
國 立 交 通 大 學

電 機 與 控 制 工 程 研 究 所

碩 士 論 文

適用於遞迴架構高點數快速傅利葉轉換之

低點數快速傅利葉轉換設計之研究

Study on Short-Length FFT Design for Recursive

Long-Length FFT Architecture

指導教授：董蘭榮 博士

 研究生：吳智偉

中華民國九十五年七月

Study on Short-Length FFT Design for Recursive

Long-Length FFT Architecture

Advisor: Dr. Lan-Rong Dung

Graduate Student: Chi-Wei Wu

July 2006

Graduate Institute of Electrical and Control

Engineering

National Chiao Tung University

Hsinchu, Taiwan, ROC

Study on Short-Length FFT Design for Recursive Long-Length FFT Architecture

Graduate Student: Chi-Wei Wu Advisor: Dr. Lan-Rong Dung

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

With the growing trend on many specific applications adopting long-length FFT,

the performance of FFT processors is more and more important. Generally, the

long-length FFT is implemented with recursive short-length FFT in order to save the

cost and complexity. This thesis presents a study on different short-length FFT designs

for recursive architecture long-length FFT. Under recursive architecture, latency of

each short-length FFT iteration will be the bottleneck of overall performance. A new

structure with CORDIC (COordinate Rotation DIgital Computer) and DA (Distributed

Arithmetic) technique is proposed in order to achieve low latency. A case study on

realizing an 802.11a 64-point FFT processor is also presented. The specified FFT

processor computes 16-bit input data at a throughput rate of 20MHz. The two chips,

the proposed 64-point CORDIC-DA FFT processor and the other one with fully

parallel 8-point FFT structure, were fabricated using TSMC 0.18-um single-poly

six-metal CMOS process. After simulation, analysis, and refinement, we make a

conclusion that the parallel 8-point FFT structure is most suitable for recursive

architecture FFT.

i

適用於遞迴架構高點數快速傅利葉轉換之
低點數快速傅利葉轉換設計之研究

學生：吳智偉 指導教授：董蘭榮 博士

國立交通大學

電機與控制工程學系研究所

摘要

隨著利用高點數快速傅利葉轉換的應用日益增多，快速傅利葉轉換處理器的

效能越來越受到重視。一般而言，為了要節省成本與降低複雜度，高點數快速傅

利葉轉換會以低點數快速傅立葉轉換的遞迴架構實現的。在此論文中提出了一份

適用於遞迴架構高點數快速傅利葉轉換的低點數快速傅立葉轉換設計的研究。在

遞迴架構下，每次低點數快速傅立葉轉換迴圈的延遲將會是整體效能的瓶頸所

在。為了要達到更低的延遲，此論文中提出了一個新的使用座標旋轉與分散式運

算的快速傅立葉轉換架構。此論文還以 801.11a 無線網路中 64 點快速傅立葉轉

換處理器為例，提出了硬體實現的研究。此快速傅立葉轉換處理器的規格是 16

位元及 20MHz 的產出率。我們以 TSMC 0.18-um 製程製作出 2 顆的 64 點快速傅

立葉轉換處理器，其中一顆是以我們所提出的架構為基礎，另一顆則是以傳統的

平行 8 點快速傅立葉轉換為基礎。經過不斷的模擬、分析及改善後，我們下了一

個結論：對於遞迴架構的高點數快速傅利葉轉換處理器，最適合以平行 8 點快速

傅立葉轉換實現。

ii

誌謝

本篇論文得以順利完成，首先要感謝的是我的指導教授──董蘭

榮教授，在碩士班的兩年間，董教授不厭其煩地指導我，當我陷入瓶

頸時，董教授亦適時地指點我正確的方向，做出修正，並且提供非常

豐富的資源，讓我能好好潛心於學習研究，讓我在這兩年間獲益良多。

同時，也感謝實驗室的學長──學之、介皇、盟淳、顯文，在我

的求學過程中給予指點與幫助，以及同學們──文豪、岳璋、泰佑、

耕興，在課業與生活上的互相扶持、分擔紓解彼此的壓力，給了我一

段美好的研究所時光。

最後要感謝我的家人的支持，有了你們的鼓勵，使我無後顧之

憂，才能夠安心地完成碩士班學業。

謹將此論文獻給所有關心我的人，在此致上最深的謝意。

iii

Contents

Abstract ...i

Contents……………………………………………………………………………….iv

List of Tables……………………………………………………………………..…..vii

List of Figures…………………………………………………………………….…viii

Chapter 1 Introduction ..1

1.1 Introduction for Long-Length FFT ...1

1.2 Recursive Architecture Overview ...2

1.3 Design for Optimized Structure ..3

1.4 Organization of This Thesis ..4

Chapter 2 Backgrounds...6

2.1 Discrete Fourier Transform...6

2.2 Memory System Architectures..8

2.2.1 Single Memory...8

2.2.2 Dual Memory ...8

2.2.3 Pipeline ..9

2.2.4 Array ..9

2.3 8-point FFT Hardware Implementation ..10

 iv

2.3.1 Parallel DIT Structure ..11

2.3.2 Radix-2 Multi-path Delay Commutator (R2MDC)11

2.3.2 Radix-2 Single-path Delay Feedback (R2SDF)...............................13

2.4 CORDIC Overview...14

2.5 DA Overview ..18

Chapter 3 Short-Length FFT...20

3.1 Introduction...20

3.2 Latency in 8-point FFT ...21

3.3 CORDIC-DA Structure ...22

3.3 Error Analysis ...29

3.4 Implementation and Simulation Results ...32

Chapter 4 Long-Length FFT...35

4.1 Introduction...35

4.2 Memory Access...36

4.3 Latency in Twiddle Factor Rotator ...38

4.3.1 Complex Multiplier Phase Rotator ..38

4.3.2 ROM Multiplier Phase Rotator..41

4.3.3 CORDIC-DA Structure with Phase Rotator.....................................43

4.4 Implementation and Simulation Results ...46

Chapter 5 A Case Study: 802.11a Wireless LAN 64-Point FFT Processor50

5.1 Design Environment ...50

5.1.1 Clock Issues ...52

5.2 Verification..54

5.3 Test Strategy..55

5.4 Design Comparison...55

 v

Chapter 6 Conclusion and Future Work..57

6.1 Conclusion ..57

6.2 Future Work ..58

REFERENCES ..60

 vi

List of Tables

Table 1.1 Various FFT applications

Table 2.1 Number of real additions and multiplications required for N-point FFT

Table 3.1 Rotation matrix of W8
n

Table 3.2 CORDIC PE control signal mapping

Table 3.3 The 25 words used in LUT …

Table 3.4 Statistical SQNR analysis of conventional FFT and CORDIC-DA

Table 3.5 Simulation results of short-length FFT

Table 4.1 The Transform Matrix within range of π/8

Table 4.2 Summary of branch FFTs

Table 5.1 Summary of two test chips

…………………………………………2

…………………………………………………………………………………….7

……………………………………………….21

…………………………………27

………………………………………….28

…..32

………………………………27

………………………..40

……………………………………………..49

………………………………………….56

 vii

List of Figures

Fig. 1.1 Recursive architecture of radix-n FFT

Fig. 2.1 Single-memory architecture block diagram

Fig. 2.2 Dual-memory architecture block diagram

Fig. 2.3 Pipeline architecture block diagram

Fig. 2.4 Array architecture block diagram

Fig. 2.5 Signal flow graph of 8-point DIT FFT

Fig. 2.6 R2MDC block diagram

Fig. 2.7 R2MDC switch modes

Fig. 2.8 R2SDF block diagram

Fig. 2.9 R2SDF operation modes

Fig. 2.10 Linear CORDIC rotations

Fig. 2.11 Block diagram of basic single CORDIC iteration

Fig. 2.12 DA mechanization of 4-word input data

Fig. 3.1 W8
2 rotation following a butterfly

Fig. 3.2 Critical path in an 8-point DIT FFT

Fig. 3.3 Block diagram of 8-point CORDIC-DA FFT

Fig. 3.4 (a) 1-BAAT bit-serial adder (b) 1-BAAT 2’s complementor

Fig. 3.5 CORDIC PE block diagram

Fig. 3.6 Block diagram inside the modified LUT

Fig. 3.7 Error model of CORDIC-DA

Fig. 4.1 Memory access collision between two stages

…………………………………..2

……………………………..9

………………………………9

…………………………………..10

……………………………………..10

………………………………….11

…………………….………………………….12

…………………………………………………12

………………….………………………………13

………………………………………………13

……………………………………………15

……..…………….15

…………………………….19

……………………………………22

……………………………………22

…………………………..24

…..……25

………………………..…………………26

……………..……………….28

……………..………………………….30

………………………….37

 viii

Fig. 4.2 Signal flow chart of a complex multiplier

Fig. 4.3 Configuration of coefficient ROM and phase rotator

Fig. 4.4 The range of stored angles in practice

Fig. 4.5 4BAAT ROM multiplier mechanism

Fig. 4.6 4BAAT phase rotator with constant rotating angle

Fig. 4.7 Block diagram of the refined CORDIC-DA FFT

Fig. 4.8 Block diagram of integrated LUT for 64-point FFT

Fig. 4.9 Duplicate datapaths in CORDIC-DA stage

Fig. 5.1 Layout view of 64-point FFT with CORDIC-DA structure

Fig. 5.2 Layout view of 64-point FFT with parallel FFT structure

Fig. 5.3 Block diagram of 1-pipe version CORDIC-DA FFT with recursive

architecture

Fig. 5.4 Block diagram of CORDIC-DA with 2 pipeline stages

Fig. 5.5 Testbench for 64-point FFT

…………………………….39

…….……………39

…………………………………42

…………………………………43

……………………44

………………………45

….………………..48

……………………………40

…..……….43

……………..44

………………………………..…………………..………………….45

………………..45

…………………………….…………….47

 ix

Chapter 1 Introduction

1.1 Introduction for Long-Length FFT

The fast Fourier transform (FFT) and inverse fast Fourier transform are key

operations in modern communication systems, and the long-length FFT is commonly

adopted in order to increase transmission bandwidth or efficiency, such as wireless

LAN, ADSL, VDSL, and digital audio/video broadcasting systems, as shown in Table

1.1. By the growing trend towards longer length, FFT processors need more and more

computing power, memory spaces, and hardware costs. There are many research

works on short-length FFT processors have been done for several decades, but few on

long-length FFT processors. There is still much space left for optimizing the

implementations of long-length FFT.

