

國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

具有可變係數之 AES 加解密器

之矽智產設計與晶片實現

IP-based design and chip implementation of the AES

coprocessor with configurable parameters

研究生：白宗堯

指導教授：吳炳飛 教授

中 華 民 國 九 十 五 年 七 月

具有可變係數之 AES 加解密器

之矽智產設計與晶片實現

IP-based design and chip implementation of the AES

coprocessor with configurable parameter

研究生：白宗堯 Student：Tsung-Yao Pai

指導教授：吳炳飛 教授 Advisor：Prof. Bing-Fei Wu

國 立 交 通 大 學

電 機 與 控 制 工 程 學 系

碩 士 論 文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electrical and Control Engineering

July 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年七月

具有可變係數之 AES 加解密器

之矽智產設計與晶片實現

學生： 白宗堯 指導教授：吳炳飛 教授

國立交通大學電機與控制工程學系(研究所)碩士班

摘 要

在此篇論文中，我們提出了一個具有可變係數的 AES (Configurable AES)加

解密器，使得在不同的)(xm 、)(xc 和 affine transformation 係數選擇之下，可產

生多變的 AES 演算法，藉以進一步的提高系統的安全性。並由於我們所提出之

硬體實現仍能具有高效能的表現，讓此構想可以跟到上網路傳輸速度的進步，運

到用 Gigabit 的光纖與乙太網路安全晶片上。在規格上，除了可調變係數之外，

並支援 128, 192, 256-bit 三種金鑰長度以及 ECB, CBC 兩種加密模式。對於加解

密過程中所需之金鑰，我們也提出了一種可同步計算金鑰的電路，而不需使用額

外的記憶體來儲存金鑰。此外，為了降低硬體成本和提升效率，我們採取

Composite Field Arithmetic 運算來實現演算法的核心 S-Box 部分，並將架構下的

矩陣乘法運算合而為一以縮短運算時間。最後，以強調重複利用的矽智產方式

(IP-based)實現，並遵守 AMBA AHB Slave 傳輸協定，以助於未來在系統面的開

發。在本論文的成果方面，此 Configurable-AES 加解密器以 UMC 0.18μm CMOS

製程實現，擁有約 81K 的 gate counts，在最高處理速度下，對於 128/192/256 三

種不同金鑰長度下，分別可達到 3.2Gbps、2.67 Gbps 和 2.29 Gbps。

IP-based design and chip implementation of the AES

coprocessor with configurable parameter

Student : Tsung-Yao Pai Advisor : Prof. Bing-Fei Wu

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

In this paper, we implement a configurable AES (C-AES) coprocessor, which

supports all specified key lengths, such as 128, 192, and 256 bits, and both the ECB

and CBC operation modes. The round keys for encryption and decryption are

generated on the fly without any internal memory. Specifically, it provides the

flexibility to change the parameters of each transformations, such as the irreducible

polynomial, the affine matrix, the affine constant, and the row vector of the matrix

used in MixColumns(). These parameters are online changeable, i.e., they are also the

inputs of the circuit. For increasing the speed, an optimized combination is presented

in the proposed architecture. By using basis conversion and composite field in

SubBytes(), and pre-calculating the values of every power of xtime() of constants in

MixColumns(), the matrix multiplications in SubBytes() and MixColumns() can be

integrated into a new transformation to reduce the computation path. Furthermore, all

arithmetic components are also reused for the encryption and the decryption data

paths. The proposed design has been implemented using a UMC 0.18μm CMOS

technology. The throughput is about 3.2Gbps for 128-bit keys, 2.67Gbps for 192-bit

keys, and 2.29Gbps for 256-bit keys, respectively. The total gate count is about 81K.

This work provides a customized AES cipher to let users change parameters; therefore,

it can be utilized in the applications requiring customized security, .e.g., the virtual

private networks (VPN).

 致謝

首先，要感謝我的指導教授 吳炳飛博士二年來的教導，感謝您提供豐沛的

研究資源與良好的學習環境，在設備與開發工具可以說是應有盡有，讓我懂得如

何開發設計，以符合市場與業界的需求。另外，也要感謝我的大學專題指導教授

張孟洲博士，是您帶領我進入數位 IC 設計的領域，啟蒙我做研究該有的 sense，

您認真謙虛的態度，是我學習的榜樣。

此外，最要感謝的人，就是曾經帶領過我的顏志旭學長，林重甫學長，彭信

元學長，在你們的教導之下，都讓我學到很多不同領域的東西，使的我在各方面，

都有顯著的成長。

當然，也要感謝實驗室的夥伴們，學長晏阡、培恭、俊傑，學姊映伶，同學

元馨、岑偉、小熊、子萱、ppj、皓昱，學弟秉宗、敏偉、晉源，有你們的陪伴，

讓研究和生活都充滿了樂趣。

最後，感謝我親愛的父母及家人，有你們在背後辛苦的付出和支持，今天才

能順利完成研究所學業，這一切都絕不是光靠我一個人能做得到的，謝謝你們。

Publication & Award

發表論文 ▓Chih-Hsu Yen, Tsung-Yao Pai, and Bing-Fei Wu, “The Implementations

 of the Reconfigurable Rijndael Algorithm with Throughput of 4.9Gbps,”

Proceedings of the 16th VLSI Design/CAD Symposium, Aug. 2005.

得獎紀錄 ▓2005, 第七屆矽智產SIP設計競賽 「佳作」

可參數化之高安全度 Rijndael加密演算法

 I

Contents
Chapter 1 Introduction ..1

1.1 Background..1
1.2 Motivation..2
1.3 Organization...3

Chapter 2 AES Algorithm ...4
Chapter 3 Hardware-Reduction Strategy for C-AES.......................10

3.1 Previous Work..10
3.2 S-Box Optimization ...11

3.2.1 Composite Field Arithmetic..12
3.2.2 Isomorphism Functions and Basis Transformation.............................13
3.2.2 Multiplicative Inversion over the Composite Field15
3.2.3 The Comparison of Multiplicative Inversion......................................18

3.3 MixColumns() Optimization ..20
3.4 The Hardware Architecture..21

3.4.1 The Direct Architecture...22
3.4.2 The Combination of SubBytes() and MixColumns()23

Chapter 4 3-in-1 Key Expansion Design ..28
4.1 The Data Flow Graph of Key Expansion...28

4.1.1 128-bit Key Expansion ...29
4.1.2 192-bit Key Expansion ...29
4.1.2 256-bit Key Expansion ...31

4.2 The Hardware Architecture of 3-in-1 Key Generator33
Chapter 5 The Implementation of C-AES coprocessor.......................37

5.1 Top-level View...37
5.2 I/O Interface ...39

5.2.1 Input Interface...39
5.2.2 Output Interface ..41

5.3 Parameter initialization Engine..41
Chapter 6 Verification and Result Comparison...................................43

6.1 IP-Based Design...43
6.1.1 IP Qualification Guideline Overview ...43
6.1.2 Soft IP Design Flow..44

6.2 Chip Design Flow ..46
6.3 Verification Strategy ..48

6.3.1 Untimed functional model ..48
6.3.2 Timing Accurate model...48

 II

6.3.3 FPGA Prototyping...49
6.3.4 Coding Style Rule Check..51
6.3.5 Code Coverage..51
6.3.6 Design for Testability..52
6.3.7 Physical Verification ...53

6.4 Results and Comparisons...53
Chapter 7 Conclusions and Future Work...57

7.1 Conclusions..57
7.1 Future Work ...57

 III

List of Figures
Fig. 1.1 The concept of cryptosystem..1
Fig. 2.1 Pseudo code of AES encryption. ..4
Fig. 2.2 The encryption procedure of AES algorithm. ..7
Fig. 2.3 Pseudo code of key expansion..8
Fig. 3.1 The outline of the S-Box implementation ..13
Fig. 3.2 The outline of the configurable S-Box implementation.15
Fig. 3.3 The multiplicative inversion based on composite field))2((24GF17
Fig. 3.4 The implementation of the inversion in)))2(((222GF18
Fig. 3.5 The operation order of encryption and decryption...................................22
Fig. 3.6 The direct architecture of parameterized cipher engine in this work.23
Fig. 3.7 The combined architecture of the parameterized cipher engine...............26
Fig. 4.1 The representations of operation in key expansion.29
Fig. 4.2 The 128-bit key expansion for the encryption/decryption.29
Fig. 4.3 The 192-bit key expansion for the encryption/decryption.30
Fig. 4.4 The rearrangement of the 192-bit key expansion for the encryption.30
Fig. 4.5 The rearrangement of the 192-bit key expansion for the decryption.31
Fig. 4.6 The 256-bit key expansion for the encryption/decryption.31
Fig. 4.7 The rearrangement of 256-bit key expansion for the encryption.32
Fig. 4.8 The rearrangement of 256-bit key expansion for the decryption.32
Fig. 4.9 The architecture of 3-in-1 key generator module.33
Fig. 4.10 State diagram of the controller for 3-in-1 key generator.34
Fig. 4.11 The combination loop in 128-bit key expansion data path.....................35
Fig. 5.1 Block diagram of the C-AES coprocessor..38
Fig. 5.2 Clock distribution in the different transfer modes....................................40
Fig. 5.3 Simple block diagram of parameter initialization engine.41
Fig. 5.4 The computation schedule of parameter initialization.42
Fig. 6.1 Soft IP design flow. ..46
Fig. 6.2 Cell-based design flow ...47
Fig. 6.3 MATLAB software model..49
Fig. 6.4 The C-AES coprocessor on the ARM Integrator......................................50
Fig. 6.5 The hardware driver running on the ARM ADS.50
Fig. 6.6 The report of coding style rule check...51
Fig. 6.7 The report of fault coverage calculated by TetraMax.53
Fig. 6.8 The report of code coverage estimated by Verification Navigator.52
Fig. 6.9 Chip layout and feature of C-AES coprocessor..54

 IV

List of Tables
Table 3.1 Performance analysis of the inversion in section 3.2.3..........................19
Table 3.2 The critical path of the cipher engine ..27
Table 4.1 The function of data shifting multiplexer in the key expansion34
Table 4.2 The input table for the S-Box in key expansion.35
Table 4.3 The critical path of the key generator. ...36
Table 4.4 Comparison of 3-in-1 key generator ..36
Table 5.1 Pin definition of C-AES coprocessor...38
Table 5.2 The bit number of each changeable coefficient.39
Table 5.3 The necessary parameters for the cipher engine and the key generator.42
Table 6.1 Register map of the C-AES coprocessor..51
Table 6.2 The comparison between cipher engine and key generator.53
Table 6.3 Area statistics of C-AES coprocessor. ...54
Table 6.4 Comparison of AES designs ..56

 1

Chapter 1
 Introduction

1.1 Background

Due to the growth of applications in Internet and wireless communication, more

and more users require the security measures and devices for protecting the data,

which users transmit over the channels. Since nobody can guarantee that the

information will not be stolen over open communication channels, it is a general way

to encrypt the information before they are transmitted into the channels. There are

many cryptosystem developed in the past. According to the key type, the

cryptosystem can be classified into two type systems, such as the symmetric-key and

asymmetric-key cryptosystem. The concept of cryptosystem is illustrated in Fig. 1.1.

The plaintext, which will be sent in the transmitter, will be encrypted with the cipher

key to generate the ciphertext, and the ciphertext, like a random number, is

transmitted in the insecure channel. Finally, the ciphertext will be received in the

receiver and be decrypted with the cipher key to recover the plain text.

Fig. 1.1 The concept of cryptosystem.

