a Java

Jar file (a compressed file containing the class files), and stores this packed file and

the ASCC description of the application into the repository service.

In this system, in order to deliver the information concerning a deployed

application to CAAS servers, two mechanisms are designed. One is application

preloading, in which the repository service notifies the CAAS servers once an

application is deployed into the repository; the other is application remedy, that can

be applied when a CAAS server accepts a migrated agent, but the required classes of

the applications carried by the agent are not found. It will be detailed in Section 4.4.

77

4.1.4 Agent migration

 The state transfer of the agent

A personal agent, which is an active object with a state, is assigned to serve a user.

The term “active” means that the agent has a thread to perform a certain method

invocation requested by the front-end module. An agent will invoke the requested

method of the back-end side when it receives a request. Consequently, the result is

sent back to the front-end modules. The state transition of an agent is presented in

Figure 24.

 Execution

MigrationReady

Stop

Initial state

Final state

start

migrate

destroyed

Adaptationready

adapt

execute
ready

stop

ready

ready

Fig. 24. State transition diagram of the personal agent

In the Ready state of an agent, the agent is activated to be ready for receiving

invocation request from the front-end module. When receiving a request, it invokes

the corresponding method of the appointed application. Then, the state will transit to

the Execution state. When invoking is completed, the agent will send the result of

the execution to the front-end module, and its state will change back to the Ready

state. Moreover, the carried applications can be adapted by the agent manager only in

this state. If this occurs, it will change to the Stop state and to the Adaptation

state soon afterwards. In the Stop state, the agent is deactivated and does not receive

78

any requesting invocation. Thereafter, components of each function of the application

can be switched appropriately. The situations that cause the state to transit to the

Stop state are: (i) a logout message received from the user agent; (ii) no messages

received from the user agent for a period of time; (iii) the agent is instructed to

migrate to another server. Moreover, conditions that make the state transit back to the

Ready state are: (i) an agent manager has got the agent from the agent pool and then

assigned it to its user for recycling; (ii) application adaptation has been performed; (iii)

agent migration has been completed.

 The structure of an agent

In this section, we discuss the inner structure of an agent. Figure 25 indicates an agent,

which is composed of a state and a body. The state records the information related to

the agent’s user and the applications carried by the agent.

 Agent State

An agent state (Figure 25) is composed of agent ID (the identifications of the agent),

User ID (its owner), Device ID (the owner’s device), and Application IDs (the

applications carried). In addition, the agent state records the states of applications.

Each of the states includes absent component IDs and an event queue. Absent

component IDs are the identifications of the component objects withdrawn from the

agent body. An event queue is responsible for queuing the requested events in the

execution state. The queue is used to keep events, so it stops the execution of

processes from being interrupted by incoming events. Specifically, an event queue

retains the events of the state transition and notifications of the invocations from the

front-end module. State transition and invocations will be scheduled in the FIFO order,

79

so if a new event arrives, it will be put at the rear of the queue. Then, to process these

events, the main thread of this agent obtains an event from the front of this queue.

Taking the scenario in Section 1.1 for example, the user agent, in the front-end

module of a user device, requests the user’s personal agent for a picture. When the

personal agent receives this invocation, events concerning the invocation will be

generated and put in the queue. In this example, the events corresponding to 2, 3, 4, 5,

6, 12 are put into the event queue. Next, if any request arrives or the state transition is

triggered, the notification relevant to these events will follow the previous requested

notifications.

Agent Body

. . .

.

Agent State

Agent ID User ID Device ID

Application IDs
App ID 1 App ID 2 . . . App ID n

3
1comp 3

pcomp

3fun

1app napp

.

. . .

1
1comp 1

kcomp 2
1comp 2

lcomp

2fun

mcomp1
m
qcomp

1fun mfun

Application 1 State
Absent Components

...Event queue
. . .

Application 2 State
Absent Components

...Event queue

Application n State
Absent Components

...Event queue

Fig. 25. An internal view of a personal agent and an application structure

 Agent migration

In the application ImageGathering, even when moving from room to room, users can

continue collecting the information. In order to complete this, we need to overcome

the following problems: “How does the system perceive the situations of users’

movement?” and “How does the system instruct an agent that serves the user to

80

migrate with the user under perceiving the situations of users’ movements?”.

(1) Types of mobility

Local Area 1

BluetoothWired LANsIEEE 802.11
Wireless LAN

Local Area 2

Wired LANs

Local Area 3

IEEE 802.11
Wireless LAN

2.5G Network 3G Network

Telecom
Networks

Intra-location Mobility
Inter-location Mobility
Inter-domain Mobility

Data-comm Network Tele-comm Network

Fig. 26. Cases of users’ movements

We can roughly partition off networks into data-com network and tele-com network.

Data network includes IEEE 802.11x [35, 36], wired LANs, and bluetooth networks

[36]. Tele-com network consists of 2.5/3G [37] networks (Figure 26). According to

characteristics of these networks, we define personal mobility and terminal mobility.

Personal mobility means that by using any nearby computing equipment, a user does

not need to carry his device wherever he moves. In other words, a user can use a

device to perform his work, and also continue working via another instead. Terminal

mobility indicates that a user can perform his work via his carried device.

As shown in Figure 26, the data-com network contains a great many local area

networks (LANs), and the three kinds of networks may be in the same region, as

Local Area 1. Furthermore, there is one possible type of network in a LAN, such as

Local Area 2. In a tele-com network, numerous wireless tele-com network areas,

81

formed by the radio coverage of base stations, are regarded as the same network in

our system.

The cases of users’ movements from one region to another can be grouped into

three categories: Intra-location mobility, Inter-location mobility, and Inter-domain

mobility. Intra-location mobility means that the coverage of a user’s movement does

not exceed the range of a LAN. For instance, when a student collects information

through his personal computer in his lab. Inter-location mobility indicates that a user’s

movement crosses two LANs. A case of this movement might be that a user uses a

certain device in Local Area 1, and then uses another after moving to Local Area 2.

Inter-domain mobility refers to the fact that a user’s movement crosses data-com

networks and tele-com networks. A student, for example, collects images by using his

personal computer in his lab. Next, in place of the personal computer he uses a Java

Phone when moving from his lab to a meeting room.

(2) Agent registration

The system provides two mechanisms to perceive users’ movements. We call the first

mechanism Passive-Client and Active-Server (PCAS). In the mechanism, the user

agent of a user’s device will be notified to initiate a registration procedure when its

user moves to the server’s covered region. We call the second mechanism

Active-Client and Passive-Server (ACPS). By using this mechanism, user agents of a

user’s device will actively inform the repository service if they need to connect to

some CAAS server.

In PCAS, a server located in a region can detect movements of user devices

entering into this region. When a user uses his device and enters this region, the server

notifies the user agent on his device. Thereupon, the user agent will register with this

server. Intrinsically, notification messages are the advertisements broadcasted

82

periodically on the wireless IEEE 802.11 network by a CAAS server. User agents of

client devices continue listening to this kind of messages. Provided that there is a user

entering a new wireless LAN, then the user agent will send a requesting service

message to the server sending the notification without registering to any server. Figure

27 illustrates the sequence diagram of this procedure. To inform the server of client

information, we embed the CC/PP profile in the request service message. While a

server receives the request message from the ClientInterActionAgent object,

it will forward the messages to the RequestResolver object to resolve the CC/PP

profile. The RequestResolver object is capable of retrieving the profile from the

message and passing it to the ProfileProcessor object to resolve the profile.

Then, the result will be passed to the CAAS service object, c2. When receiving the

message, c2 requests CAAS service c1 for the user’s personal agent. The user’s

personal agent, therefore, can be instructed to migrate to the server c2 close to the

user. In this mechanism, user agents on users’ devices can automatically register to

CAAS servers when their owners move among LANs.

: UserAgent : ClientInteractionAgent : RequestResolver c2 : CAAS c1 : CAAS

send advertisement

request service
solve request process profile

get agent
information

: ProfileProcessor

register personal
information

return the
information

adapt
application

current CAAS service

previous CAAS service

Fig. 27. The sequence diagram of ACPS

83

The main difference between ACPS and PCAS is that in ACPS user agents on

devices actively register to the repository service. Thus, ACPS can be applied to solve

the condition where user agents on user devices have not connected to any server. A

user agent on a user’s device, for example, sends a request message to the repository

service. Upon receiving a request message, the repository service redirects the

connection to the nearby CAAS server closest to him. This procedure is decomposed

into steps shown in Figure 28.

