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摘    要 

在此篇論文中，我們提出了一個具有可變係數的 AES (Configurable AES)加

解密器，使得在不同的 )(xm 、 )(xc 和 affine transformation 係數選擇之下，可產

生多變的 AES 演算法，藉以進一步的提高系統的安全性。並由於我們所提出之

硬體實現仍能具有高效能的表現，讓此構想可以跟到上網路傳輸速度的進步，運

到用 Gigabit 的光纖與乙太網路安全晶片上。在規格上，除了可調變係數之外，

並支援 128, 192, 256-bit 三種金鑰長度以及 ECB, CBC 兩種加密模式。對於加解

密過程中所需之金鑰，我們也提出了一種可同步計算金鑰的電路，而不需使用額

外的記憶體來儲存金鑰。此外，為了降低硬體成本和提升效率，我們採取

Composite Field Arithmetic 運算來實現演算法的核心 S-Box 部分，並將架構下的

矩陣乘法運算合而為一以縮短運算時間。最後，以強調重複利用的矽智產方式 

(IP-based)實現，並遵守 AMBA AHB Slave 傳輸協定，以助於未來在系統面的開

發。在本論文的成果方面，此 Configurable-AES 加解密器以 UMC 0.18μm CMOS

製程實現，擁有約 81K 的 gate counts，在最高處理速度下，對於 128/192/256 三

種不同金鑰長度下，分別可達到 3.2Gbps、2.67 Gbps 和 2.29 Gbps。 
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ABSTRACT 

In this paper, we implement a configurable AES (C-AES) coprocessor, which 

supports all specified key lengths, such as 128, 192, and 256 bits, and both the ECB 

and CBC operation modes. The round keys for encryption and decryption are 

generated on the fly without any internal memory. Specifically, it provides the 

flexibility to change the parameters of each transformations, such as the irreducible 

polynomial, the affine matrix, the affine constant, and the row vector of the matrix 

used in MixColumns(). These parameters are online changeable, i.e., they are also the 

inputs of the circuit. For increasing the speed, an optimized combination is presented 

in the proposed architecture. By using basis conversion and composite field in 

SubBytes(), and pre-calculating the values of every power of xtime() of constants in 

MixColumns(), the matrix multiplications in SubBytes() and MixColumns() can be 

integrated into a new transformation to reduce the computation path. Furthermore, all 

arithmetic components are also reused for the encryption and the decryption data 

paths. The proposed design has been implemented using a UMC 0.18μm CMOS 

technology. The throughput is about 3.2Gbps for 128-bit keys, 2.67Gbps for 192-bit 

keys, and 2.29Gbps for 256-bit keys, respectively. The total gate count is about 81K. 

This work provides a customized AES cipher to let users change parameters; therefore, 

it can be utilized in the applications requiring customized security, .e.g., the virtual 

private networks (VPN). 
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Chapter 1 
 Introduction 

1.1 Background 

Due to the growth of applications in Internet and wireless communication, more 

and more users require the security measures and devices for protecting the data, 

which users transmit over the channels. Since nobody can guarantee that the 

information will not be stolen over open communication channels, it is a general way 

to encrypt the information before they are transmitted into the channels. There are 

many cryptosystem developed in the past. According to the key type, the 

cryptosystem can be classified into two type systems, such as the symmetric-key and 

asymmetric-key cryptosystem. The concept of cryptosystem is illustrated in Fig. 1.1. 

The plaintext, which will be sent in the transmitter, will be encrypted with the cipher 

key to generate the ciphertext, and the ciphertext, like a random number, is 

transmitted in the insecure channel. Finally, the ciphertext will be received in the 

receiver and be decrypted with the cipher key to recover the plain text. 

 

Fig. 1.1  The concept of cryptosystem. 

The symmetric-key cryptosystem, such as DES, AES [1], and 3DES [2], uses an 

identical key to encrypt the message text and to decrypt the cipher text. The 

asymmetric-key cryptosystem, such as RSA and Elliptic Curve algorithms [3], uses a 

different key for encryption and decryption. Different from the asymmetric-key 

cryptography, the structure of the symmetric-key cryptography is simple. Usually, it 

consists of a block cipher, and by executing it iteratively, the encrypted data is 
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generated. The block cipher can be divided into two parts, the nonlinear and linear 

operations. These operations use the ways of substitution and permutation to cause the 

diffusion and confusion on data, and make the data difficult to be attacked. Because 

the architecture of the symmetric-key cryptography is simple, the cryptography can 

encrypt or decrypt data at high speed and is more suitable for the condition that has a 

large amount of data to be processed. 

In early years, DES algorithm, approved in 1977, was a widespread method for 

this cryptosystem. However, the computer or other calculating machine has become 

more and more powerful in recent years, and DES algorithm is not strong enough. In 

order to replace the DES algorithm, the Advanced Encryption Standard (AES) is 

developed by National Institute of Standards and Technology (NIST). And finally 

NIST was announced that it has selected Rijndael to propose for the AES on 

November 26, 2001 and became effective on May 26, 2002. 

1.2 Motivation 

With the rapid advance in the communication technology, the use of networks 

and communication facilities for transmitting information between people, companies 

or countries has been implanted deeply in our real life. Network processing becomes 

an emerging problem that needs to be dealt with in the computer system. The ability 

to properly serve heavy traffic on Internet through network equipments is now 

provided by a fast network processing chip. The security of communications, 

originally a problem of government, military or privileged organizations, becomes 

one of the major concerns among individuals and corporations. There is an increasing 

demand in network processing, including the security processing.  

Therefore, the goal of our design is providing a security processor that not only 

supports customized security requirement but also has high throughput to cooperate 

with fast network processing chip. In Barkan and Bihamn's [4] research, they pointed 

out that random selecting a dual cipher is desired during a connection. If all data in a 

connection are encrypted by several dual ciphers is possible, a more secure 

connection can be established by Rijndael. In other words, the coefficients of 

irreducible polynomial m(x), MixColumns row vector c(x), and affine transformation 

can be replaced by other values such that various encryption algorithms can be 
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obtained easily. However, AES algorithm with configurable coefficients will cause 

more complexity of implementation, and unsuitable low throughput for high-speed 

Ethernet. Thus, we propose the circuit design of the configurable AES algorithm to 

provide throughput over gigabit per seconds, so it can be implemented in high-speed 

network services for virtual private network (VPN) application. 

However, not all the combinations can generate secure block ciphers against 

existing attacks. Several design criteria must be satisfied to ensure the selected tuple 

can generate proper SubBytes(), and all the inverse function of the four 

transformations can be found. The cryptanalysis of the configurable AES (C-AES) 

algorithm is beyond the scope of our works. Here, only the circuit design of a suitable 

architecture is considered. 

1.3 Organization  

This thesis is organized as follow. AES algorithm is described in Chapter 2. The 

hardware strategy to reduce the area and critical path in our cipher engine is discussed 

in Chapter 3, and the implementation of the 3-in-1 key generator to cooperate with the 

cipher engine is proposed in Chapter 4. Moreover, the top-level architecture of our 

C-AES coprocessor is shown in Chapter 5. In Chapter 6, the design methodology and 

verification based on intellectual property (IP) reuse are introduced, and the 

experimental results and comparison are also given. In Chapter 7, the conclusion of 

this thesis and the future work are listed. 
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Chapter 2 
 AES Algorithm  

2.1 Algorithm Specification 

AES algorithm, defined by NIST of the United States, has been widely accepted 

for replacing DES as the new symmetric encryption algorithm [5]. Originally NIST 

invited proposals for new algorithms for the AES in 1997. Among the 15 preliminary 

candidates, MARS, RC6, Rijndael [6], Serpent and Twofish were announced as the 

finalist candidates in 1999 for further evaluation. Finally in 2000, Rijndael was 

selected as AES algorithm. Actually, AES algorithm adopted Rijndael with the data 

block of length 128 bits and the cipher key of length 128, 192, or 256 bits only. It is 

an efficient algorithm for both hardware and software implementation. A basic pseudo 

code of AES encryption is depicted in Fig. 2.1.  

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[0, Nb-1])

for round = 1 step 1 to Nr–1
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

end for

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

out = state
end

 

Fig. 2.1  Pseudo code of AES encryption. 

Given a cipher input block of length 128 bit, composed by 16 bytes, are mapped 

onto the elements of a 44×  array, called the State [5], in the order 

00a , 10a , 20a , 30a , 01a , 11a ,…, 03a , 13a , 23a , 33a . As demonstrated in Fig. 2.2, the 
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algorithm implements four transformations that operate on elements, rows and 

columns of the array respectively. After an initial round key addition, a round 

function consisting of four transformations, SubBytes(), ShiftRows(), MixColumns() 

and AddRoundKey(), is applied to the State array. The round function is performed 

10 times iteratively for 128-bit key, 12 times for 192-bit key and 14 times for 256-bit 

key. In the last round, MixColumns() is not applied. Four basic transformations of the 

AES algorithm are described briefly as follows [6]:  

1. SubBytes() transformation, also called S-Box, is a non-linear byte substitution that 

operates independently on each byte of the State. Given an element of the State 

array, ija , 3,0 ≤≤ ji , it is treated as the element in )2( 8GF  with the irreducible 

polynomial m(x). The SubBytes() transformation performs an inverse mapping of 

ija  first followed by an affine transformation. The SubBytes() can be expressed as 

the following equation: 

                 )())(( 1 xconstaxAffineb ijij ⊕⋅= −  

where Affine(x), const(x) are two polynomial in GF(2) with the degree less than 8. 