The symmetric-key cryptosystem, such as DES, AES [1], and 3DES [2], uses an

identical key to encrypt the message text and to decrypt the cipher text. The

asymmetric-key cryptosystem, such as RSA and Elliptic Curve algorithms [3], uses a

different key for encryption and decryption. Different from the asymmetric-key

cryptography, the structure of the symmetric-key cryptography is simple. Usually, it

consists of a block cipher, and by executing it iteratively, the encrypted data is

 2

generated. The block cipher can be divided into two parts, the nonlinear and linear

operations. These operations use the ways of substitution and permutation to cause the

diffusion and confusion on data, and make the data difficult to be attacked. Because

the architecture of the symmetric-key cryptography is simple, the cryptography can

encrypt or decrypt data at high speed and is more suitable for the condition that has a

large amount of data to be processed.

In early years, DES algorithm, approved in 1977, was a widespread method for

this cryptosystem. However, the computer or other calculating machine has become

more and more powerful in recent years, and DES algorithm is not strong enough. In

order to replace the DES algorithm, the Advanced Encryption Standard (AES) is

developed by National Institute of Standards and Technology (NIST). And finally

NIST was announced that it has selected Rijndael to propose for the AES on

November 26, 2001 and became effective on May 26, 2002.

1.2 Motivation

With the rapid advance in the communication technology, the use of networks

and communication facilities for transmitting information between people, companies

or countries has been implanted deeply in our real life. Network processing becomes

an emerging problem that needs to be dealt with in the computer system. The ability

to properly serve heavy traffic on Internet through network equipments is now

provided by a fast network processing chip. The security of communications,

originally a problem of government, military or privileged organizations, becomes

one of the major concerns among individuals and corporations. There is an increasing

demand in network processing, including the security processing.

Therefore, the goal of our design is providing a security processor that not only

supports customized security requirement but also has high throughput to cooperate

with fast network processing chip. In Barkan and Bihamn's [4] research, they pointed

out that random selecting a dual cipher is desired during a connection. If all data in a

connection are encrypted by several dual ciphers is possible, a more secure

connection can be established by Rijndael. In other words, the coefficients of

irreducible polynomial m(x), MixColumns row vector c(x), and affine transformation

can be replaced by other values such that various encryption algorithms can be

 3

obtained easily. However, AES algorithm with configurable coefficients will cause

more complexity of implementation, and unsuitable low throughput for high-speed

Ethernet. Thus, we propose the circuit design of the configurable AES algorithm to

provide throughput over gigabit per seconds, so it can be implemented in high-speed

network services for virtual private network (VPN) application.

However, not all the combinations can generate secure block ciphers against

existing attacks. Several design criteria must be satisfied to ensure the selected tuple

can generate proper SubBytes(), and all the inverse function of the four

transformations can be found. The cryptanalysis of the configurable AES (C-AES)

algorithm is beyond the scope of our works. Here, only the circuit design of a suitable

architecture is considered.

1.3 Organization

This thesis is organized as follow. AES algorithm is described in Chapter 2. The

hardware strategy to reduce the area and critical path in our cipher engine is discussed

in Chapter 3, and the implementation of the 3-in-1 key generator to cooperate with the

cipher engine is proposed in Chapter 4. Moreover, the top-level architecture of our

C-AES coprocessor is shown in Chapter 5. In Chapter 6, the design methodology and

verification based on intellectual property (IP) reuse are introduced, and the

experimental results and comparison are also given. In Chapter 7, the conclusion of

this thesis and the future work are listed.

 4

Chapter 2
 AES Algorithm

2.1 Algorithm Specification

AES algorithm, defined by NIST of the United States, has been widely accepted

for replacing DES as the new symmetric encryption algorithm [5]. Originally NIST

invited proposals for new algorithms for the AES in 1997. Among the 15 preliminary

candidates, MARS, RC6, Rijndael [6], Serpent and Twofish were announced as the

finalist candidates in 1999 for further evaluation. Finally in 2000, Rijndael was

selected as AES algorithm. Actually, AES algorithm adopted Rijndael with the data

block of length 128 bits and the cipher key of length 128, 192, or 256 bits only. It is

an efficient algorithm for both hardware and software implementation. A basic pseudo

code of AES encryption is depicted in Fig. 2.1.

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[0, Nb-1])

for round = 1 step 1 to Nr–1
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

end for

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

out = state
end

Fig. 2.1 Pseudo code of AES encryption.

Given a cipher input block of length 128 bit, composed by 16 bytes, are mapped

onto the elements of a 44× array, called the State [5], in the order

00a , 10a , 20a , 30a , 01a , 11a ,…, 03a , 13a , 23a , 33a . As demonstrated in Fig. 2.2, the

 5

algorithm implements four transformations that operate on elements, rows and

columns of the array respectively. After an initial round key addition, a round

function consisting of four transformations, SubBytes(), ShiftRows(), MixColumns()

and AddRoundKey(), is applied to the State array. The round function is performed

10 times iteratively for 128-bit key, 12 times for 192-bit key and 14 times for 256-bit

key. In the last round, MixColumns() is not applied. Four basic transformations of the

AES algorithm are described briefly as follows [6]:

1. SubBytes() transformation, also called S-Box, is a non-linear byte substitution that

operates independently on each byte of the State. Given an element of the State

array, ija , 3,0 ≤≤ ji , it is treated as the element in)2(8GF with the irreducible

polynomial m(x). The SubBytes() transformation performs an inverse mapping of

ija first followed by an affine transformation. The SubBytes() can be expressed as

the following equation:

)())((1 xconstaxAffineb ijij ⊕⋅= −

where Affine(x), const(x) are two polynomial in GF(2) with the degree less than 8.

In AES algorithm,

 1)(348 ++++= xxxxxp

or {11B} in hexadecimal representation, and

 1)(234 ++++= xxxxxAffine = {1F}

 1)(56 +++= xxxxconst = {63}.

respectively. For the inverse of SubBytes() transformation, it can be obtained by

the inverse of the affine transformation followed by taking the multiplicative

inverse in)2(8GF , i.e.,

 xxxxAffineInv ++= 36)(_ = {4A}

 1)(_ 2 += xxconstInv = {05}.

2. ShiftRows() transformaion is simply a cyclic shifting operation on the rows of the

State with different numbers of bytes (offsets). In the State array, Row 0

(00a , 01a , 02a , 03a) is not shifted, Row 1 (10a , 11a , 12a , 13a) is left shifted over 1 byte,

Row 2 (20a , 21a , 22a , 23a) is left shifted over 2 bytes and Row 3 (30a , 31a , 32a , 33a)

is left shifted over 3 bytes. The inverse of ShiftRows() is simply the cyclic right

 6

shifting the Row 1, Row 2 and Row 3 over 1, 2 and 3 bytes respectively.

3. MixColumns() transformation is the operation that considers the column of State

as polynomials over)2(8GF , and performs the multiplication modulo)1(4 +x

with a fixed polynomial c(x). Let 3
3

2
210)(xaxaxaaxa jjjjj +++= be a

polynomial with coefficients being the elements of the j-th columns of the State

array. Let 3
3

2
210)(xcxcxccxc +++= be a polynomial with coefficient

)2(8GFci ∈ , 30 ≤≤ i . The matrix multiplication of MixColumns() transformation

can be expressed as the implementation of each column by c(x), i.e.,

)()()(xcxaxb jj ⋅= mod)1(4 +x , 30 ≤≤ j .

in AES algorithm, c(x) is defined as 32 }03{}01{}01{}02{ xxx +++ . It can also be

written as the following matrix multiplication.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

j

j

j

j

j

j

j

j

a
a

a

a

b
b

b

b

3

2

1

0

3

2

1

0

02010103
03020101
01030201
01010302

The inverse of MixColumns() transformation is similarly by multiplying each

column with a specific multiplication polynomial d(x), which is defined by

 01)()(=⋅ xdxc .

 Thus 32 }0{}0{}09{}0{)(xBxDxExd +++= .

4. AddRoundKey() transformation is simply an XOR operation that adds a round key

to the State in each iteration, where the round keys are generated from the key

expansion procedure.

 7

⊕

00a
10a
20a
30a

01a
11a

31a
21a

02a
12a

32a
22a

03a
13a

33a
23a

00b
10b
20b
30b

01b
11b

31b
21b

02b
12b

32b
22b

03b
13b

33b
23b

00k
10k
20k
30k

01k
11k

31k
21k

02k
12k

32k
22k

03k
13k

33k
23k =

00a
10a
20a
30a

01a
11a

31a
21a

02a
12a

32a
22a

03a
13a

33a
23a

00b
10b
20b
30b

01b
11b

31b
21b

02b
12b

32b
22b

03b
13b

33b
23b

ja0

ja1

ja2

ja3

jb0

jb1

jb2

jb3

)(xc⊗

00a
10a
20a
30a

01a
11a

31a
21a

02a
12a

32a
22a

03a
13a

33a
23a

00a
10a

20a
30a

01a
11a

31a
21a

02a
12a

32a

03a
10a

00a
10a
20a
30a

01a
11a

31a
21a

02a
12a

32a
22a

03a
13a

33a
23a

00b
10b
20b
30b

01b
11b

31b
21b

02b
12b

32b
22b

03b
13b

33b
23b

ijbija

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= −

0
1
1
0
0
0
1
1

11111000
01111100
00111110
00011111
10001111
11000111
11100011
11110001

1
ijij ab

Fig. 2.2 The encryption procedure of AES algorithm.

The decryption procedure of the AES is basically the inverse of each of the

transformation (InvSubBytes(),InvShiftRows(),InvMixColumns(), and AddRoundKey())

in reverse order.

The key expansion procedure in AES algorithm is used to calculate the round

key for every AddRoundKey() transformation. Basic procedure of the key expansion is

shown in Fig. 2.3. According to the selected key size, kN is 4 for 128-bit key, 6 for

192-bit key and 8 for 256-bit key. Each iW is a 32-bit word. The first kN words

(iW) are identical to the initial key, while the rest of the round keys are expanded

 8

iteratively by SubBytes() transformation and cyclic byte rotation. The SubWord() is a

function that return a 4-byte word where each byte is the result of SubBytes()

transformation to the byte at the corresponding position in the input word. RotWord()

performs a cyclic left rotation of a given word by 8 bits. Rcon(x) is a constant

composed by 4 bytes, { iRc ,{00}.{00},{00}}, where i
i xRc = is the field element in

)2(8GF with polynomial m(x).

Fig. 2.3 Pseudo code of key expansion.

2.2 Block Cipher Modes of Operation

In cryptography, a block cipher operates on blocks of fixed length, often 64 or

128 bits. To encrypt longer messages, several modes of operation, such as Electronic

Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), and

Output Feedback (OFB) may be used. In the following, ECB and CBC modes, which

can be supported by our C-AES coprocessor, are introduced.

1. Electronic Codebook mode (ECB)

 When this cipher mode is used, each block is encrypted individually. No

feedback is used. This means any blocks of plaintext that are identical and are

either in the same message, or in a different message that is encrypted with the

same key, will be transformed into identical ciphertext blocks. If the plaintext to

 9

be encrypted contains substantial repetition, then it is feasible for the ciphertext to

be broken one block at a time. Furthermore, it is possible for an unscrupulous

person to substitute and exchange individual blocks without detection. The

encryption procedure in ECB mode is described in Fig. 2.4.

Fig. 2.4 The encryption procedure in ECB mode.

2. Cipher Block Chaining mode (CBC)

 This cipher mode introduces feedback. Before each plaintext block is

encrypted, it is combined with the ciphertext of the previous block by a bitwise

XOR. This ensures that even if the plaintext contains many identical blocks, they

will each encrypt to a different ciphertext block. As Fig. 2.5 shown, the

initialization vector (IV) is combined with the first plaintext block by a bitwise

XOR before the block is encrypted.

