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小世界流行病學建模與公共衛生政策評估： 

利用社會分身點概念與區域資訊建構社會網路式流行病學電腦模擬 

 

學生：黃崇源 

 

指導教授：孫春在博士

國立交通大學資訊工程學系﹙研究所﹚博士班 

摘    要 
 

  本論文的主旨在探討電腦建模與模擬在社會科學領域裡的重要性、優缺點、

運用方式、各項驗證標準與評估程序。本論文擬以電腦建模與模擬為核心重點，

詳細介紹二項原創性的社科模擬研究。首先，第一項研究運用電腦建模與模擬來

探討流行性傳染病的傳播動態。此研究提出一套新穎的社會分身點概念來表示長

距離移動、日常定點活動與多個活動點等重要的社會現象。並結合細胞自動機，

建構一個能夠描述日常生活接觸與人際互動模式的小世界社會網絡模擬模型。此

研究模擬 2003 年初在台北、新加坡與多倫多（加拿大）三地的 SARS 疫情，模

擬結果與實際的疫情資料具有高度的一致性，充分吻合當地疫情的發展趨勢與特

色。另外，此研究也證明該模擬模型非常適合探討與流行性傳染病有密切相關的

公衛政策與防疫策略等。其次，本論文在第二項研究中，針對近來非常熱門的小

世界社會網絡模擬模型，提出一個傳播問題模型，並設計一個敏感度分析實驗，

來探討數種區域差異對於模擬歷程與結果的影響，並藉此檢視各種區域差異的影

響力與敏感度。最後，本論文期望透過上述二項研究來充分掌握電腦建模與模擬

的特性與潛力，釐清它的操作程序與潛力，進而探討它的意義、限制與應用範疇。 
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Using the Social Mirror Identity Concept and Local Information for 

Network-based Epidemic Simulations 

 
student：Chung-Yuan Huang 

 

Advisors：Dr. Chuen-Tsai Sun 
 

Department﹙Institute﹚of Computer Science 

National Chiao Tung University 

ABSTRACT 
 

The purpose of this dissertation is to explore the importance, advantages, 

applications, validation standards, and evaluation procedures of computational 

modeling and simulation in the social sciences. I will present two original social 

simulation studies in detail. In the first, computational modeling and simulation are 

used to investigate the transmission dynamics of epidemics and to evaluate the 

effectiveness of various public health policies and epidemic prevention strategies. A 

novel social mirror identity concept is proposed to represent social phenomena such as 

individual long-distance movement, daily visits to fixed locations, and multiple 

activity locations. The cellular automata concept is also utilized to construct a 

small-world social network model that represents human interactions and daily 

contacts. To test these concepts, I simulated the 2003 SARS outbreaks that occurred in 

Taipei, Singapore, and Toronto. The simulation results, which were highly consistent 

with actual epidemic data, corresponded with local outbreak trends and features. The 

simulation model was shown to be suitable for investigating public health policies and 

epidemic prevention strategies. In the second study I investigated the influence of 



iii 

local information on social simulations based on a small world model. I introduced a 

cellular automata-based variation with added shortcuts as a test platform for 

simulating the spread of an epidemic disease, then examined the influences of various 

local information factors on the results. It is my hope that these efforts will help future 

researchers determine appropriate simulation parameters, clarify operational 

procedures, and access meaning from simulations.  
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Chapter 1. Introduction 

Social scientists primarily use computers in two ways: as work platforms for 

programs that facilitate general tasks (e.g., word processing and statistical analysis) 

and as gateways to the “information superhighway” that has greatly increased the 

speed and volume of scholarly discourse. Until very recently, social scientists have 

not taken full advantage of computers, especially as tools for research or data analysis 

(Garson, 1994). On the other hand, a small number of social scientists have applied 

computational modeling and simulation to study social issues since the beginning of 

the computer revolution. Those who initially published interesting and important 

research results include Abelson and Carroll (1965), Coleman (1962), Forrester 

(1969), Guetzkow and Bowes (1957), Hermann and Hermann (1967), McPhee (1963), 

and Meadows et al. (1972). During the past decade, a different generation of social 

scientists has used computational modeling and simulation to explore social issues; its 

members include Epstein and Axtell (1996), Garson (1994), Gilbert and Troitzsch 

(1999), Hannon and Ruth (1994), Hoover and Perry (1990), Kheir (1988), Leik and 

Meeker (1995), and Whicker and Sigelman (1991). Three contributing reasons for this 

renewed interest are: 

1. Modern computers possess much stronger computational capabilities and 
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greater reliability at a much lower price. Today’s personal computers (PCs) 

possess many times more computational power and memory than 

“supercomputers” of decades past, yet are cheap enough for students and 

families to purchase. 

2. The combination of advanced technology, operating system interfaces, 

software packages, and computer programming languages have made 

current computer systems very stable and easy to operate. Early social 

scientists who used computational modeling and simulation had to be 

well versed in assembly languages to build simulation models, and were 

occasionally required to manually replace PCBs or circuits. Today’s 

computer systems and programming tools are no longer considered 

cryptic, allowing social scientists with rudimentary programming skills to 

apply specific software and development packages to establish models. 

3. Computational modeling and simulation methods and technology are 

rapidly evolving—for example, genetic algorithms (GAs) and 

small-world networks (SWNs) can now be used to analyze how social 

culture evolves and adjusts to various factors. Social scientists are thus 

able to make up for the inadequacy of traditional research approaches in 

examining social phenomena and processes. 
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1.1. Models, Computational Modeling, and 

Simulation Models 

Defining “model” is important for facilitating later discussion. In this dissertation 

I will view a model as a representation of a theory—that is, a scientific way to 

describe a real-world phenomenon. Models are integral to the development of 

theoretical understanding in the sense that they not only fill gaps between theory and 

empirical data, but also enhance interactions and influences between the two. Models 

allow researchers to utilize empirical data regularities to guide theory development 

(induction) and to apply theory to empirical analysis (deduction). 

Three languages are used in the social sciences to express theories or build 

models: natural language, mathematics (including statistics and logic), and 

computational modeling and simulation (Ostrom, 1988). Turing (1950) originally 

claimed that all formal languages are equivalent (i.e., that natural language, classical 

mathematics, and computational modeling are interchangeable), but in the 1950s it 

was impossible to predict how computational modeling and simulation would one day 

be used to explore social issues. Today, certain social issues are better dealt with using 

mathematical tools (e.g., proving theorems), meaning that computational modeling 

and simulation can be used to express social science theories. Modeling and 
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simulations are thus gaining greater acceptance. 

Simulation models are models that have been transformed into computer 

programs (also called simulation systems). The majority of computational models and 

simulations entail five steps: a) developing a theory, b) transforming the theory into a 

simulation model, c) validating the simulation model, d) executing the model and 

observing its processes and outcomes, and e) regularly refining the simulation model 

and theory. In the system that is the focus of this dissertation, Huang, Sun, Hsieh, and 

Lin (2004) established the social mirror identity concept to describe long-distance 

movement, daily visits to fixed locations, and multiple activity locations to simulate 

the transmission dynamics of SARS outbreaks at different locations in early 2003. I 

will describe how a combination of the social mirror identity concept, cellular 

automata, and small world characteristics were used to construct a simulation model 

that fully depicts daily contact and human interactions within social networks. 
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1.2. Why Use Computational Models for Social 

Science Simulations? 

Social science analytical tools include qualitative case studies, quantitative data 

analyses, and mathematical modeling. In all cases, research approaches must be 

applied with flexibility in order to accumulate scientific knowledge (King, Keohane, 

and Verba 1994). Until recently, it was not considered possible to use a single research 

approach to address all social science research problems; instead, social scientists 

have had to integrate multiple approaches according to the situation and the collected 

data. In section 1.2 I will examine whether the combination of computational 

modeling and simulation actually constitutes a new social science research approach 

(Byrne 1997; Conte & Gilbert 1995; Halfpenny 1997; Hanneman & Patrick 1997; 

Leik & Meeker 1995), what advantages it offers, and why it is considered “the third 

scientific discipline” of the social sciences (Axelrod 1997; Ilgen & Hulin 2000). 

Using formal models instead of natural language models to investigate social 

issues has several advantages that include a) better definitional and conceptual 

precision, b) assumption clarity, c) ease of determining internal or logical validity, d) 

formal deduction power, and e) reduced ambiguity in formal communication among 

researchers. The major constraint of formal models is that their creators often have to 
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simplify them in order to construct models that are sufficiently easy to control and 

analyze; as a result, their models can become too impractical or optimistic. In order to 

apply formal models to investigate certain social processes or issues, social scientists 

have to make trade-offs between “ease of analysis” and “accuracy of prediction.” In 

this dissertation I will assume that both are of equal importance. 

In many ways, computational modeling and simulation allows researchers to have 

their cake (in terms of ease of analysis) and eat it, too (in terms of prediction 

accuracy). These tools allow social scientists to establish simulation models that are 

the equivalent of formal theoretical models. Not only are the advantages of formal 

models retained in computational models, they also avoid many of the constraints just 

mentioned—for instance, sacrificing ease of analysis for accuracy of prediction or 

vice versa (Johnson 1999). However, computational modeling and simulation should 

not be blindly applied to all social processes and issues; there are instances where 

formal models or other approaches are sufficient for problem representation. Note 

also that even though simulation models constructed via computational modeling 

convey more complex and complete information on social phenomena and 

characteristics, they are still simplifications of complex social issues. 
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1.3. Advantages of Social Science 

Computational Modeling and Simulation 

As Hastie (1988) and Taber and Timpone (1994) have noted, there are many 

advantages to using computational modeling and simulation to study social processes. 

Similar to mathematical modeling and deduction, computational modeling and 

simulation demands accuracy and clarity. In theory, both approaches allow models to 

deal with inaccuracy, but mathematical models are less flexible when it comes to 

dealing with the inaccuracy and randomness that constantly occur in the real world. In 

contrast, researchers who use computational modeling and simulation approaches can 

add random components (i.e., hypothesize several scenarios, embed the scenarios in 

the simulation model, and observe their running processes or outcomes) at a low cost 

in terms of computing and time resources. Moreover, qualitative concepts that are 

difficult to express in a typical mathematical model can be demonstrated using 

various data structures and simulation programming techniques. Most concepts and 

relations that can be expressed in mathematical models are easily transferred to 

simulation models; however, the opposite is not true, since it requires a sharp increase 

in the number of required statements. 

While I believe that social scientists should utilize computational modeling and 
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simulation to study social issues, I do not believe that social scientists should only use 

computational modeling and simulation approaches to study real world problems 

(King et al. 1994). In other words, computational modeling and simulation can also be 

used to investigate issues that are counterintuitive but helpful for clarifying facts. In 

other cases they can be applied to study operational procedures and social issues in 

virtual reality (Epstein & Axtell, 1996)—for instance, conflicts and compromises 

between an agent’s public and private interests. Furthermore, social scientists can use 

simulation models to test “what-if” questions that cannot be verified in real life. 

The final advantage I will mention here is that computational modeling and 

simulation have strong integrative and deductive capacities (Hastie, 1988). Traditional 

research approaches make it difficult or impossible to a) compile empirical data with 

different formats into coordinated data sets or b) use diverse forms of data sets for 

inference and deduction. In contrast, computational modeling and simulation possess 

strong capacities for integrating and transforming data; combining empirical data 

from different sources; and performing simulation and various types of dynamic 

analyses in which static equilibrium, system dynamics, and emerging characteristics 

can be observed (Holland & Miller, 1991). 

Other research approaches can deal with uncertainty or with social issues that are 

counterintuitive or involve virtual reality, but they often come with a requirement to 
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loosen or simplify assumptions and outcomes; as a result, models can become 

enormous, complex, and unwieldy. From another perspective, computational 

modeling and simulation use programming skills and data structures for defining 

social concepts, relations, and operating procedures, thus allowing for the exploration 

of various hypotheses according to running processes and outcomes (Gilbert, 1999; 

Johnson, 1999). While traditional mathematical models can decrease deductive 

complexity by loosening single assumptions or initial conditions, they cannot handle 

complex interactions among multiple components. 

In this dissertation I will discuss two reasons for applying computational 

modeling and simulation to social science problems. First, they combine the precision 

associated with quantifying analyses with the abundance associated with quantitative 

case analyses. Second, they are capable of representing social structures and processes 

without losing internal logic or accuracy. I will also argue that researchers in such 

fields as economics, psychology, sociology, and political science will realize more 

benefits from computational modeling and simulation than those working in other 

fields (e.g., History, Anthropology. Over time, researchers in all topic areas will 

eventually develop computational modeling and simulation skills that meet their 

specific requirements (Fiorina, 1975). 
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1.4. General Stages of Social Science 

Computational Modeling and Simulation 

In an earlier section I listed the five major steps for completing a social science 

research project using computational modeling and simulation. Before introducing 

specific methods and validation procedures, I will describe the life cycle of an ideal 

research project using this approach. As shown in Figure 1.4.1, the five major steps 

can be divided into a series of sub-steps that are connected to each other so that they 

form a development cycle. However, actual projects are rarely as simple as the one 

shown in the figure; in many cases, development can appear to be a confusing mix of 

repetitive, overlooked, and simplified sub-steps. 

Theory Development 

For many social scientists, social phenomena are best viewed as events or 

behaviors that occur with a regularity that can be explained by theory. Existing theory 

cannot always explain certain social phenomena or produce sufficient interpretations. 

Such a situation will later turn to our intent to apply existent social scientific theories 

and novel hypotheses to construct more complete and satisfying explanations. Social 

science theories are not generated in isolated, remote states, but require the extensive 

understanding of previous theories or models that have been used to address the 
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research topic in question. During the early stages of theory development, modelers 

often need to statistically analyze such characteristics as the randomness and 

regularity of empirical data and review large bodies of relevant literature. 

