S 1TIER

SH AL e i ﬁ” JL =% B mp,b

A study of extensibility"and adaptability-for mobile environment

TRRCELE YIRS ENCE ¥

A study of extensibility and adaptability for mobile environment

VN R R Student : Tzu-Han Kao

hERE 2T Advisor : Shyan-Ming Yuan

A Dissertation
Submitted to Department of Computer Science
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

n
Computer Science
June 2006

Hsinchu, Taiwan, Republic of China

™
L
(\.‘I
2|
.
-
X
e
N

oW v o e R R TR B PR
g4 F 53 s T
RE2d ~FFNe8 (F19) #4451
1 %
EREREEPATT R o £ E S ﬁ?i@%%ﬁﬁﬁ AR B W ER
ﬁﬁﬁ%ﬁﬁ%mﬁoé—%%éiiﬁﬁﬁifﬁﬁ%%ﬁﬁéﬁ?@ FE

Rk ERY FV LR LHE AR IR ETIR A7 i * T8 -

EEPP P APEAHBBETRDOEFHHNFEHRR - K3t~ Framework:
U-CAF (Ubiquitous Context Adaptation Framework) » & ¥ 2K 3+ = i % 3L 1% o #£
HELBBR A~ A 2B 2 XML& gt s 7t p

A= B %29 iF (CAAS, Ubi-Adapting, G?)® o fik 5 g 4k A » 4 g
W3C CC/PP 12 2 WAP UAProf » 12 2 RFID -~ Bluetooth % Htjt o }%‘ AR Lol 18]
F F R H AR R TR e R e L A g % XSLT/XPath & i
B MG RS S A TR LR P Web BIRET .S o AR
HHMK O AP FARRY BN X IFE R B LT B R 2N

i 4 o B A @7 A B iR Y AR E AR 4 .

2 '

2 UbiAdapting 3] » 2% /% &% %@ 2% 3+ 7 Adapting Service Container 1/ %
Personal Mobile Agents = #7 4 ‘fTT TRIARBE DT RE M R Rk
Grp AR kB AR A AR R T OUATH { F G TR RS o
T EA RS R X

FEP AR R AR R LR RO e PRIMEREE B F 2
FARAEFT Y AR PR R R TABLLERY Foai? H- 7 gk

x
i
TRGTRE Y A AR E PR RAR o AP F I BB

-

AR T
TRAFWHAT REL B VR B AT BEEFRRAE SR ONF o

B ET U EBERRE LR R Y g

A study of extensibility and adaptability for mobile environment

Student: Tzu-Han Kao Advisor: Shyan-Ming Yuan

Department of Computer Science
National Chiao Tung University

ABSTRACT

Wearable, handheld, and embedded: or} standalone intelligent devices are becoming
quite common and can support a diverse range of applications. In order to simplify
development of applications which can adapt to a variety of mobile devices, we
propose U-CAF (Ubiquitous Context Adaptation Framework). We want to provide
Rapid-development, Adaptability, Flexibility for programmers, seamless-use for
end-users, and Easy-upgrade for system developers in this framework. U-CAF
contains API, PUML/PGML, SDK, context awareness, adaptation, and transformation
mechanisms for application development on mobile execution environments. We
implement three systems: CAAS, Ubi-Adapting, G to realize our design. In the future,
we expect U-CAF to be enhanced for further development of widespread applications

for ubiquitous computing environments.

Acknowledgement

KA BRREAELHIHEHMT SRV FRMET A REAFRAR RERGE
>~ B REANKBEEALT D BBRONEM R 65 IBM- T E4
G AR B SRR —AEH BB R R DO EERM ARL
84 T8 Z9 G UE -

ERTZ2EHBREE T XA TEELE M B ERLTOEBE L
HoARRRTLOGER) 03k 2005 F 2B ~REHBZRELHA &
FARLAERHEGZEEE LAAYRLEZXRL - EETHRLARAREYTF -
TEALCAERCY I HET) AR SEEZRYE - R RRIGMYFE
B KRBT oA S5+ 2 S et R - M LTS
—% kL ER R T E AR5

ﬁ%%%@ﬁ*’K?ﬁﬁﬁﬁéﬁ%%ﬁpaiﬁ‘M&ﬁ%%%;@i
E RS- patish K=k R 4G 09 LA KR s R 1 2003 BB E
BEFTHRETEAERY R EBBRB U AFEEELY @BAKXLT

% Computer Science & Interface (CS & #A Fl 25 L - v & 2 7 % L EAF Sy %

G AR AELTAEEE —~@AHFRKELT SHEEL L LT

AL - EHLHBEREE 2ERETREAHYBAROBG L 4 F 4 LK
WHE LB B B LTV UGB A BE—EH L GAPLETRERABLREL K

HEZ - ERHIMBOAL P ECSH R MAZ LU OB FTELE -

LEREFAMZLPURNEZATRE- ROALATREYTRE - 94 £

-

FER S TEARLEALE R 2 EAMELL AT AL A AR T ERS
TABELALTAMSZA BR A I BN LI ATHRE - ROLLHIZE 284 XK
ZoRABLAT~EATREDIFA - LPYERRA T LEETRERLE R

ROFHEEZM - — W~ W= = —FF TR —HER BHHE

5 '

e BMARALOEIALEETRECTREBE T LA -
EEETHENEE 2 F o ARLRMEH R T RS A & - 2000
FRAETRE AEEORDBH 42T ACGRT - RAMEHLBELRY

2k EGEE 2 Il 225 2RI AAER T IEFNLER

ZETELZABMESHTATF ~ARSHAY S THA

REBXZOHE - ZRVEGUSE BT EZZT LY £H L e XK
DR ARE - PR 2 R ZREMTEAEELY > TEFH LML 44
%&%Wﬁ.%f%#/%&%ﬁ@& thfm% BFEEFHERAEF Lo

G F &~ I AL BB 4 Ji’fv/\ ‘i"'l %&ﬂ*iﬁﬁ%aﬁ? o R R AR (R

Jci
REAE— ﬁw%%%ﬁ%%i@%m%%ﬁ%ﬁ%sM&ﬁﬁﬁm@%%@ﬁﬁ

B o Aol R ZJTﬁm'ﬁﬁT&m\M&%kﬁ$°
S5 I AR Y A S AR RAT AL B

=

Mt AR 00 B R B B EF RS R M REFE

2H ATl BRI REE BE S HEY FR BN P

BPOHT S TOELYABREL T HRAEZHBLHRE -

WRE-REHGERE

A

FERGRIHYE > AHGLAMEA BE - & F2RHAMENL

,%X-

,fiz
FEABBIRAREAR I RE S - AHBERN 2 XA LB R F i -

TR T ATH R F R KAERE DT R WI00 9L &R S
= ST N

EAFREYEN ABFBEITARERATE G CBRRZEATOR D » AR
CBERE T o £ 2004 FREBETBAIT AN K2t EF L EFHH
SR AE MBS 38 EAREEUNEARRA YUY ~RUABZFT 4

LR HE EFEIE X FE M Jesse 90 i AR FE G S M OB o

FRCRHT LT ETHE LA M BT EGTAT T B E T4
REERM Y HAET R Pﬁ%ﬁ%ﬁ°%%i?%?ﬁﬁwwo

R i 0 Kb B g T kk‘dwbé@bﬁ% o B H > b4 @A (HF
%n+;%%§ﬁﬁ$%%ﬁﬁﬁxﬁmﬁﬁﬁﬁ%@ﬁ%%4m4ﬁﬁk%\
2005 Microsoft Image CUP\%&}%%M% AN 2 A HE F—ELAREHE -
AR IBM @ # Z 3t ir Bid) T =& IBM 41§ A B £ #7353 KRB 50 B R

MAEFEE ALY D @GP - £ 2005 Microsoft Image CUP & 2 4§ #F 95 % &

B ORA -MHER RECASL FF2RBRREHFA—~REMY—LE 2
o ARLAYRF T -

T =E IBM Mg BA#3sh RE - AR EER Y T2t —%
Wh - ZRBOLET AL TNE2M BRI EHURE - AL R R4
LB i U th - KPR~ B R FE A-CGHAAES HHA-FEYH
e LB o RIM A E 2005Microsoft Image CUP 2% » § —#2 272 IBM £ £ &

e e —RBENT ARYEERBIEHNL2EM F =972 22 -RE

BITxBE S - F29 348 22 - bRHFITEOTREFTIT 2 RN ¢

%S%

WA FZ RO CRBRERBAEM LG FHE Lk -HBEFE 245047

% -
AAAEY GiRkE €32 RAEK SR F[HEA - B 65 IBM & Ra%

\A\

439~ BELF SR GYE) o AR 4 F IBM ATASIE A S AYEY - bR
B ERFEREOUEMA > LT IBM @ SAFE P9 - BHRELHRY
B ERNRLY BEME 22 9X9HREY 1% 27 -#F 2
FRONTRE AR FPRTRIRFE2OHFM - RHEORK A FHA

T REBAR LA 0B - EHRFH G —F —F WHHMRLF E Y4
TRGAAR AT A e —BEBEFRERE»F HE - TOEXLY L

12006 5 A 1 8 5T > 8 REH

& GG RER R TTIAT Bt £l & R 4E
@ — B RER TAAR R T A

ﬁ2006fr%vﬂ%fé%?%iﬁﬁm ﬁ%%‘?ﬁi%?ﬁ%wﬂﬁm"ﬂi T KRR
9 ¥H% %z‘%a@?ﬂaﬂkm/{a WA D BB o i —F —F (& L Fds
CRAEF~BRSARDAS RIEF ERBERBBHLA LTR £5 28
A HH FANBH YRS LHH ARIAENBEZTEARLNELER
BoBETRIRFFEFROELHB0 AT REAWEA LT RBEEH UL

R OE -SRI L FEFRYE ZE MMl RE S AREIHE Z2ERE
AN

@

|- B 7 25 iR 2 F S JUE

PORBRE FH-ERL FP LI FP - 2AY FH

%
Wz8 F72 - HAES CERE FROBRRTFRYZEMEHE F

FAHMBER EE-F AT 2E BN 2 ARGLEN I RBEE 24

TEE B el - TER 2% - RF-SBE FTE 2 EFFE
BEE BB RGN EI B L REFEIOU R REE 22 - KT H 25 -

AR Sk B Sk RAE R FME F P EF R LOF PR

REX 2 AME 2P -REE S5 2R F7 - BEH 27 HKE

e 22BN R -MGRHE 25 HKEE 2P FZHE 2F - RET Z

PoEE SR FUHN A BROG FREAR HER FF 0 RHEL
ZEGPIH b o BRERE Oy > RERO G LT 4%

CHAEARYGHEMAM > BFAE RRERAEE HHB - RAEKE

EEBESN GEHAHAKELRINR - ARSTF—HFAEYMRRT &
32 -FEW-EFE AR FHEI AHBEOARTEEEI AR L EEL

g BMMEMXATBEENRN L EORZFITM A KM~ 2547 BB A ~ A

B BEZ

N

HAERREB LR BHRAHL A0 T8 L6 REHE £ %

% AR IR A HREE AL L A R L R K o KA
EOTFHRA - LI 4 SRR S

KA 2006 4/2 & T &2 LB L E ;ﬁﬁixa’] BRBE YO ERO—RAE

§28

B FRE)FBRAEETRE - ﬁ{&%%&k%’a CRERE)T RE~#E

KA~ HHERLE

Tohra 698512 2456942

EH S PATRERER..?

B HE RE BHE A% 24

AARA ~ AAEH S AATATE,

Rigw EFsdZ R —AHEER A4 FHaBER -
et @ik —@ Tk, B4

wm T B

RBAE BER EAIER
A TR R BT

2006 7/13

9 '

Table of Contents

ACKNOWIEAZEMENE ...ttt eb et e e sbeebaesaseenseeennas 5
Table Of CONENLSeeiiieiiiiiieeiieteee ettt ettt et saeens 10
LISt Of FIZUIESeeiiiiieeiieece ettt ettt st e e st e e saeeesabeeennseeenseeens 12
LSt OF TADIES...cueieieiiiie ettt ettt 14
TeIMINOLOZY ...ttt ettt e e e e st e e st e e s beeesnbeeeenseeesnseesnnreeenns 15
Chapter 1 INtrodUCTIONccviiiiieeiiecieeie ettt ettt sve et eereesaaesnaeesane e 16
1.1 The enVIFONMENTeoiuiiiiiiiieeiieeiie ettt 18

1.2 THE PIrODICINS ..uvviiiieiiieiiieeiieeieeete ettt ettt et e e et eebaesaeeenseenes 19

1.3 ODJECTIVES ..veeivieniieeiiieiieeieeite et et e et et e eteesteeesbeessaeenseessseenseesssesnsaensneenns 20

1.4 Application MOdelcooviiiiiiiiiiiciicceeee e 21

1.4.1 The programming model...........c.ccoverviieriiiriiienieeiieie e 21

1.4.2 In an system implementationccecceeeriiieeriieeeriee e e 22

1.4.3 PUML/PGML and APIS......cocueiieiiiiieieeceeeeeeeee e 23

1.5 SOIUtIONS ..o sa i et et e i e 24
Chapter 2 Context adaptation...... ..o i e ie et eve e 27
2.1 CONLEXt-AWATEIIESS ... es: surensseassessuneesdssnnsssseshereenseensueesseesueenueesseenseesnseesieenns 27

2.2 Context adaptation PrOCESSc.eisseeestessseoiaathreerreenreesseessseesseesseesseessseeseenns 31
2.2.1 Application StrUCTUIE i iieediviibins ettt 31

2.2.2 Attribute-based component decision algorithmccccecvveveeennnne. 34

2.2.3 Application Structure & Component Constraintscccceeevveenveenne. 42

Chapter 3 PUML/PGML Transformationccceeeieeeuienieeniienieenieesveeseeesveesneenns 45
3.1 Pervasive User Interface Markup Language (PUML)........ccccoovvevvveiiennnennne. 45
3.1.1 Conceptual VIEW.....ccueieeiiieiiiieeiie ettt ettt 45

3.1.2 The language deSCriptionc..ccveeeueerieeciieniieeieeriee e esiee e esiee e 47

3.1.3 The elements 0f PUML.......cccoociiiiiiiiiiiiieeeeeee e 49

3.2 Pervasive LoGic Markup Language (PGML)........ccccovviviiieiciiiieeieecen 53
3.2.1 Design Principle.......ccoveeiieriieiieciieeieeeieeieeee et 53

3.2.2 The design Of PGMLccciieiiiiiiiiieeceeeeeeee e 54

3.3 Leveraging XSLT/XPath Transformation............cccceeeveeiiereencieenieenieeieeene. 60
3.3.1 An overview of language transformation mechanism 60

3.3.2 XSLT transformation procedurecceeevuieeriiveencireeniieenieeesvee e 61

3.4 The use of combination of context adaptation and XSLT transformation.....67
Chapter 4 System implementation............cceerveeriierieerieeieeseeeteeseeereesereesreessaeeseens 68
4.1 Context-Aware Adaptation Service (CAAS)ovvvivevciieeeeeeee e 68
4.1.1 EXample SCONATIOecvuiiiiieriiieiieeiieieeeieeieeeve et eve e eveesaneeesee e 68

4.1.2 SYStEIM OVEIVIEW ...eeeiiiieiiieeiiieeiteeestteeeieeessteeesveeesseeessseesnnseesnsseesnnns 69

4.1.3 System architeCture.........cc.eevcuereeiiieeeiieeciie et erree e e e e e saeee e 70

4.1.4 ANt MIZTALION ...veeeirieeiiieeiieeeeieeesteeesieeesaeeeseaeeessaeeesseeessseeensseennns 77

4.2 UDI-AdAPIING ..evieeiieeiee ettt ettt e s e e eae e e eeeaaeeenaeeenaeeenneeas 93

4.3 Gateway Of GALEWAY (G2)veeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e s eees s 95

BN o) o] N Lo 15 1) s USRS 95
Chapter 5 Application development.............cocuviiiiiieiiiiieiiie e 95
5.1 PUML/PGML WITHNEeeutiitieiieieeieie ettt ettt 95
5.1.1 Hand COAINGccvvviiiiieiiiieciieeeeeeee ettt e 95
ST2WYSIWY G oottt 95

5.1.3 The generated COAEcuviriiiiiiiiieiiece e e 95

5.2 Application component and agent development............ccceeevvveerieeencieeennnen. 95
Chapter 6 Related WOTKcccviieiiiieiiccecee et 95
Chapter 7 Conclusion and Future Work............c.cccovveiiiieiiiieiieeceeeeee e 95

List of Figures

F1G. 1 FORM-BASED APPLICATIONS: THE FOCUSED APPLICATIONSuviiieiiiieeeiieeeeireeeesireeeesereeeesaveeeenns 17
FIG. 2 DEVICE CAPABILITY DIVERSITY ...uvttitteeiieetteeieesireeseesteeenseesseeesessseeesseessseeensessssssssseessssesnaesnns 19
FIG. 3 THE PROBLEMSceiuttiitteeitiesteeettesteeeteesbteesteessseeassaesssaeesseesnsaeenseesnsseenseesnseeanseesnsseenssesssseenseennns 20
FIG. 4 THE APPLICATION MODELccutttetteitteeieeetteeteesseeeseesseeesseesnsaesssessssseenseesseeenseesnssesnseesssseenseesns 21
FIG. 5 A SYSTEM IMPLEMENTATIONcccctttitteetieenteeeteeenseeeseesseeasseessseeesessnsseenseesseeenseesssseenseesssseensaesnns 22
FIG. 6 THE LANGUAGES AND APISiiiiiiiiieeie ettt ettt st sttt eaaeebaeeaneenes 23
FIG. 7 THE SOLUTION WE PROPOSEceccttiitteeiteetteeieesteeeseesseeeseesseeessesssseessessnsesesseesssssssssessssesnaesns 26
FIG. 8. A SEGMENTATION OF NOKIA 8310°S WAP UAPROF PROFILEccceteriiieiieeiieeireenireenireeneneenneenes 28
FIG. O RFID APPLICATIONcccuttietieiieeeteestteettestteeteessteeesseesssaessseesnseeenseesnsaeenseesssseenseesnsseenseesssseenseesnns 30
F1G. 10. THE BACK-END MODULE OF THE APPLICATION IMAGE GATHERINGcccciiviieeirieeeeirreeeiireeeennns 32
FIG. 11. THE STRUCTURE OF THE APPLICATION IMAGEGATHERINGccceeeuviieiiiiiieeiirieeeenreeeeireeeeseveeeennes 33
FIG. 12 A COMPONENT DECISION TREE AND ITS LINKED COMPONENTScuviiiiiiiiieeiirieeenreeeeeireeeenireeeenns 36

COMPONENTS OF THE APPLICATION IMAGEGATHERING ON THE LEFT-HAND SIDEcc0ccvevennennn. 38
FIG. 14 THE IMPLEMENTATION (LINKING FIST) OF ADECISION TREEc.coviiuiiiiiiieiieieienieeieeieeieeiieneeie e 40
FIG. 15. THE LINKING LIST OF THE DECISION. TREE ILLUSTRATED IN\FIGURE 13ccooviiiiiiiiiiiieeiieene 41
FIG. 16. THE CONCEPTUAL VIEW OF PUMLoooi it Tt e 47
FIG. 17. A TREE VIEW OF THE XML SCHEMA OF PGML i it 55
FIG. 18 THE XML SCHEMA DESCRIPTION OF THE <ADD> EEEMENTccoveuiiuieneeeeieiereereeeeeneeneesenneenens 57
FIG. 19. THE PROCESSING FLOW OF PUML/PGML DOCUMENTSccovteiieiiaienrienieeieesessesenesseesseessenns 60
FIG. 20 INTEGRATING TRANSFORMATION AND ADAPTATIONuvviieiirieeeeirreeeeireeeesereeeesereeeessseeesnnreseannns 67
FIG. 21. AN OVERVIEW OF THE SYSTEM INFRASTRUCTUREcccuvtieiurieeeeirreeeeireeeeiereeeesereeeesnseeesnreseennns 70
FIG. 22. THE INNER ARCHITECTURE OF THE CONTEXT-AWARE ADAPTATION FRAMEWORKcc.ccvven..n. 71
F1G. 23 CLASSES OF COMPONENT MANAGER, COMPONENT FACTORY, AND APPLICATION CONTEXT 75
FIG. 24. STATE TRANSITION DIAGRAM OF THE PERSONAL AGENTccuviiiiiiiieeiiieeeeireeeesereeeesevreeeeareeeenns 77
FIG. 25. AN INTERNAL VIEW OF A PERSONAL AGENT AND AN APPLICATION STRUCTUREcccvveeeurerennns 79
FIG. 26. CASES OF USERS’ MOVEMENTSccuttietteetieeieesteeeteesteeesueesseeesessseeenseesssseenseessssessseessssessssesns 80
FIG. 27. THE SEQUENCE DIAGRAM OF ACPS ...ttt 82
FIG. 28 THE SEQUENCE DIAGRAM OF ACPS WITH AGENT MIGRATIONueeriureeireeireerereenireennreennreenneenes 83
FIG. 29 THE SEQUENCE DIAGRAM OF ACPS WITHOUT AGENT MIGRATIONccoctierurierureenireenereennneenneenns 83
F1G. 30. THE STRUCTURE OF THE APPLICATION IMAGEGATHERING BY USING THREE STRATEGIES. 85
FIG. 31. AGENT MIGRATION USING HAM ... oottt ettt ettt s sanee e 86
FIG. 32 AGENT MIGRATTION USING FAMcutiiiiiiiiiiiiie ettt ettt ettt eieesbaeeaaesbaeenaneenes 88
FIG. 33 AGENT MIGRATTION USING LAM ...ciiiiiiiiiiiiciie ettt ettt st eane e 90
FIG. 34 THE EXPERIMENTAL SETTINGueeeitteeteeereeeteeeseeeseesseeesseesseessesssseenseessseeensessnssesnseesssseensaenns 92

FIG. 35 THE EXPERIMENTAL RESULTS ON HAM, FAM, LAM-B, AND LAM-Wooooiiiiiiiiiiiiiiinnennn. 93

FIG. 36 THE ARCHITECTURE OF UBI-ADAPTINGeeeitieetreeteeeireeseeestreesseessseesseessssesssesssssessssessssesseesns 94
FIG. 37 THE TESTED DEVICESeeetttitteetteeiteeeiteeetteesseessseeeseessaeesseessssesssesassssessessssssssssessssssssssssssesssesns 94
FIG. 38 THE OVERVIEW OF THE G ...ttt e e ee e e e e e seseeeeesseesesee e ssasnaees 95
FIG. 39 PUML/PGML & AGENT DEVELOPMENTccutiitiitieteetteeeeesseeseesseesesssesssesseesseesesssesssessssssesssenns 95
FIG. 40 THE STEPS FOR DEVELOPMENTcccctteetteetteeteeeteeeseessaeesseessseessesassseesseessssesssesssssessssesssssessasses 95
FIG. 41 USING THE TOOLKIT FOR DEVELOPMENTccctttitteeitteeireeueeeteeeseessseesseesssessseessssessssessssesssesns 95
FIG. 42 THE TOOLKIT WE DESIGNEDccuttiitteeitteetteesteeesreeseessseeesseesssseessesassssessesssssssssesssssssssssssssssssassnns 95

FIG. 43 THE TOP FIGURES ARE THE SIMULATING RESULTS OF THE WML CODE, AND THE BOTTOM IS THE

RESULT OF J2ME CODE GENERATED FROM THE CODE OF PUML/PGML........c..ccccovviviieiieiirienenns 95
FIG. 44 THE CLASS DIAGRAM OF PROGRAMMING AGENTS AND BACK-END MODULES.........cc.ccoeveurenrennenn. 95
FIG. 45 A GENERIC MODELccvteetieeteeeteesteeeteessaeesseeasseeeseessssssssessssesssesassssessssssssesssssssssssssssssssesssessnns 95
FIG. 46 AN OVERVIEW OF G MR ..ottt ee e s s s s s e s eeeseees 95
FIG. 47 THE COMPONENTS OF GZMR_.....c..oooeeeeeeeeeeeeeee e e eeeeseeee e ee e eee s eseenees 95

13 ' |

List of Tables

TAB.
TAB.
TAB.

