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Abstract 

 

With the growing trend on many specific applications adopting long-length FFT, 

the performance of FFT processors is more and more important. Generally, the 

long-length FFT is implemented with recursive short-length FFT in order to save the 

cost and complexity. This thesis presents a study on different short-length FFT designs 

for recursive architecture long-length FFT. Under recursive architecture, latency of 

each short-length FFT iteration will be the bottleneck of overall performance. A new 

structure with CORDIC (COordinate Rotation DIgital Computer) and DA (Distributed 

Arithmetic) technique is proposed in order to achieve low latency. A case study on 

realizing an 802.11a 64-point FFT processor is also presented. The specified FFT 

processor computes 16-bit input data at a throughput rate of 20MHz. The two chips, 

the proposed 64-point CORDIC-DA FFT processor and the other one with fully 

parallel 8-point FFT structure, were fabricated using TSMC 0.18-um single-poly 

six-metal CMOS process. After simulation, analysis, and refinement, we make a 

conclusion that the parallel 8-point FFT structure is most suitable for recursive 

architecture FFT. 
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適用於遞迴架構高點數快速傅利葉轉換之 
低點數快速傅利葉轉換設計之研究 

 
學生：吳智偉     指導教授：董蘭榮 博士 

 
國立交通大學 

電機與控制工程學系研究所 
 

摘要 
 

隨著利用高點數快速傅利葉轉換的應用日益增多，快速傅利葉轉換處理器的

效能越來越受到重視。一般而言，為了要節省成本與降低複雜度，高點數快速傅

利葉轉換會以低點數快速傅立葉轉換的遞迴架構實現的。在此論文中提出了一份

適用於遞迴架構高點數快速傅利葉轉換的低點數快速傅立葉轉換設計的研究。在

遞迴架構下，每次低點數快速傅立葉轉換迴圈的延遲將會是整體效能的瓶頸所

在。為了要達到更低的延遲，此論文中提出了一個新的使用座標旋轉與分散式運

算的快速傅立葉轉換架構。此論文還以 801.11a 無線網路中 64 點快速傅立葉轉

換處理器為例，提出了硬體實現的研究。此快速傅立葉轉換處理器的規格是 16

位元及 20MHz 的產出率。我們以 TSMC 0.18-um 製程製作出 2 顆的 64 點快速傅

立葉轉換處理器，其中一顆是以我們所提出的架構為基礎，另一顆則是以傳統的

平行 8 點快速傅立葉轉換為基礎。經過不斷的模擬、分析及改善後，我們下了一

個結論：對於遞迴架構的高點數快速傅利葉轉換處理器，最適合以平行 8 點快速

傅立葉轉換實現。
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Chapter 1  Introduction 

1.1  Introduction for Long-Length FFT 

The fast Fourier transform (FFT) and inverse fast Fourier transform are key 

operations in modern communication systems, and the long-length FFT is commonly 

adopted in order to increase transmission bandwidth or efficiency, such as wireless 

LAN, ADSL, VDSL, and digital audio/video broadcasting systems, as shown in Table 

1.1. By the growing trend towards longer length, FFT processors need more and more 

computing power, memory spaces, and hardware costs. There are many research 

works on short-length FFT processors have been done for several decades, but few on 

long-length FFT processors. There is still much space left for optimizing the 

implementations of long-length FFT. 
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Application FFT/IFFT Size Frequency spacing TFFT

WLAN 64 0.3125 MHz 3.2 μs 

ADSL 2×256 4.3125 KHz 231μs 

VDSL 2×256×2n,n=0~4 4.3125 KHz 231μs 

DAB 256×2n,n=0~3 4.065×2n KHz 31×2n
μs 

DVB-T 8912 / 2048 1.116 / 4.464 KHz 896 / 224μs 

Table 1.1  Various FFT applications 

 

1.2 Recursive Architecture Overview 

In order to decrease the implementation complexity, recursive architectures are 

commonly used while structuring long-length FFT, as shown in Fig. 1.1  

 

Radix-n

Branch

FFT

Memory

 

Fig. 1.1  Recursive architecture of radix-n FFT 
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In such a recursive architecture, the first data of the current iteration can not be 

loaded into the “branch” FFT until the last data of the previous iteration is done. Thus, 

the latency of the branch FFT will be a performance bottleneck. An approach to lower 

the latency between the stages in recursive architectures is required for better 

performance. Furthermore, the faster calculations are finished up, the lower power is 

consumed. It is also a way to increase energy efficiency in the meanwhile. 

Numerous methods to optimize recursive architecture of long-length FFT were 

reported. In [11], a cache-memory architecture is adopted to enhance the performance 

of the memory system. A matrix prefetch buffer scheme is proposed in [12] that 

reorders the access of the memories between the stages in order to make sure the 

fluency of the dataflow because of the transposed order of the branch FFT. A COBRA 

FFT processor [10] uses an array architecture and is composed of multiple chips 

utilizing bit-serial arithmetic and dynamic reconfiguration. In this thesis, a study on 

algorithms and low-latency structures of short-length FFT for recursive long-length 

FFT is presented. 

 

1.3  Design for Optimized Structure 

To solve the issues on latencies of branch FFT, a new structure featured in 

CORDIC (COordinate Rotation DIgital Computer) and DA (Distributed Arithmetic) 

techniques is proposed. With the property of bit-serial computations, this structure can 

run at a high frequency (max. 427MHz) with low latency (4 clock cycles). The 

absolute latency is 9.36 ns. 

However, for a 16 bit-parallel 8-point FFT computation, the latency increases to 

20 clock cycles, and the absolute latency reaches 46.8 ns. Compared to the parallel 

8-point FFT structure, the latter can run at max. 154MHz within 2 clock cycles of 
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latency. The absolute latency is only 12.94 ns. In the view of power dissipation, the 

proposed structure consumes about 41.6~59.1 mW (depends on the scalability of 

datapaths, will be described in later chapters) at 20MHz in average, but the straight 

structure consumes only 12mW. We expected a parallel 8-point FFT to be inferior to 

the proposed structure because of its long latency at the inter-stage complex 

multipliers. Apparently, the proposed structure gains no benefits in non-bit-serial 

computations. A study on this issue is presented in this thesis. 

All simulations are done with TSMC 0.18μm single-poly six-metal CMOS 

process. 

 

1.4 Organization of This Thesis 

The following is the summary of each chapter. 

 

Chapter 2  Backgrounds 

The main idea of the thesis, including FFT algorithm, CORDIC, and DA, is 

discussed in this chapter. Then, various implementations of the short-length FFT are 

described. Some of them are chosen as implementing candidates. 

 

Chapter 3  Short-length FFT 

Because of the long latency inside the branch FFT, including 8-point FFT and the 

twiddle factor rotation, the performance of recursive architectures is limited. The 

characteristics of several conventional implementations are shown in this chapter. 

 

Chapter 4  Long-length FFT 

In order to solve the performance issues while adopting a short-length FFT in 
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recursive long-length FFT architectures, we looked for several methods to realize the 

branch FFT. A new implementation of the branch FFT with CORDIC and DA 

techniques is proposed. 

 

Chapter 5  A Case Study: 802.11a wireless LAN 64-point FFT Processor 

In order to verify the performance of the proposed architecture, several 

implementations of the 8-point branch FFT were developed. Then, two test chips are 

realized following the specification of the 802.11a wireless LAN 64-point FFT 

processor. The simulation results show that the parallel 8-point FFT is the best choice 

for implementing short-length FFT of recursive long-length FFT. 

