CHAPTER ONE
INTRODUCTION

1.1 Motivation

Recently, the studies of Variable Structure Control (VSC) of nonlinear systems have
attracted lots of attention. It is known that the VSC scheme has many advantages, such
as fast response, small sensitivity to system uncertainties and disturbances form the envi-
ronment, easily designed and so on, which is better than other methods used before [30],
[35]. Base on these reasons, the VSC approach has been popularly put in use to a variety

of control issues [8], [36], and one of,.tli_bée ‘app.l-'iéa-t,iions is spacecraft attitude control issue.

Nevertheless, among the existing:_publié;z,t?d;ion's.,-i almost all the relative researches about

VSC control problem adopted éiﬁher (_:or_n}éiit'ional sign-type or saturation-type schemes
it | b ]

to obtain the VSC controller to.-"r_r}a};é.:-.f'hé"S;}-fé'tem"__;‘s_:tates to reach some specified sliding
surfaces. Generally speaking, the co-ﬂ\‘f-'éhti'oflal-vs-b schemes maybe can reach the demand
tasks, however, both of them have their won drawbacks. For example, the sign-type VSC
scheme usually result in high frequency chattering behavior due to the discontinuous
switching control law. The influence of chattering behavior includes undesired excitation
of unmodeled dynamics of the system, waste of energy when the system states are around
the sliding surface [30], and the most seriously, to damage the mechanisms of the system.
Similarly, although the saturation-type VSC design one with fixed boundary layer width
can decrease the high frequency behavior as a result of sign-type VSC method, it can only
achieve uniformly ultimate boundedness performance [2]. To overcome the shortcomings,
this thesis utilizes the VSC design technique to synthesize a class of continuous control
laws. The modified control laws are able to alleviate chattering behavior of the sign-type

VSC scheme and also promote the performance of the saturation-type VSC one from a



level uniformly ultimate boundedness to asymptotic stability. To interpret the excellence
of the proposed schemes, we will demonstrate the simulation results of spacecraft attitude
stabilization issue, which will verify the theorem we suggest. Furthermore, since the VSC
design is now a very popular and well known control technique, the concept and the detail
design process will not be mentioned in this thesis again, we treat it as a pre-knowledge
here.

On the other hand, as a result of the fast growing demands of system reliability in
aerospace and industrial process, the research of reliable control is a popular issue in
recent years. Such as the spacecraft, once it suffers outage on the orbit, the reparation
is an expensive and time wasting task, and can not be achieved immediately. Therefore,
the object of reliable control is to design an appropriate controller such that the closed-
loop system can tolerate the abnormal operation of some specific control components
for the purpose to maintain an overall system stability and acceptable performance of
the system. An abnormal operat1on Ay 1nclude amplification, degradation, or most
seriously, uncontrollable. Among, the prssent rehable control schemes, many approaches
have been proposed, for example IHJ baseldlapproach {16] [37] or power series method [12].
The HJ-based approach is mamly for ncmlmear systems an inevitable difficulty comes
form its controller design depend upon the solutlons of the Hamilton-Jacobi equation or
inequality, which are known with troubhhg C(;rﬁputatlon procedure and hard to solve, but
is an necessary part of the design of LQR and H-infinity controllers. On the other hand,
although the power series method can relax the difficulty of the HJ-based approach,
unfortunately, the obtained solutions are only approximated ones, and the calculation
loading may grow very fast when the system becomes complicated. Summarizing these
potential drawbacks, this thesis progresses the reliable issues from VSC viewpoint. Here,
we propose a class of reliable VSC control laws, which are easily implemented and do not
need the solutions of a Hamilton-Jacobi equation or inequality, and we will shown that
these schemes are be able to tolerate the outage of actuators within some prespecified
subset.

In general, the designs of reliable control system [?] can be classified as passive ones



[13], [15], [16] and active ones [1], [19], [25]. In an passive reliable control, the system
exploits inherent redundancy to design a fixed controller so that the closed-loop system
can achieve an acceptable performance not only during normal operation but also under
the situations that various components fail. The defect of passive control is the pre-
specified fault condition must be selected, if the practical outage is not within the range
as we expected, the passive scheme may fail. On the contrary, the active approach utilize
a fault detection and diagnosis (FDD) scheme to identify the faults, and the controller
will be reconfigured according to the on-line detection results in real time. The drawback
of active scheme is mainly come from FDD, including its stability, external noise resist
ability, the threshold of alarms and so on, while these will not necessary to be considered
when a passive controller is used. In this thesis, both passive and active reliable control
designs will be considered.

Finally, we finish the thesis with discussing an important issue of a control system:
controllability. Although there are many and snnple methods to determine the control-
lability of a system, the existing methods 0 best the controllability involve determining
whether or not a certain matrix has rank erqlial to the .order of the system. However, these
tests provide only ”yes” or not” 'ansv{/er for_the Con’trollablhty of a system, generally s-
peaking, do not provide satlsfactory one due_to: the finite accuracy of the computation
and the parameters of a system ,Wthh aré,known only approximately. Base on these
reasons, we will introduce two new viewpoints for controllability, which are continuous
measurements. The first one is ”The Distance to Uncontrollable” (see e.g., [3], [10], [7],
[11], [24], [26]), the concept of it is to define an uncontrollable set, then find out the
shortest distance form the original system to it. The inconvenient of this method is one
must to determine the singular value of a polynomial matrix and minimizing a function
of a complex variable, which is complicated. The second one is ” Mobility of Eigenvalues”,
proposed by Tarokh [31], [33], [34], the point of view of this manner is to determine the
ability of an eigenvalue to move a very small distance to the neighborhood of its own.
Both two methods have their own opinions and benefits, and we will give detailed inter-

pretations in this thesis.



1.2 Outline

This thesis is organized as follows. Chapter 2 proposes a reliable controller design
for nonlinear system using VSC design technique and its applications to spacecraft, and
the associated simulations. Chapter 3 gives detailed interpretations about the two new
controllability measurements, ” The Distance to Uncontrollable” and ”Mobility of Eigen-
values”. Finally, in chapter 4, we give the conclusions and suggestions for the researches

in the future.




CHAPTER TWO
RELTABLE VARIABLE STRUCTURE CONTROL OF
NONLINEAR SYSTEMS

2.1 Introduction

Due to the growing demands of system reliability in aerospace and industrial process,
the research of reliable control [17], [18], [19], [20], [21], [22], [23] is a popular issue in
recent years. The object of this chapter is to design an appropriate reliable controller such
that the closed-loop system can tolerate the abnormal operation of some specific control

components for the purpose to maigﬁa_ﬁil anZO\}éﬁall_system stability and acceptable system

performance. An abnormal operation may include amplification, degradation partial fail,

or most seriously, uncontrollablé. In general; the designs of reliable control system can be
E | b ]

classified as passive one [13], [15],[16]and active one 1], [19], [25], and both of them will
be proposed in this chapter. The ac.fi-"vré appr-oaéh-.utilizes a fault detection and diagnosis
(FDD) scheme to identify the faults, and the controller will be reconfigured according to
the on-line detection results in real time, while the passive control must pre-specify the
fault condition, and exploit inherent redundancy to design a fixed controller so that the
closed-loop system stability can be achieved not only during normal operation but also
when some of the actuators experience faults.

Besides, the studies of Variable Structure Control (VSC) of nonlinear systems have
attracted lots of attention. It is known that the VSC scheme have many advantages,
like fast response, small sensitivity to system uncertainties and disturbance form the
environment, easily designed and so on, which is better than other methods used before
[30], [35]. Base on these reasons, the VSC approach has been popularly applied to a variety

of control issues [8], [36] and one of those applications is spacecraft attitude control.



In this chapter, we will propose a reliable control scheme for nonlinear system via

variable structure control technique and give the applications to a spacecraft in the last.

2.2 Reliable Stabilization Control Design via VSC Scheme

2.2.1 Problem Formulation

Consider a set of second-order nonlinear system as described by
5(1 = X9 (21)
x, = f(x)+G(x)u+d (2.2)

where x = (x',x))” € R®™, u € R*™™ and d € IR" denote the system states, control
inputs, and possible model uncertainties or external disturbances, respectively, and f(x) €
R® and G(x) € R™®™ are assumed to be smooth. More precisely, the denotations
above are x| := (1, -+, 7,)" € R", x3 := (Tpp1, -, Ton)’ € R™, w = (ug, -, Upim)?,
and d := (dy,--,d,)T, while (-)T denote thefranspose of a vector or a matrix. In addition,

for the interest of study, we assqniefhat}ii’ (0) = 6'._-_Also note that, as shown in system

(2.1)-(2.2), we have assume that"the system—]iﬁf’ithn_ iﬁhierent control input redundancy.
The objective of this section-ii;s_: to sLyn‘lTlTGSlZera c‘eﬁilltrol law that under which the stabi-
lization task can be achieved even-gﬂ?l‘ler{ the (I:(?ntrb'i— experiences actuator outage with the
number of remainder healthy actuators being no less than n. Here, we will propose both
passive and active reliable designs. In passive ones, the system exploits inherent redun-
dancy to design a fixed controller so that the closed-loop system can achieve an acceptable
performance not only during normal operation but also under various faults, while the
active ones reconfigure the control laws according to the on-line detection results after the
occurrence of faults. For this reason, the active reliable controls need the information of
FDD scheme while those of passive ones do not. In the following, both passive and active

reliable schemes will be established by the use of the VSC design technique.

2.2.2 Passive Reliable Design

To begin with, we pre-divide the actuators into two groups F and H, for the purpose

to endure the faults, we assume that the faulty actuators in group F must be tolerated,



while the ones in group A are healthy during the operation. The system (2.1)-(2.2) can

be rewritten as

).(1 = Xo (23)

xy = f(x)+Gu(x)uy + Gr(x)ur +d (2.4)

Since the nonsingularity assumption of G(x) is necessary for the existence of equivalent
control in VSC design when all the actuators in F fail to operate, we assume that the
pre-specified healthy actuators in H satisfy uy € IR" and Gy (x) € R"*" is a nonsingular
matrix, while the faulty ones in F satisfy ur € R™ and G#(x) € R"™. Although
the number of remainder healthy actuators may greater than n, base on the reason that
the fewer healthy actuators we need to stabilize the control system, the more actuators
are allowed to be fail, which the more faulty conditions the system can be. Therefore,
the assumption implies that the pre-selected susceptible actuators have assumed to be as
many as possible.

