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摘要 
 
當 CMOS 的製程朝向尺寸越來越小演進時，由於低電壓以及低基本增益的關係，

設計類比電路如管線式類比數位轉換器中的殘餘量放大器是一項相當具有挑戰性

的工作。信號不再線性的被放大而開始有了失真。因而在本篇論文裡，我們提出

了一個嶄新的數位背景校正方法，可以精準的量測與修正殘餘量放大器中的線性

與非線性增益誤差。我們所提出的方法  multi-correlation estimation (MCE) 

technique，利用加入不同振幅的隨機序列，而得以得知有關於誤差的訊息。除此之

外，利用此種方法的數位校正電路可以被大幅的簡化。 

 

此外，本篇論文探討了類比數位轉換器被校正過後的精準度與其在校正電路裡校

正參數之間的關係，同時建立了一個對於電路實現的設計流程。 

 

應用所提出的方法，模擬結果展示出一個 12-bit 200MSample/s 管線式類比數位轉

換器在校正之前 ENOB=6，SNDR=38dB，DNL=2.6/-0.7 LSB，INL=27/-27，校正

後的ENOB=11.7，SNDR=72.3，DNL=0.43/-1，INL=0.66/-0.6。 從以上結果可以驗

證我們所提出的方法是可行的。 
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Abstract

As the trend for the CMOS process scaling continues advancing, the design of
analog circuits such as the residue amplifier in the pipelined ADCs has become a
much challenging work due to the lowed intrinsic gain and the voltage swing. The
signal amplification by the residue amplifier is no longer linear but has distortions.
This thesis presents a novel digital background calibration that accurately estimate
and correct the linear and the nonlinear gain errors arising from the residue amplifier.
The proposed estimation technique, called the multi-correlation estimation (MCE)
technique, estimates residue gain errors by injecting random sequence alternatively,
allowing extractions of linear and nonlinear gain errors orthogonally. In addition,
the circuits enabling background estimation is largely simplified.

This thesis also discusses the relationship between the recovered ADC resolution
and the correction parameters associated with the calibration function. Therefore,
a design strategy related to the practical implementation as well as the design con-
sideration is built in this thesis.

Employing the proposed scheme, the simulation result shows that a 12-bit 200
MSample/s pipelined ADC before calibration only has an effective number of bit
(ENOB) of 6 bits, an SNDR of 38.4 dB, a DNL of 2.55/ − 0.75 LSB, and an INL
of 27/ − 27 LSB. After calibration, its ENOB and SNDR are improved to be 11.7
bits and 72.3 dB respectively, and its DNL and INL are 0.43/−1 and 0.66/-0.6 LSB
respectively. These results verify the proposed technique does work well.
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Chapter 1

INTRODUCTION

1.1 Motivation

As the fabrication technology continues to scale down, digital circuits have much
superiority over analog ones. Digital circuits benefit from the scaled CMOS technol-
ogy, making them smaller, consuming less power, and capable of operating at high
speed. That is, more digital signal processing (DSP) capability is available for the
same area at a reduced power consumption. On the other hand, the analog circuits
suffer from reduced voltage headroom and intrinsic gain of the scaled devices. Both
add design challenges in high-gain feedback loops [10–12]. Meanwhile, the reduced
supply voltage limits the usage of traditional gain-enhancement design techniques
such as cascode and gain-boosting. It also lowers the ratio of useful signal range,
leading to increased power dissipation in the noise-limited circuits to keep the same
Signal-to-Noise Ration (SNR).

In modern SoC (System-on-Chip) devices, the analog-to-digital converter (ADC)
is a fundamental building block for connecting the real world to the digital proces-
sors. The demands for high performance ADCs with high resolution, high speed,
and low power keep increasing in various applications such as audio, portable, and
telecommunication. High performance ADCs, however, are usually power inefficient
and difficult to design using the advanced process. Based on above observations,
a new design scenario, digital-assist analog design, is getting more and more pop-
ular [3] and digital processing of analog signals has become more attractive [13] in
communication systems. Circuit designers now tend to use fast-but-imprecise ana-
log functional blocks, while employing DSP to compensate for the errors due analog
circuits. Such ADCs composed of digital calibration circuits therefore have the abil-
ity to facilitate compensation in digital domain to sustain their performance even
under the scaled technology.

1.2 Overview

This thesis is concerned with improving the ADC performance under scaled pro-
cess. For this reason, we employ DSP techniques to overcome the analog circuits
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limitations, recovering the degraded ADC accuracy.
The multistage ADC, e.g., the pipelined ADC, has been the most popular ADC

architecture because of its versatility. Typical applications include audio, video,
ultrasound, base station, and telecommunications. Flexible and suitable for a wide
range of specification, the pipelined ADC has the potential of achieving high reso-
lution, high speed, and low power. Because of its advantages, the pipelined ADC is
used to demonstrate and validate the effectiveness of our scheme described in this
thesis.

Among the key building blocks in the pipelined ADC are the residue amplifiers
in each stages. In general, we require the residue amplifier providing precise am-
plification and operating at high speed. Hence, both features need high open-loop
gain and large unity-gain bandwidth at the same time. However, large open-loop
gain is difficult to realize without sacrificing bandwidth especially using closed-loop
topology. With the closed-loop topology, although robust and highly linear, design-
ers inevitably have to make tradeoff between the precision, speed, and power in an
ADC design, making a constraint loop.

To break the constraint loop, numerous researches have been proposed to tackle
the technology limitation. The main concept of these algorithms lie in using analog
or digital circuits for the calibration of the non-ideal analog functions. Those works
can be classified into two scenarios:

• Area Redundancy

• Time Redundancy

The area-redundancy scheme uses an additional slow-but-accurate reference ADC
to calibrate the main ADC by comparing the digital raw codes of the main ADC
to those of the reference one [14, 15]. This reference ADC may be a Σ∆ ADC or a
cyclic ADC. The added ADC just for calibration may consume significant area and
power; besides, designing such highly linear ADCs is a challenging task especially
under reduced supply voltage.

On the contrary, the time-redundancy scheme takes the ADC digital output
codes for calibration rather than the comparison results, leading to less hardware
overhead and being easy to implement [3, 7, 16]. Such methodology may employ
complex digital circuits (to carry out statistical functions) instead of analog ones;
therefore, it is more robust and adaptable to the continuing scaled process. The
statistical algorithm enables the ADC itself to estimate the analog errors of the
residue amplifier so as to digitally compensate them.

Among previous works, two researches that can calibrate linear and nonlinear
gain errors of residue amplifiers have been proposed [3,17]. They have the advantages
of performing calibration in digital domain and working in background. However,
the calibration algorithm in [3] has large dependence on input signal statistics owing
to the way that it estimates the analog errors. Some specified residue values must
be toggled such that the information of errors can be obtained. This condition
is hard to fulfill since information itself cannot be predicted or assumed having
specific distribution. Moreover, redundant stages are required to precisely estimate

2



the error of analog components. In [17], it is only suitable for weakly nonlinear
amplifiers due to its calibration mechanism and not easy-to-implement because of
using very complex digital calibration circuits.

Faced with these issues and driven by the trends using calibration to improve
ADC accuracy while maintaining high speed, this thesis proposes an alternative
scheme. The scheme relaxes the design challenges on precise analog circuits by us-
ing open-loop amplifiers exhibiting high speed, low power, and low noise that then
can be corrected in digital domain. Assisted by the digital circuits, the proposed
scheme can adaptively calibrate the linear and nonlinear gain errors introduced by
the residue amplifiers while performed in background without interrupting the nor-
mal conversion. In particular, incorporated with statistical functions, it is featured
in that the quantization noise of backend ADC does not affect the system identi-
fication process as compared with [3, 18]. Therefore, the linearization parameters
for the calibration of the ADC can be obtained through an unaffected identification
process. In addition, calibrations of multistage ADCs using conventional precision
feedback amplifiers is available owing to the characteristics described in the scheme.

A 12-bit 200 MSample/s pipelined ADC with open-loop amplifiers design exam-
ple using MATLAB [19] is used to demonstrate the effectiveness of the proposed
scheme. The simulation results show that before calibration, the pipelined ADC
only has an effective number of bit (ENOB) of 6 bits, an SNDR of 38.4 dB, a DNL
of 2.55/-0.75 LSB, and an INL of 26.5/ − 26.4 LSB. After calibration, its ENOB,
SNDR, DNL, and INL are improved to be 11.7 bits, 72.3 dB, 0.43/-1 LSB, and
0.66/-0.6 LSB respectively.

1.3 Chapter Organization

This thesis is divided into nine chapters. Chapter 2 reviews the fundamentals of
pipelined ADC.

Chapter 3 discusses the error sources relating to pipelined ADCs and the error
models for further analysis.

Chapter 4 reviews previously proposed calibration techniques while giving anal-
ysis on their applications and limitations in depth.

Chapter 5 describes a digital correction mechanism that assists the proposed
estimation technique described in chapter 6 and 7.

Chapter 6 and 7 aim at giving comprehension of the proposed digital background
calibration scheme with its implementations and design considerations.

Chapter 8 gives the simulation results that validate the proposed concepts. From
the simulation results, we have shown a great improvement on the ADC performance:
a nearly ideal digital output is possible even extremely nonlinear stages are used in
the front-end stages.

Chapter 9 gives the summary and presents suggestions for future researches.
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Chapter 2

PIPELINED ADC OVERVIEW

Resolving engineering issues needs a thorough understanding to the question itself,
which helps the engineers find more elegant solutions to the problem and save the
design period. This chapter introduces the basis of the pipelined ADC and aims at
giving a straightforward insight into the ADC architecture, prepared for the topics
in depth of the following chapters. Sec. 2.1 introduces the basic principles of the
operation and the structure. Sec. 2.2 describes a technique, digital error correction,
that is commonly used in pipelined ADCs to relax the requirement on accurate
comparators in the sub-ADC.