 

Chapter 6  Conclusion 

Finally, we make a conclusion on our research works.
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Chapter 2  Backgrounds 

2.1  Discrete Fourier Transform 

The N-point discrete Fourier transform (DFT) X(k) of a complex data sequence 

x(n) is defined as 
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If N is large, the number of MAC (Multiply and ACcumulate) operations 

described in (1) will be relatively large. Also, the multiplication required in (1) is a 

complex multiplication that consists of 4 real multiplications and 2 real additions. 

Decomposing (1) will help saving the computational costs. Let 
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Applying the values in (3), (1) can be reformed as  
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(4)

By the derivation described in (4), one long-length DFT operation can be 

decomposed into multiple short-length DFT operations with additional twiddle factor 

rotations. Considering N to be power of r, the N-point DFT can be decomposed into 

logrN stages of r-point DFT. This special case enables the availability of structuring 

recursive short-length DFT for long-length DFT. 

The computational complexity of (1) is O(N2). With the FFT algorithm, the 

computational complexity can be reduced to O(NlogrN) where r means that the 

radix-r FFT operations are utilized. Table 2.1 [17] shows the number of real additions 

and multiplications required for an N-point FFT. 

 

Real Additions Real Multiplications

N Radix-2 Radix-4 Radix-8 Radix-2 Radix-4 Radix-8

8 40 52 16 4

16 112 155 48 27

32 296 136

64 744 1011 972 360 243 204

128 1800 904

256 4232 5635 2184 1539

512 9736 12420 5128 3204

1024 22024 28931 11784 8451

2048 49160 26632  

Table 2.1  Number of real additions and multiplications required for N-point FFT 
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For a 2-point and a 4-point FFT operation, the hardware can be implemented 

with only adders. An 8-point FFT operation can be implemented with adders and  

1/√2 constant scalars which causes hardware complexity a little higher. However, it 

decreases the overall complexity more while adopted in long-length FFT operations. 

Since the radix-r FFT with an r higher than 8, such as radix-16, decreases the overall 

complexity even more, the complexity of the branch FFT is much higher because of 

the need of complex multipliers. 

2.2  Memory System Architectures 

For a radix-r FFT algorithm, the hardware architecture of N-point FFT is 

decomposed into logrN stages with r-point branch FFT. Each stage requires reading 

and writing to N data words, and memory access is considered to be one of the 

bottlenecks under the recursive structure of long-length FFT. The followings are 

memory system architectures previously proposed. 

2.2.1  Single Memory 

This is the simplest architecture that only one memory bank is connected to the 

branch FFT, as shown is Fig. 2.1. Additional input and output buffers are required 

while adopted in a real-time FFT processing. 

2.2.2  Dual Memory 

In this architecture, shown in Fig. 2.2, two memory banks are functioned as a set 

of ping-pong buffer so that it is capable to real-time FFT processing. logrN times of 

iterations are required to complete an N-point FFT. Meanwhile, a clock rate higher 

than logrN times of the sampling rate is also required. 
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2.2.3  Pipeline 

In this architecture, the recursions are flattened. The computational resource 

costs are increased because of the requirements of logrN branch FFT and logrN+1 

buffer memory, as shown in Fig. 2.3. On contrast, the clock rate is comparatively low 

as the same frequency of the sampling rate to meet real-time FFT processing. 

2.2.4  Array 

Processors using an array architecture consist of a series of independent 

processing elements, buffers, and a communication networks, as shown in Fig. 2.4. 

For example, the COBRA processor [10] contains an array of radix-4 butterfly 

processors, an 128-element I/O memory, an 128-element data-exchange block, and an 

128×128 crossbar matrix. 

 

Main
Memory

Branch
FFT

 

Fig. 2.1  Single-memory architecture block diagram 

 

Memory 
Bank 1

Memory 
Bank 2

Branch
FFT

 

Fig. 2.2  Dual-memory architecture block diagram 
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Memory

Branch
FFT

Buffer
Memory

Branch
FFT

Buffer
Memory

Branch
FFT...

 

Fig. 2.3  Pipeline architecture block diagram 

 

Memory

FFT
PE

FFT
PE

...

Memory...

Communication
Networks

 

Fig. 2.4  Array architecture block diagram 

 

2.3  8-point FFT Hardware Implementation 

As shown in Table 2.1, a radix-8 FFT reduce the complexity more than other 

radix. Thus, it is chosen as the branch FFT for implementing long-length FFT in this 

thesis. There are many implementations have been proposed, such as radix-2 

multi-path delay commutator (R2MDC) [30] and radix-2 single-path delay feedback 

(R2SDF) [21]. The FFT algorithm can be expressed in two forms, decimation in time 

(DIT) and decimation in frequency (DIF). Fig. 2.5 shows the signal flow graph of an 

8-point DIT FFT. In this section, several 8-point FFT implementations in DIT form 
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will be introduced. 
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Fig. 2.5  Signal flow graph of 8-point DIT FFT 

 

2.3.1  Parallel DIT Structure 

In this structure, the hardware is as Fig. 2.5 shown. Every component is directly 

mapped and realized. It is the straightest structure but costs the most area resource. 

However, by great parallelism, it calculates all 8 outputs at the same time within the 

least latency. 

 

2.3.2  Radix-2 Multi-path Delay Commutator (R2MDC) 

This is a direct implementation of radix-2 FFT algorithm using pipeline structure.  

Fig. 2.6 outlines the block diagram of R2MDC. At first, the MUX switches up, and 

the first data are loaded into the buffer. Then, the MUX switches down, the second 
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data passes through the path, the both operands of the first butterfly are ready, and the 

PE calculates the butterfly. The switches between stages operate in two modes, as 

shown in Fig. 2.7. In mode 1, the two inputs passes through; in mode 2, the inputs are 

swapped. With proper control, the switch can feed the right operands to next butterfly 

operation. In R2MDC, the utilization of the butterflies and delay buffers are 50% for 

each. 

 

PE SW PE SW PE

1

1

2 4

2
 

Fig. 2.6  R2MDC block diagram 

 

 

Mode 1 Mode 2  

Fig. 2.7  R2MDC switch modes 
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2.3.2  Radix-2 Single-path Delay Feedback (R2SDF) 

Since the utilization of buffers in R2MDC is only 50%, the R2SDF structure 

reduces its inter-stage buffer size by half. With feedback delay buffers, the utilization 

can reach 100%. Fig. 2.8 outlines the block diagram of R2SDF. In this structure, the 

PE holds two jobs: switching data and butterfly. Fig.2.9 shows the two operating 

modes of PE. In mode 1, the input data is passed to the buffer queue, and the data 

from the buffer is passed to the next stage with no modification; in mode 2, the PE 

calculates the butterfly from the input and the buffer, and the results are propagated to 

the next stage. 

