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Regression Analysis

Monitoring Nonlinear Profiles with Random
Effects by Nonparametric Regression

JYH-JEN HORNG SHIAU, HSIANG-LING HUANG,
SHUO-HUI LIN, AND MING-YE TSAI

Institute of Statistics, National Chiao Tung University,
Hsinchu, Taiwan

The monitoring of process/product profiles is presently a growing and promising
area of research in statistical process control. This study is aimed at developing
monitoring schemes for nonlinear profiles with random effects. We utilize the
technique of principal components analysis to analyze the covariance structure of
the profiles and propose monitoring schemes based on principal component (PC)
scores. The number of the PC scores used in constructing control charts is crucial
to the detecting power. In the Phase I analysis of historical data, due to the
dependency of the PC-scores, we adopt the usual Hotelling T 2 chart to check the
stability. For Phase II monitoring, we study individual PC-score control charts, a
combined chart scheme that combines all the PC-score charts, and a T 2 chart.
Although an individual PC-score chart may be perfect for monitoring a particular
mode of variation, a chart that can detect general shifts, such as the T 2 chart and
the combined chart scheme, is more feasible in practice. The performances of the
schemes under study are evaluated in terms of the average run length.

Keywords Average run length; Control charts; Nonlinear profile monitoring;
Principal components analysis; Profile-to-profile variation; Spline smoothing.

Mathematics Subject Classification 62P30; 62H25; 62G08.

1. Introduction

Statistical process control (SPC) has been widely applied in many areas, especially
in industries. Classical methods for SPC are usually developed for applications in
which the quality of the product or process can be measured by one or multiple
quality characteristics. However, in many situations, the quality-related response of
interest is not a single variable but a function of some independent variables. Such
a functional response is referred to as a profile in the literature.

Kang and Albin (2000) presented an example of linear profiles from an etching
process in semiconductor manufacturing, in which the etching quality depends on
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Nonlinear Profile Monitoring 1665

the performance of the mass flow controller (MFC). If an MFC is in control, the
measured pressure (the response y) in the chamber is approximately a linear function
of the gas flow (the independent variable x). Another example of linear profiles
regarding a calibration process was presented in Mahmoud and Woodall (2004).

An example of nonlinear profiles was described in Kang and Albin (2000) but
not studied, regarding the dissolving process of aspartame (an artificial sweetener)
in which the quality is characterized by the amount of aspartame dissolved per
liter of water at different levels of temperature. For illustration, Fig. 1 shows the
plot of four hypothetical aspartame profiles. Walker and Wright (2002) presented
another example of nonlinear profiles, namely, vertical density profiles (VDP) of
particle boards. The density of a particle board was measured with a profilometer
that used a laser device to take measurements at fixed depths across the thickness
of the engineered wood board. The data set is available at http://bus.utk.edu/stat/
walker/VDP/Allstack.TXT.

Profile monitoring is a relatively new research area in quality control. Kang
and Albin (2000) studied the problem of linear profile monitoring and proposed
two control schemes by modeling the profiles with the simple linear regression
model, Y = A0 + A1x + �, where Y is the response variable and x is the independent
variable; A0 and A1 are the parameters to be estimated; the noise variables �’s are
independent and normally distributed with mean zero and common variance �2.
By centering the x-values to make the least squares estimators of the Y -intercept
(A0) and slope (A1) independent of each other, Kim et al. (2003) proposed

Figure 1. Four hypothetical aspartame profiles.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
10

 2
5 

A
pr

il 
20

14
 



1666 Shiau et al.

a combined-chart scheme in which three EWMA charts designed, respectively,
for detecting shifts in intercept, slope, and standard deviation (�) are used
simultaneously. Mahmoud and Woodall (2004) presented and compared several
control charts for Phase I analysis of linear profiles and applied some of the charts
to a calibration application. For more discussions on linear profile monitoring, see
the review paper by Woodall et al. (2004).

Shiau and Weng (2004) extended the above linear profile monitoring schemes to
a scheme suitable for profiles of more general forms via nonparametric regression.
No assumptions are made for the form of the profiles except the smoothness. The
nonparametric regression model considered is Y = g�x�+ �, where g�x� is a smooth
function and � is the random error as before. Spline regression was adopted as
the curve fitting/smoothing technique for its simplicity. They proposed an EWMA
chart for detecting mean shifts, an R chart for variation changes, and an EWMSD
(standard deviation) chart for variation increases.