All Actuators in F are Fail _ |

Now, we first consider the design'of ug v&'rhenall the actuators in F work abnormally,

and define u} and uz denote the:ia'ctuala_ii

"t_he-desi,gi-lled control values for those actuators

in F, respectively, and the system'-:?(-Q 3-)'—(2.4)7be_3q0i’hes

L& i Aan

}.(1 = X (25)
}.(2 = f(X) + GH(X)U'H + G_yr:(X)llj;r: +d

= f(x)+G(x)u+ Gr(x)(ur —ur) +d (2.6)

* j—

The idea of approach here is to treat the fault term Gx(x)(uk — ur) as an additional
disturbance and establish a control low to compensate it.

It is known that the VSC design consists of following procedures:
Step 1: To choose an appropriate sliding surface in terms of states.

Step 2: To synthesize a control law in the form of
u=u"”+u (2.7)

to achieve the tracking performance, where their roles are

7



u"® : Making the states reach the sliding surface in a finite time.
u®? : Keeping the sliding surface an invariant set and directs the states to the origin.
According to these procedures, we now begin to design the control low. Following

step 1, choose a sliding surface as
S:X2+MX1:0 (28)

where s := (s1,+-+,5,)T € IR" is the sliding vector, and M € IR™" is a positive-define
matrix. It is noted that once the system states keep staying on the sliding surface, then
the system will enter sliding mode, then utilizes the fact that xo = x;, the reduced model
will have the form

S:).(1+MX1:0 (29)

We have known that efficiency of input term u" is to make the states reach the sliding
surface in a finite time, that is, the sliding surface s will converge to zero in a finite time,
then equation (2.9) can be held and xyawill dpproach to 0 exponentially. Note that since
X, = X; = —Mx,, the state x, Wi'li'élsgﬁlqlsé;_tg 0 exponentially, then the stabilization
performance will be fulfilled an(;i_%he mainl;'gjbgml (I)f th:e control is achieved. Furthermore,
if the specified matrix M is mOEeposllti\i/E"EHe_n t‘hg faster the speed of convergence of
the system states will be. Now, a(-:-:c;c').rd'i_ng so'.'stép"JQ, we design u®? first. From equations

(2.5)-(2.6) and (2.8) we can have

é - X2+MX1

= f(X) + GH(X)UH + G]:(X)u;- +d+ MX2 (210)

here,we treat the unknown terms Gz(x)u’k and d as disturbances, ignore them and let

§ = 0 thus we can get the equivalent control
u® = -G (x){f(x) + Mx,} (2.11)

When design u”®, in order to compensate the effect of disturbances and faults, we impose

the next assumption, in which (-); denotes the i-th element of a vector.



Assumption 2.1 There exist nonnegative scalar functions p;(x,t) such that, for i =
1, m,

[(GrO)ug)i| + [di| < pi(x, 1) (2.12)

Following the VSC design procedure, we can let the reach control as
W' = G5 () { A - sgn(s)} (2.13)

where Ay = diag(p1(x,t)+n1, -+, pu(x,t) + 1) with n; > 0 foralli =1,---,n, and sgn(-)
denotes the sign function and sgn(s) := (sgn(s;),---,sgn(sy))".

Integrating u®? and u"® together, we can get the overall control torque

uy = u“+u’”

= —G3 (x){f(x) + Mx; + Ay - sgn(s)} (2.14)

in order to show the stabilization of the system, we define the squared ”distance” to the

sliding surface, as measured by ||s}|?, where 1™ ||":iii_(anotes the Euclidean norm, then the
o HAENA
variation of the distance with respeet to ¢ cait be expressed as

o SIS gy (2.15)

under such a control, it follows form equations (2.10), (2.14) and Assumption 2.1 that

s’s = s"{f(x) + Gyu(x)(u + u™) + Gr(x)u} +d + Mx,}
= s"{Gr(x)ul+d — Ay -sgn(s)}

< =D i sl (2.16)
i=1

this inequality implies the distance decreases along all the system states, it constrains the
system states to point toward the sliding surface in a finite time, besides, the larger the
constants 7y, - - -, 1, we select, the faster the first time the system states reach the sliding
surface.
Not All Actuators in F are Fail

In addition to the design of uy as discussed above, we now investigate the design

of ur to promote the system performance when not all the actuators in F are fail. The

9



governing equations are now given by (2.3)-(2.4). From equations (2.3)-(2.4), (2.8) and
(2.14) we can obtain
s's = s"{f(x) + Gu(x)uy + Gr(x)ur +d+ Mx,}
S STG]:(X)U.]: — 2771 . |Sz| (217)
i=1
and one of the choices of ur to make the system states to approach the sliding surface

faster than the case which ur = 0 is
ur = — Az - sgn(G%(x)s) (2.18)

where Ar = diag (11, Mntm) and 9,44, for i = 1,- -+ m are some positive constants.

Adding the control uz as shown in equation (2.18) into the system, the equation (2.17)

becomes
n+m T
fs< - Zm sl = > i s)il (2.19)
i=n+1
It can be seen from the derivation tha-t 'th‘e-magmtude of control gains n,,;, i =1,---,m,

of actuators in uz can be vary form 0 to] t|hﬁ allowable maximum control input magnitude
to accelerate the speed of the system states to shdm;g surface. That is, the situation of
' " l

actuators in F can be total fallure,_,parmal fall-ure, a’_ctenuatlon or amplification, no matter

in any order and any combination. These derivetions lead to the following result.

Theorem 2.1 Suppose the Assumption 2.1 holds, then the origin of system (2.3)-(2.4)
is locally asymptotically stable under the control laws given by (2.14) and (2.18), even

some or all the actuators in F experience abnormal operation. [ |
2.2.3 Active Reliable Design

The reliable design discussed above is the passive one which does not need the informa-
tion of FDD, but does need to pre-specify which actuators are allowed to fail. It should
be noted that, it is very difficult to define the healthy and the fault actuators before
faults occur, in general. Although the passive reliable control might achieve stabilization
performance, it is a conservative method in that its controllers are designed based on the

pre-defined faulty system without any change in control law even when faults occur. Due

10



to the lack of FDD information, the passive reliable design often overestimates the mag-
nitude of faults, that is, the magnitude of (G#(x)u’%);, for i = 1,---,n, where is shown
in Assumption 2.1. Although the overestimation can speed up the convergence to the
sliding surface, but usually result in undesirable performance, such as wasting of control
energy and causing the designed control to exceed the allowable maximum control input
magnitude. To improve the performance of passive reliable control, we consider the active
control issue in this section.

During the normal operation, the engineers may take any desired control to fulfill the
system performance. When faults happened, the control law will be switched to an active
reliable control type, as described below. Without loss of generality, we assume the faults

happen at control channels

{uk-i-l) T un—l—m}a k 2 n (220)

and the actual control torque of the faulty control channels are successfully detected and

diagnosed as

i ot & B (2:21)

where j = k+1,---,n+m, and ﬁ,ﬁ A,U'g' _de-ﬁ(')te_th-e es,"cimated control value and estimated

error, respectively. With the sarr-lz'ej; __deﬁ'r'i'itidﬁ of _th:e'.sliding surface in equation (2.8) and

system (2.1)-(2.2) we can have il 000

é - X2+MX1

k n-+m
= f(X) + Z g]’(X)’LLj + Z g]’(X) (ﬂ] + A’LL]) + d -+ MX2 (222)
j=1 j=k+1

where g;(x) is the j-th column of matrix G(x). In order to make the expression more
clearly, we redefine some notations, which are a little different form those in the case

T T —

of passive reliable design. Let uy = (u1,---,ug)’, ur = (Upy1, -, Upim) , UF =

(akJrl; ) @n+m)T7 AU}' = (Auk+17 Ty Aun+m)T7 G'H(X) = [gl (X)7 ) gk(x)] and G}'(X) =
[gri1(X), -+, 8nim(x)], then the equation above can be rewritten as

S = f(X) +GH(X)UH+Gf(X)(ﬁf+AUf) —|—d—|—MX2 (223)

Since the value of G#(x)tr was known, this time, we treat Gz(x)Aur+d as a disturbance

and impose the following assumption.

11



Assumption 2.2 There exist nonnegative scalar functions o;(x,t), ¢ = 1,---,n, such
that

[(Gr(x)Aug)i| + |di| < 0i(x,1) (2.24)
m

It is obviously that the upper bound of |(G#(x)Aug);| in Assumption 2.2, in general,
much less than the one |(Gz(x)u%);| in Assumption 2.1, if the estimate errors |Au;| are
small for j = k+1,---,n+m. Practically, if the FDD is accurate enough, the error |Au,|
will approach to zero. Utilizing the same design procedures as those of passive reliable

design, the VSC laws for those healthy actuators are
—1
u = —G,(x) (Gu(x)GH(x)) - {f(x) + Gr(x)ir + Mxy} (2.25)

and
1
"= —G(x) (Gu(x)GH(x)) - {Ax - sgn(s)} (2.26)
where Ay = diag(oy(x,t) + 7y, - ,',cxﬂ'('jc',‘t')'—'i—"qh.)'and n; > 0 for j = 1,---,n, then the

overall design input torque is .5 ] ; - . A
= Rbl W e

S uy :-,_uéq u e

. | s 1 ‘ _l

(2.27)

Note that, since the number of healthy actuators are not have to be n (k > n), implying
that there are infinitely solutions for 117:[, “Which the one we used is least norm solution as
shown above. If k& = n, it becomes the same form as that of equation (2.14), except for the
uy, as given by equation (2.27) contain an extra term G#(x)0z involving the information

of diagnosis. As a result, we can have
s’s = s"{Gr(x)Aur +d— Ay -sgn(s)}
< - im - [si] (2.28)
by the use of Assumption 2.2, we lead the following result.

Theorem 2.2 Suppose that system (2.1)-(2.2) experiences actuators faults at control
channels as given by (2.20) with estimated values and errors given by (2.21). If, in
addition, the faults and disturbances satisfy Assumption 2.2, then the origin of system

(2.1)-(2.2) is locally asymptotically stable under the control laws given by (2.27). [
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2.3 Reliable Control of Spacecraft Attitude Tracking Problem
2.3.1 Spacecraft Dynamics Analysis

Euler Angles

Before discussing the dynamics of a spacecraft system, we introduce a coordinate
transformation [4] first. The orientation of a rigid body with body fixed axes e;, e; and
ez associated with unit vectors é;, és and é3, respectively, can be specified in several ways
relative to a reference frame F;, Fy and Fj5 associated with unit vectors El, Eg and Eg.
One of the transformation methods is the classical Euler angles, which is easier to visualize
and convenient when working with spinning bodies. When we applied the classical Euler
angles to sequential rotations, it has more advantages when only small deviations from
the reference frame is involved. Here, we will begin from a two-dimensional sequential

rotations, then extend it to a three-dimensional one.