: UserAgent
: RepositoryService

Manager

request service

redirect service

: ClientInteractionAgent : RequestResolver c2 : CAAS c1 : CAAS

solve request
process profile

get agent
information

: ProfileProcessor

return agent
information

adapt
applications

request service

register personal information

current CAAS service

previous CAAS service

Fig. 28 The sequence diagram of ACPS with agent migration

: UserAgent
: RepositoryService

Manager : ClientInteractionAgent : RequestResolver : CAAS

solve request
process profile

: ProfileProcessor

register

request service

redirect service

request service

Fig. 29 The sequence diagram of ACPS without agent migration

84

It will be possible that agent migration is not needed if the covered regions of

user movements are identical. Perhaps one of the conditions is that the device briefly

disconnects, and then reconnects to the server. In this condition, the user’s personal

agent still resides in this server. Thus, when the user agent inquiries the repository

service about a CAAS server, the repository service will inform the user device of the

original nearby CAAS server, and redirect the connection to that CAAS server.

Though the user device reconnects to the CAAS server, the personal agent will not be

instructed to migrate.

We explain below how the system perceives users’ movements and when a

CAAS server instructs a user’s personal agent to migrate from another server. Further,

the cases of users’ movements can be considered altogether with PCAS and ACPS,

arranged below:

 In Inter-domain mobility, two situations are classified into this category. One

condition is that the underlying network accessed is data-com network first and

tele-com network subsequently. In the condition, user agents on user devices can

register automatically by using ACPS. The other is the opposite of the first

condition. Here user agents on user devices can be notified to register through

PCAS.

 In the cases of Inter-location mobility where a user crosses two different kinds of

local area networks, user agents on user devices can be notified to register

through PCAS.

 Under the conditions of Intra-location mobility, it is unnecessary to move users’

personal agents, because in this case users use their devices on the same network.

(3) Agent migration strategy

In agent migration, we consider the three strategies: Heavyweight Agent Migration

85

(HAM), Flyweight Agent Migration (FAM), and Lightweight Agent Migration

(LAM).

Heavyweight Agent Migration (HAM):

In the Heavyweight Agent Migration (HAM) strategy, an agent will carry the

components belonging to Type 2 and Type 3 while migrating, except for those

specified “carried=’No’”1 in the ASCC profile. (1) of Figure 30 illustrates an

example. Agent migration is a procedure that serializes object instances comprising a

whole agent into a byte array, and then sends the serialized binary data to the target

server. Upon receiving it, the receiving server reconstructs the agent from the byte

array.

ImageCacheSize
Tailor Resizer

Transcoder Cache
Image

Retriever
Image

Transmitter
Data

Access

Image
Gathering

JPEG
Retriever

GIF
Retriever

PNG
Retriever

ImageCache

Transcoder Cache
Image

Retriever
Image

Transmitter
Data

Access

Image
Gathering

ImageCacheResizer

Transcoder Cache
Image

Retriever
Image

Transmitter
Data

Access

Image
Gathering

GIF
Retriever

(1) using HAM

(2) Using FAM (3) Using LAM
Fig. 30. The structure of the application ImageGathering by using three strategies.

Suppose that an application is carried with two functions: fun 1 and fun 2. fun 1

can be implemented by components comp 1 and comp 2, and fun 2 can be realized by

comp 3 and comp 4. Figure 31 exhibits the results of the HAM strategy applied to

agent migration. The components comp1-4 are carried with agent migration. When the

agent reaches CAAS server 2, the server appropriately adapts the applications carried

1 The term “not carried” means nullifying the object references in the implementation code.

86

by the agent. For function fun 1, the component comp 1 is suitable for the context of

the user device used previously. However, it is not suitable for that of the other used

subsequently. As a result, the component comp 2 is chosen to substitute comp 1.

Listing 11 shows the HAM algorithm. At the transmitter side, the immoveable

components are detached and then their IDs are recorded into an absent component

array in an agent state S. While accepting the agent on the receiver side, the receiving

server will retrieve the application IDs from the agent state and recorded them into

array A (Lines 1-2). If, for each function, a certain component implementing this

function is unsuitable, another proper component will be chosen to substitute for that

component by means of DECIDE-PROPER-COMPONENT(A[i], F[j], T, Q, D).

Eventually, Line 16 switches each unsuitable attached component to a more

appropriate one for each function F[j] of an application A[i] in the agent G.

Agent Body

Agent State

comp 1 Comp 2

fun 1

Comp 3 Comp 4

Fun 2

Application
1

Agent Body

Agent State

comp 1 comp 2

fun 1

comp 3 comp 4

fun 2

Application
1

CAAS server 1 CAAS server 2

Agent Body

Agent State

comp 1 comp 2 comp 3 comp 4

Application
1

fun 1 fun 2

Fig. 31. Agent migration using HAM

87

Listing 11. The algorithm of HAM

G: an agent; S: the agent state of the agent G; A: an array recording IDs of the applications carried by

the agent G; F: functions comprise an application A[i]; T: a previous context profile; Q: a current

context profile; C: an array recording IDs of un-carried components of an application A; D: a decided

components for functions F of an application A[i]

G
kCjFiASG

Clengthk
CjFiAG

Flengthj
FiAS

length[A]i
S, A

G,S
G

return
do

tofor
do

tofor
do

tofor

 9
])[],[],[,,OMPONENT(BSENCEODD 8

][0 8
)],[],[,OMPONENT(MMOVEABLEETACH 6

][05
)],[,Ds(UNCTIONET 4

0 3
)Ds(-PPLICATIONET- 2

)TATE(-GENT-ET 1
)(RANSMITTERAM-

CATA

CID

IFG

IAG
SAG

TH

−−−
←

−−
←

−−
←

G
jDjFiAG

Dlengthj
DQTFiA

FiAS
length[A]i

AS
G,S

QTG

return
do

tofor

do
tofor

 17
])[],[],[,O(OMPONENTWITCH- 16

][015
),,,],[OMPONENT(ROPERECIDE 14

)],[,Ds(UNCTIONBSENCERHANGEDET 13
0 12

) ,Ds(-PPLICATIONET- 11
)TATE(-GENT-ET 10

) , ,ECEIVER(AM-

TCS

CPD
IFAOCG

IAG
SAG

RH

−
←

−−
−−−−−

←

Flyweight Agent Migration (FAM):

The principle of this strategy is to minimize the data size needed to transfer an agent

between servers. In other words, the components, except for those classified to Type 2

and Type 3 and indicated as “carried=’Yes’”, are not carried with agent

migration. Figure 30 (2) illustrates this example since, except for the component

Image Cache, no component is carried with agent migration. This is because Image

Cache is Type 2 and declared “carried=’Yes’”, but the other components are the

cases in either Type 1 or Type 2/3 components declared “carried=’No’” (see

Listing 12). Figure 32 illustrates that the components comp 1-4 are not carried since

88

these components are classified to Type 2/3 but not specified “carried=’Yes”.

Then, in CAAS server 2, for each function proper components are decided.

Additionally, their object instances are reconstructed if necessary.

The algorithm of FAM is shown in Listing 12, where components, except for the

Type 2/3 components specified “carried =’Yes’”, are not carried in agent

migration. At the acceptance of the agent, the server can examine the missing

components (retrieved into array F). After deciding proper components for each

function in Line 14, the receiver creates object instances for those in F, and plugs the

suitable ones into their corresponding functions (in Lines 15-16). However, there is

likely to be a problem: the required classes (the user-defined subclasses of

Component) are not found. If this problem occurs after an agent migrates, the

needed classes can be loaded through the component manager. Details for this will be

specified in Section 4.4.

Agent Body

Agent State

comp 2

fun 1

comp 4

fun 2

app 1

Agent Body

Agent State

comp 1 comp 2

fun 1

comp 3 comp 4

fun 2

app 1

CAAS server 1 CAAS server 2

Agent Body

Agent State

fun 1 fun 2

app 1

Fig. 32 Agent migration using FAM

89

Listing 12. The algorithm of FAM

G
kCjFiASG

Clengthk
CjFiAG

Flengthj
FiAS

length[A]i
S, A

G,S
G

return
do

tofor
do

tofor
do

tofor

 9
])[],[],[,,OMPONENT(BSENCEODD 8

][07
)],[],[,OMPONENT(ARRIEDXCEPTLLETACH 6

][05
)],[,Ds(UNCTIONET 4

0 3
)Ds(-PPLICATIONET- 2

)TATE(-GENT-ET 1
)(RANSMITTERAM-

CATA

CCEAD

IFG

IAG
SAG

TF

−−−
←

−−−−
←

−−
←

G
jDjFiAG

Dlengthj
DQTFiA

FiAS
length[A]i

AS
G,S

QTG

return
do

tofor

do
tofor

 17
])[],[],[,O(OMPONENTTTACH 16

][0 15
),,,],[OMPONENT(ROPERECIDE 14

)],[,Ds(UNCTIONBSENCERHANGEDET 13
0 12

) ,Ds(-PPLICATIONET- 11
)TATE(-GENT-ET 10

) , ,ECEIVER(AM-

TCA

CPD
IFAOCG

IAG
SAG

RF

−−
←

−−
−−−−−

←

Lightweight Agent Migration (LAM):

The substance of this strategy is that one component is carried for each function in an

application, except for Type 1 components, when agents migrate. A possible method

we propose is to carry the only components which implement its corresponding

functions in agent migration. (3) of Figure 30 illustrates this strategy, where only the

components implementing their corresponding functions are carried. Except for Type1

components (Data Access and Image Transmitter), the components of the functions

Image Retriever, Transcoder, and Cache are carried.