2.1 Fundamentals of Pipelined ADC

A pipelined ADC is featured in performing a multi-step amplitude quantization as
indicated by Fig. 2.1. Shown in Fig. 2.2 is a pipelined ADC with its conventional
transfer function in the stage 2, where V2 is a function of stage’s input voltage V1.
In this stage, it resolves two bits at a time and therefore has four segments in its
transfer function. A general pipelined ADC cascades plural similar stages in which
each stage resolves a few bits at a time. Within each stage, the analog input signal
is first sampled and held. Then, a sub-ADC resolves the held analog signal into a
coarse n-bit output. After that, a sub-DAC converts the coarse digital output back
to an analog level that is being subtracted from the original input signal, yielding
the quantization error. This quantization error is then restored to the original full-
scale range by the residue amplifier. As a result, the locally amplified quantization,
usually called residue, is further quantized by the remanding stages to resolve each
n-bit respectively. Finally, the digital output is obtained by the recombination of
digital raw codes of each stages. Hence, the digital output is expressed as

Dout = D1 +
D2

G1

+
D3

G1G2

+ . . . +
DN

G1 . . . GN−1

, (2.1)

where Di and Gi are the digital raw codes and the gain of the residue amplifier
within each stage, respectively, and N is the ADC resolution. Accordingly, higher
resolution can be achieved by cascading more stages with the penalty of about
linearly growing area. The number of bits that each stage can resolve depends on the
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Figure 2.1: Example of the multi-step amplitude quantization.
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Stage 1 Stage 2 Stage N
Vin V1 V2

V1 V2Ga

Sub-ADC Sub-DAC

V2

V1

n1 bits

n2 bits

n2 bits nN bits

e.g. n2 = 2

Figure 2.2: Pipelilned ADC diagram [1].

applications. For instance, with conventional architecture, high speed specification
favors the architecture with a low number of bits per stage because the interstage
gain is lowered, allowing high speed operation due to the fundamental unity-gain
bandwidth trade-off of the residue amplifier. On the contrary, low speed, high
resolution tends to favor higher number of bits per stage. A detailed analysis can
be found in [20].

The concept of the pipeline architecture comes from the digital signal processing.
This configuration trades the process latency with the throughput with the aid of
inherent sample-and-hold function [21]. Also, since each stage resolves a few bits
at a time, this approach increases the throughput and reduces the number of the
comparators compared to the flash architecture.

Several attributes of the pipelined ADC architecture can be observed from the
introduction above. First, the circuit complexity increases about linearly when each
additional bit is added. Because of the involvement of the binary search algorithm,
the number of comparators roughly grows linearly, while that of the flash ADC
grows exponentially. Second, the ADC throughput is as fast as the flash ADC but
the pipelined ADC consumes less power provided their resolutions are greater than
6 bits. Finally, the pipelined ADC has a wide range of specifications since the
functional blocks within the stage can be implemented with a variety of topologies.
Hence, the ADC fulfills the demands on various applications such as radio, video,
instrumentation, imaging, and communication systems.

Within the pipelined stages, the presence of the residue amplifier largely relaxes
the accuracy requirements of the comparators. That is, the ADC needs no accurate
comparators with very small threshold levels as compared with the two-step ADC.
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However, since the opamps have to perform precise amplifications, they usually
dominate the power dissipation and limit the maximum speed of the ADC in stead
of the comparators. This phenomenon has become an emerging issue especially in
advanced process on account for the reduced intrinsic gain and supply voltage.

Although a precise comparator with very small threshold levels is not necessarily
required, the inherent offset issue is not resolved. To suppress the effect of offsets,
a technique in digital domain, called digital error correction (DEC) [21] technique,
is commonly used in almost every pipelined ADC. It largely alleviates the ADC
sensitivity to the offsets in the sub-ADC, making the high-speed but low accuracy
comparators available in the sub-ADC design. The concept of digital error correction
will be described in Sec. 2.2

2.2 Digital Error Correction

Vin

Vres

εb

Vre f

−Vre f
Vre f−Vre f

Figure 2.3: Residue plot with sub-ADC offsets.

The digital error correction scheme can tolerate the presence of nonidealities
in pipelined ADCs. These nonidealities consists of the offsets of the comparators
and opamps, capacitors mismatch, finite opamp gains, and charge injections. They
may induce deviations of the transfer curve (dashed line) from the idea one (solid
line) as indicated by Fig. 2.3. Thus, the residue may saturate the following stages
resulting in missing levels thereby introducing distortion in the spectrum due to
the deviation. With the cascaded topology, the errors that saturate next stage’s
input range can be seen as offsets of the sub-ADC in the next stage. Under this
condition, several techniques have been proposed to ease such problem of saturation
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by employing digital error corrections. Usual implementations of digital correction
schemes include:

• over-range detection, [21]

• reducing residue amplification gain by half. [21–23]

An over-range detection topology detects out-of-range residue signals in the next
stage and converts them back to correction bits, which are then added/substracted
to the coarse digital output of the previous stage. To make detection, a common
approach is to use two extra capacitors in the MDAC or two extra comparators in
the sub-ADC of next stage. Fig. 2.4 illustrates this idea.

LSB (of local Sub-ADC)

1/2

-1/2

Vres

Vre f

−Vre f

Vin

Normal Input Range

Figure 2.4: Residue plot using extra comparators in next stage.

Compared with the over-range detection scheme, another technique reduces the
local stage’s gain by half, thereby lowering the next stage’s input range. This scheme
is commonly used in practical designs. As a result of the lowed output range,
large comparator offsets in the local stage can be tolerant as far as they are less
than ±1/2LSB of local sub-ADC’s threshold levels. As a result, when the next
stage’s input falls in the upper/lower half input full-range of next stage, digital
error correction is performed by adding/subtracting extra bit to the raw codes of
the previous stage. This ideal is shown in Fig. 2.5.

However, both topologies require some encoding logics to recalculate the true
digital output. The encoding logic would be greatly simplified if some offsets are
added to the transition thresholds of the sub-ADC or sub-DAC. An example of a
popular 1.5bit/stage architecture as indicated in Fig. 2.6 demonstrates this concept
[2, 24]. Although a single-ended architecture is represented here for simplicity, a
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Figure 2.5: Residue plot with reduced half gain.
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Figure 2.6: Switched-capacitor implementation of a 1.5bit pipline stage [2].

9



fully differential topology is adopted in many practical designs. In Fig. 2.6, only 2
comparators are needed to resolve 3 levels for a 2bit sub-ADC, while 3 comparators
are required for a nominal 2-bit sub-ADC. Thus, the architecture tolerates sub-ADC
offsets up to ±1/2LSB in the local stage. As a result, the requirements on precise
comparator are greately relaxed. With this concept, the digital output is obtained
by shifting bits of each stages and then added together as shown in Fig. 2.7.

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5

010
010

010
010

111

01010101111

MSB LSB

Digital Output

Figure 2.7: Digital output with bit-shifting
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Chapter 3

ANALOG ERROR MODELS

This chapter describes the common error sources affecting the performance of the
pipelined ADCs and tries to build adequate mathematical models for prior design
considerations. First, the error sources commonly encountered in conventional archi-
tecture are addressed in Sec. 3.1, 3.2, 3.3, including errors arising from the capacitors
mismatch, the residue amplifier.

Then, an alternative residue amplifier approach, i.e., the open-loop residue am-
plifier topology, is discussed in Sec. 3.4 and demonstrated as a calibrating machine
in the proposed calibration scheme in Chapter 6 and 7.

3.1 Introduction

Shown in the Fig. 3.1 is a conventional demonstration-by-concept single-bit/stage
architecture intended to be used over Sec. 3.1-3.3 in this chapter. This architecture
uses switched-capacitor technique that can be switched between the input, the ref-
erence voltages, and ground, realizing the sample-and-hold, DAC, and subtraction
functions. It performs two phase operations as following. During the first phase,
usually called the sampling phase, the input is connected to the bottom plates
of the capacitors while the top plates connected to virtual ground. The charges
Q = (Cs + Cf )Vin are then stored onto the capacitors. In the second phase, the am-
plification phase, the bottom plate of Cf is connected to the output of the residue
amplifier and that of Cs is connected to positive Vref or negative Vref depending on
D = 1 or D = −1, where D is the local conversion result of the sub-ADC. As a re-
sult, total charges of Q = CfVres +CsDVref are stored during that phase. By charge
conservation with Cf = Cs, the ideal residue transfer function in the amplification
phase is given by

Vres =

{
(1 + Cs

Cf
)Vin − Cs

Cf
Vref = 2Vin − Vref if Vin ≥ 0 D = 1 (1)2

(1 + Cs

Cf
)Vin + Cs

Cf
Vref = 2Vin + Vref if Vin < 0 D = −1 (0)2,

therefore we have the ideal transfer curve with ramp input shown in Fig. 3.2.
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Figure 3.1: Single-bit architecture: (a) sampling phase (b) amplification phase.

12



Vre f

−Vre f

Vres

VinVre f−Vre f

Figure 3.2: Transfer function of single-bit architecture.
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3.2 Capacitors Mismatch

Consider the capacitors mismatch only, if Cs 6= Cf , an error proportional to the
mismatch is generated at the residue output. Defining the difference between the
capacitors is ∆C, we have

∆C = Cs − Cf (3.1)

and

C =
Cs + Cf

2
, (3.2)

Therefore,

Cs = C +
∆C

2
, (3.3)

Cf = C − ∆C

2
, (3.4)

and
Cs

Cf

=
C + ∆C

2

C − ∆C
2

≈ 1 +
∆C

C
, (3.5)

if | ∆C/C |� 1. From (3.5), the transfer function considering the mismatch now
becomes

Vres ≈ (2 +
∆C

C
)Vin ± (1 +

∆C

C
)Vref . (3.6)

From (3.6), it is evident the capacitors mismatch result in linear gain error and
wrong subtraction of the reference voltages. Both errors are proportional to the
difference ∆C provided in the absence of no other circuit imperfections.