=1 >

(124

m

&, E 2

Figure 2.1: An orthogonal rotation in two dimensions

Consider the rotation of a unit orthogonal triad é, through a angle 6; relative a
reference unit triad Eg, where the o and [ subscripts take the values of 1, 2, 3 as shown

in Figure (2.1). The components of Eﬁ along the é, directions are given by
él - El
€y = Eg cos By + Eg sin ¢,
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or in matrix form as

~

€3 = —E2 sin 6, + Eg cos 0,

10 0\ [(E Ey
== 0 091 891 E:Q = R(Gl) E:Q (229)
0 —891 091 E3 ES

where ¢ and s denote cos and sin function, respectively, and R(6;) is the orthogonal

rotation matrix which represents the rotation of the é, unit triad about the Ey unit

vector. Similar rotations matrices may be used to represent rotations about other axes.

5224

Figure 2.2: An orthogonal rotation in three dimensions

In Figure (2.2), we illustrates sequential 6y, 65, 03 rotations of the é, unit triad,

initially aligned with the Ejs unit triad, about the F) (or é;) axis, the rotated é, (or

é,) and, finally, the rotated é; (or é;). Each rotation may be expressed in terms of the

orthogonal rotation matrices as follows

N
€1
N
€9
N
€3

~ N NG

E, € €

- NI N

== R(Ql) EQ s 6,2, == R(Qg) 6,2
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1
ég = R(93) é2
é3 és
where
1 0 0 092 0 —892
R(Gl) = 0 091 891 R(HQ) 0 1 0
0 —891 091 892 0 092
093 893 0
R(eg) = —893 093 0
0 0 1

The combined matrix for the 1, 2, 3 sequence of rotation is the product of the orthogonal

rotation matrices, which is of the form

Rip3 = R(93) : R(ez) : R(el) =

692093 093891892 + 091893 —691093892 + 891893
—092893 —891892893 + 091093 091892893 + 891093 (230)
892 —092891 091092
and ! z:
(2.31)

The orthogonal rotation matrix Rléé.r-e‘l-)rre‘sé'ﬁt-s. respective reference frames in terms of
the rotation angles ;. Thus, for a specified vector in the Ejs frame is obtained in the e,
frame by evaluating the rotation matrix in equation (2.30) at the rotation angles 6, 6,
and 0s.
Spacecraft Dynamics

Now, we consider the spacecraft dynamics with three actuators in a circular orbit as
shown in Figure (2.3). According to the definition of Euler’s equation [4], the spacecraft

system dynamics, in terms of angular momentum conservation law has the form

dh dh
T+G=— =[] +wxh,

7 (232)

where T denotes external disturbance (including solar pressure torque, magnetic field

disturbance and external input torque), G is the gravity gradient torque due to the earth,
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h is the total angular momentum, w is the angular rate of the body coordinate frame of
the spacecraft, and the symbol [-], means that it is with respect to the body coordinate
frame itself. Here, we redefine the three standard basis vectors of the spacecraft body
coordinate frame é;, é; and é3 in Figure (2.3) as é, = €3, é, = é; and é, = é;, which are
the three unit vectors in z, y and 2z axes of the orthogonal coordinate, respectively. Thus,

the total angular momentum can be expressed as
h = (Iywy + hug)ér + (Tywy + hyy)éy + (Lw, + hys)é, (2.33)

where I, I,,, I, are the inertia of the spacecraft body, w,, w,, w, are the angular rates

o4

Velocity

3
(pitch) & \\
€3

2 3(roll)

et

AT (Orbit rate)

6

Figure 2.3: Spacecraft on the orbit

with respect to x, y , and z axes, and Ay, huyy, hy. are the inertia of the three reaction
wheels in z, y , and z directions, respectively. Substituting equations (2.33) into (2.32),
we have

L, + hyy + (I, — Iy)wyw, + wyhy, — w,hy,

T+G=| Lw,+ hwy + (I — 1) wew, + wyhyy — wehy,, (2.34)
Lw, + hy,. + (Iy - I:L‘)wxwy + Wmhwy — wthx

16



then according to [4], the angular rate and Euler angles have the following relation
Wo = 0 + woBs - €0, a=1,1y,2 (2.35)

Define ¢ (6,), 6 (6,), and ¢ (6,) are the rotational angles with respect to z, y and z
axis, respectively, from the spacecraft body coordinate frame to orbit coordinate frame,
E5 is the unit vector of orbit coordinate frame which perpendicular to the orbit plane as
shown in Figure (2.3), and wy is the constant orbit rate of the spacecraft with fixed speed
in a circular orbit. Taking equation (2.30) into (2.35), then the equation (2.35) can be

revealed as the form

Wy _ ¢ — wpsin v cos
w=|wy | =] 0+4w(cost)cosd — sinysinfsin @) (2.36)
o 1 + wp(cos 1 sin ¢ + cos @ sin Y sin 6)

form [4], the gravity gradient torque is

G:\ . —3[2w§ (Iy 2 7,) cos? 0'sin 2¢
G= |G,y | =1 3/25(L%"Iz) sin 26 cos ¢ (2.37)
G. )3 =3/20, = L) sin 20 sin ¢

. P - =]

and the external disturbance

T
T=|T, (2.38)
T,

Here, we ignore the solar pressure torque and magnetic filed disturbance, and regard 7},
T, and T, as the thruster inputs, which are the only control force we applied. After
combining equations (2.36), (2.37) and (2.38) with (2.34), and define the state variables
as 11 = ¢, Ty = ¢, x5 =0, x4 = 0, x5 = 1b, and x = 1), the spacecraft dynamics can be
represented in the form of

= f(z)+g(x)u (2.39)

with o = (21 22 23 24 x5 16)", u = (T /I, Ty/1,, T./1.)" and f(x) = (fi f2 [3 f1 [5 f6)T,

where
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h
/3
f5
f2

fa

fo

and

T2 (2.40)
Ty (2.41)

WoTeCT5CT3 — WoXsST5ST3 + (L) — I,) ) [[T4m6 + woTaCr15T55T3 + WoTsCT5ST

1 1
+woTgCrsCry + 5w38(2$5)62$181‘3 + §w302x58(2$1) — WoTeSTST3ST]

1 1 3 :
—5w332x332x55(2x1) — 5w§s(2x5)sx352x1 — §w302x35(2x1)] + 1/, [—hws

— iz (T4 + woCTs5cT1 — WoST5ST35T1) + Ny (T6 + WoCx1 ST55T3 + WoCLs571)]
(2.43)
WoTgSTECT1 + WoToCT5ST1 + WyTeCT5ST3ST1 + WLy STECT3ST1 + WoTaST5ST3CT

+(I, — 1)/ I [wam6 + WoTaCl1 ST5ST3 + WoToCT5ST| — WoleCL5CT3
—%w33(2x3)32x50$1 — %w%s(za':?-)cafgsxl + gwgs(h:g)cml] + 1/ 1y [~ Ty

—hye (T + wocxy sm5sx3+wocx§§x1)+hw (xe — woswscrs)] (2.44)
WoT2ST1ST5ST3 — woxgéaéllcxg,s;fﬁ L?:IQ5&£C£1.§I5CI3 + WoTSTEST1 — WoloCL5CLy
(Lo — 1)/ L[w2ws + W0$2C$I5C$1;%$25$58$35$1 — WOT4ST5CTy
_%wgs(mg))cxgcxl + %83%589515(29:3)— gwgs(ng)sxl] +1/L[—h,,

— iy (g — wWosT5Ccxs) + Ry (T4 + WocTsc) — WoST5ST3ST1) (2.45)
0 0 O
1 0 0
0 0 O
g(x) = 01 0 (2.46)
0 0 O
0 0 1

similarly, ¢ and s denote cos and sin function, respectively.

Note that, the above spacecraft dynamics is primarily depicted for three control

inputs, however, in many practical applications, a system often equips with redundancy

to allow safe operation when some of the actuators experience faults. An example can be

found in the design of ROCSAT II satellite [28] which is equipped with four actuators.

The connection between the three and four actuators (see Figure (2.4)) in ROCSAT II is

18



through the transformation matrix

0.67 0.67 0.67 0.67
S=1069 —-0.69 -0.69 0.69 (2.47)
3x4

0.28 0.28 —0.28 —0.28

y

Figure 2.4: Transformation representation

Therefore, the dynamics (2.39) can be rewritten as the form
= f(z)+g(x)u (2.48)

where the function f(z) is the same as those in equations (2.40)-(2.45), and g(z) and u

have the form iRy
A () ) 0

D67 6T N0 0.67
_ 8 s = 0
9@ =¥069) 069 069 069 (2.49)
A0 I 0
028, 0.28 028 —0.28
Y
_ U9
=1, (2.50)
Uy

here, uy, us, uz and u4 are the control torque in four directions of ROCSAT II.
Integrating the discussions about spacecraft system above, in order to make the

illustrations of FDD and reliable control designs in later sections more clearly, we rearrange

the state variables of spacecraft dynamics as the form similar to equations (2.1)-(2.2), that

is x; = (z1,73,75)" and xy = (T2, 74, 76)", where
5(1 = Xo (251)
fa 0.67 0.67 0.67 0.67
Xy = fal+1069 —-0.69 —-0.69 069 |u (2.52)
fo 028 028 —028 —0.28
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where f5, f4 and fg are system parameters of spacecraft system as shown in equation
(2.40)-(2.45), G(x) is a 3 x 4 matrix where the three rows of it are the 2-th, 4-th, and
6-th row of g(x), respectively, u = (u1, us, us, us)’ is the same as u of equation (2.50),

and this representation will be used throughout this thesis.
2.3.2 Fault Detection and Diagnosis (FDD) Observer Design

Problem Formulation

In this section, we consider the nonlinear system as given by
X = X (2.53)
xy = f(x)+G(x)u, £(0)=0 (2.54)
where f(x) and G(x) are assumed to be smooth. The main goal of this section is to design

an observer that can real-time detect the occurrence of actuator outage and diagnose the

location of fault. The configuration ef the FDD system is described in Figure (2.5).

Uy Uy Uz U4 X
o Controller System
Switch
Scheme
Observer

r1 T2 3

Fault Determine
Scheme

Design Inputs

Figure 2.5: FDD configuration

The Transformation of Decoupled Form
From the spacecraft system dynamics (2.51)-(2.52), the system has six states x =

(21, T3, T5, Ta, T4, xﬁ)T. We assume that all the states are measurable and rewrite equations
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(2.51)-(2.52) into the following form

).(1 = X9 (255)
U
fa g1 G912 G913 Ji4 u;
Xo = | fa |+ ] 920 922 Ggo3 g s (2.56)
fe g31 932 Gg33 g34 U

The reason we rewrite equations (2.51)-(2.52) to the form (2.55)-(2.56) is that the trans-
formation we are going to introduce can be applied not only onto the spacecraft model,
but also other systems which has the same form, and the only condition is that any
combination of three of the four columns of G(x) is nonsigular.