Likewise, in Figure 33, before the agent migrates, the components comp 2 and

comp 4 are detached from the functions fun 1 and fun 2 respectively. While the agent

arrives in CAAS server 2, comp 2 and comp 4 are chosen as the proper components

for fun 1 and fun 2, individually. Therefore, instances of the two components will be

90

reconstructed, and then attached into their corresponding functions.

Listing 13 presents the algorithm. At the transmitter side, Line 6 detaches all

components, except for the Type 2 and Type 3 components implementing their

functions. Their IDs are recorded to an agent state S (Line 8). When accepting the

agent, the proper components will be determined to substitute for the components that

are absent or unsuitable, as shown in Lines 13-16.

Agent Body

Agent State

comp 2

fun 1

comp 4

fun 2

app 1

Agent Body

Agent State

comp 1

fun 1

comp 3

fun 2

app 1

Agent Body

Agent State

comp 1

fun 1

app 1

CAAS server 1 CAAS server 2

comp 3

fun 2

Fig. 33 Agent migration using LAM

Listing 13. The algorithm of LAM

G
kCjFiASG

Clengthk
CjFiAG

Flengthj
FiAS

length[A]i
S, A

G,S
G

return
do

tofor
do

tofor
do

tofor

 9
])[],[],[,,OMPONENT(BSENCEODD 8

][07
)],[],[,OMPONENT(GMPLEMENTINXCEPTLLETACH 6

][05
)],[,Ds(UNCTIONET 4

0 3
)Ds(-PPLICATIONET- 2

)TATE(-GENT-ET 1
)(RANSMITTERAM-

CATA

CIEAD

IFG

IAG
SAG

TL

−−−
←

−−−−
←

−−
←

G
jDjFiAG

Dlengthj
DQTFiA

FiAS
length[A]i

AS
G,S

QTG

return
do

tofor

do
tofor

 17
])[],[],[,O(OMPONENTWITCH- 16

][015
),,,],[OMPONENT(ROPERECIDE 14

)],[,Ds(UNCTIONBSENCERHANGEDET 13
0 12

) ,Ds(-PPLICATIONET- 11
)TATE(-GENT-ET 10

) , ,ECEIVER(AM-

TCS

CPD
IFAOCG

IAG
SAG

RL

−
←

−−
−−−−−

←

91

 Comparison

In this section, we tested these three strategies to see how the size and number of

components affect time cost (msec) of agent migration and application adaptation. In

the experiments, we consider HAM, FAM and LAM under the worst case. In addition,

in LAM we measure cases of LAM under the best case. The best case means that all

components carried by an agent do not need to be replaced. The worst case indicates

that all components carried by an agent need to be switched to the proper ones. Figure

34 shows the experimental setting. We measure the round trip time during which

CAAS server 1 informs CAAS server 2 to instruct an agent to migrate successfully.

To analyze the results accurately, we measure each case for 10,000 times to compute

the average of the results.

We experiment on the strategies through two measurements. First, we let an

agent carry an application containing one function, which is implemented by two

components. We consider the cases of HAM, FAM, LAM-B, and LAM-W by

gradually increasing the size of the two components from 512 to128k Bytes. Table 7

and the left-hand side of Figure 35 demonstrate the time cost (msec) of the cases. As

we can see, FAM performs worse than the other three; on the whole the cases of

LAM-B and LAM-W cost less than the others, and those of LAM-B win. Second, we

let an agent carry an application composed of one function, which can be

implemented by 50, 75, 100, …, 250 components separately. In Table 8 and the right

side of Figure 35, the results indicate that HAM and FAM perform worse than

LAM-B; while LAM performs better than others. In the situation, the time needed

increases with an increasing number of components. This is because each of the

algorithms performs a certain operation one by one for each component attached. For

92

example, the HAM algorithm detaches all of the immoveable components.

Agent 1

CAAS server 1

(1)

(2)

100 M Ethernet

Agent 2

Agent 3

CAAS server 2

CAAS 1:
 CPU : Intel(R) Pentium(R) 4 2.40GHz
 Memory : 512M Bytes RAM
 Network Adapter : Intel(R) PRO/100 VE

Network Connection
 Operating system : Microsoft Window 2000

Service Pack 3
 Java Virtual Machine : J2SE 1.4.2

CAAS 2:
 CPU : Intel(R) Pentium(R) 4 2.40GHz
 Memory : 1 ,024M Bytes RAM
 Network Adapter : Intel(R) PRO/100 VE

Network Connection
 Operating system : Microsoft Window XP Professional

Service Pack 1
 Java Virtual Machine : J2SE 1.4.2

Fig. 34 The experimental setting

Tab. 7. The results of the first measurement

(one application, one function, two components)

Component
Size (Byte)

Heavyweight
Agent
Migration
(HAM)

Flyweight
Agent
Migration
(FAM)

Lightweight
Agent
Migration-B
(LAM-B)

Lightweight
Agent
Migration-W
(LAM-W)

512 3.134 3.195 3.027 3.125
1024 3.345 3.409 3.249 3.253
2048 3.911 4.136 3.633 3.890
4096 4.250 4.333 4.192 4.284
8192 6.514 6.663 6.431 6.483

16384 8.472 8.627 8.494 8.556
32768 15.153 14.463 14.158 14.380
65536 28.467 28.242 27.942 28.063

131072 124.181 122.134 121.713 122.29

Tab. 8. The results of the second measurement
(one application, one function, one component)

Component
Number

Heavyweight
Agent
Migration
(HAM)

Flyweight
Agent
Migration
(FAM)

Lightweight
Agent
Migration-B
(LAM-B)

Lightweight
Agent
Migration-W
(LAM-W)

50 7.016 7.021 6.816 6.800
75 9.895 10.050 9.793 9.825

100 13.866 14.656 12.473 12.029
125 14.160 14.340 14.018 14.045
150 19.667 20.514 19.430 19.444
175 20.482 20.994 20.712 20.732
200 21.844 22.141 21.931 21.841
225 24.719 24.323 24.378 24.380
250 28.770 29.221 28.443 28.422

93

1

10

100

1000

512 1024 2048 4096 8192 16384 32768 65536 131072

Component Size (Byte)

T
im

e
(m

se
c)

HAM

FAM

LAM-B

LAM-W

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

50 75 100 125 150 175 200 225 250

Component Size (Byte)

T
im

e
(m

sc
e)

HAM

FAM

LAM-B

LAM-W

Fig. 35 The experimental results on HAM, FAM, LAM-B, and LAM-W

4.2 Ubi-Adapting

Figure 36 shows the implementation of our system. The framework contains two main

parts: one is the server part and the other is client part. In the server side, we design

Context Profile and Context Awareness Module used to be aware of the context of

users. Application Profiles can describe the application structure. In other words, the

module stores ASCC profiles of applications. There are personal agents which can

migrate from one computer to the other. Besides, it can store its owner’s information.

In order to realize the function we explain in Chap 2 and Chap 3, we design the

Application Adaptation Service and Representation Transformation Service to

approach adaptation and transformation mechanisms. Figure 37 demonstrates the

results we test.

94

Fig. 36 The architecture of Ubi-Adapting

Fig. 37 the tested devices

95

4.3 Gateway of Gateway (G2)

G2 means ‘gateway of gateway.’ That is, there are several gateways in a home

environment. These gateways include Home Gateway, TV Box, etc. Connecting these

gateways through G2, we can use various kinds of mobile devices. The components

architecture of G2 is similar to that of Ubi-Adapting. In addition, we design G2 can

detect coming bluetooth devices to identify the users around.

