%ﬁﬂﬁﬁﬁﬁéﬁﬁ“ﬁﬁiﬁﬁﬁ%i
1 * AL € & LBEPLE & R 3B T
gﬁzg% SR F T e iR

Small-World Epidemiological Modeling-and‘Public Health Policy Assessment:
Using the Social Mirror Identity Concept and Local Information for
Network-based Epidemic Simulations

Zﬁ;ii:\—r/}/%l

Jfﬂ o ikt K

PR X4 e &8 L+ - 3



PR R E R ERE DL LK ER
FUH AL g & L BPLE B R 3 TS HAL § BBV R T T iR
Small-World Epidemiological Modeling and Public Health Policy Assessment:
Using the Social Mirror Identity Concept and Local Information for
Network-based Epidemic Simulations

S N W R Student : Chung-Yuan Huang
hERE R A Advisor : Chuen-Tsai Sun

A Dissertation

Submitted to
Department of Computer Science

College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

in

Computer Science
November 2005

Hsinchu, Taiwan, Republic of China

PEARAY e gL



BAL% 2 LI MFCBEES

(Rffp ik § tF AT )

AL T E e 0 A AL Wi A F Faas kef

V2N

o 4te HERY - BHHFE_ P L HFIH oo
wmvAEp P E R FRFE e ok A s It AL g S P RS
B R TR AL ¢ BB RS T R HR
e ke

Br: [P F&

AAHRAFE AR B RERE A S SR A L AR
44 Z{g%«;}iﬁﬁg.ﬂfw FE";);—,J,* N - pA E?E&ﬁigﬁ?éﬂﬁ
Fy2 P Bzl A 52 530 B4 LR 4172 Uk  BFFE
e MAK S KB AT REB I £

i RN F

*mkf

B R RERES TR

A

Az L R i hRer B Y EIAR & 0 p ol

S W/ & ' poE

BRE LIS AR F 5. ¢ 8923802

PEIR 4 te ® L 2 L

X
s




= =2 & =+ 7
BARLAAG: FieERED
(B AETTH2 T IARIETZF )

AR T TIRIEL F 2 ’§$A*Wiiﬁ%§?ﬂlﬁ}%
By 4 twe BERYS - SHPBREEI T2 % oo
W AR R R FpS el okl TR I A s B
B R B R 5_7&_§ (R ap frf—‘r[];g?j;”**ﬂ“‘f“‘ﬁ
iﬁ %ﬁ-?{#ﬁ . 3‘1‘ p?(i\

W Fi

AAERAF T 2L R EERAZ LA E AN REHER T
%%3‘EaﬁwJawa,ﬁw%ﬁgfﬁwpziﬂﬁ,@iiﬁA§
B aEE e s EREHF TR R Y PRPN GFF TR
f'Fﬁ?@*’g\l;nJEﬁo

Ao s A A e SNV ER Y SRR PICR B A iR 4 IR g )
iy — @ L2 Yoo

1= 2 FFQ%{F. ,F—’fé—j&-‘z@ﬁii =




R ﬁ‘,‘muﬁ}}%ﬁﬁ‘%&— AES el e it

?'1?7}_"'_%/17\ f/%é*ﬂ‘iﬁé?‘épi%?\)mi—}; #7]‘-‘% /nhf’f %??N“(ﬁ_%‘é

g4 0% M Sy g e

M A FFRIEE L (P ) A

3 2

A2 hd r] b 3E T oaE RO W A g,figaﬁ 8 B ,ﬁﬂg 12N
BN L FHRBEES LR A BRI T RERN S RL e
FHw A B2 B RAIEORAPEIREGE o f A0 P GEF T E Y TR AR R
Fio T x@#}ﬁam@ﬁ—,, i o OFT TR A TE Sk g o B A K 4 ot &
BEdEHE s p ¥ AREH R RECRFER LR D wm B
%ﬁ—%uﬁﬁﬁﬂ#i%ﬁﬁﬁ&%f%ﬁﬁﬁ+ﬂﬂﬁé%%Vﬁﬁﬂ o
7 g 2003 £ 47 B oAt o~ ATAo B

AN

5 (£ +) =2 ehSARS £ I+ #F
REFBEFRDEFTHELF RO RE - o & §F B Fog B b
d oo b BT FEPZHREAAY R A FA LR ERBLET R M D
SHWRREFPERGE B RSB AR Ry o HHTRET R )
B g RS R - B RPN TR - BAaR RS ITH &R
AR R ﬂé”ﬁﬁﬁﬁﬁ*%mm§ai%& MEARE LR P

FAAFRER B AAYPEEE L F - B RS EET NERE R

PGB BT iR TR R B R F T DL AU ERY ke



Small-World Epidemiological Modeling and
Public Health Policy Assessment:
Using the Social Mirror Identity Concept and Local Information for
Network-based Epidemic Simulations

student : Chung-Yuan Huang Advisors : Dr. Chuen-Tsai Sun

Department ( Institute ) of Computer Science
National Chiao Tung University

ABSTRACT

The purpose of this dissertation is to~explore the importance, advantages,
applications, validation standards, and -evaluation procedures of computational
modeling and simulation in the social sciences.-1 will present two original social
simulation studies in detail. In the first, computational modeling and simulation are
used to investigate the transmission dynamics of epidemics and to evaluate the
effectiveness of various public health policies and epidemic prevention strategies. A
novel social mirror identity concept is proposed to represent social phenomena such as
individual long-distance movement, daily visits to fixed locations, and multiple
activity locations. The cellular automata concept is also utilized to construct a
small-world social network model that represents human interactions and daily
contacts. To test these concepts, | simulated the 2003 SARS outbreaks that occurred in
Taipei, Singapore, and Toronto. The simulation results, which were highly consistent
with actual epidemic data, corresponded with local outbreak trends and features. The
simulation model was shown to be suitable for investigating public health policies and

epidemic prevention strategies. In the second study | investigated the influence of



local information on social simulations based on a small world model. I introduced a
cellular automata-based variation with added shortcuts as a test platform for
simulating the spread of an epidemic disease, then examined the influences of various
local information factors on the results. It is my hope that these efforts will help future
researchers determine appropriate simulation parameters, clarify operational

procedures, and access meaning from simulations.
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Chapter 1. Introduction

Social scientists primarily use computers in two ways: as work platforms for
programs that facilitate general tasks (e.g., word processing and statistical analysis)
and as gateways to the “information superhighway” that has greatly increased the
speed and volume of scholarly discourse. Until very recently, social scientists have
not taken full advantage of computers, especially as tools for research or data analysis
(Garson, 1994). On the other hand, a small number of social scientists have applied
computational modeling and simulation to study .social issues since the beginning of
the computer revolution. Those who initially published interesting and important
research results include Abelson and Carroll (1965), Coleman (1962), Forrester
(1969), Guetzkow and Bowes (1957), Hermann and Hermann (1967), McPhee (1963),
and Meadows et al. (1972). During the past decade, a different generation of social
scientists has used computational modeling and simulation to explore social issues; its
members include Epstein and Axtell (1996), Garson (1994), Gilbert and Troitzsch
(1999), Hannon and Ruth (1994), Hoover and Perry (1990), Kheir (1988), Leik and
Meeker (1995), and Whicker and Sigelman (1991). Three contributing reasons for this

renewed interest are:

1. Modern computers possess much stronger computational capabilities and



greater reliability at a much lower price. Today’s personal computers (PCs)

possess many times more computational power and memory than

“supercomputers” of decades past, yet are cheap enough for students and

families to purchase.

The combination of advanced technology, operating system interfaces,

software packages, and computer programming languages have made

current computer systems very stable and easy to operate. Early social

scientists who used computational modeling and simulation had to be

well versed in assembly languages to build simulation models, and were

occasionally requited to manually replace PCBs or circuits. Today’s

computer systems and programming tools are no longer considered

cryptic, allowing social scientists with rudimentary programming skills to

apply specific software and development packages to establish models.

Computational modeling and simulation methods and technology are

rapidly evolving—for example, genetic algorithms (GAs) and

small-world networks (SWNs) can now be used to analyze how social

culture evolves and adjusts to various factors. Social scientists are thus

able to make up for the inadequacy of traditional research approaches in

examining social phenomena and processes.

-2



1.1. Models, Computational Modeling, and

Simulation Models

Defining “model” is important for facilitating later discussion. In this dissertation
I will view a model as a representation of a theory—that is, a scientific way to
describe a real-world phenomenon. Models are integral to the development of
theoretical understanding in the sense that they not only fill gaps between theory and
empirical data, but also enhance interactions and influences between the two. Models
allow researchers to utilize empirical data regularities to guide theory development

(induction) and to apply theory t¢ empirical analysis’(deduction).

Three languages are used-in theé §ocial~Sciences to express theories or build
models: natural language, mathematics (including statistics and logic), and
computational modeling and simulation (Ostrom, 1988). Turing (1950) originally
claimed that all formal languages are equivalent (i.e., that natural language, classical
mathematics, and computational modeling are interchangeable), but in the 1950s it
was impossible to predict how computational modeling and simulation would one day
be used to explore social issues. Today, certain social issues are better dealt with using
mathematical tools (e.g., proving theorems), meaning that computational modeling

and simulation can be used to express social science theories. Modeling and



simulations are thus gaining greater acceptance.

Simulation models are models that have been transformed into computer

programs (also called simulation systems). The majority of computational models and

simulations entail five steps: a) developing a theory, b) transforming the theory into a

simulation model, c) validating the simulation model, d) executing the model and

observing its processes and outcomes, and e) regularly refining the simulation model

and theory. In the system that is the focus of this dissertation, Huang, Sun, Hsieh, and

Lin (2004) established the social mirror identity concept to describe long-distance

movement, daily visits to fixed locations,, and. multiple activity locations to simulate

the transmission dynamics of SARS outbreaks at different locations in early 2003. I

will describe how a combination of the social mirror identity concept, cellular

automata, and small world characteristics were used to construct a simulation model

that fully depicts daily contact and human interactions within social networks.



1.2. Why Use Computational Models for Social

Science Simulations?

Social science analytical tools include qualitative case studies, quantitative data
analyses, and mathematical modeling. In all cases, research approaches must be
applied with flexibility in order to accumulate scientific knowledge (King, Keohane,
and Verba 1994). Until recently, it was not considered possible to use a single research
approach to address all social science research problems; instead, social scientists
have had to integrate multiple approachesiaccording to the situation and the collected
data. In section 1.2 I will examine whether .the: combination of computational
modeling and simulation actually constitutes’a hew social science research approach
(Byrne 1997; Conte & Gilbert 1995; Halfpenny 1997; Hanneman & Patrick 1997;
Leik & Meeker 1995), what advantages it offers, and why it is considered “the third

scientific discipline” of the social sciences (Axelrod 1997; Ilgen & Hulin 2000).

Using formal models instead of natural language models to investigate social
issues has several advantages that include a) better definitional and conceptual
precision, b) assumption clarity, ¢) ease of determining internal or logical validity, d)
formal deduction power, and e) reduced ambiguity in formal communication among

researchers. The major constraint of formal models is that their creators often have to



simplify them in order to construct models that are sufficiently easy to control and

analyze; as a result, their models can become too impractical or optimistic. In order to

apply formal models to investigate certain social processes or issues, social scientists

have to make trade-offs between “ease of analysis” and “accuracy of prediction.” In

this dissertation I will assume that both are of equal importance.

In many ways, computational modeling and simulation allows researchers to have

their cake (in terms of ease of analysis) and eat it, too (in terms of prediction

accuracy). These tools allow social scientists to establish simulation models that are

the equivalent of formal theoretical models. Not‘enly are the advantages of formal

models retained in computatiorial models, they also avoid many of the constraints just

mentioned—for instance, sacrificing.ease of analysis for accuracy of prediction or

vice versa (Johnson 1999). However, computational modeling and simulation should

not be blindly applied to all social processes and issues; there are instances where

formal models or other approaches are sufficient for problem representation. Note

also that even though simulation models constructed via computational modeling

convey more complex and complete information on social phenomena and

characteristics, they are still simplifications of complex social issues.



1.3. Advantages of Social Science

Computational Modeling and Simulation

As Hastie (1988) and Taber and Timpone (1994) have noted, there are many
advantages to using computational modeling and simulation to study social processes.
Similar to mathematical modeling and deduction, computational modeling and
simulation demands accuracy and clarity. In theory, both approaches allow models to
deal with inaccuracy, but mathematical models are less flexible when it comes to
dealing with the inaccuracy and randomnessithat constantly occur in the real world. In
contrast, researchers who use computational modeling and simulation approaches can
add random components (i.e., hypothesize several scenarios, embed the scenarios in
the simulation model, and observe their running processes or outcomes) at a low cost
in terms of computing and time resources. Moreover, qualitative concepts that are
difficult to express in a typical mathematical model can be demonstrated using
various data structures and simulation programming techniques. Most concepts and
relations that can be expressed in mathematical models are easily transferred to
simulation models; however, the opposite is not true, since it requires a sharp increase

in the number of required statements.

While I believe that social scientists should utilize computational modeling and



simulation to study social issues, I do not believe that social scientists should only use

computational modeling and simulation approaches to study real world problems

(King et al. 1994). In other words, computational modeling and simulation can also be

used to investigate issues that are counterintuitive but helpful for clarifying facts. In

other cases they can be applied to study operational procedures and social issues in

virtual reality (Epstein & Axtell, 1996)—for instance, conflicts and compromises

between an agent’s public and private interests. Furthermore, social scientists can use

simulation models to test “what-if” questions that cannot be verified in real life.

The final advantage I will .mention. here 1s"that computational modeling and

simulation have strong integrative and deductive capacities (Hastie, 1988). Traditional

research approaches make it difficult-or impossible to a) compile empirical data with

different formats into coordinated data sets or b) use diverse forms of data sets for

inference and deduction. In contrast, computational modeling and simulation possess

strong capacities for integrating and transforming data; combining empirical data

from different sources; and performing simulation and various types of dynamic

analyses in which static equilibrium, system dynamics, and emerging characteristics

can be observed (Holland & Miller, 1991).

Other research approaches can deal with uncertainty or with social issues that are

counterintuitive or involve virtual reality, but they often come with a requirement to

-8-



loosen or simplify assumptions and outcomes; as a result, models can become

enormous, complex, and unwieldy. From another perspective, computational

modeling and simulation use programming skills and data structures for defining

social concepts, relations, and operating procedures, thus allowing for the exploration

of various hypotheses according to running processes and outcomes (Gilbert, 1999;

Johnson, 1999). While traditional mathematical models can decrease deductive

complexity by loosening single assumptions or initial conditions, they cannot handle

complex interactions among multiple components.