In AES algorithm,  

                 1)( 348 ++++= xxxxxp  

or {11B} in hexadecimal representation, and  

                 1)( 234 ++++= xxxxxAffine  = {1F} 

                 1)( 56 +++= xxxxconst  = {63}. 

respectively. For the inverse of SubBytes() transformation, it can be obtained by 

the inverse of the affine transformation followed by taking the multiplicative 

inverse in )2( 8GF , i.e., 

                 xxxxAffineInv ++= 36)(_  = {4A} 

                 1)(_ 2 += xxconstInv  = {05}. 

2. ShiftRows() transformaion is simply a cyclic shifting operation on the rows of the 

State with different numbers of bytes (offsets). In the State array, Row 0 

( 00a , 01a , 02a , 03a ) is not shifted, Row 1 ( 10a , 11a , 12a , 13a ) is left shifted over 1 byte, 

Row 2 ( 20a , 21a , 22a , 23a ) is left shifted over 2 bytes and Row 3 ( 30a , 31a , 32a , 33a ) 

is left shifted over 3 bytes. The inverse of ShiftRows() is simply the cyclic right 
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shifting the Row 1, Row 2 and Row 3 over 1, 2 and 3 bytes respectively. 

3. MixColumns() transformation is the operation that considers the column of State 

as polynomials over )2( 8GF , and performs the multiplication modulo )1( 4 +x  

with a fixed polynomial c(x). Let 3
3

2
210)( xaxaxaaxa jjjjj +++=  be a 

polynomial with coefficients being the elements of the j-th columns of the State 

array. Let 3
3

2
210)( xcxcxccxc +++= be a polynomial with coefficient 

)2( 8GFci ∈ , 30 ≤≤ i . The matrix multiplication of MixColumns() transformation 

can be expressed as the implementation of each column by c(x), i.e., 

            )()()( xcxaxb jj ⋅=  mod )1( 4 +x , 30 ≤≤ j . 

in AES algorithm, c(x) is defined as 32 }03{}01{}01{}02{ xxx +++ . It can also be 

written as the following matrix multiplication. 
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The inverse of MixColumns() transformation is similarly by multiplying each 

column with a specific multiplication polynomial d(x), which is defined by 

                       01)()( =⋅ xdxc .  

            Thus 32 }0{}0{}09{}0{)( xBxDxExd +++= . 

4. AddRoundKey() transformation is simply an XOR operation that adds a round key 

to the State in each iteration, where the round keys are generated from the key 

expansion procedure. 
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Fig. 2.2  The encryption procedure of AES algorithm. 

The decryption procedure of the AES is basically the inverse of each of the 

transformation (InvSubBytes(),InvShiftRows(),InvMixColumns(), and AddRoundKey() ) 

in reverse order. 

The key expansion procedure in AES algorithm is used to calculate the round 

key for every AddRoundKey() transformation. Basic procedure of the key expansion is 

shown in Fig. 2.3. According to the selected key size, kN  is 4 for 128-bit key, 6 for 

192-bit key and 8 for 256-bit key. Each iW  is a 32-bit word. The first kN  words 

( iW ) are identical to the initial key, while the rest of the round keys are expanded 



 

 8

iteratively by SubBytes() transformation and cyclic byte rotation. The SubWord() is a 

function that return a 4-byte word where each byte is the result of SubBytes() 

transformation to the byte at the corresponding position in the input word. RotWord() 

performs a cyclic left rotation of a given word by 8 bits. Rcon(x) is a constant 

composed by 4 bytes, { iRc ,{00}.{00},{00}}, where i
i xRc =  is the field element in 

)2( 8GF  with polynomial m(x). 

 

Fig. 2.3  Pseudo code of key expansion. 

2.2 Block Cipher Modes of Operation 

In cryptography, a block cipher operates on blocks of fixed length, often 64 or 

128 bits. To encrypt longer messages, several modes of operation, such as Electronic 

Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), and 

Output Feedback (OFB) may be used. In the following, ECB and CBC modes, which 

can be supported by our C-AES coprocessor, are introduced.    

1. Electronic Codebook mode (ECB) 

    When this cipher mode is used, each block is encrypted individually. No 

feedback is used. This means any blocks of plaintext that are identical and are 

either in the same message, or in a different message that is encrypted with the 

same key, will be transformed into identical ciphertext blocks. If the plaintext to 
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be encrypted contains substantial repetition, then it is feasible for the ciphertext to 

be broken one block at a time. Furthermore, it is possible for an unscrupulous 

person to substitute and exchange individual blocks without detection. The 

encryption procedure in ECB mode is described in Fig. 2.4. 

 

Fig. 2.4  The encryption procedure in ECB mode. 

2. Cipher Block Chaining mode (CBC) 

    This cipher mode introduces feedback. Before each plaintext block is 

encrypted, it is combined with the ciphertext of the previous block by a bitwise 

XOR. This ensures that even if the plaintext contains many identical blocks, they 

will each encrypt to a different ciphertext block. As Fig. 2.5 shown, the 

initialization vector (IV) is combined with the first plaintext block by a bitwise 

XOR before the block is encrypted. 

Block Cipher 
Encryption

Plaintext

Ciphertext

Key Block Cipher 
Encryption

Plaintext

Ciphertext

Key Block Cipher 
Encryption

Plaintext

Ciphertext

Key

Initialization 
Vector (IV)

 

Fig. 2.5  the encryption procedure in CBC mode. 
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Chapter 3 
 Hardware-Reduction Strategy for C-AES 

In general, the parameters of each transformation in the original AES algorithm 

are constants, so the optimization methods for hardware implementation of the 

configurable AES algorithm will be based on different consideration from previous 

works. The design of SubBytes() and MixColumns() transformations which provide 

the configurability and excellent trade-off between silicon area and performance will 

become the key point to be evaluated especially. 

3.1 Previous Work 

In AES proposal[5] , the authors describe the cipher Rijndael and treat the 

implementation aspects of the cipher and its inverse. They concentrate on the 

implementation in software on 8-bit processors, typical for current Smart Cards and 

on 32-bit processors, typical for PCs. The several performance comparisons of these 

implementations in software are estimated. 

However, hardware implementations of AES algorithm compare to software 

implementations. They provide more physical security as well as higher speed. Since 

there is a need to perform data encryption on high-speed network services, the 

operation speed is very important. Many architecture optimization approaches are 

employed to speed up the hardware implementations. According to the approaches 

used to implement the SubBytes() transformations (also known as the S-Box) , we can 

divide these into two kinds : look-up table (LUT) based designs and non-LUT based 

designs. 

The traditional LUT methodology is well suited to implement the complex and 

slow operations. Especially, it is cost-effective for the field programmable gate arrays 
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(FPGAs) [7][8][9][10][11][12]. In particular, several approaches merge the SubBytes() 

and MixColumns() transformation into a single LUT for an additional speedup 

[13][14][15][16]. The high speeds can be achieved by a 10-stage fully pipelined LUT 

based Rijndael encryption design [17]. However, the encryption and decryption 

processes need implementing as separate LUTs, and these approaches lead to high 

area requirements.  

Non-LUT approaches employ the combinational logic only to implement the 

multiplicative inverse and the affine transformation of S-Box. Since the inversions in 

Galois Field )2( 8GF  have high hardware complexities, the field elements of 

)2( 8GF  are mapped to the elements in some isomorphic composite fields, in which 

the field operations can be implemented by lower cost subfield operations. Compared 

to the LUT-based approach, the composite field arithmetic has cost-benefit for the 

semi-custom application specific integrated circuit (ASIC) implementations. The 

approaches based on this idea can be found in [18][19][20][21]. In particular, Authors 

of [22][23] have evaluated the sub-pipelined architecture based on optimum 

speed-area ratio in non-feedback modes. 

3.2 S-Box Optimization 

Since our goal is to propose a configurable AES coprocessor. If the LUT-based 

approach is used to implement the S-Box, any change of the Affine matrix, const(x) 

and m(x) will require a replacement for the S-Box values. For example, if we use 

ROM-based LUT, it needs another 8256× -bit ROM to store one set of the S-Box 

values. It is unacceptable area requirement to support parameter configurability; else 

if we use RAM-based LUT to transfer S-Box values, either to re-compute these values 

on chip or off chip will consume a long configuration time. Therefore, we select the 

composite field arithmetic approach to implement S-Box. Since it only requires 

162×  8-bit matrix multiplier to provide the configurability of Affine matrix, const(x)  

and m(x). The area requirement can be reduced to an acceptable area, and the critical 

path also can be modified by combining the data path of sub-functions. In the 

following sections, two techniques, composite field arithmetic and combination of 

SubBytes() and MixColumns(), for hardware-reduction strategy will be introduced. 
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3.2.1 Composite Field Arithmetic 

  We call two pairs { )2( nGF , ∑
−

=

+=
1

0
)(

n

i

i
i

n yqyyQ , )2(GFqi ∈ } and 

{ ))2(( mnGF , ∑
−

=

+=
1

0

)(
m

i

i
i

m xpxxP , )2( n
i GFp ∈ } a composite field [26], if 

    ● )2( nGF  is constructed by )(yQ , which is an irreducible polynomial of 

       degree n over )2(GF ; 

    ● ))2(( mnGF  is constructed by )(xP , which is an irreducible polynomial  

       of degree m over )2( nGF . 

