LN VO Tilcz. AES 43 B

2R I ARET B fe R R IR

[P-based design and chipiimplementation of the AES

coprocessor with configurable parameters

e, -
Myt e 7 &

BERE TR E R

hERBATEE L A

IP-based design and chip implementation of the AES

coprocessor with configurable parameter

pI\3

Prd e R4 Student : Tsung-Yao Pai

hERE I ImE K Advisor : Prof. Bing-Fei Wu

A Thesis
Submitted to Department of Electrical and Control Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
n
Electrical and Control Engineering

July 2006

Hsinchu, Taiwan, Republic of China

PERARAY LT A

24 Vi AES 4 f3 % B

ARV ELTRR

£4: g2 a hERE I8l K

@A FTPaH 8 h (] DML

#* %

BB P oo APk - BEG V% %8k AES (Configurable AES)+r
fA%E > ¥ &7 Fam(X) ~ ¢(X)fr aftine transformation G #EH 2 T > F A
5 e AES W 52 o JB e) i gl MENE 2 o dhd YA ergE 2
AWM LG & 2ci WA R B e MR T kﬁé@ﬁi%lsi)im@*& &
] * Gigabit sk gRE T < }&&é—’é’ Dot AR % 1V ez o
+ 4 4% 128, 192, 256-bit = 48 4 #E & 1 2 BCB, CBC & 4 %50 o 430 4 j2
B AR "*%iﬁﬁ’f“ffuﬁi”’"ﬁ Py EGNTE D[R
henze R RE G £ 4% o voe 0 TE MO B A frdk Ao g o AP BB
Composite Field Arithmetic 18 & % 9 3% & 2 o7 S-Box 304 » I #-2 BT
ELRFEE L0 - UFRELFER o R NRALA Y oA S
(IP-based) . > i & = AMBA AHB Slave $#j{s %> 112030 A K &b st o
oo iR e & 3 g > g Configurable-AES 4c f% % % 12 UMC 0.18um CMOS
BWAEF R #F X 81K #hgate counts v kB AJLiE BT o $37 128/192/256 =
B3 E4kE RT > A% F ET] 3.2Gbps ~ 2.67 Gbps fr 2.29 Gbps -

IP-based design and chip implementation of the AES

coprocessor with configurable parameter

Student : Tsung-Yao Pai Advisor : Prof. Bing-Fei Wu

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

In this paper, we implement:a configurable AES (C-AES) coprocessor, which
supports all specified key lengths, such as 128, 192,-and 256 bits, and both the ECB
and CBC operation modes. The round keys for ‘encryption and decryption are
generated on the fly without any ‘internal memory. Specifically, it provides the
flexibility to change the parameters ‘of each transformations, such as the irreducible
polynomial, the affine matrix, the affine constant, and the row vector of the matrix
used in MixColumns(). These parameters are online changeable, i.c., they are also the
inputs of the circuit. For increasing the speed, an optimized combination is presented
in the proposed architecture. By using basis conversion and composite field in
SubBytes(), and pre-calculating the values of every power of xtime() of constants in
MixColumns(), the matrix multiplications in SubBytes() and MixColumns() can be
integrated into a new transformation to reduce the computation path. Furthermore, all
arithmetic components are also reused for the encryption and the decryption data
paths. The proposed design has been implemented using a UMC 0.18um CMOS
technology. The throughput is about 3.2Gbps for 128-bit keys, 2.67Gbps for 192-bit
keys, and 2.29Gbps for 256-bit keys, respectively. The total gate count is about 81K.
This work provides a customized AES cipher to let users change parameters; therefore,
it can be utilized in the applications requiring customized security, .e.g., the virtual

private networks (VPN).

=P

FACRRHANRERE IRl & kR E S BHEREE O
FLFEREAFNE YRS bR FEBF I LT R AT T R T 4
PRERY IR EDFHERSG R T L R B S B LA R
TR L o EF AR AR e [C R R foF A RAT T 3% F osense
Bl i his & > AAF Y ik o

gt R R W R SV REASFLCEL O HEFEE BT
~BE AT m?z%.7—r,3’l'$’gi\.§ﬁlf SR RAEE LT RN AL S G

PR REMRHRIOPEPFLEF R F LB FYRL o B Y
AE Pl Epp @R FEAFT A FR G RESRE

ROEHI R AL TR L - e A R A B R RUE B e BRI

Publication & Award

B At B Chih-Hsu Yen, Tsung-Yao Pai, and Bing-Fei Wu, “The Implementations
of the Reconfigurable Rijndael Algorithm with Throughput of 4.9Gbps,”
Proceedings of the 16th VLSI Design/CAD Symposium, Aug. 2005.

5 b W2005, % - E# 47 & SIPK 3+ s Mg e

v % it 2. % % > A Rijndaelsc %% & 2

Contents

Chapter 1 INtroduCtionccoovviieiie e 1
1.1 BacK@round........ccocuiieiiieiie ettt e e e 1

1.2 MOEIVALION ...ttt ettt ettt e sttt e st e bt e s seeeaee 2

IR0 e 10213 10) | DS 3
Chapter 2 AES AIgOrithmcccoooviiieciee e 4
Chapter 3 Hardware-Reduction Strategy for C-AES..........ccccec.... 10
3.1 Previous WOTK.....o.eiiiiiiiee e 10

3.2 S-BOX OPMIZALIONveieivieeeiiieeeiieeeiee e e eeieeestee et e e st e eseaaeessseeeseseeennneees 11
3.2.1 Composite Field ArithmetiC.........cocvueeeiiieeiiieeiiieeieeee e 12

3.2.2 Isomorphism Functions and Basis Transformation............c...ccc.cc....... 13

3.2.2 Multiplicative Inversion over the Composite Field............cccccuvenee.. 15

3.2.3 The Comparison of Multiplicative Inversion............cccccveeevuveeerureennen. 18

3.3 MixColumns() OptimizZationc.ccueeueeieiueeeiieieeieeere et 20

3.4 The Hardware ATChIteCtUIE.......cccueiiiiiiiiiiiieiieiieeee e 21
3.4.1 The Direct ArchitectUr@ it i e 22

3.4.2 The Combination of SubBytes().and-MixColumns()............ccccuveunenee. 23
Chapter 4 3-in-1 Key EXpansion Design v.......cccoocvevvereeiiesieeninenenns 28
4.1 The Data Flow Graph of Key EXpansion......c......ccoccoeveenieenienienieeniieeneene 28
4.1.1 128-bit Key EXpansion ;i il it esiee e 29

4.1.2 192-bit Key EXpansSIoncufeatueeieniiiniiiieeiieeieesiee e 29

4.1.2 256-bit Key EXpansioncccccccveeeiieeiiiieeeiieesiie e esreeesvee e 31

4.2 The Hardware Architecture of 3-in-1 Key Generator............ccceeevveeernveennee. 33
Chapter 5 The Implementation of C-AES coprocessor............c.c........ 37
ST TOP-IEVEL VIBW ..ottt e e e e e s 37

5.2 T/O INETTACE ...t 39
5.2.1 Input INTETTACEeeeeiiiieiiieeieeeee et e e 39

5.2.2 Output INterfacecvvveeiiieeiieeeiee et 41

5.3 Parameter initialization ENgine..........ccccoeoviieiiieeiiieeieeeeeceeeee e 41
Chapter 6 Verification and Result Comparison..........ccccccevvveivennennen. 43
6.1 TP-Based DESI@N.......cccuiiiiiiieiiieeiie ettt ettt eete et e e saveeesaaeeen 43
6.1.1 IP Qualification Guideline OVErviewcccceeeeviiieeeeciniiee e, 43

6.1.2 Soft IP Design FIOWcc.ooieiiiieiiieiieceeeeeeee et 44

6.2 Chip DeSign FIOWcccuviiiiiiiiiiieeie ettt 46

6.3 Verification StrateEYcceeeciieriiieeiieeeiieeeieeeeieeesteeesreeesveeessseeessseeensneens 48
6.3.1 Untimed functional modeloooiiiiiiiiiiiiieee, 48

6.3.2 Timing Accurate Model...........cccvieiiiieiiiieiieee e 48

6.3.3 FPGA ProtOtyPINg.....ceeeciieeiiieeiee et eieeeeteeeeveeesivee e e eesee e 49

6.3.4 Coding Style Rule CheckK.........cccuveeiiiieiiieciiieceeece e 51

6.3.5 C0de COVEIAZE.....ceeiurreeireeeiieeeieeesteeesteeesereeeaeeeeaeeesaeeesaseeessseeensseas 51

6.3.6 Design for Testability.......cccccuveeiiieeiiieeiieceecee e 52

6.3.7 Physical Verificationcccoeevuiieiiiieniieeiee e 53

6.4 Results and COmMPATiSONSueeerviieeriieeeiieeeiieesieeesieeesreeesveeessreeesareesssseenns 53
Chapter 7 Conclusions and Future WOrK..........c..cccoceevveevieciiee e, 57
7.1 CONCIUSIONS ...ttt ettt ettt et e st e st e b e aeeeaeis 57

7.1 FUtUIE WOTK .. 57

II

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

List of Figures

1.1 The concept of CryptOSYStEML. ...ccvvieeiiieeiiieeeiieeeiie ettt e 1
2.1 Pseudo code of AES encryption.c.cceeveeevieeeiiieeeiieeciee e 4
2.2 The encryption procedure of AES algorithm.cccoooviieiiiiniiniee. 7
2.3 Pseudo code of K€y eXPansion..........cceeecueeeriieeenieeeniieeesieeesieeeeveeeevee e 8
3.1 The outline of the S-Box implementationcccceeeeveeecieeencieeencveeennee. 13
3.2 The outline of the configurable S-Box implementation. 15
3.3 The multiplicative inversion based on composite field GF((2*)?)........ 17
3.4 The implementation of the inversion in GF(((22)%)?) ceovvvevevevvvereenennns 18
3.5 The operation order of encryption and decryption..........cccccveeeeuveeenrennnee. 22
3.6 The direct architecture of parameterized cipher engine in this work.23
3.7 The combined architecture of the parameterized cipher engine............... 26
4.1 The representations of operation in key eXpansion.cccceeeeveeeennennn. 29
4.2 The 128-bit key expansion for the encryption/decryption. 29
4.3 The 192-bit key expansion for the encryption/decryption. 30
4.4 The rearrangement of the 192-bit key expansion for the encryption. 30
4.5 The rearrangement of the 192-bit key €xpansion for the decryption. 31
4.6 The 256-bit key expansion for the encryption/decryption. 31
4.7 The rearrangement of 256-bit key expansion for the encryption. 32
4.8 The rearrangement of 256-bit key expansion for the decryption. 32
4.9 The architecture of 3-in-L key generator module.ccccoeriieniinene 33
4.10 State diagram of the controller for 3-in-1 key generator. 34
4.11 The combination loop in 128-bit key expansion data path..................... 35
5.1 Block diagram of the C-AES COProCEeSSOT......cccveeevirieeiieeeiieerieeeree e 38
5.2 Clock distribution in the different transfer modes...........cccccevieeieenennen. 40
5.3 Simple block diagram of parameter initialization engine. 41
5.4 The computation schedule of parameter initialization.c.ccceuveeneee. 42
6.1 Soft TP design fIOW.ccccviiieiiiiiie e e e 46
6.2 Cell-based design floWceeeviiiiiiiiieiiieeee e e 47
6.3 MATLAB software model..........ccccoeiiiiiiiiiiiniiie e 49
6.4 The C-AES coprocessor on the ARM Integrator...........ccccccveeevveenneennee. 50
6.5 The hardware driver running on the ARM ADS.ccovviviiiieiiieeieee 50
6.6 The report of coding style rule check.........cccoevviiniiieciiiieee, 51
6.7 The report of fault coverage calculated by TetraMax.cccceeevuvennnee. 53
6.8 The report of code coverage estimated by Verification Navigator. 52
6.9 Chip layout and feature of C-AES coprocessor.........cccccveevvveerveeenveennnen. 54

III

Table 3.1
Table 3.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 6.3
Table 6.4

List of Tables

Performance analysis of the inversion in section 3.2.3.........c..cccvvenneee. 19
The critical path of the cipher engineccccoeevvveeviiieiiieeieeeee, 27
The function of data shifting multiplexer in the key expansion 34
The input table for the S-Box in key expansion.ccccceeeeveeerveeennee. 35
The critical path of the key generator.ccceevviveevciieicciieeiieeeee, 36
Comparison of 3-in-1 Key generator..........cccccuveevieeeniieenieeeeiee e 36
Pin definition of C-AES COPrOCESSOT.......cccvieeiiieeiieeeiieeerieeeieeeevee e 38
The bit number of each changeable coefficient.cccccevvevivennennnnne. 39
The necessary parameters for the cipher engine and the key generator.42

Register map of the C-AES COPIOCESSOT.......ccccvviervieeriieeriieeeiee e 51
The comparison between cipher engine and key generator. 53
Area statistics 0f C-AES COPIOCESSOT.ccvvieriieeeiieeeiieeeiie e eevee s 54
Comparison of AES designsccceevciiieiiiiiiiieeciie e 56

v

Chapter 1

Introduction

1.1 Background

Due to the growth of applications in Internet and wireless communication, more
and more users require the security measures and devices for protecting the data,
which users transmit over the channels. Since nobody can guarantee that the
information will not be stolen over open communication channels, it is a general way
to encrypt the information before theysare transmitted into the channels. There are
many cryptosystem developed «in thepast. According to the key type, the
cryptosystem can be classified mto.two type systems; such as the symmetric-key and
asymmetric-key cryptosystem. The coneept of cryptosystem is illustrated in Fig. 1.1.
The plaintext, which will be sent-in thé transfnitter, will be encrypted with the cipher
key to generate the ciphertext, and 'the ‘ciphertext, like a random number, is
transmitted in the insecure channel. Finally, the ciphertext will be received in the

receiver and be decrypted with the cipher key to recover the plain text.