Figure 38, for example, demonstrates users can use the mobile devices and the

computers to access the back-end services and the services implemented on the G2. In

this figure, we design a home control application. There are two functions we

implemented. (1) Users can use different devices to control the home facilities. (2)

Devices can be trigged due to the cause of coming users carrying bluetooth devices.

Fig. 38 the overview of the G2

96

Tab 9 shows the revolution of the implemented systems. The differences between

the two systems include the sensors we use or not, and which type of machine we

used. In Ubi-Adapting, we don’t use sensor, but use Bluetooth to capture the user’s

location. Besides, we use embedded box for the implementation of G2.

Tab. 9 the revolution

Name Ubi-Adapting G2
Profile CC/PP

WAP UAProf
CC/PP
WAP UAProf

Sensor N/A Bluetooth
Performer PUML transformer

Component adaptor
PUML transformer
Component adaptor

Application Application
Migration

Application
Migration

Decision
Engine

N/A N/A

Embedded
Box

No Yes

Application
Practice

Library, Movie,
Home control

SMS, Scheduling
Home Control

97

4.4 Applications

Table 10 we explain the application we implemented. A movie theater mobile web site

is the first application. A User can use a WAP phone, and then change to use an

XHTML MP phone (Nokia 6600 and Nokia 7610). For example, if a user uses a

Nokia 7610, the downloading link with the high-quality movie clip will be shown in

the page. If a user uses Nokia 6600, the downloading link shown is the low-quality

movie clip. In the library application, users can use PC, Pocket PC 2002, and Nokia

7610. According to the context of the used device, the proper format of the content

will be sent to the user’s device.

Tab. 10 The application demos
Application Description Demo

 A movie
mobile web site

Users can use their
mobile devices to order
tickets, download clips,
etc. Besides, the UI
syntax (e.g. WML and
CHTML, etc) and
downloading clips are
adapted to the contexts
of devices at runtime.

using WAP phone to inquire hot movie

using Nokia 7600 to download clip
(MPEG4 , encoding rate: 64kbps)

98

using Nokia 6600 (3GPP, encoding rate:
32 kbps)

Unlimited
Library

Users can use these
mobile devices to inquire
the books.

using PC to browse the result

using Nokia 6600

using Pocket PC2002

 Mobile
Home Service:

Several home networks
can be exploited to
control the home
facilities. We use X10
plug-able modules in this
application, and the
mobile phones and PDAs
to control the facilities.

using SonyEricsson k700i to turn the
power on

99

using Dopod 818

G2

(Gateway of
Gateway): an
embedded home
box

The G2 has the following
features:

 a CAAS server is
customized to be
deployed on a
embedded box.
(using EPIA x86
main board, shown
below)

 Using Bluetooth to

Identify people
 SMS message

notification
 Multi-devices used

to control home
facilities

Once senoring a coming family, the
power is turned on automatically

Other family members receive SMS
notification

100

Chapter 5

Application development

Figure 39 shows the programming model. There are three roles to?? who?? write the

PUML/PGML files, components of applications and the agents used to carry the

applications. The development flow is shown in Figure 40.

Fig. 39 PUML/PGML & agent development

Figure 40 contains the three steps: (1) PUML/PGML writing, (2) application

component and agent development, (3) application deployment. As we can see in this

figure, programmers can edit PUML and PGML files directly (e.g. Edge 1.1) or use

the toolkit to generate the files (Edge 1.2).

Agent

1 <?xml version="1.0"?>
2
3 <puml:user-interface … >
4 <puml:board … >
5 <puml:logic-objects>
6 …
7 </puml:logic-objects>
8
9
10 <puml:picture … />
11
12 <puml:label … />
13
14 <puml:listpaper … />
15
16 <puml:action …>
17 …
18 </puml:action>
19 </puml:board>
20
21 <puml:layout … />
22 </puml:user-interface>

<pgml:add>
<pgml:operand select="a"/>
<pgml:operand select="b"/>

</pgml:add>

<pgml:add>
<pgml:operand value="5" type="int" />
<pgml:operand value="6" type="int"/>

</pgml:add>

<pgml:add result="s" >
<pgml:operand value="5" type="int" />
<pgml:operand value="6" type="int"/>

</pgml:add>

<pgml:add result="s" >
<pgml:add>
<pgml:operand value="3" type="int" />
<pgml:operand value="4" type="int"/>

</pgml:add>
<pgml:operand value="5" type="int"/>

</pgml:add>

mobile client side

server side

XHTML MP
programmer

Java script
programmer

Role

Example

A p p l ic a t io n

U s e r I n te r f a c e

A p p l ic a t io n

S c r ip t

A pp lic a tion

U s e r I n te r fa c e
C om pu ta tion

L o g ic

C lie n t- s id e
S c r ip t

R e m o te
S e rve r - s id e

S e rv ic e

S e r v ic e
C o m p o n e n ts

user interface
designer

logic
programmer

service
provider

video provider

applications

Agent

1 <?xml version="1.0"?>
2
3 <puml:user-interface … >
4 <puml:board … >
5 <puml:logic-objects>
6 …
7 </puml:logic-objects>
8
9
10 <puml:picture … />
11
12 <puml:label … />
13
14 <puml:listpaper … />
15
16 <puml:action …>
17 …
18 </puml:action>
19 </puml:board>
20
21 <puml:layout … />
22 </puml:user-interface>

<pgml:add>
<pgml:operand select="a"/>
<pgml:operand select="b"/>

</pgml:add>

<pgml:add>
<pgml:operand value="5" type="int" />
<pgml:operand value="6" type="int"/>

</pgml:add>

<pgml:add result="s" >
<pgml:operand value="5" type="int" />
<pgml:operand value="6" type="int"/>

</pgml:add>

<pgml:add result="s" >
<pgml:add>
<pgml:operand value="3" type="int" />
<pgml:operand value="4" type="int"/>

</pgml:add>
<pgml:operand value="5" type="int"/>

</pgml:add>

mobile client side

server side

XHTML MP
programmer

Java script
programmer

Role

Example

A p p l ic a t io n

U s e r I n te r f a c e

A p p l ic a t io n

S c r ip t

A pp lic a tion

U s e r I n te r fa c e
C om pu ta tion

L o g ic

C lie n t- s id e
S c r ip t

R e m o te
S e rve r - s id e

S e rv ic e

S e r v ic e
C o m p o n e n ts

user interface
designer

logic
programmer

service
provider

video provider

mobile client side

server side

XHTML MP
programmer

Java script
programmer

Role

Example

A p p l ic a t io n

U s e r I n te r f a c e

A p p l ic a t io n

S c r ip t

A pp lic a tion

U s e r I n te r fa c e
C om pu ta tion

L o g ic

C lie n t- s id e
S c r ip t

R e m o te
S e rve r - s id e

S e rv ic e

S e r v ic e
C o m p o n e n ts

user interface
designer

logic
programmer

service
provider

A p p l ic a t io n

U s e r I n te r f a c e

A p p l ic a t io n

S c r ip t

A pp lic a tion

U s e r I n te r fa c e
C om pu ta tion

L o g ic

C lie n t- s id e
S c r ip t

R e m o te
S e rve r - s id e

S e rv ic e

S e r v ic e
C o m p o n e n ts

user interface
designer

logic
programmer

service
provider

video provider

applications

PUML
(user interface)

PGML
(computation logic)

101

Fig. 40 the steps for development

The following sections explain the steps: (1) PUML/PGML writing in Sec 5.1, (2)

application component and agent development in Sec 5.2, (3) application deployment.

In PUML/PGML writing, programmers can construct PUML/PGML pages. Besides,

programmers can use a SDK to generate the page in drag-and-drop manner. In the

application, we can use the generated page. The PUML/PGML page can be

transformed at runtime. When designing applications, programmers can write the

code capable of transforming the PUML/PGML document into the target languages.

102

5.1 PUML/PGML writing

5.1.1 Hand coding

As we can see in Figure 40, there is a step to write PUML/PGML document. In the

section, we will demonstrate an example written in PUML and PGML documents, and

the simulating results of the generated J2ME and WML codes by applying the

transformation mechanism mentioned above. Listing 14 is a PUML document

(UIExample.puml). There are three <puml:textnote> elements in the listing. The

first two can get two input numbers, and the last can display the result by summing

the two numbers up. The <puml:action> … <puml:action> block describes

that the two inputted values are passed into the sum method of object1, e.g.

addTwoNum.pgml (declared in Line 12-14). Furthermore, the value attribute of the

<textnote> widget, sum in board2, will be updated by the retuned value after

the action is triggered. Line 28 describes the code to accomplish that. The section of

addTwoNum.pgml can sum the two input number, shown in Listing 7 in Section

3.2.2.