In this dissertation 1 will .discuss..two- redsons for applying computational

modeling and simulation to social science problems. First, they combine the precision

associated with quantifying analy$es with the abundance associated with quantitative

case analyses. Second, they are capable of representing social structures and processes

without losing internal logic or accuracy. I will also argue that researchers in such

fields as economics, psychology, sociology, and political science will realize more

benefits from computational modeling and simulation than those working in other

fields (e.g., History, Anthropology. Over time, researchers in all topic areas will

eventually develop computational modeling and simulation skills that meet their

specific requirements (Fiorina, 1975).



1.4. General Stages of Social Science

Computational Modeling and Simulation

In an earlier section I listed the five major steps for completing a social science
research project using computational modeling and simulation. Before introducing
specific methods and validation procedures, I will describe the life cycle of an ideal
research project using this approach. As shown in Figure 1.4.1, the five major steps
can be divided into a series of sub-steps that are connected to each other so that they
form a development cycle. However, actual projects are rarely as simple as the one
shown in the figure; in many cases, development can appear to be a confusing mix of

repetitive, overlooked, and simplified sub-steps.

Theory Development

For many social scientists, social phenomena are best viewed as events or
behaviors that occur with a regularity that can be explained by theory. Existing theory
cannot always explain certain social phenomena or produce sufficient interpretations.
Such a situation will later turn to our intent to apply existent social scientific theories
and novel hypotheses to construct more complete and satisfying explanations. Social
science theories are not generated in isolated, remote states, but require the extensive

understanding of previous theories or models that have been used to address the

-10 -



research topic in question. During the early stages of theory development, modelers

often need to statistically analyze such characteristics as the randomness and

regularity of empirical data and review large bodies of relevant literature.

A conclusion drawn from a social science study might entail one or a

combination of the following: a) a simple theory (possibly already expressed as a

mathematical model) that appears to explain the original observation; b) a reasonable

but underdeveloped general theory that offers a promising explanation that seems too

complex for formal analysis; ¢) several unconnected theoretical snippets (perhaps

expressed as mathematical model$), many .of which find some empirical support but

none of which seem capable jof explaining the observation on its own; d) many

separate quantitative empirical results (perhaps generated by “black box” models),

none of which are capable of explaining the observation; or e¢) multiple qualitative

studies with little attempt made at developing rigorous theory, perhaps because the

underlying processes appear to be too complex for existing theory-building tools.

Computational modeling and simulation is a suitable research approach in all but the

first scenario.

-11 -
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Figure 1.4.1. Computational'modeling and simulation stages.

Model Development

For computational modeling and simulation studies, this stage entails two steps:
establishing a transitional medium model and using the transitional model to
transform theories into simulation models. Transforming theories into simulation
models too soon is likely to cause mistakes in the transformation process that make it
impossible to use simulation techniques to express them. The first step of the model
development stage is to construct a transitional medium model based on the theory

that is established in the preceding stage. A modeler needs to perform a concept

-12 -



inventory of major and corresponding theory variables, assumptions, initial conditions,

and relations in order to list closely related concepts before constructing a complex

simulation model. When performing an inventory, modelers must use qualitative

descriptions for each concept (i.e., loose descriptions to indicate how a concept is

operated) and introduce its quantitative characteristics in as much detail as possible

(e.g., whether the concept is a continuous or discrete variable). Modelers must also

establish interactive scenarios among the internal components of a simulation model

based on the foundational theory. Starting from the black-box model (input and output

variables only), modelers must define all factors, relations, and operating details

between input and output via interactive -Scenarios generated from the concept

inventory. When depicting opetational procedures, modelers should list as many

detailed processes of each component in the simulation model as possible.

Once the bridge between theory and the simulation model is built, the next step is

to choose an appropriate computer programming language (e.g., high-level structured

programming languages such as Java and C++ or the fourth-generation artificial

intelligence languages such as Lisp and Prolog) or modeling and simulation software

tool (e.g., DYNAMO, GPSS, or STELLA). Choices should be based on the needs and

characteristics of the research project in question prior to transforming the theory into

a simulation model. It is very important to determine the necessary methods, skills,

-13 -



and development tools before attempting to build a simulation model that is fully

representative of a theory.

Model Evaluation

The first model evaluation step (also referred to as the verification step) consists

of carefully eliminating coding errors before executing the simulation model so that

no mistakes or misunderstandings occur during the transformation process. The model

verification step is followed by simulation model validation; this process will be

described in detail in the next chapter, but here I will focus on the major issues of

using truth and beauty guidelings for evaluation putposes. Truth can be divided into

internal validity, outcome validity, and-(in many, but not all cases) process validity.

Internal validity determines if the ‘internal logic of a simulation model correctly

expresses the theory or hypotheses upon which it based. Outcome validity measures

the correspondence between outcome data and real-world empirical data. Process

validity uses face validity, assumption tests, and multilevel outcome validation

procedures to evaluate whether the simulation model’s operating procedures are

consistent with those of the theory.

Even after a simulation model passes all of the validation guidelines in the second

step, modelers need to examine the model’s running process. During a simulation,

-14 -



social scientists can explore in depth those problems and phenomena that counter

social intuition but fulfill theoretical regulations. For example, what outcomes are

produced in a simulated world where assumptions and initial conditions differ from

gathered empirical data? For social science researchers, such a hypothetical analysis

can increase the reliability and application of both a theory and a simulation model.

The evaluation and validation procedures mentioned above should be repeated until

the validity of the simulation model is ensured or until it reaches a pre-determined

level of professional standards.

Refinement

The final step entails a discussion of theory and model refinement. As shown in

Figure 1.4.1, theory development, ‘transformation, simulation, understanding, and

refinement occur as parts of an ongoing and ever-changing process, meaning that

model refinement can take place during any sub-step of any stage. If a simulation

model is found to misrepresent a theory during the third stage, modelers may need to

extensively revise or even discard a simulation model, but when a validated

simulation model is found to precisely represent a theory, the two are regarded as

equivalent, with one’s success or failure affecting the other and refinements in one

implying a need to refine the other. However, if a simulation is identified as only a

loose representation of its theoretical foundation, the failure of the simulation model
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might not indicate failure on the part of the theory. Such a situation is unwelcome; it is

instead suggested that relations or similarities between a model and theory should not

be too loose, since it makes it more difficult to ascertain the outcome, process, or

internal validity of the simulation model.

When simulation model outcomes are not consistent with real world data,

modelers must revise their assumptions, flow simulation model, and/or theory or start

all over again. Regardless of the situation, modelers can benefit from the experience

and use the same data. Furthermore, a comparative analysis of simulation model

outcomes and real-world data can produce.ideasfor developing better theories and

simulation models. Ideally, ®ach cyecle ‘will' give social scientists additional

understanding and control over theory and simulation model development so that the

theory is continually enriched and the simulation model made more precise and

efficient.
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1.5. Dissertation Overview

In Chapter 2 I will introduce simulation model validation standards and
evaluation procedures, then discuss various challenges to model validation. In Chapter
3 I will give a brief overview of the transition from the dynamic simulation approach
used for many years in the social sciences to the computational modeling and
simulation approach that makes use of small-world networks (SWNs), scale-free

networks (SFNs), random networks (RNs), and other small-world models.

In Chapter 4 I will present the details of an original research project conducted by
Huang et al. (2004a) to use computational modeling and simulation to examine the
transmission dynamics of disedse epidemics and-to evaluate the effectiveness of

various public health policies and epidemic prevention strategies.

In Chapter 5 T will describe an original research project involving sensitivity
analysis (Huang et al., 2004c). The study was designed to investigate the influence of
local information on social simulations that are performed using a small world model.
A cellular automata variation with added shortcuts was used as a test platform for
simulating the spread of an epidemic and for examining the influences of various
factors. The results of the study are offered as a means of helping researchers

determine appropriate simulation parameters. In Chapter 6 I offer a conclusion and
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suggestions for future research directions.
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Chapter 2. Validating Social Simulation
Models

Validating a simulation model is a critical step that not only improves model
accuracy, but also increases outcome reliability (Lave & March, 1993). As stated in
Chapter 1, since many simulation model types are capable of representing (at least to
a certain degree) a particular social science theory or hypothesis, an effective
validation procedure is required. In this dissertation I will introduce computational
modeling and simulation methods anditechniques for use in the social sciences, but
first I will address an important question: How can a researcher distinguish between
superior and inferior simulation-models?"Ac¢eording to Lave and March (1993), truth
(whether a simulation model can precisely express its target theory or hypothesis) and
beauty (a combination of an aesthetic standard and model practicality) are two useful
guidelines for validating simulation models. In this chapter I will explain how these

guidelines work (Fig. 2.1).
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Figure 2.1. Computational modeling and simulation evaluation stages.
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2.1. Truth

Validating truth is the most important yet most difficult task for any simulation
model. Model evaluation requires the establishment of various baselines for
comparison; examples include comparing outcomes with expert expectations or
comparing multiple outcomes and their effectiveness in competitive models. In this
section I will illustrate various validity dimensions—outcome, process, internal, and
reliability and sensitivity analysis. Outcome validity is used to evaluate consistency
between the outcomes/predictions of asimulation model and real-world data. Process
validity assesses the running process of a‘simulation model and how it matches actual
procedures. Internal validity focuses onhowTasimulation model’s internal logic can
precisely represent its underlying theory or hypothesis. Reliability and sensitivity
analyses examine the robustness of a stochastic simulation model and test the degree

of model sensitivity to various parameters.

Many social simulation model designers believe that process validity is vital to
examining the compatibility of a model’s running process and actual procedures.
There are two exceptions. First, process validity is not suitable for some simulation
models under certain circumstances. For instance, genetic algorithms (GAs) (Holland,

1975), which are based on the Darwinist concept of the “survival of the fittest,” are
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often applied to scheduling, classification, or optimization problems (Goldberg, 1989)
regardless of how well they fit in terms of process validity. A second example is
artificial neural networks (ANNs), which are often used to represent complete
organisms but not individual intelligence systems (Schrodt, 1995). The second
exception is the impossibility of social science simulation models being completely
accurate; it is meaningless and inappropriate to ask a simulation model to perfectly

represent real-world operating procedures.

A single statistical method is never enough for social simulation researchers and
modelers. The best goal is to find the most suitable statistical method in terms of
research needs and simulation model characteristics (e.g., analysis of variance,
analysis of linear or nonlinear regression, tests for means comparisons). As with all
social scientists, social simulation researchers and modelers must be familiar with a

variety of statistical methods and techniques.

Outcome Validity

Almost without exception, simulation model validation methods focus on
whether predicted outcomes correspond to real-world data. While I used the term
prediction above, the term that is commonly used in social simulations is postdiction,

indicating that simulation outcomes generally correspond to things that have already
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happened in the real world rather than in the unknown future. Of course, it is

insufficient to measure simulation model validity simply by comparing outcomes and

real-world data, since models can be very complex and encompass many elements,

parameters, variables, rules, components, and relations. A single predictive result is

not enough to support a claim that some element, component, or simulation model is

unreliable. In many situations, when a prediction fails or an outcome does not fulfill

expectations, a modeler will look for missing procedures, improper control processes,

or mistakes in parameters sets before abandoning a model. To date, there is no clear

and distinctive standard for determining whether or not a prediction is acceptable.

Modelers must therefore compare'any simulation model with its competitors and use

simple statistical tests to determine whether it does indeed produce better results.

Provided that simulation model components remain the same, a complex

simulation model can be taken apart to test the outcome validity of its component

parts at a lower level first, at upper levels second, and as a whole system third. In all

cases, sub-components should be broken down until they cannot be divided into

further sub-components. The goal of any analysis should be to investigate whether

component interactions are correct and whether simulation outcomes correspond to

real-world data. In contrast, interaction and integration tests proceed in a bottom-up

fashion, with sub-components examined individually before being connected with
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other sub-components for further study. Since this process is very detailed, it is

impractical for examining the largest and most complex simulation models.

When conducting a social simulation study, data should be divided into a

minimum of two parts—training and test samples. Training samples help modelers

establish the initial values of elements, parameters, variables, components, rules, and

relations required to create a simulation model. They are also useful for model

training via adjustments made according to data provided by preceding training

samples. Test samples focus on examining correspondence between simulation results

and test samples. At this stage it 1s important t6. prevent high levels of similarity

between training and test samples, since every simulation model should be treated as a

concrete way to represent the tratning samples.: If training samples resemble test

samples, it could interfere with determining simulation outcome validity—a critical

step for any simulation model.

Validity can be determined using a simple statistical test to check the degree of

correspondence between simulation results and test samples. In the absence of a high

degree of correspondence, the simulation model needs to be revised or discarded. The

next step entails a comparison of prediction performances between the simulation

model in question and its competitors. In theory, simulation models that make the cut

are the strongest performers in their field; if the predictive performance of one
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simulation model outweighs all others, there is a very good chance that the simulation
model will pass most outcome validity examinations. In some cases several
simulation models will be equivalent in terms of performance, yet a modeler will
chose one over the others because an important component of the chosen model
produces more precise predictions compared to the others. For this reason, the best
test is a multi-level examination that not only investigates the overall outcomes and
predictive performances of a simulation model as a whole, but also checks the

outcomes and predictive performances of its sub-components.

Process Validity

Process validity measures® the .cortespondence: between a simulation model’s
running processes and the courses‘of action of the social issue being simulated.
Unfortunately, there is no simple method for evaluating the process validity of a
simulation model. In the absence of a direct method, researchers can use an indirect

method that addresses three process validity examination requirements:

It examines face validity. In other words, it addresses the issue of whether the
model is reasonable and acceptable in the minds of experts or scholars who are
familiar with the issue being studied. Face validity is the most commonly applied

means for examining a simulation model. A stricter standard entails an extended
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version of the Turing test (Turing, 1950), which is based on the claim that if

individuals using independent judgment cannot tell the difference between the

operating processes or outcomes of a simulation model and real systems, the

simulation model can be said to exhibit process validity. Sensitivity analysis (to be

discussed in a later section) can also be used to verify face validity by systematically

changing the value of one important parameter and holding the others at a fixed value,

then examining whether or not the simulation model behavior matches the

expectations of an expert or modeler. Of course, such an examination requires that

modelers collect the required data,inputs, behavioral modes, and outputs for certain

conditions. Although such a method requires prior knowledge, there is no need to

have a comprehensive understanding ‘of all behavioral modes and outputs under all

conditions.

It directly examines simulation model hypotheses and uses those that are proven

to be correct to justify the model’s operating processes and degrees of acceptance.

Supposing that certain hypotheses cannot be justified after evaluation and analysis

(since certain simulation models are overly simplified and exaggerated representations

of real world scenarios), modelers must cautiously evaluate the degree to which

inaccurate hypotheses affect behavioral modes and outcomes. Decisions need to be

made as to whether inaccurate hypotheses should be revised or discarded. Again,
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sensitivity analysis is very useful for this function. Modelers can use it to analyze

which elements, variables, parameters, rules, or relations affect behavioral modes and

outcomes. According to causal theory, knowing how many errors an invalid

hypothesis can cause helps to determine how simulation model process validity is

impaired.