Note that the models described above all consist of a deterministic line/curve
plus random noises. It does not account for some allowable profile-to-profile
variations that we often observe in many profile data, e.g., the aspartame example
and VDP example, where these profile-to-profile variations should be considered as
caused by common causes. A monitoring scheme constructed based on the afore-
mentioned “fixed-effect” model may interpret these common-cause variations as
caused by some special causes and signal many false alarms. Thus, we need a
suitable model that can cope with these common-cause variations and construct
a monitoring scheme accordingly.

For this, Shiau et al. (2006a) considered a random-effect linear model to develop
monitoring schemes for linear profiles. Similarly, Jensen et al. (2006a) proposed a
linear mixed (effects) model for linear profiles. Williams et al. (2003) fitted nonlinear
profiles by nonlinear parametric regression and then monitored profiles with some
T 2 statistics of the estimated parameters. Later, Williams et al. (2007) extended this
methodology to nonlinear profiles with a non-constant variance at set points to
analyze a set of heteroscedastic dose-response profiles. Adopting a random-effect
parametric nonlinear regression model for profiles, Shiau et al. (2006b) proposed a
robust nonlinear profile monitoring scheme. Jensen et al. (2006b) proposed using
nonlinear mixed models to model nonlinear profiles. Note that the parametric
approaches mentioned above all need to pre-specify a parametric functional form
for profiles, a task often not so easy for practitioners.

In this article, we extend the nonparametric fixed-effect model of Shiau and
Weng (2004) to a random-effect model in order to incorporate some profile-to-
profile variability as caused by common causes. With the random-effect model, we
focus on the covariance structure and use the principal components analysis (PCA)
to analyze it. Ding et al. (2006) also considered modeling profiles nonparametrically
for a Phase I analysis, but proposed using ICA (independent components analysis)
instead of PCA for monitoring profiles that are in clusters, a situation PCA may fail
to preserve the clustering feature of the original data.

PCA is very useful in summarizing and interpreting a set of profile data with the
same equally spaced x-values for each profile. We remark that the smoothing step
described above can relax this requirement for profile data since the equally spaced
data can be obtained from the smoothed profiles easily. Some pioneer works on
analyzing curves with PCA include Castro et al. (1986), Rice and Silverman (1991),
Jones and Rice (1992), and others. For applications, Shiau and Lin (1999) analyzed
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Nonlinear Profile Monitoring 1667

a set of accelerated LED degradation profiles to estimate the mean lifetime of the
product with the techniques of nonparametric regression and PCA.

In this article, for Phase I profile monitoring, we propose using the usual
Hotelling T 2 chart, a commonly used control chart designed for multivariate
process data, by treating the principal component (PC) scores of a profile obtained
from PCA as the multivariate data. For Phase II process monitoring, we propose
and study three monitoring schemes constructed by utilizing the eigenvalues and
eigenvectors obtained from PCA to compute the PC-scores of each incoming profile,
including individual PC-score charts, a combined chart that combines all of the
PC-score charts and a T 2 chart (different from the T 2 chart of Phase I). The
performances of these monitoring schemes are evaluated in terms of the average run
length (ARL).

The rest of the article is organized as follows. Section 2 describes the proposed
monitoring schemes in details. Section 3 shows some simulation results of Phase I
study and a comparative study of the proposed schemes based on ARL for Phase II
monitoring. Section 4 presents a case study using the VDP data from Walker and
Wright (2002). Finally, Sec. 5 concludes the article with a brief summary and some
remarks.

2. Proposed Monitoring Schemes

2.1. A Motivated Example

This study was motivated by the aspartame example given in Kang and Albin
(2000). Since no data are available, a profile of the form Y = I +MeN�x−1�2 + � is
used to mimic an aspartame profile. Then the idea is to perturb the parameters
I�M�N randomly to create allowable profile-to-profile variations for an in-control
process.