1

Application FFT/IFFT Size Frequency spacing TFFT

WLAN 64 0.3125 MHz 3.2 μs

ADSL 2×256 4.3125 KHz 231μs

VDSL 2×256×2n,n=0~4 4.3125 KHz 231μs

DAB 256×2n,n=0~3 4.065×2n KHz 31×2n
μs

DVB-T 8912 / 2048 1.116 / 4.464 KHz 896 / 224μs

Table 1.1 Various FFT applications

1.2 Recursive Architecture Overview

In order to decrease the implementation complexity, recursive architectures are

commonly used while structuring long-length FFT, as shown in Fig. 1.1

Radix-n

Branch

FFT

Memory

Fig. 1.1 Recursive architecture of radix-n FFT

2

In such a recursive architecture, the first data of the current iteration can not be

loaded into the “branch” FFT until the last data of the previous iteration is done. Thus,

the latency of the branch FFT will be a performance bottleneck. An approach to lower

the latency between the stages in recursive architectures is required for better

performance. Furthermore, the faster calculations are finished up, the lower power is

consumed. It is also a way to increase energy efficiency in the meanwhile.

Numerous methods to optimize recursive architecture of long-length FFT were

reported. In [11], a cache-memory architecture is adopted to enhance the performance

of the memory system. A matrix prefetch buffer scheme is proposed in [12] that

reorders the access of the memories between the stages in order to make sure the

fluency of the dataflow because of the transposed order of the branch FFT. A COBRA

FFT processor [10] uses an array architecture and is composed of multiple chips

utilizing bit-serial arithmetic and dynamic reconfiguration. In this thesis, a study on

algorithms and low-latency structures of short-length FFT for recursive long-length

FFT is presented.

1.3 Design for Optimized Structure

To solve the issues on latencies of branch FFT, a new structure featured in

CORDIC (COordinate Rotation DIgital Computer) and DA (Distributed Arithmetic)

techniques is proposed. With the property of bit-serial computations, this structure can

run at a high frequency (max. 427MHz) with low latency (4 clock cycles). The

absolute latency is 9.36 ns.

However, for a 16 bit-parallel 8-point FFT computation, the latency increases to

20 clock cycles, and the absolute latency reaches 46.8 ns. Compared to the parallel

8-point FFT structure, the latter can run at max. 154MHz within 2 clock cycles of

3

latency. The absolute latency is only 12.94 ns. In the view of power dissipation, the

proposed structure consumes about 41.6~59.1 mW (depends on the scalability of

datapaths, will be described in later chapters) at 20MHz in average, but the straight

structure consumes only 12mW. We expected a parallel 8-point FFT to be inferior to

the proposed structure because of its long latency at the inter-stage complex

multipliers. Apparently, the proposed structure gains no benefits in non-bit-serial

computations. A study on this issue is presented in this thesis.

All simulations are done with TSMC 0.18μm single-poly six-metal CMOS

process.

1.4 Organization of This Thesis

The following is the summary of each chapter.

Chapter 2 Backgrounds

The main idea of the thesis, including FFT algorithm, CORDIC, and DA, is

discussed in this chapter. Then, various implementations of the short-length FFT are

described. Some of them are chosen as implementing candidates.

Chapter 3 Short-length FFT

Because of the long latency inside the branch FFT, including 8-point FFT and the

twiddle factor rotation, the performance of recursive architectures is limited. The

characteristics of several conventional implementations are shown in this chapter.

Chapter 4 Long-length FFT

In order to solve the performance issues while adopting a short-length FFT in

4

recursive long-length FFT architectures, we looked for several methods to realize the

branch FFT. A new implementation of the branch FFT with CORDIC and DA

techniques is proposed.

Chapter 5 A Case Study: 802.11a wireless LAN 64-point FFT Processor

In order to verify the performance of the proposed architecture, several

implementations of the 8-point branch FFT were developed. Then, two test chips are

realized following the specification of the 802.11a wireless LAN 64-point FFT

processor. The simulation results show that the parallel 8-point FFT is the best choice

for implementing short-length FFT of recursive long-length FFT.

Chapter 6 Conclusion

Finally, we make a conclusion on our research works.

5

Chapter 2 Backgrounds

2.1 Discrete Fourier Transform

The N-point discrete Fourier transform (DFT) X(k) of a complex data sequence

x(n) is defined as

}1...,,1,0{,)()(
1

0

−∈= ∑
−

=

NkWnxkX
N

n

nk
N (1)

where the twiddle factor is

)2(
N
nkjnk eW

π−
= (2)N

If N is large, the number of MAC (Multiply and ACcumulate) operations

described in (1) will be relatively large. Also, the multiplication required in (1) is a

complex multiplication that consists of 4 real multiplications and 2 real additions.

Decomposing (1) will help saving the computational costs. Let

⎩
⎨
⎧

−∈
−∈

+=

⎩
⎨
⎧

−∈
−∈

+=

=

}1...,,1,0{
}1...,,1,0{

,

}1...,,1,0{
}1...,,1,0{

,

2

1
21

2

1
21

Mk
Tk

kkMk

Mn
Tn

nTnn

TMN

(3)

Applying the values in (3), (1) can be reformed as

6

{

4444444 34444444 21
444 3444 21

point DFTT

11

1 factor twiddle

21

point DFTM

2

22

1 2

2121

1

0

1

0
21

1

0

1

0

))((
21

21

)(

)(

)(

−

−

∑ ∑

∑∑

−

=

−

=

−

=

−

=

++

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+=

+=

+

kn
T

T

n

kn
N

M

n

kn

T

n

M

n

kMkTnn
N

WWWnTnx

WnTnx

kkMX

M

(4)

By the derivation described in (4), one long-length DFT operation can be

decomposed into multiple short-length DFT operations with additional twiddle factor

rotations. Considering N to be power of r, the N-point DFT can be decomposed into

logrN stages of r-point DFT. This special case enables the availability of structuring

recursive short-length DFT for long-length DFT.

The computational complexity of (1) is O(N2). With the FFT algorithm, the

computational complexity can be reduced to O(NlogrN) where r means that the

radix-r FFT operations are utilized. Table 2.1 [17] shows the number of real additions

and multiplications required for an N-point FFT.

Real Additions Real Multiplications

N Radix-2 Radix-4 Radix-8 Radix-2 Radix-4 Radix-8

8 40 52 16 4

16 112 155 48 27

32 296 136

64 744 1011 972 360 243 204

128 1800 904

256 4232 5635 2184 1539

512 9736 12420 5128 3204

1024 22024 28931 11784 8451

2048 49160 26632

Table 2.1 Number of real additions and multiplications required for N-point FFT

7

For a 2-point and a 4-point FFT operation, the hardware can be implemented

with only adders. An 8-point FFT operation can be implemented with adders and

1/√2 constant scalars which causes hardware complexity a little higher. However, it

decreases the overall complexity more while adopted in long-length FFT operations.

Since the radix-r FFT with an r higher than 8, such as radix-16, decreases the overall

complexity even more, the complexity of the branch FFT is much higher because of

the need of complex multipliers.

2.2 Memory System Architectures

For a radix-r FFT algorithm, the hardware architecture of N-point FFT is

decomposed into logrN stages with r-point branch FFT. Each stage requires reading

and writing to N data words, and memory access is considered to be one of the

bottlenecks under the recursive structure of long-length FFT. The followings are

memory system architectures previously proposed.

2.2.1 Single Memory

This is the simplest architecture that only one memory bank is connected to the

branch FFT, as shown is Fig. 2.1. Additional input and output buffers are required

while adopted in a real-time FFT processing.

2.2.2 Dual Memory

In this architecture, shown in Fig. 2.2, two memory banks are functioned as a set

of ping-pong buffer so that it is capable to real-time FFT processing. logrN times of

iterations are required to complete an N-point FFT. Meanwhile, a clock rate higher

than logrN times of the sampling rate is also required.

8

2.2.3 Pipeline

In this architecture, the recursions are flattened. The computational resource

costs are increased because of the requirements of logrN branch FFT and logrN+1

buffer memory, as shown in Fig. 2.3. On contrast, the clock rate is comparatively low

as the same frequency of the sampling rate to meet real-time FFT processing.

2.2.4 Array

Processors using an array architecture consist of a series of independent

processing elements, buffers, and a communication networks, as shown in Fig. 2.4.

For example, the COBRA processor [10] contains an array of radix-4 butterfly

processors, an 128-element I/O memory, an 128-element data-exchange block, and an

128×128 crossbar matrix.

Main
Memory

Branch
FFT

Fig. 2.1 Single-memory architecture block diagram

Memory
Bank 1

Memory
Bank 2

Branch
FFT

Fig. 2.2 Dual-memory architecture block diagram

9

Buffer
Memory

Branch
FFT

Buffer
Memory

Branch
FFT

Buffer
Memory

Branch
FFT...

Fig. 2.3 Pipeline architecture block diagram

Memory

FFT
PE

FFT
PE

...

Memory...

Communication
Networks

Fig. 2.4 Array architecture block diagram

2.3 8-point FFT Hardware Implementation

As shown in Table 2.1, a radix-8 FFT reduce the complexity more than other

radix. Thus, it is chosen as the branch FFT for implementing long-length FFT in this

thesis. There are many implementations have been proposed, such as radix-2

multi-path delay commutator (R2MDC) [30] and radix-2 single-path delay feedback

(R2SDF) [21]. The FFT algorithm can be expressed in two forms, decimation in time

(DIT) and decimation in frequency (DIF). Fig. 2.5 shows the signal flow graph of an

8-point DIT FFT. In this section, several 8-point FFT implementations in DIT form

10

will be introduced.

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]WN
3

WN
0

WN
0

WN
0

WN
0

WN
0

WN
1

WN
2

WN
0

WN
2

WN
0

WN
2

Fig. 2.5 Signal flow graph of 8-point DIT FFT

2.3.1 Parallel DIT Structure

In this structure, the hardware is as Fig. 2.5 shown. Every component is directly

mapped and realized. It is the straightest structure but costs the most area resource.

However, by great parallelism, it calculates all 8 outputs at the same time within the

least latency.