TAB.

TAB.

TAB.

TAB.
TAB.
TAB.
TAB.
TAB.

TAB.

1 THE RELATIONSHIP OF SOLUTION AND OBJECTIVEcuttiiiiiieeiirieeeeireeeeireeeesireeeesrsesesaseeeeseneeeans 25
2 THE TYPES OF CONTEXT INFORMATIONc.uvtiiiiiieeeiireeeeitreeeesteeeeetreeeesaseeeesereeeasnssesessssesesssseeeans 27
3 THREE CATEGORIES OF COMPONENTSuuttttttetteetteeieeetteeteesseeeseessaesseesnseesssesssessssessnseesssess 33
4 THE RESULT OF THE FIRST FIVE STEPS OF TRANSFORMING THE PGML DOCUMENT INTO THE J2ME

IMIDP CODE ...ttt ettt e ettt e e e e e ettt e e e e eeeatrereeeeeeeasstaaseaeeeeeenssaareeeeeeeennsnees 64
5. THE MAPPINGS FROM PUML TAGS INTO MIDP EXPRESSIONS IN THE PUML-TO-J2ME
TRANSFORMATION STYLESHEETccouuuuviiiieeiieiiereeeeeeeeeiiureeeeeeeeesessereeeseessnsssssesesesssnsissesseseesnssnees 66

6. THE MAPPINGS FROM PUML TAGS INTO WML EXPRESSIONS IN THE PUML-TO-WML

TRANSFORMATION STYLESHEETuvteiutteittienteeniteesteeniteesseessseesseessseessesssseessesssseessseesssessnseessseess 66
7. THE RESULTS OF THE FIRST MEASUREMENTcciittteiteetieeteeeireeieestaeeseesnseesseesseesseesnseessseess 92
8. THE RESULTS OF THE SECOND MEASUREMENTccecttiriiierieeniteenreensteensreeniseenseessseesssesssseennesnes 92
O THE REVOLUTION ...ccuttiiiteetieeiteenueeeteeesttesteeeseesnseeenseessaeessessnssesssessnssessessssessnsessseesssesssseesssesn 95
10 THE APPLICATION DEMOSovivietietiesiestetesseeseeseeseessessessessessessesseessessassessassessessessessssssessessessanses 95
11 THE RELATED WORK ...couuveeereeereenes g fiotsasasessesassadsthasenseesseenseesssesnsseenseesseesseessseesssesssseessseennses 95
12 THE SYSTEM WE IMPLEMENT AND'THE FUTURE WORK .:2iu...ccviviieciiee et eeieee e e eeveeeea 95

14 '

Terminology

Name Description Page

form-based Component 17

application an object, like java class in implementation

component An object has some computational logic 33
e.g. Java Object

function An container can contain one or more components, |32
and each component can implement the function

implement A component of the component in a function provide | 32
computational logic for the function

application 32
An container contains at least one function

agent An object with some state can carry at least one |34

function

the front-end

The front-end module is the part running on the

31

module mobile client side; Such’as WML, CHTML, etc.

the back-end The back-end module is applications carried by agents |31

module

ASCC Application Structure and Component Constraints 35
An application profilé description.

context 31

adaptation: To adapt applications depending on users’ context

mobile execution 18

environment WAP, J2ME, PersonalJava, and Microsoft CLI.

PUML Pervasive User-interface Markup Language 45
An XML-based Ul description language

PGML Pervasive logic Markup Language 45
An XML-based logic description language

U-CAF Ubiquitous Context Adaptation Framework 25
The framework we design in this dissertation

CAAS Context-Aware Adaptation Service 68
A system we realize

Ubi-Adapting 93
A system we realize

G’ Gateway of gateway 95
A system we realize

G’MR Gateway of gateway with MHP and RFID 118
A system we realize

WYSIWYG What You See is What You Get 103
A function of toolkit

follow-me 111

Application capable of following users

Chapter 1

Introduction

With the progress of mobile technology, embedded systems and information
appliances have been developed; and various kinds of handsets, networked facilities,
and personal mobile devices enrich our lives. These technologies have been applied to
many fields. For example, there are networked TVs and home entertainment facilities
in home appliances; internet-capable PDAs, mobile phones, wearable computers in
personal mobile applications; and embedded servers in business applications.
Accordingly, context-aware applications, Which adapt their behaviors to a changing
environment [1, 2] according to.the context, such as.indoor position, time of the day,
nearby equipment, and user activities [3]; can be developed. Context-aware mobile
tourist guides [4] and location-aware shoppingassistants [5] are two examples.

We can now foresee a ubiquitous computing environment [6] where a user can
retrieve his personal information through any nearby computing facility, such as
mobile and embedded computing devices, desktop computers, etc. In such an
environment, information presented on the devices can be adjusted according to the
context of these devices. One of the applications, called ImageGathering, where a
multimedia campus guidance system is built on a campus, can be taken as an example.
Wherever they are on campus, students can always inquire this system for the location
of a building by using a Java phone, PDA, or a laptop. Depending on the context of
the student’s device, a formatted image suitable for the student’s device can be
delivered to the student. When a visitor would like to enter some building on the

campus, he can use his Java phone for more information on that building, and then a

PNG image of 64x54 pixels will be sent to him. A notebook user can get a JEPG
image of 340x256 pixels.

The delivery of the required image, depending on the context of device
capabilities and user preferences, dominates the functions of this ImageGathering
system. In addition, whatever device is used, users’ applications will still continue. A
user, for example, can use a desktop computer to check his daily report. When he
moves from room to room, information about his report can still be acquired by a
handheld PDA. In brief, we aim at providing a context-aware adaptive framework that
can not only adapt functions of applications which personally rely on the context of
the devices used, but also keep the executing states of applications even by using
different devices. In this research, we focus_on form-based applications, shown as
Figure 1. the reasons are the sgré‘e:n of the ciien‘t devices are small and the form

capable of interaction with users. "

mobile client I web service

NOIKIA Yo

GUT Widgets Demo

e L% _ http request:

N =
Nttp reply
\
Label <« |Input two numbers:
form-based
> application
Back} _/

Fig. 1 Form-based applications: the focused applications

1.1 The environment

Mobile and wireless technologies have been changing over the past few years. Through
mobile and embedded devices, such as PDAs, palms, smart phones, and Java phones, people
can surf the content on the Internet. Besides, they can download and install applications from
a content provider’s server over the Internet, like Java game download. Currently there have
been four kinds of the mobile execution environments on plentiful mobile appliances. These
environments include WAP [7], J2ME [8][9], PersonalJava [10], and Microsoft CLI. In the
Microsoft .NET platform, the mobile runtime environment supported can be classified into: (1)
ASP NET Mobile Pages [11] and (2) .NET Compact Framework [12]. The former attempts to
support major PDAs, cell phones, pagers, and other devices, while the latter surpports all
equipments running Pocket PC 2000, Pocket PC.2002,"Pocket PC Phone Edition, etc. Called
Mobile Execution Environments (MEXE) in = the standard [13], these
environments—classmark 1 to 4—are defined byTthe 3GPP working groups. They stand for
WAP, J2ME, PJava, and Microsoft ‘CLI; respectively (see Figure 1). In short, device

capabilities are diversity.

: The environments :
- WML/WAP

- J2ME

- Personal Java

- Microsoft CLI

it
i -image type !
attributes | - screen size |
l ----------------- SonyEricsson k500i SonyEricsson k700i SonyEricsson

......... SN =N

devices capability
diversity

Fig. 2 Device capability diversity

1.2 The problems

Each of these mobile runtime envir.'onmen‘.ts' has a‘t.)ur}dant resources and application interfaces
(APIs) for application developing. Nevertheless, in application developers’ points of view,
developing applications for certain platform of the execution environments, they difficultly
execute these applications on any other of the mobile execution environments. For example, a
J2ME application cannot be executed on a cellular phone merely with a WAE platform (the
runtime environment of WAP). Writing code of an application for each different platform is
not economy.

Our research aims to achieve the objective: applications can be designed without
concerning about what kind of the target mobile devices belongs to. In order to achieve goal,
we attempt to exploit transformation mechanism to convert a program in some programming
language into a program in another language. However, the programs, written in a language,

hold the characteristics of that language. To transform the code into another language is

Nokia 7610 Nokia 6600 Nokia 3870

complicated. For example, C++ has the property of multiple inheritance, but Java merely has
the property of single inherence. However, there two main problems: Resource Constraints

and Capability diversity are illustrated in Figure 3.

S
roptcsson 1 et EBD2E IRE BoE
-ukALAAP I
- IME [
| -PeoralJaa
| e | ;@%
D e =l e M|
pp lication 2
Programmer : 1 ---------- ‘
programmers ﬁipeﬂ:f" 5“““““3 Nokia 2070
j goesty]
applcation mobile execution environment
m Devices change rapidly
m Capabilities are.dlyerse /\’ Resource contraints
m Resources are limited
= Runtime environments are complicated Capability diversity
m [tis hard to program

Fig. 3 The problems

1.3 Objectives

For programmers, we want provide Rapid-development, Adaptability, Flexibility. We
accelerate application development on several mobile execution environments.
Rapid-development means programmers can develop applications soon. Adaptability
means functions of applications are adapted rely on the context of the devices used by
the context-aware adaptive framework. Flexibility means we want to provide the
framework of which the migration behavior of mobile agents can be chosen by
programmers. For end-users, seamless-use means a user can change another device to

use and the executing status for this user still continue, even the capabilities of the

used device differ from the original one. For system developers, we want to provide

Easy-upgrade. The system can be upgraded soon, while new devices come.

1.4 Application Model

1.4.1 The programming model

We divide the application into two parts: the front-end module and back-end module.
The front-end module contains two main constituents: an image display that can show
images, and a requester that can send requests and receive the replied images. This
module executes on the client device. The back-end module consists several

constituents.

Application

Uszer Interface

Complﬂatlon
LO%lC

Client-side
Seript

mobile client side

IE]B

SomyEricsson k5001 SenyEn 00i SonyEric

Remote
Server-side
Service

+

Applicaton Applcation
User Interface Sceupt

Mokia 7810 Mekia 6500 Helda 3870 Service

Comp vnentz

4

> = o

A /\

Role user interface logic service
designer programmer provider

Example KHTML MP Java script video provider
programmer programmer

Fig. 4 The application model

1.4.2 In an system implementation

As shown in Figure 5, it illustrates Ubi-Adapting, a system implementation. From the
bottom to top, we can there are five modules implemented. They are Application
Profile, Context Profile, Context Awareness Module, Personal Agents, and Adapting
Service Module. Application Profile, Context Profile, and Context Awareness Module
are used in the context-awareness process of context adaptation. Adapting Service
Module can contain one of performers to perform some action, such as application
adaptation service and representation transformation service. On the top of the five
components, there are server side components of applications. In the mobile client

side, there are client modules in these enVirO{_lments: CHTML, personal Java, JavaME,
AR E
-q;':' = _ 5ol

etc.
Z
. - S
mobile client o e server
side Input two numbers: E side
urnber 1:
1
jurnber 2:
I!
Mahil:- Mobii:- L. Mubii:. "
Clientd, Client2,, ~ e clientmy
CHTML XHTML MP WAP HTML
Environment Environment Enm- Environment
i g S e
framework |

Fig. 5 A system implementation

22

1.4.3 PUML/PGML and APIs

In our programming model (Figure 6), we can use Pervasive User-interface Markup

Language (PUML) [14] and Pervasive loGic Markup Language (PGML) [14] to write

the code for the front-end module in the mobile client side. Several kinds of code

which can be run on the client environments will be generated. In the server side,

programmers can use API to construct agent and then to carry the server sides

components. In this way, agents can carrying the server side components and migrate

between different computers.

PUML

(user interface)
1

<?xml version="1.0"?>

<puml:user-interface ... >
<puml:board ... >
<puml:logic-objects>

</puml:logic-objects>

0 <puml:picture ... />
12 <puml:label ... />

13

14 <puml:listpaper ... />
15

16 <puml:action ...>

17

18 </puml:action>

19 </puml:board>

20

21 <puml:layout ... />
22 </puml:user-interface>

an &
m]=1%

:
)

User niertace

Campotation Logic

Role . ' usél inierface. "fogie™" '$éivice
designer programmer provider
Example xHTML MP . Java script
programmer- " programmer

PGML

(computation logic)
<pgml:add>
<pgml:operand select="a"/>
<pgml:operand select="b"/>
</pgml:add>

<pgml:add>
<pgml:operand value="6" type="int"/>
</pgml:add>

<pgml:add result="s" >
<pgml:operand value="5" type="int" />
<pgml:operand value="6" type="int"/>
</pgml:add>

<pgml:add result="s" >
<pgml:add>
<pgml:operand value="3" type="int" />
<pgml:operand value="4" type="int"/>
</pgml:add>
<pgml:operand value="5" type="int"/>
</pgml:add>

video provider \

Fig. 6 The languages and APIs

23

1.5 Solutions

We design U-CAF, Ubiquitous Context Adaptation Framework. Figure 7 illustrate this
framework. It is revised from X-CAF [15]. Ubiquitous Context Adaptation
Framework (U-CAF) contains software development kit and application programming
interface, and service components. In this framework, we design context adaptation

PUML/PGML translation, agent migration to approach our objectives.
SDKs and APIs:

We design mobile designer, which is a GUI-based UI authoring toolkit with the
visualized fashioning functions using drag-and-drop and WYSIWYG (What You See
Is What You Get) measures to accelérate’the development of user interfaces of
applications on mobile execution environments. Curtently, we have designed APIs for
the development of the front-end module (Figure 7) and the back-end module (Figure
7).

Context adaptation:

The use of the context profile to decide proper components [16][17] in application
adaptation is a critical issue. In this paper, we aim to develop an attribute-based
algorithm that decides components appropriately by using dynamic and static context

information (CC/PP and WAP UAProf profiles). These applied information will be

explained in Chapter 2.
PUML/PGML transformation:

One is named Pervasive User interface Markup Language (PUML), which can
describe user interfaces for applications on the small devices; the other is named

Pervasive loGic Markup Language (PGML) to represent the computational logic of

24 '

applications.

Agent migration:

As a result, certain components of an application with heavy computing load can be

enveloped into the back-end module and run at the server side. For follow-me, a

personal agent [16][17], which can not only be anchored at a certain server to serve its

owner, but also can carry back-end modules of applications as migrating among

servers with its owner. This provides the flexibility for application developments.

Section 1.3 introduces the means of the objectives. The following table shows

the relationship of objectives and solutions. To approach our objectives, we attempt

the technologies introduced above. The following table shows the methods we design.

These techniques will be explained in the latér sections.

Tab. 1 therelationship of‘solution and objective

biective | Rapid Adaptability | Flexibility Seamless-use | System
Solution Development Easy-upgrade
SDK and API GUI toolkit &
API
Context W3C CC/PP W3C CC/PP
awareness WAP UAProf WAP UAProf
Adaptation Context Context
adaptation adaptation
Transformation PUML/PGML PUML/PGML | PUML/PGML
Transformation
Stylesheet
Agent FAM, HAM,
Migration LAM
25

Application

1. Software
Development Kit

Remote
Server-side
Service

D
Client-side",
Seript \

’ 1
! '
\ UserInterface ~ Compotation Légic Service

"\ Designer Programter ‘\\ Provider /
programmers 2. Application

Programming Interface

3. Service

Fig. 7 The solution We propose

]
&5

' |
L, L
= |

This paper is organized as.‘ _follo.ws. .ll%-t:"ter' an (;VTgrall introduction to the context
adaptation and transformation fnafrlework,_Wﬁ S'hOW E:ontext adaptation in Chapter 2.
We will describe the essential asp..eét'é' of PU_MI:'/I;GML transformation in Chapter 3.
Chapter 4 presents a system implementation and then explains the software
development kit. In Chapter 5, we introduce the development steps on our system.

Then, some related works are listed in Chapter 6. Finally, we discuss related work and

conclusion.

26 ' "

Chapter 2

Context adaptation

In this chapter, we will explain the context awareness and adaptation process we
attempt to use. We divide context information into to types. And to adapt applications,
we structure an application, and use XML-based profile to describe it. Section 2.1 and

2.2 explain context awareness and the process for adaptation, respectively.

2.1 Context-awareness

To approach context adaptation, we colléct two kinds of context information. The
context information can be collected from many kinds of resources, such as http
request with CC/PP and WAProf information, and-the detected information from
sensor devices, like, RFID. We divide‘them into two categories: Static and Dynamic,

shown in Table 2.

Tab. 2 the types of context information

Semantic Media Format
Static context | device capability | File Access / W3C CC/PP
information | Description Web Resources WAP UAProf
Dynamic Context RFID internal format
context information ZigBee
information |detected

at runtime

The use of the context profile to decide proper components in application
adaptation is a critical issue. In this paper, we aim to develop an attribute-based
algorithm that decides components appropriately by using CC/PP and WAP UAProf

profiles.

dft hittp://www.wapforum.org/profiles
rdfitype
P UAPROF/ccppschema-
2001043 0#HardwarePlatform
prf:Keyboard
PhoneKeypad
prf:NumberOfSoftKeys
prf:component Hardware
Platform \ pif:
\ 84x30
prf:component, Software prf:ScreenSizeChar
10x3
Platform
prf:StandardFont
Proportional Yes
prf:component, Network
Characteristics prf:Vendor -
| rf:component, pri:Model
Py BrowserUA 8310
prf: TextInputCapable
Yes
Wap
prf:icomponent\ Characteristics
Push
prf:component\ Characteristics

Fig. 8. A segmentation of Nokia 8310’s WAP UAProf profile

Figure 8 illustrates a profile of WAP UAProf in RDF format. The Resource
Description Framework (RDE) 1s-a genere.ll—purpose language for representing
information on the Web. This description” covers six parts describing some
characteristics of devices: Hardware"™ Platform, Software Platform, Network
Characteristics, BrowserUA, WAP Characteristics, and Push Characteristics. As in
Figure 8, Hardware Platform specifies the hardware properties of devices. These
properties include prf:Keyboard, prf:NumberOfSoftKeys,
prf:ScreenSize, and prf:ScreenSizeChar, whose values can be
PhoneKeypad, 2, 84x30, or 10x3 respectively. Listing 1 demonstrates the XML

serialization form of the context profile in RDF.

