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Abstract

In this paper, we use a class of cosine modulated filterbank (CMFB)

with approximately reconstruction property for subband adaptive fil-

tering. We show that even after the subband filters are included,

the CMFB maintains the approximately alias-free property. In ear-

lier designs, when the filterbank has real coefficients, the alias-free

property is usually destroyed after subband filters are inserted. The

CMFB has real coefficients and the computational complexity for fil-

tering and subband adaptation is less than that of complex-valued

filterbanks. Numerical simulations will be given to demonstrate its

approximately alias-free property and fast convergence.
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Chapter 1

Introduction

The subband adaptive filtering technique is very attractive for many applications,

such as system identification, adaptive equalization, and acoustic echo cance-

lation, especially for systems with a long impulse response. We first describe

acoustic echo cancelation by the teleconference system as follows. Teleconference

system is shown in Fig. 1.1. The speech of the remote user is transmitted to the

local user terminal, and vice versa. Both the microphone and the speaker are set

in the room, so not only the speech of the local user but also that of the remote

user, are transmitted to the remote terminal. Here we call the speech of the

remote user which is transmitted back to the remote terminal, the acoustic echo.

The echo can be generated by passing the speech of the remote user through the

echo path. The estimated echo path is modeled as h(n) in Fig. 1.1. As the echo

path is estimated, then we can generate the echo y(n) by passing the speech of

the remote user through echo path. Subtracting the echo from the signal which

is transmitted back to remote terminal, then the acoustic echo is canceled.

For example, in the application of acoustic echo cancelation, as referring to

Fig, 1.2, we call the system impulse response s(n) the echo path. The echo path

usually has several thousands of taps. If we apply conventional fullband adaptive

filtering [1], it is necessary to model the echo path by using a filter with several

thousand taps. Computational burden is costly. Besides, the non-flatness of the

input speech signal slows down the convergence speed [1].

Subband adaptive filtering is proposed in [2]. There are two advantages by
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Figure 1.2: The general block diagram for echo cancelation by using multirate
struture.

using subband adaptive structure. One is computation reduction, and the other

is convergence speed improvement. Since the adaptation is processed after the

downsampling M operation, the subband filters work at the reduced sampling

rate, and then the computation of adaptation can be reduced by a factor of M .

Furthermore, by using subband adaptation, we divide fullband signal process into

several subband signals processing. Therefore, in each subband, the nonflatness

of the input speech signal spectrum can be degraded. If M is large enough, then

the spectrum for each subband is approximately flat.

The method which is not oversmapled but cross-filters needed is proposed in

2



[3] for modelization with small output errors. An optimal design of filterbank

[4] is used to minimize mean-squared error (MSE) introduced by the aliasing

components of the output signal, the error of distortion function from unity, and

finite stopband attenuation of the analysis filterbank. After that, there are many

prototype filter design methods based on the DFT or cosine modulated filterbank

structure proposed. In [5], given the analysis and synthesis filters, an linear

optimization method adjusts the prototype filter of the synthesis filterbank to

minimize output error by LMS algorithm. An design [6] introduces the complex-

valued and real-valued near perfect reconstruction NPR oversampled filterbank,

designed by iteratively least-squares algorithm. A series of designs of oversampled

uniform DFT filterbanks with different constraints, such as delay specification,

inband aliasing reduction, and group delay specifications, are listed in [7] - [9].

The problem of aliasing effect and amplitude distortion are studied and prototype

filters are sought by the nonliear programming technique [10].

In this paper, we apply the filterbank design method [11] and the prototype

filter design method [12], constructing the cosine-modulated filterbank (CMFB),

to achieve subband adaptive filtering . DFT filterbank structure are formed

by the complex-valued analysis and synthesis filters, so the signal processing is

performed with complex value. If we apply the subband filters following the

expander and preceding the decimator, the filters are complex-valued. On the

contrary, for CMFB, all analysis filters and synthesis filters are real-valued, so

only real-valued computation is required. Therefore, all the signal processing is

real-valued performed. The computational burden can be saved. Moreover, as

shown later, the numerical simulation demonstrates the fast convergence speed.

1.1 Outline

• Chapter 2: The basic structure of subband adaptive structure, such as

filterbank structure, the relationship between input, subband, and output

signals, and adaptation algorithm is presented.

• Chapter 3: We survey two subband adaptive structures, such as Block DFT
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and near perfect reconstruction filterbank (NPRFB). Block DFT has alias-

free property property in Sec. 3.1. In Sec. 3.2, we introduce the NPRFB, as

implied by the name, which has the property of near perfect reconstruction.

• Chapter 4: The proposed CMFB design method is described. In Sec. 4.1,

given a prototype filter, we design CMFB, and observe its alias suppression.

We review the Kaiser window approach for the design of prototype filter for

CMFB in Sec. 4.2. In Sec. 4.3, we continue to examine the alias suppres-

sion when the subband adaptive filters are taken into consideration. With

proper choice of subband filters, the proposed subband adaptive CMFB are

approximately alias-free.

• Chapter 5: Performance measurements are presented, such as minimum

mean-square error (MMSE), signal-to-alias ratio (SAR), modeling error

(ME), and reconstruction error (RE). These measurements will be demon-

strated in the next section.

• Chapter 6: In Sec. 6.1, we demonstrate the designed prototype filter and

adjust the parameter of CMFB to observe the characteristics of the fil-

terbank. Compare the experimental results of CMFB with those of the

other investigated methods for the environment with different SNR levels

in Sec. 6.2.

• Chapter 7: Conclusion.