 

PE PE PE

1 2 4

 

Fig. 2.8  R2SDF block diagram 

 

n n

Mode 1 Mode 2  

Fig. 2.9  R2SDF operation modes 
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2.4  CORDIC Overview 

The CORDIC (COordinate Rotation DIgital Computer) which was developed by 

Volder [26] in 1959 is an iterative arithmetic algorithm for phase rotation using a 

unified shift-add approach [2]. The concept of the CORDIC algorithm is to 

decompose the desired angle into weighted sum of a set of predefined elementary 

rotation angles such that the angles can be accomplished with simple shift-add 

operations. Fig. 2.10 is an example of the CORDIC algorithm with linear coordinate 

systems. Let the desired angle θ be represented as 
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where μi represents the rotation signs conventionally with set {-1,1} and the i-th 

elementary rotation angle a (i) is defined as 

(6)
iia −−= 2tan)( 1  

With the above definitions, the CORDIC algorithm can be described as an iterative 

equation as follows 
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(7) shows a simple implementation of a CORDIC iteration with a shift-add structure, 

illustrated in Fig. 2.11. The elementary rotation angles described in (6) are not 

normalized while i >1. To make sure the final coordinate [xf yf]T is normalized, the 

scale factor K is defined as 
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where x(n) and y(n) are the output of the last iteration. 
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Fig. 2.10  Linear CORDIC rotations 
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Fig. 2.11  Block diagram of basic single CORDIC iteration 
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The basic CORDIC algorithm [2] can be described as follows: 

 

Initiation: Given x(0), y(0), z(0). 

For i=0 to n-1, Do 

/* CORDIC iteration equation */ 
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/* Angle updating equation */ 

z(i+1)=z(i)-μiam(i) 

End i-loop 

/* Scaling Operation */ 
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Generally, the rotation angle θ is known in many DSP applications. Thus, the 

rotation signs μi can be precomputed rather than online computation. The calculation 

is done by (7) and the value of is obtained as 

⎩
⎨
⎧

<−
≥

=
0)(if1
0)(if1

ix
ix

iμ  (9)

For a fixed number of CORDIC iterations i, the scale factor K will also be a constant. 

The redundant CORDIC proposed by Erocegovac and Lanf [22] is a modified 

version of the CORDIC method. In this algorithm, the rotation signsμi can be taken 

from the set {-1, 0, 1} instead of the set {-1, 1} defined as 
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if μi = 0 during this iteration, no computation is required. In this method, the 

computational costs of certain CORDIC iterations may be saved. However, these 

zero-rotation angles need no normalization because no rotations are completed as a 

matter of fact. Thus, it also causes variable scale factors. Many schemes are proposed 

to compensation the variable scale factors. A double rotation method [23] can reduce 

number of iterations while keeping constant scale factors. A differential CORDIC 

method [24] is proposed to implement redundant constant scale factor without 

correcting iterations. A prediction rotation method with the concept of Wallace tree, 

Booth encoding, and termination algorithm is proposed to speedup redundant addition 

while keeping a constant scaling factor [25]. 

Compared to complex-multiplier-based phase rotators, the standard CORDIC 

method possesses the advantage of smaller area, higher speed, and better capability 

for pipelined architecture, but pays longer latency because of its iterative 

mechanization. The redundant CORDIC method can avoid unnecessary computation 

while rotating the vectors so that latency will be reduced. But it also introduces the 

issues on variable scale factors and required additional devices to handle. 
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2.5  DA Overview 

DA (Distributed Arithmetic) is a technique to calculate a sum of product more 

efficiently. Basically it is a bit-serial arithmetic algorithm. Considering an example of 

a sum of products: 

∑
=

=
K

k
kk xAy

1
 (11)

where Ak are fixed coefficients, and xk are the input data words. If xk is a 

2’complement binary number, then it can be expressed as 

∑
−
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−+−=
1

1
0 2

N

n

n
knkk bbx  (12)

where bkn is the bits, bk0 is the sign bit, and bkN-1 is the LSB. Replacing (11) with (12), 

one will get 

n
N

n

K

k
knk

K

k
kk bAbAy −

−

= ==
∑ ∑∑ ⎥⎦

⎤
⎢⎣

⎡+−= 2
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(13)

Notice that whether bkn or bk0 only takes on values of 0 and 1, the bracketed term in 

(13): 

∑
=

K

k
knkbA

1
 (14)

has only 2k possible values. These values can be precomputed and stored in ROM 

rather than run-time computed. Thus, a ROM of lookup tables and a shift-add 

accumulator form the basic DA mechanization. The input data are fed from LSB to 

MSB in a bit-serial style, and the accumulator adds the value from LUT (LookUp 

Table) to the 1-bit right-shifted value of the previous accumulation. The accumulator 

changes its operating mode from an adder to a subtractor while the incoming bits are 
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the sign bits. Here is an example of a sum of product with 4-word input data, as 

shown in Fig. 2.12. The Ts control signal is asserted while the current bit-serial input 

is MSB, as sign bit, and the adder switches to the subtractor. 

DA is a very efficient means to computations that are dominates by inner 

products [4], especially for constant coefficients. Whenever the performance / cost 

ratio is critical, DA should be taken into consideration. 
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Contents 
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0 0 0 1 A4

0 0 1 0 A3

0 0 1 1 A3+A4

0 1 0 0 A2

0 1 0 1 A2+A4

0 1 1 0 A2+A3

0 1 1 1 A2+A3+A4
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1 1 0 0 A1+A2

1 1 0 1 A1+A2+A4

1 1 1 0 A1+A2+A3

1 1 1 1 A1+A2+ A3+A4
Fig. 2.12  DA mechanization of 4-word input data
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Chapter 3  Short-Length FFT 

3.1  Introduction 

In the previous chapter, the radix-8 FFT algorithm and recursive architecture are 

described. In the recursive architecture, the first data of the current iteration can not be 

loaded into the branch FFT until the last data of the previous iteration is done. Thus, 

the timing delay between stages under such a recursive architecture is limited by the 

latency of branch FFT processors. As the number of iterations grows, a branch FFT 

with lower latency will result in a faster completion. Besides, under the same 

specification, an architecture, which completes calculations sooner, will stay in sleep 

longer and save more power. Therefore, a low latency branch FFT is required for a 

recursive architecture long-length FFT. 

The latency of branch FFT is mainly composed of two parts: 8-point FFT and 

inter-stage twiddle factor rotations. In this chapter, the objective is to resolve issues 

about latency in 8-point FFT, and the proposed 8-point FFT structure with CORDIC 

and DA technique is described. Issues about twiddle factor rotation are left for later 

chapters. All simulations are done with TSMC 0.18μm single-poly six-metal CMOS 

process. 
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3.2  Latency in 8-point FFT 

Consider a straight parallel 8-point FFT implementation. Each radix-2 butterfly 

operation produces 1 adder delay time. Table 3.1 shows the rotation matrix of W8
n 

twiddle factors. Only W8
1, W8

2, and W8
3 are performed in an 8-point FFT. W8

0 does 

no computations and can be ignored. Fig. 3.1 shows a W8
2 rotation following a 

butterfly operation. The lower output signal B’ can be reformulated as: 

[ ]
)()(

)()()('

RRII

IIRR

ABjBA
jABjBAB

−+−=
−×−+−=

 

This modification can be done by simply swap the operands of subtractions. Thus, the 

rotation can be integrated into the butterflies with no extra computational cost. One  

1/√2 constant scalar and 1 adder delay time are required in W8
1 and W8

3. The total 

computational delay of the critical path in a parallel 8-point FFT is 4 adders and 1 

constant scalar, as shown in Fig. 3.2. 
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Table 3.1  Rotation matrix of W8
n
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Fig. 3.1  W8
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Fig. 3.2  Critical path in an 8-point DIT FFT 

 