2.3.2 Radix-2 Multi-path Delay Commutator (R2MDC)

This is a direct implementation of radix-2 FFT algorithm using pipeline structure.

Fig. 2.6 outlines the block diagram of R2MDC. At first, the MUX switches up, and

the first data are loaded into the buffer. Then, the MUX switches down, the second

11

data passes through the path, the both operands of the first butterfly are ready, and the

PE calculates the butterfly. The switches between stages operate in two modes, as

shown in Fig. 2.7. In mode 1, the two inputs passes through; in mode 2, the inputs are

swapped. With proper control, the switch can feed the right operands to next butterfly

operation. In R2MDC, the utilization of the butterflies and delay buffers are 50% for

each.

PE SW PE SW PE

1

1

2 4

2

Fig. 2.6 R2MDC block diagram

Mode 1 Mode 2

Fig. 2.7 R2MDC switch modes

12

2.3.2 Radix-2 Single-path Delay Feedback (R2SDF)

Since the utilization of buffers in R2MDC is only 50%, the R2SDF structure

reduces its inter-stage buffer size by half. With feedback delay buffers, the utilization

can reach 100%. Fig. 2.8 outlines the block diagram of R2SDF. In this structure, the

PE holds two jobs: switching data and butterfly. Fig.2.9 shows the two operating

modes of PE. In mode 1, the input data is passed to the buffer queue, and the data

from the buffer is passed to the next stage with no modification; in mode 2, the PE

calculates the butterfly from the input and the buffer, and the results are propagated to

the next stage.

PE PE PE

1 2 4

Fig. 2.8 R2SDF block diagram

n n

Mode 1 Mode 2

Fig. 2.9 R2SDF operation modes

13

2.4 CORDIC Overview

The CORDIC (COordinate Rotation DIgital Computer) which was developed by

Volder [26] in 1959 is an iterative arithmetic algorithm for phase rotation using a

unified shift-add approach [2]. The concept of the CORDIC algorithm is to

decompose the desired angle into weighted sum of a set of predefined elementary

rotation angles such that the angles can be accomplished with simple shift-add

operations. Fig. 2.10 is an example of the CORDIC algorithm with linear coordinate

systems. Let the desired angle θ be represented as

∑
−

=

=
1

0

)(
n

i
i iaμθ (5)

where μi represents the rotation signs conventionally with set {-1,1} and the i-th

elementary rotation angle a (i) is defined as

(6)
iia −−= 2tan)(1

With the above definitions, the CORDIC algorithm can be described as an iterative

equation as follows

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
+
+

−

−

)(
)(

12
21

)1(
)1(

iy
ix

iy
ix

i
i

i
i

μ
μ

 (7)

(7) shows a simple implementation of a CORDIC iteration with a shift-add structure,

illustrated in Fig. 2.11. The elementary rotation angles described in (6) are not

normalized while i >1. To make sure the final coordinate [xf yf]T is normalized, the

scale factor K is defined as

⎥
⎦

⎤
⎢
⎣

⎡

+
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

∏
−

−)(
)(

21

1
)(
)(

1
22 ny

nx
ny
nx

K
y
x

n
i

i
f

f

μ (8)
=0i

14

where x(n) and y(n) are the output of the last iteration.

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)0(

)(
iy

x
iv

x=1

v(0)

v(1)

v(2)
v(3)

Fig. 2.10 Linear CORDIC rotations

+/-
Barrel
Shifter

+/-

Barrel
Shifter

x(i)

y(i)

x(i+1)

y(i+1)

µ(i)

µ(i)

Fig. 2.11 Block diagram of basic single CORDIC iteration

15

The basic CORDIC algorithm [2] can be described as follows:

Initiation: Given x(0), y(0), z(0).

For i=0 to n-1, Do

/* CORDIC iteration equation */

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
+
+

−

−

)(
)(

12
21

)1(
)1(

iy
ix

iy
ix

i
i

i
i

μ
μ

/* Angle updating equation */

z(i+1)=z(i)-μiam(i)

End i-loop

/* Scaling Operation */

⎥
⎦

⎤
⎢
⎣

⎡

+
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

∏
−

=

−)(
)(

21

1
)(
)(

1

0

22 ny
nx

ny
nx

K
y
x

n

i

i
i

f

f

μ

Generally, the rotation angle θ is known in many DSP applications. Thus, the

rotation signs μi can be precomputed rather than online computation. The calculation

is done by (7) and the value of is obtained as

⎩
⎨
⎧

<−
≥

=
0)(if1
0)(if1

ix
ix

iμ (9)

For a fixed number of CORDIC iterations i, the scale factor K will also be a constant.

The redundant CORDIC proposed by Erocegovac and Lanf [22] is a modified

version of the CORDIC method. In this algorithm, the rotation signsμi can be taken

from the set {-1, 0, 1} instead of the set {-1, 1} defined as

16

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−≤−

−>>

≥

=

2
1)(2if1

2
1)(2

2
1if0

2
1)(2if1

ix

ix

ix

i

i

i

iμ

(10)

if μi = 0 during this iteration, no computation is required. In this method, the

computational costs of certain CORDIC iterations may be saved. However, these

zero-rotation angles need no normalization because no rotations are completed as a

matter of fact. Thus, it also causes variable scale factors. Many schemes are proposed

to compensation the variable scale factors. A double rotation method [23] can reduce

number of iterations while keeping constant scale factors. A differential CORDIC

method [24] is proposed to implement redundant constant scale factor without

correcting iterations. A prediction rotation method with the concept of Wallace tree,

Booth encoding, and termination algorithm is proposed to speedup redundant addition

while keeping a constant scaling factor [25].

Compared to complex-multiplier-based phase rotators, the standard CORDIC

method possesses the advantage of smaller area, higher speed, and better capability

for pipelined architecture, but pays longer latency because of its iterative

mechanization. The redundant CORDIC method can avoid unnecessary computation

while rotating the vectors so that latency will be reduced. But it also introduces the

issues on variable scale factors and required additional devices to handle.

17

2.5 DA Overview

DA (Distributed Arithmetic) is a technique to calculate a sum of product more

efficiently. Basically it is a bit-serial arithmetic algorithm. Considering an example of

a sum of products:

∑
=

=
K

k
kk xAy

1
 (11)

where Ak are fixed coefficients, and xk are the input data words. If xk is a

2’complement binary number, then it can be expressed as

∑
−

=

−+−=
1

1
0 2

N

n

n
knkk bbx (12)

where bkn is the bits, bk0 is the sign bit, and bkN-1 is the LSB. Replacing (11) with (12),

one will get

n
N

n

K

k
knk

K

k
kk bAbAy −

−

= ==
∑ ∑∑ ⎥⎦

⎤
⎢⎣

⎡+−= 2
1

1 11
0

(13)

Notice that whether bkn or bk0 only takes on values of 0 and 1, the bracketed term in

(13):

∑
=

K

k
knkbA

1
 (14)

has only 2k possible values. These values can be precomputed and stored in ROM

rather than run-time computed. Thus, a ROM of lookup tables and a shift-add

accumulator form the basic DA mechanization. The input data are fed from LSB to

MSB in a bit-serial style, and the accumulator adds the value from LUT (LookUp

Table) to the 1-bit right-shifted value of the previous accumulation. The accumulator

changes its operating mode from an adder to a subtractor while the incoming bits are

18

the sign bits. Here is an example of a sum of product with 4-word input data, as

shown in Fig. 2.12. The Ts control signal is asserted while the current bit-serial input

is MSB, as sign bit, and the adder switches to the subtractor.

DA is a very efficient means to computations that are dominates by inner

products [4], especially for constant coefficients. Whenever the performance / cost

ratio is critical, DA should be taken into consideration.

Input Code
b1n b2n b3n b4n

16-word
Memory

16-Word
ROM

Σ

Barrel
Shifter

1
1
1
1

x1
x2
x3
x4

Ts

±

+
1

Parallel Output

Sign Control
0 = Add
1 = Subtract

Contents
0 0 0 0 0
0 0 0 1 A4

0 0 1 0 A3

0 0 1 1 A3+A4

0 1 0 0 A2

0 1 0 1 A2+A4

0 1 1 0 A2+A3

0 1 1 1 A2+A3+A4

1 0 0 0 A1

1 0 0 1 A1+A4

1 0 1 0 A1+A3

1 0 1 1 A1+A3+A4

1 1 0 0 A1+A2

1 1 0 1 A1+A2+A4

1 1 1 0 A1+A2+A3

1 1 1 1 A1+A2+ A3+A4
Fig. 2.12 DA mechanization of 4-word input data

19

Chapter 3 Short-Length FFT

3.1 Introduction

In the previous chapter, the radix-8 FFT algorithm and recursive architecture are

described. In the recursive architecture, the first data of the current iteration can not be

loaded into the branch FFT until the last data of the previous iteration is done. Thus,

the timing delay between stages under such a recursive architecture is limited by the

latency of branch FFT processors. As the number of iterations grows, a branch FFT

with lower latency will result in a faster completion. Besides, under the same

specification, an architecture, which completes calculations sooner, will stay in sleep

longer and save more power. Therefore, a low latency branch FFT is required for a

recursive architecture long-length FFT.

The latency of branch FFT is mainly composed of two parts: 8-point FFT and

inter-stage twiddle factor rotations. In this chapter, the objective is to resolve issues

about latency in 8-point FFT, and the proposed 8-point FFT structure with CORDIC

and DA technique is described. Issues about twiddle factor rotation are left for later

chapters. All simulations are done with TSMC 0.18μm single-poly six-metal CMOS

process.