  Moreover, the composite field ))2(( mnGF  is isomorphic to the field )2( kGF  

for k=nm. According the investigation of a lot of fields [23], the following irreducible 

polynomials are selected to extend the composite field of )2( 8GF  in our design.  

⎪⎩

⎪
⎨
⎧

=++=

++=

})1001{()(:))2((

1)(:)2(
2

1
24

4
0

4

ωωxxxqGF

xxxqGF
                     (3.1) 

Additionally, the composite fields can be built iteratively from the lower order 

fields. As shown in [19] , the composite field of )2( 8GF  also can be extended under 

the polynomial basis using these irreducible polynomials: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=++=

=++=

++=

)}1100{()(:)))2(((

)}10{()(:))2((

1)(:)2(

2
2

2
222

2
2

1
22

2
0

2

λλ

φφ

xxxpGF

xxxpGF

xxxpGF

                 (3.2) 

Fig. 3.1 shows the outline of the S-Box implementation by using the composite 

field arithmetic. The multiplicative inversion over a field A is the most costly 

operation. The following 3 steps are adopted to implement this operation. 

1. Map all elements of the field A to a composite field B, using an 

isomorphism functionδ . 

2. Compute the multiplicative inverses over the field B. 

3. Re-map the computation results to A, using the function 1−δ . 



 

 13

δ
))2(( mnGF

)2( nGF
)2(GF

1−δ

δ
))2(( mnGF

)2( nGF
)2(GF

1−δ

 
Fig. 3.1  The outline of the S-Box implementation 

3.2.2 Isomorphism Functions and Basis Transformation 

    The isomorphism function is the transformation matrix to map elements of 

)2( kGF  to ))2(( mnGF . The method for generating the transformation matrix can be 

found in [19][27][28] for the condition where the field polynomials are primitive 

polynomials. Although, the polynomial 1348 ++++ xxxx  {11B} used in the AES 

algorithm is an irreducible polynomial but is not primitive. The exhaustive-search 

-based algorithm in [28] can be used to find the transformation in this case, and the 

primitive irreducible polynomial 1)( 2348 ++++= xxxxxp  {11D} is the better 

choice to be the basis in the composite field [19][23][29].  

The δ  and 1−δ  matrices which map )2( 8GF into ))2(( 24GF  and 

))2(( 24GF  into )2( 8GF  based on the field polynomial in (3.1) are as below. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10100000
11011110
10101100
10101110
11000110
10011110
01010010
01000011

δ       

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

11100010
01000100
01100010
01110110
00111110
10011110
00110000
01110101

1δ    (3.3) 
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The δ  and 1−δ  matrices which map )2( 8GF into )))2((( 222GF  and 

)))2((( 222GF  into )2( 8GF  based on the field polynomial in (3.2) are as below. The 

least significant bits are in the upper left corner. 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦
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δ       

⎥
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⎢
⎢
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⎡
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10110000
01010001

1δ    (3.4) 

However, in order to support the configurability of the irreducible polynomial 

m(x) in the S-Box and to use the previous isomorphism functions directly, it is 

necessary to perform the change of basis on the common )2( 8GF  field. Based on 

the algorithms in [30][31], they proposed the efficiently operation to calculate the 

change-of-basis matrix from Basis 1B  to 0B  on the common field degree. 

Therefore we can convert our field element which modulo another m(x) into the basis 

used in the isomorphism functions. 

  For example, if we suppose that 0B  is the polynomial basis modulo 

1)( 348
0 ++++= xxxxxm {11B}, and 1B is the polynomial basis modulo 

1)( 25678
1 +++++= xxxxxxm {1F5}, which is another irreducible polynomial 

m(x). According the arithmetic operations in [30][31], the change-of-basis from 1B  

to 0B  is Γ  and the inverse matrix from 0B  to 1B  is 1−Γ . 

⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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⎢

⎣

⎡
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11111101
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00100011
00000001

      

⎥
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⎥
⎥
⎥
⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢

⎣

⎡

=Γ−

10110001
11011101
00111101
10101010
11100101
10011111
00111110
00000001

1    (3.5) 
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Therefore, the modification of the S-Box implementation is shown in Fig. 3.2. As 

the irreducible polynomial m(x) is changed, The δ  and 1−δ  are replaced with 

( Γ⋅δ ) and ( 11 −− ⋅Γ δ ). We define the Γ⋅=′ δδ  and 111 −−− ⋅Γ=′ δδ  as the new 

isomorphism functions for configurable S-Box in the following section. Because the 

affine transformation and the isomorphism are all linear operation, it is possible to 

merge them together to reduce the path delay. Thus, the values of ( A⋅′δ ) and 

( 1−′⋅ δA ) can be computed before the encryption or the decryption operations. In fact, 

we process the parameter initialization when the input interface receives the 

parameter data concurrently. The parameter initialization will be described in the 

Chapter 5. Moreover, we can reuse the inversion over the composite field for different 

m(x), Affine matrix and constant(x) easily with the help of parameter initialization. 

1−⋅Γ⋅ Aδ

Γ⋅δ 11 −− ⋅Γ⋅ δA

11 −− ⋅Γ δ

1−⋅Γ⋅ Aδ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅Γ⋅ −

7

1

0

1][][][

a

a
a

Aδ

 

Fig. 3.2  The outline of the configurable S-Box implementation. 

3.2.2 Multiplicative Inversion over the Composite Field 

For the composite field ))2(( nmGF , computing the multiplicative inverses can 

be done as a combination of operations over the subfields )2( mGF , using the 

Extended Euclidean Algorithm described in [32]. Taking our proposed 

implementation as an example, in the composite field ))2(( 24GF  using the 
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irreducible polynomials (3.1), an element can be expressed as lh sxsxS +=)( , where 

hs , ls )2( 4GF∈ , and x is the root of )(1 xq . The multiplicative inverse of lh sxs +  

modulo )(1 xq  is equivalent to B(x) which satisfying the follow equation [33]: 

1)()()()( 1 =+ xSxBxqxA                         (3.6) 

Such A(x) and B(x) can be found by using the extended Euclidean algorithm. Firstly, 

we need to rewrite )(1 xq  in the form of  

)()()()(1 xRxSxQxq +=                          (3.7) 

Q(x) and R(x) are the quotient and remainder polynomial of dividing )(1 xq  by S(x). 

By long division it can be derived as follow: 

111 )1()( −−− ++= hlhh sssxsxQ                      (3.8) 

lhlh ssssxR 11 )1()( −−++= ω                       (3.9) 

Substituting (3.8) and (3.9) into (3.6) and multiplying 2
hs  to both sides of the 

equation, it follows that 

)()())(()( 22
1

2
llhhlhhh ssssxSssxsxqs +++++= ω            (3.10) 

Multiplying 122 )( −++=Θ llhh ssss ω  to both sides of (3.10), we get 

1)())(()(1
2 +++Θ=Θ xSssxsxqs lhhh                 (3.11) 

Since addition and subtraction are the same in the extended field of )2(GF , 

comparing (3.6) and (3.11), it can be observed that 

                  1)())(()(1
2 =++Θ+Θ xSssxsxqs lhhh  

            Θ++Θ==− )()()(1
lhh ssxsxBxS                  (3.12) 

According to (3.12), the multiplicative inversion in )2( 8GF  can be implemented in 

))2(( 24GF  by the architecture illustrated in Fig. 3.3. 
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2x ω×
1−x

×

××

hs

ls
 

Fig. 3.3  The multiplicative inversion based on composite field ))2(( 24GF . 

For introducing the sub-operations in Fig. 3.3, let the elements in )2( 4GF  is 

represented as polynomial of degree 4, i.e., ∑ ∑= =
==

3

0

3

0
)(,)(

i i
i

i
i

i xbxBxaxA where 

)2(, GFba ii ∈ . Therefore, the hardware optimization of these sub-operations can be 

obtained by using the following equations. 

)()()( 022
2

13
3

3
2 aaxaxaaxaxA ⊕++⊕+=            (3.13) 

)()( 012
2

3
3

0 aaxaxaxaxA ⊕+++=×ω                (3.14) 

In particular, the combination of the squarer ( 2x ) and the constant multiplier ( ω× ) 

can be cost-effective as (3.15). 

013
2

3
3

00
2 )()()( axaaxaxaaxA +⊕++⊕=×ω          (3.15) 

And the multiplication of these two field elements can be expressed as (3.16). By 

extracting the common factors in the bit-level expressions, we can apply the 

combination and integration of sub-factors for further area reduction.  