It uses outcome validity (especially multi-level) tests to examine the process

validity of a simulation model. Horizontal, vertical, or other classifications (e.g.,

object-oriented, even-driven, or multi-agents) can be used to break down the running

process into several sub-processes, and each sub-process can be further divided into

more detailed sub-processes. Theoretically, a simulation model can be broken down to

the most basic level, with each ‘sub-process_eorresponding to an independent and

indivisible component. Outcome validity tests can then be used to determine whether

or not sub-process outcomes are correct and fulfill expectations. Although such tests

are not completely equivalent to actual examinations of simulation model running

processes, they do increase operating process validity. However, tests that examine

individual components are very costly in terms of computation time and resources,

and require the collection of large real-world samples in order to fulfill test

requirements. Furthermore, even when test sample accuracy requirements are very

demanding, collected samples may contain extra information to the extent that it
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cannot be used to evaluate simulation model sub-processes. In spite of these problems,
such examinations are considered the most effective way to evaluate the process

validity of a simulation model.

Internal Validity, Reliability Analysis, and Sensitivity

Analysis

As mentioned above, social simulation projects require at least five steps: a)
proposing a theory or hypothesis to explain a social phenomenon, b) developing a
formal model of said theory or hypothesis, ¢) using a computer language or modeling
development tool to construct: a |simulation, model or simulation system that
corresponds to the formal model, d) vetrifying and yalidating the simulation model,
and e) executing the simulation model and collecting and analyzing the generated data.
Note that the simulation model/system, theory/hypothesis and formal model are
considered equivalent and interchangeable—in other words, a simulation model or
system should faithfully and reliably represent the theory or hypothesis and formal
model. If not, the simulation model is meaningless. Experience dictates that the more
complex the theory or hypothesis, the greater the likelihood of making mistakes when
establishing a formal or simulation model, which leads to inconsistency among the
three elements. Therefore, it is necessary to examine the internal validity of a

simulation model before examining its outcome and process validity. However, this
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raises an important issue: how to evaluate a simulation model that can fully represent

its corresponding theory/hypothesis and formal model.

The first step in evaluating internal validity is one that every modeler should use

during a simulation model’s development stage: determining if the basic structure of

the model (i.e., elements, variables, parameters, relations, rules, and components) are

equivalent to the theory, hypothesis, and formal model that it intends to represent. To

give an example, cognitive psychologists have traditionally depicted human cognitive

activity as an information processing system consisting of a long-term memory

component and a working memory compenent. Simulating human cognitive activity

requires the application of a data structure or another-method (abstract or practical) to

represent the two memory components; otherwise, one cannot claim that the system

corresponds to cognitive theory. If a modeler claims that he or she has created an

information process system based on cognitive theory, how should we evaluate the

model to support or refute that claim?

There are two ways to solve this problem. First, a modeler can use face validity to

evaluate the simulation model or models and periodically consult with experts or

scholars familiar with such a theory to determine if the model actually captures the

spirit of the theory. Second, a modeler can use existing cases to examine simulation

models and to determine whether or not (under specific conditions) the simulation
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model running process and outcomes fulfill the expectations of an expert or scholar.

Cases used to examine models must be valid, but they do not necessarily have to be

accurate or complete. Furthermore, they may represent a theory or hypothesis in a

very simplified or specialized format.

Applying existing cases to examine simulation models is similar to another

method of examining internal validity: reliability analysis, which focuses on whether

or not outcomes produced by repetitive simulation executions are consistent according

to simple statistical tests. In other words, for simulation models that involve stochastic

uncertainty, model designers mustirun simulation models many times (depending on

the statistical method employed) to examine ottcome consistency. From the

perspective of reliability, the value. of a simulation model with high stochastic

uncertainty should be measured according to whether or not there is a sufficient

number of executions to determine outcome consistency. If a modeler wants to

examine a simulation model that can produce output with probabilistic outcomes, it is

a much easier task: all the modeler needs to do is systematically compare the

outcomes of each execution until certain robust estimate values converge. In order to

prove that their model is stable and reliable, Jones, Radcliff, Taber, and Timpone

(1995) applied every possible set of initial parameters to their simulation model and

performed one million executions per parameter set. This example also serves as an
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example of a clear examination method that is worth noting for future reference: no

matter how many stochastic components a simulation model owns, the model can be

executed repeatedly on a computer until the modelers make an evaluation. Modelers

need to take advantage of their computing tools to perform many executions, revising

or controlling certain components or procedures while holding the others at fixed

values in order to examine how revisions affect a model. In short, reliability analysis

gives social simulation modelers and researchers the ability and tools to understand

whether a vital stochastic component in a simulation model is interactive or additive.

A third means of examining the internal wvalidity of a simulation model is

sensitivity analysis. Convertinig a theory, hypothesis, or formal model into a

simulation model entails deciding the domain of each parameter, the scope of initial

conditions, the sampling technique for stochastic elements, and probability

distributions. During sensitivity analysis, modelers systematically change parameter

values or other component settings (e.g., probability distribution) and examine how

simulation model performance or outcomes are affected. This type of analysis allows

modelers to distinguish between two kinds of parameters: when model performance or

outcomes are influenced by slight changes in a parameter value, this is referred to as a

sensitive parameter. Other simulation models are not influenced, regardless of how

much a parameter value is changed (within a reasonable range).
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As long as the internal validity of a simulation model is assured, modelers can

use sensitivity analysis to examine a simulation model hypothesis. Simulation models

are usually viewed as simplifications of social issues for exploration purposes, in

which hypotheses are proposed and tested. Under such circumstances, sensitivity

analysis can be used to examine how different degrees of simplification affect the

model. If a simulation model’s constraints are loosened but its qualitative analysis

conclusion remains the same or stays consistent, then the hypothesis is plausible; if

not, the hypothesis requires special attention. During the last stage of simulation

model development, sensitivity analysis can serve as a warning mechanism or

guidance procedure. As mentioned earlier ' this chapter, sensitivity analysis is also

suitable for examining outcome and process validity.

-32-



2.2. Beauty

Although some argue that the standards of a “beautiful” simulation model vary
from person to person, we should not ignore aesthetic criteria when evaluating a
simulation model. According to Lave and March (1993), three aesthetic characteristics
need to be acknowledged: simplicity, fertility, and surprise. These characteristics are
not only a matter of personal taste, but also ones that any researcher who uses
computational modeling and simulation to explore social issues should consider

seriously.
Simplicity

Computational modeling generally focuses on simplified understanding through
exploring systems designed to explain the real world. However, simulation models try
to filter the real world and address a pivotal theory by eliminating unnecessary details
according to the Occam’s razor recommendation that “Things should not be
multiplied without good reason” (Starfield, Smith, and Starfield 1990). Applied to

computational modeling and simulations, concise and succinct simulation models

should be accurate and valid.

In physics and other physical sciences, succinctness is regarded as a useful

exploration principle, but some biologists (including Crick, 1988) and social scientists
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view an emphasis on succinctness as misleading. This leads to the question, “Is it
reasonable to apply Occam’s razor to social simulation models?” If a simulation
model is simplified too much, its process or outcomes may become so confusing that
they cannot be properly examined, thus making the associated theory or system
inaccurate or unhelpful in understanding real world phenomena. On the other hand,
some simulation models are too complex to be useful in understanding a system or
theory. The following principle can be inferred from this situation: if a researcher
cannot clearly track the operation or outcomes of a simulation model, the model will
create more problems than it solves. According to Occam’s razor, evaluating the
conciseness of a simulation model requires a determination of whether or not it
precisely expresses all of a“stheory’s important procedures, followed by a
determination of whether any procedures can be removed without affecting proper
model operation. In other words, simplicity has value in terms of both aesthetics and

practicality.

Fertility

Fertility refers to the implications that a simulation model conveys, how many
theories it covers, and how broadly it applies. When two models are used to test the
same theory, the model that generates a greater number of predictions is more highly

valued than the one that generates fewer. The simulation model that generates more
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predictions is said to have a richer framework for theoretical deductions, thus making
it easier to investigate its predictions. Fertility is also related to simplicity in terms of
strictly controlling the number of assumptions during evaluation—that is, a complex
simulation model with more assumptions is only considered fertile if it generates

more predictions or implications.

Furthermore, a complex simulation model is said to generate more in the same
manner that merchandise quality increases with price. A very complex simulation
model that generates only a few predictions is generally viewed with suspicion; on the
other hand, after a simulation medel is simplified’it should be examined in terms of
whether or not it maintains a high level of prediction quality. A complex model that
produces more detailed predictions is preferable to a simple model that generates
predictions that are not as well defined. It is also important to consider how broadly a
model’s predictions or implications can be applied; a model that accounts for a larger
number of scenarios is more valuable than one that explains only a few. Again,

aesthetic standards and practicality merge within the fertility criterion.
Surprise
Another important aspect of fertility is surprise. An effective simulation model

often produces unexpected but conceptually applicable and easily examined
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predictions. A prediction with strong implications may be surprising in situations

where a researcher does not expect an outcome or outcomes to be generated from a

simulation model, yet it produces data that fits well with facts or other evidence. In

other situations, an outcome may contradict a researcher’s intuition or appear to be

estranged from facts or other evidence, but the outcome turns out to be correct based

on a logical deduction or analysis. Precision and surprise often coincides in social

simulations—that is, when a theory can be correctly expressed in a simple simulation

model, precise and surprising predictive results are sometimes generated. Compared

to complex models, simple simulation models are less likely to produce surprising

predictions because their outcomes cannot: be’ directly applied without further

transformation and explanation.”“Theoties that require computational modeling and

simulation are usually more complex, and therefore have greater potential to produce

surprising conclusions that extend our knowledge.
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2.3. Summary

A perfect simulation model should be valid and beautiful, but very few achieve
these ideals. Researchers should instead look for a balance between perfection and
real-life obstacles. Although many model designers are familiar with the examination
procedures and standards discussed in this chapter, they still face the challenge of
properly applying them to test different simulation models with applications, purposes,
and methods. In this chapter I have proposed several principles in terms of timing and
examination methods that other researchers may find useful when applying

computational modeling and simulation techniques to social science issues.

Truth can be divided into intetnal, outcome, and process validity. When
examining internal validity, sensitivity analysis can be used to examine simulation
models, especially more complex models. Outcome validity relies on traditional
quantitative concepts to test simulation models, but the question of how to quantify a
simulation model remains, as well as the question of judging results after
quantification. Based on the existing literature, I have described several examining
tools to help modelers test their simulation models, and suggested other tools (e.g.,
face validity, directly testing hypothesis validity, sensitivity analysis, and multi-level

tests borrowed from outcome validity) for inspecting the process validity of a
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simulation model.

Simplicity has traditionally been the most important criterion for simulation

model beauty. Conciseness is still a desirable goal, but when the theories to be tested

by a simulation model are very complex, modelers need to achieve truth before

pursuing conciseness and guarantee that model operating procedures and outcomes

are both correct and precise. Fertility and surprise are two reasons why social

scientists adopt computational modeling and simulation, since they are more likely

than other formal models to produce surprising implications.
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Chapter 3. Related Computational
Models and Concepts

3.1. Dynamic Simulation

Dynamic simulation is one of the earliest computational modeling and simulation
methods in the social sciences (Huckfeldt et al. 1982). Famous research projects that
applied this method to explore social phenomena include urban systems of Forrester
(1969), the global population of Meadows et al. (1972), and electoral systems of
McPhee (1963). Dynamic simulation is the. procéss of constructing a mathematical
model of some real-world system and analyzing its behaviors and results through
computer-based experiments. In part because of the availability of special simulation
software (e.g., STELLA or GPSS), dynamic simulation remains one of the most

popular and productive computational modeling and simulation methods.

As note, dynamic simulation refers to the construction of and experimentation
with a computational model of a dynamic system. For example, to save time and
money, a network engineer might propose a network model with a novel connection
topology, using computers to construct a virtual network environment model under
certain conditions and simulating their research results. Likewise, an epidemiologist

may examine the transmission dynamics and growth tendency of an infected

-39 -



population through a simulation model. As a result, the network engineer saves time
and money; while the epidemiologist gains experimental control and the ability to

manipulate the theoretical world.

For more detailed introductions to dynamic simulation, we recommend Forrester
(1980). This book includes many modeling techniques and research examples, as well
as introducing DYNAMO and its applications. In addition, please refer to the
researches of Kheir (1988), Hoover and Perry (1990), Whicker and Sigelman (1991),
and Hannon and Ruth (1994). In Garson (1994), there are many introductions and

evaluations regarding the application of dynamic simulation.

An Example of Dynamic Simulation — Compartmental SIR

Models

In epidemiology, the compartmental model (Kermack and McKendrick 1927,
Edeletein-Keshet 1988) is a type of dynamic simulation system applied by
mathematical epidemiologists to estimate the overall trend of epidemic outbreaks.
Until recently it was still a prototype of main epidemiological models. One of the
most famous and typical models is the SIR model proposed by Kermack and
McKendrick (1927) (Fig. 3.1 and equation 3.1). Using the SARS outbreak last year as

an example, many researchers applied the compartmental model to roughly estimate
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the transmission dynamics as well as future development tendencies of SARS, and

approximately explained its spread phenomenon, for example, the super-spreader

events (SSEs) during the outbreaks (Chowell et al. 2003; Donnelly et al. 2003;

Lipsitch et al. 2003; Ng et al. 2003; Riley et al. 2003). However, such a simulation

model only roughly calculates the total amount and the increasing or decreasing

change of infected population at every discrete time step, and applies differential

equations to generate pivotal parameters during the simulation, such as the basic case

reproduction number Ry (Anderson and May 1982), that are supposed to be essential

for public health specialists and epidemiologists.To produce more accurate simulation

results, recently researchers have further divided -each population into different

sub-groups according to age, residency, infectious rate, and various characteristics that

interest epidemiologists (Lipsitch et al. 2003; Ng et al. 2003; Riley et al. 2003).