3.3  CORDIC-DA Structure 

The FFT algorithm saves the computational costs because it makes use of 

dependencies between stages of radix-2 FFT operations. However, the dependencies 

become a source of latency while being implemented into hardware. Considering the 

original DFT definition shown in (1), a DFT operation is intrinsically a 

sum-of-product operation. For an 8-point DFT, the latency is the delay time of one 

2-operand adder, one 8-operand adder, and one constant scalar. If there is an 

implementation with a better approach to summations and constant scaling, the 

latency can be reduced. The proposed CORDIC-DA structure may possibly reach this 

goal. 
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An 8-point DFT is defined as 

∑
=

=
7

0
8 ][][

n

nk nxWkX  (16)

where W8
nk is the twiddle factor. Implementing the twiddle factor with CORDIC 

method, (16) can be expressed as 
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(17)

where K(n,k)M2x2(n,k) is the rotation matrix shown in Table 3.1. In the view of the 

redundant CORDIC method, K(n,k) is the scale factor of CORDIC, and M2x2(n,k) is 

the pure additions of CORDIC. There are 2 CORDIC iterations: π/2 rotation and 

tan-11 rotation. Notice that certain twiddle factors in () require no tan-11 rotation, thus 

the scale factor K(n,k) has two possible values: 1 and 1/√2, as described in (17), and 

is a variable scale factor. The concept of the CORDIC-DA structure is that the 

CORDIC stage processes rotations without scale factor; the DA stage handles the 

variable scale factor and summation. 
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The block diagram of the proposed structure is illustrated in Fig. 3.3. It is a 

pipelined 8-point FFT processor. There are 3 stages, the P/S converter 

(Parallel-to-Serial converter), the CORDIC stage, and the DA stage. Between the 

CORDIC stage and the DA stage, there exists a series of pipeline registers that 

separate the two stages. The P/S converter contains total 16 sets of N-bit shift registers, 

2 sets for real and imaginary part each operand. They load 8 data words from the 

memory buffer, outputs the LSB to the DA stage, and then right shift 1-bit in next 

cycle. The shift operation is a circular shift that the MSB in next cycle will be the 

content of the LSB in previous cycle. Because shift operations consume heavy power, 

a ‘shift’ control signal is designed to control the right shift operation. When the 

pipeline is inactive, the right-shift operation will be stopped. 
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Fig. 3.3  Block diagram of 8-point CORDIC-DA FFT 
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Originally, the P/S converter is placed in front of the DA stage. However, if the 

P/S converter is moved behind the CORDIC stage, the CORDIC PE can be utilized 

with bit-serial arithmetic that extremely saves the cell area. For example, if a 16-bit 

adder is transformed into a 1-BAAT (Bit At A Time) bit-serial adder, only 1-bit adder 

and few flip-flops are required, as shown in Fig. 3.4. When ‘LSB’ signal is asserted, 

an external carry-in signal C0 is transmitted to the carry-in of the full adder, otherwise 

the carry-out of the previous cycle stored in the register is transmitted. It computes 

sum like a RCA (Ripple-Carry Adder) does, but in a bit-serial style. Theoretically, N 

cycles are required to complete a bit-serial CORDIC computation for N-bit input. An 

extra 1-bit guard bit is added in order to prevent from overflow thus total N+1 cycles 

are required. 
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Fig. 3.4  (a) 1-BAAT bit-serial adder (b) 1-BAAT 2’s complementor 
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The CORDIC stage is composed of a CORDIC PE array, as shown in Fig. 3.5. 

Total 8 CORDIC PEs are required for an 8-point FFT. Fig. 3.5 shows the block 

diagram of the CORDIC PE. Each PE consists of 4 OR gates, 4 bit-serial 2’s 

complementors, and 2 bit-serial adders. There is a controller that centralizes the 

control signals which are independent of each other. With proper control signals 

shown in Table 3.2, the PEs can implement all W8
n rotations shown in Table 2.1, 

except the 1/√2 scaling. 
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Fig. 3.5  CORDIC PE block diagram 
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Twiddle factor Control signal ctrl[0..7]

W8
0 0 0 1 0 0 0 0 1

W8
1 0 1 1 1 0 0 1 1

W8
2 0 1 0 1 0 0 1 0

W8
3 1 1 1 1 0 1 1 1

W8
4 1 0 1 0 0 1 0 1

W8
5 1 0 1 1 1 1 1 1

W8
6 0 0 0 1 1 0 1 0

W8
7 0 0 1 1 1 0 1 1

Table 3.2  CORDIC PE control signal mapping 

 

After rotation, the outputs from the CORDIC stage, which are bit-serial styled, 

are transmitted to the address line of the LUT (LookUp Table) in the DA stage. There 

are two sets of LUT and accumulator that handle the real part and imaginary part of 

the processing data individually. Basically, the lookup table sums all inputs up, and 

scales 1/√2 if this input channel needs to: 
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 (18)

where the shaded coefficients contain a 45-degree rotation and need to be scaled. 

The address bus width of the LUT is 11 bits, including 8-bit data input and 3-bit 

iteration index term that loops from 0 to 7 while computing 8-point DFT, and a 
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2K-word ROM is required. It is large number that is hard to implement and need to be 

modified. Actually, the sum operation can be calculated with an ones counter which 

simply counts the number of the logic ‘1’ from the 8-bit input so that the address line 

can be decreased to 4 bits. Besides, as (14) shown, only the odd channel is possibly to 

be scaled by 1/√2. As shown in Table 3.3, according to the combination of each 

CORDIC channel output, there are 25 possible values. This is a small-size ROM, thus 

it is realized with synthesized logic rather than real ROM module. The modified LUT 

architecture is shown in Fig. 3.6, if the current iteration contains 45-degree rotations, 

the data passes 1’s counter, remapping table, and LUT, otherwise it passes 1’s counter 

only. 

 

# of 1/√2 
# of 1 0 1 2 3 4 

0 0 0.707107 1.414214 2.121320 2.828427 

1 1 1.707107 2.414214 3.121320 3.828427 

2 2 2.707107 3.414214 4.121320 4.828427 

3 3 3.707107 4.414214 5.121320 5.828427 

4 4 4.707107 5.414214 6.121320 6.828427 

Table 3.3  The 25 words used in LUT 

 

1s
counter

Reduced
25-word

coefficient
ROM

Address
Remapping

Table

8 4

3

5

Index term

CORDIC 
output

LUT

N
To DA 

accumulator

 

Fig. 3.6  Block diagram inside the modified LUT 
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Assume the input data width is N bits. Because an 8-point FFT is an 8-operand 

addition, total N+3 bits are required at the output. In the accumulator, a register of at 

least N+4 bits is required. The N+3 bits in MSB are necessary to hold the result, and 

the 1 bit in LSB is left for the accuracy while doing right-shift operations. One can 

increase the number of bit is LSB to gain more accuracy. In the test chip described in 

Chapter 5, a total 23 bits is utilized for 16-bit inputs. The latency of the proposed 

8-point FFT structure depends on its data width because of the shift-accumulate 

operation in the DA stage. Total N+4 clock cycles are required to complete an 8-point 

FFT calculation. For a 16-bit FFT, the latency is 20 cycles, and it is a large number. 

 

3.3 Error Analysis 

In the case of FFT hardware implementation, the finite bitwdith must be 

considered because of the fixed-point computation. Many statistical error analysis 

papers on FFT implementations are proposed [27-29]. However, the CORDIC-DA 

structure proposed in this thesis is not a traditional FFT implementation, and an 

extended error analysis has to be done to choose a suitable bitwdith for the datapath. 