}{

})()()({

})()({

})({)()(

31221300

32123213001

2
3322301102

3
330211203

babababa

xbaabaabaaba

xbaabaababa

xbaabababaxBxA

⊕⊕⊕

+⊕⊕⊕⊕⊕⊕

+⊕⊕⊕⊕⊕

+⊕⊕⊕⊕=×

      (3.16) 

The most complicated operation in Fig. 3.3 is the inversion in )2( 4GF . As the 

definition of the field element in )2( 4GF , the inversion of A(x) is equivalent to 

)(14 xA . Thus, our approach simplifies the equation )()( 141 xAxA =−  directly based 

on the logic optimization techniques as illustrated in (3.17) 
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)}()()()({
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)()(

32103210102

3103321210

2
323230210

3
3213213213
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xAxA
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+⊕⊕⊕⊕⊕

+⊕⊕⊕⊕⊕

+⊕⊕⊕⊕⊕⊕=

=−

   (3.17) 

3.2.3 The Comparison of Multiplicative Inversion 

Observing other approaches, the multiplicative inversion can be implemented by 

different irreducible polynomials to analyze the area cost and path delay. In [19], the 

authors use the (3.2) as their irreducible polynomials, and the implementation of the 

inversion in ))2(( 22GF  is described in Fig. 3.4. 

2x λ×
1−x

×

××

hs

ls

×

×

×

φ×

)2( 2GF

2x φ×
1−x

×

××

)2( 2GF

))2(( 22GF

 

Fig. 3.4  The implementation of the inversion in )))2((( 222GF  
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However in [22], the inversion in ))2(( 22GF  is directly implemented by (3.18) 

using sub-expression sharing, not the multiple decomposition as described in Fig. 3.4. 

Moreover, it has the smallest gate count and the shortest critical path.  

}

{

}{

}{

}{)(

01012122

0301313023123

10220131233

2
12203023123

3
2031233

1

aaaaaaaa

aaaaaaaaaaaaa
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⊕⊕⊕⊕

⊕⊕⊕⊕⊕

+⊕⊕⊕⊕⊕

+⊕⊕⊕⊕

+⊕⊕⊕=−

              (3.18) 

The comparison results of the individual composing modules are listed in Table 

3.1. Observing the results in [19][22], composite field decomposition can reduce the 

hardware complexity significantly when the order of the field involved is large. 

However, for a small field, such as )2( 4GF , further decomposition may not be the 

optimum approach. For this reason, we select the approach that implement the derived 

equation by the common sub-expression sharing techniques in ))2(( 24GF . 

Table 3.1  Performance analysis of the inversion in section 3.2.3. 
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In Table 3.1, the comparison between ours and the similar approach in [34] is 

also illustrated. In [34], a different irreducible polynomial (3.19) is be used to extend 

the composite field ))2(( 24GF . The multiplicative inversion also can be found by 

using the extended Euclidean algorithm, and the authors illustrate a new algorithm of 

common sub-expression elimination (CSE) to optimize the hardware cost of all the 

bit-level equations. Although another irreducible polynomial is applied, the difference 

in the hardware cost is limited.  

   
⎪⎩

⎪
⎨
⎧

==++=

++=

})1001{(),0001()(:))2((

1)(:)2(
2

1
24

4
0

4

ωωγ rxxxqGF

xxxqGF
      (3.19) 

3.3 MixColumns() Optimization 

In general, the multiplication of two elements of )2( 8GF  is required in 

MixColumns(), and it is achieved by repeating xtime(). Since the implementation of 

xtime() function is based on the value of irreducible polynomial m(x), the changeable 

m(x) and MixColumns matrix will increase the complexity of multiplication 

significantly in MixColumns(). 

Therefore, in our proposed approach, after the irreducible polynomial m(x) and 

the MixColumns matrix C are given, the value of )( i
n cxtime  will be calculated in 

advance and be stored in 84×  8-bits registers, where ic  is the entry of 

MixColumns matrix, and }3,2,1,0{∈i . In the following, we take the operation of one 

column (3.20) in MixColumns() as an example to describe our approach.  

⎥
⎥
⎥
⎥
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xsCxt                        (3.20) 

Suppose CAs ×= 00  in (3.20), the calculation of 00 sc ⋅  is achieved by 
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              (3.21) 

In other words, let the elements 0s  is represented as polynomial of degree 8, i.e., 

0001
2

02
3

03
4

04
5

05
6

06
7

070 sxsxsxsxsxsxsxss +++++++= , and (3.21) can rewrite as 

follow. Thus, the multiplication in )2( 8GF  can be implemented by one 8-bit matrix 

multiplier. 
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⎥
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   (3.22) 

In summary, the configurability of MixColumns()/InvMixColumns() is provided 

by pre-computed and stored the 0cC , 1cC , 2cC  and 3cC  in 84×  8-bits registers. 

In addition, MixColumns() and InvMixColumns() transformations can also easily share 

the same hardware by changing the coefficient according to the processing mode. 

3.4 The Hardware Architecture 

In this work, a half-duplex parameterized cipher engine is proposed. The 

encryption and decryption data paths are efficient combined based on the modified 

order in Fig. 3.5.  
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3.4.1 The Direct Architecture 

Its direct architecture is depicted in Fig. 3.6. The solid line is the encryption path, 

and the dash line is the decryption path. The data procedure is a 128-bit architecture, 

i.e., 16 bytes are processed simultaneously. Based on the approach of composite field 

arithmetic, the finite field inverter and the matrix multipliers for field conversion are 

implemented, and the matrix multipliers are exploited to realize the MixColumns( ) / 

InvMixColumns() transformation. 
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Fig. 3.5  The operation order of encryption and decryption 

Although these approaches have the benefit of on-line configurability, they will 

induce longer critical path than the traditional approaches[19][34]. Since the modular 

multiplications in original AES implementations are with constants, they can reduce 
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the area and shorten the path delay efficiently. Therefore, the approach that combines 

the matrix multipliers in the S-Box and MixColumns() transformation is proposed to 

reduce the computation path in our configurable Rijndeal design.  

][δ ][ 1−⋅ Aδ

][ 1−⋅δA ][ 1−δ

⊕

⊕

1−x

⊕

⊕

⊕

 

Fig. 3.6  The direct architecture of parameterized cipher engine in this work. 

3.4.2 The Combination of SubBytes() and MixColumns() 

In this section, the combination of matrix multipliers in SubBytes() and 

MixColumns() is introduced. Several representations are used to explain our approach 

easily. In the following, Key(i) represents the key of i th round, and Key(0) is the 

initial key. According to the composite field arithmetic, SubBytes() transformation is 

rewritten as AcxInvA ⊕⋅′⋅′⋅ − )( 1δδ , where A is the affine matrix, δ ′ , 1−′δ  is the 
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new isomorphism functions described in section 3.2.2, Ac  is const(x), and Inv() is 

multiplicative inversion in )2( 4GF , and )(iRe represents the intermediate values 

produced after round function i times. Thus, the series transformations of encryption 

can be rewrote as follow: 

)0()0( KeyxRe ⊕=                                                 (3.23) 

)())))1(((()( 1 iKeyciRShiftRowsInvAMixColumnsiR Aee ++−⋅′⋅′⋅= − δδ            

11 −≤≤ Nri       (3.24) 

)()))1((()( 1 NrKeycNrRShiftRowsInvANrR Aee ++−⋅′⋅′⋅= − δδ             (3.25) 

where Nr represents number of rounds, which is defined in Sec. 2.1.2. 

Since our goal is to separate the affine transformation and the isomorphism 

function from S-Box and merge them with MixColumns(). In other words, (3.24) is 

modified as (3.26), and the input of next round, )(iRe , will be redefined as 

)()( iRiR ee ⋅′=′ δ , shown in (3.27).  

)()))))1((((()( 11 iKeycAiRShiftRowsInvAMixColumnsiR Aee ⊕⋅⋅′⊕−⋅′⋅′⋅= −− δδδ  

 (3.26) 

)())))1((((
)()))))1(((((

)()(
11

iKeyciRShiftRowsInvsMixColumn
iKeycAiRShiftRowsInvAMixColumns

iRiR

Ae

Ae

ee

⋅′⊕′⊕−′′=
⋅′⊕⋅⋅′⊕−′⋅′⋅⋅′=

⋅′=′
−−

δ
δδδδ

δ

 (3.27) 

Ac′ = AcA ⋅⋅′ −1δ                                (3.28) 

)()( 1 xAMixColumnsxsMixColumn ⋅′⋅⋅′=′ −δδ                  (3.29) 

Moreover, these parameters in (3.27) can be calculated beforehand to reduce the 

computation path delay. In particular, the new MixColumns() can be depicted as (3.29) 

by the change of 0cC ′ , 1cC ′ , 2cC ′ , and 3cC ′ , because the matrix multiplication of 

MixColumns() transformation (3.22) can be rewrite as (3.30). 

0
1

0

0000

)( sAC

sCsc

c

c

⋅′⋅⋅⋅′=

⋅′=⋅′
−δδ

                       (3.30) 
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Although the initial round key addition (3.31) and the final round function (3.32) 

are also differing slightly from the traditional functions, the critical path is still 

dominated by the data path that computes one AES round function. Thus, comparing 

(3.27) and (3.24), the computation path of two 8-bit matrix multiplication is removed 

form the critical path after the optimized combination. The approach to optimize for 

speed requirement is achieved.  