1.2 Notations

1. The lower-case letters represent scalar values.

2. The lower-case and upper-case letters with bold face represent vector and

matrix quantities.

3. WM is defined as e−j2π/M .

4. A† denotes transpose-conjugate of A.

4



5. The notation IM is used to represent the M × M identity Matrix.

6. The notation diag(λ1, λ2, · · · , λL)denotes an M ×M diagonal matrix with

the diagonal element equal to λk.

7. The notation WM is used to represent the normalized M ×M DFT matrix

given be

[WM ]kn =
1√
M

e−j 2π

M
kn

where 0 ≤ k, n ≤ M − 1.

5



Chapter 2

Subband Adaptive Structure

There are two advantages by using subband adaptive structure. One is com-

putation reduction, and the other is convergence speed improvement. Since the

adaptation is processed after the downsampling M operation, the subband filters

work at the reduced sampling rate, and then the computation of adaptation can

be reduced by a factor of M . Furthermore, by using subband adaptation, we

divide fullband signal process into several subband signals processing. There-

fore, in each subband, the nonflatness of the input speech signal spectrum can be

degraded. If M is large enough, then the spectrum for each subband is approxi-

mately flat.

2.1 The expression of input, subband, and out-

put signals

As shown in Fig. 2.1, Hk(z) and Fk(z), are the analysis filters and synthesis

filters, for 0 ≤ k ≤ K−1. We derive an input-output expression for the multirate

structure. In this structure, the input signal x(n) is filtered by the analysis filters

Hk(z) in the kth subband, decimated by a factor M, and resulting in the subband

signals xk(n). The subband signals can be expressed as

Xk(z) =
1

M

M−1∑

ℓ=0

Hk(z
1/MW ℓ

M)X(z1/MW ℓ
M), 0 ≤ k ≤ K − 1 (2.1)

6
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Figure 2.1: Filterbank structure with K subbands and downsampling factor M.

Then the subband signals are interpolated by the factor M, filtered by the syn-

thesis filters Fk(z), and added together to form the output signal y(n).

Y (z) =
1

M

M−1∑

ℓ=0

K−1∑

k=0

Hk(zW
ℓ
M )Fk(z)X(zW ℓ

M ) (2.2)

We define the transfer function Tℓ(z) as

Tℓ(z) =
1

M

K−1∑

k=0

Hk(zW
ℓ
M )Fk(z) (2.3)

where T0(z) is the distortion transfer function, and Tℓ(z), 1 ≤ ℓ ≤ M − 1 is the

aliasing transfer function.With the definition above, the output signal is then

expressed as

Y (z) =

M−1∑

ℓ=0

Tℓ(z)X(zW ℓ
M ) (2.4)

If the aliasing terms are approximately zero or approximately alias-free, i.e.,

Tℓ(z) ≈ 0, ∀ 1 ≤ ℓ ≤ M − 1 (2.5)

Then simplify (2.4) to

Y (z) ≈ T0(z)X(z) (2.6)

Furthermore, if the output signal is essentially a copy of the input signal with

some delay ∆, i.e., y(n) ≈ cx(n−∆), where c is a constant, then we say that such

a filterbank possesses perfect reconstruction (PR) or near perfect reconstruction

(NPR) property.
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Both the transfer function and the alias function depend on the analysis filters

Hk(z) and synthesis filters Fk(z). The analysis filters and synthesis filters are

generated by one or two prototype filters. Under this structure, the design of the

prototype filter properly is of importance to achieve the PR or NPR property.
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Figure 2.2: Subband adaptive filtering structure.

Consider the filterbank structure with subband adaptive filters Gk(z), as

shown in Fig. 2.2. d(n) is the fullband desired signal. We apply an analysis

filterbank with the input d(n) to generate the desired signal for the training of

the subband filters. The transfer function from x(n) to y(n), defined in (2.3) now

becomes

Tℓ(z) =
1

M

K−1∑

k=0

Hk(zW
ℓ
M )Fk(z)Gk(z

M ) (2.7)

Given analysis filterbank and synthesis filterbank, we adapt Gk(z) by using LMS

algorithm to make the overall transfer function from x(n) to y(n) similar to the

echo path.
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2.2 Adaptation algorithm

The adaptive filter coefficients are derived using normalized LMS algorithm. The

LMS algorithm is known for its simplicity of implementation, that is, the update

equation depends on the input signal and the error signal between the reference

signal and the output signal. Even through it is shown that the asymptotic

convergence rate is generally slow, being at best of order one over sample time

for bandlimited white noise [13].

Suppose the kth subband filter gk(n) has Lk coefficients, written in the vector

form as

gk(n) = [gk,0(n) gk,1(n) · · · gk,Lk−1(n)]T . (2.8)

The input vector, or regressor, is of the form

xk(n) = [xk(n) xk(n − 1) · · · xk(n − Lk + 1)]T . (2.9)

The update equation of the coefficient of the subband filter based on the normal-

ized LMS algorithm is

gk(n + 1) = gk(n) +
µ

pk(n)
xk(n)e†k(n) (2.10)

where the error signal ek(n)

ek(n) = dk(n) − yk(n)

yk(n) = g†
k(n)xk(n)

(2.11)

where yk(n) is the output signal of the kth subband filter gk(n). pk(n) is the

normalization factor which depends on the regressor. Hence, µ/pk(n) becomes

a time-varying stepsize. When the regressor has large power, the time-varying

stepsize will become smaller to prevent divergence; when the regressor has smaller

power, the time-varying stepsize will be larger to accelerate the convergence

speed. Furthermore, for each subband, the stepsize will be adjusted automat-

ically according to the regressor. We can use pk(n) with the expression

pk(n) = ǫ + ‖xk(n)‖2 (2.12)