However, the entire simulation model becomes complicated and enormous as a result,

and can only be applied under specific circumstances. No matter which ways of

categorization and what characteristics there are, however, such simulation models

ignore the fact that social phenomena emerge only when many people contact, interact

with, and change each other. In other words, the typical compartmental model focuses

merely on the characteristics of epidemics themselves (transmission rate, patients’

mortality rate, and recovery rate) without taking into account important social
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characteristics such as population structure, space, heterogeneity, localization, and

interaction. Furthermore, due to the absence of these social characteristics, such

simulation models cannot be applied to explore important issues in public health

policies and disease prevention strategies.

transfer rate from S transfer rate from /

P

Figure 3.1. General SIR model transfer diagram S, susceptible class; I, infective class; R, recovered class
1 n : ‘r

A typical SIR model divic‘ieS ‘a soéiial‘w p(‘)pula"tion into three mixed groups: a
Susceptible group prone to innﬁe““ctior_l‘"ﬂ nbilt notyet infected, an Infectious group of
individuals who have the disease ahd are cap‘ablé of infecting susceptible individuals,
and a Removed group of fully recovered or deceased individuals who cannot infect
others. A set of differential equations such as the one shown in Equation 3.1 is used to
trace the dynamic process of individual movement within groups and to calculate

increases, decreases, and total numbers of individuals for all groups in discrete time

steps.
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For epidemiologists, the basic case reproduction number Ry is an index parameter
with an important reference value, which is the number of people infected by a patient
before she recovers or dies. When Ry is greater than 1, not only does the number of
infected patients keep increasing, but the fransmission rate soars because of the
increase of the newly infected. As a result; an. inevitable outbreak is doomed to
happen. When Ry is equal to 1, the spread of disease is claimed to be stable, i.e. each
patient transmits her virus to one healthy person on average. The value 1 is thus called
the threshold value for plague. To prevent an epidemic from becoming a plague, Ry
has to be controlled such that it is lower than the threshold value. When Ry is smaller
than 1, a patient does not necessarily have a chance to transmit her viruses to another,
and since the recovery rate is higher than the increase of patients, the number of

infected patients will decrease eventually, and ultimately disappear.
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3.2. Simple Social Network Models

To fully utilize computational modeling and simulation to explore interesting
social processes and issues, social scientists need a simple social network that
properly represents interpersonal relationships to be the fundamental structure of a
simulation model. There are two ways to construct a simple social network model: the
first, presented in Figure 3.2.1(a), uses low-dimensional lattices to represent a social
network (Ahmed and Elgazzar 2001; Boccara et al. 1994; Koopman 2004), for
instance, one-dimensional ring-shaped: periedic lattices or two-dimensional toric
periodic lattices. In such a network model, since every node is connected to its closest
nodes while the number and the nodes-connected remain the same, the model is also
called a regular network model. The second, as shown in Figure 3.2.1 (b), uses a
random network (Erdés 1959) to represent a social network. This type of network
model and the compartmental model mentioned earlier are largely equivalent; that is,
many overall characteristics of a network can be represented by statistics. Moreover,
the random network model is a beautiful and effective network that is used to act as a

representative of the complicated, chaotic and unpredictable society.
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Figure 3.2.1. Simple social network models. (a) Regular network model. (b) Random network model

For network models, each community, city, country, or the entire world is a social
network, while each node represents an individual with various attributes that
accounts for her state, such as epidemiological progress, gender, age and
immunization. The edge betweén two modes: reptesents connections between two
individuals. Different epidemics can be.presented by different edges to demonstrate
different interpersonal relationships. For example, when examining AIDS, lines
represent sexual relationships; when examining SARS, they represent individuals’
close contact. In each discrete time step, the state of every node in the network
changes simultaneously. The set of all of the node states represent the overall

transmission of an epidemic.

An Example of Simple Social Network Model — Cellular

Automata

Cellular automata (sometimes called lattice models) is not only a simple social
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network model but also considered to be a subset of dynamic simulations that is

specifically used to model discrete dynamic systems composed of many interacting

units. In cellular automata, every unit (also called lattices or cells, equivalent to nodes

in a network) contains several discrete attributes and a set of very simple rules that

define the change of attributes and the interaction between this unit and its neighbor

units. Modelers usually apply cellular automata to construct the non-linear system of a

simulation model, where the lower-level components require intensive interaction.

One of the examples includes applying cellular automata to simulate the formation,

spread and change of public opinigns. Although' the dynamic of cellular automata is

complex, unpredictable and chaotic, each unit contributing to such phenomenon is

simple and can be precisely described (Cowen and Miller 1990; Haken 1983). As

shown in Figure 3.2.2, cellular automata represent a social network model. A limited

number of discrete attributes is employed to represent its statues. The simplest

discrete attribute contains only binary values, such as “on/off,” “black/white,” or

“infectious/healthy.” At each discrete time step, the new state of each unit is

determined by its state transition function.
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When using cellular automafa, mpde_léfé have to fﬁrst define (1) the dimension of

cellular automata—one- or two—(iihier;‘sional% ‘(2)"t'1‘1‘e length of every dimension, i.e.,
how many units there are in each dimension. Suppose every dimension of
two-dimensional cellular automata contains 100 units, 10,000 units are included in the
cellular automata; (3) the number of attributes of every unit, and the discrete attribute
values included (such as two state values—Ilife and death); (4) a function defining
which units are neighbors; (5) a state transition function for calculating new states
based on the states of neighboring units (as shown in Formulas 3.2.1 and 3.2.2).
Because the conditions above are completely defined by modelers, cellular automata

are considered to be a particularly flexible computational modeling and simulation.
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Social scientists Thomas Cusack and Richard Stoll (1990) have proposed a

fascinating application of the cellular automata approach. They successfully applied

cellular automata to model the realist theory of international politics. The entire

international system (cellular automata) consists of 98 countries (units or lattices, i.e.,

territories). Every country has three characteristics: territory (that is, besides the unit

belonging to the country, how many other-units it-also possesses), power and basic

preferences. Each iteration of the simulation model includes five phases of behavior:

(a) empire (comprised of many countries) faces civil war such that it might collapse

and become a group of smaller countries with smaller territories; (b) faces conflicts

with neighboring countries and occupying the neighboring countries; (c) the conflicts

aggravate, or suddenly disappear because alliances are formed; (d) one or more wars

erupt because of the conflicts; () to respond to the results of wars, the power of

participating countries are adjusted accordingly. From the simulation processes and

results, Cusack and Stoll find that, at a certain level, many unbelievable conditions
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have to exist at the same time to ensure the stability of an international system. In

other words, unless there are strict initial conditions and hypotheses, wars and the

expansion of an empire will appear repeatedly. For readers interested in cellular

automata, please refer to the researches of Farmer et al. (1984), Rietman (1989) and

Gutowitz (1991).

Recently, researchers have applied two-dimensional cellular automata to

investigate the local transmission mechanism and phenomena of epidemics (Ahmed

and Agiza 1998; Ahmed and Elgazzar 2001; Benyoussef et al. 2003; Yacoubi and Jai

2002; Fuentes and Kuperman 1999; Martins.ct al. 2001; Boccara et al. 1993). For

epidemiologists and social scicntists, cellular automata is a concrete regular network

model with social features such®as-population structure, local aggregation, social

space, heterogeneity, and interaction, which are essential to various epidemiological

and communication issues. Therefore, the transmission of epidemics can be observed

easily in such a simulation model. However, such a simple social network model lacks

the important “small-world” social feature that is essential to the study of epidemics,

so that it fails to represent the low degrees of separation among individuals in a real

society (Wang and Chen 2003). Moreover, cellular automata cannot be applied to

effectively investigate public health policies and epidemic prevention strategies that

are closely related to epidemic issues.
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3.3. Small-World Social Network Models

Creating the small-world method and conducting letter delivery experiment,
Milgram (1967) proposed “six degrees of separation” to explain a tricky fact of the
world: in reality, human beings interact frequently, forming one group after another,
but their degrees of separation are surprisingly low—everybody in the world is
separated by only six other people. Not until Watts and Strogatz (1998) proposed the
first small-world network model (Fig. 3.3.1), verifying that it has characteristics of
high clustering and yet low degrees_of separation, did many researchers realize that
topological networks and structures are ubiquitous in the real world. In particular, the
small-world social network deeply influéncesthe development of many social issues
and their consequences (Moore and Newman 2000; Comellas and Sampels 2002;
Newman 2000; Wang and Chen 2003; Watts 1999). From then on, whether a social
simulation model can portray characteristics of high clustering and low degrees of
separation has become an important index when examining social network models.
Since social individuals are characterized by long-distance movements, daily visits to
fixed locations, multiple activity locations and local clustering, the average distance
between any two individuals is shortened. Consequently, the actual geographical

locations and distance become only secondary factors in causing epidemic outbreaks.
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Figure 3.3.1. Small-world social network models

Watt and Strogatz’s model triggered a largémumber of proposals for other models
(Albert and Barabasi 2002; Barabasi and Albett 1999; Barabasi et al. 1999; Erdos and
Renyi 1959; Newman 2000; Newman and Watts 1999) that also exhibit small world
phenomena. As shown in Figure 3.3.2, small world models can be categorized as
small-world networks (SWNs) (Watts and Strogatz 1998; Newman and Watts 1999),
scale-free networks (SFNs) (Albert and Barabasi 2002; Barabasi et al. 1999; Barabdsi
and Albert 1999), and random networks (RNs) (Erdos and Renyi 1959). To generate a
SWN (Fig. 3.3.2(a)), start with an n-dimension regular graph in which each node is
connected to a z quantity of neighbors (usually, z > 2n) (Wang and Chen 2003; Watts
and Strogatz 1998). Each edge of the graphic is then randomly rewired (i.e., one end

of a connection is shifted to a new node chosen at random) with probability p. In a
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variation of the original model proposed by Newman and Watts (Newman and Watts

1999), long-range links (referred to as “shortcuts” in this dissertation) are inserted

between pairs of randomly chosen nodes. This variation exhibits such small world

phenomena as clustering, and is therefore considered very similar to human social

networks.

To generate a SFN (Fig. 3.3.2(b)), start with a small number my of nodes (Albert

and Barabasi 2002; Barabasi et al. 1999; Barabasi and Albert 1999). At each iteration,

a new node is introduced and connected to m < mg preexisting nodes with a

probability that depends on thé vertex.degree.of each node. New nodes are

preferentially attached to existing nodes that have large numbers of connections. This

type of model exhibits small world phenomena and clustering among small numbers

of nodes with very large vertex degrees. These are similar to the hyperlinks used in

the World Wide Web (Albert et al. 1999; Faloutsos et al. 1999; Medina and Matta

2000).

Finally, RNs (Fig. 3.3.2(c)) can be generated by adding a number of links

betweens pairs of randomly chosen nodes (Erdos and Renyi 1959). RNs are capable

of exhibiting small world phenomena if enough links are added, but without (or with

very little) clustering—an unusual situation in the real world.
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Figure 3.3.2. Three small-world models; a, small-world network (SWN); b, scale-free network (SFN); ¢, random
network (RN)

The Small-World Phenomenon

To examine whether a social network model is in effect a small-world network
model, two validation indices—the clustering coefficient and the separation

coefficient—are required. The. clustefing <coefficient evaluates the degree of

connection between two neighboring nodes. As shown in equation 3.3, graph G
represents a social network, v; is é nod¢ in graph G, the vertex degree of node v; is ki,
the edges that actually exist among these ki nodes is E;j (Ej < kj x (ki — 1) / 2), and
clustering coefficient is C;. Thus, the clustering coefficient C(G) of the whole social

network is the average of the clustering coefficients at every node.

2xE;

T ox(k - 1) (3-3

The separation coefficient evaluates the shortest distance between two random
nodes. The separation coefficient of the whole social network, therefore, is the

average of the shortest distances between any two nodes. Another important
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characteristic of the small world is that, when the number of individuals in a society
increases, the average separation coefficient between any two individuals does not

increase proportionally but instead logarithmically (Newman 2000).

The Triadic Closure Concept

The triadic closure concept was first proposed by the mathematician Rapoport
(1957). In reality, human beings are “birds of a feather,” which brings about human
interactions in a social network that far beyond the illustration of the random network
model mentioned earlier. Employees in the same company, classmates in the same
school, and regulars at a Starbucks, for example, have a much bigger chance to know
each other than two random strangers. - These people are acquainted with each other
not because of random probabilities but because of what they have in common. Later,
Rapoport proposed a “triadic closure concept” (Fig. 3.3.3) that is even more
fundamental than the concept of “birds of a feather:” two strangers with a common
friend might know each other after a certain period of time and might even become
friends. Suppose that Dick and the owner of the grocery store next door, Frank, are
buddies, and Dick’s wife Ella is pals with Grace, who owns a fruit shop across the
back yard. In this case, Dick is very likely to be introduced to Grace, while Ella is
likely to be friendly with Frank. This example shows that triadic relations are the

fundamental unit in a group structure, indicating that the progress of a social network
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is not a random network without social rules tied up to the connection among

individuals, but instead a triadic closure relation. If the relation keeps going, e.g.,

Frank knows Grace through Ella, and then other longer closure relations might follow

and ultimately become a tightly connected group. Because there exist tight

connections among human beings, whenever an epidemic outbreaks in a certain area,

the healthy but susceptible locals are most likely to be infected or badly ill, for they

have formed triadic or polygonal closure relations with many infectious patients.

Figure 3.3.3. The triadic closure relationship in social network model
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Chapter 4. A Novel Small-World Model
with Social Mirror Identity Concept
for Epidemic Simulations

The author proposes a novel small-world model that makes use of cellular
automata with the mirror identities of daily-contact social networks to simulate
epidemiological scenarios. We established the mirror identity concept (a miniature
representation of frequently visited places) to acknowledge human long-distance
movement and geographic mobility. Specifically, the model was used to a) simulate
the dynamics of SARS transmission in Singapore, Taipei, and Toronto and b) discuss
the effectiveness of the respective publicthealthipolicies of those cities. We believe the
model can be applied to influenza, enteroviruses, AIDS, and other contagious diseases

according to the various needs of health authorities.
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4.1. Motivation

In anticipation of the next outbreak of Severe Acute Respiratory Syndrome
(SARS) (Peiris et al. 2003), molecular biologists, epidemiologists, sociologists,
private laboratories, and public health agencies are committing considerable amounts
of time and resources to confirming viral structure, developing vaccines and antidotes,
establishing faster inspection methods, and revising public health policies (Anand et
al. 2003; Chowell et al. 2003; Donnelly et al. 2003; Guan et al. 2003; Lipsitch et al.
2003; Marra et al. 2003; Ng et al. 20033 Nishiura et al. 2003; Riley et al. 2003; Rota et
al. 2003). The last topic on this lists—specifically, the efficacy of various public

health policies—is the focus of the presentichapter.

Identifying the best possible suite of public health policies requires detailed
knowledge of SARS transmission dynamics based on the limited amount of data
collected during the 2002-2003 SARS outbreak (Sebastian and Hoffmann 2003;
World Health Organization [WHQO] 2003). This information can be used to establish a
SARS transmission model (Dye and Gay 2003) for balancing the social costs and
resource expenditures required for controlling future outbreaks (WHO 2003). Policies
that were implemented in 2002-2003 included the wearing of masks (by the general

public or by health care/hospital workers), hand washing, quarantining, restrictions on
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hospital visitations, and wide-scale efforts to take the body temperatures of individual

citizens. Unfortunately, improper implementation and inappropriate timing

occasionally produced such secondary impacts as disease concealment, social

discrimination against SARS patients and health care workers, and the panic buying

of masks.