))0(()0( KeyxRe +⋅′=′ δ                                             (3.31) 

)())))1(((()( 1 NrKeycNrRShiftRowsInvANrR Aee ⊕′⊕−′⋅′⋅′⋅=′ − δδ           (3.32) 

Using the same approach, the operation order of decryption in Fig. 3.5 can also 

be represented as )(iRd , showed in (3.33)(3.34)(3.35), and the proof of the modified 

intermediate value, )(iRd′ , is given in (3.37)(3.39)(3.40). 

)()0( NrKeyxRd +=                                               (3.33) 

11))(

))))1((((()( 11

−≤≤−⊕

⊕−⋅⋅′⋅′= −−

NriiNrKey

ciRwsInvShiftRoAInvmnsInvMixColuiR Add δδ
    (3.34) 

)0())))1(((()( 11 KeycNrRwsInvShiftRoAInvNrR Add ⊕⊕−⋅⋅′⋅′= −− δδ       (3.35) 
 

))(

)))1(((()( 111
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−⊕

⋅⋅′⊕−⋅⋅′⋅′= −−− δδδ
(3.36) 
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 )()( 11 xmnsInvMixColuAxsmnInvMixColu ⋅′⋅⋅′=′ −− δδ .          (3.38) 

))(()0( 1 NrKeyxARd +⋅=′ −δ                                         (3.39) 

)}0())))1(((({)( 1 KeycNrRwsInvShiftRoInvNrR Add ⋅′⊕′⊕−′⋅′=′ − δδ          (3.40) 
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Taking the hardware resource shared between the encryption and the decryption 

into consideration, the circuit in Fig. 3.7 is an implementation according to the 

equation of )(iRe′  and )(iRd′ . Note that the matrix multipliers which located at the 

both ends of the multiplicative inversion are separated from the computation path of 

one AES round function. 

⊕

1−x

][δ ′ ][ 1−⋅′ Aδ

⊕

AcA ⋅⋅′ −1δ
⊕

RoundKey⋅′δ

AcA ⋅⋅′ −1δ

][ 1−′⋅ δA ][ 1−′δ

][δ ′ ][ 1−⋅ Aδ

⊕
RoundKey⋅′δ

⊕
][ δ ′⋅A ][δ ′

 

Fig. 3.7  The combined architecture of the parameterized cipher engine. 

Our design is synthesized using the Synopsys Design Version. The critical path is 

detailed in Table 3.2. The multiplicative inversion in )2( 4GF  occupies about 38% of 

the delay time. The second major component is neither MixColumns() nor 

AddRoundKey, but the selectors. The requirement to use selectors is not obvious from 
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the original Rijndael algorithm specification, where they appear as conditional 

branches and data selections. Because of the wide data width, the optimization of the 

data selection is considered carefully. 

Table 3.2  The critical path of the cipher engine 

Component Critical path delay (ns) 

Register output and setup 0.17 
Selector 0.28 
ShiftRows() 0.09 
XOR 0.11 
Inversion in )2( 4GF  1.68 
Selector and XOR 0.31 
MixColumns()/InvMixColumns() 0.55 
Selector 0.14 
Total 3.33 

(0.18μm CMOS standard cell ) 
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Chapter 4 
 3-in-1 Key Expansion Design 

The key generator that generates the forward and reverse round keys for the 

encryption and the decryption is another issue needs to be considered. The on-the-fly 

key expansion is an approach that generates each round key in the operation time of 

each round function. Therefore, different from the pre-computation approach, it is 

unnecessary to use additional memory to store the sub-keys, and can support a better 

trade-off between cost and performance than others. In this approach, the key 

generator for 128-bit key size only is illustrated in [21][25] , and another one for three 

different key size is proposed in [35] . 

In this chapter, the 3-in-1 key generator to cooperate with the cipher engine is 

proposed. Our design will produce one 128-bit round key per clock cycle for three 

different types of key length: 128-bit, 192-bit, and 256-bit. The basic architecture is 

made reference to [35], and an efficient architecture is proposed and the shorter 

critical path and lower area overhead is obtained by optimizing the order of data 

selection. 

4.1 The Data Flow Graph of Key Expansion 

According to AES algorithm specification and the representations in Fig. 4.1 

[35], the data flow graphs for three different types of key length are derived in Fig. 

4.2, Fig. 4.3, and Fig. 4.6. The details are described in the following sections. 

x

y

z

][))(( iRconyRotSBoxxz ⊕⊕=

x

y

z

)(ySBoxxz ⊕=
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yxz ⊕= xz =

 

Fig. 4.1  The representations of operation in key expansion. 

4.1.1 128-bit Key Expansion 

The initial cipher key is denoted by the array of 4-byte words, [w0, w1, w2, w3], 

and a single round function of key expansion is illustrated in Fig. 4.2. Since the 

number of rounds (Nr) is 10 when the key length is 128-bit, the final round key will 

be produced as [w40, w41, w42, w43], and this will be the initial input of key 

expansion in decryption procedure. Because the length of cipher key is equal to the 

length of the State array, it is quite straight forward to generate the round key for each 

clock cycle. 

 

Fig. 4.2  The 128-bit key expansion for the encryption/decryption. 

4.1.2 192-bit Key Expansion 

The data flow is similar to the one described above, but the initial cipher key 

becomes the array of 6-byte words [w0, w1, w2, w3, w4, w5]. Moreover, the 192-bit 

key is concurrently computed for each cycle shown in Fig. 4.3. However, the length 

of round key required by the cipher engine is still 128-bit, not 192-bit. This different 

bit length will cause the incompatible timing diagram. In order to solve this problem, 

the key expansion routine is rearranged such that only one 128-bit round key are 

produced for each time frame. The results for the encryption and the decryption are 

demonstrated in Fig. 4.4 and Fig. 4.5. For the rearranged data flow graph, the new 
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round functions are represented as )(0 wf R  , )(1 wf R , )(2 wf R , and )(3 wf R . 

 
Fig. 4.3  The 192-bit key expansion for the encryption/decryption. 

)(3 wf R

)(2 wfR

)(1 wfR

)(0 wfR

 
Fig. 4.4  The rearrangement of the 192-bit key expansion for the encryption. 

At the start of the key expansion for the encryption, which is shown in Fig. 4.4, 

the initial cipher key applies the round function )(0 wf R  to produce next round key, 

and go on. For the 192-bit cipher key, the number of rounds is 12. Thus, the final 

round key will be represented as [w48, w49, w50, w51], and output from the round 



 

 31

function )(2 wf R . For this reason, note that the first round function for the decryption 

will be )(2 wf R , not )(0 wf R , and the following data flow can be easily found by 

reversing the computing order. 

W12           W13           W14           W15 

W14           W15           W16           W17           W18           W19 
Round Key 4

Round Key 3

Round Key 2

Round Key 1

Decryption

W8           W9           W10           W11 

W4             W5             W6             W7 

W4             W5             W0             W1             W2             W3

)(3 wf R

)(2 wfR

)(1 wfR

)(0 wfR

 

Fig. 4.5  The rearrangement of the 192-bit key expansion for the decryption. 

4.1.2 256-bit Key Expansion 

As described above, Fig. 4.6 shows the original data flow graph.  

 
Fig. 4.6  The 256-bit key expansion for the encryption/decryption. 
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Observing the results of rearrangement shown in Fig. 4.7 and Fig. 4.8, it is more 

similar with 128-bit key expansion. The data flow of the encryption and the 

decryption are almost the same, since the first round function for decryption is 

still )(0 wfR . 

)(2 wfR

)(1 wfR

)(0 wfR

 

Fig. 4.7  The rearrangement of 256-bit key expansion for the encryption. 

W0             W1             W2             W3             

W4            W5            W6            W7 

W8            W9            W10            W11 

W12           W13           W14           W15 W8           W9           W10          W11 Round Key 3

Round Key 2

Round Key 1

W4             W5            W6            W7

Decryption

)(0 wf R

)(1 wf R

)(2 wf R

 
Fig. 4.8  The rearrangement of 256-bit key expansion for the decryption. 

In summary, by properly shuffling the input key for each round function, only 4 

computing elements are used to realize the key expansion for different key length.  
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4.2 The Hardware Architecture of 3-in-1 Key Generator 

Fig. 4.9 shows the hardware architecture of the 3-in-1 key generator based on 

the rearranged data flow graph. LR0, LR1, …, LR7 are 32-bit registers for storing 

the intermediate round key. Each component is illustrated as follow. 

(1) Controller for 3-in-1 key generator: 

Fig. 4.10 shows the state diagram of the controller for 3-in-1 key generator. 

Since the timing diagram of 128-bit key expansion is pure and easy to control, 

the state and transition, which indicate that the 128-bit key length is selected in 

the finite state machine (FSM), are ignored. Based on this FSM, the controller 

can generate the proper control signals for the data flow control.  

0

R0              R1              R2               R3              R4               R5              R6              R7

Data Source Multiplexer

Data Shifting Multiplexer

000

LR0            LR1            LR2             LR3            LR4             LR5            LR6            LR7

Initial keyFinal key
R1 R3 R5 R7 R2 R6  0

Rotword()

Subword()

Ron[i]

x

)(xfk

 

Fig. 4.9  The architecture of 3-in-1 key generator module.  