Listing 1. The XML serialization form of the profile in Figure 8

1<?xml version="1.0"72>

2 <rdf:RDF ...>

3 <rdf:Description rdf:ID="Nokia8310">

4 <prf:component>

5 <rdf:Description rdf:ID="HardwarePlatform">

6 <rdf:type rdf:resource= "http://www.wapforum.org/profiles
7 /UAPROF/cppschema-20010430#HardwarePlatform" />

8 <prf:Keyboard>PhoneKeypad</prf:Keyboard>

9 <prf:NumberOfSoftKeys>2</prf:NumberOfSoftKeys>
10 <prf:ScreenSize>84x30</prf:ScreenSize>

11 <prf:ScreenSizeChar>10x3</prf:ScreenSizeChar>
12 <prf:StandardFontProportional>

13 Yes

14 </prf:StandardFontProportional>

15 <prf:Vendor>Nokia</prf:Vendor>

16 <prf:Model>8310</prf:Model>

17 <prf:TextInputCapable>Yes</prf:TextInputCapable>
18 </rdf:Description>

19 </prf:component>

20 B

21 </rdf:Description>

22 </rdf:RDF>

Figure 9 shows Gateway Of Gateway (G”),’a system we implemented. The
left-hand side is the RFID subsystem. Thete .are three components containing tags,
locators, and a reader. A user takes a‘tag. A-locator is placed in a location, like in a
room. When a user carrying tag enters a room, a locator will trigger this tag to send

the user’s ID information. Then the reader will receive this information.

30

2.2 Context adaptation process

2.2.1 Application structure

We divide the application into two parts: the front-end module and back-end module.
The front-end module contains two main constituents: an image display that can show
images, and a requester that can send requests and receive the replied images. This
module executes on the client device. The back-end module consists of four
constituents: Image Transmitter, Cache, Image Retriever, Transcoder, and Data Access.
In this module, Image Transmitter is responsible for receiving clients’ requests and
replying the required images. Image Retriever can obtain the requesting images from
the biological multimedia information provider through Data Access. Next, it will
pass the images to Transcoder for'transforming images, such as image resizing, or to
the cache for subsequent retrieving of imagesrimmediately. The following lists the
possible procedures to retrieve the required imaées that the student wants to collect:
® |1-52-53-54-55-56—12—13: The procedure means that when Image
Transmitter receives the user’s request, the required images are obtained from the
information provider.
® 1-52-57-58-9—12—13: This process refers to obtaining the required image
from Cache.
® 1-52-57-58-9—-10—11—12—13: This indicates that passing the images to
Transcoder for resizing the images after Image Receiver gets the images in the
second bullet, and then transmitting the result to the requester.
Figure 11 shows an application, which is structured hierarchically. This

application is composed of more than one function that could be implemented by at

least one component. The application structure exhibited in Figure 10 can also be
expressed in the form of the two-level hierarchy demonstrated in Figure 11. As we can
see in Figure 11, each function links to candidate components. The function Image
Retriever, for example, links to three components, JPEG Retriever, GIF Retriever, or
PNG Retriever. This indicates that the function Image Retriever can be implemented

by the three components.

Image cache

Displayer

9: return | & 7: save

provider

8: retrieve 4: obtain

Multimedia Information

n 2 remest [TTTTTTTTT] 3:retrieve I

m - e

- Image - Image Lo RERE R R

Requester F Transmi Retriever || 6 return ‘ll)f‘l'"lAl‘;"l"T‘
-t

1: request

HaL

- -t
13: reply 12: return

] |
Front-end | |

|
module 11: relum' 0: transform

Back-end module

Legend
[Type 1 Component
Type 2 Component
(IJ Type 3 Component

Biological Information
Image Gathering Multimedia provider

Fig. 10. The back-end module of the application Image Gathering

Components, in our system, are classified into three categories: Typel, Type2,
and Type3. Type 1 components have the characteristics inclusive of stateful, relative,
and immoveable. The stateful property means that the component records some
particular data. For instance, Image Cache for the cache function belongs to this
category. In contrast, specifying the stateful property No means that the components
do not keep track of any particular data. If we declare a component as relative, it is
associated with certain resources, and these components have database or TCP/IP

connections. For example, the components of the function Data Access need to be

declared as this type, since it connects to the database of the multimedia provider over
the networks. Another moveable property is used to modify the components that fail

to be carried in agent migration.

Image

Application Gathering
. Image Data Image
Function Cache Access Transmitter
Component IPEG GIF PNG ImageCache HTTP
ompone] Retriever Retriever Retriever 8 Connector

Fig. 11. The structure of the application ImageGathering

Type 1 components are the components connecting to certain resources. As
demonstrated in Figure 10, candidate components of.the function Data Access belong
to this type. Type 2 components are those components which can be moved. The
component Image Cache (in Listing 2)is declaredas this type. Type 3 components are
usually certain algorithms or pure computational logics, such as the XML
transformation engine javax.xml.transform.Transformer. The following

table arranges the three types of components.

Tab. 3 Three categories of components

Type Stateful/ Relative/ Movable/ | Example
Stateless Irrelative | Immovable
Type 1 stateful Relative immoveable | Database
Access
Type 2 stateful Irrelative moveable Cache
Type 3 stateless Irrelative moveable Transcoder

33

2.2.2 Attribute-based component decision algorithm

Take a profile O for example. The profile O includes a set of attributes, which can

be expressed as {a; | 1<i<n}, where a; and n denote an attribute and the total
number of the attributes in the profile individually. Let

domain(a;) ={av;y [1<i<n and 1<k; <v;} indicate the domain of the attribute q;,

and value[a;] to be the value of the attribute, where v; is the number of possible
values of a;. For instance, Listing xxx involves the attribute TextInputCapable, which
has value|TextInputCapable] = yes and domain(TextInputCapable) = {yes,no} .

An agent body contains a number of applications. An application comprises one

or more functions funy, fun,, ..., funy:Bach of them can be implemented by at
least one component, compf , compé, ig comp; ,where 1<i<n and 7 denotes
the number of the user-defined-components implementing fun;. For example, fun,
can be implemented by components compl1 and comp% (illustrated in Figure 11).

Each component compy has a constraint set CS which contains zero or more

X,y
tuples (a;, a"i,ki)a where 1<i<n and 1<k; <|domain(a;)|, annotated under

each component shown in Figure 12. We can accomplish the testing of a component

to see if it can be chosen to implement its corresponding function by using this

constraint set. For a component comp;, if for the given profile Q, comp; can be

chosen, it must be true that each attribute value av; ;. of (a;, av;;) mits CS,
is equal to the value of the same attribute a;, in Q. If so, we say that the component

is satisfied. For example, assume that a certain profile and two components compl1

34 '

and comp% , and the function fun; are given. The component compl1 has the
constraint set {(ColorCapable, yes)} and comp% has {(ColorCapable, no)} .
Because the value of the same attribute ColorCapable in this profile is yes , compll

is satisfied. compl1 can be chosen to implement fun; accordingly. A constraint set,

in implementation, can be established by a <constraints> element in the ASCC
description. As in Listing 2, Lines 9-10 describe two elements,

<prf:ImageCapable> and <prf:CcppAccept>. Therefore, the component
compll is declared suitable for processing JPEG files. As a result, the constraint set
CS11 ={(UmageCapable, yes), (CcppAccept,image/ jpeg)} will be generated.

A component decision tree can be seen.as- trée hierarchy. It comprises a number

of attribute nodes, each of which'has several‘branches linked to other attribute nodes

as its child nodes. Let an; ; “indicate an: attribute node, which is semantically
equivalent to the attribute a; with the same name in the given profile Q. Let avi j.

denote a branch of an attribute node an; 4, where 1<k; <[domain(a;)|, d; is

between 1 and the component number at the same level in a tree, and 1<i<n.

Each attribute node an; 5 has a linked component set LC; 4 that includes the

components associated via dotted lines in the component decision tree, illustrated in

Figure 12. As in the figure, the linked component sets of the attribute nodes anj

and anyp are LC3)={comp;, compy} and LC3; ={comp,,} respectively.

Function Component Component Decision Tree

\
\ \
2 \|

- ~, Pt
~ N
s / \

! \ !/ \
1 = anysy | ansg

\ / \) \ ’
)_,,%3,2 HV?)_,/%LZ a?))‘~——’%}3>2
N - ~N ~ e N S ~ ye ~
SO N TG B G
(A I i I
< A~ PN ¢, ~ 4
2NN TSNS NN

{(az, avy2)}

Fig. 12 A component decision tree and its linked components

To operate a component decision tree, there are a pointer cursor, and two

operations, NEXT(an; 4 ,an;,1q4,) capable of moving cursor from an attribute
node an; 4 to its child node anggy g, and VISIT (an;yy 4) representing cursor
visiting an attribute node an; +Ed, 1 Taking Figure 11 for example, the pointer cursor
will point to the attribute ans; ‘Since the operation NEXT (anj,ansy) is applied.

Thereupon ans is visited, denoted by VISIT(ans;). Furthermore, let ¢ denote a
traverse from the root to a certain leaf node. A traverse ¢, a sequence of VISIT() and

NEXT(), can be expressed as SEQ(t)=< VISIT (any)) , NEXT(“”l,laanz,dz),

VISIT (any q4,) NEXT(any q,,an34,) > ... NEXT(an;q.aniq.) 5 -

i+l
VISIT (a”n,d,,)>. In Figure 12, for instance, a traverse ¢ starts from the attribute node
anyy to the attribute node anz;. Thus, SEQ(?) is equal to < VISIT(any;) ,

NEXT (anyy,any1) , VISIT(anyy) , NEXT(anyj,an3y) , VISIT(anzp) >.

Accordingly, while a traverse ¢ is built, the linked component set LCi,dl- of each

attribute node an; g. visited can be united to establish a proper component set

P(t) = U LC(an;) -
for each i and d;,
where VISIT (an; 4,) in SEQ(T)

For example, suppose that there is a profile {ImageCapable, CCPPAccept,
JavaPlatform, ...}, and their domains can be expressed domain(ImageCapable)={yes,
no}, domain(CCPPAccept)={yes, no}, etc. Figure 13 demonstrates the structure of
functions and components of an application. The function Image Retriever can be

implemented by three components: JPEGRetriever, GIFRetriever, and PNGRetriever.

The constraint set of the first component is CSj; ={(ColorCapable, yes),

(CcppAccept, image/jpeg)}, and that of the second component is

CS) 2 ={(ColorCapable, yes), (CcppAccept, image/gif) ;. Moreover, in the component
decision tree, each attribute node: an; 4. has a number of branches and a linked

component set LC; ;. As in Figure 113, the attribute node /mageCapable has two

branches, yes and no. The attribute node CCPPAccept has three branches
encompassing image/jpeg, image/gif, and image/png. In addition, the attribute node

any 1s JavaPlatform whose linked component set is LC3={JPEGRetriever}, and
that of an3, is LC3, = {ImageRetriever}.
Let us assume that a traverse ¢ is made by moving cursor from the root any

(ImageCapable) to the leaf node ans) (JavaPlatform). As a result, the sequence

SEQ(t)=<VISIT(ImageCapable), NEXT(ImageCapable, CCPPAccept),
VISIT(CCPPAccept), NEXT(CCPPAccept, JavaPlatform), VISIT(JavaPlatform)> and

the proper component set of 7, P(1)={JPEGRetriever} are established.

Function Component Component Decision Tree

Image
Capable

JPEG

Retriever ~
N
{(ColorCapable, yes), N
(CeppAccept,imagel/jpeg)} \ N
\
\ \
1
Image GIF \ ’
Retriever Retriever T =4 __,I/
{(CcppAccept,image/fig)}
CUrsor=—=—pm- Pl; i‘;’; .
Retriever
{(ColorCapable, yes), ~ - - ~
- s N,
fig) = / Y
CcppAccept,image/fig), e —
(CeppAccep gelfig —————)
(JavaPlatform, MIDP/1.0-compatible)} \ /

Fig. 13 An instance of a component decision tree on the right-hand side, and the

associated components of the application ImageGathering on the left-hand side

The problem of how to decide.a proper component to implement each function f,
if given an application p and each function flof the application p?; or of how to adapt
an application p, can be solved through the attribute-based component decision

algorithm. This is because SEQ(?)‘and P(t) will. be generated after traversing from the

root to a leaf node. In SEQ(1), NEXT (an; 4,,an;y1 4,) implies VISIT(an; 4) and

value[an; ;1= av; 4. . Therefore, if a component comp;,C exists in P(z), then Vi, k;
valuelan; ;1= av; 4 = value[a;], where an;, =a; and g; in CS, . In other

words, for a traverse ¢ the proper component set P(?) contains the components, which
are satisfied. Specifically speaking, given an application, if the suitable component
exists for each function, this component can be chosen from P(z). Moreover, if there
are two or more suitable components at the same time, the last-examined component
will be chosen as default. This algorithm solves the problem and eliminates the need
for traversing a tree from the root to a leaf node. Once sufficient components exist in

the proper component set P(?), traversing a component decision tree can terminate at

some internal attribute node which is not a leaf node.
In implementation, instead of realizing this algorithm by using the data structure
tree, we realize this algorithm by means of a linking list. The reason for this is that

using the tree as the data structure consumes more memory space to choose proper

components. For each attribute node an; 4 at the same level of a component

decision tree, the information recorded for the nodes seems different, except for the

linked component set LC;; . However, they are essentially identical. Take the
previous profile O and the tree in Figure 12 for example. At level 3, ans;, ans;,

any3, andany 4 are semantically equivalent to the attribute a; in the profile Q.

Therefore, to implement the concept, tree;'wesuse a linking list. In this way, for each

level in a tree, attribute nodes ~an; ; , for all 'd;, where 1<i<n and 1<d;<v;,

are regarded as one node in a linking list.‘Figure 14 represents a linking list that starts
from the root attribute node connecting to its child attribute node in the tree as the
next node, which also links to its child node as the next node, and so on. This
hierarchy of the linking list equals that of the component decision tree. In this list, an
attribute node an; has two links: one connects to a child attribute node an;,|; the
other binds its linked component set (a hash table in practice). In Figure 14, for
example, the linking list, kept by a table index, starts from the attribute node an; to

the attribute any, each of which binds a linked component set. For instance, the

attribute node any retains a link component set containing two components compl1

and comp% .

Table
Index L
—
C Decision Tree }
Attribute - - | - i
an an an an
Node 1 /. 2 3 ya 4 /.

Component
Hash Table u

Component w

Function Q

Fig. 14 The implementation (linking list) of a decision tree

'/_/
WA=
Capt)

Figure 15 illustrates the implementation of the'component decision tree (Figure
12). Symmetrically, by traversing from the root node Image Capable to the node Java
Platform, the proper component JPEG Retriever for the function Image Retriever can

be decided.

40 '

Table
Index
M§
Component Decision Tree /.
. . > ° > >
Attribute Image CCPP Java ¢ >
Node Capable /. Accept Platform /’
Linked '
Component ’
Hash Table
JPEG GIF PNG
Component Retriever Retriever Retriever
{(ColorCapable, yes), {(CeppAccept, image/fig)} {(ColorCapable, yes),
(CeppAccept,image/jpeg)} (CeppAceept, imagelfig),
(JavaPlatform, MIDP/1.0 - compatible)}
. Image
Function

Fig. 15. The linking list'of the décision tree illustrated in Figure 13

In our system, we apply an attribute-based component decision algorithm to the
application adaptation. Applications carried by the agent are adapted when the agent
migrates to a new CAAS server. Implementing the component decision tree by a
linking list simplifies the maintenance of attribute nodes. The space complexity is the
sum of linked component hash tables | z LC; 4, | for all i, where 1<i<M . It is

all d;
less than n,, * M , where n,, is the number of attributes, and M is the size of the
max linked component hash table. Besides, M is a constant. Therefore, the space
complexity is O(n,,).

In terms of time complexity, the time complexity is constant for the
attribute-based algorithm as the processing time does not depend on the number of
components. By contrast, we can consider a simple algorithm that decides proper

components by examining each component. Thus, we inspect the constraint set

41 '

cS

x,y for each componentcomp;. This costs O(n, *n,,) worst-case time, where

n. denotes the total number of components of an application, and n,, =max(|CS, ,, |)

indicates the total number of attributes. The cost of the attribute-based algorithm is

merely affected by the length of the linking list (the height of the component decision
tree). In addition, the link can be built from the attributes in CS, , for all
components comp§ in an application instead of generating from all attributes in a
given profile. Therefore, its time complexity costs n,, =max(| CSy) |). This means

that the time complexity is dominated by the size of the max constraint set. As it can
be seen, using the attribute-based algorithm to support decisions about component
selection, facilitates programming of adaptive applications. It can support a large scale

system with a large number of diverse implementations of particular functions.

2.2.3 Application Structure & Component

Constraints

In order to enable this framework to be aware of the structures of applications, we
define Application Structure and Component Constraints (ASCC), an application
profile description. Listing 2 illustrates the ASCC profile of the application

ImageGathering.

42 '

Listing 2. The ASCC profile to describe structure of ImageGathering

1 <?xml version="1.0"?2>
2 <ascc xmlns:ascc=http://dcsw3.cis.nctu.edu.tw/project/CAAS ...>
3 <application id="ImageGathering">

4 <function id="ImageRetriever">

5 <default idref="JPEGRetriever"/>

6 <component i1d="JPEGRetriever" priority="51%"

7 stateful="No" relative="No" carried="No">

8 <constraints>

9 <prf:ImageCapable>Yes</prf:ImageCapable>

10 <prf:CcppAccept>image/Jjpeg</prf:CcppAccept>
11 </constraints>

12 </component>

13 <component id="GIFRetriever" priority="50%"

14 stateful="No" relative="No" carried="No">

15 <constraints>

16 <prf:ImageCapable>Yes</prf:ImageCapable>

17 <prf:CcppAccept>image/gif</prf:CcppAccept>
18 </constraints>

19 </component>

20 <component 1d="PNGRetriever" priority="50%"

21 stateless="No" relative="No" carried="No"”>
22 <constraints>

23 <prf:ImageCapable>Yes</prf:ImageCapable>
24 <prf:CcppAccept>image/png</prf:CcppAccept>
25 <prf:JavaPlatferm>MIDPR/1l+0-compatible</prf:JavaPlatform>
26 </constraints> F|&

27 </component> : ;

28 </function>

29 <function id="Transcoder!®> |

30 <default idref="SizeTailor"/>

31 <component id="SizeTailor" priority:"SO%"

32 stateful="No" relative="No'"'carried="No">

33 <component id="ColorTransformer" priority="50%"
34 stateful="No" relative="No" carried="No">

35 </function>

36 <function id="Cache">

37 <component id="ImageCache"

38 stateful="Yes" relative="No" carried="Yes”>

39 </function>

40 <function id="DataAccess">

41 <component i1d="MSAccess" stateful="Yes" relative="Yes">
42 </function>

43 <function id="ImageTransmitter">

44 <component id="HTTPConnector"

46 stateful="Yes" relative="Yes"/>

47 </function>

48 </application>
49</ascc>

As we can see in Listing 2, the <application> element includes five
<function> elements, which can describe the five functions. In each

<function>, the candidate components can be specified. Lines 4-28, for instance,

43 '

declare that <component id="”JPEGRetriever” ...>, <component
id="GIFRetriever” ...> and <component id="PNGRetriever ” ...>
can implement the Image Retriever function. In advance, within a <component>
element, the properties, stateful, relative, and carried, can be used to set
components stateful/stateless, relative/irrelative, and carried/un-carried respectively.
The priority property concerns the priority of a component, one of which is
chosen in each application adaptation. Furthermore, to set a component as a default
component for a function, we can use the element <default>. If we want to set a
component implementing the function which cannot be replaced with others, we can

use the property “unchanging='Yes’"”.

Chapter 3
PUML/PGML

Transformation

In this chapter, we will show the design of PUML and PGML, the intermediate
languages for transformation. After the introduction, we will explain the

transformation mechanism, and then the use of the mechanism context adaptation and

PUML/PGML transformation.

3.1 Pervasive User Interface Markup Language
(PUML)

3.1.1 Conceptual view

The principles of designing PUML including: (1) user interface abstracting; (2)
intermediate language fashioning, and (3) OO (Object-oriented) [19] conceptualizing.
To achieve the first, we analyze the characteristics of primary languages, including
WML 1.1 [20],]2ME MIDP v1.0 [21], on the small and mobile devices. User
interfaces of applications can be divided into two classes roughly. One is plentiful
category; the other is fundamental category. User interfaces in the former has
abundant widgets to display UI controls. User interfaces of the applications running

on PCs, for instance, contains menu bar, tool bar widgets, etc. In addition, displaying

45 P

HTML documents on the desktop of PCs has a variety of modules, involving Frames
module, Applet module, and etc. Respecting user interfaces on the screen of the small
and mobile device, there are not a wide variety of widgets to render UI controls. It
merely consists of basic presenting modules, such as Form module, Image module.