Cipher key Cipher key

Cipher text

Plain text——» Encryption —}(Channel <>—> Decryption > Plain text

Fig. 1.1 The concept of cryptosystem.

The symmetric-key cryptosystem, such as DES, AES [1], and 3DES [2], uses an
identical key to encrypt the message text and to decrypt the cipher text. The
asymmetric-key cryptosystem, such as RSA and Elliptic Curve algorithms [3], uses a
different key for encryption and decryption. Different from the asymmetric-key
cryptography, the structure of the symmetric-key cryptography is simple. Usually, it

consists of a block cipher, and by executing it iteratively, the encrypted data is

1

generated. The block cipher can be divided into two parts, the nonlinear and linear
operations. These operations use the ways of substitution and permutation to cause the
diffusion and confusion on data, and make the data difficult to be attacked. Because
the architecture of the symmetric-key cryptography is simple, the cryptography can
encrypt or decrypt data at high speed and is more suitable for the condition that has a

large amount of data to be processed.

In early years, DES algorithm, approved in 1977, was a widespread method for
this cryptosystem. However, the computer or other calculating machine has become
more and more powerful in recent years, and DES algorithm is not strong enough. In
order to replace the DES algorithm, the Advanced Encryption Standard (AES) is
developed by National Institute of Standards and Technology (NIST). And finally
NIST was announced that it has selected Rijndael to propose for the AES on
November 26, 2001 and became effective on May 26, 2002.

1.2 Motivation

With the rapid advance in the communication technology, the use of networks
and communication facilities for transmitting information between people, companies
or countries has been implanted deeply in ourreal life. Network processing becomes
an emerging problem that needs to be dealt with in the computer system. The ability
to properly serve heavy traffic on Internet through network equipments is now
provided by a fast network processing chip. The security of communications,
originally a problem of government, military or privileged organizations, becomes
one of the major concerns among individuals and corporations. There is an increasing

demand in network processing, including the security processing.

Therefore, the goal of our design is providing a security processor that not only
supports customized security requirement but also has high throughput to cooperate
with fast network processing chip. In Barkan and Bihamn's [4] research, they pointed
out that random selecting a dual cipher is desired during a connection. If all data in a
connection are encrypted by several dual ciphers is possible, a more secure
connection can be established by Rijndael. In other words, the coefficients of
irreducible polynomial m(x), MixColumns row vector ¢(x), and affine transformation

can be replaced by other values such that various encryption algorithms can be

2

obtained easily. However, AES algorithm with configurable coefficients will cause
more complexity of implementation, and unsuitable low throughput for high-speed
Ethernet. Thus, we propose the circuit design of the configurable AES algorithm to
provide throughput over gigabit per seconds, so it can be implemented in high-speed

network services for virtual private network (VPN) application.

However, not all the combinations can generate secure block ciphers against
existing attacks. Several design criteria must be satisfied to ensure the selected tuple
can generate proper SubBytes(), and all the inverse function of the four
transformations can be found. The cryptanalysis of the configurable AES (C-AES)
algorithm is beyond the scope of our works. Here, only the circuit design of a suitable

architecture is considered.

1.3 Organization

This thesis is organized as follow. AES algorithm is described in Chapter 2. The
hardware strategy to reduce the area and critical path in our cipher engine is discussed
in Chapter 3, and the implementation of the 3-in-1 key generator to cooperate with the
cipher engine is proposed in Chapter 4. Moteover, the top-level architecture of our
C-AES coprocessor is shown in Chapter 5. In.Chapter 6, the design methodology and
verification based on intellectual property (IP) reuse are introduced, and the
experimental results and comparison are also given. In Chapter 7, the conclusion of

this thesis and the future work are listed.

Chapter 2
AES Algorithm

2.1 Algorithm Specification

AES algorithm, defined by NIST of the United States, has been widely accepted
for replacing DES as the new symmetric encryption algorithm [5]. Originally NIST
invited proposals for new algorithms for the AES in 1997. Among the 15 preliminary
candidates, MARS, RC6, Rijndael [6], Serpent and Twofish were announced as the
finalist candidates in 1999 for further evaluation. Finally in 2000, Rijndael was
selected as AES algorithm. Actually, AES algorithm adopted Rijndael with the data
block of length 128 bits and the-cipher key of length 128, 192, or 256 bits only. It is
an efficient algorithm for both hardware and software implementation. A basic pseudo

code of AES encryption is depicted inFig: 271

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
byte state[4,Nb]

state = iIn
AddRoundKey(state, w[0, Nb-1])

for round = 1 step 1 to Nr-1

SubBytes(state)

ShiftRows(state)

MixColumns(state)

AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
end for

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, wW[Nr*Nb, (Nr+1)*Nb-17)

out = state
end

Fig. 2.1 Pseudo code of AES encryption.

Given a cipher input block of length 128 bit, composed by 16 bytes, are mapped
onto the elements of a 4x4 array, called the State [5], in the order

Qo > Ayg s Aoy > Bags Qg s By seevs Aoy 5 Ay3 5, 8yy, 55 . As demonstrated in Fig. 2.2, the

4

algorithm implements four transformations that operate on elements, rows and
columns of the array respectively. After an initial round key addition, a round
function consisting of four transformations, SubBytes(), ShiftRows(), MixColumns()
and AddRoundKey(), is applied to the State array. The round function is performed
10 times iteratively for 128-bit key, 12 times for 192-bit key and 14 times for 256-bit
key. In the last round, MixColumns() is not applied. Four basic transformations of the

AES algorithm are described briefly as follows [6]:

1. SubBytes() transformation, also called S-Box, is a non-linear byte substitution that

operates independently on each byte of the State. Given an element of the State
array, a;,0<Ii,] <3, itis treated as the element in GF(2*) with the irreducible
polynomial m(x). The SubBytes() transformation performs an inverse mapping of
a; first followed by an affine transformation. The SubBytes() can be expressed as
the following equation:

b, = (Affine(X)*a;)@ const(x)
where Affine(x), const(x) are.two/polynomial in GF(2) with the degree less than 8.
In AES algorithm,

p(X) =X° +x == X+ 1
or {11B} in hexadecimal representation, and

Affine(x) = x* +x* +x* +x+1 = {IF}

const(x) = x* + x>+ x+1 = {63}.
respectively. For the inverse of SubBytes() transformation, it can be obtained by

the inverse of the affine transformation followed by taking the multiplicative
inverse in GF(2%), i.e.,
Inv_ Affine(x) = X° + x° +x = {4A}

Inv_const(x) =x>+1 = {05}.

2. ShiftRows() transformaion is simply a cyclic shifting operation on the rows of the
State with different numbers of bytes (offsets). In the State array, Row 0
(49,84, ,8y,,8,;) 1s not shifted, Row 1 (a,,,a,,,a,,,a,;) is left shifted over 1 byte,
Row 2 (a,,,a,,,8,,, a,,) is left shifted over 2 bytes and Row 3 (a,,,8;,,8;,,a;;)

is left shifted over 3 bytes. The inverse of ShiftRows() is simply the cyclic right

shifting the Row 1, Row 2 and Row 3 over 1, 2 and 3 bytes respectively.

MixColumns() transformation is the operation that considers the column of State

as polynomials over GF(2*), and performs the multiplication modulo (x* +1)
with a fixed polynomial c(x). Let a;(X)=a,; +a,;Xx+ azsz + a3jx3 be a
polynomial with coefficients being the elements of the j-th columns of the State
array. Let ¢(X)=C,+CX+C,X" +C,x’ be a polynomial with coefficient
¢, € GF(2%),0<i <3. The matrix multiplication of MixColumns() transformation
can be expressed as the implementation of each column by c(x), i.e.,
b; (X) =a;(x)-c(x) mod (x*+1), 0<j<3.
in AES algorithm, c(x) is defined as {02} + {01} x + {01}x* + {03}x’ . It can also be

written as the following matrix multiplication.

boi | To2 03 01 017 |
b | |01:202:003, 01| |a,
b,, | 401 Oks02 03| |a,,
by, |- [03 01°01002] |4 |

The inverse of MixColumns() transformation s similarly by multiplying each
column with a specific multiplication polynomial d(x), which is defined by

c(x)-d(x)=01I.
Thus d(X) = {0E} + {09}x + {OD}x> + {0B}x’.
. AddRoundKey() transformation is simply an XOR operation that adds a round key

to the State in each iteration, where the round keys are generated from the key

expansion procedure.

Encryption Block

128-bit plain text

8¢8$...8¢

AddRoundKey
SubBytes
a'00 aO ‘am‘ ?/ S:BoR "b(m\bo ‘b"”‘ % ShiftRows
a10 al au 13 blO t? b” % MixColumns
a20 aZl a’22 a'23 b20 b21 022 23 AddRoundKey
a‘30 a'31 a32 a33 b30 b31 b32 b33 + + +
80,8910, aosﬂ‘ 899y ‘T&‘oz A3 + + +
a,0a,,|a, a5 left rotation by I > a, SubBytes
a.20 a,,a,, dy, left rotation ‘by 2‘ ‘ 20 a,, ShiftRows
8308383, 3334‘M$ 330 83|83 =
AddRoundKey
80| 20 B, ® C(X) By b, Dy j5] LA, +
01 03 SubBytes
08 alj 13 bl E‘l leOIS ShifiRows
33|18, A3 by, by, D, 223 AddRoundKey
838 a3ja33 by by, b3j333 8&’% 8&
aOO aOl a’OZ a'03 k()() kO k02 k03 bOO bOl bOZ b03
alO all a12 al3 @ kl() kll k12 k13 - bl() 1 b12 bl3
a20 a21a22 a23 k2 k2] k22 k23 b20 b21 b22 b23
a’30 a31 a32 a33 k30 k31 k32 k33 b30 b31 b32 b33

Fig. 2.2 The encryption procedure of AES algorithm.

The decryption procedure of the AES is basically the inverse of each of the
transformation (InvSubBytes(),InvShiftRows(),InvMixColumns(), and AddRoundKey())

in reverse order.

The key expansion procedure in AES algorithm is used to calculate the round
key for every AddRoundKey() transformation. Basic procedure of the key expansion is

shown in Fig. 2.3. According to the selected key size, N, is 4 for 128-bit key, 6 for
192-bit key and 8 for 256-bit key. Each W, is a 32-bit word. The first N, words

(W,) are identical to the initial key, while the rest of the round keys are expanded

iteratively by SubBytes() transformation and cyclic byte rotation. The SubWord() is a
function that return a 4-byte word where each byte is the result of SubBytes()
transformation to the byte at the corresponding position in the input word. RotWord()

performs a cyclic left rotation of a given word by 8 bits. Rcon(x) is a constant

composed by 4 bytes, { Rc;,{00}.{00},{00}}, where Rc, =x' is the field element in

GF(2*) with polynomial m(x).

Fig. 2.3 Pseudo code of key expansion.

2.2 Block Cipher Modes of Operation

In cryptography, a block cipher operates on blocks of fixed length, often 64 or
128 bits. To encrypt longer messages, several modes of operation, such as Electronic
Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), and
Output Feedback (OFB) may be used. In the following, ECB and CBC modes, which

can be supported by our C-AES coprocessor, are introduced.

1. Electronic Codebook mode (ECB)
When this cipher mode is used, each block is encrypted individually. No
feedback is used. This means any blocks of plaintext that are identical and are
either in the same message, or in a different message that is encrypted with the

same key, will be transformed into identical ciphertext blocks. If the plaintext to

8

be encrypted contains substantial repetition, then it is feasible for the ciphertext to
be broken one block at a time. Furthermore, it is possible for an unscrupulous
person to substitute and exchange individual blocks without detection. The

encryption procedure in ECB mode is described in Fig. 2.4.

Plaintext Plaintext Plaintext
[TTTTT] [(TTTTT] [TTTTT]
Block Cipher Block Cipher Block Cipher
Key = Encryption Key = Encryption Key = Encryption
[T T (T T] [T T
Ciphertext Ciphertext Ciphertext

Fig. 2.4 The encryption procedure in ECB mode.
Cipher Block Chaining mode (CBC)

This cipher mode introduces feedback. Before each plaintext block is
encrypted, it is combined with the ciphertext of the previous block by a bitwise
XOR. This ensures that even if the plaintext contains many identical blocks, they
will each encrypt to a different ciphertext ‘block. As Fig. 2.5 shown, the
initialization vector (IV) is combined with the first plaintext block by a bitwise

XOR before the block is encrypted.