Assume the input sequence of FFT x(n) is a sequence of finite-valued and white 

complex numbers. The variance of x(n) can be expressed as 
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where μx is the mean of x(n) andμx =0. The SQNR (Signal-to-Quantization Noise 

Ratio) is defined as 

2

2

q

xSQNR
σ
σ

=  (20)

where σx
2 is the variance of output andσq

2 is the variance of the quantization error. 
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For an N-point FFT processor with input of which real and imaginary parts are 

uniformly distributed in )
2

1,
2

1( NN− , the variance [28] of the output is 

NX 3
12 =σ  (21)

From (20) and (21), the SQNR [29] of the conventional FFT implementation can be 

carried out: 

345
22

−−
=

mN
SQNR

B

FFT  (22)

where B is the bitwidth of the input sequence and m=log2N. 
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Fig. 3.7  Error model of CORDIC-DA 

 

Fig. 3.7 shows the error model of CORDIC-DA. In the CORDIC stage, one more 

guard bit is added and can proof noise-free. The coefficients stored in the LUT are 

precomputed and rounded into M-bit that a roundoff noise eL is added. Because of the 

mechanism of DA, total B times shift-add operation will be done in the accumulator 

for a B-bit input sequence. The variance of the roundoff error until the accumulator is 
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(23)

At the end of the CORDIC-DA, the output will be rounded into B-bit. The variance of 

the rounding error is 

3
2 2

2
2

B−

=σ  (24)

From (23) and (24), the SQNR of the CORDIC-DA can be expressed as 
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To increase SQNR, we would like to make M and B as large as possible but are 

limited by the implementation resource. A better decision on M and B is to make sure 
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From (26), M=B+1 is a better solution for trade-off between resource usage and 

SQNR performance. Replace M=B+1 and N=8 in (22) and (26), the SQNR 

expressions can be rewritten as 
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(27)

(28)

From (27) and (28), one can discover that the SQNR performance of the  

CORDIC-DA structure is better than the conventional implementation in the same 
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bitwidth. To match the SQNR of the two structure, we can lower the B and M value of 

the CORDIC-DA structure that will reduce the hardware cost. Concretely, to lower the 

M value is to decrease the bitwidth of the LUT, and to lower the B value is to decrease 

the registers of the accumulator and the remaining bits after roundoff. Table 3.4 lists 

the statistical SQNR analysis of the two structures. Although the CORDIC-DA 

structure performs better than the conventional FFT, there is no just match value on 

SQNR versus bitwidth. In the test chip, B=16 and M=16 is chosen. 

 

B 8 9 10 11 12 13 14 15 16

FFT 68.37 80.41 92.45 104.49 116.54 128.58 140.62 152.66 164.70

CORDIC-DA 74.75 86.79 98.83 110.87 122.91 134.95 146.99 159.03 171.08  

Table 3.4  Statistical SQNR analysis of conventional FFT and CORDIC-DA 

 

3.4  Implementation and Simulation Results 

Since the 8-point CORDIC-DA FFT algorithm is proposed, an evaluation model 

is developed to verify the algorithm. The three FFT models: CORDIC-DA FFT, 

R2SDF FFT, and fully parallel FFT, are structured with 16-bit data width, and the 

clock constraints are set to very high frequency so that the limit of these 

implementations will be carried out. Table 3.5 lists the simulation results of these FFT 

implementations. 

The parallel FFT is a straight implement of 8-point DIT FFT, as shown in Fig. 

2.5. There is no pipeline register used thus it requires only 1 clock cycle to complete 

an 8-point FFT operation. The R2SDF is implemented with Fig. 2.6. Because of the 

feedback registers, it requires 7 clock cycles to carry out the first result. The 

CORDIC-DA structure can run at a very fast speed because of the bit-serial arithmetic. 

However, the latency is affected by the data width, and it requires more clock cycles 

32 



to carry out the first result. 

According to the simulation results, the parallel FFT requires most area costs but 

shortest latency. On contrast, the CORDIC-DA structure utilized least area costs, but 

the latency is the longest of the three FFT implementations. It may possibly because 

of the long data width that the DA stage requires more clock cycles to accumulate. 

Although it can achieve very high frequency, it is still not fast enough. The critical 

path of CORDIC-DA is found on the LUT which is hard to be pipelined. The power 

consumption of the proposed CORDIC-DA structure is higher than the other two 

implementations. In order to achieve very high clock rate, the logic synthesizer 

inserted as much clock buffers as possible so that more power is consumed with the 

high toggle rate of the clock propagation. 

The result does not go as we expected so that an idea of merging the twiddle 

factor rotators into the branch FFT comes out. In this way, the latency produced by the 

twiddle factor rotator may be eliminated with little delay in our CORDIC-DA 

structure. 

However, if a serial I/O interface is adopted, the CORDIC-DA will possess the 

shortest latency. The shift-out bit in the accumulator can be passed to the serial output 

so that the first bit can be carried out in 2 clock cycle. The shortest clock period of 

CORDIC-DA structure is 1.65 ns, and the shortest latency is about 3.30 ns. 
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Implementation Parallel FFT R2SDF CORDIC-DA

Max. clock rate 
6.47 ns 

154.6 MHz 

5.47 ns 

182.8 MHz 

1.65 ns 

606.0 MHz 

Gate count 23946 10740 9982 

Clock cycle 1 7 20 
Latency 

Timing 6.47 ns 38.3 ns 33 ns 

Throughput Rate (clock cycle) 0.125 1 17 

Static power analysis 66 mW 42 mW 24 mW 

Simulation-based power analysis
3.77 mW 

@ 20 MHz 

6.65 mW 

@ 20 MHz 

35.6 mW 

@ 400 MHz 

Table 3.5  Simulation results of short-length FFT
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Chapter 4  Long-Length FFT 

4.1  Introduction 

There are two key components structuring recursive architecture long-length FFT: 

the short-length FFT (also known as the branch FFT) and the twiddle factor rotator. In 

the previous chapter, the objective of the proposed CORDIC-DA structure is to 

decrease the latency in the branch FFT. A modification to integrate the twiddle factor 

into the DA LUT will be described in this chapter. 

The memory architecture of the recursive FFT is another issue. In a recursive 

long-length FFT architecture, the frequent access to intermediate memory requires a 

high-speed memory device and efficient access scheme. A matrix buffer memory 

access scheme and how it is adopted in the memory devices provided by TSMC 0.18

μm CMOS process will be described in this chapter, too. 
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4.2  Memory Access 

Consider a radix-8 FFT. One may replace M=8 in (4) and get 
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(29)

Notice that the access order of the input and output between two iterations are the 

transpose of each other. For example, a 64-point FFT requires two iterations, and 

equipped with an 8 × 8 memory. At the first iteration, the output is stored to memory 

row by row, as shown in Fig. 4.1(a). At the second iteration, the input is loaded from 

memory column by column, as shown in Fig. 4.1(b). However, if the computation of 

the first column is completed, and the result is written back to buffer row by row, the 

operands of later 8-point FFT will be overwritten. To solve this problem, an addition 

buffer is required. But it increases area cost very much, and is not realizable. A matrix 

buffer scheme is proposed in [12] and solves this problem. The memory device is 

specialized that the access to columns and rows will be swapped for each iteration so 

that no operands will be overwritten. 
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Fig. 4.1  Memory access collision between two stages 

 

The matrix buffer is synthesized with cell-based process. In general, a 

synthesized memory device usually costs more area and power than a full-custom one. 