In this paper, we attempt designing form-based user interfaces to investigate
device independence of the applications on the small and embedded devices. There
are three primary reasons. First, the form module is the basic interaction component
of user interfaces. Second, it is the module which is in the intersection of the Ul
components of J2ME and WML applications. It means that the widgets in the
intersection module can be rendered both on the user interfaces of WML and J2ME
applications. For example, bottom belongs to this kind of the widgets. Scroll bar,
however, does not reside in the intersections-because it is incapable to be displayed on
either one of them. Finally, to explore problems in approaching device independence
via simple target languages, we can comprehend the use of markup languages to
approach device independence easily. Moreover; we can gradually add other modules
to enrich the PUML capabilities.

From the above considerations, we design PUML as a form-based user interface
markup language. A user interface description of PUML comprises several containers.
Each of the containers contains the basic widgets including label, text filed,
single-choice listing, multi-choice listing, picture, and action. The following figure
shows the conceptual view of PUML. The next section will detail the widgets and

document structure of PUML, and a table shows the XML schema of PUML .

46 '

Text F ieldz

V1
2.
V3,

\

Picture

Multi-choice Single-choice

Py .
/2
Listing Listing N Action

Container

Fig. 16. The conceptual view of PUML

In terms of the second point, without doubt the language based on XML can
serve as an intermediate and transformable language, explained in Section 1. In the
third of the principles, we wish that writing PUML and PGML codes is in
object-oriented manner. In such a way, programmers can write the PUML/PGML
more intuitionally. Additionally;: applications. can be designed by applying the
object-oriented analysis. For the reason, we désign that to use a PGML description,
e.g. a .pgml file, in a PGML document as anobject used in Java [22]. The detail will

be detailed in the following sections.

3.1.2 The language description

By exploiting XML, in PUML we define <puml:label>, <puml:textnote>,
<puml:listpaper>, <puml:picture>, and <puml:action> to stand for
label, text field, list, image, and action, respectively. These elements are the widgets
which are involved in a <puml:board> container. Listing 3 illustrates the
document structure of a user interface description using PUML. The DTD [23][24] of
PUML can be referred in Appendix B.

The <puml:user-interface> element has three types of child elements,

which are <puml:logic-objects>, <puml:board>, and <puml:layout>.

47 '

The <puml:logic-objects> element is used to declare the logic object,
e.g. .pgml file, and the name used in a PUML document. A <puml :board>
element can contain <puml:textnote>, <puml:listpaper>,
<puml:label>, <puml:picture>, and <puml:action> elements; besides,
each of the child elements can occur more than once. All of these elements can be
rendered into Ul controls capable of interacting with users. The detail of these
elements will be explained in the next section.

A <puml:layout> element can specify the layout of the boards in a PUML
document. On smart phones or some mobile devices, it has no effect, because their
screens cannot display two or more boards meantime. However, if the description is
migrated to be rendered on the screen of PCs, displaying of these boards is in disorder.
Hence, we design the <puml : 1dyout> clement to state the arrangement of boards
for extending the capability of PUML in the future. Other details concerning the

elements will be explained in the next twosections.

48 '

Listing 3. An overview of the document structure of PUML:

1 <?xml version="1.0"?>
2

3 <puml:user-interface .. >
4

5 <puml:logic-objects>

6 .

7 </puml:logic-objects>
8

9 <puml:board .. >

10 <puml:logic-objects>
11 o

12 </puml:logic-objects>
13

14 <puml:textnote .. />
15

16 <puml:picture .. />
17

18 <puml:label .. />

19

20 <puml:listpaper .. />
21

22 <puml:action ..>

23 o

24 </puml:action>

25 </puml:board>

26

27 <puml:board ..>

28 -

29 </puml:board>

30

31 <puml:layout .. />

32 </puml:user-interface>

3.1.3 The elements of PUML

The top level elements are <puml:logic-objects>, <puml:board>, and
<puml:layout>. A PUML document can has at most one <puml:layout>
element. As mention in last section, it can be used to specify how to layout the board
in that document. <puml:logic-objects> involves several
<puml:object> elements, each of which declares a PGML document used in
<puml :board> elements. Besides, the <puml:logic-objects> element can

be directly applied into <puml :board> element. When a

49 '

<puml:logic-objects> element is used in a board, the visibility scope of the
<puml:object> elements, declared within the <puml:logic-objects>
element, is limited in this board. It means that the names of the <puml:object>
elements, each of which stands for a PGML file, can be used in the board container
only. <puml :board>, as mentioned above, is the basic container element, which
includes the following child elements: <puml:picture>, <puml:label>,
<puml:textnote>, <puml:listpaper>, <puml:action>, and
<puml:logic-objects>. Moreover, it has the three attributes: name, title,
and seqgNo. The name attribute can be used to identify a board of the boards
described in a PUML document. For the attribute, some value must be assigned by
programmers. Concerning the meaning of the segNo attribute, the segNo attribute
specify its priority. If the value of'this attribute wete 0, the board would be displayed
first. If it were 1, the board, displayed on the screen,: would follow the first one, and
vise versa.

A <puml:picture> element, in-a <pﬁml :board> .. <puml:board>
block, can be used to show an image. It has four attributes: name, source,
altText, and align attributes. A source attribute can be assigned to locate an
image, which is specified to be exhibited. altText is the attribute which can be set a
text value so as to be shown instead when the image cannot be displayed. The align
attribute points the alignment of the image. Three attribute, left, center, and
right, could be chosen to assign to this attribute.

A <puml:label> is similar to the label of the windows on the PCs. It can
display a read-only text string on the screen. Its main attribute is showText, which
can be assigned a string value to be displayed on the screen. We can use this element

to show some title or prompt information. Oppositely, <puml :textnote> can get

a string from the user’s input. Namely, it allows users to input a certain value. Besides
this attribute, the type attribute of the element can be assigned two values: text
and password. If we set the attribute text, the value of the element would be
rendered into the input value on the screen directly. If we set the attribute password,
the value will be displayed with a character * to replace each character in the original
string. It signifies that displaying of the input value is encrypted.

The <puml:listpaper> element serves as a choice group for picking a
single item of a listing, or selecting a group of options among the items of the listing.
The child content, within the element, includes at least one <puml : item> element
as the optional items. To make the element be a multiple-choice or single-choice
listing control, the mode attribute of the element can be set multi or single,
respectively. Sharing the same function with.the name attribute mentioned above, the
iname attribute is assigned an ID ‘for the element."Specifically, it emphasizes that it is
a variable recording index values of theéTchosen items, instead of the values
themselves. The ivalue attributé’ i§ therattribute which records indexes of the
chosen <puml:item> elements in the <puml:listpaper> block. In single
mode, the index value is an integer, counted from 1. The index value, differently,
records a string value that could be 1, 1;2, 1;3, 1;3;4, and so on. As regards
<puml:item> elements, each of them has a showText attribute displaying a
prompt text to users, a value attribute recording the value of the item, and a
selected attribute indicating whether it has been chosen.

<puml:action> elements can bind the events, which are triggered by the
widgets of a PUML document, to the event-handling method of a PGML document.
On the user interfaces of WAP-capable phones or J2ME smart-phones, it is rendered

into a push item, which can be selected by users. For example, it could be a bottom if

it is displayed on the user interface of PCs. Child elements of the element could be
<puml :use-object>, <puml:change>, and <puml:nextboard>. Using
<puml:use-object> can declare that a name of an object, e.g. a PUML
document, and the object owns a method to handle the events caused by the trigger of
the action (shown as Line 3 in Listing 4). An object can be used in the board, if
declared in this board or in the root element <puml:user—-interface> via
<puml:use-object> and <puml:object> elements. It means that the object,
like a global variable, can be used in each of the <puml :board> elements within
the <puml :user-interface> region.

To input parameters into a method, we can use <puml : param> elements as the
child elements of the <puml :use-object>. Every <puml : param> element has
a name and a value attribute; besides, the.arrangement of the <puml : param> needs
to conform to the order of the arguments of this method. Particularly, the usage of the
attributes in a <puml : param>-is eitherusingonly-a select attribute, or using an
attribute pair (type and value) alternatively..ln the former, the select attribute
can be assigned the value which refers to the name attribute of some widget element
declared in the same board. It indicates that using this element as a variable; besides,
the value attribute of this element can be retrieved at runtime. Alternatively, the latter
can be used if programmers would like to input a value to the method directly. Line
5-8 and Line 10-12 in Listing 3 illustrate the two examples of using the select
element and the type and value pair, respectively. In addition, the returned value
from the method can update the attribute value of some widget which is specified by
means of the <puml:change> element, shown in Line 14-19. Respecting the
<puml :nextboard> element (Line 21), an name of some board can be assigned to

the goto attribute of the element. It can change the screen to display the board

specified, when its parent element <puml :action> is triggered.

Listing 4. Examples of <puml:use-object>, <puml:param>, and <puml:change>

O J oy U bW

11
12
13
14
15
16
17
18
19
20
21
22
23

<puml:action name="action" showText="actionDemo">

<puml:use-object name="objectl" method="getRandNum" />

<puml:use-object name="objectl" method="getMax">
<puml:param select="notel" />
<puml:param select="note2" />

</puml :use-object>

<puml:use-object name="objectl" method="getAbsVal">
<puml:param type="int" value="-1" />
</puml :use-object>

<puml:change container="boardl" component="note2" update="value">
<puml:use-object name="objectl" method="getMax">
<puml:param select="notel" />
<puml:param select="note2" />
</puml :use-object>
</puml:change>

<puml :nextboard goto="board2" />

</puml:action>

3.2 Pervasive LoGic Markup Language (PGML)

3.2.1 Design Principle

In [15], we mentioned the markup language of the event-handling logic. Currently, we

have revised the language and rename it Pervasive loGic Markup Language (PGML).

We endeavor to enable the language to support a wide range of devices to approach

device independence. Initially, we concentrate on applying the language to the small

and mobile devices. Like PUML, the design principles of the language we consider

are: (1) computation generalizing, (2) intermediate language fashioning, and (3) OO

conceptualizing.

The first means that, logic languages, such as C, Java, or WML Script, have the
primary statements to declare variables and function blocks, and flow-control and
condition-control mechanisms to complete basic computation. Therefore, we abstract
the primary expressions and statements to define PGML. The second and third points
are explained in Section 1 and 2.1. From the three points, we make PGML own the

following capabilities:

® The object-oriented concept

® [ocal and global variables declaration

® Mathematical, logical, and boolean expressions
® Flow-control and condition-control statements

® Method declarations.

3.2.2 The design of PGML

Peripherally the features of PGML and PUML are different, but essentially the two
languages have the same intention. PGML aims to describe the computational logic in
the XML format. The computational logic is a section of an application, containing
mathematical, comparison computations, and method invocations, etc. Figure 17
demonstrates a PGML object in a tree view of the XML Schema [25]. An object, e.g.
a PGML file, is composed of a variable declaration <declaration> and a least
one method <method>. Listing 5 shows an overview of the PGML document

structure.

54 '

Fig. 17. A tree view of the XML Schema of PGML

Listing 5. The document structure of PGML:

1 <?xml version="1.0"7?>

2 <pgml:object .. >

3

4 <pgml:declaration>

5 o

6 <variable ..>

7

8 </pgml:declaration>

9

10 <pgml:method .. >

11

12 <pgml:in> .. </pgml:in>
13

14 <pgml:declaration> w. </pogml:declaration>
15

16 <pgml:action .. >

17 o

18 <pgml:if> .. </pgmlzif>
19 <for> .. </for>

20 <assign .. > .. </assign>
21 o

22 <pgml:return .. />

23 </pgml:action>

24

25 </pgml :method>

26

27 </pgml:object>

To explain expressing computational logic in XML in advance, we take four simple
examples of <add>, shown in the following listing. Line 2-5, Line 7-10, and Line 12-15
denotes that a+b, 5+6, and s=5+6, respectively. In detail, Figure 18 presents that an <add>
contains two child elements as its operands. One of the two elements could be one in the
elements of the MathExpression Group, or in those of the OperandGroup group, such

as the <operand> element. One of them, for example, can be a <add> element (Line

17-23), and consequently the code of PGML will be transformed into s=(3+4) +5. Other
cases of using PGML and converting PGML expressions into the Java syntax are illustrated in

Appendix A.

Listing 6. The document structure of PGML:

1

2 <pgml:add>

3 <pgml:operand select="a"/>

4 <pgml:operand select="b"/>

5 </pgml:add>

6

7 <pgml:add>

8 <pgml:operand value="5" type="int" />
9 <pgml:operand value="6" type="int"/>
10 </pgml:add>

11

12 <pgml:add result="s" >

13 <pgml:operand value="5" type="int" />
14 <pgml:operand value="6! type="int"/>
15 </pgml:add>

16

17 <pgml:add result="s" >

18 <pgml :add>

19 <pgml:operand value="3" type="dnt" />
20 <pgml:operand value=M"4'" €ype="int!'/>
21 </pgml:add> ;

22 <pgml:operand value="5" type="int"/>
23 </pgml:add>

Cperand(Froup

Fig. 18 the XML Schema description of the <add> element

By composing these statements:in the functions of a PGML document, each of
these can be specified to deal with an event triggered by a widget of the user interface.
A statement is composed of several expressions, each of which is a series of variables,
operators, and method calls. Through PGML, a logic programmer can write
compound expressions by combining expressions to construct the logic section of an
application in the XML format. For example, a programmer layouts a button on the
user interface of an application, and he can write the addTwoNum () method in the
PGML document to handle the button pressed, shown as listing 7.

Programmers can use PGML elements to write the computational logic. For
instance, the <pgml :method> element expresses a method declaration block. The
<pgml : in> element contains some child elements, which are the arguments needed
passing into this method. In PGML, there is a element <pgml:init> similar to the

<pgml : in> element. Differently, it is used to declare and initiate the local variables

in a flow-control element <pgml: for>..</pgml: for>, or a method declaration
block <pgml :method>..</pgml :method>. The following listing demonstrates a
PGML example, and Listing 8 shows the Java source program transformed from the
PGML code. The detail related to the transformation mechanism will be explained in

the next section.

Listing 7. A method declaration in PGML.:

1 <?xml version="1.0"7?>

2 <pgml:object name="addTwoNum" version="1.0"
3 xmlns:pgml="http://dcsw3.cis.nctu.edu.tw/Project/
4 pervasive/PGML/" >

5

6 <pgml :method name="sum" visibility="public" return-type="int">
7

8 <pgml:in>

9 <pgml:variable name="numl" type="int" />
10 <pgml:variable names"num2" type="int" />
11 </pgml:in>

12

13 <pgml:action>

14 <pgml:return>

15 <pgml:add>

16 <pgml:operand sé&lect="numl"™ />

17 <pgml:operand select="num2"</>

18 </pgml:add>

19 </pgml:return>

20 </pgml:action>

21

22 </pgml:method>

23

24</pgml:object>

Listing 8. The Java code transformed from the PGML document in Listing 7:

package SumExample;
import SumExample.*;
import java.lang.Integer;
import java.lang.String;

public class addTwoNum {
public addTwoNum() { }
9 public int sum(String sys numl, String sys num2) {
10 int numl= Integer.parseInt(sys numl);
11 int num2= Integer.parseInt(sys num2);
12 return (numl + num?2);
13 }
14 }

QO oy Ul WN R

3.3 Leveraging XSLT/XPath Transformation

3.3.1 An overview of language transformation

J2ME MIDP

Codes

DTD/ Transformatio
XML Shema StyleSheets T

! !

i

User Interface

Designer
PUML/PGML

hanism
Well-formedness ::> PUML/PGML |:“> PUML/PGML ::> PUML/PGML
and Validating Parsing Transforming Compiling

PUML
document
Checking

B / /
document

Computational -

Logic Programmer

Source Tree Result Trees

Fig. 19. The processing flow of PUML/PGML documents

In [18], we attempted the context-aware adaptation first time by using CC/PP and XSLT. Then

we have refined that and designed PUML and PGML for context aware adaptation and

transformation. Figure 19 is the overview of transforming the PUML and PGML documents

into the J2ME and WML languages. To transform PUML/PGML, we provide a basic

development toolkit involving PUML/PGML checker, PUML/PGML parser, PUML/PGML

transformer, and MExE Language Compiler to complete the transformation process. The

process contains the following four main steps:

PUML/PGML well-formedness checking and validating: When finishing writing a

PUML/PGML document, a programmer can use the development toolkit to check the

well-formedness and validity for the PUML/PGML document.

PUML/PGML parsing: With no error found in the document, the document will be
parses into a DOM tree.

PUML/PGML transforming: The PUML/PGML transformer, deriving form the
transformation engine Xalan-Java 2.5.1 [63], is capable of transforming the tree into the
result trees through each transformation stylesheet for the target languages. Each of
stream results (javax.xml.transform. stream.StreamResult) formed form
a result tree is generated. Besides, the stream results are serialized into source programs.
The transformation procedure will be explained in the next section.

PUML/PGML compiling: MExXE Language Compiler (mexe-compiler) can compile
each of the source programs generated into its specific executable code. For example,
for the J2ME and PJava platforms, a Java source program (a . java file) generated is
compiled into Java bytecodes (.¢1ass-files). Nonetheless, not all the generated source
programs need to be compiled. ¥wml (WML) and .wmls (WML Script) codes need no
compilation, since they can be.intetpreted byuser-agents of client devices. From this
point, if the source programs of Java-were éenerated, they would be compiled into
executable codes by the mexe-compiler. Otherwise, when the programs of WML and

WML Script are generated, they are not compiled.

3.3.2 XSLT transformation procedure

This section will explain how to achieve transforming PUML and PGML documents through

XSLT/XPath [63]. To explain the mechanism, we use Listing 5 as the input PGML document

and the PGMLtoJ2MEMIDP.xsl stylescheet capable of transforming a PGML document into a

J2ME document. Retrieving from the stylesheet, four templates, <xsl:template

match="/"> <xsl:template match="pgml:object"> <xsl:template

match="pgml :method">, <xsl:template match="pgml:in">, and
<xsl:template match="pgml:variable"> are shown in Listing 7.

The inputted PGML document is parsed into a source tree. Then, the transformer would
traverse the nodes of the input source tree from the root node to the leaves. At the beginning,
the first template will be fired once the root node is encountered. A J2ME code, which is
described within the <xsl:template match="/"> .. </xsl:template>, is
generated thereupon. In XSLT, <xsl:value-of .. /> can be used to retrieve the name of
the node which is visited, and the values of the attributes of this node; moreover, the
<xsl:apply-templates .. /> instruction is used to process all of the children of the
current visited node, and to fire the matching templates successively.

In this way, the code generated is illustrated in Step 1 of Table 1. The other four steps
demonstrate generating the J2ME code from .the input PBGML document by applying the last
four templates, exhibited in Listing 7. Step 2 will occur when the transformer visits the root
element <puml :object>. Step 3 shows thatithe'<puml :method> node is visited, and
next the a code of the sum() "method is .outputted via the <xsl:template
match="pgml:method"> template (Line 21-30 in Listing 7). In the template,
<xsl:value-of select="@name"/> is used to obtain the value of the name of
<pgml :method name="sum" .. > (Line 6 in Listing 5). Afterwards, <xs1:template
match="pgml:variable"> will be applied to generate the code of the argument of the
method. After the transformer has completed traversing the input PGML document, the code

which is shown in Listing 6 will be generated eventually.

Listing 9. Four templates in the PGML-to-J2MEMIDP transformation stylesheet

1 <xsl:template match="/">

2 <xsl:text>package </xsl:text>

3 <xsl:value-of select="$pgml:packageName"/>

4 <xsl:text>;</xsl:text>

5 import <xsl:value-of select="$pgml:packageName"/>.*;
6 import java.lang.Integer;

7 import java.lang.String;

8 <xsl:apply-templates select="pgml:object"/>

9 </xsl:template>

10

11 <xsl:template match="pgml:object">

12 public class <xsl:value-of select="@name"/> {
13 <xsl:apply-templates select="pgml:declaration" />
14 public <xsl:value-of select="@name" /> () {}
15 <xsl:for-each select="pgml:method">

16 <xsl:apply-templates select="." />

17 </xsl:for-each>

18 }

19 </xsl:template>

20 3

21 <xsl:template match="pgml:method">

22 <xsl:value-of select="@visdbdildty"/>

23 <xsl:value-of select="@retﬁfn—type"/>

24 <xsl:value-of select#"Q@name"/>(<xsl:apply-templates
25 select="pgml:1in" />) {

26 <xsl:apply-templates select="pgml:declaration"/>
27 <xsl:call-template name="declarationTempVar" />
28 <xsl:apply-templates select="pgml:action"/>
29 }

30 </xsl:template>

31

32 <xsl:template match="pgml:in">

33 <xsl:for-each select="pgml:variable">

34 <xsl:apply-templates select="."/>

35 <xsl:if test="not (position()=last())">

36 <xsl:text>, </xsl:text>

37 </xsl:if>

38 </xsl:for-each>

39 </xsl:template>

40

41 <xsl:template match="pgml:variable">

42

43 <xsl:choose>

44

45 <xsl:when test="node()">

46 <xsl:value-of select="Qtype"/>

47 <xsl:value-of select="@name"/>

483 <xsl:text>=</xsl:text>

49 <xsl:apply-templates/>

50 </xsl:when>

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

<xsl:otherwise>

<xsl:1if test="not(name(..)="'pgml:in')">

<xsl:value-of select="Qtype"/>

<xsl:text> </xsl:text>

<xsl:value-of select="Q@name"/>

<xsl:if test="@value">
<xsl:text>=</xsl:text>

<xsl:call-template name="process-type-of-value"/>

</xsl:if>
</xsl:if>

<xsl:1if test="name(..)='pgml:in'">

<xsl:text>String

</xsl:if>
</xsl:otherwise>

68 </xsl:choose>

69

sys _</xsl:text>
<xsl:value-of select="Q@name"/>

70 <xsl:call-template name="test-statement-end" />

71

72 </xsl:template>

73 ..