9



with a positive constant ǫ to avoid division by zero or by a small number when

the regressor is zero or close to zero. Another choice for the normalization factor

is

pk(n) = βpk(n − 1) + (1 − β)‖xk(n)‖2 , 0 ≤ β ≤ 1. (2.13)

Taking the expected value on the both sides of the above equation, we get

E{pk(n)} = βE{pk(n − 1)} + (1 − β)E{‖xk(n)‖2}. (2.14)

As the time index n approaches infinity, E{pk(n)} → E{pk(n − 1)}, therefore

E{pk(n)} → E{‖xk(n)‖2} (2.15)

We call pk(n) the power estimation of the regressor xk(n) [14]. These two nor-

malization factors will be used later in the numerical simulation to ensure the

convergence of the adaptation.

10



Chapter 3

A survey of subband adaptive
filtering using DFT FB

In this section, we focus on the uniform DFT filterbank, whose analysis filters

and synthesis filters are shifted versions of the lowpass prototype filter, i.e.,

Hk(z) = H0(zW
k
K), Fk(z) = F0(zW

k
K) (3.1)

with 0 ≤ k ≤ K −1, where H0(z) and F0(z) are analysis and synthesis prototype

filters.

Next, we will introduce two oversampled filterbank structures. One is the

Block DFT [15]. We derive an equivalent system of an LTI system S(z) by the

filterbank structure with subband filters. The other is the near perfect recon-

struction (NPR) oversampled filterbank [6]. The design criterion is based on the

minimization of the reconstruction error of the filterbank and the stopband at-

tenuation of the prototype filter. Using this designed prototype filter, we can

construct a filterbank with the near perfect reconstruction property.

3.1 Block DFT [15]

Fullband signal processing us that signals are processed on a sample-by-sample

basis. See Fig. 3.1, the output sequence y(i) is the convolution of the input

sequence u(n) and system impulse response s(n), that is, expressed in z-domain

Y (z) = S(z)U(z) (3.2)

11



where Y (z) =
∞∑

n=0

y(n)z−n, S(z) =
L−1∑
n=0

s(n)z−n, and U(z) =
∞∑

n=0

u(n)z−n. Block

signal processing is that signals are processed on block-by-block basis. We divide

the input sequence into several blocks. Each block contains M samples. So do

the output sequence. The block diagram is shown in Fig. 3.2.

( )S z
( )y n( )u n

Figure 3.1: Full-band signal processing.

( )zS
( )M nu ( )M ny

Figure 3.2: Block signal processing.

The equivalent transfer function S(z) between the blocked version of input

signal uM (n) and the blocked version of output signal yM(n) is of the form of a

pseudo-circulant matrix

S(z) =




P0(z) P1(z) · · · PM−1(z)

z−1PM−1(z) P0(z)
. . . PM−2(z)

...
. . .

. . .
...

z−1P1(z) z−1P2(z) · · · P0(z)




M×M

(3.3)

where Pk(z) , for 0 ≤ k ≤ M − 1, are M polyphase components of S(z).

The following derives the result that the equivalent transfer function S(z) can

be decomposed as the product of two matrices, P̃(z) and Q̃(z). Define P(z) and

Q(z) as

P(z) =




P0(z) P1(z) · · · PM−1(z) 0 · · · 0

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 P0(z) P1(z) · · · PM−1(z)




M×(2M−1)

(3.4)
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Q(z) =

(
IM

z−1IM−1 0

)

(2M−1)×M

(3.5)

Moreover, define P̃(z) and Q̃(z) which are modified from P(z) and Q(z)

P̃(z) =




P0(z) P1(z) · · · PM−1(z) 0 · · · · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 P0(z) P1(z) · · · PM−1(z) 0




M×2M

(3.6)

Q̃(z) =

(
IM

z−1IM

)

2M×M

(3.7)

such that

S(z) = P̃(z)Q̃(z) (3.8)

Furthermore, decompose P̃(z) as a constant matrix and a circulant matrix C(z)

P̃(z) =
(

IM 0M×M

)
C(z) (3.9)

where

C(z) =




P0(z) P1(z) · · · PM−1(z) 0 · · · · · · 0

0
. . .

. . .
. . .

. . .
. . .

...
...

...
P0(z) P1(z) · · · PM−1(z)

0 PM−1(z)

PM−1(z)
...

...
. . .

...
P1(z) · · · PM−1(z) 0 · · · · · · 0 P0(z)




2M×2M

(3.10)

By using the fact that the circulant matrix can be diagonalized by the normalized

DFT matrix W

C(z) = W†Λ(z)W (3.11)

for some diagonal matrix Λ(z) with elements Gk(z), for 0 ≤ k ≤ 2M − 1. It can

be shown that

(a) Assume the length of system impulse response L can be divided by M.

Each subfilter Gk(z) is an FIR transfer function with L/M coefficients and

13



(b) The polyphase components Pk(z), for 0 ≤ k ≤ M − 1, can be obtained by

the linear combination of the subfilters Gk(z), for 0 ≤ k ≤ 2M − 1. That is,

( P0(z) · · · PM−1(z) 01×M )T = W( G0(z) G1(z) · · · G2M−1(z) )T

(3.12)

Substitute (3.8) with (3.9) and (3.11)

S(z) =
(

IM 0M×M

)
W†Λ(z)WQ̃(z) (3.13)

Proof:

(a) From C(z) = W†Λ(z)W, by multiplying W and W†, we can get

Λ(z) = WC(z)W† (3.14)

That is, Gk(z) is the linear combination of {Pk(z)}M−1
k=0 . In addition, each polyphase

components of G(z), {Pk(z)}M−1
k=0 , has L/M coefficients, so does Gk(z).