Plaintext Plaintext Plaintext
Initialization EEEEE (T
Vector (IV) * *
[TTTTT] >)
1 i
Block Cipher Block Cipher Block Cipher
Key = Encryption Key = Encryption Key = Encryption
[(TTTTT] [(TTTTT] [(TTTTT]
Ciphertext Ciphertext Ciphertext

Fig. 2.5 the encryption procedure in CBC mode.

Chapter 3
Hardware-Reduction Strategy for C-AES

In general, the parameters of each transformation in the original AES algorithm
are constants, so the optimization methods for hardware implementation of the
configurable AES algorithm will be based on different consideration from previous
works. The design of SubBytes() and MixColumns() transformations which provide
the configurability and excellent trade-off between silicon area and performance will

become the key point to be evaluated especially.

3.1 Previous Work

In AES proposal[5] , the ‘authors describe the cipher Rijndael and treat the
implementation aspects of the cipher and its inverse. They concentrate on the
implementation in software on 8-bit processors, typical for current Smart Cards and
on 32-bit processors, typical for PCs. The several performance comparisons of these

implementations in software are estimated.

However, hardware implementations of AES algorithm compare to software
implementations. They provide more physical security as well as higher speed. Since
there is a need to perform data encryption on high-speed network services, the
operation speed is very important. Many architecture optimization approaches are
employed to speed up the hardware implementations. According to the approaches
used to implement the SubBytes() transformations (also known as the S-Box) , we can
divide these into two kinds : look-up table (LUT) based designs and non-LUT based

designs.

The traditional LUT methodology is well suited to implement the complex and

slow operations. Especially, it is cost-effective for the field programmable gate arrays

10

(FPGASs) [7][8][9][10][11][12]. In particular, several approaches merge the SubBytes()
and MixColumns() transformation into a single LUT for an additional speedup
[13][14][15][16]. The high speeds can be achieved by a 10-stage fully pipelined LUT
based Rijndael encryption design [17]. However, the encryption and decryption
processes need implementing as separate LUTs, and these approaches lead to high

area requirements.

Non-LUT approaches employ the combinational logic only to implement the

multiplicative inverse and the affine transformation of S-Box. Since the inversions in

Galois Field GF(2°) have high hardware complexities, the field elements of

GF(2*) are mapped to the elements in some isomorphic composite fields, in which

the field operations can be implemented by lower cost subfield operations. Compared
to the LUT-based approach, the composite field arithmetic has cost-benefit for the
semi-custom application specific integrated circuit (ASIC) implementations. The
approaches based on this idea can be found.in [18][19][20][21]. In particular, Authors
of [22][23] have evaluated the sub-pipelined .architecture based on optimum

speed-area ratio in non-feedback modes.

3.2 S-Box Optimization

Since our goal is to propose a configurable AES coprocessor. If the LUT-based
approach is used to implement the S-Box, any change of the Affine matrix, const(x)
and m(x) will require a replacement for the S-Box values. For example, if we use
ROM-based LUT, it needs another 256 x8-bit ROM to store one set of the S-Box
values. It is unacceptable area requirement to support parameter configurability; else
if we use RAM-based LUT to transfer S-Box values, either to re-compute these values
on chip or off chip will consume a long configuration time. Therefore, we select the
composite field arithmetic approach to implement S-Box. Since it only requires
2x16 8-bit matrix multiplier to provide the configurability of Affine matrix, const(x)
and m(X). The area requirement can be reduced to an acceptable area, and the critical
path also can be modified by combining the data path of sub-functions. In the
following sections, two techniques, composite field arithmetic and combination of

SubBytes() and MixColumns(), for hardware-reduction strategy will be introduced.

11

3.2.1 Composite Field Arithmetic
We call two pairs { GF(2") , Q(y)=y"+nz_1:qiyi , 0, €GF(2) } and

m-1
{GF((2")™"),P(x)=x"+ Z p.x', p, e GF(2") } a composite field [26], if

i=0

e GF(2") is constructed by Q(y), which is an irreducible polynomial of
degree n over GF(2);

e GF((2")™) is constructed by P(x), which is an irreducible polynomial

of degree m over GF(2").

Moreover, the composite field GF((2")™) is isomorphic to the field GF(2*)
for k=nm. According the investigation of a lot of fields [23], the following irreducible
polynomials are selected to extend the composite field of GF(2*) in our design.

{GF(Z“): Qo () = x* +x+1 o)

GF(2Y)"):q,(X)=X* + X+ (0=1{1001})

Additionally, the composite fields-can be built iteratively from the lower order
fields. As shown in [19] , the composite field'of GF(2*) also can be extended under
the polynomial basis using these irreducible polynomials:

GF(2°): P, (X) =X +x+1

GF((2")): p(¥) =X +X+¢ (¢ ={10},) (3.2)

GF(((2*)*)?): p,(X) =X* + X+ 4 (4 =1{1100},)

Fig. 3.1 shows the outline of the S-Box implementation by using the composite
field arithmetic. The multiplicative inversion over a field A is the most costly

operation. The following 3 steps are adopted to implement this operation.

1. Map all elements of the field A to a composite field B, using an

isomorphism function o .

2. Compute the multiplicative inverses over the field B.

3. Re-map the computation results to A, using the functiond ' .

12

isomorphism isomorphism
) 5!

Field A Composite field B Field A

isomorphism
571

isomorphism
)

Field A Composite field B Field A

Fig. 3.1 The outline of the S-Box implementation

3.2.2 Isomorphism Functions and Basis Transformation

The isomorphism function.is the transformation matrix to map elements of
GF(2") to GF((2")"). The method for generating the transformation matrix can be
found in [19][27][28] for the condition where the field polynomials are primitive

polynomials. Although, the polynomial X*+X*4%° +x+1 {11B} used in the AES
algorithm is an irreducible polynomial but'is not primitive. The exhaustive-search

-based algorithm in [28] can be used to find the transformation in this case, and the
primitive irreducible polynomial p(x)=x* +x* +x’> + x> +1 {11D} is the better
choice to be the basis in the composite field [19][23][29].

The & and &' matrices which map GF(2%) into GF((2*)*) and

GF((2*)?) into GF(2*) based on the field polynomial in (3.1) are as below.

11000010 10101 110
01001010 00001100
01111001 01111001
01100011 Llor 111100

S = 5= (3.3)
01110101 01101110
00110101 01000110
01 111011 00100010
000001 0 1 01000 1 1 1

13

The & and &' matrices which map GF(2%) into GF(((2°)*)*) and

GF(((2°)%)?) into GF(2*) based on the field polynomial in (3.2) are as below. The

least significant bits are in the upper left corner.

S O O O O O O

O O = O = = = O

S O O = O O

S P O O O O =

(e BN e I =T s B

— 0 = O O O O

O O = = = =D

e e = T e = T e B

S O O O O o o

S = O = = = O O

_—— = O O O O O

S = O = O O O O

O O O = = = = e

—_ = O = = = O

S = O = O = O =

S = = O = O = O

(3.4)

However, in order to support the configurability of the irreducible polynomial

m(X) in the S-Box and to use the previous isomorphism functions directly, it is

necessary to perform the change of basis on the common GF(2*) field. Based on

the algorithms in [30][31], they proposed the efficiently operation to calculate the

change-of-basis matrix from ‘Basis

B, fo. ‘B, on the common field degree.

Therefore we can convert our field element which medulo another m(x) into the basis

used in the isomorphism functions.

For example, if we suppose that B, is the polynomial basis modulo

m,(X) =x* +x* +x> +x+1 {11B}, and B, is the polynomial basis modulo

m,(X) = X* +x" +x* + x> + x> +1 {1F5}, which is another irreducible polynomial

m(X). According the arithmetic operations in [30][31], the change-of-basis from B,

to B, is I' and the inverse matrix from B, to B, is ',

—_— = O O OO = = =

O == = OO = O

—_ = O = = OO O

_ o = O O = O O

—_ O = O = O O O

O S o N S GE T

— e = O OO = OO O

_ O = = O O O O

I

r'=

14

—_ k. O = m O

S O O = O = = O

O = m O = = = O

O = = = O = = O

—_— e = OO = = O

—_— O = = = O = O

S = O O = O O O

e = T S S a B)

(3.5)

Therefore, the modification of the S-Box implementation is shown in Fig. 3.2. As
the irreducible polynomial m(x) is changed, The & and &' are replaced with
(6-T) and (I''-67"). We define the §'=6-T and o' =I'"-5"' as the new
isomorphism functions for configurable S-Box in the following section. Because the
affine transformation and the isomorphism are all linear operation, it is possible to
merge them together to reduce the path delay. Thus, the values of (J'-A) and
(A-6'™") can be computed before the encryption or the decryption operations. In fact,
we process the parameter initialization when the input interface receives the
parameter data concurrently. The parameter initialization will be described in the
Chapter 5. Moreover, we can reuse the inversion over the composite field for different

m(x), Affine matrix and constant(x) easily with the help of parameter initialization.

Composite
field inverter

-1
*

constant(x)

Composite
field inverter

(P.S.) the matrix multiplier is defined as below -

a, |

a]

i [5]'[r]‘[A71]‘ :
137]

Fig. 3.2 The outline of the configurable S-Box implementation.

3.2.2 Multiplicative Inversion over the Composite Field

For the composite field GF((2™)"), computing the multiplicative inverses can

be done as a combination of operations over the subfields GF(2"), using the
Extended FEuclidean Algorithm described in [32]. Taking our proposed

implementation as an example, in the composite field GF((2*)*) using the

15

irreducible polynomials (3.1), an element can be expressed as S(X) =S,X+S,, where
s,,S, € GF(2%), and X is the root of @,(X). The multiplicative inverse of S X+S§,

modulo ¢,(X) 1is equivalent to B(X) which satisfying the follow equation [33]:
A(X)q, (x)+ B(X)S(x) =1 (3.6)

Such A(X) and B(x) can be found by using the extended Euclidean algorithm. Firstly,

we need to rewrite (], (X) in the form of

9,(¥) =Q()S(X) +R(X) (3.7)

Q(X) and R(x) are the quotient and remainder polynomial of dividing q,(Xx) by S(X).

By long division it can be derived as follow:

Q(x)=s, 'x+(+s,'s,)s, (3.8)

R(X) =@+ (1+S4:8,)S, 'S, (3.9)

Substituting (3.8) and (3.9) into (3.6) and ‘multiplying sh2 to both sides of the

equation, it follows that
$,°0,(X) = (shx+(sh +£5,))S(X) +(8y @ + 5,8, +5,°) (3.10)
Multiplying ® = (Sh2w+ S, S + Slz)"1 to both sides of (3.10), we get
05,70, (X) = O(s, X+ (s, +5,))S(X) +1 (3.11)

Since addition and subtraction are the same in the extended field of GF(2),

comparing (3.6) and (3.11), it can be observed that
®s,°q, (X) + O(s, X + (s, +3,)S(X) =1
ST(X)=B(X) =5,0x+(s, +5,)0 (3.12)

According to (3.12), the multiplicative inversion in GF(2%) can be implemented in

GF((2*)*) by the architecture illustrated in Fig. 3.3.

16

) 4

Fig. 3.3 The multiplicative inversion based on composite field GF((2*)?).

For introducing the sub-operations in Fig. 3.3, let the elements in GF(2*) is

. . 3 i 3 i
represented as polynomial of degree 4, i.e., A(X)= Zi:O a;x ,B(x)= zi:() b,x" where
a;,b, e GF(2). Therefore, the hardware optimization of these sub-operations can be

obtained by using the following equations.
A’(x)=a,x’ +(a, ®a,)x* +a,x+(a, ®a,) (3.13)
A(X)x @=a,X> + a, x>+, X+(a, ®a,) (3.14)

In particular, the combination of the squarer (X~) and the constant multiplier (x @)

can be cost-effective as (3.15). -
A*(X)xo=(a, ®a,)X +a,x’ +(a, ®a,)x+a, (3.15)

And the multiplication of these two field elements can be expressed as (3.16). By
extracting the common factors in the bit-level expressions, we can apply the

combination and integration of sub-factors for further area reduction.

A(X)x B(X) = {a,b, ®a,b, ®ab, ®(a, ®a,)b,}x’ +
{a,b, ®ab, ®(a, ®a,)b, ®(a, ®a,)b,}x* +
{a,b, ®(a, ®a,)b, ®(a, Da,)b, d(a, a,)b, }x+
{a,b, ® a;b, ®a,b, ®ab,}

(3.16)

The most complicated operation in Fig. 3.3 is the inversion in GF(2*). As the
definition of the field element in GF(2*), the inversion of A(X) is equivalent to
A'*(x). Thus, our approach simplifies the equation A~'(x)= A" (x) directly based

on the logic optimization techniques as illustrated in (3.17)

17

AT () =A"(x)
={a,(a,®a,®a,)®(a, ®a, Da,) ®aa,a,x +
{a,(a, ®a,)®a,a,(a, ®a,)®(a, ®a,)ix’ + (3.17)
{a,(a, @a,)®a,(a, ®a,)Da, ®a,a,a,)}x+
{a,(a,®@a,)®a,a,(a,®a,))®(a,®Pa)d(a, ®a,)}

3.2.3 The Comparison of Multiplicative Inversion

Observing other approaches, the multiplicative inversion can be implemented by
different irreducible polynomials to analyze the area cost and path delay. In [19], the

authors use the (3.2) as their irreducible polynomials, and the implementation of the

inversion in GF((2*)*) is described in Fig. 3.4.