Listing 14. A user interface described in PUML

1 <?xml version="1.0"?>
2 <puml:user-interface name="UIExample" version="1.2"
3 xmlns:puml="http://dcsw3.cis.nctu.edu.tw/Project/
4 pervasive/PUML/">
5
6 <puml:board name="board1" title="FirstPage" >
7 …
8 </puml:board>
9
10 <puml:board name="board2" title="SecondPage">
11
12 <puml:logic-objects>
13 <puml:object name="object1" source="addTwoNum.pgml" />
14 </puml:logic-objects>
15

103

16 <puml:label name="mainTitle" showText="Input two numbers:" />
17
18 <puml:label name="num1Title" showText="Number 1:" />
19 <puml:textnote name="num1" value="0" />
20
21 <puml:label name="num2Title" showText="Number 2:" />
22 <puml:textnote name="num2" value="0" />
23
24 <puml:label name="sumTitle" showText="Sum:" />
25 <puml:textnote name="sum" value="0" />
26
27 <puml:action name="action2" showText="action2">
28 <puml:change container="board2" component="sum" update="value">
29 <puml:use-object name="object1" method="sum">
30 <puml:param select="num1" />
31 <puml:param select="num2" />
32 </puml:use-object>
33 </puml:change>
34 </puml:action>
35
36 </puml:board>
37
38 </puml:user-interface>

5.1.2WYSIWYG

Besides hand coding, programmers can use an SDK to generate PUML and PGML

documents to accelerate the development, shown as in Figure 42. Programmers can

use the toolkits to develop web page in drag-and-drop manner.

Fig. 41 using the toolkit for development

104

We display the design in Figure 41. It is the layout view for code in Listing 15.

Besides, there are two versions of toolkits we design. One is the toolkit we embedded

the drag and drop function into the some famous SDKs. In our design, we embedded

it into Borland JBuilder[38] and Microsoft .NET studio[39]. The two toolkits are

popular currently. We can leverage them to promote our framework. The other is the

web-based toolkit. Programmers can design pages by using the user interface of

browsers, such as IE, firefox, etc. In the figure 41, there JBuilder version can generate

the PUML form.

Fig. 42 the toolkit we designed

105

5.1.3 The generated code

The following code (Listing 15) is the WML code which generated from

UIExample.puml. In the code, there are three <input> elements which are

converted from the three <textnote> elements in Listing 14. The top three of

Figure 43 demonstrate simulating the WML code generated. For example, a user

inputs two number, 1 and 2, in Step 1, and selects action 2 in Step 2 subsequently.

Then, the <go> would be performed. However, there is a problem—how to

accomplish passing the values of the numbers into the WMLS function, and updating

the value attribute of the <input name="sum" … /> element—must be coped

with. The trick we used is exploiting WMLBrowser.getVal() and

WMLBrowser.setVal(). WMLBrowser.getVal() can be used to get the value

of the variable specified from the WMLBrowser environment. Specifically, the values

of the variables, standing for the two <input>, can be obtained by invoking

WMLBrowser.getVal() in the WML Script. Returning the computed result can

be completed through WMLBrowser.setVal(). addTwoNumBroker.wmls is the

code generated in transformation to manipulate this event-handling. The related usage

of the two methods can be referred in [40].

Listing 15. The WML code transformed from the PUML code in Listing 14

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
3 "http://www.wapforum.org/DTD/wml_1.1.xml">
4 <wml>
5
6 <card title="FirstPage" id="board1">
7 …
8 </card>
9
10 <card title="SecondPage" id="board2">
11 <p>Input two numbers:</p>
12 <p>Number 1:</p>

106

13 <p><input name="num1" value="0"/></p>
14 <p>Number 2:</p>
15 <p><input name="num2" value="0"/></p>
16 <p>Sum:</p>
17 <p><input name="sum" value="0"/></p>
18 <do name="action2" type="accept" label="action2">
19 <go href="addTwoNumBroker.wmls#start('board2action2')"/>
20 </do>
21 </card>
22
23 </wml>

 The code, shown in Listing 10, is transformed from the same PUML document (Listing

8). The <puml:board name=””> … </puml:board> is converted to a Brdboard2

class, which is the extended class inheriting the Form class of J2ME MIDP. In the code, the

TextField control including num1, num2, num3 are declared at the beginning, and

initiated in the constructor of the Brdboard2 class. They are transformed from the three

<puml:textnote> elements in the original PUML document.

Respecting the event handling, the PUML code is transformed into that the

Brdboard2 class implements the commandAction method of the CommandListener

interface. Once the method is invoked, namely some action was triggered, the code within the

method would compare the name (ID) to see which object issues the event. If the action is

triggered by action2, sys_object1.sum(num1.getString(),

num2.getString()) will be invoked to sum the two input numbers, shown in Line 51.

In order to set the returned value back to the TextField sum in Brdboard2, we embed a

method, UIExample.sys_instance.getBoard("board2"), in the generated code

to obtain the board object specified, and sum.setString() to update the value of sum

thereupon, shown in Line 49. The above code is transformed from the code in Line 28-33 in

Listing 8. The tree figures, in the bottom of Figure 43, shows the simulating result. Similarly,

an user inputs two numbers, and then chooses the action 2 to sum up the two number. Finally,

the result is returned and displayed on the third TextField.

107

Listing 16. The J2ME code transformed from the PUML code in Listing 14

1 …
2 class Brdboard2 extends Form implements CommandListener {
3
4 UIExample sys_ui;
5 private addTwoNum sys_object1 = new addTwoNum();
6 public StringItem mainTitle;
7 public StringItem num1Title;
8 public TextField num1;
9 public StringItem num2Title;
10 public TextField num2;
11 public StringItem sumTitle;
12 public TextField sum;
13 private Command action2 =
14 new Command("action2", Command.SCREEN, 1);
15
16 public Brdboard2(UIExample sys_ui) {
17 super("SecondPage");
18 this.sys_ui = sys_ui;
19
20 mainTitle = new StringItem("Input two numbers:", "");
21 this.append(mainTitle);
22
23 num1Title = new StringItem("Number 1:", "");
24 this.append(num1Title);
25
26 num1 = new TextField("", "0", 50, TextField.ANY);
27 this.append(num1);
28
29 num2Title = new StringItem("Number 2:", "");
30 this.append(num2Title);
31
32 num2 = new TextField("", "0", 50, TextField.ANY);
33 this.append(num2);
34
35 sumTitle = new StringItem("Sum:", "");
36 this.append(sumTitle);
37
38 sum = new TextField("", "0", 50, TextField.ANY);
39 this.append(sum);
40
41 this.setCommandListener(this);
42 this.addCommand(action2);
43 }
44
45 public void commandAction(Command command,
46 Displayable displayable){
47 …
48 if(command == action2){
49 ((Brdboard2)UIExample.sys_instance.getBoard("board2")).
50 sum.setString(
51 sys_object1.sum(num1.getString(), num2.getString())
52);
53 }
54 …
55 }
56 }
57 …

108

Fig. 43 The top figures are the simulating results of the WML code, and the
bottom is the result of J2ME code generated from the code of PUML/PGML

5.2 Application component and agent development

In order to enable this framework to be aware of the structures of applications, we

define Application Structure and Component Constraints (ASCC), an application

profile description. Listing 17 illustrates the ASCC profile of the application

ImageGathering.

Listing 17. The ASCC profile to describe structure of ImageGathering

1 <?xml version="1.0"?>
2 <ascc xmlns:ascc=http://dcsw3.cis.nctu.edu.tw/project/CAAS ...>
3 <application id="ImageGathering">
29 <function id="SubOrAdd">
30 <default idref="Add"/>
31 <component id="Add" priority="50%"
32 stateful="No" relative="No" carried=”No”>
33 <component id="Sub" priority="50%"
34 stateful="No" relative="No" carried=”No”>
35 </function>
48 </application>
49</ascc>

109

As we can see in Listing 17, the <application> element includes five

<function> elements, which can describe the one function. In each <function>,

the candidate components can be specified. Lines xxxx, for instance, declare that

<component id=”Add” ...>, and <component id=”Sub” ...> can

implement the AddOrSub function. In advance, within a <component> element,

the properties, stateful, relative, and carried, can be used to set

components stateful/stateless, relative/irrelative, and carried/un-carried respectively.