Block Cipher
Encryption

Plaintext

Ciphertext

Key Block Cipher
Encryption

Plaintext

Ciphertext

Key Block Cipher
Encryption

Plaintext

Ciphertext

Key

Initialization
Vector (IV)

Fig. 2.5 the encryption procedure in CBC mode.

 10

Chapter 3
 Hardware-Reduction Strategy for C-AES

In general, the parameters of each transformation in the original AES algorithm

are constants, so the optimization methods for hardware implementation of the

configurable AES algorithm will be based on different consideration from previous

works. The design of SubBytes() and MixColumns() transformations which provide

the configurability and excellent trade-off between silicon area and performance will

become the key point to be evaluated especially.

3.1 Previous Work

In AES proposal[5] , the authors describe the cipher Rijndael and treat the

implementation aspects of the cipher and its inverse. They concentrate on the

implementation in software on 8-bit processors, typical for current Smart Cards and

on 32-bit processors, typical for PCs. The several performance comparisons of these

implementations in software are estimated.

However, hardware implementations of AES algorithm compare to software

implementations. They provide more physical security as well as higher speed. Since

there is a need to perform data encryption on high-speed network services, the

operation speed is very important. Many architecture optimization approaches are

employed to speed up the hardware implementations. According to the approaches

used to implement the SubBytes() transformations (also known as the S-Box) , we can

divide these into two kinds : look-up table (LUT) based designs and non-LUT based

designs.

The traditional LUT methodology is well suited to implement the complex and

slow operations. Especially, it is cost-effective for the field programmable gate arrays

 11

(FPGAs) [7][8][9][10][11][12]. In particular, several approaches merge the SubBytes()

and MixColumns() transformation into a single LUT for an additional speedup

[13][14][15][16]. The high speeds can be achieved by a 10-stage fully pipelined LUT

based Rijndael encryption design [17]. However, the encryption and decryption

processes need implementing as separate LUTs, and these approaches lead to high

area requirements.

Non-LUT approaches employ the combinational logic only to implement the

multiplicative inverse and the affine transformation of S-Box. Since the inversions in

Galois Field)2(8GF have high hardware complexities, the field elements of

)2(8GF are mapped to the elements in some isomorphic composite fields, in which

the field operations can be implemented by lower cost subfield operations. Compared

to the LUT-based approach, the composite field arithmetic has cost-benefit for the

semi-custom application specific integrated circuit (ASIC) implementations. The

approaches based on this idea can be found in [18][19][20][21]. In particular, Authors

of [22][23] have evaluated the sub-pipelined architecture based on optimum

speed-area ratio in non-feedback modes.

3.2 S-Box Optimization

Since our goal is to propose a configurable AES coprocessor. If the LUT-based

approach is used to implement the S-Box, any change of the Affine matrix, const(x)

and m(x) will require a replacement for the S-Box values. For example, if we use

ROM-based LUT, it needs another 8256× -bit ROM to store one set of the S-Box

values. It is unacceptable area requirement to support parameter configurability; else

if we use RAM-based LUT to transfer S-Box values, either to re-compute these values

on chip or off chip will consume a long configuration time. Therefore, we select the

composite field arithmetic approach to implement S-Box. Since it only requires

162× 8-bit matrix multiplier to provide the configurability of Affine matrix, const(x)

and m(x). The area requirement can be reduced to an acceptable area, and the critical

path also can be modified by combining the data path of sub-functions. In the

following sections, two techniques, composite field arithmetic and combination of

SubBytes() and MixColumns(), for hardware-reduction strategy will be introduced.

 12

3.2.1 Composite Field Arithmetic

 We call two pairs {)2(nGF , ∑
−

=

+=
1

0
)(

n

i

i
i

n yqyyQ ,)2(GFqi ∈ } and

{))2((mnGF , ∑
−

=

+=
1

0

)(
m

i

i
i

m xpxxP ,)2(n
i GFp ∈ } a composite field [26], if

 ●)2(nGF is constructed by)(yQ , which is an irreducible polynomial of

 degree n over)2(GF ;

 ●))2((mnGF is constructed by)(xP , which is an irreducible polynomial

 of degree m over)2(nGF .

 Moreover, the composite field))2((mnGF is isomorphic to the field)2(kGF

for k=nm. According the investigation of a lot of fields [23], the following irreducible

polynomials are selected to extend the composite field of)2(8GF in our design.

⎪⎩

⎪
⎨
⎧

=++=

++=

})1001{()(:))2((

1)(:)2(
2

1
24

4
0

4

ωωxxxqGF

xxxqGF
 (3.1)

Additionally, the composite fields can be built iteratively from the lower order

fields. As shown in [19] , the composite field of)2(8GF also can be extended under

the polynomial basis using these irreducible polynomials:

⎪
⎪
⎩

⎪⎪
⎨

⎧

=++=

=++=

++=

)}1100{()(:)))2(((

)}10{()(:))2((

1)(:)2(

2
2

2
222

2
2

1
22

2
0

2

λλ

φφ

xxxpGF

xxxpGF

xxxpGF

 (3.2)

Fig. 3.1 shows the outline of the S-Box implementation by using the composite

field arithmetic. The multiplicative inversion over a field A is the most costly

operation. The following 3 steps are adopted to implement this operation.

1. Map all elements of the field A to a composite field B, using an

isomorphism functionδ .

2. Compute the multiplicative inverses over the field B.

3. Re-map the computation results to A, using the function 1−δ .

 13

δ
))2((mnGF

)2(nGF
)2(GF

1−δ

δ
))2((mnGF

)2(nGF
)2(GF

1−δ

Fig. 3.1 The outline of the S-Box implementation

3.2.2 Isomorphism Functions and Basis Transformation

 The isomorphism function is the transformation matrix to map elements of

)2(kGF to))2((mnGF . The method for generating the transformation matrix can be

found in [19][27][28] for the condition where the field polynomials are primitive

polynomials. Although, the polynomial 1348 ++++ xxxx {11B} used in the AES

algorithm is an irreducible polynomial but is not primitive. The exhaustive-search

-based algorithm in [28] can be used to find the transformation in this case, and the

primitive irreducible polynomial 1)(2348 ++++= xxxxxp {11D} is the better

choice to be the basis in the composite field [19][23][29].

The δ and 1−δ matrices which map)2(8GF into))2((24GF and

))2((24GF into)2(8GF based on the field polynomial in (3.1) are as below.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10100000
11011110
10101100
10101110
11000110
10011110
01010010
01000011

δ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

11100010
01000100
01100010
01110110
00111110
10011110
00110000
01110101

1δ (3.3)

 14

The δ and 1−δ matrices which map)2(8GF into)))2(((222GF and

)))2(((222GF into)2(8GF based on the field polynomial in (3.2) are as below. The

least significant bits are in the upper left corner.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10100000
10101100
11010010
01110000
11000110
01010010
00001010
11011101

δ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

00100100
11101110
10100100
01011010
10110010
01110010
10110000
01010001

1δ (3.4)

However, in order to support the configurability of the irreducible polynomial

m(x) in the S-Box and to use the previous isomorphism functions directly, it is

necessary to perform the change of basis on the common)2(8GF field. Based on

the algorithms in [30][31], they proposed the efficiently operation to calculate the

change-of-basis matrix from Basis 1B to 0B on the common field degree.

Therefore we can convert our field element which modulo another m(x) into the basis

used in the isomorphism functions.

 For example, if we suppose that 0B is the polynomial basis modulo

1)(348
0 ++++= xxxxxm {11B}, and 1B is the polynomial basis modulo

1)(25678
1 +++++= xxxxxxm {1F5}, which is another irreducible polynomial

m(x). According the arithmetic operations in [30][31], the change-of-basis from 1B

to 0B is Γ and the inverse matrix from 0B to 1B is 1−Γ .

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Γ

11111101
01100111
11111010
10000110
00110100
01101001
00100011
00000001

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Γ−

10110001
11011101
00111101
10101010
11100101
10011111
00111110
00000001

1 (3.5)

 15

Therefore, the modification of the S-Box implementation is shown in Fig. 3.2. As

the irreducible polynomial m(x) is changed, The δ and 1−δ are replaced with

(Γ⋅δ) and (11 −− ⋅Γ δ). We define the Γ⋅=′ δδ and 111 −−− ⋅Γ=′ δδ as the new

isomorphism functions for configurable S-Box in the following section. Because the

affine transformation and the isomorphism are all linear operation, it is possible to

merge them together to reduce the path delay. Thus, the values of (A⋅′δ) and

(1−′⋅ δA) can be computed before the encryption or the decryption operations. In fact,

we process the parameter initialization when the input interface receives the

parameter data concurrently. The parameter initialization will be described in the

Chapter 5. Moreover, we can reuse the inversion over the composite field for different

m(x), Affine matrix and constant(x) easily with the help of parameter initialization.

1−⋅Γ⋅ Aδ

Γ⋅δ 11 −− ⋅Γ⋅ δA

11 −− ⋅Γ δ

1−⋅Γ⋅ Aδ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅Γ⋅ −

7

1

0

1][][][

a

a
a

Aδ

Fig. 3.2 The outline of the configurable S-Box implementation.

3.2.2 Multiplicative Inversion over the Composite Field

For the composite field))2((nmGF , computing the multiplicative inverses can

be done as a combination of operations over the subfields)2(mGF , using the

Extended Euclidean Algorithm described in [32]. Taking our proposed

implementation as an example, in the composite field))2((24GF using the

 16

irreducible polynomials (3.1), an element can be expressed as lh sxsxS +=)(, where

hs , ls)2(4GF∈ , and x is the root of)(1 xq . The multiplicative inverse of lh sxs +

modulo)(1 xq is equivalent to B(x) which satisfying the follow equation [33]:

1)()()()(1 =+ xSxBxqxA (3.6)

Such A(x) and B(x) can be found by using the extended Euclidean algorithm. Firstly,

we need to rewrite)(1 xq in the form of

)()()()(1 xRxSxQxq += (3.7)

Q(x) and R(x) are the quotient and remainder polynomial of dividing)(1 xq by S(x).

By long division it can be derived as follow:

111)1()(−−− ++= hlhh sssxsxQ (3.8)

lhlh ssssxR 11)1()(−−++= ω (3.9)

Substituting (3.8) and (3.9) into (3.6) and multiplying 2
hs to both sides of the

equation, it follows that

)()())(()(22
1

2
llhhlhhh ssssxSssxsxqs +++++= ω (3.10)

Multiplying 122)(−++=Θ llhh ssss ω to both sides of (3.10), we get

1)())(()(1
2 +++Θ=Θ xSssxsxqs lhhh (3.11)

Since addition and subtraction are the same in the extended field of)2(GF ,

comparing (3.6) and (3.11), it can be observed that

 1)())(()(1
2 =++Θ+Θ xSssxsxqs lhhh

 Θ++Θ==−)()()(1
lhh ssxsxBxS (3.12)

According to (3.12), the multiplicative inversion in)2(8GF can be implemented in

))2((24GF by the architecture illustrated in Fig. 3.3.

 17

2x ω×
1−x

×

××

hs

ls

Fig. 3.3 The multiplicative inversion based on composite field))2((24GF .

For introducing the sub-operations in Fig. 3.3, let the elements in)2(4GF is

represented as polynomial of degree 4, i.e., ∑ ∑= =
==

3

0

3

0
)(,)(

i i
i

i
i

i xbxBxaxA where

)2(, GFba ii ∈ . Therefore, the hardware optimization of these sub-operations can be

obtained by using the following equations.