(o)

.
Multiple decomposition approach of inversion in GF(2%)

Fig. 3.4 The implementation of the inversion in GF(((2°)*)?)

18

However in [22], the inversion in GF((2%)*) is directly implemented by (3.18)

using sub-expression sharing, not the multiple decomposition as described in Fig. 3.4.

Moreover, it has the smallest gate count and the shortest critical path.

B (x)={a, ®a,a,a, ®a,a,®a,}x +
{a,a,a, ®a,a,a,®a,a, ®a, ®a,a, }x’ +
{a, ®a,a,a, @ajaa,®a,®a,a, Da, X+ (3.18)
{a,a,a, ®a,a,a, Pa,a ®aaa,®a,a, d

a,®aa ®a,aa,da ®a,}

The comparison results of the individual composing modules are listed in Table
3.1. Observing the results in [19][22], composite field decomposition can reduce the

hardware complexity significantly when the order of the field involved is large.
However, for a small field, such as GF(2*), further decomposition may not be the
optimum approach. For this reason, we select the approach that implement the derived

equation by the common sub-expréssion sharing techniques in GF((2*)).

Table 3.1 Performance analysis of the inversion in section 3.2.3.

[19] s [22] ’s . [34] ’s Ours

Modules
Area Delay Area Delay Area Delay Area Delay
x> x A
, 7XOR 4XO0OR 7XOR 4XOR 4XOR 2XOR 2XOR 1XOR
X" xw

Multiplier in
GF(2%) 21XOR+ 4XOR+ 21XOR+ 4XOR+ 17XOR+ 4XOR+ 15XOR+ 4XOR+
GF((2’)) 9AND 1AND 9AND 1AND 16AND 1AND 16AND 1AND

Inverison in

GF(22" 17XOR+ 7XOR+ 14XOR+ 3XOR+ 13XOR+ 3XOR+ 14XOR+ 4XOR+
GF(2)) 9AND 2AND 9AND 2AND 8AND 2AND 11IAND 1AND

Inverison in
GF((2*)?) 95XOR+ 17XOR+ 92XOR+ 13XOR+ 76XOR+ 13XOR+ 69XOR+ 14XOR+
GF((2)")) 36AND 4AND 36AND 4AND 56AND 4AND 59AND 3AND

19

In Table 3.1, the comparison between ours and the similar approach in [34] is

also illustrated. In [34], a different irreducible polynomial (3.19) is be used to extend
the composite field GF((2*)*). The multiplicative inversion also can be found by

using the extended Euclidean algorithm, and the authors illustrate a new algorithm of
common sub-expression elimination (CSE) to optimize the hardware cost of all the
bit-level equations. Although another irreducible polynomial is applied, the difference

in the hardware cost is limited.

{GF(z): g, =x* +x+1 .19

GF((2)%):q,(X)=X>+ X+@ (r=0001),(w=1{1001})

3.3 MixColumns() Optimization

In general, the multiplication of two elements of GF(2%) is required in

MixColumns(), and it is achieved by repeating:xtime(). Since the implementation of
xtime() function is based on the value of irreducible polynomial m(x), the changeable
m(x) and MixColumns matrix ‘will increase the: complexity of multiplication

significantly in MixColumns().

Therefore, in our proposed approachs-after the irreducible polynomial m(x) and
the MixColumns matrix C are given, the value of xtime"(c;) will be calculated in
advance and be stored in 4x8 8-bits registers, where ¢, is the entry of
MixColumns matrix, and i€ {0,1,2,3}. In the following, we take the operation of one

column (3.20) in MixColumns() as an example to describe our approach.

C, C C C||So
C C C C S
tx)=C-s(x)=| > °* " || (3.20)
C2 C3 CO Cl Sz
G C G Cij|s,

Suppose s, =0xCA in (3.20), the calculation of C,-S, is achieved by

20

¢, -(0xCA)=1-xtime’(c,)+1- xtime®(c,) +
0-xtime’(c,) +0- xtime*(c,) +

L . (3.21)
1- xtime(c,)+0-xtime“(c,) +

1-xtime (c,)+0-(c,)

In other words, let the elements S, is represented as polynomial of degree 8§, i.e.,
Sy = Sgr X +SueX° + SpsX* + S, X + 5., X’ + 8, X* +5,X+S,,, and (3.21) can rewrite as
follow. Thus, the multiplication in GF(2*) can be implemented by one 8-bit matrix

multiplier.

9(l) 8(/)

|
I

w w

s B

xtime 7 (c,)
g(l)

w
K

8(/)

Sl(l)

- T (322

In summary, the configurability of MixColumns()/InvMixColumns() is provided

by pre-computed and stored the C ,, C,, C,, and C_; in 4x8 8-bits registers.

In addition, MixColumns() and InvMixColumns() transformations can also easily share

the same hardware by changing the coefficient according to the processing mode.

3.4 The Hardware Architecture

In this work, a half-duplex parameterized cipher engine is proposed. The
encryption and decryption data paths are efficient combined based on the modified

order in Fig. 3.5.

21

3.4.1 The Direct Architecture

Its direct architecture is depicted in Fig. 3.6. The solid line is the encryption path,
and the dash line is the decryption path. The data procedure is a 128-bit architecture,
i.e., 16 bytes are processed simultaneously. Based on the approach of composite field
arithmetic, the finite field inverter and the matrix multipliers for field conversion are

implemented, and the matrix multipliers are exploited to realize the MixColumns() /

InvMixColumns() transformation.

AES Cipher

AddRoundKey()

SubBytes ()

ShiftRows()

MixColumns()

AddRoundKey()

SubBytes()

ShiftRows()

MixColumns()

AddRoundKey()

SubBytes()

ShiftRows()

MixColumns()

AddRoundKeys()

SubBytes()

ShiftRows()

)

AddRoundKey()

AES Inverse Cipher

Normal order

AddRoundKey()

Modified order

AddRoundKey()

InvShiftRows()

InvShiftRows()

InvSubBytes()

InvSubBytes()

AddRoundKey()

AddRoundKey()

InvMixColumns()

InvMixColumns()

InvShiftRows()

InvShiftRows()

InvSubBytes()

InvSubBytes()

AddRoundKey()

AddRoundKey()

InvMixColumns()

InvMixColumns()

InvShiftRows()

InvShiftRows()

InvSubBytes()

InvSubBytes()

AddRoundKey()

AddRoundKey()

InvMixColumns()

InvMixColumns()

InvShiftRows()

InvShiftRows()

InvSubByes()

InvSubByes()

AddRoundKey()

AddRoundKey()

Fig. 3.5 The operation order of encryption and decryption

Although these approaches have the benefit of on-line configurability, they will
induce longer critical path than the traditional approaches[19][34]. Since the modular

multiplications in original AES implementations are with constants, they can reduce

22

the area and shorten the path delay efficiently. Therefore, the approach that combines
the matrix multipliers in the S-Box and MixColumns() transformation is proposed to
reduce the computation path in our configurable Rijndeal design.

Text in
128

128 <_Initial/F inal
4 Round Key

| text Reg |
L2

ShiftRows()

Ve ——

N const(x)\

[4] [6-A"]
Matrix multiplier

2
-1
X SubBytes()
y
[A-67] [67']
Matrix multiplier

const(x)_.ea

D<— Round Key
y

MixColumns()/
InvMixColumns()

Round Key _:9_1 T

Fig. 3.6 The direct architecture of parameterized cipher engine in this work.

3.4.2 The Combination of SubBytes() and MixColumns()

In this section, the combination of matrix multipliers in SubBytes() and
MixColumns() is introduced. Several representations are used to explain our approach
casily. In the following, Key(i) represents the key of i th round, and Key(0) is the

initial key. According to the composite field arithmetic, SubBytes() transformation is

rewritten as A-o'-Inv(6' ™ -X)®c,, where A is the affine matrix, &’,6'" is the

23

new isomorphism functions described in section 3.2.2, ¢, is const(x), and Inv() is
multiplicative inversion in GF(2*), and R,(i)represents the intermediate values

produced after round function i times. Thus, the series transformations of encryption

can be rewrote as follow:
[R,(0) = x@® Key(0) (3.23)
R, (i) = MixColumns(A- 5" - Inv(&” - ShiftRows(R, (i — 1)) + ¢,) + Key(i)

1<i<Nr-1 (3.24)

L R,(Nr)=A-&""-Inv(5'- ShiftRows(R, (Nr —1)))+ ¢, + Key(Nr) (3.25)
where Nr represents number of rounds, which is defined in Sec. 2.1.2.
Since our goal is to separate the affine transformation and the isomorphism

function from S-Box and merge them with MixColumns(). In other words, (3.24) is

modified as (3.26), and the input of next round, R, (i), will be redefined as
R.(i)=0"-R,(i), shown in (3.27).

R, (i) = MixColumns(A- &' - (Inv(ShiftRows(o"- R, (i—1)) ®5'- A~ -c,)) @ Key(i)

(3.26)

R.(i)=0"-R,(i)
= &'-MixColumns(A- 5"~ - (Inv(ShiftRows(R.(i—1)) ®5'- A™ -c,)) @ 5" Key(i)
= MixColumns'(Inv(ShiftRows(R,(i—1))) @ c,)® 5" Key(i)

(3.27)
c,=o6"-A"-c, (3.28)
MixColumns'(x) = &' - MixColumns(A- 8"~ - x) (3.29)

Moreover, these parameters in (3.27) can be calculated beforehand to reduce the
computation path delay. In particular, the new MixColumns() can be depicted as (3.29)

by the change of C/,, C/, C.,, and C/,, because the matrix multiplication of

MixColumns() transformation (3.22) can be rewrite as (3.30).

’ ’
Co " Sy :Cco'so

, . (3.30)
=(0"-Cyy-A-0"7)5,

24

Although the initial round key addition (3.31) and the final round function (3.32)
are also differing slightly from the traditional functions, the critical path is still
dominated by the data path that computes one AES round function. Thus, comparing
(3.27) and (3.24), the computation path of two 8-bit matrix multiplication is removed
form the critical path after the optimized combination. The approach to optimize for

speed requirement is achieved.
R.(0)=0"-(x+ Key(0)) (3.31)
R/(Nr)=A-&""-(Inv(ShiftRows(s’- R (Nr —1))) ®c',) ® Key(Nr) (3.32)

Using the same approach, the operation order of decryption in Fig. 3.5 can also

be represented as R, (i), showed in (3.33)(3.34)(3.35), and the proof of the modified

intermediate value, R} (i), is given in (3.37)(3.39)(3.40).

(R, (0) = x + Key(Nr) (3.33)
R, (i) = InvMixColumns(5'~" - Inw(5' - A7k (InuShiftRows(R, (i—1))®@c,)) (3.34)
® Key(Nr —i)) 1<i<Nr-1 '
(Rs(Nr) = S Inv(s’- A7 - (InvShiftRows(Ry(Nr —1)) ® ¢,)) @ Key(0) (3.39)
R, (i) = InvMixColumns(s'™" - Inv(InvShiftRows(s'- A™ R, (i-1)®5'- A" -c,) (3.36)

® Key(Nr —1))

Ri())=05"-A"-Ry (i)
=o' A" - InvMixColumns(s'~ - Inv(InvShiftRows(s'- A" -R, (i—-1))®5'- A™ -c,)
@ Key(Nr —1))
=o' A" - InvMixColumns(s’ ™ - {Inv(InvShiftRows(s'- A™ - R, (i—-1)) @' A" -c,)
@0 -Key(Nr—i)})
= InvMixColumns'(Inv(InvShiftRows(R} (i—1))) @),)) @ &' - Key(Nr —1i)

(3.37)

InvMixColumns'(x) = 8" - A™" - InvMixColumns(s'™ - x). (3.38)

R, (0) =35 A (x+ Key(Nr)) (3.39)
R, (Nr)=&""- {Inv((InvShiftRows(R}, (N —1)) ® ¢,)) @ &' - Key(0)} (3.40)

25

Taking the hardware resource shared between the encryption and the decryption
into consideration, the circuit in Fig. 3.7 is an implementation according to the
equation of R](i) and R} (i). Note that the matrix multipliers which located at the

both ends of the multiplicative inversion are separated from the computation path of

one AES round function.

Text in
128
Initial / Final
4_
Round Key
[67 [6-AT]

Matrix multiplier
128

A
—/g Input data converter

text Reg
v
ShiftRows()

«— 0
v - 6’ . A_1 . CA
«—o'-A.c,
5=
3 <5 -RoundKe

[A-5"'] [6'"']
MC InvMC
[0] [6-A"]

<+— ' -RoundKey

[A-57] (6]
Matrix multiplier

<— Encryption path

l Output data converter < Decryption path

Cipher out
Fig. 3.7 The combined architecture of the parameterized cipher engine.