It is clear from (2.55)-(2.56) that the four actuator inputs only appear in the state
equations @9, 24 and g. In order to decouple the actuator faults, we make the following

state transformation

with o g H T B
- - le "g13-)
L= Qo1 G2 923 (2.58)

"I"g_*S-l-—-g:‘)‘Q—J. B 933

and the matrix P is assumed to be nonsingular, then state equations in new state variables

are described as
z = fhew + PG(x)u (2.59)
where f,., and PG(x) are given by

fl new

fnew = Pf(X) - f2 new (260)

f3 new

100
PG(x)={0 1 0 I (2.61)
00 1
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under these settings, we have

2= f1new + U1 +liuy (2.62)
20 = f2 pew + Uz + louy (2.63)
23 = f3 pew + Uz + l3u4 (2.64)

Clearly, z; is only affected by actuators u; and uy, similarly, 2z, is affected by actuators us
and uy, and z3 is affected by actuators us and uy. Because any two actuators fail at the
same time, the tracking maneuvers cannot be achieved, thus, we only consider the case
of single actuator outage.
Observer Design

With the aid of transformed system (2.62)-(2.64), we design the observer (&;) and

residual signals (r;) as follows

& = flnew +}L11 +11U4+ ki(z1 — &) (2.65)
& = f2new +!UIE -'l*lzu4+,]€2(22 — &) (2.66)
. o) T e
and o
rn = 21— 51 (268)
re = 22— & (2.69)
ryg = 23—& (2.70)

where wuy, us, uz and uy in observer equations (2.65)-(2.67) are designed torque in normal
operation and k; > 0, for - = 1, 2,3. Under this design, we claim that any single actuator
outage can be detected and diagnosed. Indeed, it is shown later the outage of the first
actuator uy results in |r1]| # 0 but |ry| = |r3| = 0, the outage of the second actuator us
leads to |ra| # 0 but |ri| = |r3| = 0, the outage of the third actuator uz gives rise to
|r3| # 0 but || = |r2| = 0, and finally, the outage of the fourth actuator uy gives |ry| # 0,

o] # 0 and |r3| # 0. To see this, suppose that the first actuator experiences fault with
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actual value u}, and define

my = uj — U (2.71)

where u; is designed value, and m, is the fault signal between actual and designed values

of actuator u, then the equation (2.62) becomes

. *
1 = fl new+u1+llu4

= fl new + U1 + l1ug + my (272)
It follows from the equations (2.62), (2.65) and (2.68) that

o= A&

= —lel + my (273)

Since k; is assumed to be a positive constant, r; will approach to my /k; after a short time

transient. Thus, the residual signal r; is affected by the fault signal m, that is

L ETE O (2.74)

By similar methods, we define ;thé fault _S,ig-ﬁélsnf ,_ELQ, uz and uy are mo, ms and my,

P

respectively, thus we can get

m27é0-2> 7'“2350
m37$0 = T37£0

my #0 = 11, 1o, 73 #0
2.3.3 Reliable VSC Controller Design

In this section, we employ the VSC scheme to design the reliable controller for the
spacecraft to achieve the attitude stabilization even when a specific actuator experiences
abnormal operation. From equations (2.51)-(2.52), we know that the system has six states
and four inputs. That is, x1, x3 and x5 are the rotational angles in x, y and z directions,
respectively, and xo, 24 and x4 are corresponding angular rates. Let G(x) = (g1 g2 83 84),
where g;, for i = 1,---,4, are four columns of G(x), respectively, and any combination

of three of them is linearly independent. Our goal here is to stabilize the spacecraft at a
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specified attitude as desired. To this end, we define the desired angles of x1, 3 and x5 as

T14, T3q and x5q, respectively, and define the attitude error as

€1 X1 — T1d
e = €9 = | T3 — T3q (275)
€3 X5 — Tsq

then select the sliding surface to be

s=é+Me=0

or in the form

51 e1 +mye;
S = So == é2 + Mmooy (276)
S3 €3 + Mm3zes

where the positive definite matrix M we use here is a 3x3 diagonal one and the elements on
the line are mq;, msys and mgssz. Following the reliable control design procedures discussed
in Section 2.2, the passive and active reliable controller are given below

A. Passive Reliable Controller 4% B

(a) design for u; outage —H3 ] % -

ug! = - VS ‘—i.d":jld — e
us’ | = (@ BR BRI it sa — marés
us? . 3 fo't+ i54 — ma33és
=+ ) sgn(sn)
us® | = (82 83 81)" | —(p2+1m2) - sgn(s2)
uhe —(p3 +m3) - sgn(s3)
ui’=0 and wi®=-—n,- Sgn(ngs)
(b) design for uy outage
us? —fo + T1g — Mm1161
us' | = (g1 83 81) " | —fu+ iizg — mazéy
u? —fo + E5qa — Mazés
ure —(p1 +m1) - sgn(s1)
ust | = (g1 83 8) ' | —(p2+m2) - sgn(ss)
uhe —(p3 +m3) - sgn(ss3)
uy' =0 and  wh® = —ny- Sgn(gQTs)
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(c) design for uz outage

uy? —fo 4+ T1g — muéy
us? | = (g1 82 84)7' | —f1+ E3a — maés
(O —f6 + @5qg — M33é3
ui —(p1 +m) - sgn(s1)
u | = (g1 8284) ' | —(p2+m2) - sgn(sy)
uy —(p3 +m3) - sgn(ss3)
ug’ =0 and wuy® = —ny - sgn(gls)
(d) design for uy outage
uy? —fo 4+ T1g — muéy
(e (81 8283)" | —fa+dsa— manés
g’ —f6 + Z5q — M33€3
(i Pl +m) - sgn(sy)
ule (81 82 g3 pz + 772 - sgn(sy)
us* P3 +13) - sgn(ss)
uy! = O _ and u4 = —174 sgn(gl's)

B. Active Reliable Controllé'r.._. i._f_'_'.;-f';

(a) when normal operation

uy? .
Ut . . N f2+%1d_m1161
g | =G (x) (G(X)G (X)) Ja+ Z3q — maéy
o fo + 54 — m3se3
Uy
ui®
ure T . 1 (01 + 771) ' Sgn(sl)
we | =G ) (G(X)G (X)) (o2 + 1m2) - sgn(s2)
e (03 +m3) - sgn(s3)
4
(b) when u; outage
uy’ —fo+ Z1g — M€ — g1y
eq o -1 . . ~
uy' | = (g2 83 84) —fa 4 T3q — Maoéa — g1l
uy’ —fo + T5q — Maz€s — g311y
uy’ —(o1 +m) - sgn(sy)
ut | = (8283 81) " | —(02+12) - sgn(sy)
u}® —(0o3 +13) - sgn(ss)
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(c) when uy outage

uy’ —fo+ Z1a — muér — giolin
us! | = (g1 83 81) ' | —f1+ F3q — Moo — garlls
uy’ —f6 + 254 — m3zez — gzalin
ui© —(o1+m) -sgn(s1)
uf | = (8183 84) " | —(02+ 1) - sgn(s)
u}® —(0o3 +13) - sgn(ss)

(d) when uz outage

us? —fo+ Z1a — M11€1 — G13U3

uy! | = (81 82 84)7" | —fu + dza — Mzt — gaslls
P . . -~

u4q —f6 + T5q — m33é3 — g3zl

e (o +m) - sga(sn)

uge = (g1 g2 g4)_1 _(02 + 772) : Sgn(sz)

ure —(03 +m3) - sgn(s3)

(e) when uy outage

us? & e i — mué — guia

uy! | = (g1 € ga) =" HEES IR~ manés — gauila
p . ) ol ™, =] . ~

qu | ; _-,j.—"fs + Tsg— 1M33€3 — g34Uyg

ui® :

uh®

us’

where u;, for i = 1,2,3,4 are the fault values of input torque detected by FDD, p; and

o;, for i = 1,2, 3 satisfy Assumptions 2.1 and 2.2, respectively.

2.3.4 Simulation Results

Here, we display the tracking performances of passive and active reliable VSC controls
of a spacecraft with thrusters as control inputs. In the simulations, the parameters of
spacecraft are chosen as I, = I, = 2000N - m - s* and I, = 400N - m - s* (spacecraft
is symmetric with y-axis) and orbit rate wy = 1.032 x 1073rad/s. The parameters of
VSC schemes for both passive and active designs are selected as my; = moy = mgz = 2,
n; = 0.4, for © = 1,2,3,4 and the sign function is replaced by the saturation function

with boundary layer width ¢, = 0.05, for + = 1,2,3. FDD parameters of active designs
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are set to k; = 10, for i = 1,2, 3, and the alarms are fired if |r;| > 0.01. For practical
situation, we constraint that the input torque wu;, for i = 1,2, 3,4 can not exceed one.
Base on those settings, we know the boundary of alarms is 10 percent of maximum input
torque (0.01 = |r;| = J* = 83), whenever there is an alarm, the associated active reliable
controller is then activated according to FDD information. To show the performances,
we list four items for each case, which are

(1) T.on: The last time for all states are converge within 0.01 from the desired ones.
(2) [ x"x +u"u: Quadratic performance of states and torques.

(3) fuTu: Required energy.

(4) |Ju||s: Maximum input torque.

and the situation we simulate is from the initial state x(0) = (—0.7, —0.07,1.5,0.3, 1.3, —0.2)"
to the desired attitude x4(t) = 0.

Numerical simulations are summarized in Tables (2.1) and (2.2). For passive VSC
control, we only show the design With regar,d to uz as the susceptible actuator, and sim-
ulate the situations of normal operatlon and ul, UQ, u3 and u, are experience faults. For
active ones, the control will be sw1tched lzaulc;zo;".c'ilng to the information of FDD. In these
tables, condition Normal means nOrmal gpelamon whﬂe uy, ug, uz and uy imply that the
associated input experience faults at one second; respectlvely, and the notation X means
that the system states do not Converge-, ‘as a'.r.esult, the performance are not meaningful
anymore. The graphs of states and input torque of passive reliable controls are shown in
Figure (2.6) to Figure (2.10), and the associated graphs of active ones are shown in Figure

(2.11) to Figure (2.15). Note that, the notations a, as, and az are alarml, alarm2, and

alarm3 of corresponding residual rq, 7, and r3, respectively.