)()()(022
2

13
3

3
2 aaxaxaaxaxA ⊕++⊕+= (3.13)

)()(012
2

3
3

0 aaxaxaxaxA ⊕+++=×ω (3.14)

In particular, the combination of the squarer (2x) and the constant multiplier (ω×)

can be cost-effective as (3.15).

013
2

3
3

00
2)()()(axaaxaxaaxA +⊕++⊕=×ω (3.15)

And the multiplication of these two field elements can be expressed as (3.16). By

extracting the common factors in the bit-level expressions, we can apply the

combination and integration of sub-factors for further area reduction.

}{

})()()({

})()({

})({)()(

31221300

32123213001

2
3322301102

3
330211203

babababa

xbaabaabaaba

xbaabaababa

xbaabababaxBxA

⊕⊕⊕

+⊕⊕⊕⊕⊕⊕

+⊕⊕⊕⊕⊕

+⊕⊕⊕⊕=×

 (3.16)

The most complicated operation in Fig. 3.3 is the inversion in)2(4GF . As the

definition of the field element in)2(4GF , the inversion of A(x) is equivalent to

)(14 xA . Thus, our approach simplifies the equation)()(141 xAxA =− directly based

on the logic optimization techniques as illustrated in (3.17)

 18

)}()()()({

)})()({

)}()()({

})()({

)()(

32103210102

3103321210

2
323230210

3
3213213213

141

aaaaaaaaaaa

xaaaaaaaaaa

xaaaaaaaaa

xaaaaaaaaaa

xAxA

⊕⊕⊕⊕⊕⊕⊕

+⊕⊕⊕⊕⊕

+⊕⊕⊕⊕⊕

+⊕⊕⊕⊕⊕⊕=

=−

 (3.17)

3.2.3 The Comparison of Multiplicative Inversion

Observing other approaches, the multiplicative inversion can be implemented by

different irreducible polynomials to analyze the area cost and path delay. In [19], the

authors use the (3.2) as their irreducible polynomials, and the implementation of the

inversion in))2((22GF is described in Fig. 3.4.

2x λ×
1−x

×

××

hs

ls

×

×

×

φ×

)2(2GF

2x φ×
1−x

×

××

)2(2GF

))2((22GF

Fig. 3.4 The implementation of the inversion in)))2(((222GF

 19

However in [22], the inversion in))2((22GF is directly implemented by (3.18)

using sub-expression sharing, not the multiple decomposition as described in Fig. 3.4.

Moreover, it has the smallest gate count and the shortest critical path.

}

{

}{

}{

}{)(

01012122

0301313023123

10220131233

2
12203023123

3
2031233

1

aaaaaaaa

aaaaaaaaaaaaa

xaaaaaaaaaaa

xaaaaaaaaaaa

xaaaaaaaxB

⊕⊕⊕⊕

⊕⊕⊕⊕⊕

+⊕⊕⊕⊕⊕

+⊕⊕⊕⊕

+⊕⊕⊕=−

 (3.18)

The comparison results of the individual composing modules are listed in Table

3.1. Observing the results in [19][22], composite field decomposition can reduce the

hardware complexity significantly when the order of the field involved is large.

However, for a small field, such as)2(4GF , further decomposition may not be the

optimum approach. For this reason, we select the approach that implement the derived

equation by the common sub-expression sharing techniques in))2((24GF .

Table 3.1 Performance analysis of the inversion in section 3.2.3.

ω

λ

×

×
2

2

x

x

))2((

)2(
22

4

GF

GF

))2((

)2(
22

4

GF

GF

)))2(((

))2((
222

24

GF

GF

 20

In Table 3.1, the comparison between ours and the similar approach in [34] is

also illustrated. In [34], a different irreducible polynomial (3.19) is be used to extend

the composite field))2((24GF . The multiplicative inversion also can be found by

using the extended Euclidean algorithm, and the authors illustrate a new algorithm of

common sub-expression elimination (CSE) to optimize the hardware cost of all the

bit-level equations. Although another irreducible polynomial is applied, the difference

in the hardware cost is limited.

⎪⎩

⎪
⎨
⎧

==++=

++=

})1001{(),0001()(:))2((

1)(:)2(
2

1
24

4
0

4

ωωγ rxxxqGF

xxxqGF
 (3.19)

3.3 MixColumns() Optimization

In general, the multiplication of two elements of)2(8GF is required in

MixColumns(), and it is achieved by repeating xtime(). Since the implementation of

xtime() function is based on the value of irreducible polynomial m(x), the changeable

m(x) and MixColumns matrix will increase the complexity of multiplication

significantly in MixColumns().

Therefore, in our proposed approach, after the irreducible polynomial m(x) and

the MixColumns matrix C are given, the value of)(i
n cxtime will be calculated in

advance and be stored in 84× 8-bits registers, where ic is the entry of

MixColumns matrix, and }3,2,1,0{∈i . In the following, we take the operation of one

column (3.20) in MixColumns() as an example to describe our approach.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⋅=

3

2

1

0

0321

1032

2103

3210

)()(

s
s
s

s

cccc
cccc
cccc
cccc

xsCxt (3.20)

Suppose CAs ×= 00 in (3.20), the calculation of 00 sc ⋅ is achieved by

 21

)(0)(1

)(0)(1

)(0)(0

)(1)(1)0(

00

0
2

0
3

0
4

0
5

0
6

0
7

0

ccxtime

cxtimecxtime

cxtimecxtime

cxtimecxtimeCAc

⋅+⋅

+⋅+⋅

+⋅+⋅

+⋅+⋅=×⋅

 (3.21)

In other words, let the elements 0s is represented as polynomial of degree 8, i.e.,

0001
2

02
3

03
4

04
5

05
6

06
7

070 sxsxsxsxsxsxsxss +++++++= , and (3.21) can rewrite as

follow. Thus, the multiplication in)2(8GF can be implemented by one 8-bit matrix

multiplier.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

07

06

05

04

03

02

01

00

s
s
s

s
s
s
s

s

=⋅=⋅ 0000 sCsc c

)
(

0
0

c
xti

me
)

(
0

1
c

xti
me

)
(

0
2

c
xti

me

)
(

0
7

c
xti

me

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

 (3.22)

In summary, the configurability of MixColumns()/InvMixColumns() is provided

by pre-computed and stored the 0cC , 1cC , 2cC and 3cC in 84× 8-bits registers.

In addition, MixColumns() and InvMixColumns() transformations can also easily share

the same hardware by changing the coefficient according to the processing mode.

3.4 The Hardware Architecture

In this work, a half-duplex parameterized cipher engine is proposed. The

encryption and decryption data paths are efficient combined based on the modified

order in Fig. 3.5.

 22

3.4.1 The Direct Architecture

Its direct architecture is depicted in Fig. 3.6. The solid line is the encryption path,

and the dash line is the decryption path. The data procedure is a 128-bit architecture,

i.e., 16 bytes are processed simultaneously. Based on the approach of composite field

arithmetic, the finite field inverter and the matrix multipliers for field conversion are

implemented, and the matrix multipliers are exploited to realize the MixColumns() /

InvMixColumns() transformation.

SubBytes ()

ShiftRows()

MixColumns()

AddRoundKey()

SubBytes()

ShiftRows()

MixColumns()

AddRoundKey()

SubBytes()

ShiftRows()

MixColumns()

AddRoundKeys()

SubBytes()

ShiftRows()

AddRoundKey()

AddRoundKey()

InvShiftRows()

InvSubBytes()

AddRoundKey()

InvMixColumns()

InvShiftRows()

InvSubBytes()

AddRoundKey()

InvMixColumns()

InvShiftRows()

InvSubBytes()

AddRoundKey()

InvMixColumns()

InvShiftRows()

InvSubByes()

InvShiftRows()

InvSubBytes()

AddRoundKey()

InvMixColumns()

InvShiftRows()

InvSubBytes()

AddRoundKey()

InvMixColumns()

InvShiftRows()

InvSubBytes()

AddRoundKey()

InvMixColumns()

InvShiftRows()

InvSubByes()

AddRoundKey()

AddRoundKey()

AddRoundKey()

AddRoundKey()

AES Cipher AES Inverse Cipher

Normal order Modified order

Fig. 3.5 The operation order of encryption and decryption

Although these approaches have the benefit of on-line configurability, they will

induce longer critical path than the traditional approaches[19][34]. Since the modular

multiplications in original AES implementations are with constants, they can reduce

 23

the area and shorten the path delay efficiently. Therefore, the approach that combines

the matrix multipliers in the S-Box and MixColumns() transformation is proposed to

reduce the computation path in our configurable Rijndeal design.

][δ][1−⋅ Aδ

][1−⋅δA][1−δ

⊕

⊕

1−x

⊕

⊕

⊕

Fig. 3.6 The direct architecture of parameterized cipher engine in this work.

3.4.2 The Combination of SubBytes() and MixColumns()

In this section, the combination of matrix multipliers in SubBytes() and

MixColumns() is introduced. Several representations are used to explain our approach

easily. In the following, Key(i) represents the key of i th round, and Key(0) is the

initial key. According to the composite field arithmetic, SubBytes() transformation is

rewritten as AcxInvA ⊕⋅′⋅′⋅ −)(1δδ , where A is the affine matrix, δ ′ , 1−′δ is the

 24

new isomorphism functions described in section 3.2.2, Ac is const(x), and Inv() is

multiplicative inversion in)2(4GF , and)(iRe represents the intermediate values

produced after round function i times. Thus, the series transformations of encryption

can be rewrote as follow:

)0()0(KeyxRe ⊕= (3.23)

)())))1(((()(1 iKeyciRShiftRowsInvAMixColumnsiR Aee ++−⋅′⋅′⋅= − δδ

11 −≤≤ Nri (3.24)

)()))1((()(1 NrKeycNrRShiftRowsInvANrR Aee ++−⋅′⋅′⋅= − δδ (3.25)

where Nr represents number of rounds, which is defined in Sec. 2.1.2.

Since our goal is to separate the affine transformation and the isomorphism

function from S-Box and merge them with MixColumns(). In other words, (3.24) is

modified as (3.26), and the input of next round,)(iRe , will be redefined as

)()(iRiR ee ⋅′=′ δ , shown in (3.27).

)()))))1((((()(11 iKeycAiRShiftRowsInvAMixColumnsiR Aee ⊕⋅⋅′⊕−⋅′⋅′⋅= −− δδδ

 (3.26)

)())))1((((
)()))))1(((((

)()(
11

iKeyciRShiftRowsInvsMixColumn
iKeycAiRShiftRowsInvAMixColumns

iRiR

Ae

Ae

ee

⋅′⊕′⊕−′′=
⋅′⊕⋅⋅′⊕−′⋅′⋅⋅′=

⋅′=′
−−

δ
δδδδ

δ

 (3.27)

Ac′ = AcA ⋅⋅′ −1δ (3.28)

)()(1 xAMixColumnsxsMixColumn ⋅′⋅⋅′=′ −δδ (3.29)

Moreover, these parameters in (3.27) can be calculated beforehand to reduce the

computation path delay. In particular, the new MixColumns() can be depicted as (3.29)

by the change of 0cC ′ , 1cC ′ , 2cC ′ , and 3cC ′ , because the matrix multiplication of

MixColumns() transformation (3.22) can be rewrite as (3.30).

0
1

0

0000

)(sAC

sCsc

c

c

⋅′⋅⋅⋅′=

⋅′=⋅′
−δδ

 (3.30)

 25

Although the initial round key addition (3.31) and the final round function (3.32)

are also differing slightly from the traditional functions, the critical path is still

dominated by the data path that computes one AES round function. Thus, comparing

(3.27) and (3.24), the computation path of two 8-bit matrix multiplication is removed

form the critical path after the optimized combination. The approach to optimize for

speed requirement is achieved.