20

3.2 Latency in 8-point FFT

Consider a straight parallel 8-point FFT implementation. Each radix-2 butterfly

operation produces 1 adder delay time. Table 3.1 shows the rotation matrix of W8
n

twiddle factors. Only W8
1, W8

2, and W8
3 are performed in an 8-point FFT. W8

0 does

no computations and can be ignored. Fig. 3.1 shows a W8
2 rotation following a

butterfly operation. The lower output signal B’ can be reformulated as:

[]
)()(

)()()('

RRII

IIRR

ABjBA
jABjBAB

−+−=
−×−+−=

This modification can be done by simply swap the operands of subtractions. Thus, the

rotation can be integrated into the butterflies with no extra computational cost. One

1/√2 constant scalar and 1 adder delay time are required in W8
1 and W8

3. The total

computational delay of the critical path in a parallel 8-point FFT is 4 adders and 1

constant scalar, as shown in Fig. 3.2.

n Rotation Matrix n Rotation Matrix

0 ⎥
⎦

⎤
⎢
⎣

⎡
10
01

 4 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
10
01

1 ⎥
⎦

⎤
⎢
⎣

⎡
− 11

11
2

1 5 ⎥
⎦

⎤
⎢
⎣

⎡
−
−−

11
11

2
1

2 ⎥
⎦

⎤
⎢
⎣

⎡
− 01

10
 6 ⎥

⎦

⎤
⎢
⎣

⎡ −
01
10

3 ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
11
11

2
1 7 ⎥

⎦

⎤
⎢
⎣

⎡ −
11
11

2
1

(15)

Table 3.1 Rotation matrix of W8
n

21

x-

-j

A

B

A＇

B＇

Fig. 3.1 W8
2 rotation following a butterfly

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]W8
3

W8
1

-j

-j

-j

Fig. 3.2 Critical path in an 8-point DIT FFT

3.3 CORDIC-DA Structure

The FFT algorithm saves the computational costs because it makes use of

dependencies between stages of radix-2 FFT operations. However, the dependencies

become a source of latency while being implemented into hardware. Considering the

original DFT definition shown in (1), a DFT operation is intrinsically a

sum-of-product operation. For an 8-point DFT, the latency is the delay time of one

2-operand adder, one 8-operand adder, and one constant scalar. If there is an

implementation with a better approach to summations and constant scaling, the

latency can be reduced. The proposed CORDIC-DA structure may possibly reach this

goal.

22

An 8-point DFT is defined as

∑
=

=
7

0
8][][

n

nk nxWkX (16)

where W8
nk is the twiddle factor. Implementing the twiddle factor with CORDIC

method, (16) can be expressed as

⎪⎩

⎪
⎨
⎧

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ ∑
=

×

otherwise

even both arek and n if

1
2

1
),(

]}[Im{
]}[Re{

),(),(
]}[Im{
]}[Re{ 7

0
22

knK

nx
nx

knMknK
kX
kX

n

(17)

where K(n,k)M2x2(n,k) is the rotation matrix shown in Table 3.1. In the view of the

redundant CORDIC method, K(n,k) is the scale factor of CORDIC, and M2x2(n,k) is

the pure additions of CORDIC. There are 2 CORDIC iterations: π/2 rotation and

tan-11 rotation. Notice that certain twiddle factors in () require no tan-11 rotation, thus

the scale factor K(n,k) has two possible values: 1 and 1/√2, as described in (17), and

is a variable scale factor. The concept of the CORDIC-DA structure is that the

CORDIC stage processes rotations without scale factor; the DA stage handles the

variable scale factor and summation.

23

The block diagram of the proposed structure is illustrated in Fig. 3.3. It is a

pipelined 8-point FFT processor. There are 3 stages, the P/S converter

(Parallel-to-Serial converter), the CORDIC stage, and the DA stage. Between the

CORDIC stage and the DA stage, there exists a series of pipeline registers that

separate the two stages. The P/S converter contains total 16 sets of N-bit shift registers,

2 sets for real and imaginary part each operand. They load 8 data words from the

memory buffer, outputs the LSB to the DA stage, and then right shift 1-bit in next

cycle. The shift operation is a circular shift that the MSB in next cycle will be the

content of the LSB in previous cycle. Because shift operations consume heavy power,

a ‘shift’ control signal is designed to control the right shift operation. When the

pipeline is inactive, the right-shift operation will be stopped.

CORDIC
PE

CORDIC
PE

CORDIC
PE

...

P/S

Converter

From
Buffer

1
1

1
1

1
1

N

N

LUT

1
1

1
1

1
1

Controller

CORDIC stage DA stage

LUT

Data signal

Control signal

+±
N+3

Real part
of output

+±
N+3

Imaginary part
of output

8

8

Fig. 3.3 Block diagram of 8-point CORDIC-DA FFT

24

Originally, the P/S converter is placed in front of the DA stage. However, if the

P/S converter is moved behind the CORDIC stage, the CORDIC PE can be utilized

with bit-serial arithmetic that extremely saves the cell area. For example, if a 16-bit

adder is transformed into a 1-BAAT (Bit At A Time) bit-serial adder, only 1-bit adder

and few flip-flops are required, as shown in Fig. 3.4. When ‘LSB’ signal is asserted,

an external carry-in signal C0 is transmitted to the carry-in of the full adder, otherwise

the carry-out of the previous cycle stored in the register is transmitted. It computes

sum like a RCA (Ripple-Carry Adder) does, but in a bit-serial style. Theoretically, N

cycles are required to complete a bit-serial CORDIC computation for N-bit input. An

extra 1-bit guard bit is added in order to prevent from overflow thus total N+1 cycles

are required.

+

Bi

C0

Ci

Ai

Ci+1

Si

LSB

+
neg

Ci

Ai

Ci+1

Si

LSB

neg

Fig. 3.4 (a) 1-BAAT bit-serial adder (b) 1-BAAT 2’s complementor

25

The CORDIC stage is composed of a CORDIC PE array, as shown in Fig. 3.5.

Total 8 CORDIC PEs are required for an 8-point FFT. Fig. 3.5 shows the block

diagram of the CORDIC PE. Each PE consists of 4 OR gates, 4 bit-serial 2’s

complementors, and 2 bit-serial adders. There is a controller that centralizes the

control signals which are independent of each other. With proper control signals

shown in Table 3.2, the PEs can implement all W8
n rotations shown in Table 2.1,

except the 1/√2 scaling.

2's
complmentor

1 1

2's
complmentor

1 1

+

1

1

1

ctrl [0]
ctrl [2]

ctrl [3]

Real part
of input

2's
complmentor

1

2's
complmentor

1

+

1

1

1

ctrl [6]

ctrl [7]

ctrl [1]

ctrl [4]

ctrl [5]

Imaginary part
of input

Real part
of output

Imaginary part
of input

Fig. 3.5 CORDIC PE block diagram

26

Twiddle factor Control signal ctrl[0..7]

W8
0 0 0 1 0 0 0 0 1

W8
1 0 1 1 1 0 0 1 1

W8
2 0 1 0 1 0 0 1 0

W8
3 1 1 1 1 0 1 1 1

W8
4 1 0 1 0 0 1 0 1

W8
5 1 0 1 1 1 1 1 1

W8
6 0 0 0 1 1 0 1 0

W8
7 0 0 1 1 1 0 1 1

Table 3.2 CORDIC PE control signal mapping

After rotation, the outputs from the CORDIC stage, which are bit-serial styled,

are transmitted to the address line of the LUT (LookUp Table) in the DA stage. There

are two sets of LUT and accumulator that handle the real part and imaginary part of

the processing data individually. Basically, the lookup table sums all inputs up, and

scales 1/√2 if this input channel needs to:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

)7(
)6(
)5(
)4(
)3(
)2(
)1(
)0(

1
8

2
8

3
8

4
8

5
8

6
8

7
8

0
8

2
8

4
8

6
8

0
8

2
8

4
8

6
8

0
8

3
8

6
8

1
8

4
8

7
8

2
8

5
8

0
8

4
8

0
8

4
8

0
8

4
8

0
8

4
8

0
8

5
8

2
8

7
8

4
8

1
8

6
8

3
8

0
8

6
8

4
8

2
8

0
8

6
8

4
8

2
8

0
8

7
8

6
8

5
8

4
8

3
8

2
8

1
8

0
8

0
8

0
8

0
8

0
8

0
8

0
8

0
8

0
8

x
x
x
x
x
x
x
x

WWWWWWWW
WWWWWWWW
WWWWWWWW
WWWWWWWW
WWWWWWWW
WWWWWWWW
WWWWWWWW
WWWWWWWW

X
X
X
X
X
X
X
X

 (18)

where the shaded coefficients contain a 45-degree rotation and need to be scaled.

The address bus width of the LUT is 11 bits, including 8-bit data input and 3-bit

iteration index term that loops from 0 to 7 while computing 8-point DFT, and a

27

2K-word ROM is required. It is large number that is hard to implement and need to be

modified. Actually, the sum operation can be calculated with an ones counter which

simply counts the number of the logic ‘1’ from the 8-bit input so that the address line

can be decreased to 4 bits. Besides, as (14) shown, only the odd channel is possibly to

be scaled by 1/√2. As shown in Table 3.3, according to the combination of each

CORDIC channel output, there are 25 possible values. This is a small-size ROM, thus

it is realized with synthesized logic rather than real ROM module. The modified LUT

architecture is shown in Fig. 3.6, if the current iteration contains 45-degree rotations,

the data passes 1’s counter, remapping table, and LUT, otherwise it passes 1’s counter

only.

of 1/√2
of 1 0 1 2 3 4

0 0 0.707107 1.414214 2.121320 2.828427

1 1 1.707107 2.414214 3.121320 3.828427

2 2 2.707107 3.414214 4.121320 4.828427

3 3 3.707107 4.414214 5.121320 5.828427

4 4 4.707107 5.414214 6.121320 6.828427

Table 3.3 The 25 words used in LUT

1s
counter

Reduced
25-word

coefficient
ROM

Address
Remapping

Table

8 4

3

5

Index term

CORDIC
output

LUT

N
To DA

accumulator

Fig. 3.6 Block diagram inside the modified LUT

28

Assume the input data width is N bits. Because an 8-point FFT is an 8-operand

addition, total N+3 bits are required at the output. In the accumulator, a register of at

least N+4 bits is required. The N+3 bits in MSB are necessary to hold the result, and

the 1 bit in LSB is left for the accuracy while doing right-shift operations. One can

increase the number of bit is LSB to gain more accuracy. In the test chip described in

Chapter 5, a total 23 bits is utilized for 16-bit inputs. The latency of the proposed

8-point FFT structure depends on its data width because of the shift-accumulate

operation in the DA stage. Total N+4 clock cycles are required to complete an 8-point

FFT calculation. For a 16-bit FFT, the latency is 20 cycles, and it is a large number.

3.3 Error Analysis

In the case of FFT hardware implementation, the finite bitwdith must be

considered because of the fixed-point computation. Many statistical error analysis

papers on FFT implementations are proposed [27-29]. However, the CORDIC-DA

structure proposed in this thesis is not a traditional FFT implementation, and an

extended error analysis has to be done to choose a suitable bitwdith for the datapath.