Thus, the following random-effect model was considered to generate aspartame
profiles:

Yj = I +MeN�xj−1�2 + �j� j = 1� � � � � p� (1)

where I ∼ N��I� �
2
I �, M ∼ N��M� �

2
M�, N ∼ N��N � �

2
N �, � ∼ N�0� �2

��, and all the
random components are independent of each other. Unfortunately, the response
profile Y = �Y1� � � � � Yp�

′ of model (1) has a complicated distribution with mean
�= ��1� � � � � �p�

′ and covariance matrix � as follows. For i� j = 1� � � � � p�

�j = E�Yj� = �I + �Me
�N �xj−1�2+ �2N �xj−1�4

2 �

Cov�Yi� Yj� = �2
I + ��2

M + �2
M�

[
e�N ��xi−1�2+�xj−1�2	+ �2N ��xi−1�2+�xj−1�2 	2

2

]
(2)

− �2
Me

�N �xi−1�2+ �2N �xi−1�4

2 +�N �xj−1�2+ �2N �xj−1�4

2 + �2

�ij�

where �ij = 1 if i = j; and 0 otherwise. Note that, by (2), the covariance matrix �

will be changed if the mean of M or N shifts, a situation too complicated to analyze
the performance of the control charts under study.
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1668 Shiau et al.

So, instead, we model the aspartame profiles as realizations of a Gaussian
stochastic process with the mean function

��x� = �I + �Me
�N �x−1�2 (3)

and a covariance function G�s� t�, where s� t are in the domain of x. To retain a
similar profile-to-profile variation as it would be in the random-effect model (1),
we let the in-control profiles follow MVN��0���, where �0 = ��01� � � � � �0p�

′ with

�0j = �I + �Me
�N �xj−1�2� j = 1� � � � � p� (4)

and � is the covariance matrix given by equation (2).
When the mean function (3) is shifted, say, �I to �I + ��I , �M to �M + �M , and

�N to �N + ��N , �0j is shifted from �I + �Me
�N �xj−1�2 to

�̃j ≡ ��I + ��I�+ ��M + �M�e
��N+��N ��xj−1�2� j = 1� � � � � p�

Let �̃ = �̃�1� � � � � �̃p�
′� Then the shift on the mean of Y is � ≡ �̃ − �0.

2.2. Data Smoothing

In order to extend nonlinear profiles of a fixed parametric form to smooth profiles
of a flexible nonparametric form, a smoothing technique is needed for de-noising
sample profiles. The idea of smoothing is to fit a smooth function whose final form
is determined by the data and the chosen level of smoothness for the curve. One
popular approach is to fit noisy data by splines. Frequently, cubic splines (i.e.,
piecewise cubic polynomials with continuous second derivatives) are used for such
approximations. Two commonly used spline smoothing techniques are smoothing
splines and B-spline regression, both are available in popular statistical packages
like R, Splus, and others. Other smoothing techniques such as local polynomial
smoothing and wavelets can be used as well. We remark based on our experiences
that, by filtering out noises, the actual signals can be better extracted from the
data and PCA can explore the variation among profiles a lot better. In particular,
smoothing tends to be more advantageous as the noise level (�2

�) gets larger.

2.3. Phase I Monitoring

Assume that a set of n historical profiles is available for Phase I analysis. We first
apply a smoothing technique to each of the n profiles to filter out the noise, and
then apply PCA to the smoothed profiles as follows. Denote the �p× 1� data vector
of the ith profile by yi and the usual sample covariance matrix of �yi� i = 1� � � � � n�
by S . Apply the eigenanalysis to S . The eigenvector vr corresponding to the rth
largest eigenvalue �r is the rth principal component and Sir ≡ v

′
ryi is called the score

of the rth principal component of the ith profile, r = 1� � � � � p, i = 1� � � � � n.
We select the number of the “effective” principal components by considering

the total variation explained by the chosen principal components along with the
principle of parsimoniousness that we often use in the variable selection problem.
Denote this number by K and the (K × 1) score vector �Si1� � � � � SiK�

′ by si.
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Nonlinear Profile Monitoring 1669

For Phase I monitoring, due to the dependency of the K PC-scores, we adopt
the usual Hotelling T 2 statistic described below. For the ith profile, i = 1� � � � � n, the
T 2 statistic is defined as

T 2
i = �si − s̄�′B−1�si − s̄�� (5)

where s̄ = ∑n
i=1 si/n and B = ∑n

i=1�si − s̄��si − s̄�′/�n− 1�, the usual sample mean
and sample covariance matrix of the score vectors.

Since score vectors are distributed as multivariate normal asymptotically
(Anderson, 2003), according to Tracy et al. (1992) and also Sullivan and Woodall
(1996), we have:

n

�n− 1�2
T 2
i ∼ Beta

(
K

2
�
n− K − 1

2

)
approximately.