Due to the limited fine-line process, the phenomenon of capacitors mismatch
mainly stem from variations at the edges of the capacitor plates. Under the sta-
tistical manner, capacitors with larger area to perimeter ratios tend to have better
matching. However, variations in the oxide thickness between the capacitor plates
also affect the matching. This variation is small especially for small, adjacent capac-
itors. If we only consider the variations of capacitor edges, the standard deviation of
the fractional matching error between two adjacent square capacitors can be models
as:

σ∆C/C =
AC

S
, (3.7)

where S is one side of the capacitor in µm. The value of AC is technology dependent,
but can typically vary between 2 − 5%µm. For instance, if AC is 5%µm, then
two adjacent, 15µm×15µm capacitors will match to better than 1% with 99.7%
probability [2].

3.3 Impairment of Residue Amplifier

Ideally, the residue amplifier produces an output proportional to the input. In prac-
tical implementations, the finite open-loop gain and limited unity-gain bandwidth
(GBW) make the amplification non-precise or nonlinear. Hence, the finite open-loop
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gain and GBW give rise to static and dynamic errors, limiting the ADC achievable
resolution and speed as a consequence.

3.3.1 Opamp’s Open-Loop Gain

A gain error occurs at the residue signal when the open-loop gain is finite. Assume
the actual opamp open-loop gain is A0, we can derive the transfer function with
regard to A0:

Vres = (
1

1 + βA0

)(2Vin ± Vref ), (3.8)

where β is the return ratio of the feedback network. Of the feedback network in
Fig. 3.1 during the amplification phase, β can be expressed as

β =
Cf

Cs + Cf + Cp

,

where Cp is the parasitic capacitance at the inputs of the opamp.
Taking the first-order Taylor expansion of (3.8), we have the approximation of

the transfer function:

Vres ≈ (1− 1

βA0

)(2Vin ± Vref ). (3.9)

Observed in (3.9), the relative error 1/βA0 results in a static error if the residue
is fully settled, therefore limiting the ADC resolution. Since β is well-controlled
by the capacitor ratios that can achieve about 10-bit in modern technology, high
resolution ADCs above 10-bit often require high open-loop gain.

3.3.2 Opamp’s Settling

Vout

Cf

Cs
DVre f

Cp CL

Figure 3.3: MDAC with practical loading during amplification phase.
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Because the opamp has finite bandwidth, the output takes time to settle to its
final value. As a result, the opamp determines the ADC’s speed in most cases.
Consider Fig. 3.3, the GBW can be derived as

GBW =
gm

2π[CL +
Cf (Cs+Cp)

Cs+Cf+Cp
]
.

Hence, the bandwidth (BW) related to the unity-gain bandwidth is obtained by

BW = β ×GBW =
gm

2πCeff

,

where

Ceff = CL + Cs + Cp +
CL(Cs + Cp)

Cf

.

Assume the opamp is a single-pole system with time constant τ , the settling
behavior at the end of the amplification phase is given by

Vres = (1− exp−t/τ )(2Vin ± Vref ), (3.10)

where | exp−t/τ | is the relative gain error and τ = 1/(2πβGBW ).
To make the residue error of the first stage’s amplifier tolerable in the following

stages, i.e. this error is less than 1/2LSB of the backend ADC, the GBW of the
opamp must satisfy the criteria such that

GBW >
(N −N1) ln(2)

2πβ(T/2)
, (3.11)

where N and N1 are the resolution of ADC and the first stage accordingly. Therefore,
it can be seen GBW will almost increase 2× when each additional bit is added in
the first stage. Note that above equations validate when the opamp does not slew.

However, some circuit configurations can hardly meet the condition in (3.11),
e.g., the pipelined ADCs with low gain stages [25]. Furthermore, in many appli-
cations, slewing is often inevitable under the speed and power constraints. As a
consequence, the residue error if slewing occurred now becomes

Verror = Vref − Vres(T/2) = (Vref −∆VSR) exp
−T/2−TSR

τ . (3.12)

Given the bias current IBias of the opamp, we have

∆VSR =
IBias

CL +
Cf (Cs+Cp)

Cs+Cf+Cp

TSR.

Fig. 3.4 shows that ∆VSR is linearly proportion to the slewing period TSR.
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Figure 3.4: Output voltage with slewing during amplification phase.
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3.4 Open-Loop Amplifier

3.4.1 Introduction

The function of the opamp in the closed-loop is to provide an output signal pro-
portional to the input. Because feedback topology desensitizes the environment
variation, a precise residue amplification is available and the close-loop implemen-
tation has been a standard in lots of ADCs. However, an amplifier using open-loop
architecture can provide gain in an equivalent manner. Recently, certain ADCs with
open-loop structure have shown the availability and capability to achieve both power
efficiency and high resolution [3, 26]. Fig. 3.5 shows a conceptual diagram of this
kind of topology.

Sub-ADC Switches

±Vre f

Cs[1:N]

Vin VresGm

D

Vx

Figure 3.5: ADC with open-loop architecture [3].

The operation of this circuit is similar to the conventional topology except the
amplification phase. The charges onto the feedback capacitor are not fed to the
output of the residue amplifier, but remained in place to generate a voltage, Vx, at
the input of the amplifier. Vx is then amplified to the desired level to be the input of
the next stage. With this topology, the demand for high open-loop gain is no longer
necessary and the power dissipation drops as well. As a consequence, the ampli-
fication function is available using a simple differential pair. These advantageous,
however, come at the price of nonlinearities in the signal amplification.

3.4.2 Behavioral Model of the Open-Loop Amplifier

While using open-loop residue amplifiers in pipelined ADCs, the absence of feedback
no longer assists desensitizing the environment variations; that is, a linear model is
insufficient to describe the amplifier behavior because of increased nonlinearity and
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input-dependent amplification. Therefore, a simple but sufficient accurate model is
required for prior design considerations.

The nonlinear behavior can be divided into two categories: static and dynamic.
Dynamic frequency-dependent distortion, however, becomes significant and domi-
nant when the operating frequency near the dominant pole of the system. Because
of a simple differential pair being used as an open-loop amplifier, the assumption
of a fully settled system is reasonable for its inherent potential operating at high
speed. Thus, the complexity of modeling an open-loop amplifier is quite reduced.
Meanwhile, since high performance ADCs often adopt fully differential architecture,
this configuration advantages less significant even harmonics. High order harmonics
such as fifth or above is negligible with appropriate choice of the overdrive voltage
of the input pair of the amplifier according to [3]. If above conditions are satisfied,
a simple polynomial model is sufficient to describe the fully differential residue am-
plifier implementation. As a result, the behavior of the amplifier can be described
by a third order polynomial

y = a1x + a3x
3. (3.13)

This model is then used in our simulation to validate the effectiveness of our cali-
bration scheme.
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Chapter 4

ADC CALIBRATION
TECHIQUES

Limited by the process and noise consideration, the resolution of pipelined ADCs
without calibration usually may achieve no more than 10 bits. With optimized
design and careful layout, some state-of-the-arts ADCs are capable of reaching res-
olution of 12 bits [27, 28] or above without trimming or calibration. However, to
achieve the same performance like these state-of-art ADCs is often paid with large
design efforts and periods due to the supply voltage and intrinsic gain constraints
as well as the process variations. Therefore, designing high resolution ADCs has
become a much challenging work among circuit designers. As a result, many tech-
niques that can calibrate nonlinear errors arising from the inaccurate blocks in the
ADC have been proposed in literature [6,18,29–31]. Hence, this chapter gives a brief
review of the ADC calibration techniques and relative subjects.

4.1 Introduction

For the past decade, many researches have been proposed to improve the ADC
performance and focusing on being compatible with CMOS technology, therefore
relaxing the stringent demands on highly linear analog components. Multistage
ADCs, e.g. the pipelined ADCs, are well suited for such trends. In the error
correction techniques, digital error correction and the use of residue amplifier greatly
relax the design of accurate comparators in the sub-ADC and the following stages.
However, the ADC linearity is still sensitive to the error arising from the sub-DACs
as well as the static and/or dynamic performance of the residue amplifier such as
finite dc gain, slew rate, finite GBW, and so on. Hence, a calibration mechanism
that is capable of correcting errors arising from the non-perfect MDAC is demanding
and promising in recent years. Among the calibration techniques, correcting errors
using digital signal processing rather than analog has become an attractive scheme
[3, 16, 17, 32, 33]. In these schemes, the analog errors are treated into distortions in
the digital domain, therefore we can digitally correct them.

ADC calibrations usually have two steps: error estimation and error correction.
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Having understood how bad the ADC is or what/where the error is, we can correct
errors according to the estimation results. For example, the digital output of a
pipelined ADC is obtained by the recombination of each stage’s raw codes. That
is, the digital gains must match the analog gains of each stage otherwise the ‘noise-
leakage’ would occur, causing performance loss [34]. Under this condition, if only
the linear gain error is concerned, the errors in the digital output is proportional to
the difference between the analog and the digital gains. If the accurate estimate of
this difference is available, we can adjust the digital gain accordingly, recovering the
ADC accuracy.

Based on the error correction/estimation mechanism, the calibration techniques
can be categorized into four types: analog/digital and foreground/background cal-
ibrations. Foreground calibration techniques estimate the errors when the input is
not applied to the converter and then the correction is performed in analog or digital
domain; background ones estimate the errors during the normal operation, and then
the correction is performed in analog or digital domain. Thanks to the robustness of
digital signal processing and their easy-to-implement feature in the CMOS technol-
ogy, digital background calibrations compare favorably to analog/digital foreground
ones. The key concepts of various proposed calibration schemes in literature can be
classified into two topologies: area-redundancy and time-redundancy. They will be
explained in this chapter in detail.