Assume the input sequence of FFT x(n) is a sequence of finite-valued and white

complex numbers. The variance of x(n) can be expressed as

∑∑
−

=

−

=

=−=
1

0

2
1

0

22])[(1)][(1 N

n

N

n
xx nx

N
nx

N
μσ (19)

where μx is the mean of x(n) andμx =0. The SQNR (Signal-to-Quantization Noise

Ratio) is defined as

2

2

q

xSQNR
σ
σ

= (20)

where σx
2 is the variance of output andσq

2 is the variance of the quantization error.

29

For an N-point FFT processor with input of which real and imaginary parts are

uniformly distributed in)
2

1,
2

1(NN− , the variance [28] of the output is

NX 3
12 =σ (21)

From (20) and (21), the SQNR [29] of the conventional FFT implementation can be

carried out:

345
22

−−
=

mN
SQNR

B

FFT (22)

where B is the bitwidth of the input sequence and m=log2N.

CORDIC
stage

X

+

+

LUT

eL

+

eA

x[n]

Accumulator stage

Fig. 3.7 Error model of CORDIC-DA

Fig. 3.7 shows the error model of CORDIC-DA. In the CORDIC stage, one more

guard bit is added and can proof noise-free. The coefficients stored in the LUT are

precomputed and rounded into M-bit that a roundoff noise eL is added. Because of the

mechanism of DA, total B times shift-add operation will be done in the accumulator

for a B-bit input sequence. The variance of the roundoff error until the accumulator is

30

M

B

B

k
k

BB

M

LUT

LUT

LUT

LUTLUTLUT

LUT

2
3
22

2

1

0

2

20
2
122

2
121

2
12

1

2
2

22

)21(2
2
1

)(...)()(
3

2

−

−

−

=

−−

−

=≈

−=

=

+++=

=

∑

σ

σ

σ

σσσσ

σ

(23)

At the end of the CORDIC-DA, the output will be rounded into B-bit. The variance of

the rounding error is

3
2 2

2
2

B−

=σ (24)

From (23) and (24), the SQNR of the CORDIC-DA can be expressed as

BM

x

N

SQNR DACORDIC

22

2
2

2
1

2

222
11

−− +⋅
⋅=

+
=− σσ

σ

(25)

To increase SQNR, we would like to make M and B as large as possible but are

limited by the implementation resource. A better decision on M and B is to make sure

5.0
222 22

+=
=⋅ −−

BM

BM

 (26)

From (26), M=B+1 is a better solution for trade-off between resource usage and

SQNR performance. Replace M=B+1 and N=8 in (22) and (26), the SQNR

expressions can be rewritten as

12
2
25
2

2

2

B

B

FFT

DACORDICSQNR

SQNR

=

=

−

(27)

(28)

From (27) and (28), one can discover that the SQNR performance of the

CORDIC-DA structure is better than the conventional implementation in the same

31

bitwidth. To match the SQNR of the two structure, we can lower the B and M value of

the CORDIC-DA structure that will reduce the hardware cost. Concretely, to lower the

M value is to decrease the bitwidth of the LUT, and to lower the B value is to decrease

the registers of the accumulator and the remaining bits after roundoff. Table 3.4 lists

the statistical SQNR analysis of the two structures. Although the CORDIC-DA

structure performs better than the conventional FFT, there is no just match value on

SQNR versus bitwidth. In the test chip, B=16 and M=16 is chosen.

B 8 9 10 11 12 13 14 15 16

FFT 68.37 80.41 92.45 104.49 116.54 128.58 140.62 152.66 164.70

CORDIC-DA 74.75 86.79 98.83 110.87 122.91 134.95 146.99 159.03 171.08

Table 3.4 Statistical SQNR analysis of conventional FFT and CORDIC-DA

3.4 Implementation and Simulation Results

Since the 8-point CORDIC-DA FFT algorithm is proposed, an evaluation model

is developed to verify the algorithm. The three FFT models: CORDIC-DA FFT,

R2SDF FFT, and fully parallel FFT, are structured with 16-bit data width, and the

clock constraints are set to very high frequency so that the limit of these

implementations will be carried out. Table 3.5 lists the simulation results of these FFT

implementations.

The parallel FFT is a straight implement of 8-point DIT FFT, as shown in Fig.

2.5. There is no pipeline register used thus it requires only 1 clock cycle to complete

an 8-point FFT operation. The R2SDF is implemented with Fig. 2.6. Because of the

feedback registers, it requires 7 clock cycles to carry out the first result. The

CORDIC-DA structure can run at a very fast speed because of the bit-serial arithmetic.

However, the latency is affected by the data width, and it requires more clock cycles

32

to carry out the first result.

According to the simulation results, the parallel FFT requires most area costs but

shortest latency. On contrast, the CORDIC-DA structure utilized least area costs, but

the latency is the longest of the three FFT implementations. It may possibly because

of the long data width that the DA stage requires more clock cycles to accumulate.

Although it can achieve very high frequency, it is still not fast enough. The critical

path of CORDIC-DA is found on the LUT which is hard to be pipelined. The power

consumption of the proposed CORDIC-DA structure is higher than the other two

implementations. In order to achieve very high clock rate, the logic synthesizer

inserted as much clock buffers as possible so that more power is consumed with the

high toggle rate of the clock propagation.

The result does not go as we expected so that an idea of merging the twiddle

factor rotators into the branch FFT comes out. In this way, the latency produced by the

twiddle factor rotator may be eliminated with little delay in our CORDIC-DA

structure.

However, if a serial I/O interface is adopted, the CORDIC-DA will possess the

shortest latency. The shift-out bit in the accumulator can be passed to the serial output

so that the first bit can be carried out in 2 clock cycle. The shortest clock period of

CORDIC-DA structure is 1.65 ns, and the shortest latency is about 3.30 ns.

33

Implementation Parallel FFT R2SDF CORDIC-DA

Max. clock rate
6.47 ns

154.6 MHz

5.47 ns

182.8 MHz

1.65 ns

606.0 MHz

Gate count 23946 10740 9982

Clock cycle 1 7 20
Latency

Timing 6.47 ns 38.3 ns 33 ns

Throughput Rate (clock cycle) 0.125 1 17

Static power analysis 66 mW 42 mW 24 mW

Simulation-based power analysis
3.77 mW

@ 20 MHz

6.65 mW

@ 20 MHz

35.6 mW

@ 400 MHz

Table 3.5 Simulation results of short-length FFT

34

Chapter 4 Long-Length FFT

4.1 Introduction

There are two key components structuring recursive architecture long-length FFT:

the short-length FFT (also known as the branch FFT) and the twiddle factor rotator. In

the previous chapter, the objective of the proposed CORDIC-DA structure is to

decrease the latency in the branch FFT. A modification to integrate the twiddle factor

into the DA LUT will be described in this chapter.

The memory architecture of the recursive FFT is another issue. In a recursive

long-length FFT architecture, the frequent access to intermediate memory requires a

high-speed memory device and efficient access scheme. A matrix buffer memory

access scheme and how it is adopted in the memory devices provided by TSMC 0.18

μm CMOS process will be described in this chapter, too.

35

4.2 Memory Access

Consider a radix-8 FFT. One may replace M=8 in (4) and get

{

4444444 34444444 21
444 3444 21

point DFT
8

11

8

8

1 factor twiddle

21

point DFT8

2

22
8

8

1 2

21281

1

0

7

0
281

1

0

7

0

)8)((
281

21

)(

)(

)8(

−

−

∑ ∑

∑∑

−

= =

−

= =

++

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+=

+=

+

N

N

N

N
N

kn

n

kn
N

n

knN

n n

kknn
N

N

WWWnnx

Wnnx

kkX

(29)

Notice that the access order of the input and output between two iterations are the

transpose of each other. For example, a 64-point FFT requires two iterations, and

equipped with an 8 × 8 memory. At the first iteration, the output is stored to memory

row by row, as shown in Fig. 4.1(a). At the second iteration, the input is loaded from

memory column by column, as shown in Fig. 4.1(b). However, if the computation of

the first column is completed, and the result is written back to buffer row by row, the

operands of later 8-point FFT will be overwritten. To solve this problem, an addition

buffer is required. But it increases area cost very much, and is not realizable. A matrix

buffer scheme is proposed in [12] and solves this problem. The memory device is

specialized that the access to columns and rows will be swapped for each iteration so

that no operands will be overwritten.

36

Row
C

ol
um

n

Write direction

Read direction

(a)

Row

C
ol

um
n

Write direction

Read direction

(b)

Fig. 4.1 Memory access collision between two stages

The matrix buffer is synthesized with cell-based process. In general, a

synthesized memory device usually costs more area and power than a full-custom one.

The TSMC 0.18μm CMOS process provides several memory generators, such as

37

single-port SRAM, dual-port SRAM, single-port register file, dual-port register file,

etc. These hard-macro modules are good at area, timing, and power consumption

compared to a synthesized one. We found that dual-port register file module is

suitable for this access scheme, and a N-word register buffer is adopted in the

recursive architecture.

4.3 Latency in Twiddle Factor Rotator

There are many methods to implement twiddle factor rotators, such as complex

multipliers, CORDIC, etc. A complex multiplier produces delay time of 1 real

multiplier and 1 real adder. Delay time produced by a CORDIC rotator depends on the

resolution of the elementary rotation angle derived from (6). One single CORDIC

iteration stage produces delay of 1 real adder. For a N-stage CORDIC, total N real

adder and one constant scalar delay are produced.

The idea of the proposed new structure is to decrease the latency of the branch

FFT iteration as possible. In our view, merging the twiddle factor rotation into the

branch FFT is an alternative approach to lower the latency. Because of the LUT in DA,

the twiddle factor rotation can also be precomputed and stored in the ROM with

reasonable increase on ROM size and little additional logic.

4.3.1 Complex Multiplier Phase Rotator

A straight implementation of a phase rotator is complex multipliers as shown in

Fig. 4.2. The critical path passed through a real multiplier and a real adder. The real

part and imaginary part of the twiddle factors are constants, and can be stored in a

ROM, as shown in Fig. 4.3. In practice, only a range of π/4 will be realized, as

38

shown in Fig. 4.4. The twiddle factors located at area II, III, IV, V, VI, VII, and VIII

can be obtained from the ones located at area I with simply exchanging signs or/and

exchanging real/imaginary part of operands. Table 4.1 shows the transform function.