))0(()0(KeyxRe +⋅′=′ δ (3.31)

)())))1(((()(1 NrKeycNrRShiftRowsInvANrR Aee ⊕′⊕−′⋅′⋅′⋅=′ − δδ (3.32)

Using the same approach, the operation order of decryption in Fig. 3.5 can also

be represented as)(iRd , showed in (3.33)(3.34)(3.35), and the proof of the modified

intermediate value,)(iRd′ , is given in (3.37)(3.39)(3.40).

)()0(NrKeyxRd += (3.33)

11))(

))))1((((()(11

−≤≤−⊕

⊕−⋅⋅′⋅′= −−

NriiNrKey

ciRwsInvShiftRoAInvmnsInvMixColuiR Add δδ
 (3.34)

)0())))1(((()(11 KeycNrRwsInvShiftRoAInvNrR Add ⊕⊕−⋅⋅′⋅′= −− δδ (3.35)

))(

)))1(((()(111

iNrKey

cAiRAwsInvShiftRoInvmnsInvMixColuiR Add

−⊕

⋅⋅′⊕−⋅⋅′⋅′= −−− δδδ
(3.36)

)()))))1((((

)})(

)))1((({(

))(

)))1((((

))()(

1111

1111

1

iNrKeyciRwsInvShiftRoInvsmnInvMixColu

iNrKey

cAiRAwsInvShiftRoInvmnsInvMixColuA

iNrKey

cAiRAwsInvShiftRoInvmnsInvMixColuA

iRAiR

Ad

Ad

Ad

dd

−⋅′⊕′⊕−′′=

−⋅′⊕

⋅⋅′⊕−⋅⋅′⋅′⋅⋅′=

−⊕

⋅⋅′⊕−⋅⋅′⋅′⋅⋅′=

⋅⋅′=′

−−−−

−−−−

−

δ

δ

δδδδ

δδδδ

δ

 (3.37)

)()(11 xmnsInvMixColuAxsmnInvMixColu ⋅′⋅⋅′=′ −− δδ . (3.38)

))(()0(1 NrKeyxARd +⋅=′ −δ (3.39)

)}0())))1(((({)(1 KeycNrRwsInvShiftRoInvNrR Add ⋅′⊕′⊕−′⋅′=′ − δδ (3.40)

 26

Taking the hardware resource shared between the encryption and the decryption

into consideration, the circuit in Fig. 3.7 is an implementation according to the

equation of)(iRe′ and)(iRd′ . Note that the matrix multipliers which located at the

both ends of the multiplicative inversion are separated from the computation path of

one AES round function.

⊕

1−x

][δ ′][1−⋅′ Aδ

⊕

AcA ⋅⋅′ −1δ
⊕

RoundKey⋅′δ

AcA ⋅⋅′ −1δ

][1−′⋅ δA][1−′δ

][δ ′][1−⋅ Aδ

⊕
RoundKey⋅′δ

⊕
][δ ′⋅A][δ ′

Fig. 3.7 The combined architecture of the parameterized cipher engine.

Our design is synthesized using the Synopsys Design Version. The critical path is

detailed in Table 3.2. The multiplicative inversion in)2(4GF occupies about 38% of

the delay time. The second major component is neither MixColumns() nor

AddRoundKey, but the selectors. The requirement to use selectors is not obvious from

 27

the original Rijndael algorithm specification, where they appear as conditional

branches and data selections. Because of the wide data width, the optimization of the

data selection is considered carefully.

Table 3.2 The critical path of the cipher engine

Component Critical path delay (ns)

Register output and setup 0.17
Selector 0.28
ShiftRows() 0.09
XOR 0.11
Inversion in)2(4GF 1.68
Selector and XOR 0.31
MixColumns()/InvMixColumns() 0.55
Selector 0.14
Total 3.33

(0.18μm CMOS standard cell)

 28

Chapter 4
 3-in-1 Key Expansion Design

The key generator that generates the forward and reverse round keys for the

encryption and the decryption is another issue needs to be considered. The on-the-fly

key expansion is an approach that generates each round key in the operation time of

each round function. Therefore, different from the pre-computation approach, it is

unnecessary to use additional memory to store the sub-keys, and can support a better

trade-off between cost and performance than others. In this approach, the key

generator for 128-bit key size only is illustrated in [21][25] , and another one for three

different key size is proposed in [35] .

In this chapter, the 3-in-1 key generator to cooperate with the cipher engine is

proposed. Our design will produce one 128-bit round key per clock cycle for three

different types of key length: 128-bit, 192-bit, and 256-bit. The basic architecture is

made reference to [35], and an efficient architecture is proposed and the shorter

critical path and lower area overhead is obtained by optimizing the order of data

selection.

4.1 The Data Flow Graph of Key Expansion

According to AES algorithm specification and the representations in Fig. 4.1

[35], the data flow graphs for three different types of key length are derived in Fig.

4.2, Fig. 4.3, and Fig. 4.6. The details are described in the following sections.

x

y

z

][))((iRconyRotSBoxxz ⊕⊕=

x

y

z

)(ySBoxxz ⊕=

 29

yxz ⊕= xz =

Fig. 4.1 The representations of operation in key expansion.

4.1.1 128-bit Key Expansion

The initial cipher key is denoted by the array of 4-byte words, [w0, w1, w2, w3],

and a single round function of key expansion is illustrated in Fig. 4.2. Since the

number of rounds (Nr) is 10 when the key length is 128-bit, the final round key will

be produced as [w40, w41, w42, w43], and this will be the initial input of key

expansion in decryption procedure. Because the length of cipher key is equal to the

length of the State array, it is quite straight forward to generate the round key for each

clock cycle.

Fig. 4.2 The 128-bit key expansion for the encryption/decryption.

4.1.2 192-bit Key Expansion

The data flow is similar to the one described above, but the initial cipher key

becomes the array of 6-byte words [w0, w1, w2, w3, w4, w5]. Moreover, the 192-bit

key is concurrently computed for each cycle shown in Fig. 4.3. However, the length

of round key required by the cipher engine is still 128-bit, not 192-bit. This different

bit length will cause the incompatible timing diagram. In order to solve this problem,

the key expansion routine is rearranged such that only one 128-bit round key are

produced for each time frame. The results for the encryption and the decryption are

demonstrated in Fig. 4.4 and Fig. 4.5. For the rearranged data flow graph, the new

 30

round functions are represented as)(0 wf R ,)(1 wf R ,)(2 wf R , and)(3 wf R .

Fig. 4.3 The 192-bit key expansion for the encryption/decryption.

)(3 wf R

)(2 wfR

)(1 wfR

)(0 wfR

Fig. 4.4 The rearrangement of the 192-bit key expansion for the encryption.

At the start of the key expansion for the encryption, which is shown in Fig. 4.4,

the initial cipher key applies the round function)(0 wf R to produce next round key,

and go on. For the 192-bit cipher key, the number of rounds is 12. Thus, the final

round key will be represented as [w48, w49, w50, w51], and output from the round

 31

function)(2 wf R . For this reason, note that the first round function for the decryption

will be)(2 wf R , not)(0 wf R , and the following data flow can be easily found by

reversing the computing order.

W12 W13 W14 W15

W14 W15 W16 W17 W18 W19
Round Key 4

Round Key 3

Round Key 2

Round Key 1

Decryption

W8 W9 W10 W11

W4 W5 W6 W7

W4 W5 W0 W1 W2 W3

)(3 wf R

)(2 wfR

)(1 wfR

)(0 wfR

Fig. 4.5 The rearrangement of the 192-bit key expansion for the decryption.

4.1.2 256-bit Key Expansion

As described above, Fig. 4.6 shows the original data flow graph.

Fig. 4.6 The 256-bit key expansion for the encryption/decryption.

 32

Observing the results of rearrangement shown in Fig. 4.7 and Fig. 4.8, it is more

similar with 128-bit key expansion. The data flow of the encryption and the

decryption are almost the same, since the first round function for decryption is

still)(0 wfR .

)(2 wfR

)(1 wfR

)(0 wfR

Fig. 4.7 The rearrangement of 256-bit key expansion for the encryption.

W0 W1 W2 W3

W4 W5 W6 W7

W8 W9 W10 W11

W12 W13 W14 W15 W8 W9 W10 W11 Round Key 3

Round Key 2

Round Key 1

W4 W5 W6 W7

Decryption

)(0 wf R

)(1 wf R

)(2 wf R

Fig. 4.8 The rearrangement of 256-bit key expansion for the decryption.

In summary, by properly shuffling the input key for each round function, only 4

computing elements are used to realize the key expansion for different key length.

 33

4.2 The Hardware Architecture of 3-in-1 Key Generator

Fig. 4.9 shows the hardware architecture of the 3-in-1 key generator based on

the rearranged data flow graph. LR0, LR1, …, LR7 are 32-bit registers for storing

the intermediate round key. Each component is illustrated as follow.

(1) Controller for 3-in-1 key generator:

Fig. 4.10 shows the state diagram of the controller for 3-in-1 key generator.

Since the timing diagram of 128-bit key expansion is pure and easy to control,

the state and transition, which indicate that the 128-bit key length is selected in

the finite state machine (FSM), are ignored. Based on this FSM, the controller

can generate the proper control signals for the data flow control.

0

R0 R1 R2 R3 R4 R5 R6 R7

Data Source Multiplexer

Data Shifting Multiplexer

000

LR0 LR1 LR2 LR3 LR4 LR5 LR6 LR7

Initial keyFinal key
R1 R3 R5 R7 R2 R6 0

Rotword()

Subword()

Ron[i]

x

)(xfk

Fig. 4.9 The architecture of 3-in-1 key generator module.

Specifically, the initial input for key generator to execute the decryption

procedure is the final round key. Thus, while the reset of coprocessor or the

change of initial cipher key is launched, the key generator will execute

encryption procedure once to obtain the final round key and stored it in the

register beforehand. The data flow control of this function will be managed by

the main controller shown in Fig. 5.1.

(2) Data Source Multiplexer :

 34

Once the key generator is reloaded, the initial key for the encryption or final

key for decryption will be selected to take a fresh start.

(3) Data Shifting Multiplexer :

It is used to shift the input key of each round function. If the input as the

array is denoted as [w0, w1, w2, w3, w4, w5, w6, w7], and the function can be

demonstrated in Table 4.1.

Fig. 4.10 State diagram of the controller for 3-in-1 key generator.

Table 4.1 The function of data shifting multiplexer in the key expansion

Key length En/De Data order

En W0 W1 W2 W3 128-bit
De W0 W1 W2 W3
En W4 W5 W0 W1 W2 W3 192-bit
De W2 W3 W4 W5 W2 W3
En W4 W5 W6 W7 W0 W1 W2 W3 256-bit
De W4 W5 W6 W7 W0 W1 W2 W3

 35

(4))(xfk :

In our proposed design, the S-Box function)(xfk is divided from the data

path of round function, and additional XOR gates and multiplexers are used.

Taking 128-bit key expansion as an example, if the encryption/decryption data

path is implemented as Fig. 4.11, one combinational loop is introduced. In order

to eliminate the combination loop, 32-bit XOR gate and two multiplexers are

used to select the input of)(xfk in different data path locations. It is shows in

Table 4.2

Table 4.2 The input table for the S-Box in key expansion.

Key length Round function x

En R3 128-bit
De R2⊕R3
En)(0 xfR R1
En)(1 xfR

En)(2 xfR R5
En)(3 xfR R5⊕R6*

De)(0 xfR R5

192-bit

De)(1 xfR

Fig. 4.11 The combination loop in 128-bit key expansion data path.