A conclusion drawn from a social science study might entail one or a 

combination of the following: a) a simple theory (possibly already expressed as a 

mathematical model) that appears to explain the original observation; b) a reasonable 

but underdeveloped general theory that offers a promising explanation that seems too 

complex for formal analysis; c) several unconnected theoretical snippets (perhaps 

expressed as mathematical models), many of which find some empirical support but 

none of which seem capable of explaining the observation on its own; d) many 

separate quantitative empirical results (perhaps generated by “black box” models), 

none of which are capable of explaining the observation; or e) multiple qualitative 

studies with little attempt made at developing rigorous theory, perhaps because the 

underlying processes appear to be too complex for existing theory-building tools. 

Computational modeling and simulation is a suitable research approach in all but the 

first scenario. 
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Figure 1.4.1. Computational modeling and simulation stages. 

Model Development 

For computational modeling and simulation studies, this stage entails two steps: 

establishing a transitional medium model and using the transitional model to 

transform theories into simulation models. Transforming theories into simulation 

models too soon is likely to cause mistakes in the transformation process that make it 

impossible to use simulation techniques to express them. The first step of the model 

development stage is to construct a transitional medium model based on the theory 

that is established in the preceding stage. A modeler needs to perform a concept 
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inventory of major and corresponding theory variables, assumptions, initial conditions, 

and relations in order to list closely related concepts before constructing a complex 

simulation model. When performing an inventory, modelers must use qualitative 

descriptions for each concept (i.e., loose descriptions to indicate how a concept is 

operated) and introduce its quantitative characteristics in as much detail as possible 

(e.g., whether the concept is a continuous or discrete variable). Modelers must also 

establish interactive scenarios among the internal components of a simulation model 

based on the foundational theory. Starting from the black-box model (input and output 

variables only), modelers must define all factors, relations, and operating details 

between input and output via interactive scenarios generated from the concept 

inventory. When depicting operational procedures, modelers should list as many 

detailed processes of each component in the simulation model as possible. 

Once the bridge between theory and the simulation model is built, the next step is 

to choose an appropriate computer programming language (e.g., high-level structured 

programming languages such as Java and C++ or the fourth-generation artificial 

intelligence languages such as Lisp and Prolog) or modeling and simulation software 

tool (e.g., DYNAMO, GPSS, or STELLA). Choices should be based on the needs and 

characteristics of the research project in question prior to transforming the theory into 

a simulation model. It is very important to determine the necessary methods, skills, 
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and development tools before attempting to build a simulation model that is fully 

representative of a theory. 

Model Evaluation 

The first model evaluation step (also referred to as the verification step) consists 

of carefully eliminating coding errors before executing the simulation model so that 

no mistakes or misunderstandings occur during the transformation process. The model 

verification step is followed by simulation model validation; this process will be 

described in detail in the next chapter, but here I will focus on the major issues of 

using truth and beauty guidelines for evaluation purposes. Truth can be divided into 

internal validity, outcome validity, and (in many, but not all cases) process validity. 

Internal validity determines if the internal logic of a simulation model correctly 

expresses the theory or hypotheses upon which it based. Outcome validity measures 

the correspondence between outcome data and real-world empirical data. Process 

validity uses face validity, assumption tests, and multilevel outcome validation 

procedures to evaluate whether the simulation model’s operating procedures are 

consistent with those of the theory. 

Even after a simulation model passes all of the validation guidelines in the second 

step, modelers need to examine the model’s running process. During a simulation, 
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social scientists can explore in depth those problems and phenomena that counter 

social intuition but fulfill theoretical regulations. For example, what outcomes are 

produced in a simulated world where assumptions and initial conditions differ from 

gathered empirical data? For social science researchers, such a hypothetical analysis 

can increase the reliability and application of both a theory and a simulation model. 

The evaluation and validation procedures mentioned above should be repeated until 

the validity of the simulation model is ensured or until it reaches a pre-determined 

level of professional standards. 

Refinement 

The final step entails a discussion of theory and model refinement. As shown in 

Figure 1.4.1, theory development, transformation, simulation, understanding, and 

refinement occur as parts of an ongoing and ever-changing process, meaning that 

model refinement can take place during any sub-step of any stage. If a simulation 

model is found to misrepresent a theory during the third stage, modelers may need to 

extensively revise or even discard a simulation model, but when a validated 

simulation model is found to precisely represent a theory, the two are regarded as 

equivalent, with one’s success or failure affecting the other and refinements in one 

implying a need to refine the other. However, if a simulation is identified as only a 

loose representation of its theoretical foundation, the failure of the simulation model 
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might not indicate failure on the part of the theory. Such a situation is unwelcome; it is 

instead suggested that relations or similarities between a model and theory should not 

be too loose, since it makes it more difficult to ascertain the outcome, process, or 

internal validity of the simulation model.  

When simulation model outcomes are not consistent with real world data, 

modelers must revise their assumptions, flow simulation model, and/or theory or start 

all over again. Regardless of the situation, modelers can benefit from the experience 

and use the same data. Furthermore, a comparative analysis of simulation model 

outcomes and real-world data can produce ideas for developing better theories and 

simulation models. Ideally, each cycle will give social scientists additional 

understanding and control over theory and simulation model development so that the 

theory is continually enriched and the simulation model made more precise and 

efficient. 
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1.5. Dissertation Overview 

In Chapter 2 I will introduce simulation model validation standards and 

evaluation procedures, then discuss various challenges to model validation. In Chapter 

3 I will give a brief overview of the transition from the dynamic simulation approach 

used for many years in the social sciences to the computational modeling and 

simulation approach that makes use of small-world networks (SWNs), scale-free 

networks (SFNs), random networks (RNs), and other small-world models. 

In Chapter 4 I will present the details of an original research project conducted by 

Huang et al. (2004a) to use computational modeling and simulation to examine the 

transmission dynamics of disease epidemics and to evaluate the effectiveness of 

various public health policies and epidemic prevention strategies. 

In Chapter 5 I will describe an original research project involving sensitivity 

analysis (Huang et al., 2004c). The study was designed to investigate the influence of 

local information on social simulations that are performed using a small world model. 

A cellular automata variation with added shortcuts was used as a test platform for 

simulating the spread of an epidemic and for examining the influences of various 

factors. The results of the study are offered as a means of helping researchers 

determine appropriate simulation parameters. In Chapter 6 I offer a conclusion and 
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suggestions for future research directions. 
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Chapter 2. Validating Social Simulation 
Models 

Validating a simulation model is a critical step that not only improves model 

accuracy, but also increases outcome reliability (Lave & March, 1993). As stated in 

Chapter 1, since many simulation model types are capable of representing (at least to 

a certain degree) a particular social science theory or hypothesis, an effective 

validation procedure is required. In this dissertation I will introduce computational 

modeling and simulation methods and techniques for use in the social sciences, but 

first I will address an important question: How can a researcher distinguish between 

superior and inferior simulation models? According to Lave and March (1993), truth 

(whether a simulation model can precisely express its target theory or hypothesis) and 

beauty (a combination of an aesthetic standard and model practicality) are two useful 

guidelines for validating simulation models. In this chapter I will explain how these 

guidelines work (Fig. 2.1). 
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Figure 2.1. Computational modeling and simulation evaluation stages. 
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2.1. Truth 

Validating truth is the most important yet most difficult task for any simulation 

model. Model evaluation requires the establishment of various baselines for 

comparison; examples include comparing outcomes with expert expectations or 

comparing multiple outcomes and their effectiveness in competitive models. In this 

section I will illustrate various validity dimensions—outcome, process, internal, and 

reliability and sensitivity analysis. Outcome validity is used to evaluate consistency 

between the outcomes/predictions of a simulation model and real-world data. Process 

validity assesses the running process of a simulation model and how it matches actual 

procedures. Internal validity focuses on how a simulation model’s internal logic can 

precisely represent its underlying theory or hypothesis. Reliability and sensitivity 

analyses examine the robustness of a stochastic simulation model and test the degree 

of model sensitivity to various parameters. 

Many social simulation model designers believe that process validity is vital to 

examining the compatibility of a model’s running process and actual procedures. 

There are two exceptions. First, process validity is not suitable for some simulation 

models under certain circumstances. For instance, genetic algorithms (GAs) (Holland, 

1975), which are based on the Darwinist concept of the “survival of the fittest,” are 
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often applied to scheduling, classification, or optimization problems (Goldberg, 1989) 

regardless of how well they fit in terms of process validity. A second example is 

artificial neural networks (ANNs), which are often used to represent complete 

organisms but not individual intelligence systems (Schrodt, 1995). The second 

exception is the impossibility of social science simulation models being completely 

accurate; it is meaningless and inappropriate to ask a simulation model to perfectly 

represent real-world operating procedures. 

A single statistical method is never enough for social simulation researchers and 

modelers. The best goal is to find the most suitable statistical method in terms of 

research needs and simulation model characteristics (e.g., analysis of variance, 

analysis of linear or nonlinear regression, tests for means comparisons). As with all 

social scientists, social simulation researchers and modelers must be familiar with a 

variety of statistical methods and techniques. 

Outcome Validity 

Almost without exception, simulation model validation methods focus on 

whether predicted outcomes correspond to real-world data. While I used the term 

prediction above, the term that is commonly used in social simulations is postdiction, 

indicating that simulation outcomes generally correspond to things that have already 
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happened in the real world rather than in the unknown future. Of course, it is 

insufficient to measure simulation model validity simply by comparing outcomes and 

real-world data, since models can be very complex and encompass many elements, 

parameters, variables, rules, components, and relations. A single predictive result is 

not enough to support a claim that some element, component, or simulation model is 

unreliable. In many situations, when a prediction fails or an outcome does not fulfill 

expectations, a modeler will look for missing procedures, improper control processes, 

or mistakes in parameters sets before abandoning a model. To date, there is no clear 

and distinctive standard for determining whether or not a prediction is acceptable. 

Modelers must therefore compare any simulation model with its competitors and use 

simple statistical tests to determine whether it does indeed produce better results. 

Provided that simulation model components remain the same, a complex 

simulation model can be taken apart to test the outcome validity of its component 

parts at a lower level first, at upper levels second, and as a whole system third. In all 

cases, sub-components should be broken down until they cannot be divided into 

further sub-components. The goal of any analysis should be to investigate whether 

component interactions are correct and whether simulation outcomes correspond to 

real-world data. In contrast, interaction and integration tests proceed in a bottom-up 

fashion, with sub-components examined individually before being connected with 
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other sub-components for further study. Since this process is very detailed, it is 

impractical for examining the largest and most complex simulation models. 

When conducting a social simulation study, data should be divided into a 

minimum of two parts—training and test samples. Training samples help modelers 

establish the initial values of elements, parameters, variables, components, rules, and 

relations required to create a simulation model. They are also useful for model 

training via adjustments made according to data provided by preceding training 

samples. Test samples focus on examining correspondence between simulation results 

and test samples. At this stage it is important to prevent high levels of similarity 

between training and test samples, since every simulation model should be treated as a 

concrete way to represent the training samples. If training samples resemble test 

samples, it could interfere with determining simulation outcome validity—a critical 

step for any simulation model. 

Validity can be determined using a simple statistical test to check the degree of 

correspondence between simulation results and test samples. In the absence of a high 

degree of correspondence, the simulation model needs to be revised or discarded. The 

next step entails a comparison of prediction performances between the simulation 

model in question and its competitors. In theory, simulation models that make the cut 

are the strongest performers in their field; if the predictive performance of one 
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simulation model outweighs all others, there is a very good chance that the simulation 

model will pass most outcome validity examinations. In some cases several 

simulation models will be equivalent in terms of performance, yet a modeler will 

chose one over the others because an important component of the chosen model 

produces more precise predictions compared to the others. For this reason, the best 

test is a multi-level examination that not only investigates the overall outcomes and 

predictive performances of a simulation model as a whole, but also checks the 

outcomes and predictive performances of its sub-components. 

Process Validity 

Process validity measures the correspondence between a simulation model’s 

running processes and the courses of action of the social issue being simulated. 

Unfortunately, there is no simple method for evaluating the process validity of a 

simulation model. In the absence of a direct method, researchers can use an indirect 

method that addresses three process validity examination requirements:  

It examines face validity. In other words, it addresses the issue of whether the 

model is reasonable and acceptable in the minds of experts or scholars who are 

familiar with the issue being studied. Face validity is the most commonly applied 

means for examining a simulation model. A stricter standard entails an extended 
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version of the Turing test (Turing, 1950), which is based on the claim that if 

individuals using independent judgment cannot tell the difference between the 

operating processes or outcomes of a simulation model and real systems, the 

simulation model can be said to exhibit process validity. Sensitivity analysis (to be 

discussed in a later section) can also be used to verify face validity by systematically 

changing the value of one important parameter and holding the others at a fixed value, 

then examining whether or not the simulation model behavior matches the 

expectations of an expert or modeler. Of course, such an examination requires that 

modelers collect the required data inputs, behavioral modes, and outputs for certain 

conditions. Although such a method requires prior knowledge, there is no need to 

have a comprehensive understanding of all behavioral modes and outputs under all 

conditions. 

It directly examines simulation model hypotheses and uses those that are proven 

to be correct to justify the model’s operating processes and degrees of acceptance. 

Supposing that certain hypotheses cannot be justified after evaluation and analysis 

(since certain simulation models are overly simplified and exaggerated representations 

of real world scenarios), modelers must cautiously evaluate the degree to which 

inaccurate hypotheses affect behavioral modes and outcomes. Decisions need to be 

made as to whether inaccurate hypotheses should be revised or discarded. Again, 
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sensitivity analysis is very useful for this function. Modelers can use it to analyze 

which elements, variables, parameters, rules, or relations affect behavioral modes and 

outcomes. According to causal theory, knowing how many errors an invalid 

hypothesis can cause helps to determine how simulation model process validity is 

impaired. 

It uses outcome validity (especially multi-level) tests to examine the process 

validity of a simulation model. Horizontal, vertical, or other classifications (e.g., 

object-oriented, even-driven, or multi-agents) can be used to break down the running 

process into several sub-processes, and each sub-process can be further divided into 

more detailed sub-processes. Theoretically, a simulation model can be broken down to 

the most basic level, with each sub-process corresponding to an independent and 

indivisible component. Outcome validity tests can then be used to determine whether 

or not sub-process outcomes are correct and fulfill expectations. Although such tests 

are not completely equivalent to actual examinations of simulation model running 

processes, they do increase operating process validity. However, tests that examine 

individual components are very costly in terms of computation time and resources, 

and require the collection of large real-world samples in order to fulfill test 

requirements. Furthermore, even when test sample accuracy requirements are very 

demanding, collected samples may contain extra information to the extent that it 
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cannot be used to evaluate simulation model sub-processes. In spite of these problems, 

such examinations are considered the most effective way to evaluate the process 

validity of a simulation model. 