For example, for a 64-point FFT, total 9 coefficients of W64
0~W64

8 need to be stored

in ROM. Other angles ranging from W64
9~W64

63 can be obtained from the 9 angles.

X

X

X

X

-

+N
nkπ2cos

N
nkπ2sin−

Re[X(k)]

Im[X(k)]

Real part
of output

Imaginary part
of output

Fig. 4.2 Signal flow chart of a complex multiplier

Coefficient
ROM

X(k) To next iteration

Fig. 4.3 Configuration of coefficient ROM and phase rotator

39

VIII

I

II

VII

V

IV

III

VI

Fig. 4.4 The range of stored angles in practice

Area
Transform

Matrix

Index

complement
Area

Transform

Matrix

Index

complement

I ⎥
⎦

⎤
⎢
⎣

⎡
10
01

 No V ⎥
⎦

⎤
⎢
⎣

⎡
−

−
10
01

No

II ⎥
⎦

⎤
⎢
⎣

⎡
−

−
01
10

 Yes VI ⎥
⎦

⎤
⎢
⎣

⎡
01
10

 Yes

III ⎥
⎦

⎤
⎢
⎣

⎡
− 01

10
 No VII ⎥

⎦

⎤
⎢
⎣

⎡ −
01
10

 No

IV ⎥
⎦

⎤
⎢
⎣

⎡ −
10
01

 Yes VIII ⎥
⎦

⎤
⎢
⎣

⎡
−10

01
 Yes

Table 4.1 The Transform Matrix within range of π/8

40

4.3.2 ROM Multiplier Phase Rotator

A Basic ROM multiplier is utilized with a ROM which simply stores the

products of the multiplication. For example, a ROM multiplier for N-bit multiplicand

and M-bit multiplier requires a ROM with size of 2(N+M)×(N+M). However, a ROM

multiplier realization becomes impractical while N or M is large. An alternative

approach is to partition the data width into lower number of bits, and uses a

shift-accumulator to accumulate the products. As shown in Fig. 4.5, the N-bit

multiplicand is partitioned by every 4 bits, and right-shifts one block per cycle. The

ROM stores the (4+M)-bit product of the 4-bit multiplicand and the M-bit multiplier.

Then, the previous result stored in the accumulator is right-shifted by 4-bit, and is

summed up with the product provided by ROM. The multiplication requires N/4

cycles to complete. As the lower bits the data is going to be partitioned, the more

clock cycles to complete a multiplication are required.

41

1 1 0 1...0 10 0 01 00
24+M-word

Product
ROM

4

Multiplier
M

N bits shift register

Multiplicand

N

+

4-bit Barrel
Shifter

4+M

N+M

Fig. 4.5 4BAAT ROM multiplier mechanism

In a basic ROM multiplier phase rotator, multipliers shown in Fig. 4.2 are simply

replaced with ROM multipliers. Because the twiddle factor ROM stores constant

coefficients, it can be merged into these ROM multipliers. For example, a ROM

multiplier that multiplies a K-bit input with L possible fixed-point coefficients of

twiddle factors WN
1~L is shown in Fig. 4.6. The input passes through a series of shift

registers which provides 4 bit per cycle to the ROMs. ROM A stores the product

related to the real parts of WN
1~L, and ROM B stores the product related to the real

parts of WN
1~L. The rotation will be complete after K/4 cycles.

42

LUT A

+

+

LUT B

LUT A

LUT B

4BAAT
shift register

4BAAT
shift register

4

4

log2LRotating angle
index

Real part
of input

Imaginary part
of input

K

K

Real part
of output

Imaginary part
of output

Fig. 4.6 4BAAT phase rotator with constant rotating angle

4.3.3 CORDIC-DA Structure with Phase Rotator

As the configuration described in Chapter 3, the ROM stores only few patterns

because there are only two possible coefficients: 1 and 1/√2. DA is intrinsically a

ROM-based multiplier. Considering a CORDIC-DA 8-point FFT processor following

a twiddle factor rotator implemented with complex multipliers, the LUT can take

advantages of the property of ROM-multiplier that combines the original function

with the twiddle factor rotations. Moreover, the transform described in Fig. 4.4 can

also be merged with the CORDIC with no extra computation. For example, a radix-8

branch FFT for 64-point FFT derived from (1) can be expressed as

∑
=

+=
7

0
2121

2

22
8)8(),(

n

knWnnxknT (30a)

{ } 1121
8

7

0
6421

21

),(

)8(

kn

n

kn WWknT

kkX

∑
=

=
1

+

(30b)

where T(n1,k2) is the intermediate data between stages. Let

43

⎥⎦
⎥

⎢⎣
⎢=

=

8
ˆ

8modˆ

21

21

knk

knn
 (30c)

(16b) can be rewritten as

{ } kkn

n

n WWknT

kkX
ˆ

8

7

0

ˆ
6421

21

11),(

)8(

+

=
∑=

1

+

(30d)

which extracts the W8 elements from . Thus, the W21
64

knW 8 rotation, which has been

integrated with the CORDIC stage, can be skipped in LUT. Fig. 4.7 shows the block

diagram of the refined CORDIC-DA FFT structure.

CORDIC
PE

CORDIC
PE

CORDIC
PE

...

P/S

Converter

From
Buffer

1
1

1
1

1
1

N x 8

N x 8

LUT A

8

8

1
1

1
1

1
1

+

+±

±

N+3

N+3

Controller

Real part
of output

Imaginary part
of output

CORDIC stage DA stage

LUT B

LUT A

LUT B

Data signal

Control signal

Fig. 4.7 Block diagram of the refined CORDIC-DA FFT

44

1s
counter

64-word
LUT

8 4

3
Index term

scale flag

LUT

2N To DA
accumulator

1s
counter

8
CORDIC output

21

2-word
LUT

2N

2N

Remapping
table

4

6

1

8

Fig. 4.8 Block diagram of integrated LUT for 64-point FFT

The complex multipliers of the twiddle factor rotation are replaced with four

LUTs. Each LUT maps to the real multiplier shown in Fig. 4.2. The LUT A stores the

product of input and
N
nkπ2cos , and The LUT B stores the product of input and

N
nkπ2sin . Although in Fig.4.7 LUT A and B are separated, the content of the two

LUT are actually integrated in a single ROM in realization so that the bitwidth of the

output will be 2N bits. Fig. 4.8 illustrates the block diagram of the integrated LUT for

64-point FFT. There are two control signals: 1/√2 scaling flags and new ‘index term’

signal. Because of the W8 extraction described in (16d), every CORDIC PE has had

the ability to handle a 45-degree-based rotation, thus a new 1/√2 scale flag is

designed to instruct the LUT to scale the designated input channel individually. The

‘index term’ control signal is different from the old one. In the refined structure, the

‘index term’ signal is directed from the described in (30c) which is calculated in

the controller. Considering the output of the two ones counter and index term, the

content of the LUT can be expressed as

n̂

⎩
⎨
⎧ ≥+−

=
otherwise0

 if)(ˆ babWba
x

n
N (31)

45

where x is the output of LUT, a is the result from the ones counter of the CORDIC

output, and b is the result from the ones counter of logic AND operation between the

CORDIC output and 1/√2 scale flag. a and b range from 0 to 8, and a<b will never

occur so that a value of zero is filled. In the case of 64-point FFT, ranges from 0 to

7, and total 36×8 words are required to store all LUT contents. However, there are

two problems to implement the LUT: this number is not power of 2, and the

remapping logic shown in Fig. 4.8 will be complex that produces longer latency.

During the synthesis process, the most critical path is found at the LUT stage, thus the

latency in this stage needs to be short as possible. A trade-off solution is adopted that

splits the LUT into 2 sub-LUTs, a 64-word one and a 2-word one. The 64-word LUT

stores the content of a=1~7 and b=1~7, as expressed in (31). The address is simply

concatenated from the 3-bit LSB from the result of ones counters. a=0,b=0, and a=8,

b=8, are seen as special cases, and are handled by the 2-word LUT. In these special

cases, the final output of the LUT stage is switched to the 2-word LUT, or switched to

the 64-word LUT otherwise.

n̂

The accumulator in the DA stage is modified into a 3-operand adder. It is

implemented with a CSA (Carry-Save Adder) and adds delay of a 3-input XOR gate

to the critical path. With the integration, little delay on the critical path is attached but

the twiddle factor rotators are all saved. This refined CORDIC-DA branch FFT may

possibly gains more benefits while utilized in a recursive architecture long-length

FFT.

4.4 Implementation and Simulation Results

Although the synthesized 8-point CORDIC-DA FFT structure can run at a very

high frequency, the clock is hard to propagate. An in-chip PLL (Phase-Locked Loop)

46

circuit may solve this problem. A PLL circuit requires a low frequency external clock

source and can generate a high frequency internal clock source. However, we have no

such PLL models. Another approach that increases the number of datapath in

CORDIC-DA is adopted. The CORDIC-DA FFT computes one result of 8-point FFT

at a time, thus increasing the datapath will help produce more results at a time. As

shown in Fig. 4.9, a complete datapath, which is called a ‘channel’, includes a

CORDIC stage and a DA stage. The P/S converter can be shared by channels so that it

is not duplicated.

The implementations follow the specification described in the previous chapter.

A set of CORDIC-DA structures with 1, 2, 4, 8 pipes are developed, and they are

already capable of twiddle factor rotation. The other two implementations, R2SDF

and parallel FFT, are developed with a complex multiplier twiddle factor rotator

shown in Fig. 4.2. According to the synthesis report listed in Table 4.2, we discovered

that CORDIC-DA FFT could achieve better power efficiency while more pipes are

utilized. With higher working frequency, more power consumes on the clock buffers,

and driving ability of logic cells is strengthened so that more power is required.

Compared to the basic 8-point CORDIC-DA FFT without merging twiddle factor

rotators, the critical path increases to about 2.4 ns because of the growing LUT size.

However, they still spent more latency than the other two conventional FFT

implementations. Unexpectedly, the optimization effort on the complex multiplier

done by the logic synthesizer is very high. As the report shown, the 16×16 multiplier

produced very low delay that is less than 5.4 ns.

Notice the two measurements of power density listed in Table 4.2. The “power

density” is how much power consumed per K gate counts at the same throughput rate.