4.2 Area-Redundancy

SHA

Pipelined
ADC Core

Algorithmic
ADC

Digital
Post

Processing

Raw Code

Algorithmic
Output

Calibrated
CodeVin

Vin1

fs/M

fs

fs

Figure 4.1: Queue-based calibration [4].

An area-redundancy topology uses extra analog circuits such as a slow-but-
accurate reference ADC [4, 14, 15], split-ADC architecture [5, 7], or more than one
SHA [4, 6], etc., to measure and calibrate the main ADC. In Fig. 4.1, a slow-but-
accurate reference ADC takes the same input as the pipelined ADC core and then
compares one out of M samples of its output to the corresponding digital output
of the ADC core. As a result, the difference between both outputs is used as an
information so as to improve the linearity of the main ADC. This scheme has the
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advantage of deterministic calibration process since the error information is obtained
directly through the outputs instead of statistical manner. Although the reference
ADC can achieve very high resolution using a Σ∆ or an algorithmic ADC, the refer-
ence ADC usually limits the achievable resolution of the main ADC after calibration.
On the other hand, the linearity of the reference ADC is still confined and may not
adaptable to the continuing scaled process. Prior calibration of the reference ADC
may be necessary before calibrating the main ADC.

ADC 'A'

ERROR
ESTIMATION

ADC 'B'

xA

xB

vIN

Digital Out put︷ ︸︸ ︷
x =

xA + xB

2

∆x = xB− xA︸ ︷︷ ︸
Di f f erence

Figure 4.2: “Split ADC” architecture [5].

The split-ADC architecture, as shown in Fig. 4.2, works in the way that the
ADC is split into two channels. Each of them takes the same input and produces
individual outputs. If both channels are completely calibrated, the average of the
individual outputs agrees; otherwise, the difference is served as a calibration signal
so as to develop the background calibration. Hence, this technique plays a role
analogy to the channel equalization commonly encountered in communications and
tries to make the average error power as small as possible. Compared with [3,17,35],
this method has the benefit of short calibration time. However, if one of the channels
drifts more severe than the other one, the calibration results would be biased, leading
to imperfect calibration result.

Shown in Fig. 4.3 is a queue-based architecture [6] with its timing plot illustrated
in Fig. 4.4. This architecture uses two or more sample-and-hold circuits in order
that some reference signals can be inserted within the same conversion cycle. The
inserted signal is then used to calibrate the main ADC due to use of faster clock
than the conversion rate. However, the faster clock may lead to large over-design,
leading to large area overhead; it is because all the components must be able to
operate at the high clock rate rather than the conversion rate. Another drawback
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Figure 4.3: Queue-based calibration [6].
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Figure 4.4: Timing scheme [6].
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is the limitation on the available acquisition time that is often shorter than half the
clock period.

4.3 Time-Redundancy

A time-redundancy topology estimates the nonlinear information for a period of
time, and then the statistical result is processed or fed into an iterative function so
as to calibrate the ADC. Recently, one such kind of technique called correlation-
based [35] calibration becomes more and more popular. This technique features
negligible hardware overhead for calibration and the capability to work concurrently
during the normal operation. The basic concept lies in modulating the input signal
with a pseudo-random sequence that is uncorrelated with the input, then the digital
outputs are demodulated in order to extract the modulated error information. Since
the modulated errors take same analog path as the input, demodulated information
thus contains the characteristic of the ADC. Then the information is applied to the
calibration circuits for the ADC calibration. A conceptual diagram is depicted in
Fig. 4.5. Generally, the insertion of pseudorandom sequences is realized by changing
the threshold levels in the sub-ADC [3, 7] or abstractly adding scaled references to
the sub-DAC [17, 35]. Whichever is used, both result in the residue shifting up
or down, leading to different distribution. By observing the distribution, we can
extract the nonlinear information.

S/H

Scrambler

Backend ADC2n

n-b A
/D

n-
b 

D
/A

RNG

2n 2n 2n

e

Vin

Figure 4.5: Correlation based estimation [7].
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Chapter 5

DIGITAL CALIBRATION

5.1 Introduction

Digital calibration performs the task of digitally correcting the gain errors of im-
precise residue amplifiers due to the finite open-loop gain, slewing, and capacitors
mismatch. Some techniques can correct errors by means of carrying out digital sig-
nal processing on the ADC output codes and therefore remain the residue amplifier
inaccurate. This implies the need of calibrating error by using analog circuits is
reduced. Also, high order harmonics such as third, fifth order nonlinearities of the
residue amplifier can be corrected through the use of more complex digital circuits.
This feature is desirable since the cost/function of digital circuits decreases by 29%
each year [36].

Generally, all calibration techniques are built based on their analog error models;
that is to say, only the errors capable of being modeled as an equation or any other
analytical problems can be calibrated. Therefore, only the deterministic errors can
be corrected. As a result, model-based error estimation and calibration turn to be
the key concept among the self-calibration techniques.

Many digital calibration techniques have been proposed to tackle the non-perfect
analog functional blocks. Those blocks include the imprecise capacitors ratio in the
sub-DAC or the non-ideal residue amplifier, including the finite open-loop gain and
incomplete settling, etc. Sine the errors arising from these blocks can be mod-
eled as deterministic representations, equations that include error terms, the basic
calibration concept among these techniques is quite similar. The ADCs are self-
calibrated in the manner: the residues of each stage are individually observed using
their remaining stages of the pipeline ADC. Then based on the observed results, the
weighting of the gain within each stage can be recalculated, therefore obtaining the
accurate outputs. For example, since the contribution of each stage to the origianl
digital output can be represented as its weight [18,37], we can adjust the estimated
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Figure 5.1: Pipelined ADC stage macro model [8].

gain in the digital domain to match the analog gain. Considering Fig. 5.1, we have

Dout = D1 +
Db

Ĝ1

= (Vin + εa) +
G1(−εa) + εb

Ĝ1

, (5.1)

where D1(= Vin + εa) is the conversion result of the first stage and and Db the
digitized residue of first stage. εa and εb represent the quantization noises in the
sub-ADC and the backend ADC accordingly, and Ĝ1 is the estimate of G1 of the
residue amplifier in the first stage. If G1 is linear and invertible such that Ĝ1 = G1,
(5.1) becomes

Dout = Vin +
εb

Ĝ1

. (5.2)

As a consequence, the output can be represented as the original input plus the
total ADC quantization noise. In general, G1 is intentionally designed to the power
of 2 and therefore the digital output is obtained just by shifting bits and then
adding together. In fact G1 deviates from its ideal value, shifting bits results in the
quantization noise of the sub-ADC leaking to the next stage. Odd harmonics thus
arise in the spectrum due to the quantization noise of the sub-ADC correlating with
the input, leading to performance degradation. Therefore, calibration is required to
find out the digital gain Ĝ1 that match the analog gain G1 of the residue amplifier.

5.2 Overview

In the following sections, we will describe a fully digital background calibration tech-
nique that is capable of correcting the errors arising from the non-perfect residue
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amplifiers [3]. Then this technique is used and combined with the proposed estima-
tion technique to highlight the proposed calibration scheme in this thesis.

εa

Sub-ADC Sub-DAC

error

G1

D1

Vin

εb

Vx B bits

Calibrated Stage Backend ADC

Figure 5.2: Precision requirements

Shown in Fig. 5.2 is the precision requirement after calibration. It indicates errors
from the stage to be calibrated can be modeled as an additive term at the input of
the backend ADC. To make the error have no impact on the ADC performance, its
value must be within 1/2 LSB (the quantization noise εb) of the backend ADC.

Stage 1 Stage N-i Stage NStage 2

RNG

Estimation

Calibration

Estimation

Calibration

RNGD1 D2 DN−i

Dout

Vin

Ctrl

1/GN−iDb,N−i+1Db1

DN

Figure 5.3: ADC block diagram

Fig. 5.3 shows the block diagram of the proposed calibration scheme includ-
ing three main digital calibration functions: the pseudorandom sequence generator
(labeled as ‘RNG’), the calibration (labeled as ‘calibration’) block, and the estima-
tion (labeled as ‘estimation’) block. The pseudorandom sequence generator injects
multiple uniform distributed noise sequences (dithers) at the sub-DAC input. The
estimation block performs the task of system identification so as to blindly find the
optimal calibration parameters based on the dithered and digitized outputs of the
backend ADC. The estimation block will be described in detail in chapter 6. In
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Fig. 5.3, the backend ADC does not need to be calibrated since the resolution of
the backend ADC is low (usually 6-8 bits); therefore, it is less significant compared
with the front-end stage.

The calibration processes in the way that the least significant stage (e.g., stage i-
1) is calibrated using the backend ADC (the remaining stages). Once the calibration
of that stage is done, the calibration proceeds toward its front stage (e.g., stage i),
and therefore the total resolution grows linearly with the calibration process, which
shows similarity to the ‘accuracy bootstrapping’ [37]. Although the completion of
the calibration within each stage is done once at a time, calibrations of each stage can
work concurrently. That is, the calibration of each stage comes about simultaneously
and ends after the calibration of the most significant stage is done.

To simplify the analysis, all stages are assumed to be ideal except for the first
stage as represented in Fig. 5.1. Since the fully differential architecture is often
adopted all over the high resolution ADCs, the even harmonics are much less signif-
icant as a consequence. Under this condition, the fundamental tone and the third
harmonic will dominate the overall performance [3, 17]. If those above conditions
are satisfied, the object to be calibrated, the open-loop residue amplifier in the first
stage, can be approximated as a third-order polynomial:

G1(Vx) = Vres = a1(Vx) + a3(Vx)
3, (5.3)

where Vx = −εa. Alternative models can be found in [38].

5.3 Calibration Mechanism

Nonlinear gain error of the residue amplifier are first calibrated since it will affect
the estimation of the linear gain error. In order to correct the nonlinear errors,
one possible solution is finding the nonlinear term a3(Vx)

3 in (5.3) then being sub-
tracted from the original residue, which can be realized by using an inverse function
described in [3].