Tab. 4 The result of the first five steps of transforming the PGML document into the

J2ME MIDP code
No. of Matching template J2ME MIDP code generated
Step
Step 1 : package SumExample;
/ <;> [,I.j import SumExample.*;
import
{\/\ (\/\ java.lang.Integer;
import java.lang.String;
Step 2 package SumExample;

—_—

<object>€| %
() (\
N/ ~/

import SumExample.*;
import
java.lang.Integer;
import java.lang.String;

public class addTwoNum {
public addTwoNum() {}
}

Step 3

import SumExample.*;
import
java.lang.Integer;
import java.lang.String;

—>
public class addTwoNum {
<method> public addTwoNum() { }
- public int sum(){ }
(Y 1\ (Y () }
~/ N/ <~/ N/
64

Step 4 import SumExample.*;
import

java.lang.Integer;
import java.lang.String;
public class addTwoNum {
> public addTwoNum () { }
public int sum(,){ }
}
<in> \ (\
/ ~/
\
/

-~

(Y ((Y (
N~/ N ./
Step 5 import SumExample.*;
import
java.lang.Integer;
import java.lang.String;

\N_ /

public class addTwoNum {
— public addTwoNum() { }
public int sum(

String sys numl,){ }

-~

\ {)

</ ~/
<variable> (\ (\
NS N/

Similarly, we apply the XSLT/XPath -technique to“transform PUML documents. We
define two transformation stylesheets, PUMLtoWML.xsl for transforming PUML documents
into WML codes, and PUMLtoJ2MEMIDPxs] for t.ransfonning the same inputs into J2ME
MIDP codes. Table 2 lists the mappings of the elements of the user interface from the PUML
elements to its related J2ME MIDP expressions, which is used in PUMLtoJ2MEMIDP.xsl.
Table 3 indicates the same PUML elements and the associated WML tags which the PUML

elements are converted into.

Tab. 5. The mappings from PUML tags into MIDP expressions in the PUML-to-J2ME

transformation stylesheet

PUML Tag WML
Root element <user-interface> |<wml>
Container <board> <card ..> .. </card>
Text String <label> <label .. />
Text Field <textnote> <input .. />
Selection List <listapper> <select .> .. </select>
List Item <item> <option .. />
Image Display | <picture>
Action Trigger |<action> <do>
<go .. />
</do>

Tab. 6. The mappings from PUML tags into WML expressions in the PUML-to-WML

transformation stylesheet

PUML Tag MIDP Expression
Root element |<user-interface> | javax.microedition.lcdui.MIDlet
Container <board> Javaxgmicroedition.lcdui.Form
Text String <label> Javax.migroedition.lcdui.StringItem
Text Field <textnote> Javax.microedition.lcdui.TextField
Selection List |<listapper> javax.microedition.lcdui.ChoiceGroup

<item>

</listpaper>
Image Display | <picture> javax.microedition.lcdui.ImageItem
Action Trigger | <action> javax.microedition.lcdui.Command

3.4 The use of combination of context adaptation and

XSLT transformation

Figure 20 illustrates our capability of combining the transformation and adaptation
schemes. This figure shows that the function Page Generate can be implemented by
three components: XHTML MP Generator, WML Generator, and CHTML Generator.
Each component is implemented by using XML transformation engine. Through the
use of different stylesheets, these generators can generate the target languages. This
method can be used in an application serving users the displayed pages in those

different target languages.

)‘E\du]:lm:iun
i engine

Transtormation
gngine

v s =
T Transiurmation
XAl Shema 1Y

Fig. 20 Integrating transformation and adaptation

Chapter 4

System implementation

This chapter will introduce three system implementations. Section 4.1 explains
Context Aware Adaptation Service (CAAS) [16]. Section 4.2 and 4.3 introduce

Ubi-Adapting and G* respectively.

4.1 Context-Aware Adaptation Service (CAAS)

4.1.1 Example scenario

The last section has mentioned-the main-objectives and our focuses. In this section,
we explain the architecture and components of our framework. Figure 21 illustrates a
scenario of an application, which can be developed by our framework. Assume that in
a campus there is a wired Ethernet and IEEE 802.11 built; users can surf the Internet
via the networks. In the campus, a student, who wants to gather the butterfly pictures,
can collect the information from the biological multimedia information provider via
his personal computer when he is in his laboratory. Then, when he goes out for a
meeting (the arrow indicates the direction of his moving), he can use a PDA to
continue collecting the images. His work also can be kept on by borrowing a
notebook from his colleague, after arriving in the meeting room.

This scenario involves two critical techniques. First, the image can be resized
suitably according to the context of the device. Second, the collection status can be

kept on executing without interruption after changing his device, and even if he is

moving. In order to approach it, we attempt to design our framework can provide the

following functionalities, described below:

It can divide a program of the application into two modules: one is back-end
module running at the server side for retrieving the images and transmitting the
images to users’ devices; the other is front-end modules executed on users’
devices for representing the gathered images, shown in Figure 18.

Numerous computing transformation and adaptation algorithms needing heavy
computational resources will be enveloped in the back module to execute at
server side instead of running the whole program on the devices. Thus, the
restriction of application development by the limitation of resources on devices
can be reduced.

The system can change the’transformation ‘and adaptation component of the
application to others appropriately depending on what devices users use.

The back-end module can move with theuser.

4.1.2 System overview

Figure 21 exhibits the infrastructure of our system. There are three main components:

context-aware adaptation, repository service, and client. The client devices can be the

mobile and embedded appliances or stationary computers, such as PCs, PDAs, laptops,

smart phones, Java phones, etc. A front-end module for each user can be executed on

its owner’s device. Underlying the devices, the access networks include wireless

IEEE 802.11x networks, 2.5/3G telecommunication networks. At the server side, there

is a context-aware adaptation server (CAAS server) in each local area network (LAN).

In our design we do not assert that each LAN must have a CAAS server, but if we

assume there is a server in a LAN. The application can benefit by that when a user

enters this local area network, his personal agent can carry back-end modules and
migrate to a nearby server close to him. Besides CAAS servers, there is a repository
service, which supplies CAAS servers with the registered users’ information and

structure descriptions of deployed applications.

Legend
. ContextAware Adaptation Service @
© Repository Service Biological Multimedia

Information Provider

@ Client

© Beck-end module

Repository Service

@ Font-end module
® Biological multimedia
information provider

ContextAware JAVA Phones

Adaptation Server @
Work Station

Laboratory PDA b
210y i
Wireless Campus. Meeting Room

Fig. 21. An overview of the system infrastructure

4.1.3 System architecture

Figure 21 demonstrates the infrastructure of our system. Internally, there are three
primary constituents, client, context-aware service, and repository service, which
correspond to Client Tier, Context-aware Service Tier, and Repository Service Tier

respectively, presented in Figure 22.

Repository Service Tier

Client Tier Context-Aware Adaptation Service Tier
I
@\Enc} i;gzlﬂ;ni | @ack-cnd Module D @ack-end Modulea Ba
User Agent |

Personal, RMI, CDC Profiles

Foundation Profile

I2ME
Configuration

VM

Personal Java
Environment

User Agent

CC/PP
Negotiator

MIDP

I2ME
Configuration

KVM

I2ME
Environment

Front-end
Module

User Agent

CC/PP
Negotiator

Optional Java API

CC/pP |
Negotiator K\

Component
Manager

Context
Manager

Agent
Manager

C

Request Solver

Profile Processor

X

Personal Agent
Pool

J(

)

Component
Factory

JU3BY UOTIORIANT UL

Server

Communication
Designated

Personal Agents

Agent

Context-Aware Adaptation Service

JUABY $$200Y BIR(]

Ty
3
Y

Application
Information
Repository

N

Ty
| < |
e

Context-Aware Adaptation Server /

Personal
Information

Repository Repository

Service
Manager

—
3
=

Profile

Gack—end ModuleD @uck—end Module 9

Back-end Module 7

Repository

~_
Ty

Component
Manager

Context
Manager

Agent
Manager

Cim C

Request Solver Personal Agent

- Pool
Profile Processor

J(

)

Component
Factory

JuaSy UONORI] JUAI))

Server

Communication
Agent

Designated
: Personal Agents

CAAS Registry

| |
S

| cans
Registry

- 7/

Repository Service

JUBY $$900Y BIR(]

Legend

<):‘> UserAgent - CAAS Interaction Communication
) Do ceosshsent - Reposiory Communication

=== TnerCAAS Commuication

< Databuse Access

J2SE Context-Aware Adaptation Service
VM Context-Aware Adaptation Server 2
J2SE

Environment

Fig. 22. The inner architecture of the context-aware adaptation framework

Client tier:

This tier contains various mobile, handheld, or stationary computing appliances. As in
Figure 22, the devices cover J2ME-capable phones, PJava-capable PDAs, and
J2SE-runable laptops or personal computers. PJava, J2ME [8][9], and J2SE are the
Java virtual machines for the different kinds of operating systems and hardware
environments. Each of them has some particular configuration profiles. In J2ME,
KVM, J2ME Configuration, and MIDP are involved. In addition to the functions of
J2ME, PJava includes Configuration, Foundation Profile, Personal RMI, CDC

Profiles yet, whereas the J2SE environment comprises JVM and optional Java API,

furthermore.

71

A device can send a registering message with its context profile to inform a
CAAS server of its capabilities, and a front-end module on the device can invoke the
methods of their back-end modules via remote dynamic invocation (explained in
Section 6). To implement these mechanisms, two components of our system serve on
the client devices. One is User Agent that provides the UserAgent API to invoke
the methods of back-end modules. The other is CC/PP Negotiator, which can transmit
its device’s CC/PP profile embedded in a registering message to a CAAS server, when
the user’s device initially connects to this server. This messaging is based on the
CC/PP content negotiation protocol [26[27][29]. Intrinsically, messages of the
negotiation protocol can be sent by wrapping them in HTTP request/reply messages.
Listed below is RDF/XML [28][30][31] serialization of a context profile contained in
the messages, and illustrates that the number.of pixel is 16 in the hardware component

of a user device.

Listing 10. A CC/PP profile

GET /ccpp/html/ HTTP/1.1

<?xml version="1.0"7>
<rdf:RDF ...>
<rdf:Description rdf:ID="MyDeviceProfile">
<prf:component>
<rdf:Description rdf:ID="HardwarePlatform">
<rdf:type rdfiresource="http://www.wapforum.org/profiles/U APROF/ccppschema-
20010426#HardwarePlatform"/>
<prf:BitsPerPixel>16</prf:BitsPerPixel>
</rdf:Description>
</prf:component>
</rdf:Description>
</rdf:RDF>

Context-aware adaptation service tier:
This tier is composed of at least one CAAS servers that can support migration of
agents, execution of back-end modules, and adaptation of applications. Any two
CAAS servers connect with each other via Remote Method Invocation (Java RMI)
and [P multicasting. A RMI connection built to serialize objects and to transmit the
serialized objects over networks, can provide agent migration and remote procedure
call. Through the connection, personal agents can carry their owners’ back-end
modules and migrate from one CAAS server to another. Depending on different
considerations of applications, there are two modes (synchronous/asynchronous)
designed to control the conjunction between a user and his personal agent. Setting
synchronous mode leads the personal agent to migrate with its owner. However, the
agent anchors at its resident server'when asynchroneus mode is set; the personal agent
will not migrate wherever its owner arrives.

Nevertheless, how to construct the €ofifiection between the servers is a problem.
In our system, we exploit IP multicast:among sel.'vers to make each server listen to the
same [P multicast address. Accordingly, a common communication channel is formed
for transmitting multicast messages between the servers. On the channel, there are two
types of messages transmitted in this system. One of them is the message, which is
sent for constructing RMI links between any two servers; the other is the one that is
received by all servers for broadcasting notifications of deployment of applications. In
implementation, the multicast connection is constructed at the initiation of this system,;
namely, all servers have the connection before constructing RMI connections. Thus, a
server can build a RMI channel to connect with another by broadcasting a joining
message to other servers through IP multicast. Servers receiving this message will

reply with its IP address/port and server information. Afterwards, upon the server

receives a reply, it will construct a connection to the servers that replied messages.

Furthermore, CAAS servers are capable of performing application adaptation— a
process to decide proper components for the carried application— on the applications
carried by the agents migrated from other servers. An image transformation function,
for instance, can be implemented by two candidate components: BMP-to-PNG and
BMP-to-JPEG components. The former will be applied when the requesting client
device is a J2ME-capable phone. While the user uses a desktop computer instead, the
latter component can be chosen to implement this function.

A CAAS server principally includes the four constituents: client interaction
agent, context manager, agent manager, and component manager. Client interaction
agent serves as an interactor, which communicates with CC/PP negotiators on user
devices, can transmit messages of the CC/PP.negotiation protocol and those of remote
dynamic invocation.

For communicating with user agentsTonclient devices and adapting application
based on contextual information, confext mana:ger plays the role to negotiate initial
registration with the CC/PP protocol and to parse the embedded CC/PP profiles
further. To handle these profiles, we exploit DELI service [33] and Jena API [34] to
implement two sub-components of a context manager. One is request solver, which is
capable of unpacking HTTP1.1 request messages to retrieve the CC/PP profiles; the
other is profile processor, which can parse the CC/PP profile. In addition, all of the
parsed profiles will be collected into profile cache; thus, devices can transmit the
changed part to the service instead.

Agent manager, in a server, is capable of constructing personal agents and
maintaining these agents. Additionally, it can control an agent’s lifecycle, and invoke

the corresponding method related to state change of the lifecycle. In order to save the

74 '

cost of constructing agents, and to immediately respond to user devices when
reconnecting soon, agent pool is built to store agents constructed beforehand, and
recycle the appointed ones back, respectively.

Component manager supplies the agent manager with the classes needing to be
constructed in application adaptation. The reasons for constructing classes and the
procedure will be explained in Section 4.4. Figure 23 presents the internal classes for
creating the object instances to construct agents, applications, and components by
createAgent (), createApplication(), and ceateComponent ()
respectively (explained in Section xxx). Also, an ApplicationContext class,
which contains application structure table, component decision tree, and changed

component table, etc, can support application adaptation and component construction.

ApplicationContext

ComponentManager

+getComponent)
+createAgent() +getChangedComponen()
+getComponentContex€)

1

ComponentFactor

+create A gentClass()
+create ApplicationClasg)
+createComponentClasy)

Fig. 23 Classes of component manager, component factory, and application context

Between any two CAAS servers, the connections constructed by server
communication agents include an IP multicast channel and an RMI connection. Two
CAAS servers can use the IP multicast channel to build a RMI connection for offering
agent migration and remote method invocation.

Data access agent has the function of requesting and receiving data from the

repository service. Between a CAAS server and the repository service, except for the

IP multicast, there is a connection built by using URLClassLoader.
URLClassLoader is a Java class capable of loading classes from remote computers;
it will be used if the required classes do not exist in the creation of the user-defined
classes.

Repository service tier:

This tier plays the database and directory service role in our system. Three categories
of information are stored. They include application information, personal information
and context profiles, shown in Figure 22. Additionally, it stores the classes and ASCC
files of the applications deployed. Note that an Application Structure & Component
Constraints (ASCC) profile, designed in this framework, is an XML-based profile to
describe application structures and component information. When a programmer has
finished developing an application; he can,pack the.code of the application into a Java
Jar file (a compressed file containing the class files); and stores this packed file and
the ASCC description of the application ifito therepository service.

In this system, in order to deliver-the .information concerning a deployed
application to CAAS servers, two mechanisms are designed. One is application
preloading, in which the repository service notifies the CAAS servers once an
application is deployed into the repository; the other is application remedy, that can
be applied when a CAAS server accepts a migrated agent, but the required classes of

the applications carried by the agent are not found. It will be detailed in Section 4.4.

4.1.4 Agent migration

The state transfer of the agent

A personal agent, which is an active object with a state, is assigned to serve a user.
The term “active” means that the agent has a thread to perform a certain method
invocation requested by the front-end module. An agent will invoke the requested
method of the back-end side when it receives a request. Consequently, the result is
sent back to the front-end modules. The state transition of an agent is presented in

Figure 24.

destroyed O

Final state

igrate

Initial state

Fig. 24. State transition diagram of the personal agent

In the Ready state of an agent, the agent is activated to be ready for receiving
invocation request from the front-end module. When receiving a request, it invokes
the corresponding method of the appointed application. Then, the state will transit to
the Execution state. When invoking is completed, the agent will send the result of
the execution to the front-end module, and its state will change back to the Ready
state. Moreover, the carried applications can be adapted by the agent manager only in
this state. If this occurs, it will change to the Stop state and to the Adaptation

state soon afterwards. In the Stop state, the agent is deactivated and does not receive

any requesting invocation. Thereafter, components of each function of the application
can be switched appropriately. The situations that cause the state to transit to the
Stop state are: (i) a logout message received from the user agent; (ii) no messages
received from the user agent for a period of time; (iii) the agent is instructed to
migrate to another server. Moreover, conditions that make the state transit back to the
Ready state are: (1) an agent manager has got the agent from the agent pool and then
assigned it to its user for recycling; (ii) application adaptation has been performed; (iii)

agent migration has been completed.

The structure of an agent

In this section, we discuss the inner structure of an agent. Figure 25 indicates an agent,
which is composed of a state and.a body.The staté.records the information related to

the agent’s user and the applications carried by the agent.

Agent State

An agent state (Figure 25) is composed of agent ID (the identifications of the agent),
User ID (its owner), Device ID (the owner’s device), and Application IDs (the
applications carried). In addition, the agent state records the states of applications.
Each of the states includes absent component IDs and an event queue. Absent
component IDs are the identifications of the component objects withdrawn from the
agent body. An event queue is responsible for queuing the requested events in the
execution state. The queue is used to keep events, so it stops the execution of
processes from being interrupted by incoming events. Specifically, an event queue
retains the events of the state transition and notifications of the invocations from the

front-end module. State transition and invocations will be scheduled in the FIFO order,

so if a new event arrives, it will be put at the rear of the queue. Then, to process these
events, the main thread of this agent obtains an event from the front of this queue.
Taking the scenario in Section 1.1 for example, the user agent, in the front-end
module of a user device, requests the user’s personal agent for a picture. When the
personal agent receives this invocation, events concerning the invocation will be
generated and put in the queue. In this example, the events corresponding to 2, 3, 4, 5,
6, 12 are put into the event queue. Next, if any request arrives or the state transition is

triggered, the notification relevant to these events will follow the previous requested

notifications.
Agent State
Agent ID X User ID X Device ID
Application IDs
AppID 1 ‘ AppID 2 ‘ . ‘ AppIDn
v Application / State \ Application 2 State \ / Application n State
Absent Components Absent Components | o ‘ Absent Components
l Ev‘ent queue ... l I l E\(ent queue ... l I j k
Agent Body

Fig. 25. An internal view of a personal agent and an application structure

Agent migration

In the application ImageGathering, even when moving from room to room, users can
continue collecting the information. In order to complete this, we need to overcome

the following problems: “How does the system perceive the situations of users

movement?” and “How does the system instruct an agent that serves the user to

migrate with the user under perceiving the situations of users’ movements?”.

(1) Types of mobility

<J—>>Inter-domain Mobility
~f—P»Inter-location Mobility
&——>Intra-location Mobility

Local

Telecom
Networks

IEEE 802.11 IEEE 802.11
Wireless LAN Wireless LAN

Data-comm Network Tele-comm Network

Fig. 26, Cases of users’ movements

We can roughly partition off networks'into data-eom network and tele-com network.
Data network includes IEEE 802.11x [35, 36], wired LANs, and bluetooth networks
[36]. Tele-com network consists of 2.5/3G [37] networks (Figure 26). According to
characteristics of these networks, we define personal mobility and terminal mobility.
Personal mobility means that by using any nearby computing equipment, a user does
not need to carry his device wherever he moves. In other words, a user can use a
device to perform his work, and also continue working via another instead. Terminal
mobility indicates that a user can perform his work via his carried device.

As shown in Figure 26, the data-com network contains a great many local area
networks (LANs), and the three kinds of networks may be in the same region, as
Local Area 1. Furthermore, there is one possible type of network in a LAN, such as

Local Area 2. In a tele-com network, numerous wireless tele-com network areas,

formed by the radio coverage of base stations, are regarded as the same network in
our system.