Our design is synthesized using the Synopsys Design Version. The critical path is
detailed in Table 3.2. The multiplicative inversion in GF(2*) occupies about 38% of

the delay time. The second major component is neither MixColumns() nor

AddRoundKey, but the selectors. The requirement to use selectors is not obvious from

26

the original Rijndael algorithm specification, where they appear as conditional
branches and data selections. Because of the wide data width, the optimization of the

data selection is considered carefully.

Table 3.2 The critical path of the cipher engine

Component Critical path delay (ns)
Register output and setup 0.17
Selector 0.28
ShiftRows() 0.09
XOR 0.11
Inversion in GF(2*) 1.68
Selector and XOR 0.31
MixColumns()/InvMixColumns() 0.55
Selector 0.14
Total 3.33

(0.18pum CMOS standard cell)

27

Chapter 4
3-in-1 Key Expansion Design

The key generator that generates the forward and reverse round keys for the
encryption and the decryption is another issue needs to be considered. The on-the-fly
key expansion is an approach that generates each round key in the operation time of
each round function. Therefore, different from the pre-computation approach, it is
unnecessary to use additional memory to store the sub-keys, and can support a better
trade-off between cost and performance than others. In this approach, the key
generator for 128-bit key size only is illustrated in [21][25] , and another one for three

different key size is proposed in [35] .

In this chapter, the 3-in-1-key generator to cooperate with the cipher engine is
proposed. Our design will produce one 128-_bit round key per clock cycle for three
different types of key length: 128-bit, 192-bit, and 256-bit. The basic architecture is
made reference to [35], and an efficient architecture is proposed and the shorter
critical path and lower area overhead is obtained by optimizing the order of data

selection.

4.1 The Data Flow Graph of Key Expansion

According to AES algorithm specification and the representations in Fig. 4.1
[35], the data flow graphs for three different types of key length are derived in Fig.
4.2, Fig. 4.3, and Fig. 4.6. The details are described in the following sections.

y Z=x® SBox (Rot (y)) ® Roon[i] 2 Z=x® SBox (y)

28

S 1=x®y p Z=X

Fig. 4.1 The representations of operation in key expansion.

4.1.1 128-bit Key Expansion

The initial cipher key is denoted by the array of 4-byte words, [w0, w1, w2, w3],
and a single round function of key expansion is illustrated in Fig. 4.2. Since the
number of rounds (Nr) is 10 when the key length is 128-bit, the final round key will
be produced as [w40, w41, w42, w43], and this will be the initial input of key
expansion in decryption procedure. Because the length of cipher key is equal to the
length of the State array, it is quite straight forward to generate the round key for each

clock cycle.

wo W1 w2 W3 w4 W5 w6 w7
| |]) !
W4 W5 W6 w17 Wwo W1 w2 W3

Fig. 4.2 The 128-bit key expansion for the encryption/decryption.

4.1.2 192-bit Key Expansion

The data flow is similar to the one described above, but the initial cipher key
becomes the array of 6-byte words [w0, w1, w2, w3, w4, w5]. Moreover, the 192-bit
key is concurrently computed for each cycle shown in Fig. 4.3. However, the length
of round key required by the cipher engine is still 128-bit, not 192-bit. This different
bit length will cause the incompatible timing diagram. In order to solve this problem,
the key expansion routine is rearranged such that only one 128-bit round key are
produced for each time frame. The results for the encryption and the decryption are

demonstrated in Fig. 4.4 and Fig. 4.5. For the rearranged data flow graph, the new

29

round functions are represented as fy (w) , g (w), fg,(W),and fg,(W).

wo \u! w2 w3 w4 w5
| | | | | 4
w6 w7 w8 w9 W10 Wil
Decryption
W6 w7 w8 w9 w10 Wil

Fig. 4.3 The 192-bit key expansion for the encryption/decryption.

Encryption

g

o 4

- ~_—> RoundKey 1

P } N

~_—> Round Key 2

<« 0% |

— Round Key 3

¥

<+-E--

w16 w17 w18 w19 —» Round Key 4

Fig. 4.4 The rearrangement of the 192-bit key expansion for the encryption.

At the start of the key expansion for the encryption, which is shown in Fig. 4.4,

the initial cipher key applies the round function f,, (W) to produce next round key,

and go on. For the 192-bit cipher key, the number of rounds is 12. Thus, the final

round key will be represented as [w48, w49, w50, w51], and output from the round

30

function f,, (w). For this reason, note that the first round function for the decryption
will be f;,(W), not f. (W), and the following data flow can be easily found by

reversing the computing order.

Decryption

W4 w15 17 18 w19
_—— —Round Key 4
—
|
|
|
|
|
15
_—— —»Round Key 3
—
|
|
|
|
|
wil
—— —>Round Key 2
! |
.
|
for (W) i 1
AP, VOV
we w7
yeoi = — —pRoundKey 1
— —_—
S
S E
” | |
fRO(W) ’ i |
- i &
wa e w0 W w2 w3

Fig. 4.5 The rearrangement of the 1 92-b'i't'key expansion for the decryption.

4.1.2 256-bit Key Expansion
As described above, Fig. 4.6 shows the original data flow graph.

wo w1 w2 w3 W4 w5 w6 w7
| | | | | | | Py
w8 W9 w10 Wil w12 w13 wi4 W15
Decryption
w0 wi w2 w3 w4 w5 w6 w7
w8 w9 w10 Wil wi2 wi3 wi4 wis

Fig. 4.6 The 256-bit key expansion for the encryption/decryption.

31

Observing the results of rearrangement shown in Fig. 4.7 and Fig. 4.8, it is more
similar with 128-bit key expansion. The data flow of the encryption and the

decryption are almost the same, since the first round function for decryption is

still foq (W)

wo w7
| '
|
fro(W) i
v
w4 ~—pRound Key 1
- —
|
le (W) i
v
w8 w9 W10 W11) — Round Key 2
—
o
|
|
fra (W) wil
v 82| v
Wiz WI3 aWl4 wﬁffl_fl b B — Round Key 3
Fig. 4.7 The rearrangement of 256-bit key expansion for the encryption.
|
WIZWI W4 WISTUWS Wo w0 w11_’ Round Key 3
“ —
|
|
|
fro(W) !
v
w8 — Round Key 2
— —
&
i
|
fra (W) i
v
w4 ~ — RoundKey 1
Lo —
o
|
|
for(w) wy
|
A\
Wo Wi w2 w3

Fig. 4.8 The rearrangement of 256-bit key expansion for the decryption.

In summary, by properly shuffling the input key for each round function, only 4

computing elements are used to realize the key expansion for different key length.

32

4.2 The Hardware Architecture of 3-in-1 Key Generator

Fig. 4.9 shows the hardware architecture of the 3-in-1 key generator based on
the rearranged data flow graph. LRO, LRI, ..., LR7 are 32-bit registers for storing

the intermediate round key. Each component is illustrated as follow.
(1) Controller for 3-in-1 key generator:

Fig. 4.10 shows the state diagram of the controller for 3-in-1 key generator.
Since the timing diagram of 128-bit key expansion is pure and easy to control,
the state and transition, which indicate that the 128-bit key length is selected in
the finite state machine (FSM), are ignored. Based on this FSM, the controller

can generate the proper control signals for the data flow control.

Final key Initial key

Z
=
(98]
=
W
=
~J
=
[\
=
N

< > Data Source Multiplexer

<4 — o

Ak h 4
@ Data Shifting Multiplexer
Xy
RO R1 R2 R3 R4 RS R6 R7
*—L f (X
Rotword() .
3%‘;
Subword() -
|
LR1 LR2 LR3 LR4 LR5 LR6 LR7

RoﬂéL ‘ LRO

Fig. 4.9 The architecture of 3-in-1 key generator module.

Specifically, the initial input for key generator to execute the decryption
procedure is the final round key. Thus, while the reset of coprocessor or the
change of initial cipher key is launched, the key generator will execute
encryption procedure once to obtain the final round key and stored it in the
register beforehand. The data flow control of this function will be managed by

the main controller shown in Fig. 5.1.

(2) Data Source Multiplexer :

33

Once the key generator is reloaded, the initial key for the encryption or final

key for decryption will be selected to take a fresh start.

(3) Data Shifting Multiplexer :

It is used to shift the input key of each round function. If the input as the

array is denoted as [w0, w1, w2, w3, w4, w5, w6, w7], and the function can be

demonstrated in Table 4.1.

OK
Yo
0
reload
* 1

192
En 1

v

192
En 2

v
ent=11 1]
+0
192
IEnliS

]

}

"INIT

\

KeyLength

| Eindlkey 1 _Change

EnDe

192
De 2INT

0
v
0
reload

+ 1

256

Fig. 4.10 State diagram of the controller for 3-in-1 key generator.

Table 4.1 The function of data shifting multiplexer in the key expansion
Key length | En/De Data order
128-bit En W0 W1 W2 W3
De W0 WI W2 W3
192-bit En W4 W5 WO W1 W2 W3
De W2 W3 W4 W5 W2 W3
256-bit En W4 W5 W6 W7 WO WI W2 W3
De W4 W5 W6 W7 W0 W1 W2 W3

34

) f(x):

In our proposed design, the S-Box function f, (X) is divided from the data

path of round function, and additional XOR gates and multiplexers are used.
Taking 128-bit key expansion as an example, if the encryption/decryption data
path is implemented as Fig. 4.11, one combinational loop is introduced. In order
to eliminate the combination loop, 32-bit XOR gate and two multiplexers are

used to select the input of f, (X) in different data path locations. It is shows in

Table 4.2

Table 4.2 The input table for the S-Box in key expansion.

Key length | Round function X Key length Round function X
128-bit En R3 192-hit De f.,(X) RS
De R2®R3 De f.,(X) R1
192-bit En fg(X) R1 256-bit En fgo(X)
En f;,(X) En fg(x) R7
En fg,(X) R5 En fg,(Xx) R7
En fo,(X) R5 D R6* En fe(X)
De f;,(X) RS De f,,(X) R7
De f;,(X) De f;,(X) R7
[RO R1 R2 R3]

Fig. 4.11 The combination loop in 128-bit key expansion data path.

In particular, the round function f,,(X) in the 192-bit key expansion for the
encryption is the special case. Observing the data path graph in Fig. 4.4, the input of
S-Box function f,(X) is “ w17 ”, which can be produced by (4.1). Since the

implementation of (4.1) will lead to the combinational loop, the (4.2) is utilized, and

the value of “ w5 ”” is computed and stored in “ R6 ” register while the round function

fro(X) is processed.

Dy ALY,

35

w17 =wl4 @ wl5 4.1)
=wl0DwWl1DwWIS=w5®wl5 (4.2)

In summary, the critical path in the key generator is illustrated in Table 4.3. The
SubWord() transformation occupies about 58% of the delay time, and the second
major component is the sequence of XOR operations. From our test results, the
generation of sub-keys on the fly creates the longest critical path in our C-AES
coprocessor. Thus, it is the bottleneck for increasing throughput in our design, and the
comparison of 3-in-1 key generator is listed in Table 4.4.

Table 4.3 The critical path of the key generator.

Component Critical path delay (ns)
Register output and setup 0.27
Selector and RotWord() 0.54
Matrix multiplier 0.48
Inversion in GF(2%) 1.36
Matrix multiplier 0.40
Selector and XOR 0.79
Total 3.84

Table 4.4 Comparison-of3-in-1-key generator

Verbauwhede Su Ours
[24] [35]
Technology 0.18um 0.25um 0.18um
Gate counts 60.1K 26.7K 21.7K
Critical Path 10ns N/A 3.84ns

36

Chapter 5

The Implementation of C-AES coprocessor

In this chapter, the top-level architecture of our C-AES coprocessor is introduced.
It provides the capacity for changing the parameters of each transformation, and the
original AES algorithm is also included as well. In addition, it also supports all
specified key lengths, such as 128, 192, and 256 bits, and both ECB and CBC
operation modes. Moreover, the round keys for the encryption and the decryption are

generated on the fly without ant internal memoty:

5.1 Top-level View

The top-level view of C-AES‘coprocessoris'shown in Fig. 5.1. It consists of an
I/O interface module, three controllers, a key generator, and a cipher engine. The I/O
interface serves as a data collector through a 32-bit data bus. These controllers
generate control signals for data transportation, parameter initialization, key
expansion, and encryption/decryption based on the processing mode. To perform an
encryption/decryption process initially, the I/O interface first gathers the slice of all
necessary data, such as parameters, initial cipher key, IV, and plain text/cipher text.
During the data access operations are manipulated, the parameter initialization is
processed simultaneously. If the processing mode is decryption, the final round key
will be computed and stored beforehand by the key generator. Once the parameters
and initial/final key are ready, the main controller will take over the control and
execute the encryption or the decryption procedure whenever one 128-bit plaintext is
ready at the I/O interface. Then, AES round function will be applied for 10, 12, or 14
times depending on the key length. Finally, the processed data will be retrieved
through the 32-bit data bus. The encryption/decryption procedure will be executed

37

iteratively until no plain text/cipher text is fed or a new processing mode command is

received.
CLK —_) I/O interface
RESET =T
Key Change —— Register - #
CBC 4 map A i
Key Length ==, ¢
\I){vl;:)iDTYA - Parameter Cipher 3-in-1
- Initialization Engine Key Generator
Enoi
RDONE ¢ neine
RDATA 4
Wait Buffer ¢ Interface Main Key Expansion
Working ¢ Controller Controller Controller
OE —_)

Fig. 5.1 Block diagram of'the C-AES coprocessor.