Internal Validity, Reliability Analysis, and Sensitivity 

Analysis 

As mentioned above, social simulation projects require at least five steps: a) 

proposing a theory or hypothesis to explain a social phenomenon, b) developing a 

formal model of said theory or hypothesis, c) using a computer language or modeling 

development tool to construct a simulation model or simulation system that 

corresponds to the formal model, d) verifying and validating the simulation model, 

and e) executing the simulation model and collecting and analyzing the generated data. 

Note that the simulation model/system, theory/hypothesis and formal model are 

considered equivalent and interchangeable—in other words, a simulation model or 

system should faithfully and reliably represent the theory or hypothesis and formal 

model. If not, the simulation model is meaningless. Experience dictates that the more 

complex the theory or hypothesis, the greater the likelihood of making mistakes when 

establishing a formal or simulation model, which leads to inconsistency among the 

three elements. Therefore, it is necessary to examine the internal validity of a 

simulation model before examining its outcome and process validity. However, this 
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raises an important issue: how to evaluate a simulation model that can fully represent 

its corresponding theory/hypothesis and formal model. 

The first step in evaluating internal validity is one that every modeler should use 

during a simulation model’s development stage: determining if the basic structure of 

the model (i.e., elements, variables, parameters, relations, rules, and components) are 

equivalent to the theory, hypothesis, and formal model that it intends to represent. To 

give an example, cognitive psychologists have traditionally depicted human cognitive 

activity as an information processing system consisting of a long-term memory 

component and a working memory component. Simulating human cognitive activity 

requires the application of a data structure or another method (abstract or practical) to 

represent the two memory components; otherwise, one cannot claim that the system 

corresponds to cognitive theory. If a modeler claims that he or she has created an 

information process system based on cognitive theory, how should we evaluate the 

model to support or refute that claim? 

There are two ways to solve this problem. First, a modeler can use face validity to 

evaluate the simulation model or models and periodically consult with experts or 

scholars familiar with such a theory to determine if the model actually captures the 

spirit of the theory. Second, a modeler can use existing cases to examine simulation 

models and to determine whether or not (under specific conditions) the simulation 
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model running process and outcomes fulfill the expectations of an expert or scholar. 

Cases used to examine models must be valid, but they do not necessarily have to be 

accurate or complete. Furthermore, they may represent a theory or hypothesis in a 

very simplified or specialized format. 

Applying existing cases to examine simulation models is similar to another 

method of examining internal validity: reliability analysis, which focuses on whether 

or not outcomes produced by repetitive simulation executions are consistent according 

to simple statistical tests. In other words, for simulation models that involve stochastic 

uncertainty, model designers must run simulation models many times (depending on 

the statistical method employed) to examine outcome consistency. From the 

perspective of reliability, the value of a simulation model with high stochastic 

uncertainty should be measured according to whether or not there is a sufficient 

number of executions to determine outcome consistency. If a modeler wants to 

examine a simulation model that can produce output with probabilistic outcomes, it is 

a much easier task: all the modeler needs to do is systematically compare the 

outcomes of each execution until certain robust estimate values converge. In order to 

prove that their model is stable and reliable, Jones, Radcliff, Taber, and Timpone 

(1995) applied every possible set of initial parameters to their simulation model and 

performed one million executions per parameter set. This example also serves as an 
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example of a clear examination method that is worth noting for future reference: no 

matter how many stochastic components a simulation model owns, the model can be 

executed repeatedly on a computer until the modelers make an evaluation. Modelers 

need to take advantage of their computing tools to perform many executions, revising 

or controlling certain components or procedures while holding the others at fixed 

values in order to examine how revisions affect a model. In short, reliability analysis 

gives social simulation modelers and researchers the ability and tools to understand 

whether a vital stochastic component in a simulation model is interactive or additive. 

A third means of examining the internal validity of a simulation model is 

sensitivity analysis. Converting a theory, hypothesis, or formal model into a 

simulation model entails deciding the domain of each parameter, the scope of initial 

conditions, the sampling technique for stochastic elements, and probability 

distributions. During sensitivity analysis, modelers systematically change parameter 

values or other component settings (e.g., probability distribution) and examine how 

simulation model performance or outcomes are affected. This type of analysis allows 

modelers to distinguish between two kinds of parameters: when model performance or 

outcomes are influenced by slight changes in a parameter value, this is referred to as a 

sensitive parameter. Other simulation models are not influenced, regardless of how 

much a parameter value is changed (within a reasonable range). 
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As long as the internal validity of a simulation model is assured, modelers can 

use sensitivity analysis to examine a simulation model hypothesis. Simulation models 

are usually viewed as simplifications of social issues for exploration purposes, in 

which hypotheses are proposed and tested. Under such circumstances, sensitivity 

analysis can be used to examine how different degrees of simplification affect the 

model. If a simulation model’s constraints are loosened but its qualitative analysis 

conclusion remains the same or stays consistent, then the hypothesis is plausible; if 

not, the hypothesis requires special attention. During the last stage of simulation 

model development, sensitivity analysis can serve as a warning mechanism or 

guidance procedure. As mentioned earlier in this chapter, sensitivity analysis is also 

suitable for examining outcome and process validity. 
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2.2. Beauty 

Although some argue that the standards of a “beautiful” simulation model vary 

from person to person, we should not ignore aesthetic criteria when evaluating a 

simulation model. According to Lave and March (1993), three aesthetic characteristics 

need to be acknowledged: simplicity, fertility, and surprise. These characteristics are 

not only a matter of personal taste, but also ones that any researcher who uses 

computational modeling and simulation to explore social issues should consider 

seriously. 

Simplicity 

Computational modeling generally focuses on simplified understanding through 

exploring systems designed to explain the real world. However, simulation models try 

to filter the real world and address a pivotal theory by eliminating unnecessary details 

according to the Occam’s razor recommendation that “Things should not be 

multiplied without good reason” (Starfield, Smith, and Starfield 1990). Applied to 

computational modeling and simulations, concise and succinct simulation models 

should be accurate and valid. 

In physics and other physical sciences, succinctness is regarded as a useful 

exploration principle, but some biologists (including Crick, 1988) and social scientists 
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view an emphasis on succinctness as misleading. This leads to the question, “Is it 

reasonable to apply Occam’s razor to social simulation models?” If a simulation 

model is simplified too much, its process or outcomes may become so confusing that 

they cannot be properly examined, thus making the associated theory or system 

inaccurate or unhelpful in understanding real world phenomena. On the other hand, 

some simulation models are too complex to be useful in understanding a system or 

theory. The following principle can be inferred from this situation: if a researcher 

cannot clearly track the operation or outcomes of a simulation model, the model will 

create more problems than it solves. According to Occam’s razor, evaluating the 

conciseness of a simulation model requires a determination of whether or not it 

precisely expresses all of a theory’s important procedures, followed by a 

determination of whether any procedures can be removed without affecting proper 

model operation. In other words, simplicity has value in terms of both aesthetics and 

practicality. 

Fertility 

Fertility refers to the implications that a simulation model conveys, how many 

theories it covers, and how broadly it applies. When two models are used to test the 

same theory, the model that generates a greater number of predictions is more highly 

valued than the one that generates fewer. The simulation model that generates more 
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predictions is said to have a richer framework for theoretical deductions, thus making 

it easier to investigate its predictions. Fertility is also related to simplicity in terms of 

strictly controlling the number of assumptions during evaluation—that is, a complex 

simulation model with more assumptions is only considered fertile if it generates 

more predictions or implications.  

Furthermore, a complex simulation model is said to generate more in the same 

manner that merchandise quality increases with price. A very complex simulation 

model that generates only a few predictions is generally viewed with suspicion; on the 

other hand, after a simulation model is simplified it should be examined in terms of 

whether or not it maintains a high level of prediction quality. A complex model that 

produces more detailed predictions is preferable to a simple model that generates 

predictions that are not as well defined. It is also important to consider how broadly a 

model’s predictions or implications can be applied; a model that accounts for a larger 

number of scenarios is more valuable than one that explains only a few. Again, 

aesthetic standards and practicality merge within the fertility criterion. 

Surprise 

Another important aspect of fertility is surprise. An effective simulation model 

often produces unexpected but conceptually applicable and easily examined 



 

- 36 - 

predictions. A prediction with strong implications may be surprising in situations 

where a researcher does not expect an outcome or outcomes to be generated from a 

simulation model, yet it produces data that fits well with facts or other evidence. In 

other situations, an outcome may contradict a researcher’s intuition or appear to be 

estranged from facts or other evidence, but the outcome turns out to be correct based 

on a logical deduction or analysis. Precision and surprise often coincides in social 

simulations—that is, when a theory can be correctly expressed in a simple simulation 

model, precise and surprising predictive results are sometimes generated. Compared 

to complex models, simple simulation models are less likely to produce surprising 

predictions because their outcomes cannot be directly applied without further 

transformation and explanation. Theories that require computational modeling and 

simulation are usually more complex, and therefore have greater potential to produce 

surprising conclusions that extend our knowledge. 
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2.3. Summary 

A perfect simulation model should be valid and beautiful, but very few achieve 

these ideals. Researchers should instead look for a balance between perfection and 

real-life obstacles. Although many model designers are familiar with the examination 

procedures and standards discussed in this chapter, they still face the challenge of 

properly applying them to test different simulation models with applications, purposes, 

and methods. In this chapter I have proposed several principles in terms of timing and 

examination methods that other researchers may find useful when applying 

computational modeling and simulation techniques to social science issues. 

Truth can be divided into internal, outcome, and process validity. When 

examining internal validity, sensitivity analysis can be used to examine simulation 

models, especially more complex models. Outcome validity relies on traditional 

quantitative concepts to test simulation models, but the question of how to quantify a 

simulation model remains, as well as the question of judging results after 

quantification. Based on the existing literature, I have described several examining 

tools to help modelers test their simulation models, and suggested other tools (e.g., 

face validity, directly testing hypothesis validity, sensitivity analysis, and multi-level 

tests borrowed from outcome validity) for inspecting the process validity of a 
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simulation model. 

Simplicity has traditionally been the most important criterion for simulation 

model beauty. Conciseness is still a desirable goal, but when the theories to be tested 

by a simulation model are very complex, modelers need to achieve truth before 

pursuing conciseness and guarantee that model operating procedures and outcomes 

are both correct and precise. Fertility and surprise are two reasons why social 

scientists adopt computational modeling and simulation, since they are more likely 

than other formal models to produce surprising implications. 
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Chapter 3. Related Computational 
Models and Concepts 

3.1. Dynamic Simulation 

Dynamic simulation is one of the earliest computational modeling and simulation 

methods in the social sciences (Huckfeldt et al. 1982). Famous research projects that 

applied this method to explore social phenomena include urban systems of Forrester 

(1969), the global population of Meadows et al. (1972), and electoral systems of 

McPhee (1963). Dynamic simulation is the process of constructing a mathematical 

model of some real-world system and analyzing its behaviors and results through 

computer-based experiments. In part because of the availability of special simulation 

software (e.g., STELLA or GPSS), dynamic simulation remains one of the most 

popular and productive computational modeling and simulation methods. 

As note, dynamic simulation refers to the construction of and experimentation 

with a computational model of a dynamic system. For example, to save time and 

money, a network engineer might propose a network model with a novel connection 

topology, using computers to construct a virtual network environment model under 

certain conditions and simulating their research results. Likewise, an epidemiologist 

may examine the transmission dynamics and growth tendency of an infected 
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population through a simulation model. As a result, the network engineer saves time 

and money; while the epidemiologist gains experimental control and the ability to 

manipulate the theoretical world. 

For more detailed introductions to dynamic simulation, we recommend Forrester 

(1980). This book includes many modeling techniques and research examples, as well 

as introducing DYNAMO and its applications. In addition, please refer to the 

researches of Kheir (1988), Hoover and Perry (1990), Whicker and Sigelman (1991), 

and Hannon and Ruth (1994). In Garson (1994), there are many introductions and 

evaluations regarding the application of dynamic simulation. 

An Example of Dynamic Simulation – Compartmental SIR 

Models 

In epidemiology, the compartmental model (Kermack and McKendrick 1927; 

Edeletein-Keshet 1988) is a type of dynamic simulation system applied by 

mathematical epidemiologists to estimate the overall trend of epidemic outbreaks. 

Until recently it was still a prototype of main epidemiological models. One of the 

most famous and typical models is the SIR model proposed by Kermack and 

McKendrick (1927) (Fig. 3.1 and equation 3.1). Using the SARS outbreak last year as 

an example, many researchers applied the compartmental model to roughly estimate 
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the transmission dynamics as well as future development tendencies of SARS, and 

approximately explained its spread phenomenon, for example, the super-spreader 

events (SSEs) during the outbreaks (Chowell et al. 2003; Donnelly et al. 2003; 

Lipsitch et al. 2003; Ng et al. 2003; Riley et al. 2003). However, such a simulation 

model only roughly calculates the total amount and the increasing or decreasing 

change of infected population at every discrete time step, and applies differential 

equations to generate pivotal parameters during the simulation, such as the basic case 

reproduction number R0 (Anderson and May 1982), that are supposed to be essential 

for public health specialists and epidemiologists. To produce more accurate simulation 

results, recently researchers have further divided each population into different 

sub-groups according to age, residency, infectious rate, and various characteristics that 

interest epidemiologists (Lipsitch et al. 2003; Ng et al. 2003; Riley et al. 2003). 