The cases of users” movements from one region to another can be grouped into
three categories: Intra-location mobility, Inter-location mobility, and Inter-domain
mobility. Intra-location mobility means that the coverage of a user’s movement does
not exceed the range of a LAN. For instance, when a student collects information
through his personal computer in his lab. Inter-location mobility indicates that a user’s
movement crosses two LANs. A case of this movement might be that a user uses a
certain device in Local Area 1, and then uses another after moving to Local Area 2.
Inter-domain mobility refers to the fact that a user’s movement crosses data-com
networks and tele-com networks. A student, for example, collects images by using his
personal computer in his lab. Next; in place.of theé.personal computer he uses a Java
Phone when moving from his lab to a meeting room.

(2) Agent registration

The system provides two mechanisms to percei\;e users’ movements. We call the first
mechanism Passive-Client and Active-Server (PCAS). In the mechanism, the user
agent of a user’s device will be notified to initiate a registration procedure when its
user moves to the server’s covered region. We call the second mechanism
Active-Client and Passive-Server (ACPS). By using this mechanism, user agents of a
user’s device will actively inform the repository service if they need to connect to
some CAAS server.

In PCAS, a server located in a region can detect movements of user devices
entering into this region. When a user uses his device and enters this region, the server
notifies the user agent on his device. Thereupon, the user agent will register with this

server. Intrinsically, notification messages are the advertisements broadcasted

periodically on the wireless IEEE 802.11 network by a CAAS server. User agents of
client devices continue listening to this kind of messages. Provided that there is a user
entering a new wireless LAN, then the user agent will send a requesting service
message to the server sending the notification without registering to any server. Figure
27 illustrates the sequence diagram of this procedure. To inform the server of client
information, we embed the CC/PP profile in the request service message. While a
server receives the request message from the ClientInterActionAgent object,
it will forward the messages to the RequestResolver object to resolve the CC/PP
profile. The RequestResolver object is capable of retrieving the profile from the
message and passing it to the ProfileProcessor object to resolve the profile.
Then, the result will be passed to the CAAS service object, c2. When receiving the
message, c2 requests CAAS service cl,for.the‘user’s personal agent. The user’s
personal agent, therefore, can be instructed to migrate to the server c2 close to the
user. In this mechanism, user agents ONUSErs "devices can automatically register to

CAAS servers when their owners move among ["ANs.

: UserAgent : ClientInteractionAgent : RequestResolver ‘ : ProfileProcessor c2 : CAAS cl :CAAS ‘
] .] [}] T T
) send advertisement] | | |
} | | [}
: | | | [}
o request service | \ | l 1
" [} | | |
solve request »L process profile | : :
E———
| D | |
| register personal | | get agent]
! ister pers , i I
i information H - information |
| |
| |
| |
| | return the
| | information
| | G
| |
| | [}
| | [}
| | }
| | | 3
: : adapt : [current CAAS service
: T : l application : [previous CAAS service

Fig. 27. The sequence diagram of ACPS

The main difference between ACPS and PCAS is that in ACPS user agents on
devices actively register to the repository service. Thus, ACPS can be applied to solve
the condition where user agents on user devices have not connected to any server. A
user agent on a user’s device, for example, sends a request message to the repository
service. Upon receiving a request message, the repository service redirects the
connection to the nearby CAAS server closest to him. This procedure is decomposed

into steps shown in Figure 28.

: RepositoryService . e
: UserAgent Manager : ClientInteractionAgent : RequestResolver : ProfileProcessor c2: CAAS cl: CAAS
T T T T T T T
e | 1 1 1 I 1
request service .y 1 1 1 | 1
1 1 1 I 1
| medirectservice ! ! ! ! !
L] - 1 1 1 1 1 1
L, requestservice | n ! 1 1 1 1
T [} [} | [}
! | solverequest b L process profile H | '
1 e 1 1
[} [} D | [}
| 1 1 I 1
u . get agent
: : fegister perSonal mfum!atmn ! information :
1 1 1
1 [} [}
! ! { return agent
1 | I information
1 [} rer. @ | [STTTTT
[} [} [}]
1 1 1 1
[} [} I [}
1 | { 1 current CAAS service
1 1 1
] | I adapt | [previous CAAS service
e 1 1 T 1 | licati 1

Fig. 28 The sequence diagram of ACPS with agent migration

: RepositoryService . .
: UserAgent Manager : ClientInteractionAgent : RequestResolver : ProfileProcessor : CAAS

| |
request servic

|
|
|
. . |
| redirect service :
|
1

request service

H

»

solve request

register

|
|
|
|
|
|
|
|
|
process profile > [I]
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Fig. 29 The sequence diagram of ACPS without agent migration

It will be possible that agent migration is not needed if the covered regions of
user movements are identical. Perhaps one of the conditions is that the device briefly
disconnects, and then reconnects to the server. In this condition, the user’s personal
agent still resides in this server. Thus, when the user agent inquiries the repository
service about a CAAS server, the repository service will inform the user device of the
original nearby CAAS server, and redirect the connection to that CAAS server.
Though the user device reconnects to the CAAS server, the personal agent will not be
instructed to migrate.

We explain below how the system perceives users’ movements and when a
CAAS server instructs a user’s personal agent to migrate from another server. Further,
the cases of users’ movements can be considered altogether with PCAS and ACPS,
arranged below:
® In Inter-domain mobility,-two situations are classified into this category. One

condition is that the underlying networkraccessed is data-com network first and

tele-com network subsequently.‘In the conciition, user agents on user devices can
register automatically by using ACPS. The other is the opposite of the first
condition. Here user agents on user devices can be notified to register through

PCAS.
® In the cases of Inter-location mobility where a user crosses two different kinds of

local area networks, user agents on user devices can be notified to register

through PCAS.
® Under the conditions of Intra-location mobility, it is unnecessary to move users’
personal agents, because in this case users use their devices on the same network.
(3) Agent migration strategy

In agent migration, we consider the three strategies: Heavyweight Agent Migration

84 '

(HAM), Flyweight Agent Migration (FAM), and Lightweight Agent Migration
(LAM).

Heavyweight Agent Migration (HAM):

In the Heavyweight Agent Migration (HAM) strategy, an agent will carry the
components belonging to Type 2 and Type 3 while migrating, except for those
specified “carried='No’”"' in the ASCC profile. (1) of Figure 30 illustrates an
example. Agent migration is a procedure that serializes object instances comprising a
whole agent into a byte array, and then sends the serialized binary data to the target
server. Upon receiving it, the receiving server reconstructs the agent from the byte

array.

(1) using HAM

g © teed 4§ eee
(= €D G)

(2) Using FAM (3) Using LAM

Fig. 30. The structure of the application ImageGathering by using three strategies.

Suppose that an application is carried with two functions: fun [and fun 2. fun I
can be implemented by components comp [and comp 2, and fun 2 can be realized by
comp 3 and comp 4. Figure 31 exhibits the results of the HAM strategy applied to
agent migration. The components comp -4 are carried with agent migration. When the

agent reaches CAAS server 2, the server appropriately adapts the applications carried

' The term “not carried” means nullifying the object references in the implementation code.
85

by the agent. For function fun I, the component comp 1 is suitable for the context of
the user device used previously. However, it is not suitable for that of the other used
subsequently. As a result, the component comp 2 is chosen to substitute comp 1.
Listing 11 shows the HAM algorithm. At the transmitter side, the immoveable
components are detached and then their IDs are recorded into an absent component
array in an agent state S. While accepting the agent on the receiver side, the receiving
server will retrieve the application IDs from the agent state and recorded them into
array A (Lines 1-2). If, for each function, a certain component implementing this
function is unsuitable, another proper component will be chosen to substitute for that
component by means of DECIDE-PROPER-COMPONENT(A[i], F[j], T, O, D).
Eventually, Line 16 switches each unsuitable attached component to a more

appropriate one for each function£/j/ of an.application A/i/ in the agent G.

c

Agent State t\ Agent State Q Agent State
€

Agent Body ¢ Agent Body Agent Body

7/7\"\

= = = =
sh] Roig=) |

CAAS server / CAAS server 2

Fig. 31. Agent migration using HAM

Listing 11. The algorithm of HAM

G: an agent; S: the agent state of the agent G; 4: an array recording IDs of the applications carried by
the agent G; F: functions comprise an application A4/i/; T: a previous context profile; Q: a current
context profile; C: an array recording IDs of un-carried components of an application 4; D: a decided

components for functions F of an application A/i]

HAM- TRANSMITTER(G)

1 GET - AGENT-STATE(G,S)

2 GET- APPLICATION- IDs(S, 4)

3for i< 0 to length[A]

4 do GET- FUNCTION- IDs(S, 4[i], F)

5 for j<0 to lengthF]

6 do DETACH- IMMOVEABLE- COMPONENT(G, 4[i], F[j],C)

8 for k<0 to length[C]

8 do ADD-TO- ABSENCE- COMPONENT(G, S, 4[i], F[j1,C[k])

9 return G

HAM- RECEIVER(G, T, Q)

10 GET - AGENT -STATE(G,S)

11 GET- APPLICATION- IDs(S, 4)

12 for i< 0 to lengthfA]

13 do GET-CHANGED- OR- ABSENCE—FUNETION=1Ds(S, 4[/], F)
14 DECIDE- PROPER - COMPONENT(A[{], F,T,0, D).

15 for j< 0 to length[D]

16 do SWITCH-COMPONENT-TO(G, 4[i], F[/1, D[j])

17 return G

Flyweight Agent Migration (FAM):

The principle of this strategy is to minimize the data size needed to transfer an agent
between servers. In other words, the components, except for those classified to Type 2
and Type 3 and indicated as “carried='Yes’”, are not carried with agent
migration. Figure 30 (2) illustrates this example since, except for the component
Image Cache, no component is carried with agent migration. This is because Image
Cache is Type 2 and declared “carried='Yes’ ", but the other components are the
cases in either Type 1 or Type 2/3 components declared “carried='No’"” (see

Listing 12). Figure 32 illustrates that the components comp -4 are not carried since

these components are classified to Type 2/3 but not specified “carried='Yes”.
Then, in CAAS server 2, for each function proper components are decided.
Additionally, their object instances are reconstructed if necessary.

The algorithm of FAM is shown in Listing 12, where components, except for the
Type 2/3 components specified “carried =’Yes’”, are not carried in agent
migration. At the acceptance of the agent, the server can examine the missing
components (retrieved into array F). After deciding proper components for each
function in Line 14, the receiver creates object instances for those in F, and plugs the
suitable ones into their corresponding functions (in Lines 15-16). However, there is
likely to be a problem: the required classes (the user-defined subclasses of
Component) are not found. If this problem occurs after an agent migrates, the
needed classes can be loaded throtigh the.component manager. Details for this will be

specified in Section 4.4.

a a 16
Agent State Agent State i Agent State

o |2 e | e
@v@@'@) '

CAAS server / CAAS server 2

Agent Body

Fig. 32 Agent migration using FAM

Listing 12. The algorithm of FAM

FAM-TRANSMITTER(G)

1 GET - AGENT - STATE(G,S)

2 GET- APPLICATION- IDs(S, 4)

3for i< 0 to length/A]

4 do GET- FUNCTION- IDs(S, A[i], F)

5 for j< 0 to lengthF]

6 do DETACH- ALL- EXCEPT- CARRIED- COMPONENT(G, 4[i], F[j],C)

7 for k<0 to length[C]
8 do ADD-TO- ABSENCE- COMPONENT(G, S, A[i], F[j1,C[k])
9 return G

FAM-RECEIVER(G, T, Q)

10 GET - AGENT -STATE(G,S)

11 GET- APPLICATION- IDs(S, 4)

12 for i< 0 to length[A]

13 do GET-CHANGED-OR- ABSENCE- FUNCTION- IDs(S, 4[], F)
14 DECIDE- PROPER - COMPONENT(A4ELE, T, QD)

15 for j< 0 to length[D]

16 do ATTACH- COMPONENT-TO(G, 4[il,.FT[.i1,Dli1)

17 return G

Lightweight Agent Migration (LAM):

The substance of this strategy is that one component is carried for each function in an
application, except for Type 1 components, when agents migrate. A possible method
we propose is to carry the only components which implement its corresponding
functions in agent migration. (3) of Figure 30 illustrates this strategy, where only the
components implementing their corresponding functions are carried. Except for Typel
components (Data Access and Image Transmitter), the components of the functions
Image Retriever, Transcoder, and Cache are carried.

Likewise, in Figure 33, before the agent migrates, the components comp 2 and
comp 4 are detached from the functions fun I and fun 2 respectively. While the agent
arrives in CAAS server 2, comp 2 and comp 4 are chosen as the proper components

for fun I and fun 2, individually. Therefore, instances of the two components will be

reconstructed, and then attached into their corresponding functions.

Listing 13 presents the algorithm. At the transmitter side, Line 6 detaches all
components, except for the Type 2 and Type 3 components implementing their
functions. Their IDs are recorded to an agent state S (Line 8). When accepting the
agent, the proper components will be determined to substitute for the components that

are absent or unsuitable, as shown in Lines 13-16.

P
& Agent State Bgeliars i Agont State
C ‘Agent Body L genliBot) C “Agent Body

CAAS server / CAAS server 2

Fig. 33 Agent migration using LAM

Listing 13. The algorithm of LAM

LAM-TRANSMITTER(G)

1 GET - AGENT - STATE(G,S)

2 GET- APPLICATION- IDs(S, 4)

3for i< 0 to lengthfA]

4 do GET- FUNCTION- IDs(S, 4[], F)

5 for j<0 to lengthF]

6 do DETACH- ALL- EXCEPT- IMPLEMENTING- COMPONENT(G, 4[i], F[j],C)
7 for k<0 to lengthC]

8 do ADD-TO- ABSENCE- COMPONENT(G, S, A[i], F[j1,C[k])

9 return G

LAM-RECEIVER(G, T, Q)

10 GET - AGENT -STATE(G,S)

11 GET- APPLICATION- IDs(S, 4)

12 for i<« 0 to length[A]

13 do GET-CHANGED-OR- ABSENCE- FUNCTION- IDs(S, 4[], F)
14 DECIDE- PROPER - COMPONENT(A[{],F,T,0,D)

15 for j< 0 to length[D]

16 do SWITCH-COMPONENT-TO(G, 4[i1, F[j1,D[j1)

17 return G

Comparison

In this section, we tested these three strategies to see how the size and number of
components affect time cost (msec) of agent migration and application adaptation. In
the experiments, we consider HAM, FAM and LAM under the worst case. In addition,
in LAM we measure cases of LAM under the best case. The best case means that all
components carried by an agent do not need to be replaced. The worst case indicates
that all components carried by an agent need to be switched to the proper ones. Figure
34 shows the experimental setting. We measure the round trip time during which
CAAS server 1 informs CAAS server 2 to instruct an agent to migrate successfully.
To analyze the results accurately, we measure each case for 10,000 times to compute
the average of the results.

We experiment on the strategies through two measurements. First, we let an
agent carry an application containing-ofie” fufiction; which is implemented by two
components. We consider the cases of HAM, FAM, LAM-B, and LAM-W by
gradually increasing the size of the two components from 512 to128k Bytes. Table 7
and the left-hand side of Figure 35 demonstrate the time cost (msec) of the cases. As
we can see, FAM performs worse than the other three; on the whole the cases of
LAM-B and LAM-W cost less than the others, and those of LAM-B win. Second, we
let an agent carry an application composed of one function, which can be
implemented by 50, 75, 100, ..., 250 components separately. In Table 8 and the right
side of Figure 35, the results indicate that HAM and FAM perform worse than
LAM-B; while LAM performs better than others. In the situation, the time needed
increases with an increasing number of components. This is because each of the

algorithms performs a certain operation one by one for each component attached. For

example, the HAM algorithm detaches all of the immoveable components.

CAAS1:
CPU :
Memory :
Network Adapter:

Operating system :

Java Virtual Machine :

Intel(R) Pentium(R) 4 2.40GHz
512M Bytes RAM
Intel(R) PRO/100 VE

Network Connection
Microsoft Window 2000

Service Pack 3
J2SE 1.4.2

CAAS2:
CPU

Memory :
Network Adapter:

Operating system :

Java Virtual Machine :

Intel(R) Pentium(R) 4 2.40GHz
1,024M Bytes RAM
Intel(R) PRO/100 VE

Network Connection

Microsoft Window XP Professional

Service Pack 1

J2SE 1.4.2

CAAS server 2

0 ‘

(2)

100 M Ethemet

Fig. 34 The experimental setting

Tab. 7. The results of the first measurement

(one application, one function, two components)

Heavyweight |Flyweight Lightweight |Lightweight
Agent Agent Agent Agent
Migration Migration Migration-B |Migration-W
Component (HAM) (FAM) (LAM-B) (LAM-W)
Size (Byte)
512 3.134 3.195 3.027 3.125
1024 3.345 3409 3.249 3.253
2048 3.911 4.136 3.633 3.890
4096 4.250 4.333 4.192 4.284
8192 6.514 6.663 6.431 6.483
16384 8.472 8.627 8.494 8.556
32768 15.153 14.463 14.158 14.380
65536 28.467 28.242 27.942 28.063
131072 124.181 122.134 121.713 122.29

Tab. 8. The results of the second measurement

(one application, one function, one component)

Heavyweight |Flyweight Lightweight |Lightweight
Agent Agent Agent Agent
Migration Migration Migration-B |Migration-W
Component (HAM) (FAM) (LAM-B) (LAM-W)
Number
50 7.016 7.021 6.816 6.800
75 9.895 10.050 9.793 9.825
100 13.866 14.656 12.473 12.029
125 14.160 14.340 14.018 14.045
150 19.667 20.514 19.430 19.444
175 20.482 20.994 20.712 20.732
200 21.844 22.141 21.931 21.841
225 24.719 24.323 24.378 24.380
250 28.770 29.221 28.443 28.422

92

1000 B

O HAM
B FAM B FAM

O LAM-B O LAM-B
O LAM-W N O LAM-W

O HAM

‘Time (msec)

Time (ms

@@@WWW

409 8192 16384 32768 65536 131072

50 5 100 125 150 175 200 225 250
Component Size (Byte) Component Size (Byte)

Fig. 35 The experimental results on HAM, FAM, LAM-B, and LAM-W

4.2 Ubi-Adapting

Figure 36 shows the implementation of our system. The framework contains two main
parts: one is the server part and the othér i§'client part. In the server side, we design
Context Profile and Context Awarcness Module used to be aware of the context of
users. Application Profiles can:describe the ap.plicati(.)n structure. In other words, the
module stores ASCC profiles of-applications. There are personal agents which can
migrate from one computer to the other. Besides, it can store its owner’s information.
In order to realize the function we explain in Chap 2 and Chap 3, we design the
Application Adaptation Service and Representation Transformation Service to
approach adaptation and transformation mechanisms. Figure 37 demonstrates the

results we test.

i
Il

SonyEricsson k500i SonyEricsson k700i SonyEricsson

S -

}5‘:—;‘

GX218C Nokia 7610 Nokia 6600 Nokia 3870

Fig. 37 the tested devices

4.3 Gateway of Gateway (G?)

G” means ‘gateway of gateway.” That is, there are several gateways in a home
environment. These gateways include Home Gateway, TV Box, etc. Connecting these
gateways through G*, we can use various kinds of mobile devices. The components
architecture of G* is similar to that of Ubi-Adapting. In addition, we design G* can
detect coming bluetooth devices to identify the users around.

Figure 38, for example, demonstrates users can use the mobile devices and the
computers to access the back-end services and the services implemented on the G*. In
this figure, we design a home control application. There are two functions we
implemented. (1) Users can use different devices to control the home facilities. (2)

Devices can be trigged due to the {,‘étlse of—cormpgmsers carrying bluetooth devices.
"-.'.." i I Jq - | ':' e :ﬁ -
T T i TIHTT
[[{]] LT
\\‘\I 4] l;lu;::uuﬂu#uﬂ;u;g;”_

Ve
B0,

IEEE 802.1Ix
Wireless..

o

HNP Request/Response PC

iL.on Module Ethernet

Fig. 38 the overview of the G

’ 7

Tab 9 shows the revolution of the implemented systems. The differences between
the two systems include the sensors we use or not, and which type of machine we
used. In Ubi-Adapting, we don’t use sensor, but use Bluetooth to capture the user’s

location. Besides, we use embedded box for the implementation of G,

Tab. 9 the revolution

Name Ubi-Adapting G’
Profile CC/pPP CC/pP
WAP UAProf WAP UAProf
Sensor N/A Bluetooth
Performer |PUML transformer PUML transformer
Component adaptor Component adaptor
Application | Application Application
Migration Migration
Decision N/A N/A
Engine
Embedded |No Yes
Box
Application |Library,-Movie, SMS, Scheduling
Practice Home control Home Control

96

4.4 Applications

Table 10 we explain the application we implemented. A movie theater mobile web site
is the first application. A User can use a WAP phone, and then change to use an
XHTML MP phone (Nokia 6600 and Nokia 7610). For example, if a user uses a
Nokia 7610, the downloading link with the high-quality movie clip will be shown in
the page. If a user uses Nokia 6600, the downloading link shown is the low-quality
movie clip. In the library application, users can use PC, Pocket PC 2002, and Nokia
7610. According to the context of the used device, the proper format of the content

will be sent to the user’s device.