The priority property concerns the priority of a component, one of which is

chosen in each application adaptation. Furthermore, to set a component as a default

component for a function, we can use the element <default>. If we want to set a

component implementing the function which cannot be replaced with others, we can

use the property “unchanging=’Yes’”. Figure 44 exhibits the class diagram of

the implementation of the back-end module, which is made up of the classes derived

from three original classes. A programmer defines a personal agent class, which is

derived from the Agent class, and lets the agent carry the applications whose classes

derived from the Application class. Furthermore, the programmer can define

various subclasses of the class Component to substantiate and diversify his

application. Without loss of generality, we use MyAgent, MyApplication, and

MyComponent as the user-defined classes, which are illustrated in Figure 44.

110

+switchTo(入 compID : java.lang.String)
+invoke(入 params : java.lang.Object[]) : java.lang.Object[]
+...()

Function

+invoke(入 params : java.lang.Object[]) : java.lang.Object[]
+...()

MyComponent

+invoke(入 params : java.lang.Object[]) : java.lang.Object[]
+...()

<<介面>>
IComponent

1..*1

Agent

MyAgen

Application

MyApplication

+initApp()
+invoke()(入 params : java.lang.Object[]) : Object[]
+...()

<<介面>>
IApplication

+onStart()
+onReady()
+beforeAdaptation()
+afterAdaptation()
+beforeMigration()
+afterMigration()
+onStop()
+invokeMethod()
+...()

<<介面>>
IAgent

1..*

1

1..*

1

*1

user-defined
classes

<<interface>>

<<interface>>

<<interface>>

in

in

inin
in

t

Fig. 44 The class diagram of programming agents and back-end modules

111

Chapter 6

Related work
In our design, remote dynamic invocation acts to complete invocations between the

front-end and back-end modules. RMI, a method invocation on remote objects, is a

widely used interaction paradigm. However, not all devices support RMI. Java

reflection [41] (Section 4.4) lets programmers invoke the appointed method of the

object determined dynamically at runtime. The mature RMI and Java reflection

techniques enable programmers to develop applications efficiently, but have not been

completely supported in mobile execution environments. For example, in the J2ME

runtime environment, Sun Microsystems has not defined the RMI mechanism in the

J2ME specification. Though Sun Microsystems defined the RMI interfaces on the

CDC environment (an optional package of CDC), it did not provide the RMI

interfaces on the CLDC environment. As can be seen in Figure 22, the devices being

used in the CDC environment are PDA, Palm, Pocket PC, Smart Phone, while the

devices with lower computational power only provide the CLDC environment.

Most mobile agent systems [42, 43] provide abundant functions, including agent

migration, communication of agents with other agents and with the underlying system,

as well as support for security, transactions and controlling agents. For instance,

MOLE [44] offers an agent migration infrastructure with all of these functions, such

as a protocol for fault-tolerant execution of mobile agents, accounting and billing, and

control algorithms for finding agents, terminating agents, and orphan detection.

Though complete functions support the mobile agent, adapting application according

to the characteristics of the small and handheld devices has not been provided yet.

112

Some previous research has focused on the intrinsic structure of mobile agents

and mobility behaviors of mobile agents, such as MobileSpaces [40]. MobileSpaces

proposes agent hierarchy and inter-agent migration. The former is so that an agent can

have several child agents, each of which also has agents as its child agents, and so on.

The latter means that an agent is capable of migrating into another computer or to

within an agent. Also, this framework makes agents adaptable. It regards a mobile

agent as a component, and can combine a collection of agents into a single agent.

Several agents are organized hierarchically into one agent. Additionally, this

compound mobile agent can be adapted to the target environments. Although the

hierarchical structure and adaptable concept for the mobile agents are provided in this

framework, it does not structure the application and consider the context-aware

adaptation for various mobile devices.

m-P@gent [45, 44] provides environment-aware mobile agents capable of

running on resource-limited devices and appliances. In addition, it supports the

runtime environment with mobile applications on the mobile devices, and contains

four subsystems - @Desk for the PC platform, @Palm for the Palm device platform,

@Pocket for the PocketPC platform, and @TINI for the TINI device platform.

Moreover, it divides a mobile agent into two parts: a core and add-on functional

modules. Then, it can adapt add-on modules of the agent to a runtime environment via

a specific profile for each runtime environment, such as are profile for J2SE and

another profile for J2ME. Yet this framework lacks the ability to distribute the

computational loading of applications on the small and handheld devices. In other

words, capabilities of the applications on this mobile agent system are restricted by

the limitations of the devices. Furthermore, to adapt each component of the mobile

agent, it is necessary to describe the type and class of a component for each runtime

113

environment. In our system, only description of component constraints in an ASCC

profile is needed for the same purpose.

On the other hand, some researchers [46, 47, 48] have explored the follow-me

applications. Harter et al. [48] describe a sensor-driven, or sentient, platform for

context-aware computing that enables applications to follow users while they move

around a building. Takashio et al. [47] also propose a mobile agent framework

f-Desktop for the migration mechanisms of follow-me applications in an ubiquitous

computing environment and evaluate its basic performance. Even though the basic

functions of migration and adaptation of applications are provided, this framework

does not concern the real context profiles of mobile devices for adaptation, and does

not help run applications on these mobile and embedded devices.

In context sensing and modeling, Schmidt has explored context acquisition from

sensors [49], and aim to model the context information [50, 51]. Gray et al. [50],

present a way of analyzing sensed context information formulated to help in the

generation, documentation and assessment of the designs of context-aware

applications. Furthermore, to use CC/PP as the context information, Indulska et al. [52]

address a context model and a context management system able to offer pervasive

systems, and discuss the pros and cons of the CC/PP framework.

For developing context-aware applications, Dey et al. [53] describe a distributed

software infrastructure to support context-aware applications in the Aware Home, a

prototype smart environment. Their infrastructure is similar to the Situated

Computing Service [54]. Both of them discuss polling and notification mechanisms to

impart applications information of context changes. Kermarrec et al. [55] focus on a

contextual object, a conceptual object model, for developing applications toward

adaptation on the continuous changes of the mobile environment. A contextual object

114

has a context-sensitivity list (similar to component constraints in our framework) for

describing the dependencies of an object and the kind of context that it senses. In

addition, it has a reference to some real object (e.g. HTML page, Java Class, etc) to

represent the value of this object in the current context. A conceptual framework for

context-aware applications in current mobile and Internet environments has also been

proposed [56]. The framework contains three parts. The first is the context

management part capable of sensing and aggregating data, and managing the set of

context groups. The second is the service management part that selects the appropriate

services with context information from context management part, and returns the

services to the adaptive user interface part. The third is the adaptive user interface part,

which provides users with the adaptive and web-based user interface with selected

services. All of the frameworks can facilitate the development of context-aware

applications and a fundamental adaptation infrastructure for the applications on

ubiquitous computing environment. Nevertheless, the weakness of their frameworks

lies in the decision of the appropriate component or service for application adaptation

according to context information.

Some agent systems are explained before. Besides, there are some systems with

the same or similar functions. Table 11 briefly shows the related work. In the table, we

classify the systems into the several types: Context Awareness (CA) [55][56],

Framework Adaptation (FA) [57][58][59], Mobile Agent systems (MA)

[43][42][60][61], Context aware agent (CMA) [62], Transformation Engine (TE) [63],

Web Server (WS) [64], Context Awareness (CAA) [65]. Also, we list their functions:

Form-based XML programming model, Mobile environment, Mobile Agent, etc. In

the table, content adaptation means that content can be adapted by certain algorithms.

An example is picture encoding. G2 does not have this function, but can provide the

115

adaptation mechanism. In this mechanism, programmers can use some picture

encoding algorithms to adapt pictures to different situations.

Tab. 11 the related work
 CA FA MA CMA TE WS CAA G2
Form-based XML
programming
model

 V V

Mobile
Environment

 V V

Mobile
Agent

 V V V

Web-based V V V

Content
adaptation

V V V V

Context
Awareness

 V V V V

Service
adaptation

 V V

(V – has this function, e.g. CA is Web-based and has content adaptation function)

116

Chapter 7

Conclusion and Future Work

In summary, let we take CAAS as an example. We have explained our focus on

transmitting agents efficiently and adapting applications to cope with the variability of

user devices. By means of the front-end module and the back-end module, the

restrictions of developing applications on small and mobile devices can be decreased.

Furthermore, agents can synchronously migrate with their owners or be

asynchronously anchored to their resident server. To transmit the agent efficiently, we

experiment on agent migration strategies, and use the LAM as the default strategy for

the agent migration. Additionally, by structuring applications in ASCC profiles, and

leveraging CC/PP and WAP UAProf frameworks, the attribute-based component

decision algorithm can choose the components suitable for the context of the user’s

devices.