However, the entire simulation model becomes complicated and enormous as a result, 

and can only be applied under specific circumstances. No matter which ways of 

categorization and what characteristics there are, however, such simulation models 

ignore the fact that social phenomena emerge only when many people contact, interact 

with, and change each other. In other words, the typical compartmental model focuses 

merely on the characteristics of epidemics themselves (transmission rate, patients’ 

mortality rate, and recovery rate) without taking into account important social 
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characteristics such as population structure, space, heterogeneity, localization, and 

interaction. Furthermore, due to the absence of these social characteristics, such 

simulation models cannot be applied to explore important issues in public health 

policies and disease prevention strategies. 

 

Figure 3.1. General SIR model transfer diagram. S, susceptible class; I, infective class; R, recovered class 

A typical SIR model divides a social population into three mixed groups: a 

Susceptible group prone to infection but not yet infected, an Infectious group of 

individuals who have the disease and are capable of infecting susceptible individuals, 

and a Removed group of fully recovered or deceased individuals who cannot infect 

others. A set of differential equations such as the one shown in Equation 3.1 is used to 

trace the dynamic process of individual movement within groups and to calculate 

increases, decreases, and total numbers of individuals for all groups in discrete time 

steps. 
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 (3.1) 

For epidemiologists, the basic case reproduction number R0 is an index parameter 

with an important reference value, which is the number of people infected by a patient 

before she recovers or dies. When R0 is greater than 1, not only does the number of 

infected patients keep increasing, but the transmission rate soars because of the 

increase of the newly infected. As a result, an inevitable outbreak is doomed to 

happen. When R0 is equal to 1, the spread of disease is claimed to be stable, i.e. each 

patient transmits her virus to one healthy person on average. The value 1 is thus called 

the threshold value for plague. To prevent an epidemic from becoming a plague, R0 

has to be controlled such that it is lower than the threshold value. When R0 is smaller 

than 1, a patient does not necessarily have a chance to transmit her viruses to another, 

and since the recovery rate is higher than the increase of patients, the number of 

infected patients will decrease eventually, and ultimately disappear. 
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3.2. Simple Social Network Models 

To fully utilize computational modeling and simulation to explore interesting 

social processes and issues, social scientists need a simple social network that 

properly represents interpersonal relationships to be the fundamental structure of a 

simulation model. There are two ways to construct a simple social network model: the 

first, presented in Figure 3.2.1(a), uses low-dimensional lattices to represent a social 

network (Ahmed and Elgazzar 2001; Boccara et al. 1994; Koopman 2004), for 

instance, one-dimensional ring-shaped periodic lattices or two-dimensional toric 

periodic lattices. In such a network model, since every node is connected to its closest 

nodes while the number and the nodes connected remain the same, the model is also 

called a regular network model. The second, as shown in Figure 3.2.1 (b), uses a 

random network (Erdös 1959) to represent a social network. This type of network 

model and the compartmental model mentioned earlier are largely equivalent; that is, 

many overall characteristics of a network can be represented by statistics. Moreover, 

the random network model is a beautiful and effective network that is used to act as a 

representative of the complicated, chaotic and unpredictable society. 
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Figure 3.2.1. Simple social network models. (a) Regular network model. (b) Random network model 

For network models, each community, city, country, or the entire world is a social 

network, while each node represents an individual with various attributes that 

accounts for her state, such as epidemiological progress, gender, age and 

immunization. The edge between two nodes represents connections between two 

individuals. Different epidemics can be presented by different edges to demonstrate 

different interpersonal relationships. For example, when examining AIDS, lines 

represent sexual relationships; when examining SARS, they represent individuals’ 

close contact. In each discrete time step, the state of every node in the network 

changes simultaneously. The set of all of the node states represent the overall 

transmission of an epidemic. 

An Example of Simple Social Network Model – Cellular 

Automata 

Cellular automata (sometimes called lattice models) is not only a simple social 



 

- 46 - 

network model but also considered to be a subset of dynamic simulations that is 

specifically used to model discrete dynamic systems composed of many interacting 

units. In cellular automata, every unit (also called lattices or cells, equivalent to nodes 

in a network) contains several discrete attributes and a set of very simple rules that 

define the change of attributes and the interaction between this unit and its neighbor 

units. Modelers usually apply cellular automata to construct the non-linear system of a 

simulation model, where the lower-level components require intensive interaction. 

One of the examples includes applying cellular automata to simulate the formation, 

spread and change of public opinions. Although the dynamic of cellular automata is 

complex, unpredictable and chaotic, each unit contributing to such phenomenon is 

simple and can be precisely described (Cowen and Miller 1990; Haken 1983). As 

shown in Figure 3.2.2, cellular automata represent a social network model. A limited 

number of discrete attributes is employed to represent its statues. The simplest 

discrete attribute contains only binary values, such as “on/off,” “black/white,” or 

“infectious/healthy.” At each discrete time step, the new state of each unit is 

determined by its state transition function. 
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Figure 3.2.2. Cellular Automata, state transition function, and Moore neighborhood concept 

When using cellular automata, modelers have to first define (1) the dimension of 

cellular automata—one- or two-dimensional; (2) the length of every dimension, i.e., 

how many units there are in each dimension. Suppose every dimension of 

two-dimensional cellular automata contains 100 units, 10,000 units are included in the 

cellular automata; (3) the number of attributes of every unit, and the discrete attribute 

values included (such as two state values—life and death); (4) a function defining 

which units are neighbors; (5) a state transition function for calculating new states 

based on the states of neighboring units (as shown in Formulas 3.2.1 and 3.2.2). 

Because the conditions above are completely defined by modelers, cellular automata 

are considered to be a particularly flexible computational modeling and simulation. 
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 (3.2.1) 

     

 (3.2.2) 

Social scientists Thomas Cusack and Richard Stoll (1990) have proposed a 

fascinating application of the cellular automata approach. They successfully applied 

cellular automata to model the realist theory of international politics. The entire 

international system (cellular automata) consists of 98 countries (units or lattices, i.e., 

territories). Every country has three characteristics: territory (that is, besides the unit 

belonging to the country, how many other units it also possesses), power and basic 

preferences. Each iteration of the simulation model includes five phases of behavior: 

(a) empire (comprised of many countries) faces civil war such that it might collapse 

and become a group of smaller countries with smaller territories; (b) faces conflicts 

with neighboring countries and occupying the neighboring countries; (c) the conflicts 

aggravate, or suddenly disappear because alliances are formed; (d) one or more wars 

erupt because of the conflicts; (e) to respond to the results of wars, the power of 

participating countries are adjusted accordingly. From the simulation processes and 

results, Cusack and Stoll find that, at a certain level, many unbelievable conditions 
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have to exist at the same time to ensure the stability of an international system. In 

other words, unless there are strict initial conditions and hypotheses, wars and the 

expansion of an empire will appear repeatedly. For readers interested in cellular 

automata, please refer to the researches of Farmer et al. (1984), Rietman (1989) and 

Gutowitz (1991). 

Recently, researchers have applied two-dimensional cellular automata to 

investigate the local transmission mechanism and phenomena of epidemics (Ahmed 

and Agiza 1998; Ahmed and Elgazzar 2001; Benyoussef et al. 2003; Yacoubi and Jai 

2002; Fuentes and Kuperman 1999; Martins et al. 2001; Boccara et al. 1993). For 

epidemiologists and social scientists, cellular automata is a concrete regular network 

model with social features such as population structure, local aggregation, social 

space, heterogeneity, and interaction, which are essential to various epidemiological 

and communication issues. Therefore, the transmission of epidemics can be observed 

easily in such a simulation model. However, such a simple social network model lacks 

the important “small-world” social feature that is essential to the study of epidemics, 

so that it fails to represent the low degrees of separation among individuals in a real 

society (Wang and Chen 2003). Moreover, cellular automata cannot be applied to 

effectively investigate public health policies and epidemic prevention strategies that 

are closely related to epidemic issues. 
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3.3. Small-World Social Network Models 

Creating the small-world method and conducting letter delivery experiment, 

Milgram (1967) proposed “six degrees of separation” to explain a tricky fact of the 

world: in reality, human beings interact frequently, forming one group after another, 

but their degrees of separation are surprisingly low—everybody in the world is 

separated by only six other people. Not until Watts and Strogatz (1998) proposed the 

first small-world network model (Fig. 3.3.1), verifying that it has characteristics of 

high clustering and yet low degrees of separation, did many researchers realize that 

topological networks and structures are ubiquitous in the real world. In particular, the 

small-world social network deeply influences the development of many social issues 

and their consequences (Moore and Newman 2000; Comellas and Sampels 2002; 

Newman 2000; Wang and Chen 2003; Watts 1999). From then on, whether a social 

simulation model can portray characteristics of high clustering and low degrees of 

separation has become an important index when examining social network models. 

Since social individuals are characterized by long-distance movements, daily visits to 

fixed locations, multiple activity locations and local clustering, the average distance 

between any two individuals is shortened. Consequently, the actual geographical 

locations and distance become only secondary factors in causing epidemic outbreaks. 
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Figure 3.3.1. Small-world social network models 

Watt and Strogatz’s model triggered a large number of proposals for other models 

(Albert and Barabási 2002; Barabási and Albert 1999; Barabási et al. 1999; Erdös and 

Renyi 1959; Newman 2000; Newman and Watts 1999) that also exhibit small world 

phenomena. As shown in Figure 3.3.2, small world models can be categorized as 

small-world networks (SWNs) (Watts and Strogatz 1998; Newman and Watts 1999), 

scale-free networks (SFNs) (Albert and Barabási 2002; Barabási et al. 1999; Barabási 

and Albert 1999), and random networks (RNs) (Erdös and Renyi 1959). To generate a 

SWN (Fig. 3.3.2(a)), start with an n-dimension regular graph in which each node is 

connected to a z quantity of neighbors (usually, z ≥ 2n) (Wang and Chen 2003; Watts 

and Strogatz 1998). Each edge of the graphic is then randomly rewired (i.e., one end 

of a connection is shifted to a new node chosen at random) with probability p. In a 
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variation of the original model proposed by Newman and Watts (Newman and Watts 

1999), long-range links (referred to as “shortcuts” in this dissertation) are inserted 

between pairs of randomly chosen nodes. This variation exhibits such small world 

phenomena as clustering, and is therefore considered very similar to human social 

networks. 

To generate a SFN (Fig. 3.3.2(b)), start with a small number m0 of nodes (Albert 

and Barabási 2002; Barabási et al. 1999; Barabási and Albert 1999). At each iteration, 

a new node is introduced and connected to m ≤ m0 preexisting nodes with a 

probability that depends on the vertex degree of each node. New nodes are 

preferentially attached to existing nodes that have large numbers of connections. This 

type of model exhibits small world phenomena and clustering among small numbers 

of nodes with very large vertex degrees. These are similar to the hyperlinks used in 

the World Wide Web (Albert et al. 1999; Faloutsos et al. 1999; Medina and Matta 

2000). 

Finally, RNs (Fig. 3.3.2(c)) can be generated by adding a number of links 

betweens pairs of randomly chosen nodes (Erdös and Renyi 1959). RNs are capable 

of exhibiting small world phenomena if enough links are added, but without (or with 

very little) clustering—an unusual situation in the real world. 
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Figure 3.3.2. Three small-world models; a, small-world network (SWN); b, scale-free network (SFN); c, random 
network (RN) 

The Small-World Phenomenon 

To examine whether a social network model is in effect a small-world network 

model, two validation indices—the clustering coefficient and the separation 

coefficient—are required. The clustering coefficient evaluates the degree of 

connection between two neighboring nodes. As shown in equation 3.3, graph G 

represents a social network, vi is a node in graph G, the vertex degree of node vi is ki, 

the edges that actually exist among these ki nodes is Ei (Ei ≤ ki × (ki – 1) / 2), and 

clustering coefficient is Ci. Thus, the clustering coefficient C(G) of the whole social 

network is the average of the clustering coefficients at every node. 
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The separation coefficient evaluates the shortest distance between two random 

nodes. The separation coefficient of the whole social network, therefore, is the 

average of the shortest distances between any two nodes. Another important 
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characteristic of the small world is that, when the number of individuals in a society 

increases, the average separation coefficient between any two individuals does not 

increase proportionally but instead logarithmically (Newman 2000). 

The Triadic Closure Concept 

The triadic closure concept was first proposed by the mathematician Rapoport 

(1957). In reality, human beings are “birds of a feather,” which brings about human 

interactions in a social network that far beyond the illustration of the random network 

model mentioned earlier. Employees in the same company, classmates in the same 

school, and regulars at a Starbucks, for example, have a much bigger chance to know 

each other than two random strangers. These people are acquainted with each other 

not because of random probabilities but because of what they have in common. Later, 

Rapoport proposed a “triadic closure concept” (Fig. 3.3.3) that is even more 

fundamental than the concept of “birds of a feather:” two strangers with a common 

friend might know each other after a certain period of time and might even become 

friends. Suppose that Dick and the owner of the grocery store next door, Frank, are 

buddies, and Dick’s wife Ella is pals with Grace, who owns a fruit shop across the 

back yard. In this case, Dick is very likely to be introduced to Grace, while Ella is 

likely to be friendly with Frank. This example shows that triadic relations are the 

fundamental unit in a group structure, indicating that the progress of a social network 
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is not a random network without social rules tied up to the connection among 

individuals, but instead a triadic closure relation. If the relation keeps going, e.g., 

Frank knows Grace through Ella, and then other longer closure relations might follow 

and ultimately become a tightly connected group. Because there exist tight 

connections among human beings, whenever an epidemic outbreaks in a certain area, 

the healthy but susceptible locals are most likely to be infected or badly ill, for they 

have formed triadic or polygonal closure relations with many infectious patients. 