The TSMC 0.18μm CMOS process provides several memory generators, such as 
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single-port SRAM, dual-port SRAM, single-port register file, dual-port register file, 

etc. These hard-macro modules are good at area, timing, and power consumption 

compared to a synthesized one. We found that dual-port register file module is 

suitable for this access scheme, and a N-word register buffer is adopted in the 

recursive architecture. 

4.3  Latency in Twiddle Factor Rotator 

There are many methods to implement twiddle factor rotators, such as complex 

multipliers, CORDIC, etc. A complex multiplier produces delay time of 1 real 

multiplier and 1 real adder. Delay time produced by a CORDIC rotator depends on the 

resolution of the elementary rotation angle derived from (6). One single CORDIC 

iteration stage produces delay of 1 real adder. For a N-stage CORDIC, total N real 

adder and one constant scalar delay are produced. 

The idea of the proposed new structure is to decrease the latency of the branch 

FFT iteration as possible. In our view, merging the twiddle factor rotation into the 

branch FFT is an alternative approach to lower the latency. Because of the LUT in DA, 

the twiddle factor rotation can also be precomputed and stored in the ROM with 

reasonable increase on ROM size and little additional logic. 

 

4.3.1  Complex Multiplier Phase Rotator 

A straight implementation of a phase rotator is complex multipliers as shown in 

Fig. 4.2. The critical path passed through a real multiplier and a real adder. The real 

part and imaginary part of the twiddle factors are constants, and can be stored in a 

ROM, as shown in Fig. 4.3. In practice, only a range of π/4 will be realized, as 
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shown in Fig. 4.4. The twiddle factors located at area II, III, IV, V, VI, VII, and VIII 

can be obtained from the ones located at area I with simply exchanging signs or/and 

exchanging real/imaginary part of operands. Table 4.1 shows the transform function. 

For example, for a 64-point FFT, total 9 coefficients of W64
0~W64

8 need to be stored 

in ROM. Other angles ranging from W64
9~W64

63 can be obtained from the 9 angles. 
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Fig. 4.2  Signal flow chart of a complex multiplier 
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Fig. 4.3  Configuration of coefficient ROM and phase rotator 
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Fig. 4.4  The range of stored angles in practice 

 

Area 
Transform 

Matrix 

Index 

complement 
Area 

Transform 

Matrix 

Index 

complement 

I ⎥
⎦

⎤
⎢
⎣

⎡
10
01

 No V ⎥
⎦

⎤
⎢
⎣

⎡
−

−
10
01

No 

II ⎥
⎦

⎤
⎢
⎣

⎡
−

−
01
10

 Yes VI ⎥
⎦

⎤
⎢
⎣

⎡
01
10

 Yes 

III ⎥
⎦

⎤
⎢
⎣

⎡
− 01

10
 No VII ⎥

⎦

⎤
⎢
⎣

⎡ −
01
10

 No 

IV ⎥
⎦

⎤
⎢
⎣

⎡ −
10
01

 Yes VIII ⎥
⎦

⎤
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⎡
−10
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Table 4.1  The Transform Matrix within range of π/8 
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4.3.2  ROM Multiplier Phase Rotator 

A Basic ROM multiplier is utilized with a ROM which simply stores the 

products of the multiplication. For example, a ROM multiplier for N-bit multiplicand 

and M-bit multiplier requires a ROM with size of 2(N+M)×(N+M). However, a ROM 

multiplier realization becomes impractical while N or M is large. An alternative 

approach is to partition the data width into lower number of bits, and uses a 

shift-accumulator to accumulate the products. As shown in Fig. 4.5, the N-bit 

multiplicand is partitioned by every 4 bits, and right-shifts one block per cycle. The 

ROM stores the (4+M)-bit product of the 4-bit multiplicand and the M-bit multiplier. 

Then, the previous result stored in the accumulator is right-shifted by 4-bit, and is 

summed up with the product provided by ROM. The multiplication requires N/4 

cycles to complete. As the lower bits the data is going to be partitioned, the more 

clock cycles to complete a multiplication are required. 
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Fig. 4.5  4BAAT ROM multiplier mechanism 

 

In a basic ROM multiplier phase rotator, multipliers shown in Fig. 4.2 are simply 

replaced with ROM multipliers. Because the twiddle factor ROM stores constant 

coefficients, it can be merged into these ROM multipliers. For example, a ROM 

multiplier that multiplies a K-bit input with L possible fixed-point coefficients of 

twiddle factors WN
1~L is shown in Fig. 4.6. The input passes through a series of shift 

registers which provides 4 bit per cycle to the ROMs. ROM A stores the product 

related to the real parts of WN
1~L, and ROM B stores the product related to the real 

parts of WN
1~L. The rotation will be complete after K/4 cycles. 
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Fig. 4.6  4BAAT phase rotator with constant rotating angle 

 

4.3.3  CORDIC-DA Structure with Phase Rotator 

As the configuration described in Chapter 3, the ROM stores only few patterns 

because there are only two possible coefficients: 1 and 1/√2. DA is intrinsically a 

ROM-based multiplier. Considering a CORDIC-DA 8-point FFT processor following 

a twiddle factor rotator implemented with complex multipliers, the LUT can take 

advantages of the property of ROM-multiplier that combines the original function 

with the twiddle factor rotations. Moreover, the transform described in Fig. 4.4 can 

also be merged with the CORDIC with no extra computation. For example, a radix-8 

branch FFT for 64-point FFT derived from (1) can be expressed as 
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where T(n1,k2) is the intermediate data between stages. Let 

43 



⎥⎦
⎥

⎢⎣
⎢=

=

8
ˆ

8modˆ

21

21

knk

knn
  (30c)

(16b) can be rewritten as 

{ } kkn

n

n WWknT

kkX
ˆ

8

7

0

ˆ
6421

21

11),(

)8(

+

=
∑=

1

+

 
(30d)

which extracts the W8 elements from . Thus, the W21
64

knW 8 rotation, which has been 

integrated with the CORDIC stage, can be skipped in LUT. Fig. 4.7 shows the block 

diagram of the refined CORDIC-DA FFT structure. 
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Fig. 4.7  Block diagram of the refined CORDIC-DA FFT 
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Fig. 4.8  Block diagram of integrated LUT for 64-point FFT 

 

The complex multipliers of the twiddle factor rotation are replaced with four 

LUTs. Each LUT maps to the real multiplier shown in Fig. 4.2. The LUT A stores the 

product of input and 
N
nkπ2cos , and The LUT B stores the product of input and 

N
nkπ2sin . Although in Fig.4.7 LUT A and B are separated, the content of the two 

LUT are actually integrated in a single ROM in realization so that the bitwidth of the 

output will be 2N bits. Fig. 4.8 illustrates the block diagram of the integrated LUT for 

64-point FFT. There are two control signals: 1/√2 scaling flags and new ‘index term’ 

signal. Because of the W8 extraction described in (16d), every CORDIC PE has had 

the ability to handle a 45-degree-based rotation, thus a new 1/√2 scale flag is 

designed to instruct the LUT to scale the designated input channel individually. The 

‘index term’ control signal is different from the old one. In the refined structure, the 

‘index term’ signal is directed from the  described in (30c) which is calculated in 

the controller. Considering the output of the two ones counter and index term, the 

content of the LUT can be expressed as 

n̂

⎩
⎨
⎧ ≥+−

=
otherwise0

 if)( ˆ babWba
x

n
N  (31)
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where x is the output of LUT, a is the result from the ones counter of the CORDIC 

output, and b is the result from the ones counter of logic AND operation between the 

CORDIC output and 1/√2 scale flag. a and b range from 0 to 8, and a<b will never 

occur so that a value of zero is filled. In the case of 64-point FFT,  ranges from 0 to 

7, and total 36×8 words are required to store all LUT contents. However, there are 

two problems to implement the LUT: this number is not power of 2, and the 

remapping logic shown in Fig. 4.8 will be complex that produces longer latency. 