27



Table 2.1: Performances of passive control (designed for u, fail)

Condition

Normal

Uy Usg usg Uy

Teon 5.6269 X 5.6111 | 6.1549 X

[x'x +ulu | 11.1275 X 10.1268 | 13.4349 X

fulu 2.9085 X 1.8908 | 5.0636 X

llulloo 1 X 1 1 X

Table 2.2: Performances of active control

Condition Normal Uy U9 Us m
Teon 9.8095 | 9.6085 | 9.8727 9.834 | 10.0018
[xTx +ulu | 14.2708 | 14.0952 | 14.5304 | 14.5536 | 14.6385
fulu 0.3303 | 0.4889 0.495 0.4746 | 0.4849
llul|oo 0.5608 | 0.5608 | 0.5608 | 0.5608 | 0.5608
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CHAPTER THREE
MEASUREMENT OF CONTROLLABILITY

3.1 Introduction

The classical methods of testing controllability of a linear multivariable system involve
determining whether or not a certain matrix has rank equal to the order of the system.
For example, a frequently used method to test the controllability of a n-dimensional
system pair (A,B), where A € R™" and B € real™™, is to check whether or not the
n X nm controllability matrix C = [B AB A?B --- A" 'B| has rank n (full row
rank). However, these tests provid{e,{ -ro_ril'ly. ""ye-é"’::"o-r__ﬂ_”not” answer for the controllability of

a system, generally speaking, do ﬁot proi'z[r}e;—,s. t:isfa_é'tory one due to the finite accuracy of

the computation and the paranieters of _,a_"'sj?s'tem' ,which are known only approximately.
=] | " 1

As a result, one may lead to WI}'c‘)_Iilg. éoﬁglu's:fﬁ'ns if_’is:uch binary tests are used (e.g., one
may determine a system as a contr(')-'ll-éble' one but actually not, and always do not know
why the system can not reach the performance as he thought). It is, therefore, useful to
define controllability measure base on continuous rather than binary.

In this chapter, we are going to introduce two continuous controllability measure-
ments, " The Distance to Uncontrollable” (see e.g., [3], [7], [10], [11], [24], [26]) and ”Mo-
bility of Eigenvalues”, proposed by Tarokh [31], [33], [34]. The concept of the first one
is to define an uncontrollable set, then find out the shortest distance form the original
system to it. The drawback of this method is one must to determine the singular value of
a polynomial matrix and minimizing a function of a complex variable, which is compli-
cated. The manner of the second one is to determine the ability of an eigenvalue to move
a very small distance to the neighborhood of its own. Both two methods have their own

opinions and benefits, and we will give detailed interpretations in this chapter.
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Note that, the controllability measurements in this chapter are been developed upon
linear system, and the associated research had not been extend to nonlinear system yet,
therefore, only the linear system will be considered here. About the issues of nonlinear

system, we leave them for the further research.

3.2 Defects of Classical Controllability Measurement

From linear system theory, we know that if a system is controllable, then we can
transfer it’s states to any where at any time as we desired. One may wonder what is the
difference between an easier controllable system and a harder one? Before discussing the
new methods for continuous controllability measurements, we take an example to show
why binary test is not sufficient.

There are many methods to determine the contollability of a linear system model
# = Az + Bu, where A € R™", z € ]Rn B € ]Rnxm and u € R™. We list five of them
which are equivalent as follows (sees & g [51]) !
‘ HIETNA %

1. The n-dimensional pair (A,B_) is Qqnjg—gt;liable.- £

2. The n X n matrix

t T t
W.(t) = / ATBBT AT Iy = / (AT BBT AT g7 (3.1)
0 0

is nonsingular for any ¢ > 0.

3. The n x nm controllability matrix
C=[B AB A’B -.- A" 'B] (3.2)

has rank n (full row rank).

4. The n x (n +m) matrix [A — AI, B] has full row rank at every eigenvalue, A, of A.
(3.3)
5. If all eigenvalues of A have negative real parts, then the unique solution of

AW, + W A" = -BB” (3.4)
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is positive define. The solution is
W, = / ¢ATBBT A7 47 (3.5)
0
3.2.1 Controllability Analysis of Spacecraft

Now we employ the checking condition (3.2) to determine controllability of the space-
craft model. To employ the result, we linearlize the nonlinear state equation (2.48) with

equilibrium point being the origin. It yields

0 10 0 0 0
—2a1 0 0 0 0 a
0 0 01 0 O
A= 0 0 0 0 0 O (3:6)
0 0 0 0 0 1
0 — Qa2 0 0 aq 0
0 0 0 0
0.67 067 067 067
0, A0y, ) 0
B=1 069 —n:69. 069  0.69 (3.7
E =015 ) V) T
:0 28 0 28 —0.285 —0.28
= } L =
where a; = wi(I, — I,)/1,, as = wg /I It is- weasy to show that the characteristic

polynomial of A has the form

MM (a4 a2\ =202 =0

a a2 0427 a 042
Thus, the eigenvalues of matrix A are (0,0, +1, +jpu2), where py = \/v (o1 2)228 1 (atay)

and py = \/v (a1+a%)228a%+(al+a%). Because j; and u9 are positive, it is clear that the zero
input system is unstable.

Next, we analyze the controllability. By selecting the system parameters as [, =
I, = 2000N - m - s* and I, = 400N - m - s?, which means that the inertia of system is
symmetric with y axis and wy = 1.0312 x 1073rad/s, then we have a; = —8.507 x 1077
and ay; = 2.6024 x 10~*. To proceed the analysis, we define the symbols to represent
faulty system (A,Bj) under different outage cases as below:

B: normal case (i.e., all actuators are in normal operation).
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B;: case for single (i-th) actuator fails, for i = 1,2, 3, 4.
B;j: case for double (i—th and j-th) actuators fail, for ¢, j =1,2,3,4, @ # j.

Under these notations, the controllability matrix of equation (3.2) becomes
Cp, =By AB; A’B; --- A°By] (3.8)

By calculation, the controllability matrices with different actuator outage are listed below

(due to the limitation of the printed page, only the first six linearly independent columns

for each case are listed).

when By = B,
0 0 0 0.67 0.67 0.67
0.67 0.67 0.67 5.77x107° 577x10° —5.77x107°
Oy = 0 0 0 0.69 —0.69 —0.69
0.69 —-0.69 —-0.69 0 0 0
0 0 0 0.28 0.28 —0.28

028 028 —028 —14x10%* —14x10* —1.4x10*

when By = By,
0 0 0 | 0678 067 0.67
0.67  0.67 067 B.77x1077 =577 x107° —5.77 x 107°
oo | 0 0 A =060 5 -0.69 0.69
Bl —0.69 —0.69 069 SLTEREE AT 0 0
0 0 0. 02840  —028 ~0.28

028 —0.28 —028 “{A%10* —14x10% —14x10*

when By = By,
0 0 0 0.67 0.67 0.67
0.67 0.67 067 577x10° —577x10°% —577x107°
o - | 0 0 0 0.69 —0.69 0.69
B2 71069 —0.69 0.69 0 0 0
0 0 0 0.28 —0.28 —0.28

0.28 —0.28 —0.28 —1.4x10"* —-14x10"* —1.4x107*

when By = Bj,
0 0 0 0.67 0.67 0.67
0.67 0.67 067 577x107° 577x10° —577x107°
oo |0 0 0 0.69 —0.69 0.69
Bs = 10.69 —0.69 0.69 0 0 0
0 0 0 0.28 0.28 —0.28

028 028 —028 —14x10*%* —14x10* —1.4x10*
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when By = By,

0 0 0 0.67 0.67 0.67
0.67 0.67 0.67 577x107° 577x107° —577x10°°
oo | 0 0 0 0.69 —0.69 —0.69
Ba™10.69 —0.69 —0.69 0 0 0
0 0 0 0.28 0.28 —0.28
028 028 —0.28 —14x10* —-14x10* —14x10*
when Bf = Blg,
0 0 0.67 0.67 —5.77x107°  1.11x10°°
0.67 0.67 —577x107° —577x107° 1.11x107% —4.67x 107"
o | 0 0 —0.69 0.69 0 0
B 069 0.69 0 0 0 0
0 0 —0.28 —0.28 —14x10*  250x%x 1077
—0.28 —028 —14x107* —14x10* 250x107 —1.12x10°1°
when Bf = Blg,
0 0 0.67 AR5 5.77x 107%  —5.77 x 107°
0.67  0.67 577 xA0° Sl x 0% 1.11x10™°  1.11x 107°
o | o 0 — 069 |k 069 1= 0 0
Bis =1 —0.69 0.69 0 ey | 0 0
0 0 028 o =928 —14x10* —14x10"
0.28 —0.28 —1.4xW0H"=TA% 107! —2.50 x 1077 2.50 x 1077
when By = By,
0 0 0.67 0.67 5.77x 107%  —5.77 x 107°
0.67 0.67 577x107° —577x107° 111x10°% 1.11x10°S
o | 0 0 —0.69 —0.69 0 0
P 0.69  —0.69 0 0 0 0
0 0 0.28 —0.28 —14x107" —14x10*
0.28 —028 —1.4x10"* —1.4x10"* —250x10"7 250 x 1077
when By = Bas,
0 0 0.67 0.67 577x107° =577 x 107"
0.67 0.67 577x107° —577x10° 1.11x10°% 1.11x10°°
R 0 0.69 0.69 0 0
B = 10,69 0.69 0 0 0 0
0 0 0.28 —0.28 ~14x107* —1.4x10*

028 —028 —14x10* —14x10* —250x107" 250x10°7
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when By = By,

0 0 0.67 0.67 5. 77 x 107° =577 x 1075
0.67 0.67 577x107° —=577x10° 1.11x10°° 1.11 x 10°¢
Cp — 0 0 0.69 —0.69 0 0
> 0.69 —0.69 0 0 0 0
0 0 0.28 —0.28 ~14x107* —14x107"*
028 —0.28 —14x10* —-14x10* —250x10" 2.50x 10"
when Bf = 334,
0 0 0.67 0.67 5.77 x 107° 1.11 x 10°¢
0.67 0.67 577x107° 577x107% 1.11x 1076 4.67 x 10711
Oy 0 0 0.69 —0.69 0 0
s 0.69 —0.69 0 0 0 0
0 0 0.28 0.28 —-14x10%* —-250x10"
028 028 —14x10* —14x10* —-250x10"7 —1.12x10°1°
It is noted that rank(Cg) = rank(Cp,) = rank(Cg,) = --- = rank(Cp,,) = 6, which

implies that the system are always controllable no matter any one or two actuators expe-

rience faults. —
= — - q '. o .
3.2.2 Energy Required to Transfer States -
= , | . _,_'. o L .-Il

From last section, we see an 'iptgfésf:irig' ;r'é'sult::‘_"ho matter one or two actuators fail,
the system is still controllable. Theb‘ferticaﬂy,'-v(f'é can control the states to any locations
whatever cases discussed above, but how about in practical? Here, we begin from the

viewpoint of energy. Consider a linear time-invariant control system
z(t) = Ax(t) + Bu(t) (3.9)
and associated controllability Gramian

t
W.(t) = / eATBBT AT (3.10)