 

Figure 3.3.3. The triadic closure relationship in social network model 
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Chapter 4. A Novel Small-World Model 
with Social Mirror Identity Concept 
for Epidemic Simulations 

The author proposes a novel small-world model that makes use of cellular 

automata with the mirror identities of daily-contact social networks to simulate 

epidemiological scenarios. We established the mirror identity concept (a miniature 

representation of frequently visited places) to acknowledge human long-distance 

movement and geographic mobility. Specifically, the model was used to a) simulate 

the dynamics of SARS transmission in Singapore, Taipei, and Toronto and b) discuss 

the effectiveness of the respective public health policies of those cities. We believe the 

model can be applied to influenza, enteroviruses, AIDS, and other contagious diseases 

according to the various needs of health authorities. 
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4.1. Motivation 

In anticipation of the next outbreak of Severe Acute Respiratory Syndrome 

(SARS) (Peiris et al. 2003), molecular biologists, epidemiologists, sociologists, 

private laboratories, and public health agencies are committing considerable amounts 

of time and resources to confirming viral structure, developing vaccines and antidotes, 

establishing faster inspection methods, and revising public health policies (Anand et 

al. 2003; Chowell et al. 2003; Donnelly et al. 2003; Guan et al. 2003; Lipsitch et al. 

2003; Marra et al. 2003; Ng et al. 2003; Nishiura et al. 2003; Riley et al. 2003; Rota et 

al. 2003). The last topic on this lists—specifically, the efficacy of various public 

health policies—is the focus of the present chapter. 

Identifying the best possible suite of public health policies requires detailed 

knowledge of SARS transmission dynamics based on the limited amount of data 

collected during the 2002-2003 SARS outbreak (Sebastian and Hoffmann 2003; 

World Health Organization [WHO] 2003). This information can be used to establish a 

SARS transmission model (Dye and Gay 2003) for balancing the social costs and 

resource expenditures required for controlling future outbreaks (WHO 2003). Policies 

that were implemented in 2002-2003 included the wearing of masks (by the general 

public or by health care/hospital workers), hand washing, quarantining, restrictions on 
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hospital visitations, and wide-scale efforts to take the body temperatures of individual 

citizens. Unfortunately, improper implementation and inappropriate timing 

occasionally produced such secondary impacts as disease concealment, social 

discrimination against SARS patients and health care workers, and the panic buying 

of masks. 

Computational modeling and simulation is increasingly being used to match 

public health policies with the characteristics of local populations. In addition to 

information on disease transmission, suitable SARS simulation models require 

accurate data on how social networks operate in modern societies (Dye and Gay 

2003)—for instance, human clustering behavior, the potential for multiple contacts, 

and long-distance movement. The model that we will describe in this chapter uses a 

combination of cellular automata (for the direct simulation of individual interactions) 

(Boccara et al. 1994) and a concept that we have developed and named mirror 

identities, which allows the model to consider low degrees of separation, 

long-distance movement, and daily visits to fixed locations. Combined, these factors 

assist in the creation of a realistic SARS simulation platform with small-world 

characteristics; we believe the model also has potential utility for simulating other 

infectious diseases (e.g., influenza, enteroviruses, and HIV/AIDS) as well as social 

issues (e.g., communication problems). 
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4.2. The Proposed Model 

Our proposed model consists of two layers (Fig. 4.2.1). The upper layer is a 

multi-agent system used to simulate real-world heterogeneous cohorts. The lower 

layer consists of two-dimensional cellular automata (i.e., two-dimensional toric 

periodic lattices) used to demonstrate real-world activity spaces. The mirror identity 

concept connects the two layers, resulting in a small-world network model for 

analyzing the transmission dynamics of epidemic diseases and social issues. 

 

Figure 4.2.1: Cellular automata with mirror identity model (CAMIM). 

Cellular Automata with Mirror Identities Model (CAMIM) 
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The abstract mirror identity concept is based on human interactions and daily 

routines within the confines of a modern society. It specifies an individual’s social 

attributes—for instance, long-distance movement, daily visits to fixed locations, and 

multiple-activity locations. In our proposed model, individuals are viewed as single 

agent entities of an upper-layer multi-agent system; the places that an individual visits 

on a regular basis are defined as mirror identities. 

We will use Andy, a retired senior citizen who lives alone, as an example. Every 

morning at 8:00 a.m. he rides his motor scooter to a suburban nursing home, where he 

serves as a volunteer. He helps a nurse named Cindy to provide care for three 

residents named Bob, Dick, and Eric. Every evening at 6:00 p.m. he eats at an 

inexpensive Japanese restaurant, where he usually chats with the owner, the chef, and 

several other regular customers. After dinner, he goes home, changes clothes, then 

goes to a neighborhood tavern to spend some time with his friends Frank and Gerry. 

Andy rarely deviates from this routine. According to our proposed model, Andy, Bob, 

Cindy, Dick and Eric are upper-layer agents, and Andy’s home, the nursing home, the 

Japanese restaurant and the tavern are lower-layer mirror identities. Note that his 

motor scooter is considered an extension of his home instead of an activity node, since 

he rarely rides with others. 

Each agent in the upper layer has a set of attributes describing its epidemiological 
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progress and social mobility states (Table 4.2.1 and Fig. 4.2.2). Each mirror identity, 

which can freely access agent attributes, has a group of private attributes that 

represent its current status and local data (Table 4.2.2). Agents can freely access the 

attributes of any mirror identity they are connected to. Furthermore, agents can use 

their mirror identities to form clusters with other agents. For example, Andy belongs 

to three groups—one each at the nursing home, the tavern, and the Japanese restaurant. 

In formal terms, all of an agent’s mirror identities are connected through that agent; 

they form a star-shaped topology with the agent at the center and the mirror identities 

at the vertices. 
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Figure 4.2.2: Epidemiological states and two social mobility states. 
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Table 4.2.1: Agent Attributes. 

Attribute Type Description Value 

ID Integer Unique serial number that identifies virtual society agent; 
sequence not considered critical.  1~P 

E Symbol 

When the PopulationAgent parameter is set, the configured 
RateForeverImmune determines the rate of agents classified as M 
(Immune) in the epidemiological progress state E—that is, the 
population of permanently immune agents. All remaining agents 
are classified as S (Susceptible), meaning “not yet infected but 
prone to infection.”  

Susceptible, 
Incubation, 
Infected, 

Recovered, 
Immune, 

Dead 

Mobility Symbol 

When the PopulationAgent parameter is set, the Mobility status of 
every agent is preset as “free”—that is, these agents have no 
restrictions in terms of interacting with the mirror identities of 
neighboring agents. When an agent is placed under home 
quarantine or hospital isolation, its Mobility status is respectively 
changed to Quarantined or Isolated. This means the agent is 
restricted to its rooted mirror identity (e.g., home, hospital, or 
dormitory), and the activities of all mirror identities are 
temporarily suspended. 

Free, 
Quarantined,

Isolated 

Count Integer 
Records the number of an agent’s mirror identities; every agent has 
a minimum of one and a maximum of M. These numbers are 
normally distributed.  

1~M 

MirrorIdentity Set Data structure for containing mirror identities; each contains at 
least one.  

Age Symbol 

In the proposed model, agents are divided according to three age 
levels: young (1 to 20), prime (21 to 60); and old (61 and higher). 
When a simulation system is initiated, agent ages are randomly set 
based on the RateYoung, RatePrime, and RateOld parameters. 

Young, 
Prime, 

Old 

Super Boolean 

Denotes whether an agent is a super-spreader. If yes, set Super to 
“true”; if no, to “false”. When simulation system is initiated, the 
RateSuper parameter is used to determine which agents are 
super-spreaders. 

true,  
false 

ImmunityPermanent Boolean 

Denotes whether an agent is permanently immune. If yes, set 
ImmunityPermanenty to “true”; if no, to “false”. When simulation 
system is initiated, the RatePermanentImmunity parameter is used to 
determine which agents are permanently immune. 

true,  
false 

Day Integer 

Number of days for the three epidemiological progress states. If an 
infected agent has not yet recovered, Day is used to indicate the 
number of infected days; for recovered agents, Day is used to 
indicate the number of days since full recovery. If a recovered 
agent has temporary antibodies, Day is used to indicate the number 
of immune days. 

 

RateContact Real Rate of contact with other agents. For all agents, RateContact is 
normally distributed. 0~1 

WearingMask Boolean 

Denotes whether agent wears a mask. If yes, set WearingMask to 
“true”; if no, to “false”. When simulation system is initiated, the 
WearingMask attribute for all agents is preset to “false”. When a 
mask wearing policy is enacted (for the general public or 
healthcare workers), the RateParticipation parameter is used to 
determine which agents wear masks. 

true,  
false 

MaskType Real Represents average prevention grade of agent masks. The higher 
the number (close to 1), the greater the efficacy. 0~1 

QuarantinedDay Integer Number of home quarantine days, with a range of 0 to 
Policy.Parameter.DayQuarantined. 
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Table 4.2.2: Mirror Identity Attributes. 

Attribute Type Description Value

Root Boolean 

Each agent has one mirror identity whose Root = true; for all other 
mirror identities, Root = false. The root mirror identity is used to 
mimic special activity locations—e.g., homes, hospitals, and 
dormitories. 

true, 
false 

Suspend Boolean 

When the simulation system is initiated, Suspend = false for all agent 
mirror identities, denoting that all mirror identities are free to move 
about without any restrictions. Except for its rooted mirror identity, 
Suspend = true for all of the mirror identities of an agent in home 
quarantine or hospital isolation. This represents the idea that the agent 
cannot move about until the end of the home quarantine or recovery 
period. If the agent dies, Suspend = true for all mirror identities 
(including the rooted mirror identity), representing the idea that the 
agent can no longer visit any other locations. 

true, 
false 

Location (Integer, Integer) 

The first number represents the x-axis coordinate and the second 
number the y-axis coordinate for the location of a mirror identity in the 
two-dimensional lattice. Each mirror identity is mapped to a single 
coordinate location; in other words, each coordinate location contains a 
single mirror identity of only one agent.  

 

Neighbor Set 

Represents the coordinate locations of an agent’s eight mirror 
identities. Moore or von Neumann neighborhood relationships are used 
in most simulation systems. Under the Moore system, each mirror 
identity is defined as having eight neighbor agents; under the von 
Neumann system the number is four. We adopted the Moore 
neighborhood definition for our SARS simulation experiments. 

 

The majority of agents have between 2 and 5 mirror identities, with the number 

of mirror identities connected to an agent representing a normal distribution. In our 

proposed model, the more mirror identities an agent has, the larger the number of 

activity nodes and the greater the agent’s influence. Using an epidemic disease as an 

example, the greater the number of lattices connected to an agent, the greater the 

chances that the agent will become infected and/or transmit the disease to other agents. 

Lattices that surround each other in cellular automata represent neighbors—for 

example, the mirror identities of Andy, Cindy, Bob, Dick, and Eric are adjacent to 

each other, and Andy’s tavern mirror identity is adjacent to Frank and Gerry’s. 

In our model, one discrete time step is the equivalent of one day in the real world. 

The states of agents and their mirror identities change simultaneously during each 
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discrete time step, and each agent’s mirror identity comes into contact with its 

surrounding mirror identities. The attributes of the agent, its mirror identity, and 

surrounding mirror identities vary according to the interaction rules described in 

sections 4.3 and 4.4, simulation and epidemic parameters (Table 4.2.3), public health 

policy parameters (Table 4.2.4), input data tables (Table 4.2.5), and various random 

values. Accordingly, our combination of cellular automata and mirror identities is 

capable of displaying multiple social network characteristics: fixed locations visited 

daily, long-distance movement, local clustering, high degrees of clustering, and low 

degrees of separation. 
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Table 4.2.3: Simulation System and Epidemic Infection Parameters. 

Attribute Type Description 

PopulationAgent Set Stores total agent population in the simulation system; maximum capacity is P agents.
P Integer Total number of agents. 
M Integer Upper limit of an agent’s mirror identities. 
H Integer Height of the two-dimensional lattice used in the cellular automata. 
W Integer Width of the two-dimensional lattice used in the cellular automata. 
N Integer Total number of usable lattice H × W in the cellular automata. 

DayIncubation Integer Average number of incubation days. 
DayInfectious Integer Average number of infectious days. 
DayRecovered Integer Average number of recovered days. 
DayImmune Integer Temporarily immune to the disease; average number of incubation days. 
RateSuper Real Percentage of super-spreaders among total population. 
RateYoung Real Percentage of young (0 to 20 years) agents in total population. 
RatePrime Real Percentage of prime (21 to 60 years) agents in total population. 
RateOld Real Percentage of old (60 years and above) agents in total population. 

RateForeverImmunity Real Percentage of permanently immune agents in total population. 
RateInfection Real Average infection rate. 
RateDeath Real Average death rate. 

Table 4.2.4: Public Health Policy Parameters. 

Policy Attribute Type Description Value

RateParticipation Real Policy participation rate. 0~1 WearingMaskInGP 
RatePrevention Real Infectious disease prevention rate. 0~1 

RateParticipation Real Policy participation rate. 0~1 WearningMaskInHW 
RatePrevention Real Infectious disease prevention rate. 0~1 
RateDetection Real Fever detection success rate. 0~1 TemperatureMeasuring 

RateParticipation Real Measurement participation rate. 0~1 
Class Symbol A- and B-class quarantines. A, B 

DayQuarantined Integer Number of home quarantine days. 0~1 HomeQuarantine 
RateParticipation Real Policy participation rate 0~1 

RestrictingAccessToHospitals RateParticipation Real Policy participation rate. 0~1 
ReducingPublicContact RateParticipation Real Policy participation rate. 0~1 

Table 4.2.5: Input Data for Simulating SARS Epidemic Curves in Taiwan, Singapore, and Toronto. 