Tab. 1 0 The :applicatié)ri'*demos
Application |Description = _' " |Demo.

Users can use their
mobile devices to order
tickets, download clips,
etc. Besides, the Ul
Sl A movie|syntax (e.g. WML and
mobile web site |[CHTML, etc) and
downloading clips are
adapted to the contexts
of devices at runtime.

using Nokia 7600 to download clip
(MPEG4 , encoding rate: 64kbps)

97 ' k|

using Nokia 6600 (3GPP, encoding rate:
32 kbps)

*

Unlimited
Library

to ifg
wlf

it
Users can us%‘i‘* “th
mobile devicqul-_ 1
the books. =

|
e

using PC to browse the result

3
> Mobile

Home Service:

Several home networks
can be exploited to
control the home
facilities. We use XI10
plug-able modules in this
application, and the
mobile phones and PDAs
to control the facilities.

using SonyEricsson k7001 to turn the
power on

98

2

using Dopod 818

E | G

(Gateway of]
Gateway): an
embedded home
box

The G” has the following

features:

® a CAAS server is

customized to

deployed on

embedded
(using EPIA

main board, shown
below)

be
a ‘
box.
x86

Once senoring a coming family, the
power is turned on automatically

Other family members receive SMS

® Using Bluetooth to agification
Identify people

® SMS message
notification

® Multi-devices used
to control home

facilities

Chapter 5

Application development

Figure 39 shows the programming model. There are three roles to?? who?? write the
PUML/PGML files, components of applications and the agents used to carry the

applications. The development flow is shown in Figure 40.

server side

PUML

O o)
(user inte1rface) Z?ARX) /\%

<?xml version="1.0"?>

A

2 Role user interface logic service
3 <puml:user-interface ... > designer programmer provider

4 <puml:board ... >

5 <puml:logic-objects> Example ;(:m; r:\:r m r:’r;:ﬁ:: h video provider
6 .. G

7 <I/puml:logic-objects> P M L

8

(computation logic)

9

10 <puml:picture ... /> <pgml:add>

11 <pgml:operand select="a"/> Agst SHlE

12 <puml:label ... /> <pgml:operand select="b"l> [T 6 Use 1D I Devie 1D

13 <Ipgml:add> = I "N""ﬂl‘"‘" IDE

14 <puml:listpaper ... />

15 <pgml:add>

16 <puml:action ...> <pgml:operand value="5" type="int" /> =] i T =] J

17 <pgml:operand value="6" type="int"/>

18 </puml:action> </pgml:add> AgentBody

19 </puml:board> . .

20 <pgml:add result="s" > applications . - S

21 <puml:layout... /> <pgml:operand value="5" type="int" /> j\

22 </puml:user-interface> <pgml:operand value="6" type="int"/> 3
<Ipgml:add> \Q LN

Jm,

<pgml:add result="s" >
<pgml:add>
<pgml:operand value="3" type="int" />

<pgml:operand value="4" type="int"/>
</pgml:add>
<pgml:operand value="5" type="int"/>
</pgml:add>

Fig. 39 PUML/PGML & agent development

Figure 40 contains the three steps: (1) PUML/PGML writing, (2) application
component and agent development, (3) application deployment. As we can see in this
figure, programmers can edit PUML and PGML files directly (e.g. Edge 1.1) or use

the toolkit to generate the files (Edge 1.2).

100 '

=

1.2
(‘ SDK
:[\15

‘B '8
e e
f i I
x'.li |".," -i.-'] \ |2
.)
III f“'. II (| |l'l'-I !
LIII I'__I:. :IJI I'_I:. EOEramimers
g 1.1
PUML
T e
e IR
. e m——
P PG ML
23 L mnp.nr‘:l_n_lmm
Aot Application componont PUML/PGAIL oammem s SR
and agent Sl cpment Wl M it
S g
I e SIS I
Agure ™ A
S A ARty e
4 3 Eaneni. -3
T,

[y

Application deployment

Fig. 40 the steps for develoﬁment

The following sections explain the steps.: (1) PUML/PGML writing in Sec 5.1, (2)
application component and agent development in Sec 5.2, (3) application deployment.
In PUML/PGML writing, programmers can construct PUML/PGML pages. Besides,
programmers can use a SDK to generate the page in drag-and-drop manner. In the
application, we can use the generated page. The PUML/PGML page can be
transformed at runtime. When designing applications, programmers can write the

code capable of transforming the PUML/PGML document into the target languages.

101 ' Y

5.1 PUML/PGML writing

5.1.1 Hand coding

As we can see in Figure 40, there is a step to write PUML/PGML document. In the
section, we will demonstrate an example written in PUML and PGML documents, and
the simulating results of the generated J2ME and WML codes by applying the
transformation mechanism mentioned above. Listing 14 is a PUML document
(UIExample.puml). There are three <puml : textnote> elements in the listing. The
first two can get two input numbers, and the last can display the result by summing
the two numbers up. The <puml:action> .. <puml:action> block describes
that the two inputted values are!passed.into. thé. sum method of objectl, e.g.
addTwoNum.pgmnl (declared in Line 12-14). Furthermore, the value attribute of the
<textnote> widget, sum in board2; will-be updated by the retuned value after
the action is triggered. Line 28 describes the code to accomplish that. The section of
addTwoNum.pgml can sum the two input number, shown in Listing 7 in Section

3.2.2.

Listing 14. A user interface described in PUML

1 <?xml version="1.0"?>

2 <puml:user-interface name="UIExample" version="1.2"
3 xmlns:puml="http://dcsw3.cis.nctu.edu.tw/Project/
4 pervasive/PUML/">

5

6 <puml :board name="boardl" title="FirstPage" >

7 -

8 </puml :board>

9

10 <puml:board name="board2" title="SecondPage">

11

12 <puml:logic-objects>

13 <puml:object name="objectl" source="addTwoNum.pgml" />
14 </puml:logic-objects>

15

102 '

16 <puml:label name="mainTitle" showText="Input two numbers:" />
17

18 <puml:label name="numlTitle" showText="Number 1:" />
19 <puml:textnote name="numl" value="0" />

20

21 <puml:label name="num2Title" showText="Number 2:" />
22 <puml:textnote name="num2" value="0" />

23

24 <puml:label name="sumTitle" showText="Sum:" />

25 <puml:textnote name="sum" value="0" />

26

27 <puml:action name="action2" showText="action2">

28 <puml:change container="board2" component="sum" update="value">
29 <puml:use-object name="objectl" method="sum">

30 <puml :param select="numl" />

31 <puml:param select="num2" />

32 </puml:use-object>

33 </puml : change>

34 </puml:action>

35

36 </puml:board>

37

38 </puml:user-interface>

b N
[% & —" F
R el

5.1 .2WYS IWYG i {;:-

iyl T e
aar | v o :

| -1.-I'\-|"‘|II “ & N

£

..__.\.

w I

Besides hand coding, programmer.s. can use an SDK to generate PUML and PGML

b """".L T
-\.l'"'

i
documents to accelerate the devqlopment-- sirbwn Fas in Figure 42. Programmers can

"“\. = "r
use the toolkits to develop web page 1n“drag and- drop manner.

¢ Mobile Designer =1olx|

Flo Edit Projeot PUML PGML Tonsfomming Compiing Simulafng Run Help
=T A
‘ I3 pointer &7 bosrat |) koard2 | (51 boeras |

g B e e @&

Attribute Walue

label Label Input two numbers: i

Nurmber 1 e

Tink HyperLink lang

liiie
] Text Field et narie (action
showTexd action
Nurmber 2 uss-objsct
change

== | Password Field

et nextboard lboardt
Text Area [t -
[T coriba Box subini]

;

%% Button Group

[¥i— check Buttan
@ — Raciio Button

[CK]| Button

E Picture
Desion | PUML Tree 1 | PUML Tree 2| PUML Source
tatus

Fig. 41 using the toolkit for development

103 r 1

We display the design in Figure 41. It is the layout view for code in Listing 15.

Besides, there are two versions of toolkits we design. One is the toolkit we embedded

the drag and drop function into the some famous SDKs. In our design, we embedded

it into Borland JBuilder[38] and Microsoft .NET studio[39]. The two toolkits are

popular currently. We can leverage them to promote our framework. The other is the

web-based toolkit. Programmers can design pages by using the user interface of

browsers, such as IE, firefox, etc. In the figure 41, there JBuilder version can generate

the PUML form.

? Cr LT
:

ke

./’\‘.

1
Y Sy

=,

£

Y e T T e e ;
(" compt Y comgl DR P ICHIRECHCHEE
gt A, SR b, Sl A SR 4 M S S,

o

v

Fig. 42 the toolkit we designed

104

Agent

5.1.3 The generated code

The following code (Listing 15) is the WML code which generated from
UlExample.puml. In the code, there are three <input> elements which are
converted from the three <textnote> elements in Listing 14. The top three of
Figure 43 demonstrate simulating the WML code generated. For example, a user
inputs two number, 1 and 2, in Step 1, and selects action 2 in Step 2 subsequently.
Then, the <go> would be performed. However, there is a problem—how to
accomplish passing the values of the numbers into the WMLS function, and updating
the value attribute of the <input name="sum" .. /> element—must be coped
with. The trick we wused is exploiting WMLBrowser.getVal() and
WMLBrowser.setVal (). WMLBrowsexr.getVal () can be used to get the value
of the variable specified from the: WMLBrowser environment. Specifically, the values
of the variables, standing for“the two £imput>, can be obtained by invoking
WMLBrowser.getVal () in the WML Scrip.t. Returning the computed result can
be completed through WMLBrowser.setVal (). addTwoNumBroker.wmls is the
code generated in transformation to manipulate this event-handling. The related usage

of the two methods can be referred in [40].

Listing 15. The WML code transformed from the PUML code in Listing 14

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
3 "http://www.wapforum.org/DTD/wml 1.1.xml">
4 <wml>

5

6 <card title="FirstPage" id="boardl">

7

8 </card>

9

10 <card title="SecondPage" id="board2">

11 <p>Input two numbers:</p>

12 <p>Number 1:</p>

105 '

13 <p><input name="numl" value="0"/></p>

14 <p>Number 2:</p>

15 <p><input name="num2" value="0"/></p>

16 <p>Sum:</p>

17 <p><input name="sum" value="0"/></p>

18 <do name="action2" type="accept" label="action2">

19 <go href="addTwoNumBroker.wmls#start ('board2action2')"/>
20 </do>

21 </card>

22

23 </wml>

The code, shown in Listing 10, is transformed from the same PUML document (Listing
8). The <puml :board name=""> .. </puml:board> is converted to a Brdboard?2
class, which is the extended class inheriting the Form class of J2ME MIDP. In the code, the
TextField control including numl, num?2, num3 are declared at the beginning, and
initiated in the constructor of the Brdboawd2relass. They are transformed from the three
<puml :textnote> elements in the original PUML document.

Respecting the event handling, the PUML code is transformed into that the
Brdboard?2 class implements the‘commandAction method of the CommandListener
interface. Once the method is invoked, namely' some action was triggered, the code within the
method would compare the name (ID) to see which object issues the event. If the action is
triggered by action2, sys_objectl.sum(numl.getString(),
num2.getString ()) will be invoked to sum the two input numbers, shown in Line 51.
In order to set the returned value back to the TextField sum in Brdboard?2, we embed a
method, UIExample.sys instance.getBoard("board2"), in the generated code
to obtain the board object specified, and sum.setString () to update the value of sum
thereupon, shown in Line 49. The above code is transformed from the code in Line 28-33 in
Listing 8. The tree figures, in the bottom of Figure 43, shows the simulating result. Similarly,
an user inputs two numbers, and then chooses the action 2 to sum up the two number. Finally,

the result is returned and displayed on the third TextField.

106 '

Listing 16. The J2ME code transformed from the PUML code in Listing 14

O J o U bW

el el el e)
o U WN PO

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

class Brdboard2 extends Form implements CommandListener {

UIExample sys ui;

private addTwoNum sys objectl = new addTwoNum() ;
public StringItem mainTitle;

public StringItem numlTitle;

public TextField numl;

public StringItem num2Title;

public TextField num2;

public StringItem sumTitle;

public TextField sum;

private Command action2 =

new Command ("action2", Command.SCREEN, 1);

public Brdboard2 (UIExample sys ui) {

}

super ("SecondPage") ;
this.sys ui = sys ui;

mainTitle = new StringItem("Input two numbers:", "");
this.append (mainTitle) ;

numlTitle = new StringItem(!Number 1:", "");
this.append (numlTitle)%

numl = new TextField(M', "d"; 50, TextField.ANY);
this.append (numl) ; ’ .

num2Title = new Stringltem("Number 2:", "");
this.append (num2Title) ;

num?2 = new TextField ("™, "0",;» 50, TextField.ANY);
this.append (num?2) ;

sumTitle = new StringItem("Sum:", "");
this.append (sumTitle) ;

sum = new TextField("", "0", 50, TextField.ANY)
this.append (sum) ;

this.setCommandListener (this);
this.addCommand (action?2) ;

public void commandAction (Command command,

Displayable displayable) {

if (command == action2) {
((Brdboard2)UIExample.sys instance.getBoard ("board2")) .
sum.setString (
sys_objectl.sum(numl.getString(), num2.getString())
)

107 '

-Eecun Fage
Input twio numbers:
urnber 1:

MRS

|5 Secon Page
numbers:
umber 1:
1]
umber 2:
| 1218
|Dptions

S — J

“S-;aﬂrwce options
Home
Bookmarks

Edit

MRS

|5 Secon Page
Edit

I ==}

secondPage ——0)

1]
umber 2:
—]
unm:
El
Options

 “Sm—— e v L — — 0

Fig. 43 The top figures are the simulating results of the WML code, and the
bottom is the result of J2ME codé generated from the code of PUML/PGML

5.2 Application component and agent development

In order to enable this framework to.be-aware of the structures of applications, we

define Application Structure and Component Constraints (ASCC), an application

profile description. Listing 17 illustrates the ASCC profile of the application

ImageGathering.

Listing 17. The ASCC profile to describe structure of ImageGathering

1 <?xml version="1.0"7?>

2 <ascc xmlns:ascc=http://dcsw3.cis.nctu.edu.tw/project/CAAS ...>
3 <application id="ImageGathering">
29 <function id="SubOrAdd">

30 <default idref="Add"/>

31 <component id="Add" priority="50%"

32 stateful="No" relative="No" carried="No”>
33 <component id="Sub" priority="50%"

34 stateful="No" relative="No" carried="No”>

35 </function>

48 </application>

49</ascc>

108 '

As we can see in Listing 17, the <application> element includes five
<function> elements, which can describe the one function. In each <function>,
the candidate components can be specified. Lines xxxx, for instance, declare that
<component id=”Add” ...>, and <component id="”Sub” ...> can
implement the AddOrSub function. In advance, within a <component> element,
the properties, stateful, relative, and carried, can be used to set
components stateful/stateless, relative/irrelative, and carried/un-carried respectively.
The priority property concerns the priority of a component, one of which is
chosen in each application adaptation. Furthermore, to set a component as a default
component for a function, we can use the element <default>. If we want to set a
component implementing the function which cannot be replaced with others, we can
use the property “unchanging=’Yes’ ”. Figure 44 exhibits the class diagram of
the implementation of the back-end module, which is made up of the classes derived
from three original classes. A programmeridefines a personal agent class, which is
derived from the Agent class, and 1ets the ageﬁt carry the applications whose classes
derived from the Application class. Furthermore, the programmer can define
various subclasses of the class Component to substantiate and diversify his
application. Without loss of generality, we use MyAgent, MyApplication, and

MyComponent as the user-defined classes, which are illustrated in Figure 44.

109 '

<<interface>>

4

IAgent
Agent +onStart() 1.7
+onReady() |
+ beforeA daptc_ztion 0 <<interface>>
+afterAdaptation() Application IApplication
+beforeMigration() 4D +initApp()
+afterMigration() . . L . A
+onStop() +mv‘oke() in params : java.lang.Object/]) : Object[]
+invokeMethod() =
L A
MyAgent A [T mm e e |
1
1 <<i
MvApplicati interface>>
yAppTication IComponent

N

user-defined

+invoke(jp params : java.lang.Object(]) :java.lang.Object/]
)

[1

classes

1.*

Function

~

-

MyComponent

+switchTo(in complD : java.lang. String)
+invoke (in params : java.lang Object]) :java.lang. Object[]
o

)

<>—"+invoke(in params : java.lang.Object]]) :java.lang.Object[]

T

Fig. 44 The class diagram of programming agents and back-end modules

110

Chapter 6

Related work

In our design, remote dynamic invocation acts to complete invocations between the
front-end and back-end modules. RMI, a method invocation on remote objects, is a
widely used interaction paradigm. However, not all devices support RMI. Java
reflection [41] (Section 4.4) lets programmers invoke the appointed method of the
object determined dynamically at runtime. The mature RMI and Java reflection
techniques enable programmers to develop applications efficiently, but have not been
completely supported in mobile execution e€nvironments. For example, in the J2ME
runtime environment, Sun Microsystems -has not defined the RMI mechanism in the
J2ME specification. Though Sun Microsystems defined the RMI interfaces on the
CDC environment (an optional: package of "CDE), it did not provide the RMI
interfaces on the CLDC environment. As ¢an be seen in Figure 22, the devices being
used in the CDC environment are PDA, Palm, Pocket PC, Smart Phone, while the
devices with lower computational power only provide the CLDC environment.

Most mobile agent systems [42, 43] provide abundant functions, including agent
migration, communication of agents with other agents and with the underlying system,
as well as support for security, transactions and controlling agents. For instance,
MOLE [44] offers an agent migration infrastructure with all of these functions, such
as a protocol for fault-tolerant execution of mobile agents, accounting and billing, and
control algorithms for finding agents, terminating agents, and orphan detection.
Though complete functions support the mobile agent, adapting application according

to the characteristics of the small and handheld devices has not been provided yet.

111 '

Some previous research has focused on the intrinsic structure of mobile agents
and mobility behaviors of mobile agents, such as MobileSpaces [40]. MobileSpaces
proposes agent hierarchy and inter-agent migration. The former is so that an agent can
have several child agents, each of which also has agents as its child agents, and so on.
The latter means that an agent is capable of migrating into another computer or to
within an agent. Also, this framework makes agents adaptable. It regards a mobile
agent as a component, and can combine a collection of agents into a single agent.
Several agents are organized hierarchically into one agent. Additionally, this
compound mobile agent can be adapted to the target environments. Although the
hierarchical structure and adaptable concept for the mobile agents are provided in this
framework, it does not structure the application and consider the context-aware
adaptation for various mobile devices.

m-P@gent [45, 44] provides environment-aware mobile agents capable of
running on resource-limited devices and~appliances. In addition, it supports the
runtime environment with mobile applications .on the mobile devices, and contains
four subsystems - @Desk for the PC platform, @Palm for the Palm device platform,
@Pocket for the PocketPC platform, and @TINI for the TINI device platform.
Moreover, it divides a mobile agent into two parts: a core and add-on functional
modules. Then, it can adapt add-on modules of the agent to a runtime environment via
a specific profile for each runtime environment, such as are profile for J2SE and
another profile for J2ME. Yet this framework lacks the ability to distribute the
computational loading of applications on the small and handheld devices. In other
words, capabilities of the applications on this mobile agent system are restricted by
the limitations of the devices. Furthermore, to adapt each component of the mobile

agent, it is necessary to describe the type and class of a component for each runtime

112 '

environment. In our system, only description of component constraints in an ASCC
profile is needed for the same purpose.

On the other hand, some researchers [46, 47, 48] have explored the follow-me
applications. Harter et al. [48] describe a sensor-driven, or sentient, platform for
context-aware computing that enables applications to follow users while they move
around a building. Takashio et al. [47] also propose a mobile agent framework
f-Desktop for the migration mechanisms of follow-me applications in an ubiquitous
computing environment and evaluate its basic performance. Even though the basic
functions of migration and adaptation of applications are provided, this framework
does not concern the real context profiles of mobile devices for adaptation, and does
not help run applications on these mobile and embedded devices.

In context sensing and modeling, Schmidt has.explored context acquisition from
sensors [49], and aim to model the context information [50, 51]. Gray et al. [50],
present a way of analyzing sensed comteXtTififormation formulated to help in the
generation, documentation and assessment .of the designs of context-aware
applications. Furthermore, to use CC/PP as the context information, Indulska et al. [52]
address a context model and a context management system able to offer pervasive
systems, and discuss the pros and cons of the CC/PP framework.