0

if the system is controllable, we know that for any initial state x(0) = z, at time ¢t = 0

and any final state x(¢;) = 21 at time ¢ = ¢;, the input

u(t) = _BTGAT(Mﬂt)V\/‘c—l(tl)[eAtlanO . xl] (3.11)
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will transfer zy at time ¢ = 0 to =y at time ¢,. The associated required energy is
t
E = / ul (Hyu(t)dt = [eAzy — 2] W () [ 2o — 24] (3.12)
0

Now, we use this result to proceed a test. To transfer the spacecraft states from x(0) =
(—0.7,-0.07,1.5,0.3,1.3,-0.2)" at t = 0 to x(t;) = (0) at t; = 100 second, the energy

required to achieve the task is listed in Table 3.1, where each condition is considered

involved.
Table 3.1: Energy required to transfer states
Condition B Bl 32 B3 B4
Energy | 6.50x 10 % | 7.40x 102 | 2.17x 1072 | 6.60 x 10 % | 1.63 x 102
Condition B12 Blg B14
Energy 3.69 x 10° | 3.90 x 10® | 2.81 x 10°
Condition B23 BQ4 B34
Energy 7.94 x 10* | 6.61 x 10* | 9.56 x 10°

From this table we can see that the ene:rgyl i"e'q-_l__lired to transfer the states is about the
level of 1072 or 102 when norma’i bpera‘éik_)h orionly -(')__ne actuator is fail, while it up to the

level of 10° at most when two a'et.uatoys_r ;_WOfk abflorrﬁal, even the smallest ratio between

them (F = 2.17 x 1072 of faulty (;i(')p"di'ti'i;)-n'B;gnd_E: 2.81 x 10? of faulty condition Biy)
is approximately 1.3 x 10°. Of cours-é,-n in 1510 'déﬁbt that those cases when two actuators
fail are controllable, we can still achieve the task, nevertheless we need more energy, and
not only a few (at least 1.3 x 10° times larger).

Spacecraft is an expensive equipment, and most of it’s working life depends upon the
remainder energy it has, the example we show above may tell us that it is not worth to
executive such a mission while any two actuators are fail. However, the unperfection is
that the situations we discussed above are only case by case, that is, to transfer a specified
state to another one. Therefore, we are going to give more general descriptions about the

controllability in the following sections.
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3.3 Distance to Uncontrollable
3.3.1 Introduction

The concepts of controllability [6], [9], [10] is a generic property. Since to determine if
a system is controllable depends upon whether a certain matrix has full rank, it is clear
that an uncontrollable system can arbitrary close to a controllable one as long as it is still

stay uncontrollable. To illustrate this, consider a well-known example (Eising 1984):

~1 -1 - - - -1 -1 1
1 -1 ~1 0
1
A= : B=
0 1 -1 :
11 0

After calculation, we get the pair (A,B) is controllable. However, if we add (—2'",

—21=n ... 2171 {0 the last row of (A,B), we obtain an uncontrollable system. Here we
regard the term 2'™" as perturbation, o_byipu__s_ly it is small when n is large, which implies
that the original controllable syst'et'n-': 1s Clo:se toa uncontrollable one. Consequently, it is

more important to determine how close é'éoﬁt}fdlablq system is to an uncontrollable one,

rather than to determine whetheriit i{si(;g_ht'rn()llable‘d‘r'lly.

3.3.2 Distance Measurement '« B— )
For this purpose, we introduce a measure of the distance to uncontrollable (Chris

C. Paige(1981) [26]), denoted by u(A,B) as shown in Figure 3.1, which is

Definition 3.1 p(A,B) = min {||AA, AB||; such that the system
defined by (A + AA, B + AB) is uncontrollable. }
where || - ||z is 2-norm, and AA and AB are allowable perturbations over a field F. The
quantity p(A,B) gives us a measure of the distance between a controllable pair (A,B)
and a nearest uncontrollable one, which implies that if the distance is small (large), then
the original controllable system is close to (far from) an uncontrollable system. According

the linear algebra theory, the distance (A, B) can be defined as in Theorem 3.1. [ |

Theorem 3.1 [6] Singular Value Characterization to Distance to Uncontrollable
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controllable set

\ uncontrollable set

Figure 3.1: Distance to uncontrollable

(A, B) = 0, = opin|A — sI,B]|, where o, is the smallest singular value of

matrix [A — sI, B] and s runs over all complex numbers.
(3.13)

Proof: Suppose that (A —i—AA,B—HAB) is;‘;}a_n uncontrollable pair, according to
r, — 'I-H W | b >

checking condition (3.3), we ha\;é i .
=i P g | | jll

rank (A + AAZ SI,B +AB) <n, for some s € C (3.14)

since the smallest distance make rank [A — s, B] less n is o, [A — sI, B], we have
TminlA — sI,B] < |AA, ABJJ; (3.15)

and the equality holds if
[AA, AB] = —0o,un,v; (3.16)

where o, is the smallest singular value of [A — s/, B], and u,, and v} are the corresponding
left and right singular vectors of o, respectively. [ ]

The proof of Theorem 3.1 is a well-known result utilizes singular value decomposition
(SVD). Since it is the most important concept here, we give a short interpretation for it.
Assume A is an m X n matrix with m > n (The assumption is made to illustrate equation

(3.17), all the result still hold if m < n), then factor A into a product U Y- V*, where U is

47



an m x m orthogonal matrix, V' is an n X n orthogonal matrix, and ) is an m X n matrix

whose off diagonal elements are all 0’s and diagonal entries satisfy

oL >09> >0, >0 (3.17)

the o;’s are unique and are called singular value of A, that is, A = U V* be the SVD
of A. Let rank (A) =n > 1, define Ay = U Y, V*, rank (4y) =k =n—1> 0, , where

(+)* denotes transpose and conjugate of a matrix, and Y, can be expressed as
01 0
e 0
k=1, , (o1 >09>0,>0)
0 10

then we get the following results

1. Out of all matrices of rank k£, the matrix A, is the one which closest to A.

2. The distance from A to Ag:||A — Agl|2 = 0,.

3. The perturbation A — Ay = o,v,u;

Therefore, the distance o,, and pertuljb.a’pion _g__,_zvnu;’; are then obtained. If the smallest

nonzero singular value o, is very small, i'rrlplyin'g '.t'hat the matrix is very close to a matrix
= F|Spne

of rank n — 1. X ety

3.3.3 An Algorithm to Compute the Distance

There are many methods to solve Umm[A—!SI ,-'B], such as Newton’s methods introduced
by L. Elsner and C.He [11], or an iterative algorithm proposed by Mark Wicks and R.
A. DeCarlo [7] and others (e.g., [3], [24], [26]). In the section, we introduce the method
proposed by Mark Wicks and R. A. DeCarlo [7].

Although the formula of (3.13) is the most attractive formulation of p(A, B), DeCar-
lo gave a new interpretation, which is based on the observation that the pair (A,B) is
uncontrollable, then there exists a partitioning and a equivalent transformation for which

the pair:

A, A . /B
A:(“ lﬂ, B:(1> 3.18
Ay Ay B, (3.18)

has the submatrices Ay and By equal to zero. To compute the distance form pair (A,B)
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to lower rank, only the perturbations having a rank of one or two are interest, which
implies that A;; has dimension (n—1) x (n—1) or (n—2) x (n—2). Using this approach,
1(A, B) becomes the minimum of ||[Ag; Bs]|| over all unitary bases for the state space,

the minimization is

p(A,B) = min |[lg" AT — q¢")¢"BJ| (3.19)

subject to ¢*¢ = 1. Here, we leave out the procedure of proof and only illustrate an

algorithm since it is very complex. Define the distance measure

d(A,B) = ||len(A(I —eney) Bl (3.20)
= Z:l |an;” + Z:l ||

where e, denotes the n-th standard basis vector for IR". Following, we give the algorithm

to compute the distance.
Algorithm 3.1 The Algorithm to Compute d(A,B)

s A=A BB e

(2) Let My = [y — [analu] Byl 5 W07 E

(3) Factor M as the product 0%-_:_% ldy’si{_g{fi-imular-f}natrix Ly and a unitary matrix U}
where M, = LU, S

(4) Factor Ly as the product of a unitary matrix @y and a right upper triangular matrix
Ry, ie., L = QpRy.

(5) Set Apr1 = Q1 ArQk, Bri1 = QB

(6) If |d(Ags1, Ber1) — d(Ag, Br)| < tol, then stop; otherwise set £ = k + 1, and go
back to (2).

where tol is the tolerance to be defined.

About detailed interpretations of this algorithm, see reference [7].
3.3.4 Spacecraft Example

Now, we lead spacecraft linear model (3.6)-(3.7) into Algorithm 3.1 and obtain the

distance to nearest uncontrollable set of each faulty case and the corresponding location

49



Table 3.2: Distance to uncontrollable

Condition B B, By B3 B,
Distance 0.56 0.3775 0.3775 0.3775 0.3775

S, 2.53 x 10720 | 2.01 x 107 2.01 x 107° —2.01 x 107% | —2.01 x 10~°
Condition B12 B13 Bl4
Distance | 1.02 x 107% | 7.88 x 10~ 1.22 x 107°

S, 3.75 x 1071 | 1.15 x 10~ 4.97 x 1076
Condition By By, Bs,
Distance | 1.22 x 107% | 7.88 x 10~ 1.02 x 107°

S, 497 x 107% [ 1.15 x 10729 | —=3.75 x 10710

of s, denoted by Sx, where are listed in Table 3.2.

It is obviously that the distance of the cases of two actuators fail are at least 107°
to 107°% times shorter than those of normal or one actuators fail. Comparing Table 3.2
to Table 3.1 , we can see that the cases which need more energy to transfer states when
two actuator fail in Table 3.1 are cpffééppndi#é to,,'the ones of shorter distance to uncon-

trollable in Table 3.2. Rather tlr:u_m diséu‘"s‘si'_ng"a special situation (i.e., to transfer state

from z(0) = (—0.7,-0.07,1.5,0:3, 1.3, —0:2)" t070),’fwe give a more general concept to

uncontrollable measure. Finally, -We ist the pvhé'rtu}_bations of two cases, say By = B and

Bf - B12-
when By = B,
—4.74%x 10726 —283x107% 0 0 256x107° —6.07 x 1072
—7.01x107% —418x 1072 (0 0 3.78x10722 897 x 10737
0 0 0 0 0 0
04 = 0 0 0 0 0 0
764x107%2  456x102* 0 0 —4.12x10%6 —9.78 x 104
—1.58%x 10722 —942x10°® 0 0 851 x10°7 2.02 x 1072
—8.41x 107 —841x10°° 8.41 x 10° 841 x 10°°
—1.24x 107 —124x10716 124x10°% 124 x 10716
0 0 0 0
0B = 0 0 0 0
—1.36 x 10720 136x 10720 —1.36x 1072 —1.36 x 1020
—0.28 —0.28 0.28 0.28
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when By = B12,

—1.25 x 10710 —8.46 x 102"
—2.53 x 1077 —1.72 x 10716

1.26 x 10737
2.55 x 1073
1.56 x 1072
4.68 x 1075t
5.25 x 10738
6.09 x 1073

sA— | 155X 1072 1.05x 107
T | 465 x107% —3.15x 1073
522 x 1071 —324 x 1072
—6.05 x 1077 —4.1 x 10716
7.18 x 10720
1.45 x 1016
—8.9 x 1073
2.67 x 10733
—3x 10~
348 X 10_16 column6
1.01 x 10716 1.01 x 10716
205 x 1073 2.05x 10713
5B — —1.25 x 10731 —1.25 x 103!