In particular, the round function)(3 xfR in the 192-bit key expansion for the

encryption is the special case. Observing the data path graph in Fig. 4.4, the input of

S-Box function)(xfk is “ w17 ”, which can be produced by (4.1). Since the

implementation of (4.1) will lead to the combinational loop, the (4.2) is utilized, and

the value of “ w5 ” is computed and stored in “ R6 ” register while the round function

)(0 xfR is processed.

Key length Round function x

De)(2 xfR R5 192-bit
De)(3 xfR R1
En)(0 xfR
En)(1 xfR R7
En)(2 xfR R7
En)(0 xfR
De)(1 xfR R7

256-bit

De)(2 xfR R7

 36

151417 www ⊕= (4.1)

 155151110 wwwww ⊕=⊕⊕= (4.2)

In summary, the critical path in the key generator is illustrated in Table 4.3. The

SubWord() transformation occupies about 58% of the delay time, and the second

major component is the sequence of XOR operations. From our test results, the

generation of sub-keys on the fly creates the longest critical path in our C-AES

coprocessor. Thus, it is the bottleneck for increasing throughput in our design, and the

comparison of 3-in-1 key generator is listed in Table 4.4.

Table 4.3 The critical path of the key generator.

Component Critical path delay (ns)

Register output and setup 0.27
Selector and RotWord() 0.54
Matrix multiplier 0.48
Inversion in)2(4GF 1.36
Matrix multiplier 0.40
Selector and XOR 0.79
Total 3.84

Table 4.4 Comparison of 3-in-1 key generator

 Verbauwhede

[24]

Su

[35]

Ours

Technology 0.18μm 0.25μm 0.18μm
Gate counts 60.1K 26.7K 21.7K
Critical Path 10ns N/A 3.84ns

 37

Chapter 5
The Implementation of C-AES coprocessor

In this chapter, the top-level architecture of our C-AES coprocessor is introduced.

It provides the capacity for changing the parameters of each transformation, and the

original AES algorithm is also included as well. In addition, it also supports all

specified key lengths, such as 128, 192, and 256 bits, and both ECB and CBC

operation modes. Moreover, the round keys for the encryption and the decryption are

generated on the fly without ant internal memory.

5.1 Top-level View

The top-level view of C-AES coprocessor is shown in Fig. 5.1. It consists of an

I/O interface module, three controllers, a key generator, and a cipher engine. The I/O

interface serves as a data collector through a 32-bit data bus. These controllers

generate control signals for data transportation, parameter initialization, key

expansion, and encryption/decryption based on the processing mode. To perform an

encryption/decryption process initially, the I/O interface first gathers the slice of all

necessary data, such as parameters, initial cipher key, IV, and plain text/cipher text.

During the data access operations are manipulated, the parameter initialization is

processed simultaneously. If the processing mode is decryption, the final round key

will be computed and stored beforehand by the key generator. Once the parameters

and initial/final key are ready, the main controller will take over the control and

execute the encryption or the decryption procedure whenever one 128-bit plaintext is

ready at the I/O interface. Then, AES round function will be applied for 10, 12, or 14

times depending on the key length. Finally, the processed data will be retrieved

through the 32-bit data bus. The encryption/decryption procedure will be executed

 38

iteratively until no plain text/cipher text is fed or a new processing mode command is

received.

Fig. 5.1 Block diagram of the C-AES coprocessor.

The design of the cipher engine has been shown in section 3.4.2, and the

architecture was depicted in Fig. 3.7. The SubBytes(), ShiftRows(), MixColumns(), and

AddRoundKey transformations was rearranged and merged such that the data path

appears in a more regular way for both encryption and decryption.

The round keys used during the encryption/decryption procedure are expanded

on the fly by the key generator, and the architecture of key generator was described in

Fig. 4.9. It was designed to support all specified key lengths and produces one 128-bit

round key per clock cycle to cooperate with the cipher engine.

Table 5.1 Pin definition of C-AES coprocessor

Signal name Direction Width Description

CLK I 1 Clock signal.
RESET I 1 Reset signal.
Key Change I 1 Reload controller of initial cipher key.
CBC I 1 1: CBC mode / 0: ECB mode.
Key Length I 2 00: 128-bit / 01: 192-bit / 10: 256-bit.
READY I 1 The valid signal of WDATA.

 39

WDATA I 32 The write data bus from the bus.
RDONE O 1 The valid signal of RDATA.
RDATA O 32 The read data bus to the bus.
Wait Buffer O 1 Indicates if the I/O buffer is full.
Working O 1 Indicates if the cipher engine is working.
OE I 1 Indicates if the slave gets access to the bus.

The detailed design of other modules, such as the controllers, and I/O interface

are discussed in the following paragraphs.

5.2 I/O Interface

The I/O interface is designed to be compatible with AMBA AHB slave protocol

in order to make our C-AES coprocessor easily to integrate into a system. The

32-to-128-bit input buffer caches the 32-bit input data from the data bus to form a

block of the necessary data, while the output buffer is used to cache the 128-bit output

block from the cipher engine.

5.2.1 Input Interface

In our proposed architecture, besides the initial cipher key, IV, and text, the

parameters of each transformation also need to be given. The bit number of each

parameter is listed in Table 5.2. Thus, it requires 10 clock cycles to transmit these

parameters via 32-bit data bus.

Table 5.2 The bit number of each changeable coefficient.

Parameters Bit number (bits)

isomorphism matrix (δ ′) 64
inverse isomorphism matrix (1−′δ) 64
affine matrix (A) 64
inverse affine matrix (1−A) 64

affine constant (const(x)) 8
Irreducible polynomial (m(x)) 8
row vector of C (],,,[3210 cccc) 32

Based on the schedule list in Fig. 5.2, the order of data transfer is determined by

 40

the processing mode command. Initially, the data is transferred in the order

parameters, key, IV, text. Thus, the most critical latency, which requires 26 clock

cycles, occurs in CBC mode, and then, the parameter initialization and

encryption/decryption process will be performed. If the parameters and key are given

at the beginning and not changed, the following data transfer of input is only required

4 clock cycles to transmit text.

Such a series of data movement and control in the input interface are achieved by

enable a pointer to contain the address. It is denoted as WADDR in Fig. 5.2, and the

destination transfer address is assigned by the interface controller. While the last

transfer address is reached, it also means one 128-bit text block is ready at input

interface. Once the cipher engine is not working and output buffer is not full, the main

controller will take over the control and execute the encryption/decryption procedure.

Otherwise, the signal of “ Wait Buffer ” will be pull HIGH to indicate that the new

data can not be written to the input interface.

Param
eters (10)

K
ey (4/6/8)

IV
 (4)

text (4)

WADDR

Initialization
CBC

Key Length
Change Key

192128 All256 128All 256192 All

Key Length = 128-bit

Key Length = 192-bit

Key Length = 256-bit

Conditions

18 20 22 26 4 8 10 12 16Total cycles

Fig. 5.2 Clock distribution in the different transfer modes.

 41

5.2.2 Output Interface

The output interface is used in a transmission that contains two separate 128-bit

buffers. While one buffer is prepared to receive the next 128-bit output from the

cipher engine, the data in the other buffer is being sent to the data bus. Also as

described in above section, only if one of the output buffers is empty, the cipher

engine will write the encryption/decryption result to the output buffer, read the new

data from the input buffer and continue the computation.

5.3 Parameter initialization Engine

The parameter initialization engine contains computation logics and several

registers to generate and store the necessary coefficients for our cipher engine and key

generator. Fig. 5.3 shows the block diagram of this module. There are 8 64–bit

registers and 3 8-bit registers used to store all necessary parameters listed in Table

5.3 .

)(xxtimei

70 ≤≤ i

Fig. 5.3 Simple block diagram of parameter initialization engine.

Since the shortest latency shown in Fig. 5.2 is 18 clock cycles, the parameter

initialization can spent 18 cycles to compute, and will not introduce more delay into

latency. Thus, in order to reduce hardware cost, the compatible input order of

parameters and the architecture, which uses only 8 8-bit matrix multipliers, is

proposed and the configuration time just matches 18 cycles. The detailed input order

and computation schedule is listed in Fig. 5.4. In addition, the calculation of 0cC , 1cC ,

2cC , 3cC , are achieved by)(j
i cxtime , 70 ≤≤ i , 30 ≤≤ j , which is described in

 42

Section 3.3.

Table 5.3 The necessary parameters for the cipher engine and the key generator.

δ ′

1
0

−′⋅⋅⋅′ δδ ACc
1

0
1 −− ′⋅⋅⋅′ δδ cCA

1
1

−′⋅⋅⋅′ δδ ACc
1

1
1 −− ′⋅⋅⋅′ δδ cCA

1
2

−′⋅⋅⋅′ δδ ACc
1

2
1 −− ′⋅⋅⋅′ δδ cCA

1
3

−′⋅⋅⋅′ δδ ACc
1

3
1 −− ′⋅⋅⋅′ δδ cCA

1−′δ
1−′⋅δA
1−⋅′ Aδ

Ac

AcA ⋅⋅ −1δ

1−′⇒ Aδ

1−′⇒ δA

CaA 1−′⇒ δ

3210 ,,, cccc CCCC⇒
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

)(, xmcA

3210 ,,, cccc

1−A

δ ′

1−′δ

A
0cCδ ′⇒
1cCδ ′⇒
2cCδ ′⇒
3cCδ ′⇒

1
3

−′′⇒ δδ ACc

1
2

−′′⇒ δδ ACc

1
1

−′′⇒ δδ ACc

1
0

−′′⇒ δδ ACc

1
3

1 −−′⇒ δδ cCA

1
2

1 −−′⇒ δδ cCA

1
1

1 −−′⇒ δδ cCA
1

0
1 −−′⇒ δδ cCA

0
1

cCA−′⇒ δ

3
1

cCA−′⇒ δ
2

1
cCA−′⇒ δ
1

1
cCA−′⇒ δ

Encryption
Input Order

Decryption
Computation

Fig. 5.4 The computation schedule of parameter initialization.

 43

Chapter 6
Verification and Result Comparison

In this chapter, the design methodology and verification based on Intellectual

Property (IP) reuse are introduced. In section 6.1, the rules in IP Qualification (IPQ)

Guidelines are described. We follow these rules to implement the synthesizable HDL

code of our design in the front end. Moreover, the chip design flow and verification in

each level are illustrated in section 6.2 and 6.3. Finally, the experimental results and

comparison are given in section 6.3.

6.1 IP-Based Design

IP-based and platform-based designs are more and more important in SoC

(System-on-Chip) era. The design time can be decreased to meet the increasing

complexity on single chip by using the reusable IP, and let the verification more

efficient by the platform-based design flow. Generally speaking, Silicon Intellectual

Property (SIP) may be divided into three types described as follow. In our proposed

design, the soft IP implementation is focused in the front end.

(1) Soft IP indicates that IP designed in the form of synthesizable HDL code.

(2) Firm IP indicates that IP delivered in the form of gate-level netlist after synthesis.

(3) Hard IP indicates that IP delivered generally in the form of GDSII format, which

is fully placed, routed and optimized for power, size, or performance, and mapped to

specific process technology.

6.1.1 IP Qualification Guideline Overview

The general rules proposed in the IP Qualification (IPQ) guidelines are a set of

best practices for creating reusable designs for use in an SoC design methodology.

 44

There practices are based on several reusable methodology literatures and experiences

from Steering Committee members of IPQ Alliance in developing reusable designs.

Reusable macros that have already been designed and verified help users aware of all

need-to-know issues in advance. If the blocks do not conform to this standard for

reusable methodology, the efforts for integrating pre-existing blocks into new SoC

could become excessively high.