Thus, an approximate �-level upper control limit can be set at the 100�1− ��
percentile of the beta distribution with K/2 and �n− K − 1�/2 as parameters.

For Phase I analysis, perform control-charting with the T 2 statistic of the score
vectors in (5) to detect the out-of-control profiles in the historical data set. If there
are any, remove them and redo PCA and control-charting with the remaining
profiles. Repeat this procedure until all the remaining profiles are within the control
limit. These remaining profiles are considered as “in-control” profiles and can be
used to characterize the in-control process. The resulting principal components
and eigenvalues can then be used to set up the control limit for Phase II on-line
monitoring.

2.4. Phase II Monitoring

As in most of Phase II studies, we assume the in-control process distribution of
the profiles after de-noising has been characterized as Np ��0��0�, either from prior
experiences or estimated from the Phase I analysis.

Our Phase II monitoring schemes are also based on PCA. Apply PCA to
�0 to obtain eigenvalues, �1 ≥ · · · ≥ �p ≥ 0, and the corresponding eigenvectors,
v1� � � � � vp. Similar to that in Phase I analysis, choose the number of effective
principal components K based on the parsimoniousness and the total variation
that the first K PCs account for. More specifically, since the rth PC accounts
for �r/

∑p
r=1 �r of the total variation, we can simply choose the first K such that∑K

r=1 �r/
∑p

r=1 �r reaches a desired level.
Now for each of the incoming profiles in Phase II monitoring, first smooth

and then project it onto the first K PCs to obtain K PC-scores. Denote these
scores by S1� � � � � SK . Since these scores are independent and Sr follows a normal
distribution with mean v′r�0 and variance �r when the process is in control, it is easy
to construct a control chart for each of the K PC-scores accordingly. Denote the
desired in-control false-alarm rate by �. Then the control limits for the rth PC-score
chart, which monitors the statistic Sr , is v

′
r�0 ± Z�/2

√
�r� r = 1� � � � � K.

If a particular mode of process change can be caught by one of the first K
principal components, then we can use that particular PC-score chart to monitor it.
However, very often a process shift is reflected in more than one principal
component. When this happens, we can consider a combined chart scheme by
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1670 Shiau et al.

combining all K PC-score charts. A combined chart scheme signals out-of-control
when any of the K individual charts signals. Thus, the proposed combined chart is
equivalent to monitoring the statistic

max
1≤r≤K

∣∣∣∣Sr − v′r�0√
�r

∣∣∣∣�
This chart signals out-of-control when max1≤r≤K ��Sr − v′r�0�/

√
�r � > Z�′/2, where the

individual false-alarm rate �′ should be chosen at the level of 1− �1− ��1/K so that
the overall false-alarm rate is at the desired level �.

We can also consider a T 2 chart by monitoring the statistic

T 2 =
K∑
r=1

�Sr − v′r�0�
2

�r
� (6)

which follows the chi-square distribution with K degrees of freedom (denoted by
�2K) when the process is in control. Thus, the upper control limit is the 100�1− ��
percentile of �2K .

2.5. ARL of the Proposed Schemes

We evaluate the performances of the proposed Phase II monitoring schemes
described above in terms of ARL, the average run length. The ARL values of the
individual PC-score chart can be computed as follows. Assume that the mean of the
profile has been shifted from �0 to �0 + �. The probability of detecting the shift by
the rth PC-score chart is

p = 1− P

(∣∣∣∣Sr − v′r�0√
�r

∣∣∣∣ ≤ Z�/2

)
= 1− P

(
− v′r�√

�r
− Z�/2 ≤ Z ≤ − v′r�√

�r
+ Z�/2

)

= 1−�

(
− v′r�√

�r
+ Z�/2

)
+�

(
− v′r�√

�r
− Z�/2

)
�

where � is the cumulative distribution function of the standard normal variate Z
and Z�/2 is the 100�1− �/2� percentile of Z. Then the value 1/p is the ARL of the
rth PC-score chart.