After the nonlinear term a3(Vx)
3 is corrected, linear gain error can be calibrated

by recalculating the digital gain with respect to each stage, thus obtaining a lin-
earized output.

5.3.1 Nonlinear Gain Error Calibration

Rearranging (5.1) in a more general form, we have

Dout = D1 + G−1
1 (Db)

= (Vin + εa) + G−1
1 [G1(−εa) + εb], (5.4)

where G−1
1 is the inverse of G1 provided that G1 is invertible.

Taking the first order Taylor expansion of the last term in (5.4) gives

Dout
∼= Vin + εa + G−1

1 [G1(−εa)] + εb
dG−1

1

dDb

= Vin + εb
dG−1

1

dDb

= Vin + εb

[
dG1

d(−εa)

]−1

.

(5.5)
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According to (5.5), the output can be represented as an input and an output-referred
inverse function. To make the residue linear, the nonlinear term a3(Vx)

3 needs to be
removed; therefore a linearized residue can be obtained by

Vres,linear = G1(Vx)− e(Vx). (5.6)

Observing this equation, we can represent e(Vx) as

e(Vx) = G1(Vx)− a1G
−1
1 (Vres). (5.7)

Using the fact Vx = −εa = G−1
1 (Vres), Vres = Db− εa and substituting them into

(5.7), we obtain e(Db) represented in digital domain [39]:

e(Db) ∼= Db − a1G
−1
1 (Db)− εb

[
1− a1

(
dG1

dVx

)−1
]

∼= Db − a1G
−1
1 (Db). (5.8)

As a result, (5.8) is used to correct the nonlinear error. Observing the neglected
term εb[1 − a1(

dG1

dVx
)−1], how much will it affect the precision of the calibration?

Considering εb[1−a1(
dG1

dVx
)−1] in (5.8) while taking the differential of G1 with respect

to Vx, we can further expand it as

εb[1− a1(
dG1

dVx

)−1] = εb ·

[
1− a1

(
dG1

dVx

)−1
]

= εb

[
1− a1

(
1

a1 + 3a3ε2
a

)]
. (5.9)

If dividing both sides by εb, we obtain a relative error with respect to the backend
quantization error in LSB such that

error = εb/εb

[
1−

(
a1

a1 + 3a3ε2
a

)]
≈ 1−

(
1− 3a3

a1

ε2
a

)
=

3a3

a1

ε2
a. (5.10)

Indicated by (5.10), it implies a multi-bit architecture is preferred because of
a1 in the denominator, resulting in less harm to DNL; however even with a single-
bit architecture, the redundancy topology makes εa a relatively small value when
compared to εb. Thus, the neglected term makes an relatively small error on DNL
and the accuracy consequently.

To find G−1
1 (Db) in (5.8), a trigonometric approximation is used [3]

e(Db) = Db − 2

√
−a3

1

3a3

cos

π

3
+

1

3
cos−1

 Db

2
√

−a3
1

27a3

. (5.11)

The above equation points out e(Db) only depends on the digitized residue Db and
the ratio a3/a

3
1; that is, once this ratio is found, the linear residue can be recovered

by subtracting e(Db) to the original nonlinear residue. Another approaches can be
found in [17] .
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5.3.2 Linear Gain Error Calibration

Considering Fig. 5.1 and rearranging (5.1), we have

Ĝ1 ·Dout = Ĝ1 ·D1 + Db.

The digital output Dout thus becomes

Dout = Ĝ1D1 + Db. (5.12)

Observing this equation, the local conversion result D1 has become Ĝ1D1, which
results in a global gain error of the whole ADC; however, this global gain error is
tolerable in most applications such as digital communication in which the ADC is
preceded by an automatic gain control (AGC) amplifier. As a result, the linear gain
calibration is accomplished by recalculating the digital gain that matches the analog
gain.

5.4 Summary

Fig. 5.4 summarizes the digital calibration mechanism. Two arguments p1 and
p3 depicted in Fig. 5.4 are the correction parameters to compensate for the linear
and nonlinear gain errors respectively. According to the description above, their
optimum values are expressed as

p1,opt = a1

p3,opt =
a3

a3
1

, (5.13)

where they correspond to a1 and the ratio in (5.11).
In practice, the characteristics of the residue amplifier may drift due to temper-

ature, time, process, etc, resulting in varying p1 and p3. For open-loop amplifier
implementation, these variations become even sever in the absence of feedback. As
a result, in next chapter we propose a novel digital calibration scheme that can
accurately estimate the real amplifier operating condition and adaptively update p1

and p3.
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Figure 5.4: Complete digital correction [3].
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Chapter 6

MULTI-CORRELATION
ESTIMATION (MCE)
TECHNIQUE

6.1 Introduction

In the following sections, we propose a novel calibration scheme that can accurately
estimate and correct errors arising from the residue amplifiers and continuously track
and update the correction parameters against environmental variations. Because us-
ing the open-loop amplifier rather than closed-loop one in the pipeline stages, the
amplifier may substantially changes its transfer function due to the absence of feed-
back. This condition dictates the need of fast updating the correction parameters.
Under this condition, the proposed scheme enables fast and continuous estimation
for the varying amplifier in short time intervals as compared to [35]. Meanwhile,
the scheme operates during the normal ADC conversion with no scheduled calibra-
tion cycles or use of redundant hardware [15] or slots queues [4, 40] to enable the
background feature.

To estimate the error information about the MDAC or the amplifier, many cal-
ibration techniques have been proposed. Some techniques need additional stages
[3, 18, 37] to reduced the backend ADC quantization noise, enabling precise estima-
tion of the transition heights that relate to amplifier’s gain. Fig. 6.1 indicates that
the transition height of the residue is proportional to the amplifier’s gain [41–43].
However, some of such techniques need to stop the input then a calibration signal
can be applied as in [18], which is not allowed in many applications. Other ap-
proaches acquire the nonlinear information by using a parallel ADC to compare the
difference of an ideal output (from the parallel ADC) and a real one (from the main
ADC) [1,44]. Fig. 6.2 demonstrates this idea.

For instance, the split-ADC architecture extracts the nonlinear information using
separated ADC channels [5, 7]. If these channels were non-perfect, the unbalanced
channels generate different outputs that can be used for nonlinearity correction
as shown by Fig. 6.3 and 6.4. While such techniques have the advantages of de-
terministic error extraction therefore reducing the calibration time, they increases
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Figure 6.1: Transition height of digitized residue.
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Figure 6.2: Error correction of pipelined ADC [1].
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analog circuits’ complexity, imposing penalties of larger die area, power, and band-
width [45].

ADC 'A'

ERROR
ESTIMATION

ADC 'B'

xA

xB

vIN

Digital Out put︷ ︸︸ ︷
x =

xA + xB

2

∆x = xB− xA︸ ︷︷ ︸
Di f f erence

Figure 6.3: “Split” ADC architecture [5].

Some calibration techniques, called the correlation-based technique, use statisti-
cal functions to estimate errors therefore being able to correct gain errors have been
presented in literature [17,35,44]. In these techniques, the analog error is modulated
using a pseudo-random noise sequence and then the digital output is processed in
order to extract the error information useful to calibrate the ADC.

Having described the features of above techniques, we propose a technique that
has the following superiorities:

• No limitation on the input amplitude:
The benefit of the proposed technique relative to that presented in [3] is that
it works for any input signal, and the benefits relative to that presented in [17]
are that it does not have restrictions on dc input and it is not sensitive to
amplifier offsets.

• Reduced circuit complexity:
The proposed calibration scheme cooperated with statistics-based estimation
enables the use of a low resolution backend ADC. Unlike the work in [3], the
resolution of the backend ADC is no longer limited by the target resolution
minus one. Therefore, employing simple circuits yields the potential toward
high speed and/or low power. To facilitate the estimation, the required pseu-
dorandom noise sequences (RNGs) only needs negligible modifications on the
sub-DAC.
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Figure 6.4: Two channel ADC architecture [7].

• Digital background calibration:
All the calibration circuits are built using digital circuitry. Given that the
input acts as a stimulus and is modulated with the RNGs, the scheme performs
error estimation and calibration during the normal operation of the ADC.

• Unbiased gain error information extraction:
With the simple statistical function (mean function) and the estimation pro-
cedure, the linear and nonlinear gain error information of the amplifier can be
extracted independently. Notably, error information of high order nonlineari-
ties, e.g., 5th order, is possible if more RNGs are merged.

In the following sections, we will describe the technique with the associated
functions in detail.

6.2 Modulation Approach

The proposed scheme makes use of the fact that the offsets in the sub-ADC does
not affect the ADC conversion results based on the digital redundancy [21]. As a
result, the scaled random noise sequences whose values no more than the tolerable
offsets can be applied using either the sub-ADC or the sub-DAC. Because of the
added random sequence, the residue moves up/down. Fig. 6.5 shows one possible
residue plot when the RNG is added. It shows that one input signal may have two
different residues. However, their conversion results agree provided that the gain
errors are perfectly corrected. Similar approaches can be found in [3, 7, 17, 35, 44].
The modulation approach implementation will be explained in chapter 7.
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Figure 6.5: Residue plot when adding RNGs.
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In order to unbiasedly estimate the correction parameters, the RNG is designed
as a uniformly distributed pseudorandom binary number sequence, i.e., (RNG ∈
{1,−1}) and is uncorrelated with the input. As a result, the RNG is continuously
applied to the stage being calibrated to continuously estimate and update the cor-
rection parameters.

In the remainder of this chapter, we propose a multi-correlation estimation
(MCE) technique using the modulation approach, allowing continuous background
estimation of the correction parameters p1 and p3 described in the previous chapter.

6.3 Multi-Correlation Estimation (MCE) Technique

In this section we will describe a technique based on statistics that can estimate
the correction parameters. Using two different modulated sequences, this approach
results in the residue having different distributions. Then the statistical results
associated with the residues are used to find the nonlinearities, i.e., the error infor-
mation. With the help of this information, we can approach the optimum values of
p1 and p3 using Least Mean Square (LMS) algorithm [46].