Category Attribute Type Description Value 

Time Point Date Date when the imported case occurred.  
Amount Integer Number of patients. 0~999 

Phase Symbol Imported during incubation or illness 
period 

Incubation,
Infected 

Imported Cases 

Super-spreader Boolean Determine whether the imported 
patient is a super-spreader.  

true, 
false 

Public Health Policy Related 
Attributes See Table 4   

Run Day Integer Number of execution days. 0~99 
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4.3. Modeling Epidemiological Features  

From Contact to Infection to Symptom 

Based on an adjusted contact rate (Agent.Parameter.RateContact) and a random 

number c, the mirror identities of each agent determines whether or not it will interact 

individually with the mirror identities of eight adjacent neighbors. If the c is lower 

than the contact rate, the mirror identity of agent A comes into contact with the mirror 

identity of neighbor agent B. The contact rate Agent.Parameter.RateContact depends on 

whether a “reducing public contact” policy or other parameter settings have been 

enacted. Throughout this section, we will express these concepts in pseudo-code; here 

the pseudo-code is 

 

Assume that agent A has a mirror identity that is adjacent to a mirror identity of 

agent B, that agent A has been infected and is contagious, and that agent B is both 

susceptible and prone to infection. When the two agents come into contact, a 

combination of infection rate (System.Parameter.RateInfection) and a random number n 
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determines whether or not agent B is infected by agent A. If the n is lower than the 

infection rate, agent B’s epidemiological state becomes N (incubation) and the period 

attribute (Agent.AttributeDay) becomes 1 (denoting that symptoms have not appeared 

and that agent B cannot transmit the disease). The infection rate 

System.Parameter.RateInfection is determined by such factors as immunity rate—that is, 

whether agent A is a super-spreader (CDC 2003b; Sebastian and Hoffmann 2003), in 

home quarantine, in hospital isolation, etc. 

 

Agent A’s epidemiological state will automatically change from N to I (Infected) 

once it has exceeded the incubation period System.Parameter.DayIncubation.  

 

When agent A’s epidemiological state is I and it has exceeded the infectious 

period System.Parameter.DayInfectious, a combination of the adjusted death rate 

(System.Parameter.RateDeath) and a random number d determines whether the agent 

enters the D (Death) or R (Recovered) state. Death rates are determined by such 

factors as age, whether the agent was placed under home quarantine throughout its 

incubation and infective periods, whether it received treatment in hospital isolation, 
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and its public activities (if any) during the period of illness. 

 

When agent A’s epidemiological state is R and it has exceeded recovery period 

System.Parameter.DayRecovered, it automatically enters an M (Immune) state. 

 

In the M state, the Agent.AttributeForeverImmune parameter is used to determine 

whether agent A’s immunity is permanent or temporary—that is, whether complete 

recovery or renewed susceptibility occurs following System.Parameter.DayImmune. 

 

Families and Hospitals 

Our proposed model can also be used to represent such concepts as homes, 

dormitories, and hospitals. As shown in Table 2, all mirror identities have two private 

attributes: root and suspend. For most agents, one mirror identity’s root attribute is 

designated as true but the root attributes of its other mirror identities are designated as 
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false. In contrast, the suspend attributes of all mirror identities of an agent are 

designated as false. To facilitate later discussion, we will assume the presence of a 

rooted mirror identity–that is, a mirror identity whose root attribute is always 

designated as true. The rooted mirror identity can be used to represent such unique 

(e.g., one-of-a-kind) units as homes, dormitories, and hospitals. 

 

If a health authority enforces a home quarantine of agent A, then the suspend 

attributes of all its mirror identities (workplace, school, bus stations, and so on) are 

marked as true; the one exception is agent A’s rooted mirror identity—that is, its home. 

The lattice points surrounding agent A’s rooted mirror identity represent the mirror 

identities of the agent’s family members or cohabitants. Once the home quarantine is 

lifted, the suspend attributes of these mirror identities (except for that of the rooted 

mirror identity) return to false, indicating a resumption of normal agent A activities. 
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We believe another advantage of the model is that it does not require fixed areas 

of lattice points representing hospitals. Assume that agent B, with a confirmed 

epidemiological state of I, enters isolation voluntarily. Similar to the preceding 

example, the suspend attributes of all agent B mirror identities are changed to true, 

with the exception of its rooted mirror identity. This represents a scenario where agent 

B is receiving treatment in hospital isolation, and where the entire agent’s outside 

activities cease. The lattice points surrounding agent B’s rooted mirror identity 

represent medical staff, nurses, healthcare workers, and perhaps family members. If 

agent B recovers, the suspend attributes of the affected mirror identities return to false, 

indicating a resumption of agent B’s normal activities. If the agent dies, the suspend 

attributes of all agent B mirror identities (including its root mirror identity) are 

permanently changed to false, indicating the permanent cessation of all of the agent’s 

activities. 

 

 



 

- 72 - 

4.4. Modeling Public Health Policies 

Mask Policy—General Public vs. Healthcare Workers 

A mask-wearing policy for the general public has two parameters: participation 

rate and prevention efficiency. Participation rate refers to the percentage of individuals 

in the total population who actually wear masks, and prevention efficiency represents 

the protection grade of the masks being used. Both parameters are adjustable. When 

this policy is enacted, the simulation system uses the participation rate to randomly 

assign a number of individuals who abide by wearing masks. If agent A in a 

simulation system has an S status but wears a mask, its infection probability decreases 

in accordance with the prevention efficiency parameter. The chances of an I-status 

agent A infecting others decreases if the simulated agent wears a mask before and 

after the outbreak of symptoms; this potential is also affected by the prevention 

efficiency parameter. 

 

The same process used to represent hospitals can also be used to simulate a 
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mask-wearing policy. Once the policy is enacted, agents surrounding the rooted mirror 

identity of agents in hospital isolation either wear or don’t wear masks based on the 

participation rate parameter; the prevention efficiency parameter also determines 

whether or not the infection probability of neighboring agents is reduced. 

 

Taking Body Temperature 

If a temperature measurement policy is enforced, the mirror identities of each 

agent will be claimed by its surrounding agents collectively whether it should taken 

body temperature before it comes into contact with them. This decision is made based 

on a combination of a participation rate parameter and a random number n. An n that 

is lower than the participation rate means that neighboring agents are abiding by the 

policy of measuring the temperatures of agents that want to come into contact with 

them. Results depend on the detection rate parameter—in other words, the higher the 

detection rate and the more accurate the thermometers being used, the lower the rate 

of spreading the disease. 

Reducing Public Contact 
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At the end of the 2002-2003 SARS epidemic, there were many reports (e.g., 

Sebastian and Hoffmann 2003; WHO 2003) describing the reduction of public contact 

as an effective means of controlling the spread of the disease. After this policy was 

enacted in our simulation, the combination of the participation rate parameter and a 

random number n determined whether or not the mirror identities of two agents 

interacted before coming into physical contact. An n higher than the participation rate 

indicated that either an agent had decided against coming into contact with agents 

surrounding a particular mirror identity, or simply had no reason for mirror identity 

interactions. 

A/B Class Home Quarantines 

According to an A-class home quarantine policy, if agent C is identified as being 

ill after such a policy is enacted, all agents surrounding agent C’s mirror identities 

must decide whether they should go into home quarantine based on the participation 

rate parameter. As in the hospital isolation example described above, all mirror 

identities of neighboring agents that decide to enter home quarantine immediately stop 

all activities until the separation period is completed, as determined by a public health 

policy parameter. This requirement does not apply to rooted mirror identities, which 

are still allowed to come into contact with other agents. 



 

- 75 - 

A B-class home quarantine policy is similar to an A-class policy, but it affects a 

slightly larger number of agents than the A-class policy. If one mirror identity of agent 

C is adjacent to a particular mirror identity of agent D (e.g., agents C and D are a 

cohabiting couple), this represents one degree of separation; if one mirror identity of 

agent D is adjacent to a particular mirror identity of agent E (e.g., coworkers in the 

same office), this represents two degrees of separation between agents E and C. 

Accordingly, when agent C is diagnosed with the disease, both D and E face the risk 

of infection, meaning that both D and E must enter home quarantine. 

Controlling Hospital Access 

During the actual SARS epidemic, Singaporean and Taiwanese health authorities 

imposed strict rules concerning hospital visitations (Sebastian and Hoffmann 2003); 

we simulated this “controlling hospital access” policy using our proposed model. We 

assumed that agent A showed symptoms of the disease and was admitted to a hospital 

for treatment in isolation. If agent B’s rooted mirror identity is adjacent to agent A’s 

rooted mirror identity, it indicates that agent B may be a member the hospital staff, a 

nurse, a healthcare worker, or a very close relative; if agent C’s non-rooted mirror 

identities are adjacent to agent A’s rooted mirror identity, it indicates that agent C is a 

distant relative, friend, classmate, or coworker. If a strict visitation policy is enacted, 

agent B is allowed to visit agent A, but agent C is not. 
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4.5. Simulating SARS with CAMIM 

After initializing the model and establishing parameters according to SARS 

disease information disseminated by the Centers for Disease Control (CDC)(2003a, 

2003c, 2003f, 2003h) and World Health Organization (WHO)(2003) (Table 4.2.5), we 

ran simulations of SARS transmission dynamics in various geographic areas and 

compared the effectiveness of various public health policies and disease prevention 

strategies (Figs. 4.5.1 and 4.5.2). SARS originated in Guangdong, in southern China, 

therefore in all other countries it is considered an imported virus. We therefore used 

imported cases announced by health authorities as our model’s simulation trigger 

(Appendix A). For each simulation we included the number of infectious people who 

entered a country, the discrete time step during which they entered, and whether or not 

they were exposed or infected as they entered a country. We triggered various public 

health policies according to the actual announcements of local health authorities, and 

adjusted our simulation environment, epidemic, and public health policy parameters 

according to actual disease information presented by the CDC (2003b, 2003d, 2003e, 

2003g) and Sebastian and Hoffmann (2003). In other words, our model makes use of 

actual epidemic parameter values from the CDC, WHO, and the health authorities of 

affected countries, thus avoiding the use of derived or estimated data. 
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Figure 4.5.1: Simulation framework. Data on reported cases came from the World Health Organization (WHO) and 
health authorities in Singapore, Taiwan, and Toronto. Input data was distributed into three categories: epidemic 
parameters (e.g., average incubation period, infection rate, distribution among age groups, mortality); imported 

cases (e.g., time point, amount, imported during incubation or illness period); and public health policies, activated 
according to data from individual nations (e.g., number of quarantine days, efforts to take body temperatures, 

restricting access to hospitals). Simulation output includes cellular automata states and various statistical charts. 
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Figure 4.5.2: Simulation platform for contagious infection. 
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Singapore SARS Outbreak 

According to the comparison of actual and simulated SARS cases in Singapore 

shown in Figure 4.5.3, the simulated curve has a very close fit with data published by 

the city-state’s health authority for the two outbreaks that occurred between February 

25 and May 5 of 2003 (CDC 2003b; Sebastian and Hoffmann 2003; WHO 2003). The 

first outbreak was attributed to imported cases, and emergency public health policies 

were not activated. The second was attributed to the compound effects of secondary 

infections, and several emergency policies were put into effect on March 24 (e.g., a 

ban on visits to patients in hospitals or under home quarantine). The number of new 

cases dropped dramatically at the beginning of June, and soon afterwards the World 

Health Organization (WHO) announced that the disease was under control. 
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Figure 4.5.3: A Comparison of actual and simulated epidemic results for the SARS outbreak in Singapore. Blue 
bars represent actual reported cases, red line represents an average of 20 simulation results, and black dots 

represent 20 simulation results. 

Taipei SARS Outbreak 

Our simulation of the Taipei situation included several public health policies 

enforced by that city’s government, including several grades of home quarantine and a 

mask-wearing requirement for all bus and train travelers (CDC 2003d; CDC 2003g; 

Sebastian and Hoffmann 2003; WHO 2003). As shown in Figure 4.5.4, the simulated 

results have a close fit with the epidemic curve of probable cases published by the 

Taiwanese health authority on September 28, 2003—that is, a major spike followed 

by several smaller outbreaks. We believe the heavier concentration in the Taipei curve 

(compared to Singapore’s) is due to several different factors, including late case 

discoveries, delays in seeking treatment, illness cover-ups, public interactions, and the 
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large number of cases imported by travelers returning from Hong Kong. In Singapore, 

all imported cases were reported prior to the first outbreak, and the second wave 

resulted from compound infections. In Taiwan, the reported s-curve is more 

representative of a typical infection pattern. 

 

Figure 4.5.4: A comparison of actual and simulated epidemic results for the SARS outbreak in Taipei. 

Toronto SARS Outbreak 

In Toronto, the SARS scenario consisted of two major waves with almost no new 

cases in between (Fig. 4.5.5) (CDC 2003e; Sebastian and Hoffmann 2003; WHO 

2003). After a re-examination of the data in August of 2003, the Canadian authorities 

acknowledged several additional cases during the lull period. According to our 

simulation, the second wave would not have been as severe if strong public health 
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policies had been enforced for a longer period following the first wave. In our 

simulation, epidemic control measures—especially restricted hospital access and 

reduced public contact with infected persons—were relaxed after the first wave 

subsided. This resulted in a second spike occurring within a few days of the actual 

spike that was reported by Toronto health authorities. Our results matched 

Kamps-Hoffmann’s (Sebastian and Hoffmann 2003) conclusion that the Toronto 

government lifted its control measures too quickly. Because of increased contact 

between patients and visitors and relaxed rules on the wearing of masks or respirators 

by health care workers, Toronto suffered a second nosocomial transmission period. 

 

Figure 4.5.5: A comparison of actual and simulated epidemic results for the SARS outbreak in Toronto. We 
assumed that the second outbreak occurred because preventive policies were relaxed too soon following the first 

outbreak. 
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From the combined results of these simulations, we suggest that our proposed 

model is a useful tool for purposes of cross-checking hypothesized findings and for 

gaining insight into how infectious disease epidemics develop. 

Home Quarantines 

In addition to the above simulations, we tested our model using the home 

quarantine policy. After releasing details of the global SARS outbreak on March 12, 

2003, WHO officials suggested that home quarantine periods should be at least twice 

as long as the then-average 4-6 day incubation period in order to suppress the spread 

of the disease (CDC 2003a; CDC 2003g; WHO 2003). Consequently, the 

governments of Singapore, Taiwan, and Canada established and enforced 10-day 

quarantine policies during the epidemic, and for a short period the Taiwanese 

government enforced a 14-day policy. According to our simulation results, a minimum 

10-day quarantine period was required for suppressing the number of new cases—the 

same time period recommended by WHO (Fig. 4.5.6). We observed that the SARS 

epidemic curve slowed down considerably and that the disease became endemic when 

the quarantine period was a minimum 10 days, otherwise it was impossible to control 

the disease. 
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Figure 4.5.6: Results from a simulation based on various home quarantine policies. The time period for the 
simulation was 250 days, with a default incubation period of 5 days. The results indicate that different home 

quarantine restriction levels exerted different impacts on the SARS epidemic, and that a home quarantine policy by 
itself was insufficient for suppressing the epidemic. 
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4.6. Analyzing Public Health Policies 

Taking Body Temperature 

The Singaporean and Taiwanese governments both implemented temperature 

measurement policies during the epidemic, going so far as to launch national 

campaigns that included installing temperature-monitoring equipment and setting up 

manual temperature measurement stations at various government buildings, clinics, 

and public transportation stations (Sebastian and Hoffmann 2003; WHO 2003). 