For developing context-aware applications, Dey et al. [53] describe a distributed
software infrastructure to support context-aware applications in the Aware Home, a
prototype smart environment. Their infrastructure is similar to the Situated
Computing Service [54]. Both of them discuss polling and notification mechanisms to
impart applications information of context changes. Kermarrec et al. [5S5] focus on a
contextual object, a conceptual object model, for developing applications toward

adaptation on the continuous changes of the mobile environment. A contextual object

113 '

has a context-sensitivity list (similar to component constraints in our framework) for
describing the dependencies of an object and the kind of context that it senses. In
addition, it has a reference to some real object (e.g. HTML page, Java Class, etc) to
represent the value of this object in the current context. A conceptual framework for
context-aware applications in current mobile and Internet environments has also been
proposed [56]. The framework contains three parts. The first is the context
management part capable of sensing and aggregating data, and managing the set of
context groups. The second is the service management part that selects the appropriate
services with context information from context management part, and returns the
services to the adaptive user interface part. The third is the adaptive user interface part,
which provides users with the adaptive and web-based user interface with selected
services. All of the frameworks®can facilitate the development of context-aware
applications and a fundamental ‘adaptation infrastructure for the applications on
ubiquitous computing environment. Nevertheless, the weakness of their frameworks
lies in the decision of the appropriate componen.t or service for application adaptation
according to context information.

Some agent systems are explained before. Besides, there are some systems with
the same or similar functions. Table 11 briefly shows the related work. In the table, we
classify the systems into the several types: Context Awareness (CA) [55][56],
Framework Adaptation (FA) [57][58][59], Mobile Agent systems (MA)
[43][42][60][61], Context aware agent (CMA) [62], Transformation Engine (TE) [63],
Web Server (WS) [64], Context Awareness (CAA) [65]. Also, we list their functions:
Form-based XML programming model, Mobile environment, Mobile Agent, etc. In
the table, content adaptation means that content can be adapted by certain algorithms.

An example is picture encoding. G* does not have this function, but can provide the

114 '

adaptation mechanism. In this mechanism, programmers can use some picture

encoding algorithms to adapt pictures to different situations.

Tab. 11 the related work

CA FA MA | CMA TE WS CAA G’
Form-based XML \% \Y%
programming
model

Mobile

Environment
Mobile A% \%
Agent
Web-based \Y A%

Content \% \% A%
adaptation
Context A% \% \%
Awareness
Service \%
adaptation

('V —has this function, e.g. CA isi1Web-based and has content adaptation function)

115 '

Chapter 7

Conclusion and Future Work

In summary, let we take CAAS as an example. We have explained our focus on
transmitting agents efficiently and adapting applications to cope with the variability of
user devices. By means of the front-end module and the back-end module, the
restrictions of developing applications on small and mobile devices can be decreased.
Furthermore, agents can synchronously migrate with their owners or be
asynchronously anchored to their resident servers To transmit the agent efficiently, we
experiment on agent migration strategies,-and use the LAM as the default strategy for
the agent migration. Additionally, by 'structuring applications in ASCC profiles, and
leveraging CC/PP and WAP UAPref frameworks, the attribute-based component
decision algorithm can choose the components suitable for the context of the user’s
devices.

Currently, there are some issues, including the replacement of the stateful and
relative components, the conflict of the component property declaration, the
consistency between the ASCC profile and the back-end module, and the lack of
proper component declaration. Therefore, in the future we will attempt to design a
software development kit (SDK) to aid programming and consistency checking. To
further enhance this framework, some services related to the integration of this
framework will be discussed in the future. Transaction, security, and server scalability
handling, as well as load balancing and faulty recovery can be achieved by including

services of distributed computing platforms, such as J2EE [73]. The J2EE

116 P

environment offers a distributed application model, a unified security model, flexible
transaction control, etc. In transaction, several invocations between the front-end
module and the back-end module of an application are regarded as an atomic unit.
This transaction can be handled through some particular operations, such as commit
or abort, and the two phases commit protocol. Security consists of authentication and
authorization, which can be used to protect servers against malicious applications, and
vice versa. Because some vendor’s implementations of J2EE have the capability for
scalability issue, we can use the J2EE framework to play the infrastructure for our
system implementations.

In addition to the methodologies, we will attempt to integrate our framework
with some mobile agent systems. IBM Aglet [42] and MOLE [43], for instance, have
full-fledged mechanisms of secutity, transaction;-scalability, etc. Furthermore, we
intend to exploit the context sensing and modeling technologies to enlarge the use of
contextual information toward adaptationiir ibiquitous computing environment.

We can conclude our work in a generic model, shown as in Figure 45. The model
contains six parts: Profiles, Performers. Sensors, Environment, Decision engine,
Applications. In Chapter 4, we realize these functions in three systems. They contain
context awareness, adaptation/transformation, agent migration, and application model.
Besides the instances, we can add other techniques, such as Zig-Bee [66] as a sensor
component, a rule engine (JESS [67]) as the decision engine in our newly-created

system.

117 '

context adaptation & r‘f
awarengss transformation
D @

Dacision Engine

Sensors \,_Hl_.'\ppl.il:ulm_r-l_s_/’

Fig. 45'a generic:model

¥ =A%
Figure 46 displays the overview of i MR whicﬁ: we are realizing in progress. In
-.. . i .__-.:..-_.'.. _. ..-I
G’MR, we use RFID for detecting -users’location information and Java MHP
P, P iy

b

(Multimedia Home Platform) [7.0]f:"'er. displaiyi;lg the result to users. Figure 47
illustrates the system architecture of G°MR. In the system, we want to add Decision

Maker, Event Manager, etc.

118 ' b |

Digital TV

x

power Line

Edge Server
(RFID forwarder)

Mobile Devi

Select Function

[ool e}
PR H e X10 POWer LiNe ammmm——
ot B i telecommunication _
operator Ethernet —
Mobile Web b a6
Page
o L]
T iy
i Sl
o T .
TEyEER

" n

\
J \ \

J pd \ \

i / 4

e B
x“ O & Mobile devices
2,016, 6 VAN

/
I /
| i

1 '

| |

Act objects

.

ction Performer U Agent Manager
e Person Actor e 5
‘ z:;i; Manager 3 " o Representation Logic
J iﬁ Device Location
Decision Maker Event Manager Manager Manager
b Message Message e
Command Splitter Command Composer S
s
‘ Mobile Web Server
Schema registry Connection Listener

/ G2MR Server
RFID Message
AL forwarder

Z_ Pretide Representation Logic
RFID Toolkit

—
L — |
RFID Sub-system ’

Connection Listener

Multimedia Home Platforln

MHP Box

Fig. 47 the components of GMR

Table 12 illustrates the work we I;eive ir:npl..@m'ehted and the future work we want
to design and implement. As you can see in t.his table we can see the functions
provided by the systems and the revolution of these systems. There are some new
emerging technologies: Web 2.0 [69], 3G [70], mobile streaming, DVB-H [71], etc.
We can consider these technologies to enhance our system. For example, there is a
technology called architecture of participation [72] in Web 2.0. Its means client device
can have the detecting function to be aware of context of a user. There are a great
many of applications applying these emerging discovered technologies for ubiquitous
computing. We hope we can approach the goal to accelerate convenience for human

lives.

120 ' k|

Tab. 12 The system we implement and the future work

Name Ubi-Adapting G? G’MR

Profile CC/PP CC/PP N/A
WAP UAProf WAP UAProf

Sensor N/A Bluetooth RFID

Performer PUML PUML XHTML MP

transformer transformer | Generator

Application | Application Application N/A
Migration Migration

Decision N/A N/A JSSE

Engine

Embedded No Yes Yes

Box

Application Library, Movie, SMS, Schedule | MHP

Practice Home control Home Control

121

Web 2.0

3G

Mobile Streaming
DVB-H

=

Aware Home
Aware Building

References

[11 Bill N. Schilit, Norman Adams, Roy Want, “Context-Aware Computing
Applications,” Proceedings of IEEE Workshop on Mobile Computing Systems
and Applications, Santa Cruz, CA, 1994; 85-90.

[2] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, Paul Webster, “The
Anatomy of a Context-Aware Application,” Mobile Computing and Networking,
1999; 59-68.

[3] Chen, G. & Kotz, D, “A Survey of Context-Aware Mobile Computing Research,”
Technical Report, Dartmouth Computer Science Technical Report TR2000-381,
Hanover, New Hampshire, November 2000.

[4] Cheverst, K., Davies, N., Mitchell, K., Friday, A. & Efstratiou, = “Developing a
Context-Aware Electronic Tourist Guide: Some Issues and Experiences,”
Proceedings of the SIGCHI conference on Human factors in computing systems,
2000; 17-24.

[5] Asthana, A., Cravatts, M. & Krzyanowski, P, “An indoor wireless system for
personalized shopping assistance,” Proceeding sof IEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz, California, 69-74. 1994.

[6] Kazunori Takashio, Gakuya Soeda, Hideyuki Tokuda, “A Mobile Agent
Framework for Follow-Me Applications in Ubiquitous Computing
Environment.,” Proceedings of .21st ‘International Conference on Distributed
Computing Systems Workshops (ICDCSW"01), Mesa, Arizona, 2001.

[7] WAP, http://www.wapforum.org/

[8] Sun Microsystems, “Java=2Platform Micro. Edition Technology for Creating
Mobile Device,” Sun Microsystems, Inc, 2000.

[9] JSR 118 Expert Group, JSR-000 118 Mobile Information Device Profile 2.0 (Final
Release), May;, 2002.
http://jcp.org/about]ava/communityprocess/final/jsr118/index.html.

[10] PersonalJava, http://java.sun.com/products/personaljava/.

[11] Microsoft Mobile Web Forms, http://samples.gotdotnet.com/mobilequickstart/
(mgk4rd2jnyolzm55tgnot02p)/Default.aspx.

[12] NET Compact Framework, http://samples.gotdotnet.com/quickstart/
compactframework/.

[13] 3GPP, “TS 22.057 V5.4.0. 3rd Generation Partnership Project; Technical
Specification Group Services and System Aspects; Mobile Execution
Environment (MEXE); Service description, Stage 1 (Release 5)” 2002,
http://www.3gpp.org.

[14] Tzu-Han Kao, Yung-Yu Chen, Tsung-Han Tsai, Hung-Jen Chou, Wei-Hsuan Lin,
Shyan-Ming Yuan, “PUML and PGML: Device-independent Ul and Logic
Markup Languages on Small and Mobile Appliances”, Lecture Notes in
Computer Science (LNCS) of Springer-Verlag, The 2005 IFIP International
Conference on Embedded And Ubiquitous Computing (EUC-05), Nagasaki,
Japan, 6-9 December 2005. (SCI)

[15] Tzu-Han Kao, Sheng-Po Shen, Shyan-Ming Yuan, and Po-Wen Cheng, “An
XML-based Context-Aware Transformation Framework for Mobile Execution
Environments,” Lecture Notes in Computer Science (LNCS) of Springer-Verlag
(APWeb 2003, Xian, China), Vol. 2642 /2003, pp. 132 - 143.

[16] Tzu-Han Kao and Shyan-Ming Yuan, “Automatic adaptation of mobile
applications to different user devices using modular mobile agents,” Software:

122 '

Practice and Experience. Published Online: 27 Jun 2005 (SCI)

[17] Tzu-Han Kao, Yi-Hsiang Chou, Ming-Chun Cheng, Hsin-Ta Chiao, Shyan-Ming
Yuan, “The design and Implementation of a Mobile Agent-Based Framework for
Context-Aware Computing,” Proceeding of 1CS2002. International Computer
Symposium (ICS2002). Dec. 18 - 21, 2002, Hualien, Taiwan.

[18] Tzu Han Kao and Shyan-Ming Yuan, Designing an XML-based context-aware
transformation framework for mobile execution environments using CC/PP and
XSL,” Computer Standard & Interface. Available online 6 November 2003.
(SCI)

[19] Ricardo Devis, @ “The Object-Oriented Page,” June 1997.
http://www.well.com/user/ritchie/oo.html

[20] WAP Forum, “Wireless Markup Language Specification Version 1.1,” Jun 1999.
http://www.wapforum.org/

[21] Sun Microsystems, “Java 2 Platform, Micro Edition, 1.0a,” December 2000.

[22] J. Gosling, B. Joy, and G Steele, The Java Language Specification.
Addison-Wesley, September 1996. http://java.sun.com/docs/books/jls.

[23] Hiroshi Maruyama, Kent Tamura, Naohiko Uramoto, Makoto Murata, Andy
Clark, et al., XML and Java Second Edition: Developing Web Applications,
Addison-Wesley, 2002.

[24] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, et al., “Extensible Markup
Language (XML) 1.0 (Third Edition),” W3C Proposed Edited Recommendation.
October 2003. http://www.w3.org/TR/REC-xml.

[25] David C. Fallside, “XML Schema Part.0:-Primer,” W3C Recommendation. May
2001. http://www.w3.org/TR/xmlschema-0/:

[26] Mark H. Butler, “Implementing Content Negotiation using CC/PP and WAP
UAProf,” External Technical Report HPL-2001-190, 2001.
http://www.hpl.hp.com /techrepotts/20017/HPL-2001-190.html.

[27] Hidetaka Ohto, Johan Hjelm, “CC/PP_exchange protocol based on HTTP
Extension Framework,” w3C Note, June, 1999.
http://www.w3.0rg/TR/NOTE-CCPPexchange.

[28] Dan Brickley, R.V. Guha, and Brian McBride, “RDF Vocabulary Description
Language 1.0: RDF Schema”, W3C Working Draft, January, 2003.
http://www.w3.org/TR/rdf-schema/.

[29] Franklin Reynolds, Johan Hjelm, Spencer Dawkins, and Sandeep Singhal,
“Composite Capability/Preference Profiles(CC/PP): A user side framework for
content negotiation,” W3C Note, 1999. http://www.w3.org/TR/NOTE-CCPP/.

[30] Ora Lassila, and Ralph R. Swick, “Resource Description Framework (RDF)
Model and Syntax Specification,” W3C Recommendation, February, 1999.
http://www.w3.0org/TR/REC-rdf-syntax.

[31] Hiroshi Maruyama, Kent Tamura, Naohiko Uramoto, Makoto Murata, Andy
Clark, et al., XML and Java Second Edition: Developing Web Applications.
Addison-Wesley, 2002.

[32] Ann Wollrath and Jim Waldo. “Trail:
RMI, ” http://java.sun.com/docs/books/tutorial/rmi/index.html.

[33] Mark H. Butler. “DELI: A DElivery context Llbrary for CC/PP and
UAProf, External Technical Report HPL-2001-260, Feb., 2002.
http://www.hpl.hp.com/personal/marbut/DeliUserGuideWEB.htm

[34] Brian McBride, Andy Seaborne, Jeremy Carroll, “Jena Tutorial for Release
1.4.0,” April, 2002. http://www.hpl.hp.com/semweb/.

[35] Geier, Jim. Wireless LANs. SAMS, 2002.

123 '

[36] Held, Gilbert, Data over wireless networks: Bluetooth, WAP, and wireless LANSs.
McGraw-Hill, 2001.

[37] Wang, Jiangzhou, Broadband wireless communications: 3G, 4G, and Wireless
LAN. Kluwer Academic Publishers, 2001.

[38] Borland JBuilder. http://www.borland.com/us/products/jbuilder/index.html .

[39] Microsoft Studio .NET. http://msdn.microsoft.com/vstudio/ .

[40] Ichiro Satoh, “MobileSpaces: A Framework for Building Adaptive Distributed
Applications using a Hierachical Mobile Agent System,” Proceedings of the 20th
International Conference on Distributed Computing Systems (ICDCS 2000).
Taipei, Taiwan, 2000.

[41] Dale Green, “Trail: The Reflection APL”
http://java.sun.com/docs/books/tutorial/reflect/index.html.

[42] Danny Lange and Mitsuru Oshima, Programming and Deploying Java Mobile
Agents with Aglets, Addison Wesley, 1998.

[43] J. Baumann, F. Hohl, K. Rothermel, M. Strasser and W. Theilmann, “MOLE: A
mobile agent system,” Software-Practice and Experience, 2002; 32:575-603.

[44] Kazunori Takashio, Masakazu Mori, Masataka Funayama, and Hideyuki Tokuda,
“Constructing Environment-Aware Mobile Applications Adaptive to Small,
Networked Appliances in Ubiquitous Computing Environment, Lecture Notes in
Computer Science, vol. 2574. Springer: Berlin, 2002; 230 - 246.

[45] Kazunori Takashio, Masakazu MORI, Hideyuki Tokuda, “m-P@gent: A
Framework of Environment-Aware Mobile, Applications for Small, Networked
Appliances,” Proceedings .0f 2002 . IEEE “4th International Workshop on
Networked Appliances. Gaithersburg; MD, USA, 2001.

[46] Phil D. Gray and Daniel "Salber, “Modelling and Using Sensed Context
Information in the Design_of Interactive Applications,” Proceedings of 8th IFIP
Working Conference on Engmeering ™ for Human-Computer Interaction
(EHCT'01). Toronto, 2001.

[47] Jadwiga Indulska, Ricky Robinson; Andry Rakotonirainy, Karen Henricksen,
“Experiences in Using CC/PP in Context-Aware Systems,” Proceedings of
Mobile Data Management, 4th International Conference. MDM 2003 (Lecture
Notes in Computer Science, vol. 2574), 2003.

[48] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy, “Modeling
Context Information in Pervasive Compututing Systems,” Proceedings of The
First International Conference on Pervasive Computing. Pervasive 2002 (Lecture
Notes i) Computer Science vol. 2414). Springer:Zurich, Switzerland, 2002;
169-180.

[49] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven, and W. V.
de Velde, “Advanced interaction in context,” Proceedings of First International
Symposium on Handheld and Ubiquitous Computing. Karlsruhe, Germany,
September 1999; 89-101.

[50] A.K. Dey, D. Salber, GD Abowd, “A Context-based Infrastructure for Smart
Environments,” Proceedings of the 1st International Workshop on Managing
Interactions in Smart Environments (MANSE '99), 1999; 114-128.

[51] Hull, R., Neaves, P, and Bedford-Roberts, J, “Towards situated computing,”
Proceedings of International Symposium on Wearable Computers (1997)
146-153.

[52] Kermarrec, A.-M., Couderc, P., ans Banatre, M, “Introducing contextual objects
in an adaptive framework for wide-area global computing,” Proceedings of the
8th ACM SIGOPS European Workshop, September, 1998; 229-236.

124 '

[53] Sei-le Jang, Joong-Han Kim, and R.S. Ramakrishn, Framework for Building
Mobile Context-Aware Applications,” Proceedings of the First International
Conference on The Human Society and the Internet - Internet Related
Socio-Economic Issues citation 2001, July 04 -06, 2001.

[54] Eric Armstrong, Jennifer Ball, Stephanie Bodoff et al. The J2EE. 1.4 Tutorial.
Sun Microsystems, Inc. November 16, 2003.

[55] Anita W. Huang, Neel Sundaresan, “A Semantic Transcoding System to Adapt
Web Services for Users with Disabilities,” Proceedings of the fourth international
ACM conference on Assistive technologies,156 - 163, 2000

[56] Chieko Asakawa, Hironobu Takagi, “Annotation-Based Transcoding for
Nonvisual Web Access,” Proceedings of the fourth international ACM
conference on Assistive technologies, 172 - 179, 2000

[57] Erlend Stav, Svein Hallsteinsen, Jacqueline Floch, “FAMOUS: Framework for
Adaptive Mobile and Ubiquitous Services,” Reconfiguration Workshop,
27.01.2005

[58] Maria-Teresa Segarra, Francoise Andre, “A Framework for Dynamic Adaptation
in Wireless Environments,” Proceedings of 33rd International Conference
Technology of Object-Oriented Languages (TOOLS 33), 2000.

[59] Vasian Cepa, Mira Mezini, “MobCon: A Generative Middleware Framework for
Java Mobile Applications,” Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS'05) - Track 9, 2005.

[60] Satoh I., “MobileSpaces: A «framework, for building adaptive distributed
applications using a hierarchical mobile agent.system,” Proceedings of the 20th
International Conference on Distributed, Computing Systems (ICDCS 2000),
Taipei, Taiwan, 2000.

[61] Takashio K, Mori M, Tokuda H., ‘m-P@gent: A framework of
environment-aware mobile applications for small, networked, appliances,”
Proceedings of the 2002 IEEE 4th International Workshop on Networked
Appliances, Gaithersburg, MD, 2001:

[62] Burstein, F., Zaslavsky, A., Arora, “Context-aware mobile agents for
decision-making support in healthcare emergency applications,” Proceedings of
the Workshop on Contextual Modelling and Decision Support (CONTEXT'05),
Paris, France, July 2005.

[63] XSLT transformation engine,
http://www.topxml.com/xsl/tutorials/intro/default.asp

[64] IIS 6.0 asp .net, http://asp.net/default.aspx?tabid=1

[65] context-awareness, http://en.wikipedia.org/wiki/Context _awareness

[66] ZigBee, http://www.zigbee.org/en/index.asp

[67] JESS, http://www.jessrules.com/

[68] JESS, http://www.jessrules.com/

[69] web 2.0, http://Orz.net/8cOLA

[70] 3G, http://en.wikipedia.org/wiki/3G

[71] DVB-H, http://www.dvb.org/

[72] The Architecture of Participation in Web 2.0, http://Orz.net/671A0

[73] J2EE, http://java.sun.com/javaee/

125 '