Computational modeling and simulation is increasingly being used to match

public health policies with the characteristics of local populations. In addition to

information on disease transmission, suitable SARS simulation models require

accurate data on how social networks operate ifi. modern societies (Dye and Gay

2003)—for instance, human clustering behavior, the: potential for multiple contacts,

and long-distance movement. The medel that we will describe in this chapter uses a

combination of cellular automata (for the direct simulation of individual interactions)

(Boccara et al. 1994) and a concept that we have developed and named mirror

identities, which allows the model to consider low degrees of separation,

long-distance movement, and daily visits to fixed locations. Combined, these factors

assist in the creation of a realistic SARS simulation platform with small-world

characteristics; we believe the model also has potential utility for simulating other

infectious diseases (e.g., influenza, enteroviruses, and HIV/AIDS) as well as social

issues (e.g., communication problems).
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4.2. The Proposed Model

Our proposed model consists of two layers (Fig. 4.2.1). The upper layer is a
multi-agent system used to simulate real-world heterogeneous cohorts. The lower
layer consists of two-dimensional cellular automata (i.e., two-dimensional toric
periodic lattices) used to demonstrate real-world activity spaces. The mirror identity
concept connects the two layers, resulting in a small-world network model for
analyzing the transmission dynamics of epidemic diseases and social issues.

Susceptible State

" Incubation State
B Infected State

\

e
L [ e

Figure 4.2.1: Cellular automata with mirror identity model (CAMIM).

Cellular Automata with Mirror Identities Model (CAMIM)
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The abstract mirror identity concept is based on human interactions and daily

routines within the confines of a modern society. It specifies an individual’s social

attributes—for instance, long-distance movement, daily visits to fixed locations, and

multiple-activity locations. In our proposed model, individuals are viewed as single

agent entities of an upper-layer multi-agent system; the places that an individual visits

on a regular basis are defined as mirror identities.

We will use Andy, a retired senior citizen who lives alone, as an example. Every

morning at 8:00 a.m. he rides his motor scooter to a suburban nursing home, where he

serves as a volunteer. He helps’a nurse.named.Cindy to provide care for three

residents named Bob, Dick, and Eric. Every evening at 6:00 p.m. he eats at an

inexpensive Japanese restaurant, where he usually  chats with the owner, the chef, and

several other regular customers. After dinner, he goes home, changes clothes, then

goes to a neighborhood tavern to spend some time with his friends Frank and Gerry.

Andy rarely deviates from this routine. According to our proposed model, Andy, Bob,

Cindy, Dick and Eric are upper-layer agents, and Andy’s home, the nursing home, the

Japanese restaurant and the tavern are lower-layer mirror identities. Note that his

motor scooter is considered an extension of his home instead of an activity node, since

he rarely rides with others.

Each agent in the upper layer has a set of attributes describing its epidemiological
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progress and social mobility states (Table 4.2.1 and Fig. 4.2.2). Each mirror identity,
which can freely access agent attributes, has a group of private attributes that
represent its current status and local data (Table 4.2.2). Agents can freely access the
attributes of any mirror identity they are connected to. Furthermore, agents can use
their mirror identities to form clusters with other agents. For example, Andy belongs
to three groups—one each at the nursing home, the tavern, and the Japanese restaurant.
In formal terms, all of an agent’s mirror identities are connected through that agent;
they form a star-shaped topology with the agent at the center and the mirror identities

at the vertices.
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Table 4.2.1: Agent Attributes.

Attribute Type Description Value
D Integer Unique serial number that i.d.entiﬁes virtual society agent; 1P
sequence not considered critical.
When the Populationagen; parameter is set, the configured Susceptible,
Rateroreverimmune determines the rate of agents classified as M Incubation,
(Immune) in the epidemiological progress state E—that is, the Infected,
E Symbol . . .
population of permanently immune agents. All remaining agents Recovered,
are classified as S (Susceptible), meaning “not yet infected but Immune,
prone to infection.” Dead
When the Populationagen; parameter is set, the Mobility status of
every agent is preset as “free”’—that is, these agents have no
restrictions in terms of interacting with the mirror identities of
neighboring agents. When an agent is placed under home Free,
Mobility Symbol  quarantine or hospital isolation, its Mobility status is respectively Quarantined,
changed to Quarantined or Isolated. This means the agent is Isolated
restricted to its rooted mirror identity (e.g., home, hospital, or
dormitory), and the activities of all mirror identities are
temporarily suspended.
Records the number of an agent’s mirror identities; every agent has
Count Integer  a minimum of one and a maximum of M. These numbers are 1~M
normally distributed.
Mi . Data structure for containing mirror identities; each contains at
irrorldentity Set
least one.
In the proposed model, agents are divided according to three age Young
levels: young (1 to 20), prime (21 to 60); and old (61 and higher). N
Age Symbol . . L Prime,
When a simulation system is,initiated, agent ages are randomly set old
based on the Rateygung, Rateprime, @and Rategyy parameters.
Denotes whether an agent is a super-spreader. If yes, set Super to
“true”; if no,’to “false’’s When simulation system is initiated, the true,
Super Boolean ; ) .
Rates,per parameter is uséd fo determine“which agents are false
super-spreaders.
Denotes whether an agentis permanently immune. If yes, set
. Immunitypermanenty t0:“true?rifnogto “false”. When simulation true,
IMMUNItYpermanent  Boolean system is initiateii, the Ratepermanentimimunity parameter is used to false
determine which agents are permanently immune.
Number of days forthe three epidemiological progress states. If an
infected agent has not yet recovered, Day is used to indicate the
Day Integer pumber of infected days; for r.ecovered agents, Day is used to
indicate the number of days since full recovery. If a recovered
agent has temporary antibodies, Day is used to indicate the number
of immune days.
Rate of contact with other agents. For all agents, Ratecontact 1S
Ratecontat Real  ormally distributed. ¢ ¢ 0-1
Denotes whether agent wears a mask. If yes, set WearingMask to
“true”; if no, to “false”. When simulation system is initiated, the
. WearingMask attribute for all agents is preset to “false”. When a true,
WearingMask ~ Boolean - L .
mask wearing policy is enacted (for the general public or false
healthcare workers), the Ratepapicipation parameter is used to
determine which agents wear masks.
MaskType Real Represents average prevention grade of agent masks. The higher 0-1

the number (close to 1), the greater the efficacy.

Quarantinedp,,  Integer

Number of home quarantine days, with a range of 0 to
Policy.Parameter.Dayoyarantined-
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Table 4.2.2: Mirror Identity Attributes.

Attribute Type Description Value
Each agent has one mirror identity whose Root = true; for all other
mirror identities, Root = false. The root mirror identity is used to true,
Root Boolean . . .. . .
mimic special activity locations—e.g., homes, hospitals, and false
dormitories.

When the simulation system is initiated, Suspend = false for all agent
mirror identities, denoting that all mirror identities are free to move
about without any restrictions. Except for its rooted mirror identity,
Suspend = true for all of the mirror identities of an agent in home

Suspend Boolean quarantine or hospital isolation. This represents the idea that the agent
cannot move about until the end of the home quarantine or recovery
period. If the agent dies, Suspend = true for all mirror identities
(including the rooted mirror identity), representing the idea that the
agent can no longer visit any other locations.

true,
false

The first number represents the x-axis coordinate and the second
number the y-axis coordinate for the location of a mirror identity in the

Location  (Integer, Integer) two-dimensional lattice. Each mirror identity is mapped to a single
coordinate location; in other words, each coordinate location contains a
single mirror identity of only one agent.

Represents the coordinate locations of an agent’s eight mirror
identities. Moore or von Neumann neighborhood relationships are used
in most simulation systems. Under the Moore system, each mirror
identity is defined as having eight neighbor agents; under the von
Neumann system the number is four. We adopted the Moore
neighborhood definition for our SARS simulation experiments.

Neighbor Set

The majority of agents have.between, 2 and S.mirror identities, with the number

of mirror identities connected to an-agent representing a normal distribution. In our

proposed model, the more mirrof identities an agent has, the larger the number of

activity nodes and the greater the agent’s influence. Using an epidemic disease as an

example, the greater the number of lattices connected to an agent, the greater the

chances that the agent will become infected and/or transmit the disease to other agents.

Lattices that surround each other in cellular automata represent neighbors—for

example, the mirror identities of Andy, Cindy, Bob, Dick, and Eric are adjacent to

each other, and Andy’s tavern mirror identity is adjacent to Frank and Gerry’s.

In our model, one discrete time step is the equivalent of one day in the real world.

The states of agents and their mirror identities change simultaneously during each
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discrete time step, and each agent’s mirror identity comes into contact with its

surrounding mirror identities. The attributes of the agent, its mirror identity, and

surrounding mirror identities vary according to the interaction rules described in

sections 4.3 and 4.4, simulation and epidemic parameters (Table 4.2.3), public health

policy parameters (Table 4.2.4), input data tables (Table 4.2.5), and various random

values. Accordingly, our combination of cellular automata and mirror identities is

capable of displaying multiple social network characteristics: fixed locations visited

daily, long-distance movement, local clustering, high degrees of clustering, and low

degrees of separation.
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Table 4.2.3: Simulation System and Epidemic Infection Parameters.

Attribute Type Description
Populationagen Set Stores total agent population in the simulation system; maximum capacity is P agents.
P Integer  Total number of agents.
M Integer  Upper limit of an agent’s mirror identities.
H Integer Height of the two-dimensional lattice used in the cellular automata.
W Integer  Width of the two-dimensional lattice used in the cellular automata.
N Integer  Total number of usable lattice H x W in the cellular automata.
Day ncubation Integer  Average number of incubation days.
Day nfectious Integer Average number of infectious days.
Dayrecovered Integer  Average number of recovered days.
Day mmune Integer Temporarily immune to the disease; average number of incubation days.
Ratesyper Real  Percentage of super-spreaders among total population.
Rateyoung Real  Percentage of young (0 to 20 years) agents in total population.
Rateprime Real  Percentage of prime (21 to 60 years) agents in total population.
Rateoyy Real  Percentage of old (60 years and above) agents in total population.
Rateroreverimmunity Real Percentage of permanently immune agents in total population.
Ratentection Real  Average infection rate.
Ratepeain Real  Average death rate.
Table 4.2.4: Public Health Policy Parameters.
Policy Attribute Type Description Value
WearingMaskinGP Rateparicipation Real Pohcy partlc.lpatlon rate. . 0~1
Ratepyevention Real Infectious disease prevention rate. 0~1
WearningMaskInHW Rateparticipation Real Pohc){ partlgpatlon rate. . 0~1
Rateprevention Real Infectious disease prevention rate. 0~1
TemperatureMeasuring Ratepetection Real Fever detection su.C(fess‘rate. 0~1
Rateparticipation Redl Mgeasurement participation rate. 0~1
Class Symbol ~+A- and B-class quarantines. A,B
HomeQuarantine DaYouarantined  Integet-~ Number of home quarantine days. 0~1
Ratepariicipation Real Policy patticipation rate 0~1
RestrictingAccessToHospitals  Ratepaicipation Real Policy participation rate. 0~1
ReducingPublicContact Rateparticipation Real Policy: participation rate. 0~1
Table 4.2.5: Input Data for Simulating SARS Epidemic Curves in Taiwan, Singapore, and Toronto.
Category Attribute Type Description Value
Time Point Date Date when the imported case occurred.
Amount Integer Number of patients. 0~999
Imported Cases Phase Symbol Imported during incubation or illness Incubation,
period Infected
Determine whether the imported true,
Super-spreader Boolean .
patient is a super-spreader. false
. . Related
Public Health Policy Attributes See Table 4
Run Day Integer Number of execution days. 0~99
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4.3. Modeling Epidemiological Features

From Contact to Infection to Symptom

Based on an adjusted contact rate (Agent.Parameter.Ratecontact) and a random
number C, the mirror identities of each agent determines whether or not it will interact
individually with the mirror identities of eight adjacent neighbors. If the C is lower
than the contact rate, the mirror identity of agent A comes into contact with the mirror
identity of neighbor agent B. The contact rate Agent.Parameter.Ratecontact depends on
whether a “reducing public contact™ policy er other parameter settings have been
enacted. Throughout this section, we will express these concepts in pseudo-code; here

the pseudo-code is

for each 4 = Population, . do

for each I = dgemt, St do

if (Agemt , Mprorldentity, Attribute = False) then
for each J £ Agent, Mirrorldentity, -'S*Hr.-.:;a-a- do
¢+ Random{0.1) //c=[0.1]
if (¢ = Adpust{ dgewt | Parameter Rate_ ) then

Infect( 4 gent, Mirrorldentity,, Agertr_ . ., Mirrorldentity )
Assume that agent A has a mirror identity that is adjacent to a mirror identity of
agent B, that agent A has been infected and is contagious, and that agent B is both
susceptible and prone to infection. When the two agents come into contact, a

combination of infection rate (System.Parameter.Ratensection) and a random number n
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determines whether or not agent B is infected by agent A. If the n is lower than the

infection rate, agent B’s epidemiological state becomes N (incubation) and the period

attribute (Agent.Attributepay) becomes 1 (denoting that symptoms have not appeared

and that agent B cannot transmit the disease). The infection rate

System.Parameter.Ratenteciion is determined by such factors as immunity rate—that is,

whether agent A is a super-spreader (CDC 2003b; Sebastian and Hoffmann 2003), in

home quarantine, in hospital isolation, etc.

if (Contact Agers , Mirrorldentity A gent, Mirrorldentity ) then
if (Agent  Afiribute, =1 n Agent, Afiribute. = 5) then
n+—Random(0.1) /re=[0.1]
if (n= Adjust{ System Parameter Rate, . 1) then
Apent, Aifribwe, «— N [/ N means incubation
Agent, Affvibufe,  +1

Agent A’s epidemiological state will automatically change from N to | (Infected)

once it has exceeded the incubation period System.Parameter.Dayncubation-

if { Agent , driribute . = N) then
if (Agent, diribute 7 System P arameier Dy, ) then

W Irockain

Agent | Afiribwte, <1 |/ ] means Infectious

When agent A’s epidemiological state is | and it has exceeded the infectious

period System.Parameter.Dayinfectious, @ combination of the adjusted death rate

(System.Parameter.Ratepean) and a random number d determines whether the agent

enters the D (Death) or R (Recovered) state. Death rates are determined by such

factors as age, whether the agent was placed under home quarantine throughout its

incubation and infective periods, whether it received treatment in hospital isolation,
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and its public activities (if any) during the period of illness.