S OO o oo
S OO o oo

3.77 x 10730 3.77 x 10730
—4.23 x 10717 —4.23 x 10717
491 %1078 4.91 x ;of?’___

—3.36 x 10728
—6.8 x 1072
—4.16 x 1074
—1.25 x 10°%
1.4 x 10728
—1.63 x 10724

1.49 x 10710
3.03 x 1077
—1.85 x 1072
5.56 x 10~
—6.24 x 1071
7.24 x 1077

columnl—5

Since the distances of system (A B) to u]npontrollable for the cases of two actuators fail

are much smaller than those of normal or one.actuator fail, the perturbation A — A, of

faulty condition Bj, is much smaller than faulf condltlon B. In order to see the quantity

of perturbations, we define a quantltatwe measure

Q=Y [5A|+ |sB|

(3.21)

After calculation, we can get Q5 = 1.1204 and Q1> = 1.89 x 10~ %, which implies that the

faulty system Bjs will become uncontrollable only affected by a very small perturbation,

while the faulty one B will not.

3.4 Mobility of Eigenvalues
3.4.1 Introduction

The controllability measure suggested in section 3.3 is related to the distance from

a controllable system to a nearest uncontrollable one, the measure requires minimizing

the singular value of a polynomial matrix which can be computationally involved.

In

the section, we introduce another controllability measure proposed by M. Tarakh [31],
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[33], [34], which is a new concept named ”Mobility of Eigenvalues”, and we will discuss
a system with distinct and repeated eigenvalues, respectively. About the case of distinct
eigenvalue, we will start from two different viewpoints of mobility such that will lead to

the same result, which will be discussed in part I and part II, respectively.
3.4.2 System with Distinct Eigenvalues (Part I)

Consider a linear multivariable system

t = Az +Bu (3.22)

y = Cz (3.23)

where z € R™, u € R™ and y € R! are state, input and output vectors, respectively, and
A, B, and C are matrices with appropriate dimensions. The mobility of an eigenvalue of
the system (3.22)-(3.23) can be defined as the ratio of the neighborhood to which it may
be shifted to the control gain used to cause _such a change. More precisely, consider the

system (3.22)-(3.23), and denote thé-ﬂéigén;valll}:és" of A as \;, i = 1,2,---,n. Now apply
the output feedback control law : E;Ei 7-_ % -

Al E (3.24)
where JK is the m x [ feedback' matnx The _:eﬁ:é—ct of the feedback control will bring
the eigenvalues \; of the open loop sy-sfem L(.A,B,C) to N = A\ + 0\, where )\; is the
eigenvalue of the closed loop system matrix (A — BJKC). Then we define the mobility

of the eigenvalue A\; under such output feedback as

I\

i = 3.25
e = 1152 e (3.25)

where V¥

5)\Z 0K11 0K
= . 3.26
K N N (3:26)

0K m1 0K 1

and || - || is the Frobinus norm.

Suppose e; and f; are the right and left eigenvectors of A with associated eigenvalue,

respectively, that is, Ae; = Nje;, fFA = N\ fF, for i = 1,2,---,n. Note that the pair (f

)
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e;), © # j are biorthogonal (i.e,. fe; = 0), and we can always achieve both fre; =1
and efe; = 1, in which case f/f; # 1, in general. It is shown (see Appendix 3A) that the
eigenvalue i of the matrix (A 4+ 6D), where dD is an n x n perturbation matrix whose

elements are sufficient small, can be expressed as

i =i+ 0\ (3.27)
and 0\; can be obtained from
f-* 0D €;
N = >+——— 3.28
= (3.29

In the meanwhile, we should utilize Remark 3.1 below.

Remark 3.1 Assume K is a m X n matrix whose elements are g, a = 1,2,-+-, m and
_ _ T _ T
b=1,2,-+-,n. Define u = (u; us -+ uy)" and v = (v; vo --- v,)" are two vectors, let

: _ T of
a function f be f = v’ Kv, then we can express g as

of ... B Nuun .
8f 8&11 8a1n | 5 UI'UI UI'Un
= - =K —w’ (3.29)
8K_ 5 a — = uv .
N 1TV N,
Oam1 S5 Oiznnll S Rl TV

Using this result and fe; =1 .ah&_t'h'e; fact ’@ﬁ'at in the closed loop system, dD =

B §KC, we can get T
then adopt equation (3.29)

O
0K

= (fiB)"(Ce;)" (3.31)

thus we can have

o\
;= “IlF = ||Ce,; f*B 3.32
pi = |l5pellr = lICeifiBllr (3.32)
Following, we will show that pu; is equal to another controllability measure m; in part II.
3.4.3 System with Distinct Eigenvalues (Part IT)

The input-output transfer function of the system (3.22)-(3.23) is

$(s)
A(s)“(s)

Y(s) = C(sI — A)"'Bu(s) = (3.33)
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where ¢(s) = C adj(sI — A)B is the [ x m numerator transfer function matrix, and A(s)
is the characteristic polynomial. In order to discuss controllability, we can set C = I,,,

then define a new numerator matrix ¢,/(s) as
dm(s) = adj(s] — A)B (3.34)
then we propose the following result.

Proposition 3.1 [27], [32] Consider a system (A,B,C) and the eigenvalues \;, i =
1,2,---,n of A are distinct. The mode J; is uncontrollable if and only if ¢, (\;) = 0.

Proof: This proposition is based on the fact that if a system is with distinct eigen-
values, common pole-zero cancellations between all the entries of the transfer function
matrix C(s/ — A) !B result in uncontrollability or unobservability. Previously, we had
let C = I, it is obviously that the system (3.22)-(3.23) must be observable, implying
that it must be uncontrollable while pole-zero cancellations occur. Since when mode J; is
uncontrollable, pole-zero Cancellatigpg' hdppéﬂed._ between all the elements of the matrix
(sI — A)™'B, it means that all th_é 1tems:‘<:[)fl¢M(s) have the factor (s — A;), which make
bar(A) = 0. !:,- , 3° .

Following, we define the contf;)"llal;ijljity fnéésur.e'ment.

) Aan

Definition 3.2 Consider a system (A,B,C) and the eigenvalues of A are distinct. The

controllability measure m; of the mode J; is defined

m; = ||dar(N)|[r (3.35)

where ¢y/(A;) is the n X m numerator matrix as defined in equation (3.34) with s is

replaced by A;. [ |
In addition to determine the controllability of particular mode A;, we can define
me = min{m,} (3.36)

which is a controllability measure for the overall system (A,B,C). Following, we will deal

with equation(3.35).
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Suppose e; and f; are the right and left eigenvectors of A as defined in part I, define
E=(eges ---e,)and F = (fy fo -+ fn), it is obviously that EF* = FE* = I,,. Since
A has distinct eigenvalue, then A can be expressed as A = EAF*, where A = diag{\;}.

In the view of these, equation (3.34) with s is replaced by A; can be

o) = adj(\I — EAF*)B
= adj(E(MI — A)FY)B
= adj(F*) adj(\;] — A) adj(E) B (3.37)
Since EF* = I and |E||F*| = [EF*| = |I| = 1, we can get E = (F*)! = adj(F")/|F"|

or equivalently, adj(F*) = |F*|E, and we can get adj(E) = |E|F* in the same manner.

Therefore, equation (3.37) can be rewritten as

onm(Ni) = E adj(A] — A)F'B (3.38)
now, adj(\I — A)
- ;7 | : 0
= adj N - Nerere A& 5 (3.39)
; % - ; -
Ai = An 0
where
5; = ﬁl()\i — ) A (3.40)
i=

is a constant scalar and is located on the i-th position of the i-th column vector. Substi-

tuting adj(A\; ] — A) in the express of equation (3.38) for ¢5/();), we obtain
dur(Ni) = diei fiB (3.41)
then the controllability measure can now be expressed as

mi = ||par(N)||r = |6i] [leifiBl|r (3.42)
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Now, we can see the relation between p; (3.32) and m; (3.42), setting C = I,, in equation

(3.32) result in

= [leifi Bl|r (3.43)

b= Ik
then m; is |0;] times of p;, where |d;| is a constant when the system is given. Therefore,
we claim that p; and m; are the same, and the controllability measure m; in part II is
also the mobility.

Let’s go on from equation (3.42). Since adj(A\;/ — A) having a rank of one, and
éar(A;) is never a null matrix (otherwise the system is uncontrollable), it is obviously
that ¢pr(A;) is of unity rank. Note also that as long as ¢/(A;) have only one nonzero
singular value, which implying that ¢3,(\;)¢a();) also have only one nonzero eigenvalue,
hence Ayae[@5(Ai)dar(Ni)] = tr[oi,(Ni)dar(N:)], where Apq.[-] and tr[-] denote maximum
eigenvalue and the trace of the matrix. According to the definitions of the spectral norm

and Frobinus norm, we can recognize they are equal in such instance, that is ||¢%,(\)||s =

l|#5s(Ai)||F, and either norm can be used, then:._the mobility is

Y = H B (&B) . fm))

= |5~|=[tr( "W Gl B >1%:
= |5|[tr(e ezf*BBsz)]%" (3.44)

) Aan

using previous definition that eje; = 1 we can obtain the final result
— |5,] [f;BB" ]} (3.45)

where the quadratic form ffBBTf; = ||B7 f;||% which is real and positive semidefinite,
and |0;] is never zero due to the fact that the eigenvalues are distinct. Therefore, we can

obtain the result below.