During the synthesis process, the most critical path is found at the LUT stage, thus the 

latency in this stage needs to be short as possible. A trade-off solution is adopted that 

splits the LUT into 2 sub-LUTs, a 64-word one and a 2-word one. The 64-word LUT 

stores the content of a=1~7 and b=1~7, as expressed in (31). The address is simply 

concatenated from the 3-bit LSB from the result of ones counters. a=0,b=0, and a=8, 

b=8, are seen as special cases, and are handled by the 2-word LUT. In these special 

cases, the final output of the LUT stage is switched to the 2-word LUT, or switched to 

the 64-word LUT otherwise. 

n̂

The accumulator in the DA stage is modified into a 3-operand adder. It is 

implemented with a CSA (Carry-Save Adder) and adds delay of a 3-input XOR gate 

to the critical path. With the integration, little delay on the critical path is attached but 

the twiddle factor rotators are all saved. This refined CORDIC-DA branch FFT may 

possibly gains more benefits while utilized in a recursive architecture long-length 

FFT. 

 

4.4  Implementation and Simulation Results 

Although the synthesized 8-point CORDIC-DA FFT structure can run at a very 

high frequency, the clock is hard to propagate. An in-chip PLL (Phase-Locked Loop) 
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circuit may solve this problem. A PLL circuit requires a low frequency external clock 

source and can generate a high frequency internal clock source. However, we have no 

such PLL models. Another approach that increases the number of datapath in 

CORDIC-DA is adopted. The CORDIC-DA FFT computes one result of 8-point FFT 

at a time, thus increasing the datapath will help produce more results at a time. As 

shown in Fig. 4.9, a complete datapath, which is called a ‘channel’, includes a 

CORDIC stage and a DA stage. The P/S converter can be shared by channels so that it 

is not duplicated. 

The implementations follow the specification described in the previous chapter. 

A set of CORDIC-DA structures with 1, 2, 4, 8 pipes are developed, and they are 

already capable of twiddle factor rotation. The other two implementations, R2SDF 

and parallel FFT, are developed with a complex multiplier twiddle factor rotator 

shown in Fig. 4.2. According to the synthesis report listed in Table 4.2, we discovered 

that CORDIC-DA FFT could achieve better power efficiency while more pipes are 

utilized. With higher working frequency, more power consumes on the clock buffers, 

and driving ability of logic cells is strengthened so that more power is required. 

Compared to the basic 8-point CORDIC-DA FFT without merging twiddle factor 

rotators, the critical path increases to about 2.4 ns because of the growing LUT size. 

However, they still spent more latency than the other two conventional FFT 

implementations. Unexpectedly, the optimization effort on the complex multiplier 

done by the logic synthesizer is very high. As the report shown, the 16×16 multiplier 

produced very low delay that is less than 5.4 ns. 

Notice the two measurements of power density listed in Table 4.2. The “power 

density” is how much power consumed per K gate counts at the same throughput rate. 

A higher value somehow means a better area efficiency. As the result shown, the 

1-channel version of CORDIC-DA possesses the highest area efficiency, and verifies 
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the previous inference. The “normalized power” is how much power consumed per 

MHz working frequency, not the same throughput rate. A higher value somehow 

means a higher toggle rate, or utilization on physical circuits. According to the 

reported values, this value is proportion to the number of channels. This value of the 

1-channel CORDIC-DA structure is low, but the total power consumption is higher 

than the CORDIC-DA configured with more channels. The high power consumption 

is possibly is possibly because of the high clock rate that more power is consumed by 

the clock propagation. 

If a full serial environment is considered that the I/O interfaces and memory 

buffers are configured in bit-serial arithmetic, the latency of the CORDIC-DA will 

still be the shortest of these FFT implementations. As described in the previous 

chapter, only 2 clock cycles are required to carry out the first bit. 
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Fig. 4.9  Duplicate datapaths in CORDIC-DA stage 
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CORDIC-DA 
Structure 

1 channel 2 channels 4 channels 8 channels
R2SDF 

Parallel 

FFT 

Max. clock rate 
2.34 ns 

427.4 MHz 

2.36 ns 

423.7 MHz

2.41 ns 

414.9 MHz

2.50 ns 

400.0 MHz

5.47 ns 

182.8 MHz 

6.47 ns 

154.6 MHz

Clock cycle 20 20 20 20 8 2 
Latency 

Timing 46.8 ns 47.2 ns 48.2 ns 50 ns 43.8 ns 12.9 ns 

Gate count 14,792 25,142 44,922 81,852 25,666 36,394 

Static power 

analysis 

52.9 mW @ 

400 MHz 

52.2 mW @ 

200 MHz

55.8 mW @ 

100 MHz

49.1 mW @ 

50 MHz 

7.2 mW @ 

20 MHz 

4.84 mW @ 

20 MHz 

Simulation-based 

power analysis 

59.1 mW @ 

400 MHz 

51.5 mW @ 

200 MHz

45.8 mW @

100 MHz

41.6 mW @ 

50 MHz 

18.1 mW @ 

20 MHz 

12.0 mW @ 

20 MHz 

Power density 
 (mW / K gates) 4.00 2.05 1.02 0.51 0.71 0.33 

Normalized 
power 

(mW / MHz) 
0.15 0.26 0.46 0.83 0.905 0.6 

Table 4.2  Summary of branch FFTs 
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Chapter 5  A Case Study: 802.11a 

Wireless LAN 64-Point FFT 

Processor 

5.1  Design Environment 

In the previous chapters, the proposed CORDIC-DA structure is described. An 

FFT test chip for long-length application is developed to verify the proposed FFT 

processor. This test chip follows the specification of 802.11a wireless LAN 64-point 

FFT processor. According to the results shown in the previous chapters, the parallel 

8-point FFT implementation is better than the proposed structure at power and speed. 

Thus, another test chip is also developed with the parallel 8-point FFT implementation 

to verify the argument. The specified FFT processor is a 16-bit 64-point FFT 

processor, working at the sampling frequency of 20 MHz. The proposed architecture 

was modeled in VHDL and functionally verified using Mentor Graphics’ Modelsim 

simulator. 

After functional validation, the processors were synthesized for TSMC 0.18μm 

single-poly six-metal CMOS technology using Synopsys Design Compiler. After 

synthesis, floor planning, P&R, and layout were carried out using Cadence SOC 
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Encounter, as shown in Fig. 5.1 and Fig. 5.2. Finally, the post-simulation power 

analysis on the netlists exported from SOC Encounter is carried out using Synopsys 

PrimePower.  