(b) By taking transpose on C(z) = W†Λ(z)W, we can get

C(z)T = WTΛ(z)W∗ (3.15)
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Multiplying a column vector
(

1 0 · · · 0
)T

on both sides, then

LHS = C(z)T




1
0
...
0




=




P0(z)
...

PM−1(z)
01×B




RHS = WTΛ(z)W∗




1
0
...
0




= WTΛ(z)




1
1
...
1




= W




G0(z)
G1(z)

...
G2M−1(z)




(3.16)

Therefore 


P0(z)
...

PM−1(z)
0B×1


 = W




G0(z)
G1(z)

...
G2M−1(z)


 (3.17)

It should be pointed out that although any diagonal matrix Λ(z) will always

result in a circulant matrix C(z), it does not guarantee that any such Λ(z) will

result in a circulant matrix that has the special form of (3.12). Therefore, we can

modify the subband filters by the following rule for each iteration and get the

subband filters which satisfy the constraint defined in (3.12).




Gc
0(z)

Gc
1(z)
...

Gc
2M−1(z)


 = W†

(
IM

0M×M

)
W




G0(z)
G1(z)

...
G2M−1(z)


 (3.18)
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where the superscript c means the constraint. By using (3.13), we can construct

the equivalent system on the block-by-block basis in Fig. 3.3. The time domain

equivalent system with the oversampled filterbank structure is shown in Fig. 3.4.

W Wy

)(12 zG M -

)(1 zG

)(0 zG

Qf(z)

)(nMy

M

)(nMx

Figure 3.3: An equivalent system structure on the block-by-block.
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M

M¯
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M­

M­

)(nx

)(ny

1-
z

1-
z

1-
z

1-
z

1-
z

Discard
last M

samples

Figure 3.4: The time domain equivalent system with the oversampled filterbank
structure.

3.2 NPR Oversampled filterbank [6]

The following is the description of the design of the complex-valued oversampled

filterbank. We divide this section into two paragraphs, derivation of filterbank

and design of prototype filter.

Given a real-valued linear phase prototype filter p(n), the analysis filters are

derived from p(n) by a generalized discrete Fourier transform (GDFT)

hk(n) = p(n) exp{j 2π
K

(k + 0.5)(n + n0)} , 0 ≤ k ≤ K − 1 (3.19)
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A time offset n0 = −(ℓp − 1)/2 ensures linear phase analysis filters provided that

the prototype filter p(n) is linear phase. The length of the prototype filter ℓp is

assumed to be even. With the selection as the time reversal of the analysis filters,

the synthesis filters are of the form

fk(n) = h̃k(n) = hk(n) (3.20)

The frequency offset 0.5 affects the position of the passband of Hk(z).

To design the oversampled filterbank, the performance criterion ξ to be mini-

mized is the combination of the filterbank reconstruction error and the stopband

energy of the prototype filter.

ξ = ξ1 + γ2ξ2 (3.21)

where γ2 is the positive weighting factor. We describe ξ1 and ξ2 as follows.

A. Reconstruction Error

If the aliasing is small enough to be neglected, the impulse response of the

filterbank t0(n), as defined in (2.3), can be written as a convolution of the analysis

filters and synthesis filters

t0(n) = 1
M

K−1∑
k=0

hk(n) ∗ hk(n)

= 1
M

K−1∑
k=0

t0,k(n)

(3.22)

The t0,k(n) can be formulated as a vector t0,k which contain 2ℓp − 1 samples of

t0,k(n)

t0,k =




t0,k(0)
t0,k(1)

...
t0,k(2ℓp − 2)




=




hk(0) 0 · · · 0
hk(1) hk(0) · · · 0

...
. . .

...
0 0 · · · hk(ℓp − 1)







fk(0)
fk(1)

...
fk(ℓp − 1)




= Hkfk

(3.23)

17



The synthesis filters fk(n) are derived from the prototype filter p(n), so the vector

fk can be written as

fk = Mkp (3.24)

where p contains all coefficients of the prototype filter p(n) and Mk is a diagonal

matrix with elements

[Mk]nn = exp{j 2π

K
(k + 0.5)(n + n0)} (3.25)

The vector form t0 of impulse response t0(n) of the filterbank can be expressed

as

t0 =
1

M

K−1∑

k=0

HkMkp (3.26)

The measurement for reconstruction error ξ1 is then expressed as the square of

the norm of the difference between the vector t0 and a vector v which represents

a delay

ξ1 = ‖t0 − v‖2 =

∥∥∥∥∥
1

M

K−1∑

k=0

HkMkp− v

∥∥∥∥∥

2

(3.27)

Here, the meaning of the reconstruction error is to make the distortion func-

tion approach to a pure delay by design of the prototype filter.

B. Stopband energy of the prototype filter

The stopband energy of the prototype filter can be evaluated by the frequency

response of the prototype filter at the frequency points {ω0, ω1, · · · , ωN} covering

the whole stopband.

ξ2 =

∥∥∥∥∥∥∥∥∥




1 cos(ω0 · 1) · · · cos(ω0 · ℓp − 1)
1 cos(ω1 · 1) · · · cos(ω1 · ℓp − 1)
...

. . .
...