The quality criteria, which have to be taken into account, come from various

sources: The reuse methodology manual (RMM) contains a set of rules and guidelines

that help ensure that a design is reusable and technology-independent. IPQ describes

that language subset of VHDL or Verilog that are synthesizable and verifiable with

any compliant tool. Further efforts on quality are under way in the Virtual Socket

Interface Alliance (VSIA).

6.1.2 Soft IP Design Flow

The standard soft IP design flow is illustrated in Fig. 6.1. IP creators must follow

the rules in the IP Qualification guidelines, which are the basis for industry-wide

solutions to develop reusable and higher quality IP. Here, the IPQ guidelines classify

the reusable methodology into three categories:

(1) Design guidelines:

The design guidelines include coding rules and design issues. Soft IP that follows

the rules can ensure that the HDL code is readable, portable and reusable. In addition,

these rules also help achieve optimal synthesis and simulation results. The guidelines

are categorized as follow:

 - HDL (Verilog & VHDL) coding guidelines.

 - Design style guidelines.

 - Synthesis script guidelines.

(2) Verification guidelines:

In verification guidelines, a set of rules are provided which need to be followed

by IP creators to improve the verification quality of the IP. The guidelines are

categorized as follow:

 45

 - Soft IP verification guidelines.

 - Coding guidelines in writing testbench codes.

 - IP prototyping.

(3) Deliverable guidelines:

In verification guidelines, the rules ensure that users can obtain all the necessary

information about this IP. According to the documents and script files provided by IP

creators, users can rebuild the whole design on their workstations or servers. The

guidelines are categorized as follow:

 - General deliverables.

 - Documentation deliverables.

 - Design files deliverables.

 - Verification deliverables.

 - Hardware related software deliverables.

 - IP prototyping deliverables.

The detailed descriptions of these guidelines are in the IP Qualification v1.0.

 46

 IP Package Flow

 Soft IP Creation Flow

IP Qualification
Guideline

Deliverables
Guideline

Design Guideline

- Coding guideline
- Design style
- Synthesis script

Verification
Guideline

- Soft IP verification
- test bench

Design Spec.

Coding

HDL Analysis

Synthesis Script Design

Synthesis

Design For Testability

Pre-Layout Verification

Cycle-based
Simulation

Static Timing
Verification

Logic
Synthesis

Power
Synthesis

Physical
Synthesis

RTL Coding
Style Check

Code
Coverage
Analysis

Functional
Simulation

General deliverables

Document delieverables

Design file deliverables

Hardware related software

IP Prototyping

To Back-End Flow

Deliverables Collection
&

IP Package

To IP Integrators

nLint VN

Fig. 6.1 Soft IP design flow.

6.2 Chip Design Flow

Our chip design flow is shown in Fig. 6.2. The RTL code is designed and

simulated in Verilog-XL compiler, and Synopsys Synthesis tool is used to synthesis

our design with one scan chain and create the gate level netlist.

 47

Fig. 6.2 Cell-based design flow

 48

Then, the gate level netlist is applied to gate level simulation and compared the

result with RTL code simulation to check out the correctness. We use Apollo to

placement and routing, and Calibre to check DRC and LVS result. After post-layout

level gate simulation is correct, NanoSim is exploited to take transistor level

simulation.

6.3 Verification Strategy

Since a single verification strategy would not sufficiently handle the complexity

in SoC problems, a multilevel verification approach is developed. It contains several

functional models to verify a single IP, and will increase the verification speed and

efficiency at the system level. In the following sections, the implemented functional

models and verification are described.

6.3.1 Untimed functional model

The first complete model of our proposed design is presented in abstract form as

an untimed functional model (UFM), in which all functionality is implemented with

MATLAB to verify the correctness of the configurable AES algorithm. Besides, it can

also produce the test patterns efficiently for following simulation models. The

MATLAB software model is shown in Fig. 6.3.

6.3.2 Timing Accurate model

The timing accuracy of a model illustrates how similarly it behaves to the

constraints of the final design with respect to time. In our proposed design flow, the

synthesis tool generates the timing accurate gate-level netlist from the RTL code, and

the gate propagation delays are analyzed by those constraints defined in the

specification of UMC 0.18μm CMOS technology. After synthesis, the gate-level

simulation at the highest estimated operation frequency is needed for verifying the

correctness of the synthesis result.

 49

Fig. 6.3 MATLAB software model.

6.3.3 FPGA Prototyping

An FPGA prototyping is implemented on the ARM Integrator/Logic Module

(LM), which provides a platform for developing digital IPs on the AMBA-based SoC

design. The ARM Integrator contains ARM CPU, AMBA bus and FPGA. The further

details about this platform are described in [37], and the system architecture of the

C-AES coprocessor on the ARM Integrator is shown in Fig. 6.4. Within LM, the

registers listed in Table 6.1 are mapped to our C-AES coprocessor. Thus, the ARM

CPU on core module can manipulate our C-AES coprocessor easily by these registers.

Fig. 6.5 shows that we debug in the ARM Developer Suite (ADS), and a test bench of

the encryption/decryption loop is simulated.

 50

Fig. 6.4 The C-AES coprocessor on the ARM Integrator.

Fig. 6.5 The hardware driver running on the ARM ADS.

 51

Table 6.1 Register map of the C-AES coprocessor.

address Size Function

0xCC00_0000 9 Each bit represents the control or response signal of the
C-AES coprocessor separately, such as [RESET, Key
Change, CBC, Key Length, RDONE, Wait Buffer,
Working, OE]

0xcCC0_0004 32 Represents WDATA or RDATA according the direction
of data transfer.

6.3.4 Coding Style Rule Check

A programmable rule checker has been integrated in the IP Qualification

framework. The SpringSoft nLint is used for static lint checking. The lint tool can find

errors and warnings in many aspects including naming, synthesis, simulation and DFT

issues. Common syntax errors, such as typing errors, unmatched bus width, and

undeclared objects, can be quickly located. Moreover, some logical errors like

unreachable state can also be found. The lint tool indicates bad coding style that may

load to poor readability and reusability. Our proposed design passes the lint tool

checking with all rules defined by IPQ Alliance.

Fig. 6.6 The report of coding style rule check

6.3.5 Code Coverage

Generally speaking, a coverage-driven verification methodology makes the

verification flow more complete and efficient, and coverage report gives us a sense of

 52

the good and the bad of our HDL design and test bench. The coverage-driven

verification can be performed using several coverage metrics. A simple example of

these metrics is the code coverage. By investigating the code coverage helps the

designer find untested or redundant code in early stage of development and the quality

of the stimuli can be measured. Therefore, coverage gives the information that you

need to know when you are ready for RTL sign-off. With a high coverage score, you

can have more confidence that the code, in passing, works correctly, and we use

Verification Navigator to measure the code coverage. The report is listed in Fig. 6.7.

Fig. 6.7 The report of code coverage estimated by Verification Navigator.

6.3.6 Design for Testability

Considering the ASIC testing, the scan chain design is inserted. In our design

flow, the Synopsys DFT compiler is used to conduct in-depth testability analysis at

the Register Transfer Level (RTL), and to implement the effective test structures at the

hierarchical block level. The report of fault coverage shown in Fig. 6.8 is calculated

by TetraMax, and it is 99.98% with 231 test patterns.

 53

Fig. 6.8 The report of fault coverage calculated by TetraMax.

6.3.7 Physical Verification

In physical verification, Automatic Placement and Routing (APR), on-line

Design Rule Check (DRC) and Layout Versus Schematic (LVS) are done by Synopsys

Astro, and off-line DRC and LVS are verified by Mentor Graphics Calibre. Finally,

the post-layout simulation is passed using Verilog-XL.

6.4 Results and Comparisons

The C-AES coprocessor design has been implemented using a UMC 0.18μm

CMOS technology. It was synthesized using a standard-cell library. The critical path

of only about 3.84ns shown in Table 6.2 is obtained.

Table 6.2 The comparison between cipher engine and key generator.

 Cipher Engine Key Generator
Gate Counts (K) 38.55 21.68
Percentage of area size (%) 47.60 26.77
Critical path (ns) 3.33 3.84

Fig. 6.9 shows a chip layout of the C-AES coprocessor, and the whole chip has a

size of around 266.172.1 mm× , with a gate count of around 80,986 gates. The I/O

interface takes 25.42% of the overall area, since the selectors with wide data width

and the registers for storing IV, initial cipher key, text, and parameters described in

Sec. 5.3 are required. The key generator module consumes about 26.77% of the area,

and the main cipher engine module occupies 47.60% of the overall area. All these

data are summarized in Table 6.3.

 54

2655.1721.1 mm×

Fig. 6.9 Chip layout and feature of C-AES coprocessor.

In Table 6.4, we compare our implementation with some other AISCs presented

recently. In [12], the authors presented a test chip that provides the AES encryption

and decryption with different block sizes (128, 192, and 256 bits) and key lengths

(128, 192, and 256 bits). Here the best performance (with the block size of 128 bits) is

shown for comparison. Due to its LUT-based implementation of the S-Box, the

hardware cost is high.

Table 6.3 Area statistics of C-AES coprocessor.

Component Gate counts (K) Percentage (%)
Cipher Engine 38.55 47.60

- ShiftRows() 0.35 0.43
- 16 8-bit inverters in)2(4GF 5.31 6.56
- 16 8-bit matrix multipliers 4.23 5.22
- new MixColumns() 18.32 22.62

Key Generator 21.68 26.77
Main controller 0.17 0.21
Input interface 17.72 21.88
 - Registers 6.61 8.16

-)(xxtimei 1.23 1.52
- 4 8-bit Matrix Multipliers 1.02 1.26

Output interface 2.87 3.54
 - Registers 1.37 1.69
total 80.99 100

Another case is a pipelined design implemented by a 0.35μm CMOS technology

 55

[23]. The S-Boxes were implemented based on the work reported in [38], instead of

LUT-based design. However, theirs supports keys of 128, 192, and 256 bits by the

same way described in [12], it requires an addition memory to store all the necessary

round keys in advance. Compared with other designs which generate the round keys

on the fly, it occupies extensive hardware resources. In addition, it should be noted

that a pipelined design has the difficulty in maintaining the same throughput rate in a

feedback cipher mode such as CBC. For example, the performance of their 4-stage

pipeline design will be scaled down by four in the feedback cipher modes

In [19], the authors presented a compact architecture for the Irondale algorithm,

where the hardware resources can be efficiently shared between data encryption, data

decryption, and even key expansion. Table 6.4 only shows the result for their 128-bit

data path—using one clock cycle for each round. Moreover, the S-Box is also

optimized by introducing the composite field)))2(((222GF . Since the data paths of

192 and 256-bit key expansion are not suitable for developing the compact hardware,

their key generator only supports 128-bit key length, and the round keys are generated

on-the-fly. Under the logic optimization applied to the constant arithmetic

components, it has a very small gate counts.

 In [34], another AES-128 module was implemented, and it is very similar to

above concept [19], but has a smaller area. This is mainly because a new common

sub-expression elimination (CSE) is applied to reduce the area cost. In addition, they

also focus on the merge functions of the affine transformation and MixColumns() to

increasing throughput. In our design, a new combined architecture described in Sec.

3.4.2 provides a more effective method for high throughput.