Specifically, the initial input for key generator to execute the decryption 

procedure is the final round key. Thus, while the reset of coprocessor or the 

change of initial cipher key is launched, the key generator will execute 

encryption procedure once to obtain the final round key and stored it in the 

register beforehand. The data flow control of this function will be managed by 

the main controller shown in Fig. 5.1. 

(2) Data Source Multiplexer : 
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Once the key generator is reloaded, the initial key for the encryption or final 

key for decryption will be selected to take a fresh start.  

(3) Data Shifting Multiplexer : 

It is used to shift the input key of each round function. If the input as the 

array is denoted as [w0, w1, w2, w3, w4, w5, w6, w7], and the function can be 

demonstrated in Table 4.1. 

 
Fig. 4.10  State diagram of the controller for 3-in-1 key generator. 

Table 4.1  The function of data shifting multiplexer in the key expansion 

Key length En/De Data order 

En W0  W1  W2  W3 128-bit  
De W0  W1  W2  W3 
En W4  W5  W0  W1  W2  W3 192-bit  
De W2  W3  W4  W5  W2  W3 
En W4  W5  W6  W7  W0  W1  W2  W3 256-bit  
De W4  W5  W6  W7  W0  W1  W2  W3 
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(4) )(xfk : 

In our proposed design, the S-Box function )(xfk  is divided from the data 

path of round function, and additional XOR gates and multiplexers are used. 

Taking 128-bit key expansion as an example, if the encryption/decryption data 

path is implemented as Fig. 4.11, one combinational loop is introduced. In order 

to eliminate the combination loop, 32-bit XOR gate and two multiplexers are 

used to select the input of )(xfk  in different data path locations. It is shows in 

Table 4.2 

Table 4.2  The input table for the S-Box in key expansion. 

Key length Round function x 

En R3 128-bit  
De R2⊕R3 
En )(0 xfR  R1 
En )(1 xfR   

En )(2 xfR  R5 
En )(3 xfR  R5⊕R6*

De )(0 xfR  R5 

192-bit 

De )(1 xfR   

 

 
Fig. 4.11  The combination loop in 128-bit key expansion data path.  

In particular, the round function )(3 xfR  in the 192-bit key expansion for the 

encryption is the special case. Observing the data path graph in Fig. 4.4, the input of 

S-Box function )(xfk  is “ w17 ”, which can be produced by (4.1). Since the 

implementation of (4.1) will lead to the combinational loop, the (4.2) is utilized, and 

the value of “ w5 ” is computed and stored in “ R6 ” register while the round function 

)(0 xfR  is processed. 

Key length Round function x 

De )(2 xfR  R5 192-bit  
De )(3 xfR  R1 
En )(0 xfR   
En )(1 xfR  R7 
En )(2 xfR  R7 
En )(0 xfR   
De )(1 xfR  R7 

256-bit 

De )(2 xfR  R7 
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151417 www ⊕=                                  (4.1) 

 155151110 wwwww ⊕=⊕⊕=                    (4.2) 

In summary, the critical path in the key generator is illustrated in Table 4.3. The 

SubWord() transformation occupies about 58% of the delay time, and the second 

major component is the sequence of XOR operations. From our test results, the 

generation of sub-keys on the fly creates the longest critical path in our C-AES 

coprocessor. Thus, it is the bottleneck for increasing throughput in our design, and the 

comparison of 3-in-1 key generator is listed in Table 4.4. 

Table 4.3  The critical path of the key generator. 

Component Critical path delay (ns) 

Register output and setup 0.27 
Selector and RotWord() 0.54 
Matrix multiplier 0.48 
Inversion in )2( 4GF  1.36 
Matrix multiplier 0.40 
Selector and XOR 0.79 
Total 3.84 

Table 4.4  Comparison of 3-in-1 key generator 

 Verbauwhede 

[24] 

Su 

[35] 

Ours 

Technology 0.18μm 0.25μm 0.18μm 
Gate counts 60.1K 26.7K 21.7K 
Critical Path 10ns N/A 3.84ns 
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Chapter 5 
The Implementation of C-AES coprocessor 

In this chapter, the top-level architecture of our C-AES coprocessor is introduced. 

It provides the capacity for changing the parameters of each transformation, and the 

original AES algorithm is also included as well. In addition, it also supports all 

specified key lengths, such as 128, 192, and 256 bits, and both ECB and CBC 

operation modes. Moreover, the round keys for the encryption and the decryption are 

generated on the fly without ant internal memory. 

5.1 Top-level View 

The top-level view of C-AES coprocessor is shown in Fig. 5.1. It consists of an 

I/O interface module, three controllers, a key generator, and a cipher engine. The I/O 

interface serves as a data collector through a 32-bit data bus. These controllers 

generate control signals for data transportation, parameter initialization, key 

expansion, and encryption/decryption based on the processing mode. To perform an 

encryption/decryption process initially, the I/O interface first gathers the slice of all 

necessary data, such as parameters, initial cipher key, IV, and plain text/cipher text. 

During the data access operations are manipulated, the parameter initialization is 

processed simultaneously. If the processing mode is decryption, the final round key 

will be computed and stored beforehand by the key generator. Once the parameters 

and initial/final key are ready, the main controller will take over the control and 

execute the encryption or the decryption procedure whenever one 128-bit plaintext is 

ready at the I/O interface. Then, AES round function will be applied for 10, 12, or 14 

times depending on the key length. Finally, the processed data will be retrieved 

through the 32-bit data bus. The encryption/decryption procedure will be executed 
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iteratively until no plain text/cipher text is fed or a new processing mode command is 

received.   

 
Fig. 5.1  Block diagram of the C-AES coprocessor. 

The design of the cipher engine has been shown in section 3.4.2, and the 

architecture was depicted in Fig. 3.7. The SubBytes(), ShiftRows(), MixColumns(), and 

AddRoundKey transformations was rearranged and merged such that the data path 

appears in a more regular way for both encryption and decryption.  

The round keys used during the encryption/decryption procedure are expanded 

on the fly by the key generator, and the architecture of key generator was described in 

Fig. 4.9. It was designed to support all specified key lengths and produces one 128-bit 

round key per clock cycle to cooperate with the cipher engine. 

Table 5.1  Pin definition of C-AES coprocessor 

Signal name Direction Width Description 

CLK I 1 Clock signal. 
RESET I 1 Reset signal. 
Key Change I 1 Reload controller of initial cipher key. 
CBC I 1 1: CBC mode / 0: ECB mode. 
Key Length I 2 00: 128-bit / 01: 192-bit / 10: 256-bit. 
READY I 1 The valid signal of WDATA. 
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WDATA I 32 The write data bus from the bus. 
RDONE O 1 The valid signal of RDATA. 
RDATA O 32 The read data bus to the bus. 
Wait Buffer O 1 Indicates if the I/O buffer is full. 
Working O 1 Indicates if the cipher engine is working. 
OE I 1 Indicates if the slave gets access to the bus. 

The detailed design of other modules, such as the controllers, and I/O interface 

are discussed in the following paragraphs. 

5.2 I/O Interface 

The I/O interface is designed to be compatible with AMBA AHB slave protocol 

in order to make our C-AES coprocessor easily to integrate into a system. The 

32-to-128-bit input buffer caches the 32-bit input data from the data bus to form a 

block of the necessary data, while the output buffer is used to cache the 128-bit output 

block from the cipher engine.  

5.2.1 Input Interface 

In our proposed architecture, besides the initial cipher key, IV, and text, the 

parameters of each transformation also need to be given. The bit number of each 

parameter is listed in Table 5.2. Thus, it requires 10 clock cycles to transmit these 

parameters via 32-bit data bus. 

Table 5.2  The bit number of each changeable coefficient. 

Parameters Bit number (bits) 

isomorphism matrix (δ ′ ) 64 
inverse isomorphism matrix ( 1−′δ ) 64 
affine matrix ( A ) 64 
inverse affine matrix ( 1−A )  64 

affine constant (const(x))  8 
Irreducible polynomial (m(x)) 8 
row vector of C ( ],,,[ 3210 cccc )  32 

Based on the schedule list in Fig. 5.2, the order of data transfer is determined by 
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the processing mode command. Initially, the data is transferred in the order 

parameters, key, IV, text. Thus, the most critical latency, which requires 26 clock 

cycles, occurs in CBC mode, and then, the parameter initialization and 

encryption/decryption process will be performed. If the parameters and key are given 

at the beginning and not changed, the following data transfer of input is only required 

4 clock cycles to transmit text. 

Such a series of data movement and control in the input interface are achieved by 

enable a pointer to contain the address. It is denoted as WADDR in Fig. 5.2, and the 

destination transfer address is assigned by the interface controller. While the last 

transfer address is reached, it also means one 128-bit text block is ready at input 

interface. Once the cipher engine is not working and output buffer is not full, the main 

controller will take over the control and execute the encryption/decryption procedure. 

Otherwise, the signal of “ Wait Buffer ” will be pull HIGH to indicate that the new 

data can not be written to the input interface. 