Since the PC-scores S1� � � � � SK are independent, the ARL of the combined chart
also can be computed easily by the reciprocal of

p = 1− P

(
max
1≤r≤K

∣∣∣∣Sr − v′r�0√
�r

∣∣∣∣ ≤ Z�′/2

)
= 1−

K∏
r=1

P

(∣∣∣∣Sr − v′r�0√
�r

∣∣∣∣ ≤ Z�′/2

)

= 1−
K∏
r=1

[
�

(
− v′r�√

�r
+ Z�′/2

)
−�

(
− v′r�√

�r
− Z�′/2

)]
�

where �′ = 1− �1− ��1/K is the individual false-alarm rate.
Since T 2 statistic in (6) follows a noncentral chi-square distribution with

K degrees of freedom and noncentrality � = ∑K
r=1�v

′
r��

2/�r (denoted by �2K���).
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Nonlinear Profile Monitoring 1671

Then the detecting power of the T 2 chart can be easily calculated by

p = P�T 2 > �2K��� = P��2K��� > �2K����

where �2K�� denotes the 100�1− �� percentile of the central chi-square distribution �2K .

3. Simulation and Comparative Studies

3.1. Settings for Simulation

In our simulation study, we generate profiles from MVN��0���, where �0 is given
in (4) and � is given in (2) with �I = 1, �I = 0�2, �M = 15, �M = 1, �N = −1�5,
�N = 0�3, and x = 0�64� 0�8� � � � � 3�52� Both of x and y values are scaled variables,
not the actual temperature levels and the amount of aspartame dissolved in the
dissolving process. Denote the in-control ARL by ARL0. All charts are designed
to have the same ARL0 = 370�3704, which corresponds to the false-alarm rate of
�= 0�0027.

3.2. A Study on the Number of Principal Components

To study how the choice of the number of effective principal components affects the
detecting power of the monitoring scheme, we conduct a simulation study. In this
study, the detecting power is measured by the ability of the monitoring scheme in
detecting the real out-of-control profiles. For example, in a data set of 50 simulated
profiles with 3 out-of-control profiles, if the scheme catches 2 of the 3, then the
detecting power measured is 2/3. The false-alarm rate can be measured in a similar
way. Let the number of the principal components used be k. Then for each data set,
compute the detecting power and the percentage of the total variation explained by
k principal components for various values of k.

We choose some settings of shifts. For each setting, we generate fifty profiles
within which some profiles are generated from the shifted population. Then repeat
each setting 20,000 times to get the averaged detecting power and the averaged
percentage of the total variation explained.

As one would expect, the result (not shown) of the study indicates that having
more principal components does explain more variation, but not necessarily has
more detecting power. In fact, the power of the T 2 statistic starts to drop when k
gets to a certain level, which usually is a fairly small number. So it is necessary to
choose an appropriate number of principal components.

3.3. A Simulated Aspartame Example – Phase I Monitoring

We now demonstrate Phase I analysis with the aspartame example described before.
In Phase I, we generate 200 in-control historical profiles, each with 19 set points.
First de-noise these profiles by smoothing splines using statistical package R.
Figures 2(a) and (b) display the 200 simulated profiles and their smoothed profiles,
respectively. Then we apply PCA to the sample covariance matrix of these smoothed
profiles and get the 19 eigenvalues, �1 ≥ �2 ≥ · · · ≥ �19 ≥ 0 and their associated
eigenvectors. The first 4 principal components account for 75.16%, 19.41%, 2.60%,
and 0.92% of the total variation in the profiles, respectively. For profile monitoring,
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1672 Shiau et al.

Figure 2. (a) 200 generated and (b) smoothed in-control aspartame profiles.

we decide to choose K = 3 for parsimoniousness since with three PCs, it has already
accounted for 97.17% of the total variation. In practice, it is also fine to choose
K = 4. Now project each (smoothed) profile onto the first three eigenvectors to get
the scores and then compute T 2 by (5). The resulting T 2 control chart (not shown)
indicates that the process is in control.

3.4. An ARL Comparison Study – Phase II Monitoring

To compare the performances of the proposed schemes for Phase II monitoring
described in Subsec. 2.4, we compute the ARL values of each scheme as derived in
Subsec. 2.5.

Let the �i� j�th entry of the in-control covariance matrix �0 be (2) without
the �2

��ij term. Apply PCA to this “population” covariance matrix. It is found
that the first four principal components, respectively, account for 74.82%, 22.58%,
2.30%, and 0.29%, which totals 99.99%, of the total variation; and other components
practically explain nothing. This is mainly because we have only three degrees of
freedom in varying profiles (without measurement error), namely, the values of I�M�
and N in model (1).