1 cos(ωN · 1) · · · cos(ωN · ℓp − 1)







p(0)
p(1)

...
p(ℓp − 1)




∥∥∥∥∥∥∥∥∥

2

= ‖Ωp‖2

(3.28)

Therefore, the performance criterion ξ now becomes

ξ =

∥∥∥∥∥∥




1
M

K−1∑
k=0

HkMk

γΩ


p−

(
v
0

)∥∥∥∥∥∥

2

(3.29)
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In addition, the prototype filter has linear phase property, so we only need to

design half of coefficients of the prototype filter. The vector p is then of the form

p =

(
Iℓ/2

Jℓ/2

)
p0.5 = Lp0.5 (3.30)

where J represents the inverse identity matrix and p0.5 is the vector form of half

coefficients of p(n). The criterion becomes

ξ =

∥∥∥∥Ap0.5 −
(

v
0

)∥∥∥∥
2

(3.31)

where

A =




1
M

K−1∑
k=0

HkMkL

γΩL


 (3.32)

The criterion to be minimized becomes a least-squares problem. We can apply

the iterative least-squares algorithm. The minimization algorithm is listed in the

following table. Step 3 can be achieved by the QR decomposition for A.

Iterative Least-Squares Design Algorithm

Step Command
1 initial p(0), set i = 1
2 construct A(i) from p(i − 1)
3 minimize the criterion

with respect to p(i)
4 apply relaxation

p(i) = τp(i) + (1 − τ)p(i − 1)
5 if ‖p(i) − p(i − 1)‖ < ǫ then stop

else i = i + 1, goto 2
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Chapter 4

Proposed Method-CMFB

In this section, we review the design of the approximately alias-free CMFB. Given

the prototype filter design, we can construct an oversampled filterbank. When the

subband filters are taken into consideration, the CMFB has approximately alias-

free property as long as we choose the subband filter with the symmetric rule,

which will be mentioned in a later section. Then we design the prototype filter

by the Kaiser window approach. With property design criterion, the subband

adaptive CMFB is approximately alias-free.

4.1 CMFB with approximate reconstruction [11]

In the DFT filterbank, the analysis and synthesis filters have complex coefficients.

The CMFB comes into play if real coefficients are desired. In this section, we

review the oversampled cosine modulated filterbank. Consider an oversampled

CMFB with 2M subbands and decimation ratio M .

Let P (z) be the prototype filter of the analysis filterbank, and we take P̃ (z)

as that of the synthesis filterbank, where P̃ (z) is the time-reversal version. Let

Pk(z) = P (zW k+0.5
2M ), 0 ≤ k ≤ 2M − 1. The analysis filters Hk(z) and the

synthesis filters Fk(z) are given by

Hk(z) =

{
Pk(z) + P2M−1−k(z) , 0 ≤ k ≤ M − 1

−jPk(z) + jP2M−1−k(z) , M ≤ k ≤ 2M − 1

Fk(z) = H̃k(z) , 0 ≤ k ≤ 2M − 1
(4.1)
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when all Hk(z) and Fk(z) have real coefficients. As the CMFB is real-valued,

the signal processing is implemented by the real-valued addition and multipli-

cation. It is shown in [11] that if |P (ejω)|2 is a Nyquist (2M) filter satisfying

P (ejωW 2ℓ
2M)P̃ (ejω) ≈ 0, for 1 ≤ ℓ ≤ M − 1, then the CMFB has the approximate

reconstruction property.

4.2 Proposed subband adaptive CMFB

In the following, we calculate the aliasing transfer function (2.3) to investigate

the approximately alias-free property with subband filters for CMFB. For conve-

nience, we move the subband filters to the synthesis filterbank. Now we focus on

the kth subband to observe how the alias is generated.

As the input signal passing through the analysis filter Hk(z), the filtered sig-

nal has the frequency component in the spectral support of Hk(z), as shown

in Fig. 4.1(a). Due to decimation following the expansion, both Pk(z) and

P2M−1−k(z) have M − 1 image copies. Referring to Fig. 4.1(b), M − 3 image

copies of Pk(z) fall into the stopband of P2M−1−k(z), provided that P (z) has

stopband edge less than π/M . However, two image copies of Pk(z) overlap with

the spectral support of P̃2M−1−k(z). As these two signal components pass through

synthesis filters, alias comes out.

The solution to this problem without subband filters is proposed in [11]. Here

we want to find the proper choice of the subband filters so that aliasing error will

be canceled after the subband filters are included. The derivation is shown as

follows. Substitute the designed CMFB in (4.1) to (2.7)

Tℓ(z) = 1
M

2M−1∑
k=0

Hk(zW
ℓ
M )Fk(z)Gk(z

M )

= 1
M

M−1∑
k=0

(Pk(zW
2ℓ
2M ) + P2M−1−k(zW

2ℓ
2M ))(P̃k(z) + P̃2M−1−k(z))Gk(z

M )

+ 1
M

2M−1∑
k=M

(−jPk(zW
2ℓ
2M ) + jP2M−1−k(zW

2ℓ
2M ))(jP̃k(z) − jP̃2M−1−k(z))Gk(z

M )

(4.2)
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Figure 4.1: The diagram of the aliasing generation for cosine modulated fiterbank.