Lemma 3.1 For a system pair (A,B), if the system eigenvalue ); and the corresponding

left eigenvector f; are all real, then the mobility m; of \; is
= |6i| [/ BB" fi]2 (3.46)

the mobility m; becomes zero only when f; is orthogonal to all the rows of B”, or equiv-

alently, all the columns of B. [ |
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Lemma 3.2 For a system pair (A,B), the pair of complex conjugate eigenvalues \; =
it +JAiz and AF = \;; —j N with associated eigenvectors f; = fii+jfiz and ff = fl —jf5,

, the mobility m; becomes
= 6;] [fiBB” fii + f5BB f;]? (3.47)

the eigenvalue pair (A;, Af) is uncontrollable if and only if both f;; and f;, are orthogonal

to all the rows of B”. u
3.4.4 System with Repeated Eigenvalues

The analysis of last section is based on Proposition 3.1 which gives conditions on zeros
of the elements of the numerator matrix ¢(s) for mobility of the system with distinct
eigenvalues. In fact, these elements are the zero polynomials of the SISO subsystems. It
has been proved that for determining the controllability of the system having repeated
eigenvalues, one must consider not only the zeros of the SISO subsystems, but also the ze-
ros of other square subsystems. This is,dueito the fact that a system can have ¢ (\;) =0
and still controllable when e1genva,lues areﬁ“epgated {29]. Now, we utilize the transmission
zeros to define mobility for a general system Wlth repeated eigenvalues.

Consider the set of r-input r—output ‘(Tch_ensmnal) square subsystem of the system
(A,B,C),r=1,2,--- min(m,I) Wthh denoted by (A,B],,C}),and B}, « = 1,2, -+, u,,
are the set of n x r submatrices formed by r columns of the matrix B, and C}, § =
1,2,---,v,, are the set of r x n submatrices formed by r rows of the matrix C. The
number of the n x r submatrices of B is u,=(m!/(m-r)!r!) and the number of the r x n
submatrices of C is v,=(1!/(I-r)!r!). Besides, the number of r-dimensional subsystem is

w, = u,v,, and the total number of subsystems is w = Efiri(m’l)

w,, and the transfer
function matrix of the subsystem is G (s) = Cj(sI — A)~ B' vy =1,2,--+, w,.

Base on the definition of the zero polynomial of a system [14], we can express the set
of zero polynomials of the r-dimensional subsystems as

2(s) = det{S[_A Ba]

c, 0
= |sI — A||Cj(s] — A)"'BY|

= |Cg adj(s] — A) B.| (3.48)
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where the roots of 2I(s) are the transmission zeros of the r-dimensional subsystems.
Furthermore, the zero polynomials of one dimensional subsystems are the entries of the
numerator transfer function matrix ¢(s).

According, [31], if the control low to be applied to the system (3.22)-(3.23) is
u=—Ky (3.49)

where K is constant m x [ feedback matrix, the closed loop characteristic polynomial of

system (3.22)-(3.23) with such a control law is

min(m,l) wy
A(s) )+ D Z det(K7)z!( (3.50)
r=1 =
where A(s) is the open loop characteristic polynomial of the system, K7 is the r x r
submatrices obtained from the [ x m matrix K7 at the same manner as the subsystem
G! (s) is obtained from the system G(s), and those will be used to establish the following

result.

Proposition 3.2 The mode ;. ié":;:l'ncoq-tro_lli:jilz)l'e'if and only if all the r-dimensional
subsystems of (A, B, I,) have a f;fénsfni.s'siibri' zero ét.;)\i, that is, 2 (s) = 0 for all r and 1.

Proof: The proof is dlrectly form taquamg_n_(3 50) by setting C = [,,, and the system
is controllable if and only if all the root;s of its closéd loop characteristic polynomial A( )
are affected by an arbitrary feedback. In -th1s case, only if \; is not a transmission zero of
all subsystems, in other words, 27(A;) # 0 for some r and 7, as seem form equation (3.50).

Based on above developments, the mobility of the mode \; of a system with repeated

eigenvalues is defined as

min(m,l) w, )
mi=[ > Y |5 (3.51)
r=1 =1

where 2! ();) is obtained after replacing Cj by I and I} are appropriate r X n submatrices

of I,,. [ |

3.4.5 Mobility of Spacecraft

Here, we determine the mobility of the spacecraft linear model (3.6)-(3.7). It is known

that the characteristic polynomial of the spacecraft system is A\? - [A*+ (a; +a3)\? — 2a?] =

o8



2 2_ 2
0, and the six eigenvalues are (0,0, £, £jus), where py = \/v (a1+a2)2+28a1 (@179) 4nd
“ _\/\/(a1+a§)2+8a%+(a1+a§
2= 2

), Clearly, that the spacecraft system is of the case of repeated
eigenvalues. Since the mobility measure of repeated eigenvalues system which discussed
last subsection are complicated, Tarokh proposed an alternative method to determine
the mobility. He suggested that we can apply small perturbations to the original system
and obtain a system with distinct eigenvalues. According to the setting of the spacecraft
model we defined before, the minimum value of the entries of A is about 1077, for this
reason, we define a small perturbation ¢ = 107!'%, which is 1000 times smaller. Then we
add e to position (3,3) of matrix A in equations (3.6)-(3.7), the characteristic polynomial
becomes

AA = €)M + (a1 +a3)\* — 2a]] =0 (3.52)

which implies that one of the eigenvalue 0 has been moved to location €, and the six
eigenvalues become (0, €, £p1,+jus). Since the difference between p; and m; is ¢; which

is a constant while a system is giv_en‘,“iizve eIimifi’é’tq_ 0; utilize the over all system mobility
as !_ 1 -

';in{‘[f;ésBTfi]%} (3.53)

m, =amin{m:} =m

After calculating, we get the mobi'li.t_y.gf each cases as listed in the table below

Table 3.3: Mobility of spacecraft system

Condition B By By Bs B,
Mobility | 310.09 | 268.54 | 268.54 | 268.54 | 268.54
Condition B12 Blg B14
Mobility | 219.27 | 219.27 | 219.27
Condition B23 BQ4 B34
Mobility | 219.27 | 219.27 | 219.27

From Table 3.3, we can see that the mobility is decreased when less healthy actuators

remainder, indicating that the system is less controllable, too.
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Appendix 3A

Suppose A € IR™" and let x and y be, respectively, the right and left eigenvectors
associated with a simple eigenvalue X of A, that is, Az = Ax and y*A = \y*, we will show
that if £ is a small perturbation matrix, then

y*Ex
yrr

A+

(3A.1)

is an eigenvalue of A + F.

proof
First, we define a;; be the ij-th element of F, and E;; = eie]T fori,j =1,2,---,n,
where e; and e; are corresponding vectors of standard basis for R". Rewrite A as

A= AT (3A.2)

yrx

now, if we apply a small perturbatjdﬂi:tEi,j' inlfzhér-_,_z_'j—th direction of A, we will have

(A st )l = A (e (1) (3A.3)
where A(t) and z(t) denote the eigenvalue-and-assoeiated eigenvector of A while affected
by the perturbation. By the same mANNEF A4S equation (3A.2), we can expressed A(t) as

) = y (A ;iﬁl)])x(t)

(3A.4)

note that the expression of A\ can have another form

Yt Ax(1)
V=t (3A.5)

then the variation of A in the ij-th direction is

o\ A=A
= lim ———
Gaij t—0 t
— lim Yy (A+tE;)x(t) — y*Ax(t)
t=0 ty*a(t)
— hmw
t—0 y*gj(t)
y*EijfL'

= lim
t—0 y*gj

(3A.6)

60



It is obviously that if the variation of A in the 7, j-th direction of A has the form as shown
in equation (3A.6), we can know that the small change 6\ of A due to the perturbation

FE must be

B
or=21"2 (3A.7)

yrx

that is , A 4+ 0\ is an eigenvalue of A + E, where 0\ as stated above.
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CHAPTER FOUR
CONCLUSIONS AND SUGGESTIONS FOR FUR-
THER RESEARCH

In this thesis, we study the spacecraft attitude tracking problem and new controlla-
bility measurements.

As is well known, the conventional Variable Structure Control (VSC) design suffer-
s from chattering effect when using a sign-type controller and only achieves uniformly
ultimate boundedness while using a saturation-type one. Therefore, we proposed a mod-
ified VSC scheme to improve these drawb@cks. This modified VSC law behaves similarly
to the sign-type and saturation—typ’é'::\'fsrq lavvs "v&z._hen the system state is far from and
close to the selected sliding surfgxée 'regégédtiiiély,"-;nd is continuous everywhere. As a
result, this control law can ehmmate the cMmg phenomenon and achieve asymptotic
stability. Consequently, the modlﬁed VSC scheme not only inherits from conventional
VSC design the advantages of fast respons;a and small sensitivity to model uncertainties
and disturbances, but also enables a spacecraft to perform a highly accurate pointing
task. Moreover, the proposed VSC scheme can be directly applied to existing sign or
saturation-type VSC designs add to the applicability of our results. Simulation results
have demonstrated the effectiveness of the proposed scheme. On the other hand, a class
of reliable VSC laws are proposed and applied to spacecraft attitude control issue. These
reliable VSC laws are shown to be able to tolerate the outage of actuators within a pre-
specified subset of actuators in passive designs. While in active ones, the proposed fault
detection and diagnosis mechanism is shown to be able to detect and diagnose the outage
of the actuators, and provide a real-time information for reliable control. According to
the simulations, it is shown that both passive and active reliable controllers can achieve

the desired performance.
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In chapter 3, we introduced two new concepts for controllability measurement, ” Dis-
tance to Uncontrollable” ([3], [7], [10], [11], [24], [26]) and ”Mobility of Eigenvalues”
(Tarokh, [31], [33], [34]). Rather than giving absolute "yes” or "not” answers for con-
trollability of classical measurement, the two methods guide the relative ideas into their
measures, even can be connected with energy consumption of the system. Utilizing these
benefits, we can analyze the system in a more clear and delicate way, instead of earning
the information that whether a system is controllable or not, we can now get that how
hard a system is to be controlled, which can tell us how much cost we should pay to
achieve a specific task. Also, it provides helpful information while we design a system.
The relation between the energy required to transfer the states and the degree of control-
lability of two methods are also presented in chapter 3. It shown that the more energy
required, the more uncontrollable the system is, and vice versa.

To further extend the research covered in this thesis, we note several directions. In
reliable control, to study and compare with Qfld__ler possible methods which can attenuate
the chattering effect, and add mq‘.r'é""};;)s.srih-le co;:n:sﬁaint in the design of VSC law due to
the actuator physical limitation mmechar!ulcz;lsystem, For FDD design, to search a better
way to estimate the faulty messé__g*es ofa,ctua.tgns t'()rgallvoid possible control high gain that
might violate physical saturatiori restrlctlofns }n-'é‘ontrollability measurement, to study
more subjects, compare their advantag(;é aﬁdh arawbacks, and their suitable applications.

Further more, to extend those concepts to other control techniques, like switching control

or fuzzy control, which are newly risen and attract more and more attention now.
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