The design of the ciphet engine has been shown in section 3.4.2, and the
architecture was depicted in Fig=3.7..The SubBytes(), ShiftRows(), MixColumns(), and
AddRoundKey transformations was rearranged ‘and merged such that the data path

appears in a more regular way for both encryption and decryption.

The round keys used during the encryption/decryption procedure are expanded
on the fly by the key generator, and the architecture of key generator was described in
Fig. 4.9. It was designed to support all specified key lengths and produces one 128-bit

round key per clock cycle to cooperate with the cipher engine.

Table 5.1 Pin definition of C-AES coprocessor

Signal name Direction | Width Description
CLK I 1 Clock signal.
RESET I 1 Reset signal.
Key Change I 1 Reload controller of initial cipher key.
CBC I 1 1: CBC mode / 0: ECB mode.
Key Length I 2 00: 128-bit/ 01: 192-bit / 10: 256-bit.
READY I 1 The valid signal of WDATA.

38

WDATA I 32 The write data bus from the bus.

RDONE O 1 The valid signal of RDATA.

RDATA 0) 32 The read data bus to the bus.

Wait Buffer O 1 Indicates if the I/O buffer is full.

Working O 1 Indicates if the cipher engine is working.
OE I 1 Indicates if the slave gets access to the bus.

The detailed design of other modules, such as the controllers, and I/O interface

are discussed in the following paragraphs.

5.2 I/O Interface

The I/O interface is designed to be compatible with AMBA AHB slave protocol
in order to make our C-AES coprocessor easily to integrate into a system. The
32-to-128-bit input buffer caches the 32-bit input data from the data bus to form a
block of the necessary data, while the outputsbuffer is used to cache the 128-bit output

block from the cipher engine.

5.2.1 Input Interface

In our proposed architecture, besides the initial cipher key, IV, and text, the
parameters of each transformation also need to be given. The bit number of each
parameter is listed in Table 5.2. Thus, it requires 10 clock cycles to transmit these

parameters via 32-bit data bus.

Table 5.2 The bit number of each changeable coefficient.

Parameters Bit number (bits)

isomorphism matrix (") 64
inverse isomorphism matrix (5'") 64
affine matrix (A) 64
inverse affine matrix (A™) 64
affine constant (const(x))

Irreducible polynomial (m(x)) 8
row vector of C ([c,,¢,,C,,C;]) 32

Based on the schedule list in Fig. 5.2, the order of data transfer is determined by

39

the processing mode command. Initially, the data is transferred in the order
parameters, key, IV, text. Thus, the most critical latency, which requires 26 clock
cycles, occurs in CBC mode, and then, the parameter initialization and
encryption/decryption process will be performed. If the parameters and key are given
at the beginning and not changed, the following data transfer of input is only required
4 clock cycles to transmit text.

Such a series of data movement and control in the input interface are achieved by
enable a pointer to contain the address. It is denoted as WADDR in Fig. 5.2, and the
destination transfer address is assigned by the interface controller. While the last
transfer address is reached, it also means one 128-bit text block is ready at input
interface. Once the cipher engine is not working and output buffer is not full, the main
controller will take over the control and execute the encryption/decryption procedure.
Otherwise, the signal of “ Wait Buffer ” will be pull HIGH to indicate that the new

data can not be written to the input interface.

Conditions
Initialization v v v 4
CBC v v
Key Length 128 192 256 All~All 128 192 256 All
Change Key v v v v
g
§
WADDR | 2
g
-
.
3 a
§ = v \ Key Length = 128-bit
1 =
§ 2 v . Key Length = 192-bit
v v v Key Length = 256-bit
<
E
el
&t
=
4 Y \ 4 Y. Y . A 4 \ 4

Total cycles 18 20 22 26 4 8 10 12 16

Fig. 5.2 Clock distribution in the different transfer modes.

40

5.2.2 Output Interface

The output interface is used in a transmission that contains two separate 128-bit
buffers. While one buffer is prepared to receive the next 128-bit output from the
cipher engine, the data in the other buffer is being sent to the data bus. Also as
described in above section, only if one of the output buffers is empty, the cipher
engine will write the encryption/decryption result to the output buffer, read the new

data from the input buffer and continue the computation.

5.3 Parameter initialization Engine

The parameter initialization engine contains computation logics and several
registers to generate and store the necessary coefficients for our cipher engine and key
generator. Fig. 5.3 shows the block diagram of this module. There are 8 64-bit
registers and 3 8-bit registers used to store,all necessary parameters listed in Table

53.

32
WDATA ~) |64 64 Para{neter
g — Registers
) Matrix ==
Multiplier “—)
64
2.0
4 Parameters for each
EnDe . a f .
PADDR) . transkormatlon
64 v
» xtime'(x) —
0<i<7

Fig. 5.3 Simple block diagram of parameter initialization engine.

Since the shortest latency shown in Fig. 5.2 is 18 clock cycles, the parameter
initialization can spent 18 cycles to compute, and will not introduce more delay into
latency. Thus, in order to reduce hardware cost, the compatible input order of
parameters and the architecture, which uses only 8 8-bit matrix multipliers, is
proposed and the configuration time just matches 18 cycles. The detailed input order

and computation schedule is listed in Fig. 5.4. In addition, the calculation of C_,,C,,,

C,,.C,;, are achieved by xtime'(c;), 0<i<7, 0<j<3, which is described in

41

Section 3.3.

Table 5.3 The necessary parameters for the cipher engine and the key generator.

Parameters Bit Number (bits)
Encryption Decryption
o' 64
S5 64
A.5"" 64
5-A" 64
5-Cy-A-5" 5A"-C,-0"" 64
5-C,-A-5" 5 -A.C,-0"" 64
5-C, A5 5-A".C,-0"" 64
5 -C,- A0 §-A"-C,-8"" 64
m(x) 8
Ch 8
5-A-c,
C tati
Input Order : orPEs -
Encryption Decryption
CA9 m(X) 1
CO’CI’CZ’C3 2 :>Cc0’Ccl’Cc2’Cc3
3
A'l 4
5
s |6 = oA
7 = SA'Ca
o
9
A |10 = A5
11| = 6C, = SA'C,,
12| = 6C, = SA"'C,
13| = 0C,, = J5A'C,,
14| = 6C,, = §A'C,
15| =6C,,A"" =5A'Co"
16| = C, A" =5A'C, 0"
17| = 6C,LAS8"" =5A'C,5"
18| = 6C, A8 =5A'C,L5"

Fig. 5.4 The computation schedule of parameter initialization.

42

Chapter 6
Verification and Result Comparison

In this chapter, the design methodology and verification based on Intellectual
Property (IP) reuse are introduced. In section 6.1, the rules in IP Qualification (IPQ)
Guidelines are described. We follow these rules to implement the synthesizable HDL
code of our design in the front end. Moreover, the chip design flow and verification in
each level are illustrated in section 6.2 and 6.3. Finally, the experimental results and

comparison are given in section 6.3.

6.1 IP-Based Design

IP-based and platform-based designs are more and more important in SoC
(System-on-Chip) era. The design time can be decreased to meet the increasing
complexity on single chip by using ‘the reusable IP, and let the verification more
efficient by the platform-based design flow. Generally speaking, Silicon Intellectual
Property (SIP) may be divided into three types described as follow. In our proposed

design, the soft IP implementation is focused in the front end.

(1) Soft IP indicates that IP designed in the form of synthesizable HDL code.

(2) Firm IP indicates that IP delivered in the form of gate-level netlist after synthesis.
(3) Hard IP indicates that IP delivered generally in the form of GDSII format, which
is fully placed, routed and optimized for power, size, or performance, and mapped to

specific process technology.

6.1.1 IP Qualification Guideline Overview

The general rules proposed in the IP Qualification (IPQ) guidelines are a set of

best practices for creating reusable designs for use in an SoC design methodology.

43

There practices are based on several reusable methodology literatures and experiences
from Steering Committee members of IPQ Alliance in developing reusable designs.
Reusable macros that have already been designed and verified help users aware of all
need-to-know issues in advance. If the blocks do not conform to this standard for
reusable methodology, the efforts for integrating pre-existing blocks into new SoC

could become excessively high.

The quality criteria, which have to be taken into account, come from various
sources: The reuse methodology manual (RMM) contains a set of rules and guidelines
that help ensure that a design is reusable and technology-independent. IPQ describes
that language subset of VHDL or Verilog that are synthesizable and verifiable with
any compliant tool. Further efforts on quality are under way in the Virtual Socket

Interface Alliance (VSIA).

6.1.2 Soft IP Design Flow

The standard soft IP design flow is illustrated in Fig. 6.1. IP creators must follow
the rules in the IP Qualification guidelines, which are the basis for industry-wide
solutions to develop reusable and higher quality IP. Here, the IPQ guidelines classify

the reusable methodology into three.categories:
(1) Design guidelines:

The design guidelines include coding rules and design issues. Soft IP that follows
the rules can ensure that the HDL code is readable, portable and reusable. In addition,
these rules also help achieve optimal synthesis and simulation results. The guidelines
are categorized as follow:

- HDL (Verilog & VHDL) coding guidelines.

- Design style guidelines.

- Synthesis script guidelines.
(2) Verification guidelines:

In verification guidelines, a set of rules are provided which need to be followed
by IP creators to improve the verification quality of the IP. The guidelines are

categorized as follow:

44

- Soft IP verification guidelines.
- Coding guidelines in writing testbench codes.

- I[P prototyping.
(3) Deliverable guidelines:

In verification guidelines, the rules ensure that users can obtain all the necessary
information about this IP. According to the documents and script files provided by IP
creators, users can rebuild the whole design on their workstations or servers. The
guidelines are categorized as follow:

- General deliverables.

- Documentation deliverables.

- Design files deliverables.

- Verification deliverables.

- Hardware related software deliverables.

- IP prototyping deliverables.

The detailed descriptions of'these guidelines are in the IP Qualification v1.0.

45

/

Deliverables gT————————"——— "~~~ — -~ — - —————— - 1
5 ° |
Cwe\ /Soft IP Creation Flow N ~ v ~
IP Package Flow
Design Guideline Design Spec.
--— General deliverables
- Coding guideline | @
- Design style ! Document delieverables
- Synthesis script L, Coding
\—/—\ : Design file deliverables
|
i @ Hardware related software
Verification = | ;
Guideline ' { HDL Analysis } IP Prototyping
|
. Code .
- Soft IP verification : ‘ I;E%ecc()}l(ielgf Coverage g;’lmnc?a(i?:ti ‘
- test bench i Y Analysis "
O IR e
| < 7
|
|

&
IP Package

Synthesis

IP Qualification i hesi int Desi
Guideline : &o Synthesis Script Design
_ o D

} Deliverables Collection

Power
Synthesis

Design For Testability } Iﬁ

Logic
Synthesis

Physical
Synthesis

Pre-Layout Verification To IP Integrators

Cycle-based | Static Timing
Simulation | Verification
_ 4 g /

To Back-End Flow

Fig. 6.1 Soft IP design flow.

6.2 Chip Design Flow

Our chip design flow is shown in Fig. 6.2. The RTL code is designed and
simulated in Verilog-XL compiler, and Synopsys Synthesis tool is used to synthesis

our design with one scan chain and create the gate level netlist.

46

Untimed functional Level

I
I
I
I
I
I
I
1. Matlab Software model Rt :
I
I
“““““““““““““““““““““ : Hardware Software
T
Standard Cell-Based Design Flow S AN ! : * *
| . I ARM
i ModelSim 14 _ 1 rtus 11 Developer
! VerilogXL ' : Quartus . P
i i Suite
RTL Level : * : :
I h
1. RTL Code Development. ' n-Lint/VN ' |
2. Functional Verification. I H
3. Coding Style Rule Check. [v I
4. Code Coverage. i Design i :
5. Pre-Layout Power Estimation. i | Vision/Design [:
i Analyzer i FPGA Prototyping
| ! N
I . 1!
| PrimePower i :
S
I Il
Y AP ER |
[[
i Y i
Gate Level | ' i |
b
1. Logic Synthesis and Optimization. i 4 DFT Compiler | | :
2. Design for Testability. R, _ t,
3. ATPG. - 4 UISAY -
4. Fault Coverage. i = T
5. Timing Verification. i TetraMax [———
6. Pre-Layout Simulation. _ : . _ : : : TSMC.UMC
\ 1896 B ~ Standard Cell
" q ¥ and I/0 Library
| MOFlel&m | ARM Core
i VerilogXL | Library---
: : ~
! !
e it A
i ! I T
Physical Level : - NSS——1
' | Astro/Apollo |4 !
I I
1. Place and Route. , v , . Analog
. 1 . omponent
2. Calibre Off-line DRC.,LVlS Check. ! | (FRAM. TIM
3. Post-Layout Pf)wer Slmu ation. | Calibre | view:-)
4. Post-Layout Simulation. | |
| L | f
! Nanosim - !
I I Standard Full-
| i

Custom Design Flow

Fig. 6.2 Cell-based design flow

47

Then, the gate level netlist is applied to gate level simulation and compared the
result with RTL code simulation to check out the correctness. We use Apollo to
placement and routing, and Calibre to check DRC and LVS result. After post-layout
level gate simulation is correct, NanoSim is exploited to take transistor level

simulation.