For simplicity, we have used Pk as a shorthand for Pk(z). Then

Tℓ(z) = 1
M

M−1∑
k=0

(Pk+2ℓP̃k + Pk+2ℓP̃2M−1−k + P2M−1−k+2ℓP̃k + P2M−1−k+2ℓP̃2M−1−k)Gk(z
M )

+ 1
M

2M−1∑
k=M

(Pk+2ℓP̃k − Pk+2ℓP̃2M−1−k − P2M−1−k+2ℓP̃k + P2M−1−k+2ℓP̃2M−1−k)Gk(z
M )

= 1
M

M−1∑
k=0

(Pk+2ℓP̃k + Pk+2ℓP̃2M−1−k + P2M−1−k+2ℓP̃k + P2M−1−k+2ℓP̃2M−1−k)Gk(z
M )

+ 1
M

M−1∑
k′=0

(P2M−1−k′+2ℓP̃2M−1−k′ − P2M−1−k′+2ℓP̃k′ − Pk′+2ℓP̃2M−1−k′ + Pk′+2ℓP̃k′)

·G2M−1−k′(zM)
(4.3)

If we choose the subband filters by the rule

Gk(z) = G2M−1−k(z), 0 ≤ k ≤ M − 1 (4.4)

22



Then the aliasing transfer function becomes

Tℓ(z) = 1
M

M−1∑
k=0

(Pk+2ℓP̃k + P2M−1−k+2ℓP̃2M−1−k)Gk(z
M )

+ 1
M

M−1∑
k=0

(Pk+2ℓP̃k + P2M−1−k+2ℓP̃2M−1−k)G2M−1−k(z
M )

= 2
M

M−1∑
k=0

(Pk+2ℓP̃k + P2M−1−k+2ℓP̃2M−1−k)Gk(z
M )

(4.5)

If P (ejω) satisfies

P (ejωW 2ℓ
2M)P̃ (ejω) ≈ 0, for 1 ≤ ℓ ≤ M − 1 (4.6)

as shown in Fig. 4.2, then total aliasing error is approximately zero. Furthermore,

w
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-
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M

p2
0
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M2
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)( wj
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M

j
WeP

w

Figure 4.2: The condition of approximately alias-free property.

setting ℓ = 0, we can get the overall distortion transfer function T (ejω) as

T (ejω) =
2

M

2M−1∑

k=0

∣∣Pk(e
jω)

∣∣2 Gk(e
jMω). (4.7)

From the derivation above, if the condition stated in (4.6) holds, the appear-

ance of the subband filters do not destroy the approximately alias-free property

for CMFB. The choice of the subband filters in (4.4) means that only half the

subband filters need to be adapted.

Block DFT and NPRFB are formed by complex-valued analysis and synthesis

filters, so complex-valued computation is required. On the contrary, since CMFB

has real-valued analysis, the subband signals are real, so are the coefficients of the

subband adaptive filter. The signal processing is implemented by the real-valued

addition and multiplication. The computation complexity is saved for filtering

and subband adaptation.

23



4.3 Prototype filter design

From the discussion in the previous section, we can know that the condition for

approximate reconstruction can be stated in terms of P (ejω) as follows

P (ejω) ≈ 0 , for |ω| > π/M (4.8)

which is equivalent to (4.6) and

|T (ejω)| ≈ 1 (4.9)

where

T (ejω) =
2M−1∑

k=0

∣∣P (ej(ω−kπ/M))
∣∣2 (4.10)

Fig. 4.3 illustrates the magnitude response of the prototype filter.

M2

p
-

M2

p
0

w

|)(| wj
eP

Figure 4.3: The magnitude response of the prototype filter.

Here we apply Kaiser window design method to design the prototype filter

[16]. The filter p(n) of length N + 1 is of the form

p(n) = h(n)v(n) (4.11)

where

h(n) =
sin(ωc(n − 0.5N))

π(n − 0.5N)
(4.12)

is the impulse response of the ideal filter with cutoff frequency ωc and v(n) is the

Kaiser window, given by

v(n) =

{
I0[β

√
1 − (n/0.5N)2]/I0(β), −N/2 ≤ n ≤ N/2

0, otherwise.
(4.13)
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where I0(x) is the modified zero-order Bessel function. which can be computed

from

I0(x) = 1 +

∞∑

k=1

[
(0.5x)k

k!

]2

(4.14)

The parameter β depends on the attenuation specification As of the low pass

filter. The quantity β is found from

β =





0.1102(As − 8.7), if As > 50

0.5842(As − 21)0.4 + 0.07886(As − 21), if 21 ≤ As ≤ 50

0, if As < 21

(4.15)

Given the stop attenuation As and transition bandwidth ∆ω, the filter order N

is estimated by

N ≈ As − 7.95

14.36∆ω/2π
(4.16)

With As and ∆ω, the only free parameter for design of the prototype filter is

the cutoff frequency ωc. Given the performance criterion φ,we can design the

prototype filter to find the extreme value of φ by adjusting ωc. The following

description reviews the prototype filter design method proposed in [12].

Define a filter G(ejω) = |P (ejω)|2. Observe that the condition in (4.8) and

(4.9) means that G(ejω) is approximately a Nyquist (2M) filter. In other words,

g(2Mn) is approximately 1/2Mδ(n), where δ(n) is given by

δ(n) =

{
1 n = 0

0 otherwise.
(4.17)

Using this, we can choose a simpler objective function φnew = max
n,n6=0

|g(2Mn)|.
We can adjust the parameter ωc to find the prototype filter p(n) that yields the

smallest φnew.
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Chapter 5

Performance measurements

In this section, we will discuss four major measurements used in the following

simulations. That is, MMSE (Minimum Mean-Squared Error), SAR (Signal-to-

Alias Ratio), ME (Modeling Error), and RE (Reconstruction Error) [18].

A. MSE

In Fig. 1.2, we use the filterbank structure to estimate the echo path for the

application of acoustic echo cancelation. One objective for subband adaptive

filters is to minimize the error between the fullband signal reconstructed by the

synthesis filterbank and the desired echo signal with a specific delay. That is,

MSE = E{|d(n − ∆) − y(n)|2}. (5.1)

The mean-squared error is an important metric. We will show learning curve of

MSE in the section of numerical simulation.