Param
eters (10 )

K
ey (4/6/8)

IV
 (4)

text (4)

WADDR

Initialization
CBC

Key Length
Change Key

192128 All256 128All 256192 All

Key Length = 128-bit

Key Length = 192-bit

Key Length = 256-bit

Conditions

18 20 22 26 4 8 10 12 16Total cycles
 

Fig. 5.2  Clock distribution in the different transfer modes. 
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5.2.2 Output Interface 

The output interface is used in a transmission that contains two separate 128-bit 

buffers. While one buffer is prepared to receive the next 128-bit output from the 

cipher engine, the data in the other buffer is being sent to the data bus. Also as 

described in above section, only if one of the output buffers is empty, the cipher 

engine will write the encryption/decryption result to the output buffer, read the new 

data from the input buffer and continue the computation.  

5.3 Parameter initialization Engine 

The parameter initialization engine contains computation logics and several 

registers to generate and store the necessary coefficients for our cipher engine and key 

generator. Fig. 5.3 shows the block diagram of this module. There are 8 64–bit 

registers and 3 8-bit registers used to store all necessary parameters listed in Table 

5.3 . 

)(xxtimei

70 ≤≤ i

 
Fig. 5.3  Simple block diagram of parameter initialization engine. 

Since the shortest latency shown in Fig. 5.2 is 18 clock cycles, the parameter 

initialization can spent 18 cycles to compute, and will not introduce more delay into 

latency. Thus, in order to reduce hardware cost, the compatible input order of 

parameters and the architecture, which uses only 8 8-bit matrix multipliers, is 

proposed and the configuration time just matches 18 cycles. The detailed input order 

and computation schedule is listed in Fig. 5.4. In addition, the calculation of 0cC , 1cC , 

2cC , 3cC , are achieved by )( j
i cxtime , 70 ≤≤ i , 30 ≤≤ j , which is described in 
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Section 3.3.  

Table 5.3  The necessary parameters for the cipher engine and the key generator. 
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Fig. 5.4  The computation schedule of parameter initialization. 
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Chapter 6 
Verification and Result Comparison 

In this chapter, the design methodology and verification based on Intellectual 

Property (IP) reuse are introduced. In section 6.1, the rules in IP Qualification (IPQ) 

Guidelines are described. We follow these rules to implement the synthesizable HDL 

code of our design in the front end. Moreover, the chip design flow and verification in 

each level are illustrated in section 6.2 and 6.3. Finally, the experimental results and 

comparison are given in section 6.3.  

6.1 IP-Based Design 

IP-based and platform-based designs are more and more important in SoC 

(System-on-Chip) era. The design time can be decreased to meet the increasing 

complexity on single chip by using the reusable IP, and let the verification more 

efficient by the platform-based design flow. Generally speaking, Silicon Intellectual 

Property (SIP) may be divided into three types described as follow. In our proposed 

design, the soft IP implementation is focused in the front end. 

(1) Soft IP indicates that IP designed in the form of synthesizable HDL code. 

(2) Firm IP indicates that IP delivered in the form of gate-level netlist after synthesis. 

(3) Hard IP indicates that IP delivered generally in the form of GDSII format, which 

is fully placed, routed and optimized for power, size, or performance, and mapped to 

specific process technology. 

6.1.1 IP Qualification Guideline Overview  

The general rules proposed in the IP Qualification (IPQ) guidelines are a set of 

best practices for creating reusable designs for use in an SoC design methodology. 
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There practices are based on several reusable methodology literatures and experiences 

from Steering Committee members of IPQ Alliance in developing reusable designs. 

Reusable macros that have already been designed and verified help users aware of all 

need-to-know issues in advance. If the blocks do not conform to this standard for 

reusable methodology, the efforts for integrating pre-existing blocks into new SoC 

could become excessively high. 

The quality criteria, which have to be taken into account, come from various 

sources: The reuse methodology manual (RMM) contains a set of rules and guidelines 

that help ensure that a design is reusable and technology-independent. IPQ describes 

that language subset of VHDL or Verilog that are synthesizable and verifiable with 

any compliant tool. Further efforts on quality are under way in the Virtual Socket 

Interface Alliance (VSIA). 

6.1.2 Soft IP Design Flow 

The standard soft IP design flow is illustrated in Fig. 6.1. IP creators must follow 

the rules in the IP Qualification guidelines, which are the basis for industry-wide 

solutions to develop reusable and higher quality IP. Here, the IPQ guidelines classify 

the reusable methodology into three categories: 

(1) Design guidelines: 

The design guidelines include coding rules and design issues. Soft IP that follows 

the rules can ensure that the HDL code is readable, portable and reusable. In addition, 

these rules also help achieve optimal synthesis and simulation results. The guidelines 

are categorized as follow: 

    - HDL (Verilog & VHDL) coding guidelines. 

    - Design style guidelines. 

    - Synthesis script guidelines.  

(2) Verification guidelines: 

In verification guidelines, a set of rules are provided which need to be followed 

by IP creators to improve the verification quality of the IP. The guidelines are 

categorized as follow: 
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    - Soft IP verification guidelines. 

    - Coding guidelines in writing testbench codes. 

    - IP prototyping. 

(3) Deliverable guidelines: 

In verification guidelines, the rules ensure that users can obtain all the necessary 

information about this IP. According to the documents and script files provided by IP 

creators, users can rebuild the whole design on their workstations or servers. The 

guidelines are categorized as follow: 

    - General deliverables. 

    - Documentation deliverables. 

    - Design files deliverables. 

    - Verification deliverables. 

    - Hardware related software deliverables. 

    - IP prototyping deliverables. 

The detailed descriptions of these guidelines are in the IP Qualification v1.0. 
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Fig. 6.1  Soft IP design flow. 

6.2 Chip Design Flow 

Our chip design flow is shown in Fig. 6.2. The RTL code is designed and 

simulated in Verilog-XL compiler, and Synopsys Synthesis tool is used to synthesis 

our design with one scan chain and create the gate level netlist. 
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Fig. 6.2  Cell-based design flow 
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Then, the gate level netlist is applied to gate level simulation and compared the 

result with RTL code simulation to check out the correctness. We use Apollo to 

placement and routing, and Calibre to check DRC and LVS result. After post-layout 

level gate simulation is correct, NanoSim is exploited to take transistor level 

simulation. 

6.3 Verification Strategy 

Since a single verification strategy would not sufficiently handle the complexity 

in SoC problems, a multilevel verification approach is developed. It contains several 

functional models to verify a single IP, and will increase the verification speed and 

efficiency at the system level. In the following sections, the implemented functional 

models and verification are described.  

6.3.1 Untimed functional model 

The first complete model of our proposed design is presented in abstract form as 

an untimed functional model (UFM), in which all functionality is implemented with 

MATLAB to verify the correctness of the configurable AES algorithm. Besides, it can 

also produce the test patterns efficiently for following simulation models. The 

MATLAB software model is shown in Fig. 6.3. 

6.3.2 Timing Accurate model 

The timing accuracy of a model illustrates how similarly it behaves to the 

constraints of the final design with respect to time. In our proposed design flow, the 

synthesis tool generates the timing accurate gate-level netlist from the RTL code, and 

the gate propagation delays are analyzed by those constraints defined in the 

specification of UMC 0.18μm CMOS technology. After synthesis, the gate-level 

simulation at the highest estimated operation frequency is needed for verifying the 

correctness of the synthesis result. 
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Fig. 6.3  MATLAB software model. 

6.3.3 FPGA Prototyping 

An FPGA prototyping is implemented on the ARM Integrator/Logic Module 

(LM), which provides a platform for developing digital IPs on the AMBA-based SoC 

design. The ARM Integrator contains ARM CPU, AMBA bus and FPGA. The further 

details about this platform are described in [37], and the system architecture of the 

C-AES coprocessor on the ARM Integrator is shown in Fig. 6.4. Within LM, the 

registers listed in Table 6.1 are mapped to our C-AES coprocessor. Thus, the ARM 

CPU on core module can manipulate our C-AES coprocessor easily by these registers. 

Fig. 6.5 shows that we debug in the ARM Developer Suite (ADS), and a test bench of 

the encryption/decryption loop is simulated. 
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Fig. 6.4  The C-AES coprocessor on the ARM Integrator. 

 
Fig. 6.5  The hardware driver running on the ARM ADS. 
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Table 6.1  Register map of the C-AES coprocessor. 

address Size Function 

0xCC00_0000 9 Each bit represents the control or response signal of the 
C-AES coprocessor separately, such as [RESET, Key 
Change, CBC, Key Length, RDONE, Wait Buffer, 
Working, OE] 

0xcCC0_0004 32 Represents WDATA or RDATA according the direction 
of data transfer. 

6.3.4 Coding Style Rule Check 

A programmable rule checker has been integrated in the IP Qualification 

framework. The SpringSoft nLint is used for static lint checking. The lint tool can find 

errors and warnings in many aspects including naming, synthesis, simulation and DFT 

issues. Common syntax errors, such as typing errors, unmatched bus width, and 

undeclared objects, can be quickly located. Moreover, some logical errors like 

unreachable state can also be found. The lint tool indicates bad coding style that may 

load to poor readability and reusability. Our proposed design passes the lint tool 

checking with all rules defined by IPQ Alliance. 