6.3 Verification Strategy

Since a single verification strategy would not sufficiently handle the complexity
in SoC problems, a multilevel verification approach is developed. It contains several
functional models to verify a single IP, and will increase the verification speed and
efficiency at the system level. In the following sections, the implemented functional

models and verification are described.

6.3.1 Untimed functional-model

The first complete model of our proposed design is presented in abstract form as
an untimed functional model (UFM), in"which all functionality is implemented with
MATLAB to verify the correctness of the configurable AES algorithm. Besides, it can
also produce the test patterns efficiently for following simulation models. The

MATLAB software model is shown in Fig. 6.3.

6.3.2 Timing Accurate model

The timing accuracy of a model illustrates how similarly it behaves to the
constraints of the final design with respect to time. In our proposed design flow, the
synthesis tool generates the timing accurate gate-level netlist from the RTL code, and
the gate propagation delays are analyzed by those constraints defined in the
specification of UMC 0.18um CMOS technology. After synthesis, the gate-level
simulation at the highest estimated operation frequency is needed for verifying the

correctness of the synthesis result.

48

= E3

Note: All data are in hex. The processing mode

01020304050607 08091011 121314151617 18192021 222324 2526 27 28 2930 31 32

. .
nitial cipher ke
(16/24/32 bvtes)IIJIJU‘I[EU3DQU5CIBU?UEUSUEUbUDUdUEUMUﬂ12131415151713191&|h|c1ﬁ1e‘\| 11 p y
Plaintext [00 1122 33 44 55 66 77 88 99 aa bb cc dd ee ff [0 0000 00 00 0000 00 00 00 00 00 00 00 00 00 | ET“”“\ 01phertext
(16 bytes) \eoytesy
CIREMe 5o 27 b7 ca 5167 45 bf ea fo 49 90 4b 49 60 69 |
(16 bwtes)
Decrypted Results [0112233445566 778898 aabb cc dd eeft | statws ‘Decwmmﬂ Cornpleted |
(16 bytes)
Inverse Table Save
018d6ch527b el e34f29cOb0el e5c7 had
74 b4 aa 4099 20 60 5f 53 3f fd cc ff 40 ee b2 .
3860 5a 11 55 4d a8 cOc1 296153044 82 c2 Thd parameters mn
2c45926c 133966 421235206f 77 bb 5919 .
16116 37 67 2 31 1569 a7 64 ab 1354 2529 3 each! transformation
edSc Scadc2487bf183e 221051 ec 6117
1652 afd349a636431447 31 df 339321 3b
79 b7 97 8510 b5 ba 3c b6 70 d0 6 al fa 81 82
537278096 73be 569b 92 35d9 17 2b9ad
de Ba326dd38a84722a14 9188 19dc 89 9a
fh7c 26 c381b8 6548 26 cB12 dace &7 d262
cel1fef11 757871 a58e 76 3d bd bc 86 57
b282ta3dadded fad2753 41bfcaced - -
T —
re 7 A6 65 di 6208 54 6 o4 1S O 18 90 6 Information of checking coefficie
b1 delSebch ecfad 64e d7 835450 1eb3 Checking mx): OKI
. . Sh 2333346346 38cdd9c 7dalcd1adl 1c Checkmg afﬁmtrx OKI
The lntermedlate Checking Cx): OKI
result in each round 3

Fig. 6.3 MATLAB software model.

6.3.3 FPGA Prototyping 38

An FPGA prototyping is_inﬂplemeh_fe__d -bn the=ARM Integrator/Logic Module
(LM), which provides a platform'-for developing dig_ifal IPs on the AMBA-based SoC
design. The ARM Integrator coﬁtains ARM CPU, AMBA bus and FPGA. The further
details about this platform are deséribed in '[37']., and the system architecture of the
C-AES coprocessor on the ARM Integrator is shown in Fig. 6.4. Within LM, the
registers listed in Table 6.1 are mapped to our C-AES coprocessor. Thus, the ARM
CPU on core module can manipulate our C-AES coprocessor easily by these registers.
Fig. 6.5 shows that we debug in the ARM Developer Suite (ADS), and a test bench of

the encryption/decryption loop is simulated.

49

PC VAN

O\ Host Interface (Multi ICE) 4
<7 Logic Module
C-AES
Host €Oprocessor PN ZBT
Bridge SSRAM
Slave
V' &~
‘ AHB L)
1 1 1
A 4) 4 A 4 A 4
AHB Master Slave Slaver
]?er Cb(::je;r ARM920T SDRAM Embedded
CPU Controller SRAM
Core Module AN
AP
External SDRAM \V

Fig. 6.4 The C-AES coprocessor on the ARM Integrator.

[BICIE)

File Search Processor Views System iews Execute Options Window Help
ilrelie| &) #1aF) %l | Silal| | DIBPIRIEEE |[EE/E)
Tagt [jangr 1Y)

el ARMIZOT

Sk Polling ***/
MyipStat = 07
while (MyipStat '= 0x00000001) {
MyipStat = word read{IM MYIPSTAT):

i
word read (LM MYIPDATR);
printf ("Decryption Round %d4d\n",j):
I+
1
F*%* Regult after Decryption 100 round #**#*/ [

Resultl = word read (LM MYIFDAIR);
printf{"Decryption 100 round Resultl is &x\n",Resultl}):

Result2 = word read(IM MYIPDATR);

IZ| printi({"Decryption 100 round Resultl is %x\n",Resultzaf
[«] C

ARMOZ0T_0 - Console Sustemn COutput Monitor
Decryption Round 97 |Z| RDI LDgIDebug Log|
Decryption Round 98 Log file:
Decryption Round 99 ARK RDI Maodule Server AD5 w12 [Buil
Decryption Round 100 ARM RDI Madule Server ADS w1.2 [Buil
Decryption 100 round Resultl is 112233 ARM RDI1.5.1 > ASYNC RDI Protocal
Decryption 100 round Result? is 44556677 ARM Multi-ICE 2.2 [Build 1035). Copyri
Decryption 100 round Result3 is 8899aabb Connected to TAP 0. ARMIZ0T on Sen,
Decryption 100 round Resultd is ccddeeff

-
<1 Bl
For Help, press F1 Line 258, Col 25 |Multi-IC |ARMS20

Fig. 6.5 The hardware driver running on the ARM ADS.

50

Table 6.1 Register map of the C-AES coprocessor.

address Size Function

0xCC00_0000 9 | Each bit represents the control or response signal of the
C-AES coprocessor separately, such as [RESET, Key
Change, CBC, Key Length, RDONE, Wait Buffer,
Working, OE]

0xcCCO 0004 | 32 | Represents WDATA or RDATA according the direction

of data transfer.

6.3.4 Coding Style Rule Check

A programmable rule checker has been integrated in the IP Qualification
framework. The SpringSoft nLint is used for static lint checking. The lint tool can find
errors and warnings in many aspects including naming, synthesis, simulation and DFT
issues. Common syntax errors, such as typing errors, unmatched bus width, and
undeclared objects, can be quickly located. Moreover, some logical errors like
unreachable state can also be found. The lint tool indicates bad coding style that may
load to poor readability and teusability. Ouf proposed design passes the lint tool

checking with all rules defined by IPQ Alliance.

E <pLintRepori¥iewer: 3> nlReport.idb® - faser/white/SIF/forCIC/RTL/RAES _pipef_l6/nlReport rdb nClock cdb - /... 1

File Domain Tools Window Help

“A-IE T 3R

& (1:Clock Domain Analysis:
-1 Total 0 Clock Source Tree(s)
- {1 Mix-Clock Domain Paths
1 Total — 0 Violation

4]

El

Fig. 6.6 The report of coding style rule check

6.3.5 Code Coverage

Generally speaking, a coverage-driven verification methodology makes the

verification flow more complete and efficient, and coverage report gives us a sense of

51

the good and the bad of our HDL design and test bench. The coverage-driven
verification can be performed using several coverage metrics. A simple example of
these metrics is the code coverage. By investigating the code coverage helps the
designer find untested or redundant code in early stage of development and the quality
of the stimuli can be measured. Therefore, coverage gives the information that you
need to know when you are ready for RTL sign-off. With a high coverage score, you
can have more confidence that the code, in passing, works correctly, and we use
Verification Navigator to measure the code coverage. The report is listed in Fig. 6.7.

Flle Hesulls Help ‘

fmisc/RAIDZACOURSE dic/dicO5/Balo/Vvnavigator_results/vnavigalor history

Load Resuls Flles Undosc AN Files

Code Results Summary FSM Results Summary Proparty Coverage Summary
Statement 1101311013 100.0 % Stale 991000 % Expecied Behaviour --=%
CoRgieoe s il s Eoierye e

Branch 399/339 100.0 % Arc 12/12 100.0 % Prohibited Behaviour s
Coverage %‘E\I Coverage F:%ﬁ Coverage ' l
Condition 36/36 100.0 % FSM Path 474 100.0 % Maritar --=%
Coverage m Coverage m Coverage !—"!

e
Triggering ===%

Coverage '[*"J

Toggle 9575/9575 100.0 %
Coverage m
Trace -==%

Coverage i f']

Path -

Caoverage l-—:‘
F—

Excluded ===%

,

Fig. 6.7 The report of code coverage estimated by Verification Navigator.

6.3.6 Design for Testability

Considering the ASIC testing, the scan chain design is inserted. In our design
flow, the Synopsys DFT compiler is used to conduct in-depth testability analysis at
the Register Transfer Level (RTL), and to implement the effective test structures at the
hierarchical block level. The report of fault coverage shown in Fig. 6.8 is calculated

by TetraMax, and it is 99.98% with 231 test patterns.

52

Uncollapsed Stuck Fault Summary Report

fault class code #faults
Detected DT 367359
Possibly detected PT 0
Undetectahle un 3717
ATPG untestable AU 0
Not detected ND 74
total faults 371150

test coverage 39,989

Pattern Summary Report

#internal patterns 231
#basic_scan patterns 231

Fig. 6.8 The report of fault coverage calculated by TetraMax.

6.3.7 Physical Verification

In physical verification, Automatic Placement and Routing (APR), on-line
Design Rule Check (DRC) and Layout Versus Schematic (LVS) are done by Synopsys
Astro, and off-line DRC and LVS are verified by Mentor Graphics Calibre. Finally,

the post-layout simulation is passed using Verilog-XL.

6.4 Results and Comparisons

The C-AES coprocessor design ‘has been implemented using a UMC 0.18um
CMOS technology. It was synthesized using a standard-cell library. The critical path
of only about 3.84ns shown in Table 6.2'1s ‘obtained.

Table 6.2 The comparison between cipher engine and key generator.

Cipher Engine Key Generator
Gate Counts (K) 38.55 21.68
Percentage of area size (%) 47.60 26.77
Critical path (ns) 3.33 3.84

Fig. 6.9 shows a chip layout of the C-AES coprocessor, and the whole chip has a

size of around 1.72x1.66mm?*, with a gate count of around 80,986 gates. The 1/O
interface takes 25.42% of the overall area, since the selectors with wide data width
and the registers for storing IV, initial cipher key, text, and parameters described in
Sec. 5.3 are required. The key generator module consumes about 26.77% of the area,
and the main cipher engine module occupies 47.60% of the overall area. All these

data are summarized in Table 6.3.

53

Technology

UMC 0.18um CMOS

technology
Core VDD 1.8V
Clock Rate 250MHz
Core Size 1.721x1.655mm?
Gate Count 80.99K
Throughput| 3.20Gbps (128-bit key)

2.67Gbps (192-bit key)
2.29Gbps (256-bit key)

Fig. 6.9 Chip layout and feature of C-AES coprocessor.

In Table 6.4, we compare our implementation with some other AISCs presented

recently. In [12], the authors presented a test chip that provides the AES encryption

and decryption with different block sizes (128, 192, and 256 bits) and key lengths
(128, 192, and 256 bits). Here the bestperformance (with the block size of 128 bits) is

shown for comparison. Due toits LUTE1T]:".“Sed ifhplementation of the S-Box, the

hardware cost is high.

Table 6.3 Afe:q s__téﬁé

tics ‘d'fc_-

=

AES coprocessor.