Calibration

εa

Sub-ADC Sub-DAC

εb

Backend
ADC

D1

Estimation

RNG

p1 p3

Ga

Vd1,Vd2
Ctrl

Vin

Dout Db

Figure 6.6: Reduced model with proposed calibration scheme.

Considering Fig. 6.6, the digitized residue Db when the random sequences are
applied is

Dbi = a1(Vx) + a3(Vx)
3 + εb

= a1(−εa + Ri · Vdi) + (−εa + Ri · Vdi)
3 + εb, i ∈ {1, 2} (6.1)

where Ri are the pseudo-random number sequences that are uniformly distributed
and uncorrelated with the input and Ri ∈ {1,−1}. Vdi represent the amplitudes.
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Therefore, Ri times Vdi, i.e., RiVdi add offsets of ±Vd1 or ±Vd2 LSB (of local sub-
ADC) to the sub-DAC. They are

R1Vd1 ∈ {+Vd1,−Vd1},

R2Vd2 ∈ {+Vd2,−Vd2}.

Taking the correlations of Dbi and Ri, we have

E[RiDbi] = E
[
a1(−Riεa − Vdi) + a3(−Riε

3
a − 3ε2

aVdi − 3RiεaV
2
di − V 3

di) + Riεb

]
.

(6.2)
Because Ri are uncorrelated with the input, correlations of Ri and the quantization
errors εa, εb will be zero. Under this circumstance, (6.2) is further reduced to

E[RiDbi] = a1(−Vdi) + a3(−3ε2
aVdi − V 3

di). (6.3)

This finding reveals the quantization noise of backend ADC has no effect on the
estimation accuracy as compared with [3].

Considering the terms a1(−Vdi) and a3(−3ε2
aVdi) in (6.3), if they can be elimi-

nated, the result is proportional to a3. For such a reason, we propose a technique
called “multi-correlation estimation technique” that can accurately estimate the er-
ror information.

Using (6.3) and Vd2 = Vd1/2 = LSB/4 gives

ε3 = E[R1Db1]− 2E[R2Db2] = −3

4
a3V

3
d1. (6.4)

In this equation, ε3 represents the sum of correlations E[R1Vd1], E[R2Vd2] and is
directly proportional to a3, leading to an unbiased estimation. If the correction
function (5.11) is applied, we obtain

ε3 = −3

4
a3V

3
d1 = −3

4
a3

1V
3
d1 · (p3,opt − p3). (6.5)

This result indicates the deviation of parameter p3 from its ideal value is directly
proportional to ε3. According to this result, we can use iterative functions, e.g.,
LMS algorithm, trying to minimize the deviation so as to obtain the ideal value of
p3.

As can be seen from the derivation of ε3, it only represents the degree of nonlinear
term a3. Hence, we need another error information related to the linear gain a1.
Indicated by (6.3), the resulting correlation is proportional to a1 when a3 = 0. That
is, when the nonlinear gain error has been corrected, we define (6.3) as

ε1 = E[R1Db1] = a1(−Vd1), (6.6)

where ε1 represents the linear gain error information. In addition, correlation of
R2 and Db2 can be used as well. Since p1,opt = a1 as indicated in (5.11), it is
straightforward that dividing ε1 by Vd1 is p1,opt. However, this procedure takes large
number of samples for reducing the variance of p1. For an N-bit ADC, roughly 22N
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samples are required to obtain sufficiently accurate estimate of a1 [5]. Above results
suggest that fast updates of p1 and p3 is desirable. As a result, we employ LMS
algorithm to achieve this goal. Although making use of LMS still needs an amount
of time to converge the corrections parameters to a sufficient accuracy, once they
have converged, each update is fast enough to track the environment variations. In
order to be merged in the LMS loop, ε1 is modified as

ε′1 =
ε1

p1

+ Vd1 = −a1Vd1

p1

+ Vd1. (6.7)

In this modification, p1 will approaches p1,opt when ε′1 = 0 by using LMS.

6.4 Adaptive Signal Processing

G(z) d(n)

y(n)

e(n)

x(n)

W(z)

unknown system

linear combiner

Figure 6.7: Adaptive system performing system identification.

Adaptive signal processing performs the task of identifying the “model” of an
unknown “system” based on the knowledge of a certain input x(n) and its corre-
sponding output d(n) to the system [46]. Fig. 6.7 shows a typical block diagram
of an adaptive system. The error signal e(n) is made by subtracting the adaptive
linear combiner’s output y(n) from the desired output d(n). Then e(n) is fed back
to W (z) in order to update parameters of the combiner; as a result, W (z) tries
to act like G(z). Under this condition, the optimum parameters of a linear com-
biner (linear filter) are obtained by minimizing its mean square error (MSE). When
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the unknown system changes, W (z) tracks it accordingly. Therefore, this kind of
searching methodology is suitable for the varying open-loop amplifier.

Based on the concept of adaptive systems, the same idea of minimizing the MSE
can be applied to minimizing the ε′1 and ε3. A practical implementation of the
adaptive system is using the LMS algorithm for the blind search of p1,opt and p3,opt.
Using LMS algorithm has many advantages: 1) easy-to-implement, 2) stable and
robust against the environment disturbance. Based on the LMS algorithm, two
recursions are constructed with respect to ε′1 and ε3. They are

p1(k + 1) = p1(k)− µ1ε
′
1, (6.8)

p3(k + 1) = p3(k)− µ3ε3. (6.9)

Observed from the equations, each contains a simple register and a summing node,
which can be represented by Fig. 6.8, where µi are the step sizes that control the
convergence speed.

piεi

µi

z−1

Figure 6.8: Recursive iteration using LMS.
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Chapter 7

PRACTICAL
CONSIDERATIONS ON
IMPLEMENTATION

7.1 Introduction

In this chapter, we will describe the technique in depth, including its practical imple-
mentation and design consideration. Therefore, we will explain the required circuit
modifications involved in this scheme in realizing the estimation and the calibration
procedures. The estimation procedure enabling the background calibration process
will be explained in Sec. 7.2.3.

7.2 Circuit Modifications

To realize the estimation and the LMS loop introduced in chapter 6, some circuit
modifications in the conventional ADC architecture are required. These modifica-
tions consist of the analog and digital circuits.

7.2.1 Analog Part

In a conventional sub-DAC implementation of a pipelined ADC, the capacitor array
often employs the thermometer encoding, which results in unity elements. For ex-
ample, a stage resolving 2-bit has 4 unity capacitors. The configuration during the
sampling phase in an open-loop architecture remains; however, during the amplifi-
cation phase, we connect the grounded capacitor to the voltage references instead,
resulting in ±Vd1 offsets at the sub-DAC output. If a smaller offsets ±Vd2 were
being injected, we can divide the grounded capacitor by two while keeping same
capacitance. By charge conservation, connecting the voltage reference to one of
the smaller capacitor while keeping the other grounded results in offsets of ±Vd2 at
the sub-DAC output. By doing so, this modification avoid using additional voltage
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references, thereby making the design simpler. The modified sub-DAC is shown in
Fig. 7.1.

2-bit DAC

C/2
C

C

C

C

C/2

Modified 2-bit DAC

C

C

C

Figure 7.1: Modified capacitor array.

7.2.2 Digital Part

The correlation performing multiplication and expectation can be realized by simple
accumulators, bit-shifting, and adders. Fig. 7.2 depicts its implementation, where
the Low pass filter (LPF) is realized with a simple accumulator. Of the product
RiDbi in (6.2), since the RNGs have only two values, 1 or −1, the multiplication
is realized just by changing the sign of Db then being integrated. Meanwhile the
discrete time integrator in the LMS loop can be realized with simple accumulators
as well.

To correct the nonlinear gain error, a two-dimension loop-up table implementing
e(Db) can be precomputed and stored in a ROM [3]. Then the linear gain error can
be corrected either by multiplying D1 by p1 or Db being divided by p1.

7.2.3 Alternative Injection of RNGs

To enable the background calibration, the two offsets ±Vd1 and ±Vd2 are applied
alternatively; that is to say, ±Vd1 are injected and then the ±Vd2 or vice versa, while
either they are positive or negative depends on the RNGs.

42



Stage 1 backend
ADC

RNG

LPFNonlinear 
Calibration

Estimation and Post Processing 

Vin Db Db1

MCE block

Figure 7.2: Block diagram of the background calibration scheme.

According to (6.4), two RNGs are theoretically necessary. However, each stage
can use the same random sequences generated from only one generator; therefore
one RNG is sufficient in reality.

7.3 Complete Calibration Scheme

Combined with the concepts explained in the previous chapter and above sections,
the estimation block using the LMS loop is shown in Fig. 7.3. The MCE block in
the estimation block calculates the correlation of Db and RNG, thus finding out ε1

and ε3. Fig. 7.2 shows the detailed content of the MCE block. In the LMS loop,
the discrete time integrator forces the mean values of ε′1 and ε3 to zero, leading to
p1 and a3 approaching a1 and zero, respectively. This can be further explained by
rewriting p3 and p1 in (6.4) and (6.6) as

ε3 = −3

4
a3

1V
3
d1 · (p3,opt − p3), (7.1)

and

ε′1 = −p1,optVd1

p1

+ Vd1. (7.2)

ε′1 and ε3 equal zero provided that p1, p3 approach p1,opt, p3,opt.

7.4 Estimation Confidence Level

Due to the statistical variations in the estimation of ε1 and ε3, large samples of Db

are required. Ideally, infinite samples make unbiased ε1 and ε3; however, it is not
practical since improving the accuracy by

√
2× costs double samples to be taken,

therefore doubling the calibration time. For such a reason, how many samples should
be taken is important in reaching an accessible balance between the estimation
accuracy and the tracking time.
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Figure 7.3: Complete background calibration scheme using LMS algorithm.