Figure 3(a) depicts the first three eigenvectors of �0. To see the effect of a
particular principal component, say vr , Ramsay and Silverman (2005) presented a
visualizing tool that plots �0 ± Lvr , where L is a suitable multiple. Figures 3(b)–(d)
illustrate, respectively, the corresponding features captured by the first three
principal components with L = 3. From the figures, we can see that the PC1
captures the variation of the vertical shifting of the profiles except for the right tail;
PC2 reflects the variation in the height of the peak and the declining rate of the
curve; PC3 captures mainly the vertical shifting in the tail and slightly the variation
at the peak.

For ARL comparison, consider the I-shift from �I to �I + ��I� M-shift
from �M to �M + ��M� and N -shift from �N to �N + ��N , for � = 0� 0�25� � � � � 3.
Figures 4(a)–(c) display the ARL curves for the shifts in I�M�N , respectively.
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Nonlinear Profile Monitoring 1673

Figure 3. Aspartame example. (a) Plot of v1� v2� v3; (b)–(d) �0 ± 3vr � r = 1� 2� 3.

We observe the following.

• Both PC1 and PC3 have some power in catching the shift in I because
both represent the mode of variation in vertical shifting (but in different
areas) of the profile as shown in Figs. 3(a) and (c). We are a little bit
surprised to see that PC1 is less powerful than PC3. This may be explained
by: (i) PC3 explains almost all the variation in vertical shifting in the tail
area; (ii) although PC1 can explain the vertical shifting for x < 2�5, the other
two PCs also pick up some, especially around the peak area. PC2 hardly has
any power in detecting I-shift. The power of the T 2 and combined chart are
between that of PC1 and PC3, and as the shift gets larger, the difference in
ARL between PC3 and the T 2/combined chart gets smaller. Also, the T 2 and
combined chart are very close with T 2 slightly better for the shift size � ≤ 1�5
and the combined chart better for � ≥ 1�75.
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1674 Shiau et al.

Figure 4. ARL comparisons of aspartame example. (a) I ; (b) M ; and (c) N shifts.

• As to the M-shifts, except for PC3 that does not have much power, the other
four charts are not too far from each other. The order of the performance is
about PC2 > T 2 > combined > PC1, with the exception that T 2 finally beats
PC2 for larger shifts. Here “>” means “performs better than”.

• For detecting N -shift, PC3 has a strange ARL curve (see Fig. 4(c)), which
may be caused by the fact that the shift in the mean vector when projected
onto PC3, v′3�, is not monotone in the shift multiple �. PC1 performs the best
for small shifts but gets worse as the shift gets larger and eventually becomes
the worst one for large shifts. T 2 is the second best for small shifts and then
quickly becomes the best. PC2 and the combined chart are fairly close for
small shifts; PC2 wins when the shift size is small and soon loses it to the
combined chart for moderate to large shifts.

We learn from this study that a mode of variation often cannot be captured
by a single PC-score chart. Even for the variation as simple as the vertical shifting
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Nonlinear Profile Monitoring 1675

Figure 5. (a) 24 VDP profiles; (b) 24 smoothed VDP profiles.

like the I-shift, it takes more than one principal component to represent this effect.
Also, the T 2 and combined chart are fairly close to each other and comparable with
the best PC-score chart.

4. A Case Study – VDP Example

The VDP data set described in Sec. 1 contains n = 24 profiles, each was measured
at p = 314 set points. Figure 5(a) is the plot of the VDP data. First de-noise these
profiles by smoothing splines using statistical package R; see Fig. 5(b) for the
plot of the smoothed profiles. Apply PCA to the sample covariance matrix of the
smoothed profiles. And the first four principal components account for 85.26%,
10.83%, 1.90%, and 0.84% of the total variation in the profiles, respectively. We
select K = 3 principal components for Phase I process monitoring because the total
variation explained by the first three PCs is already as high as 97.99%. Figure 6(a) is
the plot of the first three eigenvectors. Figures 6(b)–(d) show the modes of variation
they capture by plotting the mean vector � and � ± 10vr � r = 1� 2� 3. The figures
show that: (i) PC1 represents the variation in the ground level of the VDP profiles,
especially the bottom part of the “bathtub”; (ii) PC2 can catch some variation in the
roundness of the bottom part of the bathtub; and (iii) PC3 may be able to describe
the variation in the roundness on the two ends and the central part of the bathtub
bottom. All these interpretations can also be seen from the three eigenvectors shown
in Fig. 6(a). As to Phase I monitoring, the T 2 control chart (not shown) indicates
no out-of-control profiles in the VDP data.