Currently, there are some issues, including the replacement of the stateful and

relative components, the conflict of the component property declaration, the

consistency between the ASCC profile and the back-end module, and the lack of

proper component declaration. Therefore, in the future we will attempt to design a

software development kit (SDK) to aid programming and consistency checking. To

further enhance this framework, some services related to the integration of this

framework will be discussed in the future. Transaction, security, and server scalability

handling, as well as load balancing and faulty recovery can be achieved by including

services of distributed computing platforms, such as J2EE [73]. The J2EE

117

environment offers a distributed application model, a unified security model, flexible

transaction control, etc. In transaction, several invocations between the front-end

module and the back-end module of an application are regarded as an atomic unit.

This transaction can be handled through some particular operations, such as commit

or abort, and the two phases commit protocol. Security consists of authentication and

authorization, which can be used to protect servers against malicious applications, and

vice versa. Because some vendor’s implementations of J2EE have the capability for

scalability issue, we can use the J2EE framework to play the infrastructure for our

system implementations.

In addition to the methodologies, we will attempt to integrate our framework

with some mobile agent systems. IBM Aglet [42] and MOLE [43], for instance, have

full-fledged mechanisms of security, transaction, scalability, etc. Furthermore, we

intend to exploit the context sensing and modeling technologies to enlarge the use of

contextual information toward adaptation in ubiquitous computing environment.

We can conclude our work in a generic model, shown as in Figure 45. The model

contains six parts: Profiles, Performers. Sensors, Environment, Decision engine,

Applications. In Chapter 4, we realize these functions in three systems. They contain

context awareness, adaptation/transformation, agent migration, and application model.

Besides the instances, we can add other techniques, such as Zig-Bee [66] as a sensor

component, a rule engine (JESS [67]) as the decision engine in our newly-created

system.

118

Fig. 45 a generic model

Figure 46 displays the overview of G2MR which we are realizing in progress. In

G2MR, we use RFID for detecting users’ location information and Java MHP

(Multimedia Home Platform) [70] for displaying the result to users. Figure 47

illustrates the system architecture of G2MR. In the system, we want to add Decision

Maker, Event Manager, etc.

119

Fig. 46 an overview of G2MR

120

b

Fig. 47 the components of G2MR

Table 12 illustrates the work we have implemented and the future work we want

to design and implement. As you can see in this table we can see the functions

provided by the systems and the revolution of these systems. There are some new

emerging technologies: Web 2.0 [69], 3G [70], mobile streaming, DVB-H [71], etc.

We can consider these technologies to enhance our system. For example, there is a

technology called architecture of participation [72] in Web 2.0. Its means client device

can have the detecting function to be aware of context of a user. There are a great

many of applications applying these emerging discovered technologies for ubiquitous

computing. We hope we can approach the goal to accelerate convenience for human

lives.

121

Tab. 12 The system we implement and the future work

MHP SMS, Schedule
Home Control

Library, Movie,
Home control

Application
Practice

Yes Yes No Embedded
Box

JSSE N/A N/A Decision
Engine

N/A

Application
Migration

Application
Migration

Application

XHTML MP
Generator

PUML
transformer

PUML
transformer

Performer
RFIDBluetoothN/A Sensor

N/A CC/PP
WAP UAProf

CC/PP
WAP UAProf

Profile

G2MR G2 Ubi-Adapting Name

Web 2.0
3G
Mobile Streaming
DVB-H
…

Aware Home
Aware Building
….

122

References
[1] Bill N. Schilit, Norman Adams, Roy Want, “Context-Aware Computing

Applications,” Proceedings of IEEE Workshop on Mobile Computing Systems
and Applications, Santa Cruz, CA, 1994; 85-90.

[2] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, Paul Webster, “The
Anatomy of a Context-Aware Application,” Mobile Computing and Networking,
1999; 59-68.

[3] Chen, G. & Kotz, D, “A Survey of Context-Aware Mobile Computing Research,”
Technical Report, Dartmouth Computer Science Technical Report TR2000-381,
Hanover, New Hampshire, November 2000.

[4] Cheverst, K., Davies, N., Mitchell, K., Friday, A. & Efstratiou, “Developing a
Context-Aware Electronic Tourist Guide: Some Issues and Experiences,”
Proceedings of the SIGCHI conference on Human factors in computing systems,
2000; 17-24.

[5] Asthana, A., Cravatts, M. & Krzyanowski, P, “An indoor wireless system for
personalized shopping assistance,” Proceeding sof IEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz, California, 69-74. 1994.

[6] Kazunori Takashio, Gakuya Soeda, Hideyuki Tokuda, “A Mobile Agent
Framework for Follow-Me Applications in Ubiquitous Computing
Environment.,” Proceedings of 21st International Conference on Distributed
Computing Systems Workshops (ICDCSW '01), Mesa, Arizona, 2001.

[7] WAP, http://www.wapforum.org/.
[8] Sun Microsystems, “Java 2Platform Micro Edition Technology for Creating

Mobile Device,” Sun Microsystems, Inc, 2000.
[9] JSR 118 Expert Group, JSR-000118 Mobile Information Device Profile 2.0 (Final

Release), May, 2002.
http://jcp.org/aboutJava/communityprocess/final/jsr118/index.html.

[10] PersonalJava, http://java.sun.com/products/personaljava/.
[11] Microsoft Mobile Web Forms, http://samples.gotdotnet.com/mobilequickstart/

(mgk4rd2jnyo1zm55tgnot02p)/Default.aspx.
[12] NET Compact Framework, http://samples.gotdotnet.com/quickstart/

compactframework/.
[13] 3GPP, “TS 22.057 V5.4.0. 3rd Generation Partnership Project; Technical

Specification Group Services and System Aspects; Mobile Execution
Environment (MExE); Service description, Stage 1 (Release 5)” 2002,
http://www.3gpp.org.

[14] Tzu-Han Kao, Yung-Yu Chen, Tsung-Han Tsai, Hung-Jen Chou, Wei-Hsuan Lin,
Shyan-Ming Yuan, “PUML and PGML: Device-independent UI and Logic
Markup Languages on Small and Mobile Appliances”, Lecture Notes in
Computer Science (LNCS) of Springer-Verlag, The 2005 IFIP International
Conference on Embedded And Ubiquitous Computing (EUC-05), Nagasaki,
Japan, 6-9 December 2005. (SCI)

[15] Tzu-Han Kao, Sheng-Po Shen, Shyan-Ming Yuan, and Po-Wen Cheng, “An
XML-based Context-Aware Transformation Framework for Mobile Execution
Environments,” Lecture Notes in Computer Science (LNCS) of Springer-Verlag
(APWeb 2003, Xian, China), Vol. 2642 / 2003, pp. 132 - 143.

[16] Tzu-Han Kao and Shyan-Ming Yuan, “Automatic adaptation of mobile
applications to different user devices using modular mobile agents,” Software:

123

Practice and Experience. Published Online: 27 Jun 2005 (SCI)
[17] Tzu-Han Kao, Yi-Hsiang Chou, Ming-Chun Cheng, Hsin-Ta Chiao, Shyan-Ming

Yuan, “The design and Implementation of a Mobile Agent-Based Framework for
Context-Aware Computing,” Proceeding of ICS2002. International Computer
Symposium (ICS2002). Dec. 18 - 21, 2002, Hualien, Taiwan.

[18] Tzu Han Kao and Shyan-Ming Yuan, Designing an XML-based context-aware
transformation framework for mobile execution environments using CC/PP and
XSL,” Computer Standard & Interface. Available online 6 November 2003.
(SCI)

[19] Ricardo Devis, “The Object-Oriented Page,” June 1997.
http://www.well.com/user/ritchie/oo.html

[20] WAP Forum, “Wireless Markup Language Specification Version 1.1,” Jun 1999.
http://www.wapforum.org/

[21] Sun Microsystems, “Java 2 Platform, Micro Edition, 1.0a,” December 2000.
[22] J. Gosling, B. Joy, and G. Steele, The Java Language Specification.

Addison-Wesley, September 1996. http://java.sun.com/docs/books/jls.
[23] Hiroshi Maruyama, Kent Tamura, Naohiko Uramoto, Makoto Murata, Andy

Clark, et al., XML and Java Second Edition: Developing Web Applications,
Addison-Wesley, 2002.

[24] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, et al., “Extensible Markup
Language (XML) 1.0 (Third Edition),” W3C Proposed Edited Recommendation.
October 2003. http://www.w3.org/TR/REC-xml.

[25] David C. Fallside, “XML Schema Part 0: Primer,” W3C Recommendation. May
2001. http://www.w3.org/TR/xmlschema-0/.