According to our simulation results, when such policies are both comprehensive and 

compulsory, they reduce the number of feverish individuals entering public places. 

However, they are difficult to execute; implementation methods tend to vary, 

oversights are common, and an unknown number of individuals manage to evade 

having their temperatures taken.  

The results from our simulation suggest that a participation rate of between 80 

and 90 percent is required for this public health policy to have a positive effect in 

controlling a SARS epidemic (Fig. 4.6.1). At a rate of 65 percent or lower, the policy 

has little effect. In addition, the policy incurs significant social costs—providing 

inexpensive thermometers, setting up stations for their distribution, setting up 

temperature screening stations, and arranging for manual temperature measurements 
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at various government buildings, medical clinics, and public transportation stations. 
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Figure 4.6.1: Results from a simulation focused on temperature measuring policy at different participation levels. 
We used the 8 imported case reported in Singapore to trigger the simulation. In each 66-day simulation run, the 

policy was activated on day 24; the goal was to compare impacts at different participation rates. 

Wearing Masks with Different Protection Levels—General 

Public vs. Healthcare Workers 

The governments of Taiwan and Hong Kong made great efforts to promote 

general mask-wearing policies, which led to hoarding and panic buying (Sebastian 

and Hoffmann 2003; WHO 2003). Masks are categorized according to 

grade—ordinary, surgical, N95 respirator masks, etc. In Taiwan, a serious shortage of 

professional masks for medical staff occurred following a mad rush by the general 

population to purchase masks regardless of grade; this triggered a debate on the 

necessity of wearing N95 respirator masks outside of hospitals and clinics.  
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According to the results presented in Figure 4.6.2, ordinary and surgical masks 

can assist in controlling an epidemic outbreak as long as wearing them becomes a 

strong habit for the desired time period. At a prevention efficiency of 65 percent or 

more (that is, the mask covers the mouth and nose), epidemics can be controlled but 

not eliminated. When wearing ordinary masks, medical staff members have higher 

infection rates (Figs. 4.6.2 and 4.6.3); these personnel clearly benefit from wearing 

N95 and other high-resistance masks in hospitals and other medical centers. From our 

simulation, we suggest that the general public does not require high-resistance masks, 

and that higher grade masks should be reserved for use by medical staff and 

healthcare workers. 
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Figure 4.6.2: Results from a simulation focused on the impact of mask-wearing by the general public, comparing 
different mask protection levels. 

 

Figure 4.6.3: Results from a simulation focused on the impact of mask-wearing by healthcare workers in 
healthcare facilities, comparing different mask protection levels. 
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4.7. Assessing Public Health Suites 

Different public health policies have different social costs. Home quarantining is 

highly effective, but it requires considerable amounts of labor and material resources 

compared to temperature measurement and mask-wearing policies. We ran 

simulations of various prevention strategies in an attempt to find an optimal 

combination of public health policies in terms of efficacy and cost, and found that a 

combination of mask-wearing by the general public and reducing contact in public 

places was the best combination for suppressing the spread of SARS (Fig. 4.7). Some 

costs are involved in mask purchases, but few costs are associated with limited public 

contact. In addition, mask wearing addresses an epidemic at its source—disease 

transmission.  

The combined strategies of temperature measurements, restricted hospital 

visitations, and mask-wearing by healthcare workers should be considered a remedial 

reaction to a SARS outbreak. This strategy suite is ineffective in stopping patients in 

the incubation stage or patients suffering from minor symptoms from spreading the 

disease to others. In addition to its numerous loopholes, this suite also requires 

substantial amounts of labor and material resources. The combination of home 

quarantines and reducing contact in public places also has high social costs, yet the 
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disease can still be transmitted if strict isolation is not observed for the time periods 

discussed in an earlier section. Numerous instances of intra-family infections were 

reported during the 2002-2003 SARS outbreaks—evidence that the combination of 

these prevention strategies is ineffective in controlling this kind of epidemic. 

 

Figure 4.7: A Comparison of various public health policy suites. We used the 8 imported cases reported in 
Singapore to trigger the simulation. Policy suites went into effect on day 24 of the 66-day simulation. Suite 1 

(cyan): A-class home quarantine for 10 days and reduced public contact; suite 2 (red): wide-scale taking of body 
temperatures and restricting hospital visitations; suite 3 (green): wide-scale taking of body temperatures, restricting 

hospital visitations, and mask-wearing by healthcare workers; suite 4 (pink): public mask-wearing and reduced 
public contact. 
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Chapter 5. Influence of Local 
Information on Social Simulations in 
Small-World Network Models 

As part of Watts and Strogatz’s “small world model” of disordered networks, 

local information mechanisms such as landscape properties are used to approximate 

real-world conditions in social simulations. The author investigated the influence of 

local information on social simulations based on the small world model, using a 

cellular automata variation with added shortcuts as a test platform for simulating the 

spread of an epidemic disease or cultural values/ideas. Our results will help 

researchers determine appropriate parameters for future simulations. 
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5.1. Motivation 

“Small world” models are commonly used to study the structures of social 

networks—groups of individuals who exhibit interaction or relationship patterns 

(Albert and Barabási 2002; Milgram 1967; Barabási et al. 1999; Barabási and Albert 

1999; Erdös and Renyi 1959; Watts and Strogatz 1998). Newman (2000) notes that 

small world models have special topological properties found in real-world human 

societies, including strong local clusters and small average distances between node 

pairs. They are therefore popular among researchers who construct social simulations 

of virtual societies, communication problems (especially epidemics), and the spread 

of cultural beliefs and influences—all of which are affected by transmission routes 

(Comellas et al. 2000; Keeling 1999; Moore and Newman 2000; Newman 2000; 

Newman 2002; Tsimring and Huerta 2001; Watts 1999; Zanette 2003; Zekri and Clerc 

2001). 

Factors that affect communication problem simulation results include network 

structure, divergence between individuals, and information-transmitting medium 

(Comellas 2000; Watts 1999). The degree of mitigation is tied to the type and amount 

of local information found on nodes and edges. Communication network structure 

(vertex degree information) is determined by the number of individual friendships. 
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Divergence (attribute information) is expressed as individual resistance to certain 

diseases or cultural influences. The medium (weight information) expresses 

transmission effectiveness. By treating these factors as local information, mechanisms 

can be designed for choosing the most appropriate information for social simulations. 

Here we will focus on the influences of node-related local information, vertex 

degree, and attributes on simulating communication problems using a small world 

model. Building on previous research efforts involving epidemics that emphasize the 

influence of social network structure and divergence between individuals, we will 

analyze the sensitivity of those factors as well as vertex degree and attribute 

information. Our primary goal is to determine which type of local information exerts 

the greatest influence, thus requiring greater care when establishing parameters. 
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5.2. Adjustable Small-World Network Model 

In the present study we will use Newman and Watts’ 1999 SWN model to 

construct what we believe is a more effective method for generating virtual social 

networks. Our proposed method uses vertex degree information for all nodes to 

control network connections in the form of shortcuts, in such a manner that produces 

virtual social networks that meet specific simulation or research requirements. We 

believe our model is more practical that others because it allows for adjustments in 

network structure to reflect more active or conservative populations in certain regions. 

In other words, it produces virtual social networks that are varied in terms of 

interaction targets. 

The SWN model on which we built our modification (Newman and Watts 1999) 

is itself a variation of Watts and Strogatz’s (1998) original SWN model. In the original, 

a SWN starts with an n-dimensional regular graph in which each node is connected to 

a z number of its nearest nodes (Fig. 5.2.1(a)). There exists a probability p that each 

edge in the graph will be rewired, with one edge end being randomly selected and 

randomly reconnected to a new node (Fig. 5.2.1(b)). 
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Figure 5.2.1: (a) One-dimensional regular graph with each node connected to its four adjacent nodes. (b) Watts and 
Strogatz’s SWN model, with four rewired edges. (c) Newman and Watts’ improved SWN model with five added 

shortcuts. 

As shown in Figure 5.2.2, under certain adverse circumstances Watts and 

Strogatz’s construction method can cause breaks in a graph (Newman 2000; Newman 

and Watts 1999; Wang and Chen 2003). Newman and Watts introduced a construction 

method that adds shortcuts instead of rewiring edges (Fig. 5.2.1(c)). According to the 

new method, two previously unconnected nodes are randomly selected and linked 

using a newly added edge, with users determining the number of new edges to be 

added. Newman and Watts’ SWN model therefore avoids the problem of graph 

breakage while preserving the positive characteristic of connecting each node in the 

n-dimensional regular graph with 2n neighboring nodes (Wang and Chen 2003). 

However, since there are equal probabilities of each node being chosen while 

shortcuts are being added, the vertex degree of each node will resemble a normal 

distribution, therefore failing to meet the needs of users wanting to construct SWN 

models that utilize network structures with different distribution methods. 
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Figure 5.2.2: An example of a broken graph in Watts and Strogatz’s SWN model.  

In response to the restrictions of Newman and Watts’ SWN model, we propose 

using a different construction method to change the selection process for each shortcut. 

As shown in Figure 5.2.3, a user must establish the weighted vertex degree d(vi) for 

each node vi in the n-dimensional regular graph before constructing a SWN model. 

This d(vi) value must be a real number greater than 0. Our calculations for the 

probability p(vi) of node vi being selected as one of the shortcut ends when a new 

shortcut is being added are shown in Equation 5.2. 
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Figure 5.2.3: An example of calculating the probability of a node being selected. 

According to our construction method, the higher a node’s weighted vertex 

degree, the higher the probability it will be selected and vice versa. When all nodes 

have the same weighted vertex degree, the method is identical to the SWN model 

construction method originally proposed by Newman and Watts. The construction 

algorithm for our SWN model consists of 

 Step 1: for all Individuals vi in Population do 
    Connect vi to z nearest neighbor 
    Assign vertex degree ratio information d(vi) to vi 

   next  
 Step 2: for loop 1 to shortcut number do 
    label Generate shortcut: 
    Individual va ← Choose Individual by Probability p(va) 
    Individual vb ← Choose Individual by Probability p(vb) 
    if (isLinked(va, vb)) then 
     goto label Generate shortcut 
    end if 

   next 
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5.3. Communication Problem Modeling 

The most basic and common communication problem model consists of a 

transmitter, receiver, and communication channel (Comellas 2000; Watts 1999) (Fig. 

5.3.1). Using a disease epidemic as an example, diseased patients are the transmitters; 

newly infected individuals are the receivers; and skin contact, insects, air and water, 

etc. are the communication channels. A common example used by sociologists 

involves filmmaking, with directors as transmitters, actors and actresses the 

communication channels, and audiences the receivers. Directors disseminate their 

cultural beliefs and concepts to the public via repeated screenings. 

 

Figure 5.3.1: Communication problem model. 

When designing our proposed model, we took into consideration the effects of 

such communication issues as network structure, differences among individuals, and 



 

- 100 - 

media, and purposefully created a system in which individuals express a range of 

behavior patterns in response to various communication issues. For instance, we 

limited the distribution of rumors spread by word-of-mouth to small numbers of 

friends and neighbors within a specific time frame, but acknowledged the ability for a 

rumor to be spread to a wide number of recipients in a short period of time via email, 

television, radio, etc. 

We used a simple SWN model as our basic social network framework because of 

its ability to reflect real-world interpersonal relationships. We also applied the state 

transfer concept of SIR models to simulate behavioral and transformative results from 

interactions among individuals—that is, when a susceptible individual interacts with 

an infectious individual, a certain probability exists that the status of the former will 

change from S to I—a probability that we refer to as RateInfect. Eventually the 

probability exists of all infectious individuals contracting the disease and being 

isolated from all other individuals in a society—that is, their status changes to R at a 

probability rate we refer to as RateRemove. In a typical SIR model, individuals in the R 

state are considered either dead or recovered; recovered individuals produce 

antibodies that prevent them from passing on the disease to S individuals. 

SIR models take on new definitions in light of epidemic cultures, rumors 

disseminated by word-of-mouth, and other communication issues. As shown in Figure 
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5.3.2, the susceptible state represents an openness and willingness to accept new 

concepts; the infectious state represents the acceptance of a specific concept and a 

willingness to pass it on to other individuals; and the removed state represents a loss 

of interest in the originally accepted concept, meaning that R individuals will not be 

affected by the spreading behavior of other individuals nor actively spread the 

disease/concept in question to other individuals. However, SIR models entail a high 

possibility that an R individual will transform into an S individual. Using fashion as 

an example, someone with no particular liking for hip-hop pants will start wearing 

them due to peer pressure, then encourage others to wear them. After a certain period 

of time, the individual loses interest, stops wearing hip-hop pants, and doesn’t notice 

when others keep wearing them. As more time passes, the individual has neither a 

strong like nor dislike of the fashion. We labeled the probability of change from R to S 

as a reset rate RateReset. 

Furthermore, we address the fact that SIR models are generally incapable of 

considering influences resulting from “differences between individuals.” In our 

proposed model, whenever susceptible individuals interact with infectious individuals, 

the infection rate is multiplied by attribute information (i.e., the individual’s resistance) 

and weight information for the communication media to determine the probability of a 

change in status from S to I. 
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Figure 5.3.2: SIR state transfer diagram showing a repetitive cycle. 