5. Concluding Remarks

In this study, we propose and discuss monitoring schemes for nonlinear profiles.
We use the principal components analysis to analyze the covariance matrix of the
profiles and then utilizing the principal component scores that capture the main
features of the profile data for process monitoring.
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1676 Shiau et al.

Figure 6. VDP example. (a) Plot of v1� v2� v3; (b)–(d) � ± 10vr � r = 1� 2� 3.

In addition to the individual PC score charts, we study two charts that utilize
the overall information contained in the K effective principal components, namely
the combined chart and T 2 chart. The T 2 chart performs somewhat better than the
combined chart in terms of the average run length, but not too far off. However, by
providing charts for all of the effective components, the combined chart gives more
clues for finding assignable causes than the T 2 chart.

When the shift corresponds to a mode of variation that a particular principal
component represents, then it would be ideal to use the individual PC-score chart
for process monitoring because this particular individual chart will have the best
power among the charts under study. Unfortunately, this ideal situation is rare in
practice. Moreover, by just monitoring one individual PC chart, one is running a
risk of not being able to detect other types of process changes. One may argue
that we should monitor the process with all K individual charts simultaneously
in order to catch all potential changes. But with the same false-alarm rate � for
each of the individual charts, the overall false-alarm rate is greatly increased to
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Nonlinear Profile Monitoring 1677

1− �1− ��K , which is about K times of the original false-alarm rate. Thus, for being
more practical and conservative, we recommend using the T 2 chart or the combined
chart scheme, because they still have comparably good power to monitor these
particular types of shifts and have a lot better power than the individual chart for
general types of shifts.

It is noted that the degree of smoothness used in the data smoothing step has a
great impact on the result of the subsequent PCA step. The high total explanation
power of the first few principal components demonstrated in this article is in fact
caused by the high degree of smoothness in the smoothed curves. This argument
is supported by our finding that if B-spline regression is used for smoothing, the
number of B-spline bases used is exactly the number of the principal components
with nonzero eigenvalues. So if the underlying profiles (i.e., with no noises) are
fairly smooth as what we have in the hypothetical aspartame example (in which a
data profile is a three-parameter exponential function plus noises), then the data
dimension can be well reduced by applying PCA to the smoothed curves. The
situation in the VDP data is similar. On the other hand, if the underlying profiles
are not very smooth and data profiles are not too much over-smoothed, then it
might take quite a few principal components to explain good enough proportion of
variation. We remark that, regardless of which K, the number of effective principal
components, is chosen, the false-alarm rate for each of our schemes stays at �.
However, the diagnosis of out-of-control conditions would likely become more
complicated when K is large.

The degree of smoothness may affect the effectiveness of the Phase II process
monitoring as well. If the noise levels are about the same for both Phase I and Phase
II profile data, we suggest applying the same degree of smoothness to them. In this
way, the results of Phase II monitoring are somehow not that sensitive to the extent
of smoothing. However, when profiles are over-smoothed to the extent that some
local features are lost, then the process changes associated with these vanished local
features cannot be detected. On the other hand, when profiles are under-smoothed
to an extent, some spurious features may appear in the fitted curves. Unfortunately,
these spurious features may not appear at the same place and may not have the
same form across profiles. Then the estimated in-control model obtained from Phase
I data may not suitable for effective Phase II monitoring. We remark that even for
the case that the in-control process is known or appropriately characterized, the
spurious features in the “smoothed” Phase II profiles caused by under-smoothing
will cause more false alarms to signal.

In practice, when one employs the T 2 chart or the combined chart scheme
and detects significant shifts, it is desirable to find the sources responsible for the
shifts. For this, we suggest to rank the standardized PC-scores and investigate the
corresponding principal components in order, starting from the largest PC score.
With the help of the plots like Figs. 3(a)–(d) and 6(a)–(d) and engineers’ expertise,
the characteristics of the principal components sometimes can reveal potential root
causes of the shifts.

The monitoring of process or product profiles has become a popular and
promising area of research in statistical process control in recent years. At the
same time, functional data analysis (FDA) is also gaining lots of attentions and
applications. We believe many techniques developed for FDA may be extended to
developing new profile monitoring techniques in SPC.
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