B. SAR

Given the prototype filter, SAR is defined as

SAR =

∫ π

0
|P (ejω)|2 dω

∫ π

π/M
|P (ejω)|2 dω

(5.2)

which is a measure of the stopband energy of the prototype filter, which also

determines the amount of aliasing.

C. ME

Referring to Fig. 5.1, if the impulse response of the echo path is s(n), the echo

path estimated by subband adaptive filtering is w(n), then the modeling error is
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Figure 5.1: The block diagram of the system identification by using multirate
struture.

defined as

ME = ‖w(n) − s(n)‖2 / ‖(s(n))‖2 (5.3)

If we focus on the system identification, The modeling error is an important

metric for system identification application.

D. RE

Suppose the condition for approximately alias-free property holds, and the

distortion function of the filterbank is expressed as t0(n). Then the reconstruction

error is defined as

RE = ‖t0(n) − δ(n − ∆)‖2 (5.4)

where ∆ is a delay introduced by the filterbank. The purpose of design of the

prototype filter is to make the distortion function approximately a delay. There-

fore, RE is a measure of the degree how the distortion function approximates a

delay.
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Chapter 6

Numerical Simulations

Here we will apply the proposed subband adaptive CMFB to acoustic echo cance-

lation. The prototype has stopband attenuation 100dB and length 28. The echo

path models we use are an impulse and an echo path adopted from ITU-T Rec-

ommendation G.168. These two echo path models will be used in the following

simulation examples. The echo paths has 1024 taps. For the echo path G.168,

its impulse response has two taps with significant value, as shown in Fig. . Its

magnitude response and phase response are shown in Fig. 6.2. In this section,

the oversampled filterbank has 4 subbands, that is, M = 2. Subband adaptive

filters are of length 512. The input signal x(n) is a first-order auto-regressive

(AR) signal. The signal-to-noise ratio is 20dB, 30dB, 40dB and infinity (noise

absent).
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Figure 6.1: Impulse response of the echo path adopted from G.168.
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Figure 6.2: (a) Magnitude response and (b) phase response of the echo path
adopted from G.168.
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6.1 Prototype filter design and the characteris-

tics of the proposed filterbank

Since the design strategy of the filterbank comes from the one or two prototype

filters, the prototype filter design has vital effect on the performance of the sub-

band adaptive filterbank. According to the design algorithm as mentioned before,

we plot the magnitude response of the prototype filter for NPRFB and CMFB,

as shown in Fig. 6.3 and 6.4, respectively. All of them have linear phase property,

so we only plot the magnitude response. For CMFB, the stopband attenuation

is 100dB. The prototype filter is of length 28. Its SAR is 79.9628dB. For the

NPRFB design method, we get the prototype filter with length 30. Its SAR is

107.8561dB. The cutoff frequency are both around ω = 0.5π. Observing these

two prototype filters, the stopband attenuation of CMFB is 100dB and that of

NPRFB is about 100dB. Both of them satisfy the condition in (4.8) for their

large stopband attenuation.
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Figure 6.3: Magnitude response of prototype filter for NPRFB.

Next, we examine the characteristics of the filterbank, i.e, the distortion and
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Figure 6.4: Magnitude response of prototype filter for CMFB.

alias suppression for the designed filterbank. As described in (4.9), we design

the prototype filter p(n) so that the distortion function T0(e
jω) is as close to a

unity delay as possible. Under the condition that aliasing is small enough to

be neglected, this measurement (1 − |T0(e
jω)|)2 can be viewed as a measure of

reconstruction error. Here we call (1 − |T0(e
jω)|)2 the distortion error. Since

the distortion function defined in (4.10) has period π/M , we plot the distortion

error (1 − |T0(e
jω)|)2 for one period in Fig. 6.5 (a) for NPRFB and Fig. 6.6 (a)

for CMFB, to observe the difference between the magnitude response of T0(e
jω)

and unity. The order of (1 − |T0(e
jω)|)2 of NPRFB and CMFB are around 10−8

and 10−5, respectively. All of them satisfies the condition in (4.9). Moreover, we

compute RE by the impulse response t0(n). The RE of CMFB is -53.2829dB and

that of NPRFB is -76.7095dB, respectively.

A measurement of aliasing error is [17]
√√√√

M−1∑

ℓ=1

|Tℓ(ejω)|2 (6.1)

where Tℓ(z) is the aliasing transfer function as defined in (2.3). The aliasing error
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are shown in Fig. 6.5 (b) for NPRFB and Fig. 6.6 (b) for CMFB. The aliasing

levels of the NPRFB and CMFB, are about -290dB to -300dB. Both of them are

approximately alias-free.
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Figure 6.5: (a) Distortion error and (b) aliasing error of NPRFB.
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Figure 6.6: (a) Distortion error and (b) aliasing error of CMFB.
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6.2 Parameter adjustments for CMFB

In the following, we adjust the parameter of CMFB to observe the characteristics

of CMFB. In the design of prototypes, one parameter is the transition bandwidth

∆ω. Then we choose different initial value for the subband adaptive filter. Finally,

we investigate the ability of the echo path estimation and the approximately alias-

free property for CMFB.

We use different transition bandwidth to investigate the distortion function

and aliasing transfer functions. Fig. 6.7 (a) shows the distortion of CMFB. For

different transition bandwidth ∆ω, the distortion curves are similar. However,

the aliasing measurements are quite different. All the aliasing measurements are

all small enough to be neglected.