Using the theorem Law of Large Numbers [47, 48] gives

var[mX ] =
1

N
var[X], (7.3)

where mX is the N-sample mean (expectation) of an infinite-long random variable
X. This equation tells that the variance between each N-sample average of X is
governed by the number of samples being taken, i.e., N . Using this property while
representing mX1 = E[R1Db1] and mX2 = E[R2Db2] gives the variance of ε3:

var[ε3] = var [E[R1Db1]− 2E[R2Db2]] ∼= var[mX1] + 4var[mX2]. (7.4)

Let Dbi be the random variable in (7.3) and normalized with respect to Vref , which
results in Dbi uniformly distributed within ±1/2Vref . Under this condition, (7.4)
now relates to the number of samples N , and we have

var[ε3] ∼=
1

Na

V 2
ref

12
+ 4 · 1

Nb

V 2
ref

12
, (7.5)

where Na and Nb represent the number of samples when ±Vd1 and ±Vd2 are injected
respectively. This finding suggests that more samples we take, more accuracy we
get. In order to build the confidence level, we introduce a parameter γ3 into (7.5)
and let Na = Nb = N3, giving

γ2
3var[ε3] =

5γ2
3V

2
ref

12N3

≤ (ε2
3). (7.6)
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Using the same approach with respect to ε1, we obtain

var[ε1] =
1

N1

V 2
ref

12
. (7.7)

And the introduced parameter γ1 that controls the confidence level of ε1 in (7.7)
gives the confidence level:

γ2
1var[ε1] =

γ2
1V

2
ref

12N1

≤ (ε2
1). (7.8)

Above equation suggests that 99.7% of the estimate of ε1 falls in the range of ε1±ε1/3
if we choose γ1 = 9. This result can also be applied to ε3. In light of above
developments, (7.6) and (7.8) as well as the controlling parameters γ3 and γ1 help
us determine how many samples we should take with satisfied confidence levels.

7.5 LMS Loop Analysis

7.5.1 Convergence

In the feedback loop in Fig. 6.7, the step sizes µi determine the convergence condi-
tions of the loop.

Substituting (7.1) into (6.9) gives

p3(k + 1) = p3(k)− µ3

[
−3

4
a3

1V
3
d1(p3,opt − p3(k))

]
= p3(k)

(
1− µ3

3

4
a3

1V
3
d1

)
+ µ3

3

4
a3

1V
3
d1p3,opt, (7.9)

and then subtracting p3,opt from both sides results in

p3(k + 1)− p3,opt = p3(k)

(
1− µ3

3

4
a3

1V
3
d1

)
+ µ3

3

4
a3

1p3,opt − p3,opt

= (p3(k)− p3,opt)

(
1− µ3

3

4
a3

1V
3
d1

)
. (7.10)

Making V3(k) = p3(k)− p3,opt, the difference between p3 and p3,opt, we therefore can
rewrite (7.10) as

V3(k) = V3(0)

(
1− µ3

3

4
a3

1V
3
d1

)k

, (7.11)

where V (0) is the initial condition. Based on this result, the requirement for (7.11)
to be convergent is ∣∣∣∣1− µ3

3

4
a3

1V
3
d1

∣∣∣∣ < 1. (7.12)

Therefore,
8

3a3
1V

3
d1

> µ3 > 0. (7.13)
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It is worthy noting that (7.13) is a necessary condition rather than a sufficient one.
Since e(Db) has a usable region, large µ3, therefore large p3, may causes e(Db)
a multiple-to-one function. As a result, the inverse does not exist. In reality, the
ADC resolution determines the maximum value of µ3; in most cases, µ3 is far smaller
than the upper bond in (7.13), preventing e(Db) from not existing as a consequence.

Using the same approach to find the upper bond of µ1, we have

p1(k + 1) = p1(k)− µ1ε
′
1

= p1(k)− µ1

(
a1(−Vd1)

p1(k)
+ Vd1

)
= p1(k)− µ1

(
a1(−Vd1) + p1(k)Vd1)

p1(k)

)
= p1(k)− µ1Vd1

(
p1(k)− a1

p1(k)

)
. (7.14)

Again, subtracting p1,opt(= a1) from both sides, and making V1(k) = p1(k) − p1,opt

the difference between p1 and the ideal value p1,opt, we obtain

V1(k) = V1(0)

(
1− µ1Vd1

p′1

)k

. (7.15)

The term p′1 in the denominator of (7.15) starts from 2N in initial, and then converges
to its optimum value. Under this condition, we assume it has a fixed value if it
falls between the initial and the optimum value and therefore the equation may be
convergent. If the above conditions were satisfied, it is possible to represent∣∣∣∣1− µ1Vd1

p′1

∣∣∣∣ < 1. (7.16)

Thus, the convergence criteria of µ1 is

2p′1
Vd1

> µ1 > 0. (7.17)

7.5.2 Time Constant

The time constant in an LMS loop indicates how fast the loop will approach its
optimum value. Hence, the time constant influences the calibration period. A
definition of time constant is that “the time at which the initial condition has decayed
to a value of 1/e times initial value” [46]. With the definition, we thus can find the
time constant τ3 by using (7.11), therefore

1

e
V3(0) = V3(0)

(
1− µ3

3

4
a3

1V
3
d1

)τ3

. (7.18)

Taking the natural log on both sides and using the first order Taylor expansion

ln(1− x) ∼= −x,
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we obtain

τ3
∼=

4

3a3
1V

3
d1µ3

. (7.19)

Applying the same approach to (7.15) gives

τ1
∼=

p′1
µ1Vd1

. (7.20)

7.5.3 Correction Parameter Variance

The estimated p1 and p3 variances are largely affected by the variance of the es-
timated ε1 and ε3 due to the statistical estimating process. The phenomenon of
keeping varied p1, p3 occurs even the LMS loop under steady-state. To analyze
this issue then incorporated in the proposed scheme, we construct an expression
representing this condition using (6.9). When the loop is in steady-state, we have

p3(k) = p3(0)− µ3

k−1∑
j=1

ε3,j. (7.21)

Taking the variances on both sides, we obtain

var[p3(k)] = µ2
3var[ε3]. (7.22)

Substituting (7.6) into (7.22), we have

var[p3(k)] =
9µ2

3a
2
3V

6
d1

16γ2
3

. (7.23)

Hence, (7.23) indicates the variance of p3 in steady-state.
Applying the same approach to p1 while using (6.8) gives

p1(k) = p1(0)− µ1

k−1∑
j=0

ε′1,j. (7.24)

Also, taking variances on both sides gives

var[p1(k)] = µ2
1var[ε′1] = µ2

1

1

a2
1

var[ε1]. (7.25)

Therefore, we have the expression

var[p1(k)] =
1

a2
1γ

2
1

µ2
1a

2
1V

2
d1

=
µ2

1V
2
d1

γ2
1

. (7.26)

Both (7.23) and (7.26) give the variances of the correction parameter when the loops
have converged. Understanding them is important since the calibrated ADC output
depends on the correction parameters. Even small disturbances in those parameter
could result in large performance degradation.
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7.5.4 Digital Output Resolution

In this section, we will establish the relationship between the ADC resolution and
the correction parameters. Based on the relationship, we can find the upper bonds
of the variances of p1 and p3 so as to select the corresponding µ1 and µ3, achieving an
optimum balance in the ADC output accuracy and the calibration time. With the
accuracy requirement of the ADC, i.e., the errors arising from the residue amplifier
must be within 1/2 LSB of the backend ADC, we have the following requirement

σp3

∂e

∂p3

≤ 1

2
L3LSBbackendADC , (7.27)

where e represents the digital inverse function described by (5.11) and L3 is the
allocated error budged of the nonlinear gain error correction. Observing the e(Db)
in (7.27), the worst case occurs when Db

∼= 1/2Vref in (5.11) during steady-state
because e(Db) needs to compensate for large errors at this moment. Under this
condition, taking the partial derivative of p3 gives

∂e

∂p3

=
−1√
−3
p3

cos

π

3
+

1

3
cos−1

 9

4
√

−3
p3

 1

p2
3

− 1

p3

sin

π

3
+

1

3
cos−1

 9

4
√

−3
p3

 1√
16 + 27p3

. (7.28)

Eq. (7.28) is still a nonlinear function of p3 and Db. Hence, we use a numerical
approach as shown by Fig. 7.4, where L3 = 1, rather than an analytical one. This
avoids solving complex nonlinear equations. A further derivation of this nonlinear
equation is beyond the scope this thesis. The intersection of the sensitivity line
and the quantization level of backend ADC sets the upper bond of σp3 for the
required resolution. If D1 is multiplied by p1 instead of Db being divided by p1 in
the recombination logic, the accuracy requirement of the ADC becomes

σp1δ ≤
1

2
L1LSBtotalADC , (7.29)

where δ is the quantization level of the sub-ADC in the first stage and L1 the
allocated error budged of the linear gain compensation. According to (7.27) and
(7.29), we can obtain the upper bonds of µ1 and µ3 according to the allocated
tolerable σp1 and σp3 .