[26] Mark H. Butler, “Implementing Content Negotiation using CC/PP and WAP
UAProf,” External Technical Report HPL-2001-190, 2001.
http://www.hpl.hp.com /techreports/2001/HPL-2001-190.html.

[27] Hidetaka Ohto, Johan Hjelm, “CC/PP exchange protocol based on HTTP
Extension Framework,” W3C Note, June, 1999.
http://www.w3.org/TR/NOTE-CCPPexchange.

[28] Dan Brickley, R.V. Guha, and Brian McBride, “RDF Vocabulary Description
Language 1.0: RDF Schema”, W3C Working Draft, January, 2003.
http://www.w3.org/TR/rdf-schema/.

[29] Franklin Reynolds, Johan Hjelm, Spencer Dawkins, and Sandeep Singhal,
“Composite Capability/Preference Profiles(CC/PP): A user side framework for
content negotiation,” W3C Note, 1999. http://www.w3.org/TR/NOTE-CCPP/.

[30] Ora Lassila, and Ralph R. Swick, “Resource Description Framework (RDF)
Model and Syntax Specification,” W3C Recommendation, February, 1999.
http://www.w3.org/TR/REC-rdf-syntax.

[31] Hiroshi Maruyama, Kent Tamura, Naohiko Uramoto, Makoto Murata, Andy
Clark, et al., XML and Java Second Edition: Developing Web Applications.
Addison-Wesley, 2002.

[32] Ann Wollrath and Jim Waldo. “Trail:
RMI, ” http://java.sun.com/docs/books/tutorial/rmi/index.html.

[33] Mark H. Butler. “DELI: A DElivery context LIbrary for CC/PP and
UAProf,“ External Technical Report HPL-2001-260, Feb., 2002.
http://www.hpl.hp.com/personal/marbut/DeliUserGuideWEB.htm

[34] Brian McBride, Andy Seaborne, Jeremy Carroll, “Jena Tutorial for Release
1.4.0,” April, 2002. http://www.hpl.hp.com/semweb/.

[35] Geier, Jim. Wireless LANs. SAMS, 2002.

124

[36] Held, Gilbert, Data over wireless networks: Bluetooth, WAP, and wireless LANs.
McGraw-Hill, 2001.

[37] Wang, Jiangzhou, Broadband wireless communications: 3G, 4G, and Wireless
LAN. Kluwer Academic Publishers, 2001.

[38] Borland JBuilder. http://www.borland.com/us/products/jbuilder/index.html .
[39] Microsoft Studio .NET. http://msdn.microsoft.com/vstudio/ .
[40] Ichiro Satoh, “MobileSpaces: A Framework for Building Adaptive Distributed

Applications using a Hierachical Mobile Agent System,” Proceedings of the 20th
International Conference on Distributed Computing Systems (ICDCS 2000).
Taipei, Taiwan, 2000.

[41] Dale Green, “Trail: The Reflection API,”
http://java.sun.com/docs/books/tutorial/reflect/index.html.

[42] Danny Lange and Mitsuru Oshima, Programming and Deploying Java Mobile
Agents with Aglets, Addison Wesley, 1998.

[43] J. Baumann, F. Hohl, K. Rothermel, M. Strasser and W. Theilmann, “MOLE: A
mobile agent system,” Software-Practice and Experience, 2002; 32:575-603.

[44] Kazunori Takashio, Masakazu Mori, Masataka Funayama, and Hideyuki Tokuda,
“Constructing Environment-Aware Mobile Applications Adaptive to Small,
Networked Appliances in Ubiquitous Computing Environment, Lecture Notes in
Computer Science, vol. 2574. Springer: Berlin, 2002; 230 - 246.

[45] Kazunori Takashio, Masakazu MORI, Hideyuki Tokuda, “m-P@gent: A
Framework of Environment-Aware Mobile Applications for Small, Networked
Appliances,” Proceedings of 2002 IEEE 4th International Workshop on
Networked Appliances. Gaithersburg, MD, USA, 2001.

[46] Phil D. Gray and Daniel Salber, “Modelling and Using Sensed Context
Information in the Design of Interactive Applications,” Proceedings of 8th IFIP
Working Conference on Engineering for Human-Computer Interaction
(EHCI'01). Toronto, 2001.

[47] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, Karen Henricksen,
“Experiences in Using CC/PP in Context-Aware Systems,” Proceedings of
Mobile Data Management, 4th International Conference. MDM 2003 (Lecture
Notes in Computer Science, vol. 2574), 2003.

[48] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy, “Modeling
Context Information in Pervasive Compututing Systems,” Proceedings of The
First International Conference on Pervasive Computing. Pervasive 2002 (Lecture
Notes i) Computer Science vol. 2414). Springer:Zurich, Switzerland, 2002;
169-180.

[49] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven, and W. V.
de Velde, “Advanced interaction in context,“ Proceedings of First International
Symposium on Handheld and Ubiquitous Computing. Karlsruhe, Germany,
September 1999; 89-101.

[50] A.K. Dey, D. Salber, G.D Abowd, “A Context-based Infrastructure for Smart
Environments,” Proceedings of the 1st International Workshop on Managing
Interactions in Smart Environments (MANSE '99), 1999; 114-128.

[51] Hull, R., Neaves, P., and Bedford-Roberts, J, “Towards situated computing,”
Proceedings of International Symposium on Wearable Computers (1997)
146–153.

[52] Kermarrec, A.-M., Couderc, P., ans Banatre, M, “Introducing contextual objects
in an adaptive framework for wide-area global computing,” Proceedings of the
8th ACM SIGOPS European Workshop, September, 1998; 229-236.

125

[53] Sei-Ie Jang, Joong-Han Kim, and R.S. Ramakrishn, ”Framework for Building
Mobile Context-Aware Applications,” Proceedings of the First International
Conference on The Human Society and the Internet - Internet Related
Socio-Economic Issues citation 2001, July 04 -06, 2001.

[54] Eric Armstrong, Jennifer Ball, Stephanie Bodoff et al. The J2EE. 1.4 Tutorial.
Sun Microsystems, Inc. November 16, 2003.

[55] Anita W. Huang, Neel Sundaresan, “A Semantic Transcoding System to Adapt
Web Services for Users with Disabilities,” Proceedings of the fourth international
ACM conference on Assistive technologies,156 - 163, 2000

[56] Chieko Asakawa, Hironobu Takagi, “Annotation-Based Transcoding for
Nonvisual Web Access,” Proceedings of the fourth international ACM
conference on Assistive technologies, 172 - 179, 2000

[57] Erlend Stav, Svein Hallsteinsen, Jacqueline Floch, “FAMOUS: Framework for
Adaptive Mobile and Ubiquitous Services,” Reconfiguration Workshop,
27.01.2005

[58] Maria-Teresa Segarra, Francoise Andre, “A Framework for Dynamic Adaptation
in Wireless Environments,” Proceedings of 33rd International Conference
Technology of Object-Oriented Languages (TOOLS 33), 2000.

[59] Vasian Cepa, Mira Mezini, “MobCon: A Generative Middleware Framework for
Java Mobile Applications,” Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS'05) - Track 9, 2005.

[60] Satoh I., “MobileSpaces: A framework for building adaptive distributed
applications using a hierarchical mobile agent system,” Proceedings of the 20th
International Conference on Distributed Computing Systems (ICDCS 2000),
Taipei, Taiwan, 2000.

[61] Takashio K, Mori M, Tokuda H., “m-P@gent: A framework of
environment-aware mobile applications for small, networked, appliances,”
Proceedings of the 2002 IEEE 4th International Workshop on Networked
Appliances, Gaithersburg, MD, 2001.

[62] Burstein, F., Zaslavsky, A., Arora, “Context-aware mobile agents for
decision-making support in healthcare emergency applications,” Proceedings of
the Workshop on Contextual Modelling and Decision Support (CONTEXT'05),
Paris, France, July 2005.

[63] XSLT transformation engine,
http://www.topxml.com/xsl/tutorials/intro/default.asp

[64] IIS 6.0 asp .net, http://asp.net/default.aspx?tabid=1
[65] context-awareness, http://en.wikipedia.org/wiki/Context_awareness
[66] ZigBee, http://www.zigbee.org/en/index.asp
[67] JESS, http://www.jessrules.com/
[68] JESS, http://www.jessrules.com/
[69] web 2.0, http://0rz.net/8c0LA
[70] 3G, http://en.wikipedia.org/wiki/3G
[71] DVB-H, http://www.dvb.org/
[72] The Architecture of Participation in Web 2.0, http://0rz.net/671A0
[73] J2EE, http://java.sun.com/javaee/