A higher value somehow means a better area efficiency. As the result shown, the

1-channel version of CORDIC-DA possesses the highest area efficiency, and verifies

47

the previous inference. The “normalized power” is how much power consumed per

MHz working frequency, not the same throughput rate. A higher value somehow

means a higher toggle rate, or utilization on physical circuits. According to the

reported values, this value is proportion to the number of channels. This value of the

1-channel CORDIC-DA structure is low, but the total power consumption is higher

than the CORDIC-DA configured with more channels. The high power consumption

is possibly is possibly because of the high clock rate that more power is consumed by

the clock propagation.

If a full serial environment is considered that the I/O interfaces and memory

buffers are configured in bit-serial arithmetic, the latency of the CORDIC-DA will

still be the shortest of these FFT implementations. As described in the previous

chapter, only 2 clock cycles are required to carry out the first bit.

LUT ACC
CORDIC

stage

LUT ACC
CORDIC

stage

LUT ACC
CORDIC

stage

...

P/S
Converter

channel 0

channel 1

channel N-1

N-word
buffer

From
memory

To
memory

Fig. 4.9 Duplicate datapaths in CORDIC-DA stage

48

CORDIC-DA
Structure

1 channel 2 channels 4 channels 8 channels
R2SDF

Parallel

FFT

Max. clock rate
2.34 ns

427.4 MHz

2.36 ns

423.7 MHz

2.41 ns

414.9 MHz

2.50 ns

400.0 MHz

5.47 ns

182.8 MHz

6.47 ns

154.6 MHz

Clock cycle 20 20 20 20 8 2
Latency

Timing 46.8 ns 47.2 ns 48.2 ns 50 ns 43.8 ns 12.9 ns

Gate count 14,792 25,142 44,922 81,852 25,666 36,394

Static power

analysis

52.9 mW @

400 MHz

52.2 mW @

200 MHz

55.8 mW @

100 MHz

49.1 mW @

50 MHz

7.2 mW @

20 MHz

4.84 mW @

20 MHz

Simulation-based

power analysis

59.1 mW @

400 MHz

51.5 mW @

200 MHz

45.8 mW @

100 MHz

41.6 mW @

50 MHz

18.1 mW @

20 MHz

12.0 mW @

20 MHz

Power density
 (mW / K gates) 4.00 2.05 1.02 0.51 0.71 0.33

Normalized
power

(mW / MHz)
0.15 0.26 0.46 0.83 0.905 0.6

Table 4.2 Summary of branch FFTs

49

Chapter 5 A Case Study: 802.11a

Wireless LAN 64-Point FFT

Processor

5.1 Design Environment

In the previous chapters, the proposed CORDIC-DA structure is described. An

FFT test chip for long-length application is developed to verify the proposed FFT

processor. This test chip follows the specification of 802.11a wireless LAN 64-point

FFT processor. According to the results shown in the previous chapters, the parallel

8-point FFT implementation is better than the proposed structure at power and speed.

Thus, another test chip is also developed with the parallel 8-point FFT implementation

to verify the argument. The specified FFT processor is a 16-bit 64-point FFT

processor, working at the sampling frequency of 20 MHz. The proposed architecture

was modeled in VHDL and functionally verified using Mentor Graphics’ Modelsim

simulator.

After functional validation, the processors were synthesized for TSMC 0.18μm

single-poly six-metal CMOS technology using Synopsys Design Compiler. After

synthesis, floor planning, P&R, and layout were carried out using Cadence SOC

50

Encounter, as shown in Fig. 5.1 and Fig. 5.2. Finally, the post-simulation power

analysis on the netlists exported from SOC Encounter is carried out using Synopsys

PrimePower.

Fig. 5.1 Layout view of 64-point FFT with CORDIC-DA structure

51

Fig. 5.2 Layout view of 64-point FFT with parallel FFT structure

5.1.1 Clock Issues

At first, the 1-channel version with dual-memory architecture is developed, as

shown in Fig. 5.3. A 64-point FFT operation can be completed within 2 iterations. The

1-channel version requires 20 cycles to complete one result so that total 20×64=1280

cycles are required for each iteration. With extra cycles spent on memory access, a

total number of over 2560 cycles is required to complete a 64-point FFT operation. An

average of more than 40 cycles is required per output at 20 MHz. Thus, a very high

52

frequency clock source of over 20×40=800 MHz is required. Considering the clock

source generation, this implementation is impractical.

Notice that no twiddle factor rotation is needed during the second FFT iteration.

Thus, the second 8-point FFT processing unit can be structured with no phase rotator.

Considering the unbalanced computational requirement of the 2 branch FFTs, the 2

iterations can be structured individually. Separating them into 2 pipeline stages will

help decreasing the area costs and lowering the clock rate by less than a half.

Although the study is concentrated on recursive architectures, the high clock rate

makes the chips hard to realize. The chips have to be implemented with frequency

about 200MHz or even lower thus a flattened architecture is needed. A refined version

with flattened pipeline architecture was built, as shown in Fig. 5.4. The second stage

is structured with 8-point parallel DIT FFT.

CORDIC-DA
FFT

1-word
buffer

8-word
buffer

64-word
dual-port

register file
0

64-word
dual-port

register file
1

Output port

SwitchSwitch

Input port
32 32

32

256

32

32

32

32

Input buffer Output buffer

Fig. 5.3 Block diagram of 1-channel version CORDIC-DA FFT

with recursive architecture

64-word
dual-port

register file
1

64-word
dual-port

register file
2

64-word
dual-port

register file
0

Input port
32

Input buffer

32

1-pipe
CORDIC-DA

FFT

8-word
buffer

32

1-word
buffer

8-point
parallel FFT

8-word
buffer

8-word
buffer

Output buffer

Output port
32256 32 32 32 256 256 32 32

Fig. 5.4 Block diagram of CORDIC-DA with 2 pipeline stages

53

According to the bad performance result, we tried to develop a 2-channel version

of CORDIC-DA FFT. As the result described in the previous chapter, the 2-channel

version is better at power consumption and clock frequency, thus we developed a

VHDL model which is parameterized on number of channels with the GENERIC

statement. Available options are 1, 2, 4, 8 channels, and clock rates are 400, 200, 100,

50 MHz respectively. Considering power consumption and area costs, the 4-channel

version was chosen to realize.

In these designs, two clock domains are adopted: the bit-serial domain and

bit-parallel domain. The bit-serial domain, in which the circuits work at 1:1 frequency

as the external clock source, contains the CORDIC-DA FFT and the P/S converter.

The other components are of the bit-parallel domain, in which the circuits work at

20MHz, and the clock source is supplied by in-chip digital clock divider.

5.2 Verification

A functional test environment was built using Matlab which generates random

test patterns for verification, as shown in Fig. 5.5. The testbench compares the

simulation results to the golden patterns, which were also generated by Matlab, and

run-time analyzes PSNR (Peak Signal-to-Noise Ratio) which is defined as:

()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−= ∑
−

=

MSE
PSNR

nGoldennResult
N

MSE

b

N

n

2log20

)()(1

10

1

0

2

(32)

where N is the number of the point of FFT and b is the bitwidth of data bus.

54

64-point

FFT

32

Random pattern
generated using

Matlab

Matlab
behavior model

Compare
and

analysis

32

Clock &
reset

generator

Test
pattern
control

Input Output

start finish

Testbench

in.txt

golden.txt

report.txt

Fig. 5.5 Testbench for 64-point FFT

5.3 Test Strategy

We adopted full scan test for these chips. The test circuits were inserted during

compilation using Synopsys DFT Compiler. The existing flip-flops inside the chips

were replaced with scan flip-flops, and additional memory wrappers by the I/O port of

dual-port register files were inserted. Test vectors are generated by Synopsys

TetraMAX. The fault coverage of the CORDIC-DA FFT and parallel FFT are 98.67%

and 97.46% respectively. The chips can not achieve high fault coverage possibly

because of the hard-macro memory modules that are treated as black boxes. A BIST

(Built-In Self Test) strategy may help increasing fault coverage.

5.4 Design Comparison

In such a case of 64-point FFT processor, the parallel FFT is superior than the

55

proposed CORDIC-DA in many views, including timing, costs, power, and accuracy.

Table 5.1 lists the summary of the two chips. The 4-channel version of CORDIC-DA

spends more area mainly because the duplicated datapath. The PSNR of CORDIC-DA

FFT is a bit lower than parallel FFT. It may possibly because of the shift-accumulate

mechanism in the DA stage. The shifted bits in the accumulator are discarded right

away for each cycle so that the accuracy of the final result will be affected.

Design CORDIC-DA (4-channel) Parallel FFT

Clock rate 100 MHz 20 MHz

Datapath width 16 bits 16 bits

Latency 10020 ns 9900 ns

Avg. 100.39 dB 103.27 dB

Min. 98.77 dB 101.37 dB PSNR

Max. 102.81 dB 105.75 dB

Synthesized gate

count
79585 (with testing circuits) 69603 (with testing circuits)

Core size 1200 x 1200 um2 1060 x 1060 um2

Die Size 2350 x 2350 um2 2350 x 2350 um2

Timing
100 MHz (bit-serial zone)

20 MHz (bit-parallel zone)
20 MHz

Core power 45.5 mW @ 100 MHz 16.8 mW @ 20 MHz

Die power 62.6 mW @ 100 MHz 28.6 mW @ 20 MHz

Table 5.1 Summary of two test chips

56

Chapter 6 Conclusion and Future

Work

6.1 Conclusion

In this thesis, a study on recursive architecture FFT processor has been presented,

and a new structure with CORDIC-DA technique has been proposed. Under the

specification of 802.11a, this structure is extremely superior to the conventional

radix-8 FFT processor implementations on area, but inferior on clock, performance,

power, etc. We had made efforts on optimize the CORDIC-DA structure in many

ways, including:

1) Twiddle factor rotator integration

2) Register balancing

3) LUT size reduction

4) Datapath duplication

5) Recursion flattening

However, the performance is still not as we expected. The main issue is the bit-serial

arithmetic adopted in DA that is a trade-off between area cost and timing. The high

clock rate required by CORDIC-DA is a derivative problem from bit-serial arithmetic.

First, the clock source is hard to generated without an in-chip PLL circuit. Second, the

57

high clock rate will make the logic synthesizer to insert more buffers and strengthen

the driving ability of cells that consume more power than a low clock rate condition.