The initial condition of the subband adaptive filter can affect the convergence

behavior. Here we change the initial condition of the subband adaptive filter

to observe the MSE learning curve. The initial condition is that we take the

multiple of the vector q with all elements equal to one as the subband adaptive

filter. What we change is a constant which multiply with the vector q. As shown

in Fig. 6.8, if we choose the zero vector as the initial value of the subband adaptive

filter, we can get the best learning curve. Therefore, we use the all zeros vector as

the initial of the subband adaptive filter for the CMFB in the following example.
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6.3 Echo path modeling

We plot the original echo path model and the echo path model estimated for

the impulse and G.168 by CMFB in Fig. 6.9 and Fig. 6.10. The estimated echo

path is approximately a delay of the original one. Here the designed prototype

filter is of order N = 27. If we zoom in the figure, the delay is indeed 27. The

delay is introduced by the analysis and synthesis filters of CMFB. The delay

can be estimated by the group delay introduced by the analysis filter and the

synthesis filter, where N is the order of the prototype filter. The modeling errors

are -48.494 dB and -18.753 dB for impulse echo path and G.168. Furthermore,

we examine the alias measurement of CMFB with the inclusion of the subband

adaptive filters in Fig. 6.11 and Fig. 6.12. We can see that aliasing error is

approximately zero. The proposed subband adaptive CMFB is approximately

alias-free.
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Figure 6.9: Estimated echo path by CMFB when the echo path is purely an
impulse.
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Figure 6.10: Estimated echo path by CMFB when the echo path is adopted from
G.168.
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Figure 6.11: Aliasing transfer function for CMFB when the estimated echo path
is an impulse.
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Figure 6.12: Aliasing transfer function for CMFB when the estimated echo path
is adopted from G.168.
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6.4 Comparison CMFB with the other methods

in MSE learning curve

In the following, we examine the acoustic echo cancelation for two echo path mod-

els by the learning curve. According to the simulation in [19], the environment

setup is with -30dB system noise level or with system noise absent. In our sim-

ulation, we set the SNR at the output terminal of the echo path equal to 20dB,

30dB, 40dB, and ∞ (noise absent). We examine the convergence behavior for all

methods we have mentioned in the previous section at different SNR values.

First we consider that the echo path model is purely an impulse, which is used

in the simulations in [18]. The simulation results are shown in Fig. 6.13. From

these figures, CMFB outperforms in mean-squared error values than all the other

methods for all iterations. Then we use the the echo path adopted from ITU-

T Recommendation G.168. From simulation results, for the SNR levels equal

to 20dB and 30dB, CMFB has the smallest MSE value during all iterations, as

shown in Fig. 6.14 (a) and (b). CMFB has good convergence behavior for SNR

values equal to 20dB and 30dB. As the SNR increases to 40dB and infinity SNR

(noise absent), the simulation results are shown in Fig. 6.14 (c) and (d). CMFB

can achieve -40dB MSE with only 13000 iterations, while Block DFT achieves

-40dB MSE with 20000 iterations. CMFB still has good performance for its fast

convergence behavior. For example, suppose the sampling rate is fixed at 8000

Hz. The CMFB achieves an MSE of -40dB faster than Block DFT for 0.875

seconds.

We increase the subband number from 4 to 8. The simulation results are

shown in Fig. 6.15 and Fig. 6.16. Compared the simulation results with 4 sub-

bands, the simulation results with 8 subbands demonstrate faster convergence

speed. Furthermore, we change the echo path with the room impulse response

rir.m. It can be downloaded from MATLAB file exchange center. Fig. 6.17 and

Fig. 6.18 show the simulation results with 4 and 8 subbands, respectively. The

proposed CMFB still has good convergence performance.
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Figure 6.13: Learning curve under different SNR levels with 4 subbands when
the echo path is an impulse. (a) SNR = 20dB (b) SNR = 30dB (c) SNR = 40dB
(d) SNR = ∞.
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Figure 6.14: Learning curve under different SNR levels with 4 subbands when
the echo path is adopted from G.168. (a) SNR = 20dB (b) SNR = 30dB (c) SNR
= 40dB (d) SNR = ∞.
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Figure 6.15: Learning curve under different SNR levels with 8 subbands when
the echo path is an impulse. (a) SNR = 20dB (b) SNR = 30dB (c) SNR = 40dB
(d) SNR = ∞.
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Figure 6.16: Learning curve under different SNR levels with 8 subbands when
the echo path is adopted from G.168. (a) SNR = 20dB (b) SNR = 30dB (c) SNR
= 40dB (d) SNR = ∞.
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Figure 6.17: Learning curve under different SNR levels with 4 subbands when
the echo path is the room impulse response. (a) SNR = 20dB (b) SNR = 30dB
(c) SNR = 40dB (d) SNR = ∞.
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Figure 6.18: Learning curve under different SNR levels with 8 subbands when
the echo path is the room impulse response. (a) SNR = 20dB (b) SNR = 30dB
(c) SNR = 40dB (d) SNR = ∞.
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Chapter 7

Conclusion

In this paper, we proposes an oversampled cosine modulated filterbank (CMFB)

for subband adaptive filtering. The filter bank has the approximately alias-free

property even in the presence of subband filters. With real-coefficient analysis,

synthesis and subband filters, only real additions and multiplications are needed.

Furthermore, only half the subband filters need adaptation and the second half

can be directly obtained from the first half of the subband filters. Simulation

results corroborate that the aliasing error is very close to zero. The learning

curves demonstrate that the proposed subband CMFB achieves a small MSE

with a fast convergence speed.
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