In [35], it is also a configurable AES coprocessor that all the encryption and

decryption procedures are the same as the original AES algorithm, but m(x), Affine

matrix, const(x) and the row vector c(x), are all configurable. In their design,

additional 16 16256× -bit and 16 64-bit ROMs are used to store all alternatives of

these parameters. For this reason, their design can only spend 3 clock cycles for

parameter initialization, while our approach, which is described in Sec. 5.3, requires

at least 18 cycles to receive the input data and compute the parameters. In order to

support the configurability, they extend the composite field arithmetic approach to

implement the new data path of round function, which can be processed with a fixed

 56

irreducible polynomial in the composite field))2((24GF . In other words,

MixColumns() transformation is still executed by the multiplier in composite field

))2((24GF . Although the difficulty in providing the configurability is solved, the

overhand is quite considerable. It is because that additional 32 8-bit matrix multipliers

for S-Boxes, and 64 8-bit field multipliers for MixColumns() are required in the data

path of round function. Thus, our approach, which combines the matrix multipliers in

S-Boxes and MixColumns(), provides a successful solution for high speed and low

cost.

Table 6.4 Comparison of AES designs

 Verbauwhede

[12]

Su

[23]

Satoh

[19]

Hsiao

[34]

Su

[35]

Ours

Technology 0.18μm 0.35μm 0.11μm 0.18μm 0.25μm 0.18μm

Clock Rate 125MHz 200MHz 224MHz 117MHz 66MHz 250MHz

Throughput

(Gbps)

1.6

1.33

1.14

2.381

2.008

1.736

2.61

1.49

0.844

0.704

0.603

3.20

2.67

2.28

Gate Counts 173K 58.430K 21.337K 16.917K 200.5K 80.99K

Throughput/

Gate Count

(Kbps/gate)

9.25

7.68

6.59

41.49

34.98

30.24

122.23

88.08

4.21

3.51

3.01

39.51

32.97

28.15

On-the-fly Key

Generation
No No Yes Yes Yes Yes

configurability No No No No Yes Yes

Although the throughput to gate count ratio is about 3 times smaller to the best

value reported in Table 6.4, our C-AES coprocessor can easily provide a new

encryption algorithm by arbitrarily selecting a combination of the parameters, and all

specified key lengths can be supported. Considering the pre-gate throughput rate and

functionality, our design is quite competitive.

 57

Chapter 7
Conclusions and Future Work

7.1 Conclusions

A Rijndael algorithm with changeable coefficients is designed in this work, and

we use the on-the-fly key generator instead of memory-based key scheduler to reduce

the hardware resources. In addition, ECB and CBC operating modes are supported in

our design. The whole chip has a size of around 266.172.1 mm× , with a gate count of

around 80,986 gates. The throughput is about 3.2Gbps for 128-bit keys, 2.67Gbps for

192-bit keys, and 2.29Gbps for 256-bit keys, respectively. The goal of this design is

providing customized security for virtual private network (VPN) application. In VPN,

sessions do not need to compatible with standard traffics; hence, the enterprise can

configure their own coefficients to protect their network. In addition, our designs

provides throughput over gigabit per seconds, so they are suitable for Fast Ethernet or

Giga Ethernet.

7.1 Future Work

The C-AES coprocessor is also designed to operate in AMBA system with AHB

specification. It resides in the address map of an ARM compatible processor, and

serves as a coprocessor to provide encryption computing. Someday, it may become

the building block of network security processor. To manipulate the data transfer

efficiently, the future work may lie in developing the AHB bus mastering capability to

off-load data movement and encryption operations form the host processor. Thus

similar to the behavior of DMA devices, the data transfer and processing are all done

by our coprocessor, which leaves the host processor to execute more sophisticated

flow control or exception handling.

 58

Bibliography

[1] National Institute of Standards and Technology (NIST), Advanced Encryption

Standard (AES), National Technical Information Service, Springfield, VA

22161, Nov. 2001.

[2] National Institute of Standards and Technology (NIST), Data Encryption

Standard (DES), National Technical Information Service, Springfield, VA

22161, Oct. 1999.

[3] W. Stallings, Cryptography and Network Security: Principles and Practice. 3rd

ed., Prentice-Hall Inc., Upper Saddle River, N.J., 2003.

[4] E. Barkan, and E. Biham, “In How Many Ways Can You Write Rijndael?”,

Proceedings of ASIACRYPT, Dec. 1-5, 2002, pp. 160-175, Springer-Verlag,

2002.

[5] P. Fergguson and G. Huston, “What is a VPN?—Part I,” The Internet Protocol

Journal, vol. 1, pp. 2–19, June 1998. http://www.cisco.com/warp/public/759/.

[6] J. Daemen, and V. Rijmen, “AES Proposal: Rijndael,”AES Algorithm

Submission, Sep. 3, 2000.

[7] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, “A comparative study of

performance of AES final candidates using FPGAs,” Cryptographic Hardware

and Embedded Systems (CHES) 2000, vol. 1965 of LNCS, pp. 125–140,

Springer-Verlag, Aug. 2000.

[8] K. Gaj and P. Chodowiec, “Fast implementation and fair comparison of the

final candidates for advanced encryption standard using field programmable

gate arrays,” Proc. RSA Security Conf., Cryptographer’s Track, vol. 2020 of

LNCS, pp. 84–99, Springer-Verlag, Apr. 2001.

[9] P. Chodowiec, K. Gaj, P. Bellows, and B. Schott, “Experimental testing of the

Gigabit IPSec compliant implementations of Rijndael and triple DES using

SLAAC-1V FPGA accelerator board,” Proc. Information Security Conf. (ISC),

vol. 2200 of LNCS, pp. 220–234, Springer-Verlag, Oct. 2001.

 59

[10] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully pipelined

memoryless 17.8 Gbps AES-128 encryptor,” Proc. Int. Symp.

Field-Programmable Gate Arrays (FPGA), (Monterey), pp. 207–215, ACM

Press, 2003.

[11] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully pipelined

memoryless 17.8 Gbps AES-128 encryptor,” Proc. Int. Symp.

Field-Programmable Gate Arrays (FPGA), (Monterey), pp. 207–215, ACM

Press, 2003.

[12] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and performance testing

of a 2.29-GB/s Rijndael processor,” IEEE Journal of Solid-State Circuits, vol.

38, pp. 569–572, Mar. 2003.

[13] V. Fischer and M. Drutarovsky, “Two methods of Rijndael implementation in

reconfigurable hardware,” Cryptographic Hardware and Embedded Systems

(CHES) 2001, vol. 2162 of LNCS, pp. 77–92, Springer-Verlag, May 2001.

[14] S. Morioka and A. Satoh, “A 10Gbps full-AES crypto design with a

twisted-BDD S-Box architecture,” Proc. IEEE Int. Conf. Computer Design

(ICCD), (Freiburg, Germany), pp. 98–103, Sept. 2002.

[15] K. Gaj and P. Chodowiec. Comparison of the hardware performance of the

AES candidates using reconfigurable hardware. Proc. 3rd AES Conf. (AES3).

[Online].

Available: http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html

[16] M. McLoone and J. V. McCanny, “Rijndael FPGA implementation utilizing

look-up tables,” IEEE Workshop on Signal Processing Systems, Sept. 2001, pp.

349–360.

[17] M. McLoone and J.V. McCanny, “Apparatus for Selectably Encrypting and

Decrypting Data,” UK Patent Application No. 0107592.8, Filed 27, March

2001.

[18] V. Rijmen, “Efficient implementation of the Rijndael S-box.”

 60

http://www.esat.kuleuven.ac.be/˜rijmen/rijndael/sbox.pdf.

[19] A. Satoh, S. Morioka, K. Takano, S. Munetoh, “A Compact Rijndael Hardware

Architecture with S-box Optimization”, ASIACRYPT 2001, Lecture Notes in

Computer Science 2248, Springer, 2001, pp. 239-254

[20] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementation of

the AES SBoxes,” CT-RSA 2002, vol. 2271 of LNCS, pp. 67–78,

Springer-Verlag, 2002.

[21] S. Mangard, M. Aigner, and S. Dominikus, “A highly regular and scalable AES

hardware architecture,” IEEE Trans. Computers, vol. 52, pp. 483–491, Apr.

2003.

[22] Xinmiao Zhang; Parhi, K.K., “High-speed VLSI architectures for the AES

algorithm”, IEEE Trans. VLSI Systems, Vol 12, Issue 9, pp. 957-967, Sept. 2004

[23] T.-F. Lin, C.-P. Su, C.-T. Huang, and C.-W. Wu, “A high-throughput low-cost

AES cipher chip,” Proc. 3rd IEEE Asia-Pacific Conf. ASIC, (Taipei), pp.

85–88, Aug. 2002.

[24] H. Kuo and I. Verbauwhede, “Architectural optimization for a 1.82 Gbits/sec

VLSI implementation of the AES Rijndael algorithm,” Cryptographic

Hardware and Embedded Systems (CHES) 2001, vol. 2162 of LNCS,

Springer-Verlag, May 2001.

[25] J. H. Shim, D.W. Kim, Y. K. Kang, T.W. Kwon, and J. R. Choi, “A Rijndael

cryptoprocessor using shared on-the-fly key scheduler,” Proc. 3rd IEEE

Asia-Pacific Conf. ASIC, (Taipei), pp. 89–92, Aug. 2002.

[26] J. Guajardo and C. Paar. “Efficient Algorithms for Elliptic Curve

Cryptosystems” Advances in Cryptology—CRYPTO ’97, Lecture Notes in

Computer Science, vol. 1294 pp. 342–356. Springer-Verlag, August 1997.

[27] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, and P. Rohatgi.

“Efficient Rijndael Encryption Implementation with Composite Field

Arithmetic” Workshop on Cryptographic Hardware and Embedded Systems

(CHES2001), pp. 175–188, May 2001.

 61

[28] C Paar, “Efficient VLSI Architecture for Bit-Parallel Computations in Galois

Fields” PhD Thesis, Institute for Experimental Mathematics, University of

Essen, Germany, 1994

[29] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “Unified hardware

architecture for 128-bit block ciphers AES and Camellia”, Cryptographic

Hardware and Embedded Systems (CHES) 2003. Aug. 2003, Springer-Verlag.

[30] IEEE P1363. “IEEE Standard Specifications for Public-Key Cryptography”

IEEE Computer Society, August 2000.

[31] L. Reyzin, B. Kaliski, “Storage-Efficient Basis Conversion Techniques”

Contribution to IEEE P1363a, February 2000.

[32] J.L. Fan and C. Paar. “On Efficient Inversion in Tower Fields of Characteristic

Two” International Symposium on Information Theory, page 20. IEEE, June

1997.

[33] M. H. Jing, Y. H. Chen, Y. T. Chang, and C. H. Hsu, “The design of a fast

inverse module in AES,” Proc. Int. Conf. Info-Tech and Info-Net, vol. 3,

Beijing, China, Nov. 2001, pp. 298–303.

[34] S. F. Hsiao, M. C. Chen, C. S. Tu, “Memory-Free Low-Cost Designs of

Advanced Encryption Standard Using Common Subexpression Elimination for

Sunfunctions in Transformations” IEEE Trans. Circuit and Systems, VOL. 53,

NO. 3, MARCH 2006

[35]

C. P. Su, C. L. Horng, C. T. Huang, C. W Wu, “A configurable AES processor

for enhanced security” Design Automation Conference, 2005. Proceedings of

the ASP-DAC 2005. Asia and South Pacific Vol. 1 Page(s):361 - 366 Jan. 2005

[36] Chih-Hsu Yen, Tsung-Yao Pai, and Bing-Fei Wu, “The Implementations of the

Reconfigurable Rijndael Algorithm with Throughput of 4.9Gbps” Proceedings

of 16th VLSI Design/CAD Symposium, 2005.

[37] Integrator/LM-EP20K600E+ user Guide

http://www.arm.com/pdfs/DUI0146C_LM600.pdf

 62

[38] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementation of

the SBoxes,” CT-RSA 2002, vol. 2271 of LNCS, pp. 67–78, Springer-Verlag,

2002.