A computational simulation flowchart for our proposed model is shown in Figure 

5.3.3. First, a SWN model is built using the construction method described in section 

3 prior to setting the relevant parameters and attributes of the individuals involved in a 

problem. During simulation, SWN individuals/nodes take turns interacting with 

neighbors for specified time intervals. The number of interactions between any node 

and its neighbors can be fixed or variable, with the number of interactions randomly 

determined. Individual interactions do not result in immediate influences; 

simultaneous state changes only occur when all individuals in a SWN complete their 

interactions. Accordingly, interaction sequences will not influence interaction 

processes or results.  

The following pseudo-codes were used in our communication problem simulation 

model. 
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 for loop 1 to Time Step Limit do  
  for all Individual Ii in Population do  
   for loop 1 to Interaction Limit do 
    Individual Itarget ← Choose a Neighbor of Ii by Random 
selection 
    SIR(Ii, Itarget) 

   next  
  next 
  for all Individual Ii in Population do 
   if Ii.NowState = I then 
    if random value r < RateRemove then 
     Ii.NextState ← R 
    end if 
   end if 
   if Ii.NowState = R then 
    if random value r < RateReset then 
     Ii.NextState ← S 
    end if 
   end if 
   Ii.NowState ← Ii.NextState 

  next  
 next 
  
 procedure SIR (Individual Ia, Individual Ib) is 
  if Ia.NowState = I and Ib.NowState = S then 
   if random value r < RateInfect × Ib.Resist then 
    Ib.NextState ← I 
   end if 
  end if 
  if Ia.NowState = S and Ib.NowState = I then 
   if random value r < RateInfect × Ia.Resist then 
    Ia.NextState ← I 
   end if 
  end if 

 return 
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Figure 5.3.3: Simulation flowchart of the communication problem model. 
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5.4. Local Information Mechanisms 

“Local information” refers to information that distinguishes certain individuals or 

channels from others. For example, everyone has two parents, therefore this number is 

considered global information. But there is considerable variation in numbers of 

brothers and sisters, making them a type of local information. Two primary local 

information categories are node-related (vertex degree and attribute) and edge-related 

(direction and weight). Vertex degree information represents the tendency of an 

individual to make friends; extroverts have higher vertex degrees than introverts. 

Attribute information, which describes individual resistance to disease, is used to 

express divergence. Direction refers to channel direction, categorized as either 

uni-directional (e.g., television, radio) or bi-directional (e.g., e-mail, telephones). 

Weight information represents channel effect—for instance, face-to-face 

communication is viewed as having greater weight than e-mail exchanges. 

The most commonly used mechanism for setting local information entails random 

numbers that are either normally or uniformly distributed. A second mechanism 

entails organizing local information according to a pre-designed pattern—for example, 

putting all heterogeneous individuals in one location versus distributing them 

throughout an environment. These mechanisms are applied in a manner that allows a 
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virtual society to approximate the real world. Our goal was to observe and identify the 

effects of applying local information mechanisms to node-related information. 
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5.5. Experiments of Sensitivity Analysis 

We used SWN models (cellular automata with shortcuts) as our simulation 

platform for our experiments. As shown in Figure 5.5.1(a), all individuals in a typical 

cellular automaton have the same fixed number of neighbors, and therefore the 

cellular automaton is viewed as a two-dimensional toric periodic regular graph. As 

shown in Figure 5.5.1(b), if we use the method described in section 3 to select two 

nodes on a two-dimensional toric periodic regular graph and add one shortcut, the 

resulting automaton will meet SWN model requirements by having two small-world 

characteristics: a high degree of clustering and low degree of separation. 

 

Figure 5.5.1: (a) Each individual in cellular automata has four neighbors. (b) Each individual can have 0 to n 
connecting shortcuts to other randomly selected individuals.  

For our experiments, we used a 100 × 100 two-dimensional cellular automaton 

containing many shortcuts, resulting in a virtual social network consisting of 10,000 

individuals (Fig. 5.5.2). This cellular automaton is capable of using a von Neumann or 
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Moore neighborhood; since von Neumann has been the neighborhood of choice for 

most researchers working with SWN models, we used it in our experiments. This 

means that all individuals are connected to and interact with only four surrounding 

neighbors plus long-distance friends connected by shortcuts. 

 

Figure 5.5.2: Test platform schematic diagram. 

We were required to determine the appropriate number of shortcuts to add to our 

model. To maintain similarity to the real world, we used two arguments: a) a degree of 

separation of approximately 6 for a world population of six billion, and b) logarithmic 
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growth between the number of SWN nodes and the average degree of separation; for a 

virtual social network of 10,000 individuals the average degree of separation is 

approximately 2.45. On average, one individual in a network of that size has 17 

shortcut connections to other individuals, plus four connections with adjacent 

neighbors—21 in all. 

Experiment 1: Vertex Degrees 

Our first experiment was aimed at identifying the influences of network structure 

on a simulation. Differences in social networks depend on the social atmospheres in 

which they are formed. For instance, individuals in open societies will likely have 

more friends than individuals in more conservative traditional societies. Another 

important factor is the mix of extroverted, introverted, and in-between individuals. 

Sociologists are particularly interested in studying the effects of these and other 

factors. 

We set the weighted vertex degree of each individual to meet the experimental 

requirement of developing different social network structures, and conducted our 

experiments with one of three social network distribution assumptions common to 

simulations. First, every individual’s weighted vertex degree is identical, reflecting an 

average number of friends. Second, there is a uniform distribution of individual 
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weighted vertex degrees, reflecting a society of 1/3 extroverts, 1/3 introverts, and 1/3 

neither. Third, there is a normal distribution of the individual weighted vertex degrees, 

reflecting a population in which the majority of individuals are neither extroverted not 

introverted, and where extreme extroverts and introverts represent small minorities. 

For the first experiment, we set the weighted vertex degree for all individuals in 

the first assumption group at 1. For the second group, we used a randomly selected 

integer between 3 and 6 from the random sequence of a uniform distribution to be 

used as an individual’s weighted vertex degree. Each value had a 25% probability of 

being selected, with extroverts having twice the opportunities of introverts for making 

new friends. For the third group, an integer between 1 and 9 was randomly selected 

from a normal distribution (M = 5, SD = 1) and used as an individual’s weighted 

vertex degree. According to the principle of normal distribution, for most individuals 

the weighted vertex degree was 4, 5 or 6, with very few weighted vertex degrees of 1 

or 9. 

Experimental results are shown in Figures 5.5.3 and 5.5.5; their respective 

cumulative sums based on time sequences are shown in Figures 5.5.4 and 5.5.6. With 

the exception of the maximum point for the first peak in the third epidemic curve in 

Figures 5.5.3 and 5.5.5, the rise and fall time points are very consistent. The 

cumulative sum curves for the three social network structures almost overlap in 
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Figures 5.5.4 and 5.5.6, reflecting the consistency of movement and fluctuation in the 

three epidemic curves shown in Figures 5.5.3 and 5.5.5. 

In brief, the seemingly random dynamic process did not affect the overall 

development trend. We therefore conclude that adding the same number of shortcuts 

to the three social networks used in this experiment did not exert any influence on the 

movement and fluctuation of the entire epidemic curve, despite differences in the 

regional social network structure and a slight change in the total population at the 

peak of the epidemic breakout. Accordingly, it appears to be unnecessary to exert too 

much effort setting and adjusting fine network structures when putting such cases 

through additional computational simulations. Instead, one can focus on finding 

appropriate global information—for instance, the number of adjacent individuals to 

establish connections with or the number of shortcuts to add. 
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Figure 5.5.3: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the resulting number of I (infectious state) individuals produced by our proposed model. 

 

Figure 5.5.4: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the accumulated number of I (infectious state) individuals produced by our proposed model.  
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Figure 5.5.5: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the resulting number of I (infectious state) individuals produced by our proposed model.  

 

Figure 5.5.6: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the accumulated number of I (infectious state) individuals produced by our proposed model.  
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Experiment 2: Heterogeneous Proportion 

The second experiment looked at the influence of heterogeneous individuals, 

which constitute a certain percentage of the total population. Results were expected to 

differ, since individuals have different levels of resistance to epidemic diseases (e.g., 

influenza) or cultural influences. Since the average degree of separation between any 

two individuals is very low in SWN models, the question of whether a large-scale 

epidemic will occur due to a heterogeneous minority of individuals who are especially 

prone to the disease was a specific focus in this experiment. 

When establishing parameters, we set the resistance attribute information to 

represent individual differences—for instance, the resistance attribute values for 

heterogeneous individuals were one-half those of ordinary individuals, meaning that 

heterogeneous individuals had double the probability of becoming infected. 

Furthermore, heterogeneous and ordinary individuals were randomly distributed 

throughout our virtual environment. We ran six simulations with different percentages 

of heterogeneous individuals: 0, 1, 5, 10, 30 and 50 percent of the entire population. 

When the percentage of heterogeneous individuals exceeded 50 percent, they 

switched their status with ordinary individuals. We therefore did not have to run 

simulations with a percentage above 50 percent. 
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Experimental results are shown Figures 5.5.7 and 5.5.9; their respective 

cumulative sums based on time sequences are shown in Figures 5.5.8 and 5.5.10. In 

Figures 5.5.7 and 5.5.9, the higher the ratio of heterogeneous individuals in a 

population, the earlier the occurrence of the first peak and the higher its maximum 

point. According to the other two figures, the six cumulative sum curves diverged 

from the very beginning, with statistically significant differences among all six. The 

six epidemic curves had completely different movements and fluctuations, showing 

that the percentage of heterogeneous individuals exerted a significant influence on 

simulation results and processes. A comparison of the 0 and 1 percent curves shows 

that even a tiny percentage of heterogeneous individuals are enough to make a 

difference. These results underscore the importance of being precise when setting 

individual attributes for a simulation model. 
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Figure 5.5.7: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the resulting number of I (infectious state) individuals produced by our proposed model.  

 

Figure 5.58: A comparison of three experimental results using different methods and vertex degree information in a 
simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the accumulated number of I (infectious state) individuals produced by our proposed model.  
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Figure 5.5.9: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the resulting number of I (infectious state) individuals produced by our proposed model.  

 

Figure 5.5.10: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the accumulated number of I (infectious state) individuals produced by our proposed model.  
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Experiment 3: Scattered Pattern of Heterogeneous 

Individuals 

Our goal for the third experiment was to identify the effect on simulations of the 

same number of heterogeneous individuals under different settings—for example, 

when they are centrally distributed in a specific region or evenly distributed 

throughout a virtual environment. 

We used a radius parameter r to represent the ratio of heterogeneous individuals’ 

distribution scope in an environment relative to the entire simulation environment (Fig. 

5.5.11). An r of 0 meant that all heterogeneous individuals were in close proximity to 

each other, an r of 1 meant that they were evenly distributed throughout a simulation 

environment, and an r between 0 and 1 meant that they were evenly distributed 

throughout a specific region within the radius parameter. When the number of 

heterogeneous individuals exceeded the size of the r region, the radius parameter 

automatically adjusted itself to the smallest possible ratio to contain all of them. We 

maintained a 1% level of heterogeneous individuals in the total population and ran six 

simulations with radius parameter r values of 0, 0.2, 0.4, 0.6, 0.8 and 1. 
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Figure 5.5.11: Schematic diagram of regions covered by different radius parameters (r). 

Experimental results are shown in Figures 5.5.12 and 5.5.14; their respective 

cumulative sums based on time sequences are shown in Figures 5.5.13 and 5.5.15. 

Figures 5.5.12 and 5.5.14 show that with the exception of the maximum point of the 

first peak in the sixth epidemic curve, the time points were very consistent (no 

statistically significant differences). Figures 5.5.13 and 5.5.15 indicate the 

near-overlapping of the six cumulative sum curves, indicating that the six epidemic 

curves in Figures 5.5.12 and 5.5.14 were very consistent in terms of movement and 

fluctuation. In other words, the random dynamic process did not affect development. 

According to these results, it is not particularly important to determine the pattern of 

scattered (concentrated or distributed) heterogeneous individuals in simulations that 

match or come close to matching real-world situations, since satisfactory results can 
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be produced from a random distribution approach. 

 

Figure 5.5.12: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the resulting number of I (infectious state) individuals produced by our proposed model. 

 

Figure 5.5.13: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the accumulated number of I (infectious state) individuals produced by our proposed model.  
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Figure 5.5.14: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the resulting number of I (infectious state) individuals produced by our proposed model. 

 

Figure 5.5.15: A comparison of three experimental results using different methods and vertex degree information in 
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows 

the accumulated number of I (infectious state) individuals produced by our proposed model. 
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Chapter 6. Conclusions 

In this chapter, we proposed a novel small-world model consisting of cellular 

automata with mirror identities representing daily-contact social networks for running 

epidemiological simulations. We established the mirror identity concept to integrate 

long-distance movement and geographic mobility into the model, which can be used 

to simulate the transmission dynamics of infectious diseases among social networks 

and to investigate the efficacies of various public health policies and epidemic 

prevention strategies—alone and in combination. The model successfully exhibits 

epidemiological behaviors in the form of daily interactions among heterogeneous 

individuals, and expresses such present-day small-world properties as high degrees of 

clustering, low degrees of separation, and long-distance movement.  

According to the results of simulations that we ran based on data collected during 

the 2002-2003 SARS outbreaks in Singapore, Taipei, and Toronto, we suggest that 

this model can be applied to different infection scenarios and used to simulate the 

development of epidemics with considerable accuracy. A comparison of simulation 

and real-world data indicate that our model can be used to test epidemic report 

systems and to identify the best public health policy suites for specific scenarios. The 

simulation results also indicate considerable flexibility in the model—that is, we 
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believe it can be applied to a wide range of contagious diseases (e.g., influenza, 

enteroviruses, and HIV/AIDS) that have well-defined epidemic parameters. 

From this investigation of the influences of local information on communication 

problems involving small world networks, we found that the influence of vertex 

degree is not significant, that the influence of percentage of heterogeneous individuals 

is significant, and that the influence of the pattern of how heterogeneous individuals 

are scattered is not significant. We believe these results will be helpful for determining 

simulation parameters. Our immediate research plans are to study the influences of 

other types of local information (e.g., edge-related) and the influences of local 

information on SF, RN, and other small world models to determine if they are similar 

to those associated with the SWN model. 
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