 

 

Fig. 5.1  Layout view of 64-point FFT with CORDIC-DA structure 
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Fig. 5.2  Layout view of 64-point FFT with parallel FFT structure 

 

5.1.1  Clock Issues 

At first, the 1-channel version with dual-memory architecture is developed, as 

shown in Fig. 5.3. A 64-point FFT operation can be completed within 2 iterations. The 

1-channel version requires 20 cycles to complete one result so that total 20×64=1280 

cycles are required for each iteration. With extra cycles spent on memory access, a 

total number of over 2560 cycles is required to complete a 64-point FFT operation. An 

average of more than 40 cycles is required per output at 20 MHz. Thus, a very high 
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frequency clock source of over 20×40=800 MHz is required. Considering the clock 

source generation, this implementation is impractical. 

Notice that no twiddle factor rotation is needed during the second FFT iteration. 

Thus, the second 8-point FFT processing unit can be structured with no phase rotator. 

Considering the unbalanced computational requirement of the 2 branch FFTs, the 2 

iterations can be structured individually. Separating them into 2 pipeline stages will 

help decreasing the area costs and lowering the clock rate by less than a half. 

Although the study is concentrated on recursive architectures, the high clock rate 

makes the chips hard to realize. The chips have to be implemented with frequency 

about 200MHz or even lower thus a flattened architecture is needed. A refined version 

with flattened pipeline architecture was built, as shown in Fig. 5.4. The second stage 

is structured with 8-point parallel DIT FFT. 
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Fig. 5.3  Block diagram of 1-channel version CORDIC-DA FFT 

with recursive architecture 
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Fig. 5.4  Block diagram of CORDIC-DA with 2 pipeline stages 
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According to the bad performance result, we tried to develop a 2-channel version 

of CORDIC-DA FFT. As the result described in the previous chapter, the 2-channel 

version is better at power consumption and clock frequency, thus we developed a 

VHDL model which is parameterized on number of channels with the GENERIC 

statement. Available options are 1, 2, 4, 8 channels, and clock rates are 400, 200, 100, 

50 MHz respectively. Considering power consumption and area costs, the 4-channel 

version was chosen to realize. 

In these designs, two clock domains are adopted: the bit-serial domain and 

bit-parallel domain. The bit-serial domain, in which the circuits work at 1:1 frequency 

as the external clock source, contains the CORDIC-DA FFT and the P/S converter. 

The other components are of the bit-parallel domain, in which the circuits work at 

20MHz, and the clock source is supplied by in-chip digital clock divider. 

 

5.2  Verification 

A functional test environment was built using Matlab which generates random 

test patterns for verification, as shown in Fig. 5.5. The testbench compares the 

simulation results to the golden patterns, which were also generated by Matlab, and 

run-time analyzes PSNR (Peak Signal-to-Noise Ratio) which is defined as: 
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where N is the number of the point of FFT and b is the bitwidth of data bus.  
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Fig. 5.5  Testbench for 64-point FFT 

 

5.3  Test Strategy 

We adopted full scan test for these chips. The test circuits were inserted during 

compilation using Synopsys DFT Compiler. The existing flip-flops inside the chips 

were replaced with scan flip-flops, and additional memory wrappers by the I/O port of 

dual-port register files were inserted. Test vectors are generated by Synopsys 

TetraMAX. The fault coverage of the CORDIC-DA FFT and parallel FFT are 98.67% 

and 97.46% respectively. The chips can not achieve high fault coverage possibly 

because of the hard-macro memory modules that are treated as black boxes. A BIST 

(Built-In Self Test) strategy may help increasing fault coverage. 

 

5.4  Design Comparison 

In such a case of 64-point FFT processor, the parallel FFT is superior than the 
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proposed CORDIC-DA in many views, including timing, costs, power, and accuracy. 

Table 5.1 lists the summary of the two chips. The 4-channel version of CORDIC-DA 

spends more area mainly because the duplicated datapath. The PSNR of CORDIC-DA 

FFT is a bit lower than parallel FFT. It may possibly because of the shift-accumulate 

mechanism in the DA stage. The shifted bits in the accumulator are discarded right 

away for each cycle so that the accuracy of the final result will be affected. 

 

Design CORDIC-DA (4-channel) Parallel FFT 

Clock rate 100 MHz 20 MHz 

Datapath width 16 bits 16 bits 

Latency 10020 ns 9900 ns 

Avg. 100.39 dB 103.27 dB 

Min. 98.77 dB 101.37 dB PSNR 

Max. 102.81 dB 105.75 dB 

Synthesized gate 

count 
79585 (with testing circuits) 69603 (with testing circuits) 

Core size 1200 x 1200 um2 1060 x 1060 um2

Die Size 2350 x 2350 um2 2350 x 2350 um2

Timing 
100 MHz (bit-serial zone) 

20 MHz (bit-parallel zone) 
20 MHz 

Core power 45.5 mW @ 100 MHz 16.8 mW @ 20 MHz 

Die power 62.6 mW @ 100 MHz 28.6 mW @ 20 MHz 

Table 5.1  Summary of two test chips 
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Chapter 6  Conclusion and Future 

Work 

6.1 Conclusion 

In this thesis, a study on recursive architecture FFT processor has been presented, 

and a new structure with CORDIC-DA technique has been proposed. Under the 

specification of 802.11a, this structure is extremely superior to the conventional 

radix-8 FFT processor implementations on area, but inferior on clock, performance, 

power, etc. We had made efforts on optimize the CORDIC-DA structure in many 

ways, including: 

1) Twiddle factor rotator integration 

2) Register balancing 

3) LUT size reduction 

4) Datapath duplication 

5) Recursion flattening 

However, the performance is still not as we expected. The main issue is the bit-serial 

arithmetic adopted in DA that is a trade-off between area cost and timing. The high 

clock rate required by CORDIC-DA is a derivative problem from bit-serial arithmetic. 

First, the clock source is hard to generated without an in-chip PLL circuit. Second, the 
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high clock rate will make the logic synthesizer to insert more buffers and strengthen 

the driving ability of cells that consume more power than a low clock rate condition. 

Finally, we can make a conclusion that under the bit-parallel recursive architecture 

long-length FFT, the 8-point parallel FFT is the best implementation for the branch 

FFT considering the trade-off among many aspects, including performance, power, 

cost, and complexity. 

Although the proposed structure works worse for the recursive architecture FFT, 

it is still recommendable in specific applications. The 1-channel version of 

CORDIC-DA is good at area costs regardless of the high clock rate. If there is an 

application that requires very small area cost, the 1-channel CORDIC-DA may be one 

of the best solutions. In the view of performance, if a serial-in serial-out application 

which requires high-speed FFT computations and regardless of power consumption, 

the CORDIC-DA may be suitable for implementation. 

 

6.2 Future Work 

In previous section, a conclusion for implementing radix-8 FFT processors is 

described that the parallel FFT should be the first consideration. However, there is still 

much research to do with the proposed CORDIC-DA structure. First, the test chip is 

implemented with a high specification of 16-bit wordlength while the output is also 

16-bit and 26 scaled. The datapath can be designed more carefully if a precise error 

analysis was done. Hence, the resource cost will be reduced while keeping the same 

SQNR performance. The memory access is another issue. For a bigger N, the memory 

access will be more complex, and how to improve the efficiency and simplify the 

memory access scheme in the CORDIC-DA structure is left for future work. 

Although the performance of the CORDIC-DA structure is not good enough as 
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we expected, the idea proposed in this thesis is still advisable for optimizing bit-serial 

arithmetic architecture and DA-twiddle factor integration. In the future, longer-length 

FFT processors using parallel FFT implementations will be constructed, and we will 

keep study on the optimization of long-length FFT processors based on short-length 

FFT and recursive architecture.
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