Finally, we can make a conclusion that under the bit-parallel recursive architecture

long-length FFT, the 8-point parallel FFT is the best implementation for the branch

FFT considering the trade-off among many aspects, including performance, power,

cost, and complexity.

Although the proposed structure works worse for the recursive architecture FFT,

it is still recommendable in specific applications. The 1-channel version of

CORDIC-DA is good at area costs regardless of the high clock rate. If there is an

application that requires very small area cost, the 1-channel CORDIC-DA may be one

of the best solutions. In the view of performance, if a serial-in serial-out application

which requires high-speed FFT computations and regardless of power consumption,

the CORDIC-DA may be suitable for implementation.

6.2 Future Work

In previous section, a conclusion for implementing radix-8 FFT processors is

described that the parallel FFT should be the first consideration. However, there is still

much research to do with the proposed CORDIC-DA structure. First, the test chip is

implemented with a high specification of 16-bit wordlength while the output is also

16-bit and 26 scaled. The datapath can be designed more carefully if a precise error

analysis was done. Hence, the resource cost will be reduced while keeping the same

SQNR performance. The memory access is another issue. For a bigger N, the memory

access will be more complex, and how to improve the efficiency and simplify the

memory access scheme in the CORDIC-DA structure is left for future work.

Although the performance of the CORDIC-DA structure is not good enough as

58

we expected, the idea proposed in this thesis is still advisable for optimizing bit-serial

arithmetic architecture and DA-twiddle factor integration. In the future, longer-length

FFT processors using parallel FFT implementations will be constructed, and we will

keep study on the optimization of long-length FFT processors based on short-length

FFT and recursive architecture.

59

REFERENCES

[1] Information Technology- Telecommunications and Information Exchange

between Systems- Local and Metropolitan Area Networks- Specific Requirements

Part 11: Wireless Lan Medium Access Control (MAC) and Physical Layer (PHY)

Specifications Amendment 1: High-Speed Physical Layer in the 5 GHz Band,

IEEE P802.11a/D7.0.

[2] Y. H. Hu, “CORDIC-Based VLSI Architectures for Digital Signal Processing,”

IEEE Signal Processing Magazine, pp. 16-35, July 1992.

[3] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck, Discrete-Time Signal

Processing, Second Edition, Prentice Hall, 1999.

[4] Stanley A. White, “Applications of Distributed Arithmetic to Digital Signal

Processing: A Tutorial Review,” IEEE ASSP Magazine, pp. 4-19, July 1989.

[5] A. Berkeman, V. Öwall, and M. Torkelson, “A Low Logic Depth Complex

Multiplier Using Distributed Arithmetic,” IEEE J. of Solid-State Circuits, vol. 35,

no. 4, pp. 656-659, Apr. 2000.

[6] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. Electron.

Comput. vol. 13, pp. 14-17, Feb. 1964.

[7] A. D. Booth, “A Signed Binary Multiplication Technique,” Q. J. Mech. Appl.

Math., vol. 4, pp. 236-240, 1951.

[8] M. Alidina, J. Monteiro, S. Devas, A. Ghosh, and M. Papaefthymiou,

“Precomputational-Based Sequential Logic Optimization for Low Power,” IEEE

Trans. on VLSI Systems, vol. 2, no.4, pp. 426-436, Dec. 1994.

[9] Koushik Maharatna, Eckhard Grass, and Ulrich Jagdhold, “A 64-Point Fourier

Transform Chip for High-Speed Wireless LAN Application Using OFDM,” IEEE

J. of Solid-State Circuits, vol. 39, no. 3, pp. 484-493, Mar. 2004.

60

[10] Tome Chen, Glen Sunada, and Jian Jin, “COBRA: A 100-MOPS Single-Chip

Programmable and Expandable FFT,” IEEE trans. on VLSI Systems, vol. 7, no. 2,

pp. 174-182, Jun. 1999.

[11] Bevan M. Baas, “A Low-Power, High-Performance, 1024-Point FFT Processor,”

IEEE J. of Solid-State Circuits, vol. 34, no. 3, pp. 380-387, Mar. 1999.

[12] Y. W. Lin, H. Y. Liu, and C.Y. Lee, “A Dynamic Scaling FFT Processor for

DVB-T Applications,” IEEE J. of Solid-State Circuits, vol. 39, no. 11, pp.

2005-2013, Nov. 2004.

[13] Y. W. Lin, H. Y. Liu, and C. Y. Lee, “A 1-GS/s FFT/IFFT Processor for UWB

Applications,” IEEE J. of Solid-State Circuits, vol.40, no.8, pp. 1726-1735, Aug.

2005.

[14] Soontorn Oraintara, Y. J. Chen, Truong Q. Nguyen, “Integer Fast Fourier

Transform,” IEEE trans. on Signal Processing, vol. 50, no. 3, pp. 607-618, Mar.

2002.

[15] R. Thamvichai, T. Bose, and M. Radenkovic, “Fast Integer Fourier Transform

(FIFT) Based on Lifting Matrics,” ISCAS 2003, pp. IV-85-IV88, May 2003.

[16] G. Zhong, F. Xu, and Alan N. Willson, Jr., “A Power-Scalable Reconfigurable

FFT/IFFT IC Based on a Multi-Processor Ring,” IEEE J. of Solid-State Circuits,

vol. 41, no. 2, pp. 483-495, Feb. 2006.

[17] S. He and Mats Torkelson, “Designing Pipeline FFT Processor for OFDM

(de)Modulation,” ISSSE 98, pp. 257-262, Oct. 1998.

[18] L. D. Van and C. C. Yang, “High-Speed Area-Efficient Recursive DFT/IDFT

Architectures,” ISCAS 2004, vol. 3, pp. III-357-III-360, May 2004.

[19] J. C. Kuo, C. H. Wen, and A. Y. Wu, “Implementation of a Programmable

64~2048-Poing FFT/IFFT Processor for OFDM-Based Communication

Systems,” ISCAS 2003, vol. 2, pp. II-121-II-124, May 2003.

61

[20] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An Application

Specific DSP Chip Set for 100 MHz Data Rates,” ICASSP 1998, vol.4,

pp.1989-1992, Apr. 1988.

[21] E. H. World and A. M. Despain, “Pipeline and parallel pipeline FFT processors

for VLSI implementation,” IEEE trans. Comput. vol. C-33, pp. 414-426, May

1984.

[22] M. D. Ercegovac and T. Lang, “Redundant and On-Line CORDIC: Application

to Matrix Triangularization and SVD,” IEEE trans. on Computers, vol. 39, no. 6,

pp. 725-740, Jun. 1990.

[23] N. Takagi, T Asada, and S. Yajima, “Redundant CORDIC Methods with a

Constant Scale Factor for Sine and Cosine Computation,” IEEE trans. on

Computers, vol. 40, no. 9, pp. 989-994, Sep, 1991.

[24] H. Dawid and H. Meyr, “The Differential CORDIC Algorithm: Constant Scale

Factor Redundant Implementation without Correcting Iterations,” IEEE trans. on

Computers, vol. 45, no. 3, pp. 307-318, Mar. 1996.

[25] D. Timmermann, H. Hahn, and B. J. Hosticka, “Low Latency Time CORDIC

Algorithms,” IEEE trans. on Computers, vol.41, no. 8, pp. 1010-1015, Aug.

1992.

[26] J. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Trans.

Electron. Comput., vol. EC-8, no. 3, pp. 330-334, Sep. 1959.

[27] P. D. Welch, “A Fixed-Point Fast Fourier Transform Error Analysis,” IEEE trans.

on audio and electroacoustics, vol. AU-17, no. 2, pp. 151-157, Jun. 1969

[28] A. V. Oppenheim and C. J. Weinstein, “Effects of Finite Register Length in

Digital Filtering and the Fast Fourier Transform,” proc. of the IEEE, vol. 60, no.

8, pp. 957-976, Aug. 1972.

[29] M. Sundaramurthy and V. U. Reddy, “Some Results in Fixed-Point Fast Fourier

62

Transform Error Analysis,” IEEE trans. on computers, pp. 305-308, Mar. 1997.

[30] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,

Englewood Cliffs, NJ: Prentice Hall, 1975

[31] Synopsys Design Compiler User Guide, Version W-2004.12, Dec. 2004.

[32] Synopsys Design Compiler Reference Manual: Constraints and Timing, Version

W-2004.12, Dec. 2004.

[33] Artisan Standard Library 0.13um-0.25um Register File Generator User Manual,

Release ug_2004q2v0.

[34] Artisan Standard Library SRAM Generator User Manual, Release ug_2004q1v0.

[35] Artisan Standard Library ROM Generator User Manual, Release ug_2003q4v2.

63

	Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Introduction for Long-Length FFT
	1.2 Recursive Architecture Overview
	1.3 Design for Optimized Structure
	1.4 Organization of This Thesis
	Chapter 2 Backgrounds
	2.1 Discrete Fourier Transform
	2.2 Memory System Architectures
	2.2.1 Single Memory
	2.2.2 Dual Memory
	2.2.3 Pipeline
	2.2.4 Array

	2.3 8-point FFT Hardware Implementation
	2.3.1 Parallel DIT Structure
	2.3.2 Radix-2 Multi-path Delay Commutator (R2MDC)
	2.3.2 Radix-2 Single-path Delay Feedback (R2SDF)

	 2.4 CORDIC Overview
	 2.5 DA Overview

	Chapter 3 Short-Length FFT
	3.1 Introduction
	3.2 Latency in 8-point FFT
	3.3 CORDIC-DA Structure
	3.3 Error Analysis
	3.4 Implementation and Simulation Results

	Chapter 4 Long-Length FFT
	4.1 Introduction
	4.2 Memory Access
	4.3 Latency in Twiddle Factor Rotator
	4.3.1 Complex Multiplier Phase Rotator
	4.3.2 ROM Multiplier Phase Rotator
	4.3.3 CORDIC-DA Structure with Phase Rotator

	4.4 Implementation and Simulation Results

	Chapter 5 A Case Study: 802.11a Wireless LAN 64-Point FFT Processor
	5.1 Design Environment
	5.1.1 Clock Issues

	5.2 Verification
	5.3 Test Strategy
	5.4 Design Comparison

	Chapter 6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	REFERENCES