if ( Agent, Arfribute, = I) then
if (Agent, Auributey, > System Parameter DV v cnvee ) then

d + Random(0.1) /& means death rate

if {d = Adjust{ Sy stem Paraneizr Raz, 1) then
Agent, Affribute, «—D || D means Died
Apene, Attribute, 0

else
Apent  Atiribute, +— R |/ R means Fecoverad
Agent , Affribute,  +1

When agent A’s epidemiological state is R and it has exceeded recovery period

System.Parameter.Daygrecovered, it automatically enters an M (Immune) state.

if ( Agent, Arribute . = R) then
if (Agent, duribue, > System P avameier Day | ) then

o Resmuored

Agent | Atiribute_ « M /| M means Immune
In the M state, the Agent.AttributeForeveriymune parameter is used to determine
whether agent A’s immunity is-permanent or temperary—that is, whether complete

recovery or renewed susceptibility occurs following System.Parameter.Day mmune.

if (Agent, Afribute, = M ~ not Agent Aftribute, ) then

if (Agent, drribue, > System P avameier Day ) then

v e
Apent  Afiribwie, 5 /1 5 means Susceptible
Agent  Affribute, +0

Families and Hospitals

Our proposed model can also be used to represent such concepts as homes,
dormitories, and hospitals. As shown in Table 2, all mirror identities have two private
attributes: root and suspend. For most agents, one mirror identity’s root attribute is

designated as true but the root attributes of its other mirror identities are designated as
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false. In contrast, the suspend attributes of all mirror identities of an agent are
designated as false. To facilitate later discussion, we will assume the presence of a
rooted mirror identity—that is, a mirror identity whose root attribute is always
designated as true. The rooted mirror identity can be used to represent such unique

(e.g., one-of-a-kind) units as homes, dormitories, and hospitals.

for each A= Population,_ do
for each [ e Agenf, Sef, .. .. do
Agent , Mirrorldentity, Attribute, . + False
Agent , Mirrorldentity, Aifri bute,  +— False
7+ Random(l, Count( 4 genr, Sef j)]

o L iy
Agent | Mirrorldentity, , _ Afiribute, _ + Trus
F i W e’ w Ba

If a health authority enforces ashome quarantine of agent A, then the suspend
attributes of all its mirror identities. (workplace, school, bus stations, and so on) are
marked as true; the one exception is agent-A’s‘rooted mirror identity—that is, its home.
The lattice points surrounding agent A’s rooted mirror identity represent the mirror
identities of the agent’s family members or cohabitants. Once the home quarantine is
lifted, the suspend attributes of these mirror identities (except for that of the rooted

mirror identity) return to false, indicating a resumption of normal agent A activities.

if (IsCuarantine(dgent, 1) then
Apene, Attribuge,, . 4 OQuaretined
for each [ e dgenr, Sef,, .. .. 4o
if (Agent , Mirrorlcntity, Afiribute , = False)then
Agent  Mirrorldentity, Atirvibute, . + Thue
if (not I=uarantine(d gent ) then
Agent, Affribwfe,,,, + Free
foreach [ = dgenr, Sef,, .. 45

Agent | Mirrorldentity, Atiribuie, . + False
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We believe another advantage of the model is that it does not require fixed areas

of lattice points representing hospitals. Assume that agent B, with a confirmed

epidemiological state of I, enters isolation voluntarily. Similar to the preceding

example, the suspend attributes of all agent B mirror identities are changed to true,

with the exception of its rooted mirror identity. This represents a scenario where agent

B is receiving treatment in hospital isolation, and where the entire agent’s outside

activities cease. The lattice points surrounding agent B’s rooted mirror identity

represent medical staff, nurses, healthcare workers, and perhaps family members. If

agent B recovers, the suspend attributes of the affected mirror identities return to false,

indicating a resumption of agent B’s normal-activities. If the agent dies, the suspend

attributes of all agent B mirrot: identities (including its root mirror identity) are

permanently changed to false, indicating the permanent cessation of all of the agent’s

activities.

if (Isclated(dgent, ) then
Agent, Aftribute ., + Apgent, Afiribute,,,, +Jsolated
for each [ e Agent, Sef, .. . do
if ( Agent , Mirvorldentity, Aftribute,_ . = Falze) then
Agent | Mirrorlckntity, Atiribute .,  TPue
if (not Isclated(Agent ) n dgent , Afiribute, = R) then
Agent, Afiribute ., + Apgent, Afiribute,,,, —Isolded
for each [ e dgent, Sef, .. . do
Agent | Mirrorldentity, Atiribute, . + False
if (not Isolated{dpent )~ Agent, ditribute, = D) then
Agent, Airibute,, .+ Agens Ateribute,,, —Isolaed
for each [ = Agent, Sef, .. .. do

4 Mi tity,. Aftribut :
dgent , Mirrorldentity, Attribute, . + Trus
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4.4. Modeling Public Health Policies

Mask Policy—General Public vs. Healthcare Workers

A mask-wearing policy for the general public has two parameters: participation
rate and prevention efficiency. Participation rate refers to the percentage of individuals
in the total population who actually wear masks, and prevention efficiency represents
the protection grade of the masks being used. Both parameters are adjustable. When
this policy is enacted, the simulation system uses the participation rate to randomly
assign a number of individuals who abide by. wearing masks. If agent A in a
simulation system has an S status but wears a mask, its infection probability decreases
in accordance with the prevention efficiency parameter. The chances of an |-status
agent A infecting others decreases if the simulated agent wears a mask before and
after the outbreak of symptoms; this potential is also affected by the prevention

efficiency parameter.

if (O0(PolicYy . e o) v ChANER(PONCY g, o) thED

 (Policy g poeniezs - arameter Reate =0 then

for each 4 = Population, . do
n+—Random(0.1) //me[0.1]

i (nZ Police, s in oL arameier Rate,_ . ) then

Agent , Afiribute «— True

Wk
Aoont  Affribut v i
Agent, Aftribute,, -+ Policyg o - Povameter Rate,

glza

Agent , Afiribute «— False

e

The same process used to represent hospitals can also be used to simulate a
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mask-wearing policy. Once the policy is enacted, agents surrounding the rooted mirror
identity of agents in hospital isolation either wear or don’t wear masks based on the
participation rate parameter; the prevention efficiency parameter also determines

whether or not the infection probability of neighboring agents is reduced.

) Change( Palicy 1) then

1'f EOII(PG;?S}‘T@E: Tkl B v Wb g W
when event (lzolated(4 gerr ) do
for each N e dgent Mirorldentity,  Sef, .. do
14— Random(0.1) /me[01]
if (n = Policy Paramerer Rate_____)then

o Frerm g ularlf T
A zonf A Bagf
Agent . Aftributer ., + True

Agent. . Afiribute,, -+ Policye 0o Parameier Rete,

| ——
glza

A zenf A Pagf -
Agent___ . Aftributer . + False

Taking Body Temperature

If a temperature measurerhent policy 1§ enforced, the mirror identities of each
agent will be claimed by its surrounding agents collectively whether it should taken
body temperature before it comes into contact with them. This decision is made based
on a combination of a participation rate parameter and a random number n. An n that
is lower than the participation rate means that neighboring agents are abiding by the
policy of measuring the temperatures of agents that want to come into contact with
them. Results depend on the detection rate parameter—in other words, the higher the
detection rate and the more accurate the thermometers being used, the lower the rate
of spreading the disease.

Reducing Public Contact
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At the end of the 2002-2003 SARS epidemic, there were many reports (e.g.,
Sebastian and Hoffmann 2003; WHO 2003) describing the reduction of public contact
as an effective means of controlling the spread of the disease. After this policy was
enacted in our simulation, the combination of the participation rate parameter and a
random number n determined whether or not the mirror identities of two agents
interacted before coming into physical contact. An n higher than the participation rate
indicated that either an agent had decided against coming into contact with agents
surrounding a particular mirror identity, or simply had no reason for mirror identity

interactions.

A/B Class Home Quarantines

According to an A-class home quarantine policy, if agent C is identified as being
ill after such a policy is enacted, all agents surrounding agent C’s mirror identities
must decide whether they should go into home quarantine based on the participation
rate parameter. As in the hospital isolation example described above, all mirror
identities of neighboring agents that decide to enter home quarantine immediately stop
all activities until the separation period is completed, as determined by a public health
policy parameter. This requirement does not apply to rooted mirror identities, which

are still allowed to come into contact with other agents.
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A B-class home quarantine policy is similar to an A-class policy, but it affects a
slightly larger number of agents than the A-class policy. If one mirror identity of agent
C is adjacent to a particular mirror identity of agent D (e.g., agents C and D are a
cohabiting couple), this represents one degree of separation; if one mirror identity of
agent D is adjacent to a particular mirror identity of agent E (e.g., coworkers in the
same office), this represents two degrees of separation between agents E and C.
Accordingly, when agent C is diagnosed with the disease, both D and E face the risk

of infection, meaning that both D and E must enter home quarantine.

Controlling Hospital Access

During the actual SARS epidemic,-Singaporean and Taiwanese health authorities
imposed strict rules concerning hospital wisitations (Sebastian and Hoffmann 2003);
we simulated this “controlling hospital access” policy using our proposed model. We
assumed that agent A showed symptoms of the disease and was admitted to a hospital
for treatment in isolation. If agent B’s rooted mirror identity is adjacent to agent A’s
rooted mirror identity, it indicates that agent B may be a member the hospital staff, a
nurse, a healthcare worker, or a very close relative; if agent C’s non-rooted mirror
identities are adjacent to agent A’s rooted mirror identity, it indicates that agent C is a
distant relative, friend, classmate, or coworker. If a strict visitation policy is enacted,

agent B is allowed to visit agent A, but agent C is not.

-75 -



4.5. Simulating SARS with CAMIM

After initializing the model and establishing parameters according to SARS
disease information disseminated by the Centers for Disease Control (CDC)(2003a,
2003c, 2003f, 2003h) and World Health Organization (WHQO)(2003) (Table 4.2.5), we
ran simulations of SARS transmission dynamics in various geographic areas and
compared the effectiveness of various public health policies and disease prevention
strategies (Figs. 4.5.1 and 4.5.2). SARS originated in Guangdong, in southern China,
therefore in all other countries it is considered an imported virus. We therefore used
imported cases announced by health authorities ‘as our model’s simulation trigger
(Appendix A). For each simulation we included the number of infectious people who
entered a country, the discrete time step during which they entered, and whether or not
they were exposed or infected as they entered a country. We triggered various public
health policies according to the actual announcements of local health authorities, and
adjusted our simulation environment, epidemic, and public health policy parameters
according to actual disease information presented by the CDC (2003b, 2003d, 2003e,
2003g) and Sebastian and Hoffmann (2003). In other words, our model makes use of
actual epidemic parameter values from the CDC, WHO, and the health authorities of

affected countries, thus avoiding the use of derived or estimated data.
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Figure 4.5.1: Simulation framework. Data on reported cases came from the World Health Organization (WHO) and
health authorities in Singapore, Taiwan, and Toronto. Input data was distributed into three categories: epidemic
parameters (e.g., average incubation period, infection rate] distribution among age groups, mortality); imported

cases (e.g., time point, amount, imported dur1ng incubation or 111f1ess period); and public health policies, activated
according to data from individual nations’(€.g., numberof quarantlne days, efforts to take body temperatures,
restricting access to hospitals). Slmulatloh output mcﬂuéieg cellular automata states and various statistical charts.
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Figure 4.5.2: Simulation platform for contagious infection.
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Singapore SARS Outbreak

According to the comparison of actual and simulated SARS cases in Singapore
shown in Figure 4.5.3, the simulated curve has a very close fit with data published by
the city-state’s health authority for the two outbreaks that occurred between February
25 and May 5 of 2003 (CDC 2003b; Sebastian and Hoffmann 2003; WHO 2003). The
first outbreak was attributed to imported cases, and emergency public health policies
were not activated. The second was attributed to the compound effects of secondary
infections, and several emergency policies were put into effect on March 24 (e.g., a
ban on visits to patients in hospitals or under.homie quarantine). The number of new
cases dropped dramatically at the beginning of June; and soon afterwards the World

Health Organization (WHO) annotinced that the disease was under control.
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Figure 4.5.3: A Comparison of actual and simulatedjepidemic results for the SARS outbreak in Singapore. Blue
bars represent actual reported cases, red linérepresents an-average of 20 simulation results, and black dots
represent 20 simulation results.

Taipei SARS Outbreak

Our simulation of the Taipei ‘situationyincluded several public health policies
enforced by that city’s government, including several grades of home quarantine and a
mask-wearing requirement for all bus and train travelers (CDC 2003d; CDC 2003g;
Sebastian and Hoffmann 2003; WHO 2003). As shown in Figure 4.5.4, the simulated
results have a close fit with the epidemic curve of probable cases published by the
Taiwanese health authority on September 28, 2003—that is, a major spike followed
by several smaller outbreaks. We believe the heavier concentration in the Taipei curve
(compared to Singapore’s) is due to several different factors, including late case

discoveries, delays in seeking treatment, illness cover-ups, public interactions, and the
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large number of cases imported by travelers returning from Hong Kong. In Singapore,

all imported cases were reported prior to the first outbreak, and the second wave

resulted from compound infections. In Taiwan, the reported s-curve is more

representative of a typical infection pattern.

40
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_ Average Simulated
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m Simulated Cases

0
@
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310 3124 421 5/19 6/2 6/16
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Figure 4.5.4: A comparison of actual and simulated epidemic results for the SARS outbreak in Taipei.

Toronto SARS Outbreak

In Toronto, the SARS scenario consisted of two major waves with almost no new

cases in between (Fig. 4.5.5) (CDC 2003e; Sebastian and Hoffmann 2003; WHO

2003). After a re-examination of the data in August of 2003, the Canadian authorities

acknowledged several additional cases during the lull period. According to our

simulation, the second wave would not have been as severe if strong public health
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policies had been enforced for a longer period following the first wave. In our

simulation, epidemic control measures—especially restricted hospital access and

reduced public contact with infected persons—were relaxed after the first wave

subsided. This resulted in a second spike occurring within a few days of the actual

spike that was reported by Toronto health authorities. Our results matched

Kamps-Hoffmann’s (Sebastian and Hoffmann 2003) conclusion that the Toronto

government lifted its control measures too quickly. Because of increased contact

between patients and visitors and relaxed rules on the wearing of masks or respirators

by health care workers, Toronto suffered a second.nosocomial transmission period.

10

Cases

||| ||III II | TN
4/6 420 o

4 aM18 6M 615

2023 39 323
Time (day)

Figure 4.5.5: A comparison of actual and simulated epidemic results for the SARS outbreak in Toronto. We
assumed that the second outbreak occurred because preventive policies were relaxed too soon following the first
outbreak.
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From the combined results of these simulations, we suggest that our proposed
model is a useful tool for purposes of cross-checking hypothesized findings and for

gaining insight into how infectious disease epidemics develop.