7.5.5 Analog Circuit Imperfection

Above equations are built in the absence of circuit imperfections such as mismatched
capacitor array in the sub-DAC, offsets in the sub-ADC, etc. Among these non-
idealities, capacitors mismatch in the sub-DAC may largely affect the calibration
results because it results in the mismatches between Vd1 and Vd2.
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Let α stand for the mismatch with respect to Vd2, that is, V ′
d2 = Vd2 + α. Sub-

stituting V ′
d2 into (6.1) while keeping Vd1 ideal, then

Db2 = a1(−εa −R2Vd2 −R2α)

+ a3(−ε3
a − 3ε2

aR2Vd2 − 3ε2
aR2α− 3εaV

2
d2

− 6εaαVd2 − 3εaα
2 −R2V

3
d2 − 3R2V

2
d2α− 3R2Vd2α

2 −R2α
3). (7.30)

Multiplying Db2 by R2 gives

R2Db2 = a1(−R2εa − Vd2 − α)

+ a3(−R2ε
3
a − 3ε2

aVd2 − 3ε2
aα− 3R2εaV

2
d2

− 6R2εaαVd2 − 3R2εaα
2 − V 3

d2 − 3V 2
d2α− 3Vd2α

2 − α3). (7.31)

According to the above equation, the correlation of R2 and Db2 becomes

E[R2Db2] = a1(−Vd2) + a3(−3ε2
aVd2 − V 3

d2)︸ ︷︷ ︸
original term

+a1(−α) + a3(−3ε2
aα− 3V 2

d2α− 3Vd2α
2 − α3).︸ ︷︷ ︸

error term

(7.32)

In the second line of (7.32), a1(−α) is much larger than the second term such that it
dominates the total error. Since ε3 = E[R1Db1]−E[R2Db2] and (6.5), the deviation
∆p3 is approximated as

∆p3
∼= − 2a1α

ε3,ideal

= − 2a1α

3/4a3
1V

3
d1

(7.33)

As a result, the correction parameter due to the mismatch now converges to

p′3 = p3 + ∆p3,

where p3 is the original optimum value.
Fig 7.5 depicts the SNDR versus the mismatch of Vd2, where 1% in the x-axis

stands for α = 0.01Vd2. In the simulation, the parameter setting are describe in
Table 8.1.

As can be seen, the SNDR remains above 70dB when the mismatch falls in
±0.1%. This finding infers that the calibration still behave well if the matching is
well controlled within ±0.1% relative error. In today’s technology, this requirement
is available with careful layout.

However, we may use alternative solutions to this issue. Since the correlation
needs a sufficient large number of samples, dynamic element matching in the sub-
DAC such as DWA [9] or others [49–53] can be used. Because the correlation is an
average result, those techniques aim to make the long-term average use of each unit
element in the sub-DAC the same. If taking sufficient samples, the estimation is
virtually unaffected by the matching errors provided that the average error is zero.

In order to apply these techniques, the capacitor array is modified as depicted in
Fig. 7.6. In this modification, we double the number of unity capacitors but keep the
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total capacitances the same as in the original configuration. Take a 2-bit sub-DAC
using DWA for example. If the local conversion result d = 2 in cycle 1, then C1-C4

are selected and C5 as well as C6 or C5 alone is selected depending on whether Vd1

or Vd2 is injected; if d = 1 in cycle 2 and Vd2 is selected by RNG in cycle 1, then
C6 and C7 are selected while C8 and C1 or C8 is selected with the same reason.
Observing the procedure, we select 2× d capacitors in each cycle and two or one of
the following capacitors depending on the injected Vd1 or Vd2. The circular selection
acts as the DWA technique.

C1 C2 C3 C4 C5 C6 C7 C8Cycle 1

Cycle 2 C6 C7 C8 C1 C2 C3 C4 C5

d = 2 with Vd2 injected

d = 1 with Vd1 injected

Figure 7.6: Modified capacitor using DWA [9].
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Chapter 8

SIMULATION RESULTS

8.1 Simulation Setup

In this chapter, we use a behavioral model that closely resembles the pipelined ADC
to validate the proposed scheme. This model uses a fully differential (3+1)-bit/stage
in the first stage and then followed by ten 1.5-bit/stage stages that has an effective
resolution of 9 bits. Hence, the behavioral model has a total resolution of 12 bits.
The configuration in the first stage gives 1bit redundancy for the injection of random
sequences. In the simulation setup, only the first stage uses the open-loop residue
amplifier thus having non-perfect amplification, while the others are assumed to be
ideal. An appropriate model of the residue amplifier is expressed as a third-order
polynomial described by (5.3). That is

G1(Vx) = a1(Vx) + a3(Vx)
3.

Table 8.1 summarizes the associated values of a1 and a3 as well as the design
parameters.

Table 8.1: Open-looop amplifier parameters.
Parameter Description Value

Vref Converter reference voltage 1V
FS Full scale range 2V
δ quantization level in stage 1 δ = 1/16 = 0.0625
a1 Linear gain term with 5% error 7.6
a3 Nonlinear gain term with 10% distortion in FS −204.8

With the values listed in Table. 8.1, the corresponding amplifier model is

G1(Vx) = 7.6Vx − 204.8V 3
x , (8.1)

which leads to the correction parameter p1,opt = 7.6 and p3,opt = −0.46654.
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8.2 Simulated ADC Performance

Fig. 8.1 and 8.2 show the converter’s DNL and INL without calibration applied. As
can be seen from the DNL, the nonlinear amplification results in a large number of
missing codes. Its distribution also reveals errors in the non-perfect first stage. The
large amount positive and negative INL is caused by these missing codes and also
by the cubic error terms.
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Figure 8.1: DNL without correction.

With the optimum p1 and p3 applied in the calibration block, we obtain the
corrected DNL and INL shown in Fig 8.3, 8.4. The DNL now has no systematic
error in the first stage; however, the DNL still has missing codes. This performance
loss is mainly due to the fairly nonlinear amplification as well as the approximated
digital inverse function (5.11) in which we have analyzed the effect that brings
about to the DNL. The INL after calibration shows a significant improvement in
the converter linearity from 26.5LSB to 0.66LSB. This improvement can also be
seen in the frequency domain. Fig. 8.5 and 8.6 compare the results of a single
tone sinusoidal input test with and without digital correction. With calibration, the
ENOB improves from 6.09 to 11.7 bits, which is about 33.83dB in SNDR.
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Figure 8.2: INL without correction.
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8.3 LMS Loop Simulation

In this section we include the multi-correlation estimation technique in the simula-
tion. We allocate 50% error budgets for L1 and 50% for L3 at first, finding the upper
bonds 0.004 for σp3 and 0.001 for σp1 according to (7.27) and (7.29). Both values
help us determine the upper bonds for µ1 and µ3 respectively. Selecting γ1 = 3 in
(7.8) gives the number of samples for the estimation of ε1 is 14. It is not reasonable
because the ADC accuracy requirement dominates in determining the number of
samples for estimating ε1 in the LMS loop. With the help of chapter 7, we obtain
the loop parameters summarized in Table. 8.2.

Table 8.2: LMS Loop Parameters.
Step Size Time Constants
µ1 = 3.04 τ1 = 1.02 · 106/fs
µ3 = 0.96 τ3 = 67 · 106/fs

Based on the values intended for design, we select the cycle length N = 217 for
doing each correlation. That is, we take totally 218 samples for each updates of
p1 and p3. Fig. 8.7 and 8.8 show the parameter convergence upon startup of the
converter, with a full-scaled sinusoidal input applied. Both p1 and p3 converge to
their ideal values. The deviations of the parameters from their expected envelope
are caused by the fact the two estimation loop are not orthogonal. An obvious
observation is the p1 convergence, its learning curve is not monotonic just because
its learning speed is faster than p3 while a3 still exists. And the learning curve of p1

will follow the envelope if the nonlinearity is totally removed.
Fig. 8.9 shows the ENOB when the parameters have settled.
The distribution of the ENOB in steady state is shown in Fig. 8.10.

8.4 Discussion

8.4.1 Summary

With the proposed scheme, Table. 8.3 summarizes the ADC performance with/without
calibration.

Table 8.3: ADC Performance.
DNL (LSB) INL (LSB) ENOB (bit) SNDR (dB)

Before calibration 2.55/− 0.75 26.5/− 26.4 6 38.4
Calibration with 0.43/− 1 0.66/-0.6 11.52 71.1

the proposed scheme

From the table, we see a great improvement in the INL as well as the SNDR.
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8.4.2 Tracking Time Limitations

As we can see from the above simulation results, the statistical nature of the pa-
rameter estimation leads to fairly large tracking time. Another reason for this long
tracking time is that we have used a fairly nonlinear amplifier model in our sim-
ulation. For a conversion rate of 200MS/s in a typical pipelined ADC, the time
constants τ1 and τ3 translate to 5ms and 335ms on an absolute time scale. In cases
where slow adaption cannot be tolerated, an FGEC estimation process [45] could
be considered here.
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Chapter 9

CONCLUSION

9.1 Summary

A novel digital background calibration scheme for multistage ADCs has been pre-
sented. This scheme can accurately estimate and calibrate the linear and nonlinear
gain errors of the open-loop residue amplifier. Moreover, correction of high order
nonlinear terms is also possible if more RNGs are injected. In addition, using statisti-
cal functions achieves precise estimation of the correction parameters in background
without additional analog circuit. This feature makes the design of the whole ADC
easy-to-implement. Because the input is served as a calibration signal, the proposed
algorithm perform calibration without scheduled cycles. Compared with the similar
digital background techniques discussed previously [3, 17], the proposed algorithm
is favorable in many aspects, where they are summarized in Table. 9.1.

Table 9.1: Comparison
[3] [17] proposed

Stimuli uniformly dis-
tributed

stationary stationary

Correction range limited by ana-
log and digital cir-
cuits

limited by algo-
rithm

reaching theoreti-
cal maximum

Hardware cost moderate large small

9.2 Suggestion on Future Works

In this thesis, we have proposed a digital background calibration scheme for multi-
stage ADCs; as a result, an obvious future work is the pipelined ADC implemen-
tation with multi-stage calibration using this technique. Using multiple open-loop
stages in the converter front-end will result in larger power saving and high conver-
sion rate.
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Other opportunities exist in exploring more efficient estimation that cancels the
input signal interference in the estimation. At the same time, an optimization of
this work based on the implementation in each stages could be a future research
topic.

A third, more aggressive vision, is to extend the digital correction in ADCs to
include dynamic, frequency dependent error. The benefits of fully digital dynamic
error compensation could be revolutionary.

More generally, a similar estimation concept to analog distortion could be consid-
ered in audio, video, and other communication systems that are limited by nonlinear
effects.
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