Component Gate counts (K) Percentage (%)
Cipher Engine 38.55 47.60
- ShiftRows() 0.35 0.43
- 16 8-bit inverters in GF (2*) 5.31 6.56
- 16 8-bit matrix multipliers 4.23 5.22
- new MixColumns() 18.32 22.62
Key Generator 21.68 26.77
Main controller 0.17 0.21
Input interface 17.72 21.88
- Registers 6.61 8.16
- xtime'(x) 1.23 1.52
- 4 8-bit Matrix Multipliers 1.02 1.26
Output interface 2.87 3.54
- Registers 1.37 1.69
total 80.99 100

Another case is a pipelined design implemented by a 0.35um CMOS technology

54

[23]. The S-Boxes were implemented based on the work reported in [38], instead of
LUT-based design. However, theirs supports keys of 128, 192, and 256 bits by the
same way described in [12], it requires an addition memory to store all the necessary
round keys in advance. Compared with other designs which generate the round keys
on the fly, it occupies extensive hardware resources. In addition, it should be noted
that a pipelined design has the difficulty in maintaining the same throughput rate in a
feedback cipher mode such as CBC. For example, the performance of their 4-stage

pipeline design will be scaled down by four in the feedback cipher modes

In [19], the authors presented a compact architecture for the Irondale algorithm,
where the hardware resources can be efficiently shared between data encryption, data
decryption, and even key expansion. Table 6.4 only shows the result for their 128-bit

data path—using one clock cycle for each round. Moreover, the S-Box is also
optimized by introducing the composite field GF(((2*)*)*). Since the data paths of

192 and 256-bit key expansion are not suitable for developing the compact hardware,
their key generator only supports 128-bit key length, and the round keys are generated
on-the-fly. Under the logic ~optimization “applied to the constant arithmetic

components, it has a very small:gate counts.

In [34], another AES-128 module waé implemented, and it is very similar to
above concept [19], but has a smaller area. This is mainly because a new common
sub-expression elimination (CSE) is applied to reduce the area cost. In addition, they
also focus on the merge functions of the affine transformation and MixColumns() to
increasing throughput. In our design, a new combined architecture described in Sec.

3.4.2 provides a more effective method for high throughput.

In [35], it is also a configurable AES coprocessor that all the encryption and
decryption procedures are the same as the original AES algorithm, but m(x), Affine
matrix, const(x) and the row vector c(X), are all configurable. In their design,
additional 16 256 x16 -bit and 16 64-bit ROMs are used to store all alternatives of
these parameters. For this reason, their design can only spend 3 clock cycles for
parameter initialization, while our approach, which is described in Sec. 5.3, requires
at least 18 cycles to receive the input data and compute the parameters. In order to
support the configurability, they extend the composite field arithmetic approach to

implement the new data path of round function, which can be processed with a fixed

55

irreducible polynomial in the composite field GF((2*)?) . In other words,
MixColumns() transformation is still executed by the multiplier in composite field
GF((2*)?). Although the difficulty in providing the configurability is solved, the
overhand is quite considerable. It is because that additional 32 8-bit matrix multipliers
for S-Boxes, and 64 8-bit field multipliers for MixColumns() are required in the data
path of round function. Thus, our approach, which combines the matrix multipliers in

S-Boxes and MixColumns(), provides a successful solution for high speed and low

cost.
Table 6.4 Comparison of AES designs
Verbauwhede Su Satoh Hsiao Su Ours
[12] [23] [19] [34] [35]
Technology 0.18um 0.35um 0.11pm 0.18um 0.25um 0.18um
Clock Rate 125MHz 200MHz 224MHz 117MHz 66MHz 250MHz
Throughput 1.6 2.381 0.844 3.20
(Gbps) 1.33 2.008 2.61 1.49 0.704 2.67
1.14 1.736 0.603 2.28
Gate Counts 173K 58.430K 21.337K 16.917K 200.5K 80.99K
Throughput/ 9.25 41.49 421 39.51
Gate Count 7.68 +34.98 122.23 88.08 3.51 32.97
(Kbps/gate) 6.59 30.24 3.01 28.15
On-the-fly Key
No No Yes Yes Yes Yes
Generation
configurability No No No No Yes Yes

Although the throughput to gate count ratio is about 3 times smaller to the best
value reported in Table 6.4, our C-AES coprocessor can easily provide a new
encryption algorithm by arbitrarily selecting a combination of the parameters, and all
specified key lengths can be supported. Considering the pre-gate throughput rate and

functionality, our design is quite competitive.

56

Chapter 7
Conclusions and Future Work

7.1 Conclusions

A Rijndael algorithm with changeable coefficients is designed in this work, and
we use the on-the-fly key generator instead of memory-based key scheduler to reduce

the hardware resources. In addition, ECB and CBC operating modes are supported in

our design. The whole chip has a size of around 1.72x1.66mm?, with a gate count of
around 80,986 gates. The throughput.is about'3.2Gbps for 128-bit keys, 2.67Gbps for
192-bit keys, and 2.29Gbps for 256-bitkeys, respectively. The goal of this design is
providing customized security for virtual private network (VPN) application. In VPN,
sessions do not need to compatible with standard traffics; hence, the enterprise can
configure their own coefficients 4o protect their. network. In addition, our designs
provides throughput over gigabit per seconds, so they are suitable for Fast Ethernet or

Giga Ethernet.

7.1 Future Work

The C-AES coprocessor is also designed to operate in AMBA system with AHB
specification. It resides in the address map of an ARM compatible processor, and
serves as a coprocessor to provide encryption computing. Someday, it may become
the building block of network security processor. To manipulate the data transfer
efficiently, the future work may lie in developing the AHB bus mastering capability to
off-load data movement and encryption operations form the host processor. Thus
similar to the behavior of DMA devices, the data transfer and processing are all done
by our coprocessor, which leaves the host processor to execute more sophisticated

flow control or exception handling.

57

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography
National Institute of Standards and Technology (NIST), Advanced Encryption

Standard (AES), National Technical Information Service, Springfield, VA
22161, Nov. 2001.

National Institute of Standards and Technology (NIST), Data Encryption
Standard (DES), National Technical Information Service, Springfield, VA
22161, Oct. 1999.

W. Stallings, Cryptography and Network Security: Principles and Practice. 3rd
ed., Prentice-Hall Inc., Upper Saddle River, N.J., 2003.

E. Barkan, and E. Biham, “In How Many Ways Can You Write Rijndael?”,
Proceedings of ASIACRYPT, Dec. 1-5, 2002, pp. 160-175, Springer-Verlag,
2002.

P. Fergguson and G. Huston, “What is a VPN?—Part 1,” The Internet Protocol

Journal, vol. 1, pp. 2-19, June 1998. http://www.cisco.com/warp/public/759/.

J. Daemen, and V. Rijmen, “AES Proposal: Rijndael,” AES Algorithm
Submission, Sep. 3, 2000.

A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, “A comparative study of
performance of AES final candidates using FPGAs,” Cryptographic Hardware
and Embedded Systems (CHES) 2000, vol. 1965 of LNCS, pp. 125-140,
Springer-Verlag, Aug. 2000.

K. Gaj and P. Chodowiec, “Fast implementation and fair comparison of the
final candidates for advanced encryption standard using field programmable
gate arrays,” Proc. RSA Security Conf., Cryptographer’s Track, vol. 2020 of
LNCS, pp. 84-99, Springer-Verlag, Apr. 2001.

P. Chodowiec, K. Gaj, P. Bellows, and B. Schott, “Experimental testing of the
Gigabit IPSec compliant implementations of Rijndael and triple DES using
SLAAC-1V FPGA accelerator board,” Proc. Information Security Conf. (1SC),
vol. 2200 of LNCS, pp. 220-234, Springer-Verlag, Oct. 2001.

58

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully pipelined
memoryless 17.8 Gbps AES-128 encryptor,” Proc. Int. Symp.
Field-Programmable Gate Arrays (FPGA), (Monterey), pp. 207-215, ACM
Press, 2003.

K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully pipelined
memoryless 17.8 Gbps AES-128 encryptor,” Proc. Int. Symp.
Field-Programmable Gate Arrays (FPGA), (Monterey), pp. 207-215, ACM
Press, 2003.

I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and performance testing
of a 2.29-GB/s Rijndael processor,” IEEE Journal of Solid-State Circuits, vol.
38, pp. 569-572, Mar. 2003.

V. Fischer and M. Drutarovsky; “Two methods of Rijndael implementation in
reconfigurable hardware,’* Cryptographic Hardware and Embedded Systems
(CHES) 2001, vol. 2162 of LNCS, pp. 77-92, Springer-Verlag, May 2001.

S. Morioka and A. Satoh, -“A 10Gbps . full-AES crypto design with a
twisted-BDD S-Box architecture,””. Proc. IEEE Int. Conf. Computer Design
(ICCD), (Freiburg, Germany), pp. 98—103, Sept. 2002.

K. Gaj and P. Chodowiec. Comparison of the hardware performance of the
AES candidates using reconfigurable hardware. Proc. 3rd AES Conf. (AES3).
[Online].

Available: http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html

M. McLoone and J. V. McCanny, “Rijndael FPGA implementation utilizing
look-up tables,” IEEE Workshop on Signal Processing Systems, Sept. 2001, pp.
349-360.

M. McLoone and J.V. McCanny, “Apparatus for Selectably Encrypting and
Decrypting Data,” UK Patent Application No. 0107592.8, Filed 27, March
2001.

V. Rijmen, “Efficient implementation of the Rijndael S-box.”

59

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

http://www.esat.kuleuven.ac.be/"rijmen/rijndael/sbox.pdf.

A. Satoh, S. Morioka, K. Takano, S. Munetoh, “A Compact Rijndael Hardware
Architecture with S-box Optimization”, ASIACRYPT 2001, Lecture Notes in
Computer Science 2248, Springer, 2001, pp. 239-254

J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementation of

the AES SBoxes,” CT-RSA 2002, vol. 2271 of LNCS, pp. 67-78,
Springer-Verlag, 2002.

S. Mangard, M. Aigner, and S. Dominikus, “A highly regular and scalable AES
hardware architecture,” IEEE Trans. Computers, vol. 52, pp. 483-491, Apr.
2003.

Xinmiao Zhang; Parhi, K.K., “High-speed VLSI architectures for the AES
algorithm”, IEEE Trans. VLSI Systems, Vol 12, Issue 9, pp. 957-967, Sept. 2004

T.-F. Lin, C.-P. Su, C.-T. Huang, and C.-W. Wu, “A high-throughput low-cost
AES cipher chip,” Proc. 3rd IEEE Asia-Pacific Conf. ASIC, (Taipei), pp.
85-88, Aug. 2002.

H. Kuo and 1. Verbauwhede, “Architéctural optimization for a 1.82 Gbits/sec
VLSI implementation of the”"AES " Rijndael algorithm,” Cryptographic
Hardware and Embedded Systems (CHES) 2001, vol. 2162 of LNCS,
Springer-Verlag, May 2001.

J. H. Shim, D.W. Kim, Y. K. Kang, T.W. Kwon, and J. R. Choi, “A Rijndael
cryptoprocessor using shared on-the-fly key scheduler,” Proc. 3rd IEEE
Asia-Pacific Conf. ASIC, (Taipei), pp. 89-92, Aug. 2002.

J. Guajardo and C. Paar. “Efficient Algorithms for Elliptic Curve
Cryptosystems” Advances in Cryptology—CRYPTO ’97, Lecture Notes in
Computer Science, vol. 1294 pp. 342-356. Springer-Verlag, August 1997.

A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, and P. Rohatgi.
“Efficient Rijndael Encryption Implementation with Composite Field
Arithmetic” Workshop on Cryptographic Hardware and Embedded Systems
(CHES2001), pp. 175-188, May 2001.

60

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

C Paar, “Efficient VLSI Architecture for Bit-Parallel Computations in Galois
Fields” PhD Thesis, Institute for Experimental Mathematics, University of
Essen, Germany, 1994

A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “Unified hardware
architecture for 128-bit block ciphers AES and Camellia”, Cryptographic
Hardware and Embedded Systems (CHES) 2003. Aug. 2003, Springer-Verlag.

IEEE P1363. “IEEE Standard Specifications for Public-Key Cryptography”
IEEE Computer Society, August 2000.

L. Reyzin, B. Kaliski, “Storage-Efficient Basis Conversion Techniques”

Contribution to IEEE P1363a, February 2000.

J.L. Fan and C. Paar. “On Efficient Inversion in Tower Fields of Characteristic
Two” International Symposium on Information Theory, page 20. IEEE, June
1997.

M. H. Jing, Y. H. Chen,-Y. T. Chang, and C. H. Hsu, “The design of a fast
inverse module in AES;” Proc. Int. Conf. Info-Tech and Info-Net, vol. 3,
Beijing, China, Nov. 2001, pp..298-303.

S. F. Hsiao, M. C. Chen, C. 'S. Tu, “Memory-Free Low-Cost Designs of
Advanced Encryption Standard Using Common Subexpression Elimination for
Sunfunctions in Transformations” IEEE Trans. Circuit and Systems, VOL. 53,
NO. 3, MARCH 2006

C. P. Su, C. L. Horng, C. T. Huang, C. W Wu, “A configurable AES processor
for enhanced security” Design Automation Conference, 2005. Proceedings of
the ASP-DAC 2005. Asia and South Pacific Vol. 1 Page(s):361 - 366 Jan. 2005

Chih-Hsu Yen, Tsung-Yao Pai, and Bing-Fei Wu, “The Implementations of the
Reconfigurable Rijndael Algorithm with Throughput of 4.9Gbps” Proceedings
of 16th VLSI Design/CAD Symposium, 2005.

Integrator/LM-EP20K600E+ user Guide
http://www.arm.com/pdfs/DUI0146C_LM600.pdf

61

[38] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementation of
the SBoxes,” CT-RSA 2002, vol. 2271 of LNCS, pp. 6778, Springer-Verlag,
2002.

62