Home Quarantines

In addition to the above simulations, we tested our model using the home
quarantine policy. After releasing details of the global SARS outbreak on March 12,
2003, WHO officials suggested that home quarantine periods should be at least twice
as long as the then-average 4-6 day incubation period in order to suppress the spread
of the disease (CDC 2003a;: CDCr 2003g; WHO 2003). Consequently, the
governments of Singapore, Taiwan, 'and Canada established and enforced 10-day
quarantine policies during the epidemic; and for a short period the Taiwanese
government enforced a 14-day policy. According to our simulation results, a minimum
10-day quarantine period was required for suppressing the number of new cases—the
same time period recommended by WHO (Fig. 4.5.6). We observed that the SARS
epidemic curve slowed down considerably and that the disease became endemic when
the quarantine period was a minimum 10 days, otherwise it was impossible to control

the disease.
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Figure 4.5.6: Results from a simulation based gn: various home quarantine policies. The time period for the
simulation was 250 days, with a default incubation period of 5'days. The results indicate that different home
quarantine restriction levels exerted differentiimpacts onsthe; SARS epidemic, and that a home quarantine policy by

itself was insufficient! ﬂli_'ri suppressing the epidemic.
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4.6. Analyzing Public Health Policies

Taking Body Temperature

The Singaporean and Taiwanese governments both implemented temperature
measurement policies during the epidemic, going so far as to launch national
campaigns that included installing temperature-monitoring equipment and setting up
manual temperature measurement stations at various government buildings, clinics,
and public transportation stations (Sebastian and Hoffmann 2003; WHO 2003).
According to our simulation results; when such policies are both comprehensive and
compulsory, they reduce the number of feverish individuals entering public places.
However, they are difficult to-execute; implementation methods tend to vary,
oversights are common, and an unknown number of individuals manage to evade

having their temperatures taken.

The results from our simulation suggest that a participation rate of between 80
and 90 percent is required for this public health policy to have a positive effect in
controlling a SARS epidemic (Fig. 4.6.1). At a rate of 65 percent or lower, the policy
has little effect. In addition, the policy incurs significant social costs—providing
inexpensive thermometers, setting up stations for their distribution, setting up

temperature screening stations, and arranging for manual temperature measurements
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at various government buildings, medical clinics, and public transportation stations.
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Figure 4.6.1: Results from a simulation focused on temperature measuring policy at different participation levels.
We used the 8 imported case reported in Singapore to trigger the simulation. In each 66-day simulation run, the
policy was activated on day 24; the:goal wasito compare impacts at different participation rates.

Wearing Masks with Different Protection Levels—General

Public vs. Healthcare Workers

The governments of Taiwan and Hong Kong made great efforts to promote
general mask-wearing policies, which led to hoarding and panic buying (Sebastian
and Hoffmann 2003; WHO 2003). Masks are categorized according to
grade—ordinary, surgical, N95 respirator masks, etc. In Taiwan, a serious shortage of
professional masks for medical staff occurred following a mad rush by the general
population to purchase masks regardless of grade; this triggered a debate on the

necessity of wearing N95 respirator masks outside of hospitals and clinics.
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According to the results presented in Figure 4.6.2, ordinary and surgical masks

can assist in controlling an epidemic outbreak as long as wearing them becomes a

strong habit for the desired time period. At a prevention efficiency of 65 percent or

more (that is, the mask covers the mouth and nose), epidemics can be controlled but

not eliminated. When wearing ordinary masks, medical staff members have higher

infection rates (Figs. 4.6.2 and 4.6.3); these personnel clearly benefit from wearing

NO95 and other high-resistance masks in hospitals and other medical centers. From our

simulation, we suggest that the general public does not require high-resistance masks,

and that higher grade masks should be reserved for use by medical staff and

healthcare workers.
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Figure 4.6.2: Results from a simulation focused on thelimpact.of mask-wearing by the general public, comparing
differeht mask protection levels.
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Figure 4.6.3: Results from a simulation focused on the impact of mask-wearing by healthcare workers in
healthcare facilities, comparing different mask protection levels.
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4.7. Assessing Public Health Suites

Different public health policies have different social costs. Home quarantining is
highly effective, but it requires considerable amounts of labor and material resources
compared to temperature measurement and mask-wearing policies. We ran
simulations of various prevention strategies in an attempt to find an optimal
combination of public health policies in terms of efficacy and cost, and found that a
combination of mask-wearing by the general public and reducing contact in public
places was the best combination for suppressing the spread of SARS (Fig. 4.7). Some
costs are involved in mask purchases, but:few costs are associated with limited public
contact. In addition, mask wearing addresses’ an epidemic at its source—disease

transmission.

The combined strategies of temperature measurements, restricted hospital
visitations, and mask-wearing by healthcare workers should be considered a remedial
reaction to a SARS outbreak. This strategy suite is ineffective in stopping patients in
the incubation stage or patients suffering from minor symptoms from spreading the
disease to others. In addition to its numerous loopholes, this suite also requires
substantial amounts of labor and material resources. The combination of home

quarantines and reducing contact in public places also has high social costs, yet the

-90 -



disease can still be transmitted if strict isolation is not observed for the time periods
discussed in an earlier section. Numerous instances of intra-family infections were
reported during the 2002-2003 SARS outbreaks—evidence that the combination of

these prevention strategies is ineffective in controlling this kind of epidemic.

16 -
Public Heath Strategies
A-class home
quarantine for 10
days and reduced I
public contact
12 -

wide-scale taking of
body temperatures,
restricting hospital
8 - visitations, and
mask-wearing by
healthcare workers
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3/2 3/9 316  3/23 3130 46 413 420 427 54
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Figure 4.7: A Comparison of various public health policy suites. We used the 8 imported cases reported in
Singapore to trigger the simulation. Policy suites went into effect on day 24 of the 66-day simulation. Suite 1
(cyan): A-class home quarantine for 10 days and reduced public contact; suite 2 (red): wide-scale taking of body
temperatures and restricting hospital visitations; suite 3 (green): wide-scale taking of body temperatures, restricting
hospital visitations, and mask-wearing by healthcare workers; suite 4 (pink): public mask-wearing and reduced
public contact.
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Chapter 5. Influence of Local
Information on Social Simulations in
Small-World Network Models

As part of Watts and Strogatz’s “small world model” of disordered networks,
local information mechanisms such as landscape properties are used to approximate
real-world conditions in social simulations. The author investigated the influence of
local information on social simulations based on the small world model, using a
cellular automata variation with addedsshortcuts as a test platform for simulating the
spread of an epidemic disease or cultural 'values/ideas. Our results will help

researchers determine appropriate parameters for future simulations.
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5.1. Motivation

“Small world” models are commonly used to study the structures of social
networks—groups of individuals who exhibit interaction or relationship patterns
(Albert and Barabasi 2002; Milgram 1967; Barabasi et al. 1999; Barabasi and Albert
1999; Erdos and Renyi 1959; Watts and Strogatz 1998). Newman (2000) notes that
small world models have special topological properties found in real-world human
societies, including strong local clusters and small average distances between node
pairs. They are therefore popular among treseatchers who construct social simulations
of virtual societies, communication problems (especially epidemics), and the spread
of cultural beliefs and influences—all ‘of Which are affected by transmission routes
(Comellas et al. 2000; Keeling 1999; Moore and Newman 2000; Newman 2000;
Newman 2002; Tsimring and Huerta 2001; Watts 1999; Zanette 2003; Zekri and Clerc

2001).

Factors that affect communication problem simulation results include network
structure, divergence between individuals, and information-transmitting medium
(Comellas 2000; Watts 1999). The degree of mitigation is tied to the type and amount
of local information found on nodes and edges. Communication network structure

(vertex degree information) is determined by the number of individual friendships.
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Divergence (attribute information) is expressed as individual resistance to certain

diseases or cultural influences. The medium (weight information) expresses

transmission effectiveness. By treating these factors as local information, mechanisms

can be designed for choosing the most appropriate information for social simulations.

Here we will focus on the influences of node-related local information, vertex

degree, and attributes on simulating communication problems using a small world

model. Building on previous research efforts involving epidemics that emphasize the

influence of social network structure and divergence between individuals, we will

analyze the sensitivity of those® factors,.as.well as vertex degree and attribute

information. Our primary goal is to determine whichitype of local information exerts

the greatest influence, thus requiring greater care when establishing parameters.
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5.2. Adjustable Small-World Network Model

In the present study we will use Newman and Watts’ 1999 SWN model to
construct what we believe is a more effective method for generating virtual social
networks. Our proposed method uses vertex degree information for all nodes to
control network connections in the form of shortcuts, in such a manner that produces
virtual social networks that meet specific simulation or research requirements. We
believe our model is more practical that others because it allows for adjustments in
network structure to reflect more activie:oticonservative populations in certain regions.
In other words, it produces virtual social networks that are varied in terms of

interaction targets.

The SWN model on which we built our modification (Newman and Watts 1999)
is itself a variation of Watts and Strogatz’s (1998) original SWN model. In the original,
a SWN starts with an n-dimensional regular graph in which each node is connected to
a z number of its nearest nodes (Fig. 5.2.1(a)). There exists a probability p that each
edge in the graph will be rewired, with one edge end being randomly selected and

randomly reconnected to a new node (Fig. 5.2.1(b)).
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Figure 5.2.1: (a) One-dimensional regular graph with each node connected to its four adjacent nodes. (b) Watts and
Strogatz’s SWN model, with four rewired edges. (c) Newman and Watts’ improved SWN model with five added
shortcuts.

As shown in Figure 5.2.2, under certain adverse circumstances Watts and
Strogatz’s construction method can cause breaks in a graph (Newman 2000; Newman
and Watts 1999; Wang and Chen 2003)7 Newman and Watts introduced a construction
method that adds shortcuts instead of rev?liring edges (Fig. 5.2.1(c)). According to the
new method, two previously unconnected npdes are randomly selected and linked
using a newly added edge, with users determining the number of new edges to be
added. Newman and Watts’ SWN model therefore avoids the problem of graph
breakage while preserving the positive characteristic of connecting each node in the
n-dimensional regular graph with 2n neighboring nodes (Wang and Chen 2003).
However, since there are equal probabilities of each node being chosen while
shortcuts are being added, the vertex degree of each node will resemble a normal
distribution, therefore failing to meet the needs of users wanting to construct SWN

models that utilize network structures with different distribution methods.
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Figure 5.2.2: An example of a broken graph in Watts and Strogatz’s SWN model.

In response to the restrictions of Newman and Watts> SWN model, we propose
using a different construction method to change the selection process for each shortcut.
As shown in Figure 5.2.3, a user must establish the weighted vertex degree d(v;) for
each node Vv; in the n-dimensional regular graph before constructing a SWN model.
This d(vi) value must be a real number.greater than 0. Our calculations for the
probability p(vi) of node v; being selected as one of the shortcut ends when a new

shortcut is being added are shown in Equation 5.2.

_dw)
|O(vi)——Z 4, (G.2)

VjeV(G)
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Individual 1

The probability of individual 1 to be chosen:

3
Vi) = =0.0625
p() 3+46+1+....+4+6+5

Figure 5.2.3: An example of calculating the probability of a node being selected.

According to our construction method,-the“higher a node’s weighted vertex

degree, the higher the probability it will be selected-and vice versa. When all nodes

have the same weighted vertex degree, the method is identical to the SWN model

construction method originally proposed by Newman and Watts. The construction

algorithm for our SWN model consists of

Step 1: for all Individuals v; in Population do
Connect v; to z nearest neighbor
Assign vertex degree ratio information d(v;) to v;

next
Step 2: for loop 1 to shortcut number do
label Generate shortcut:
Individual v, « Choose Individual by Probability p(vy)
Individual v, « Choose Individual by Probability p(v)
if (isLinked(v,, Vp)) then
goto label Generate shortcut
end if

next
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5.3. Communication Problem Modeling

The most basic and common communication problem model consists of a
transmitter, receiver, and communication channel (Comellas 2000; Watts 1999) (Fig.
5.3.1). Using a disease epidemic as an example, diseased patients are the transmitters;
newly infected individuals are the receivers; and skin contact, insects, air and water,
etc. are the communication channels. A common example used by sociologists
involves filmmaking, with directors as transmitters, actors and actresses the
communication channels, and audiences the receivers. Directors disseminate their

cultural beliefs and concepts to the public-via repeated screenings.

individual

interaction

receiver *

sender

channel

Figure 5.3.1: Communication problem model.

When designing our proposed model, we took into consideration the effects of

such communication issues as network structure, differences among individuals, and
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media, and purposefully created a system in which individuals express a range of

behavior patterns in response to various communication issues. For instance, we

limited the distribution of rumors spread by word-of-mouth to small numbers of

friends and neighbors within a specific time frame, but acknowledged the ability for a

rumor to be spread to a wide number of recipients in a short period of time via email,

television, radio, etc.

We used a simple SWN model as our basic social network framework because of

its ability to reflect real-world interpersonal relationships. We also applied the state

transfer concept of SIR models to simulate behavioral and transformative results from

interactions among individuals=—that'is, when a susceptible individual interacts with

an infectious individual, a certain"probability exists that the status of the former will

change from S to |l—a probability that we refer to as Rateec. Eventually the

probability exists of all infectious individuals contracting the disease and being

isolated from all other individuals in a society—that is, their status changes to R at a

probability rate we refer to as Rateremove. In a typical SIR model, individuals in the R

state are considered either dead or recovered; recovered individuals produce

antibodies that prevent them from passing on the disease to S individuals.

SIR models take on new definitions in light of epidemic cultures, rumors

disseminated by word-of-mouth, and other communication issues. As shown in Figure
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5.3.2, the susceptible state represents an openness and willingness to accept new

concepts; the infectious state represents the acceptance of a specific concept and a

willingness to pass it on to other individuals; and the removed state represents a loss

of interest in the originally accepted concept, meaning that R individuals will not be

affected by the spreading behavior of other individuals nor actively spread the

disease/concept in question to other individuals. However, SIR models entail a high

possibility that an R individual will transform into an S individual. Using fashion as

an example, someone with no particular liking for hip-hop pants will start wearing

them due to peer pressure, then encourage others.to wear them. After a certain period

of time, the individual loses interest, stops wearing hip-hop pants, and doesn’t notice

when others keep wearing them. As more time passes, the individual has neither a

strong like nor dislike of the fashion. We labeled the probability of change from R to S

as a reset rate Ratereget.

Furthermore, we address the fact that SIR models are generally incapable of

considering influences resulting from “differences between individuals.” In our

proposed model, whenever susceptible individuals interact with infectious individuals,

the infection rate is multiplied by attribute information (i.e., the individual’s resistance)

and weight information for the communication media to determine the probability of a

change in status from S to I.
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Rate

Remove

Figure 5.3.2: SIR state transfer diagram showing a repetitive cycle.