 
Fig. 6.6  The report of coding style rule check  

6.3.5 Code Coverage 

Generally speaking, a coverage-driven verification methodology makes the 

verification flow more complete and efficient, and coverage report gives us a sense of 
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the good and the bad of our HDL design and test bench. The coverage-driven 

verification can be performed using several coverage metrics. A simple example of 

these metrics is the code coverage. By investigating the code coverage helps the 

designer find untested or redundant code in early stage of development and the quality 

of the stimuli can be measured. Therefore, coverage gives the information that you 

need to know when you are ready for RTL sign-off. With a high coverage score, you 

can have more confidence that the code, in passing, works correctly, and we use 

Verification Navigator to measure the code coverage. The report is listed in Fig. 6.7. 

 
Fig. 6.7  The report of code coverage estimated by Verification Navigator.  

6.3.6 Design for Testability 

Considering the ASIC testing, the scan chain design is inserted. In our design 

flow, the Synopsys DFT compiler is used to conduct in-depth testability analysis at 

the Register Transfer Level (RTL), and to implement the effective test structures at the 

hierarchical block level. The report of fault coverage shown in Fig. 6.8 is calculated 

by TetraMax, and it is 99.98% with 231 test patterns. 
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Fig. 6.8  The report of fault coverage calculated by TetraMax. 

6.3.7 Physical Verification 

In physical verification, Automatic Placement and Routing (APR), on-line 

Design Rule Check (DRC) and Layout Versus Schematic (LVS) are done by Synopsys 

Astro, and off-line DRC and LVS are verified by Mentor Graphics Calibre. Finally, 

the post-layout simulation is passed using Verilog-XL. 

6.4 Results and Comparisons 

The C-AES coprocessor design has been implemented using a UMC 0.18μm 

CMOS technology. It was synthesized using a standard-cell library. The critical path 

of only about 3.84ns shown in Table 6.2 is obtained. 

Table 6.2  The comparison between cipher engine and key generator. 

 Cipher Engine Key Generator 
Gate Counts (K) 38.55 21.68 
Percentage of area size (%) 47.60 26.77 
Critical path (ns)  3.33  3.84 

Fig. 6.9 shows a chip layout of the C-AES coprocessor, and the whole chip has a 

size of around 266.172.1 mm× , with a gate count of around 80,986 gates. The I/O 

interface takes 25.42% of the overall area, since the selectors with wide data width 

and the registers for storing IV, initial cipher key, text, and parameters described in 

Sec. 5.3 are required. The key generator module consumes about 26.77% of the area, 

and the main cipher engine module occupies 47.60% of the overall area. All these 

data are summarized in Table 6.3. 
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2655.1721.1 mm×

 
Fig. 6.9  Chip layout and feature of C-AES coprocessor. 

In Table 6.4, we compare our implementation with some other AISCs presented 

recently. In [12], the authors presented a test chip that provides the AES encryption 

and decryption with different block sizes (128, 192, and 256 bits) and key lengths 

(128, 192, and 256 bits). Here the best performance (with the block size of 128 bits) is 

shown for comparison. Due to its LUT-based implementation of the S-Box, the 

hardware cost is high.  

Table 6.3  Area statistics of C-AES coprocessor. 

Component Gate counts (K) Percentage (%) 
Cipher Engine 38.55 47.60 

- ShiftRows()  0.35  0.43 
- 16 8-bit inverters in )2( 4GF   5.31  6.56 
- 16 8-bit matrix multipliers  4.23  5.22 
- new MixColumns() 18.32 22.62 

Key Generator 21.68 26.77 
Main controller  0.17  0.21 
Input interface 17.72 21.88 
   - Registers  6.61  8.16 

- )(xxtimei   1.23  1.52 
- 4 8-bit Matrix Multipliers   1.02  1.26 

Output interface  2.87  3.54 
   - Registers  1.37  1.69 
total 80.99  100 

Another case is a pipelined design implemented by a 0.35μm CMOS technology 
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[23]. The S-Boxes were implemented based on the work reported in [38], instead of 

LUT-based design. However, theirs supports keys of 128, 192, and 256 bits by the 

same way described in [12], it requires an addition memory to store all the necessary 

round keys in advance. Compared with other designs which generate the round keys 

on the fly, it occupies extensive hardware resources. In addition, it should be noted 

that a pipelined design has the difficulty in maintaining the same throughput rate in a 

feedback cipher mode such as CBC. For example, the performance of their 4-stage 

pipeline design will be scaled down by four in the feedback cipher modes 

In [19], the authors presented a compact architecture for the Irondale algorithm, 

where the hardware resources can be efficiently shared between data encryption, data 

decryption, and even key expansion. Table 6.4 only shows the result for their 128-bit 

data path—using one clock cycle for each round. Moreover, the S-Box is also 

optimized by introducing the composite field )))2((( 222GF . Since the data paths of 

192 and 256-bit key expansion are not suitable for developing the compact hardware, 

their key generator only supports 128-bit key length, and the round keys are generated 

on-the-fly. Under the logic optimization applied to the constant arithmetic 

components, it has a very small gate counts. 

 In [34], another AES-128 module was implemented, and it is very similar to 

above concept [19], but has a smaller area. This is mainly because a new common 

sub-expression elimination (CSE) is applied to reduce the area cost. In addition, they 

also focus on the merge functions of the affine transformation and MixColumns() to 

increasing throughput. In our design, a new combined architecture described in Sec. 

3.4.2 provides a more effective method for high throughput.  

In [35], it is also a configurable AES coprocessor that all the encryption and 

decryption procedures are the same as the original AES algorithm, but m(x), Affine 

matrix, const(x) and the row vector c(x), are all configurable. In their design, 

additional 16 16256× -bit and 16 64-bit ROMs are used to store all alternatives of 

these parameters. For this reason, their design can only spend 3 clock cycles for 

parameter initialization, while our approach, which is described in Sec. 5.3, requires 

at least 18 cycles to receive the input data and compute the parameters. In order to 

support the configurability, they extend the composite field arithmetic approach to 

implement the new data path of round function, which can be processed with a fixed 
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irreducible polynomial in the composite field ))2(( 24GF . In other words, 

MixColumns() transformation is still executed by the multiplier in composite field 

))2(( 24GF . Although the difficulty in providing the configurability is solved, the 

overhand is quite considerable. It is because that additional 32 8-bit matrix multipliers 

for S-Boxes, and 64 8-bit field multipliers for MixColumns() are required in the data 

path of round function. Thus, our approach, which combines the matrix multipliers in 

S-Boxes and MixColumns(), provides a successful solution for high speed and low 

cost. 

Table 6.4  Comparison of AES designs 

 Verbauwhede 

[12] 

Su 

[23] 

Satoh 

[19] 

Hsiao 

[34] 

Su 

[35] 

Ours 

Technology 0.18μm 0.35μm 0.11μm 0.18μm 0.25μm 0.18μm 

Clock Rate 125MHz 200MHz 224MHz 117MHz 66MHz 250MHz 

Throughput 

(Gbps) 

1.6 

1.33 

1.14 

2.381 

2.008 

1.736 

 

2.61 

 

1.49 

0.844 

0.704 

0.603 

3.20 

2.67 

2.28 

Gate Counts 173K 58.430K 21.337K 16.917K 200.5K 80.99K 

Throughput/ 

Gate Count 

(Kbps/gate) 

9.25 

7.68 

6.59 

41.49 

34.98 

30.24 

 

122.23 

 

88.08 

4.21 

3.51 

3.01 

39.51 

32.97 

28.15 

On-the-fly Key 

Generation 
No No Yes Yes Yes Yes 

configurability No No No No Yes Yes 

Although the throughput to gate count ratio is about 3 times smaller to the best 

value reported in Table 6.4, our C-AES coprocessor can easily provide a new 

encryption algorithm by arbitrarily selecting a combination of the parameters, and all 

specified key lengths can be supported. Considering the pre-gate throughput rate and 

functionality, our design is quite competitive. 
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Chapter 7 
Conclusions and Future Work 

7.1 Conclusions 

A Rijndael algorithm with changeable coefficients is designed in this work, and 

we use the on-the-fly key generator instead of memory-based key scheduler to reduce 

the hardware resources. In addition, ECB and CBC operating modes are supported in 

our design. The whole chip has a size of around 266.172.1 mm× , with a gate count of 

around 80,986 gates. The throughput is about 3.2Gbps for 128-bit keys, 2.67Gbps for 

192-bit keys, and 2.29Gbps for 256-bit keys, respectively. The goal of this design is 

providing customized security for virtual private network (VPN) application. In VPN, 

sessions do not need to compatible with standard traffics; hence, the enterprise can 

configure their own coefficients to protect their network. In addition, our designs 

provides throughput over gigabit per seconds, so they are suitable for Fast Ethernet or 

Giga Ethernet. 

7.1 Future Work 

The C-AES coprocessor is also designed to operate in AMBA system with AHB 

specification. It resides in the address map of an ARM compatible processor, and 

serves as a coprocessor to provide encryption computing. Someday, it may become 

the building block of network security processor. To manipulate the data transfer 

efficiently, the future work may lie in developing the AHB bus mastering capability to 

off-load data movement and encryption operations form the host processor. Thus 

similar to the behavior of DMA devices, the data transfer and processing are all done 

by our coprocessor, which leaves the host processor to execute more sophisticated 

flow control or exception handling. 
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