A computational simulation flowchart for our proposed model is shown in Figure

5.3.3. First, a SWN model is built using the construction method described in section

3 prior to setting the relevant parameters and attributes of the individuals involved in a

problem. During simulation, SWN-'individuals/nodes take turns interacting with

neighbors for specified time intervals. The number of interactions between any node

and its neighbors can be fixed or variable, with the number of interactions randomly

determined. Individual interactions do not result in immediate influences;

simultaneous state changes only occur when all individuals in a SWN complete their

interactions. Accordingly, interaction sequences will not influence interaction

processes or results.

The following pseudo-codes were used in our communication problem simulation

model.

-102 -



for loop 1 to Time Step Limit do
for all Individual 1; in Population do
for loop 1 to Interaction Limit do
Individual lggee < Choose a Neighbor of 1; by Random
selection
SIR(I i» Itarget)

next
next
for all Individual 1; in Population do
if I;_NowState = | then
if random value r < Ratégemne then
I; .NextState « R
end if
end if
if I;,.NowState = R then
if random value r < Rategeser then
I; .NextState « S
end if
end if
I; .NowState « I;.NextState

next
next

procedure SIR (Individual 1., Individual 1,) is
if I,.NowState = | and_dy.NowState = S then
if random value ,r < Rate | fect':x lp-Resist then
I,-NextState « 1
end if
end if
if I,.NowState = S and l,-NowState = 1 then
if random value r < -Rat€jirect x la.-Resist then
I..NextState « 'l
end if
end if

return
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Figure 5.3.3: Simulation flowchart of the communication problem model.
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5.4. Local Information Mechanisms

“Local information” refers to information that distinguishes certain individuals or
channels from others. For example, everyone has two parents, therefore this number is
considered global information. But there is considerable variation in numbers of
brothers and sisters, making them a type of local information. Two primary local
information categories are node-related (vertex degree and attribute) and edge-related
(direction and weight). Vertex degree information represents the tendency of an
individual to make friends; extrovertsthave:higher vertex degrees than introverts.
Attribute information, which describes imdividual resistance to disease, is used to
express divergence. Direction -refers ‘to " channel direction, categorized as either
uni-directional (e.g., television, radio) or bi-directional (e.g., e-mail, telephones).
Weight information represents channel effect—for instance, face-to-face

communication is viewed as having greater weight than e-mail exchanges.

The most commonly used mechanism for setting local information entails random
numbers that are either normally or uniformly distributed. A second mechanism
entails organizing local information according to a pre-designed pattern—for example,
putting all heterogeneous individuals in one location versus distributing them

throughout an environment. These mechanisms are applied in a manner that allows a
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virtual society to approximate the real world. Our goal was to observe and identify the

effects of applying local information mechanisms to node-related information.
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5.5. Experiments of Sensitivity Analysis

We used SWN models (cellular automata with shortcuts) as our simulation
platform for our experiments. As shown in Figure 5.5.1(a), all individuals in a typical
cellular automaton have the same fixed number of neighbors, and therefore the
cellular automaton is viewed as a two-dimensional toric periodic regular graph. As
shown in Figure 5.5.1(b), if we use the method described in section 3 to select two
nodes on a two-dimensional toric periodic regular graph and add one shortcut, the
resulting automaton will meet SWN_model requirements by having two small-world

characteristics: a high degree of'clustering and low degree of separation.

(a)

.———T——.—.i—.——l

—1
|
|
= =1
|
| l I

.___I___J.___l

Figure 5.5.1: (a) Each individual in cellular automata has four neighbors. (b) Each individual can have 0 to n
connecting shortcuts to other randomly selected individuals.

For our experiments, we used a 100 x 100 two-dimensional cellular automaton

containing many shortcuts, resulting in a virtual social network consisting of 10,000

individuals (Fig. 5.5.2). This cellular automaton is capable of using a von Neumann or
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Moore neighborhood; since von Neumann has been the neighborhood of choice for

most researchers working with SWN models, we used it in our experiments. This

means that all individuals are connected to and interact with only four surrounding

neighbors plus long-distance friends connected by shortcuts.

Each Individual has

4-nearest-neighbors Width 100

average 17 shortcuts

Height 100

Total 10,000 Individuals

Figure 5.5.2: Test platform schematic diagram.

We were required to determine the appropriate number of shortcuts to add to our

model. To maintain similarity to the real world, we used two arguments: a) a degree of

separation of approximately 6 for a world population of six billion, and b) logarithmic
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growth between the number of SWN nodes and the average degree of separation; for a
virtual social network of 10,000 individuals the average degree of separation is
approximately 2.45. On average, one individual in a network of that size has 17
shortcut connections to other individuals, plus four connections with adjacent

neighbors—21 in all.

Experiment 1: Vertex Degrees

Our first experiment was aimed at identifying the influences of network structure
on a simulation. Differences in social networks depend on the social atmospheres in
which they are formed. For instance, individuals in open societies will likely have
more friends than individuals“in more-‘conservative traditional societies. Another
important factor is the mix of extroverted, introverted, and in-between individuals.
Sociologists are particularly interested in studying the effects of these and other

factors.

We set the weighted vertex degree of each individual to meet the experimental
requirement of developing different social network structures, and conducted our
experiments with one of three social network distribution assumptions common to
simulations. First, every individual’s weighted vertex degree is identical, reflecting an

average number of friends. Second, there is a uniform distribution of individual
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weighted vertex degrees, reflecting a society of 1/3 extroverts, 1/3 introverts, and 1/3

neither. Third, there is a normal distribution of the individual weighted vertex degrees,

reflecting a population in which the majority of individuals are neither extroverted not

introverted, and where extreme extroverts and introverts represent small minorities.

For the first experiment, we set the weighted vertex degree for all individuals in

the first assumption group at 1. For the second group, we used a randomly selected

integer between 3 and 6 from the random sequence of a uniform distribution to be

used as an individual’s weighted vertex degree. Each value had a 25% probability of

being selected, with extroverts having twice.the opportunities of introverts for making

new friends. For the third group, an integer between: 1 and 9 was randomly selected

from a normal distribution (M ="5,.SD = 1).and used as an individual’s weighted

vertex degree. According to the principle of normal distribution, for most individuals

the weighted vertex degree was 4, 5 or 6, with very few weighted vertex degrees of 1

or 9.

Experimental results are shown in Figures 5.5.3 and 5.5.5; their respective

cumulative sums based on time sequences are shown in Figures 5.5.4 and 5.5.6. With

the exception of the maximum point for the first peak in the third epidemic curve in

Figures 5.5.3 and 5.5.5, the rise and fall time points are very consistent. The

cumulative sum curves for the three social network structures almost overlap in
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Figures 5.5.4 and 5.5.6, reflecting the consistency of movement and fluctuation in the

three epidemic curves shown in Figures 5.5.3 and 5.5.5.

In brief, the seemingly random dynamic process did not affect the overall

development trend. We therefore conclude that adding the same number of shortcuts

to the three social networks used in this experiment did not exert any influence on the

movement and fluctuation of the entire epidemic curve, despite differences in the

regional social network structure and a slight change in the total population at the

peak of the epidemic breakout. Accordingly, it appears to be unnecessary to exert too

much effort setting and adjusting: fine network structures when putting such cases

through additional computational simulations. Instéad, one can focus on finding

appropriate global information—for instance, the number of adjacent individuals to

establish connections with or the number of shortcuts to add.
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Figure 5.5.3: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with thtée neighboring individuals per time step. Each time grid shows
the resulting number of I (infectious state) individual§.produced by our proposed model.
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Figure 5.5.4: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows
the accumulated number of I (infectious state) individuals produced by our proposed model.
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Figure 5.5.5: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with thtée neighboring individuals per time step. Each time grid shows
the resulting number of I (infectious state) individual§.produced by our proposed model.
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Figure 5.5.6: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows
the accumulated number of I (infectious state) individuals produced by our proposed model.
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Experiment 2. Heterogeneous Proportion

The second experiment looked at the influence of heterogeneous individuals,
which constitute a certain percentage of the total population. Results were expected to
differ, since individuals have different levels of resistance to epidemic diseases (e.g.,
influenza) or cultural influences. Since the average degree of separation between any
two individuals is very low in SWN models, the question of whether a large-scale
epidemic will occur due to a heterogeneous minority of individuals who are especially

prone to the disease was a specific focus in this experiment.

When establishing parameters, we set the resistance attribute information to
represent individual differences—for instance, the' resistance attribute values for
heterogeneous individuals were one-half those of ordinary individuals, meaning that
heterogeneous individuals had double the probability of becoming infected.
Furthermore, heterogeneous and ordinary individuals were randomly distributed
throughout our virtual environment. We ran six simulations with different percentages
of heterogeneous individuals: 0, 1, 5, 10, 30 and 50 percent of the entire population.
When the percentage of heterogeneous individuals exceeded 50 percent, they
switched their status with ordinary individuals. We therefore did not have to run

simulations with a percentage above 50 percent.
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Experimental results are shown Figures 5.5.7 and 5.5.9; their respective

cumulative sums based on time sequences are shown in Figures 5.5.8 and 5.5.10. In

Figures 5.5.7 and 5.5.9, the higher the ratio of heterogeneous individuals in a

population, the earlier the occurrence of the first peak and the higher its maximum

point. According to the other two figures, the six cumulative sum curves diverged

from the very beginning, with statistically significant differences among all six. The

six epidemic curves had completely different movements and fluctuations, showing

that the percentage of heterogeneous individuals exerted a significant influence on

simulation results and processes. Aicomparison of the 0 and 1 percent curves shows

that even a tiny percentage of heterogencous individuals are enough to make a

difference. These results underseore the importance of being precise when setting

individual attributes for a simulation model.
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Figure 5.5.7: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with thtée neighboring individuals per time step. Each time grid shows
the resulting number of I (infectious state) individual§.produced by our proposed model.
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Figure 5.58: A comparison of three experimental results using different methods and vertex degree information in a
simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows
the accumulated number of I (infectious state) individuals produced by our proposed model.

- 116 -



J

2100

d

1800

1500

d

1200

L

900

Individuals in the l-stat:

600

300

gEEEmEmEmEm

— %
—_— %
—
10%%
—_— 0%
—_— 50%

[P

25 31 37 43 49 55 61 67 T3 79 85

Time

Figure 5.5.9: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with thtée neighboring individuals per time step. Each time grid shows
the resulting number of I (infectious state) individual§.produced by our proposed model.
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Figure 5.5.10: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows
the accumulated number of I (infectious state) individuals produced by our proposed model.
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Experiment 3: Scattered Pattern of Heterogeneous

Individuals

Our goal for the third experiment was to identify the effect on simulations of the
same number of heterogeneous individuals under different settings—for example,
when they are centrally distributed in a specific region or evenly distributed

throughout a virtual environment.

We used a radius parameter r to represent the ratio of heterogeneous individuals’
distribution scope in an environment relative to the entire simulation environment (Fig.
5.5.11). An r of 0 meant that all.heterogeneous individuals were in close proximity to
each other, an r of 1 meant that they, were evenly distributed throughout a simulation
environment, and an r between 0 and 1 meant that they were evenly distributed
throughout a specific region within the radius parameter. When the number of
heterogeneous individuals exceeded the size of the r region, the radius parameter
automatically adjusted itself to the smallest possible ratio to contain all of them. We
maintained a 1% level of heterogeneous individuals in the total population and ran six

simulations with radius parameter r values of 0, 0.2, 0.4, 0.6, 0.8 and 1.
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Figure 5.5.11: Schematic diagram of regions covered by different radius parameters (r).

Experimental results are shown in Figures 5.5.12 and 5.5.14; their respective

cumulative sums based on time sequences are shown in Figures 5.5.13 and 5.5.15.

Figures 5.5.12 and 5.5.14 show that with the exception of the maximum point of the

first peak in the sixth epidemic curve, the time points were very consistent (no

statistically significant differences). Figures 5.5.13 and 5.5.15 indicate the

near-overlapping of the six cumulative sum curves, indicating that the six epidemic

curves in Figures 5.5.12 and 5.5.14 were very consistent in terms of movement and

fluctuation. In other words, the random dynamic process did not affect development.

According to these results, it is not particularly important to determine the pattern of

scattered (concentrated or distributed) heterogeneous individuals in simulations that

match or come close to matching real-world situations, since satisfactory results can
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be produced from a random distribution approach.
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Figure 5.5.12: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with three neighboring indiViduals per time step. Each time grid shows
the resulting number of I (infectious sltate_)‘individuals produced by our proposed model.
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Figure 5.5.13: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows
the accumulated number of I (infectious state) individuals produced by our proposed model.
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Figure 5.5.14: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with thtée neighboring individuals per time step. Each time grid shows
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Figure 5.5.15: A comparison of three experimental results using different methods and vertex degree information in
a simulation where one individual interacts with three neighboring individuals per time step. Each time grid shows
the accumulated number of I (infectious state) individuals produced by our proposed model.
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Chapter 6. Conclusions

In this chapter, we proposed a novel small-world model consisting of cellular
automata with mirror identities representing daily-contact social networks for running
epidemiological simulations. We established the mirror identity concept to integrate
long-distance movement and geographic mobility into the model, which can be used
to simulate the transmission dynamics of infectious diseases among social networks
and to investigate the efficacies of various public health policies and epidemic
prevention strategies—alone and in combination. The model successfully exhibits
epidemiological behaviors in the form 'of daily interactions among heterogeneous
individuals, and expresses such present-day small-world properties as high degrees of

clustering, low degrees of separation, and long-distance movement.

According to the results of simulations that we ran based on data collected during
the 2002-2003 SARS outbreaks in Singapore, Taipei, and Toronto, we suggest that
this model can be applied to different infection scenarios and used to simulate the
development of epidemics with considerable accuracy. A comparison of simulation
and real-world data indicate that our model can be used to test epidemic report
systems and to identify the best public health policy suites for specific scenarios. The

simulation results also indicate considerable flexibility in the model—that is, we
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believe it can be applied to a wide range of contagious diseases (e.g., influenza,

enteroviruses, and HIV/AIDS) that have well-defined epidemic parameters.

From this investigation of the influences of local information on communication

problems involving small world networks, we found that the influence of vertex

degree is not significant, that the influence of percentage of heterogeneous individuals

is significant, and that the influence of the pattern of how heterogeneous individuals

are scattered is not significant. We believe these results will be helpful for determining

simulation parameters. Our immediate research plans are to study the influences of

other types of local information: (e.g.,.edge-related) and the influences of local

information on SF, RN, and other small world models to determine if they are similar

to those associated with the SWN model.
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