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Abstract

In this paper, we propose a new method, namely EFI-Mine, for mining temporal emerging frequent itemsets from data streams effi-
ciently and effectively. The temporal emerging frequent itemsets are those that are infrequent in the current time window of data stream
but have high potential to become frequent in the subsequent time windows. Discovery of emerging frequent itemsets is an important
process for mining interesting patterns like association rules from data streams. The novel contribution of EFI-Mine is that it can effec-
tively identify the potential emerging itemsets such that the execution time can be reduced substantially in mining all frequent itemsets in
data streams. This meets the critical requirements of time and space efficiency for mining data streams. The experimental results show
that EFI-Mine can find the emerging frequent itemsets with high precision under different experimental conditions and it performs scal-
able in terms of execution time.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The mining of association rules for finding the relation-
ship between data items in large databases is a well studied
technique in data mining field with representative methods
like A priori (Agrawal, Imielinski, & Swami, 1993; Agra-
wal, Mannila, Srikant, Toivonen, & Verkamo, 1996; Brin,
Motwani, Ullman, & Tsur, 1997). The problem of mining
association rules can be decomposed into two steps. The
first step involves finding all frequent itemsets (or say large
itemsets) in databases. Once the frequent itemsets are
found, generating association rules is straightforward and
can be accomplished in linear time.

An important research issue extended from the associa-
tion rules mining is the discovery of temporal association
patterns in data streams due to the wide applications on
various domains. Temporal data mining can be defined
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as the activity of looking for interesting correlations or pat-
terns in large sets of temporal data accumulated for other
purposes (Bettini, Wang, & Jajodia, 1996). For a database
with a specified transaction window size, we may use the
algorithm like A priori to obtain frequent itemsets from
the database. For time-variant data streams, there is a
strong demand to develop an efficient and effective method
to mine various temporal patterns (Das, Lin, Mannila,
Renganathan, & Smyth, 1998). However, most methods
designed for the traditional databases cannot be directly
applied for mining temporal patterns in data streams
because of the high complexity.

Without loss of generality, consider a typical market-
basket application as illustrated in Teng, Chen, and Yu
(2003) has been considered. The transaction flow in such
an application is shown in Fig. 1 where items a to g stand
for items purchased by customers.

In Fig. 1, for example, the third customer bought item c

during time t = [0, 1), items c, e and g during t = [2, 3), and
item g during t = [4, 5). It can be seen that in such a data
stream environment it is intrinsically difficult to conduct
the frequent pattern identification due to the limited time
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Fig. 1. An example of online transaction flows.

Table 1
The support values of the inter-transaction itemset {c, g}

T � Time Occurrence(s) of {c, g} Support

t = 1 w[0, 1] None 0
t = 2 w[0, 2] CustomerID = {2, 4} 2/5 = 0.4
t = 3 w[0, 3] CustomerID = {2, 3, 4} 3/5 = 0.6
t = 4 w[1, 4] CustomerID = {2, 3} 2/5 = 0.4
t = 5 w[2, 5] CustomerID = {1, 3, 5} 3/5 = 0.6
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and space constraints. Furthermore, it wastes too much
times finding frequent itemsets in different window times.
Therefore, we develop a new scheme to find potential
emerging frequent itemsets before next window times.

Dong and Li (1999) define an emerging pattern as an
itemset the support of which increases significantly between
two databases. We view emerging frequent itemsets as a
special case of the emerging patterns described by Dong
and Li. An Emerging Frequent Itemset (EFI) can be con-
sidered as an itemset that is infrequent (i.e., small) in the
current database and gets increased for its support so that
it will eventually become frequent (i.e., large) in the new
database temporally added with new data transactions.
For example, in the market basket domain, we may assume
an interval as the time between wholesale purchases. Rec-
ognizing the set of items that will emerge or become fre-
quent in the next time period with the size of the window
may allow the storekeeper to order these emerging items
much earlier than usual. Thus, the storekeeper will know
what kinds of items will be popular in the next time period
and avoid losing the income that their sales could have gen-
erated. Although some related issues like mining emerging
frequent itemsets (Imberman, Tansel, & Pacuit, 2004) and
incremental frequent itemsets (Cheung, Lee, & Kao,
1997b; Cheung, Han, Ng, & Wong, 1996b; Cheng, Yan,
& Han, 2004; Parthasarathy, Zaki, Ogihara, & Dwarkadas,
1999) have been studied, they have been focused on tradi-
tional databases and are not suited for data streams.

In this paper, we explore the issue of efficiently mining
emerging frequent itemsets in temporal databases like data
streams (Lin, Chiu, Wu, & Chen, 2005; Li, Lee, & Shan,
2004, 2005; Jin, Qian, Sha, Yu, & Zhou, 2003). We propose
an algorithm named EFI-Mine that can discover emerging
frequent itemsets from data streams efficiently and effec-
tively. The EFI-Mine algorithm is based on the concept
of A priori algorithm (Agrawal et al., 1996) for mining fre-
quent itemsets. The novel contribution of EFI-Mine is that
it can effectively identify the potential emerging frequent
itemsets in data streams so that the execution time for min-
ing frequent itemsets can be substantially reduced. That is,
EFI-Mine can discover the itemsets that are infrequent in
current time window but will become frequent ones with
high probability in subsegment time windows. In this
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way, the process of discovering all frequent itemsets under
all time windows of data streams can be achieved efficiently
with limited memory space. This meets the critical require-
ments of time and space efficiency for mining data streams.
Through experimental evaluation, EFI-Mine is shown to
deliver high precision in finding the emerging frequent
itemsets and it also achieves high scalability in terms of exe-
cution time.

The rest of this paper is organized as follows: Section 2
gives the problem definition for mining temporal patterns
and the emerging frequent itemset. Section 3 describes
the proposed approach, EFI-Mine, for finding the emerg-
ing frequent itemsets. In Section 4, we describe the experi-
mental results for evaluating the proposed method. The
conclusion of the paper is provided in Section 5.

2. Problem definitions

In this section, we first describe a support framework for
mining of frequent temporal patterns, and given in Section
2.1. Then, the detail definition of emerging frequent itemset
and interesting emerging itemsets are given in Section 2.2.

2.1. Support framework for mining temporal patterns

In this paper, the mining of temporal patterns are
explored for illustrative purposes since not only the pat-
terns should be efficiently and effectively extracted but also
variations of corresponding occurrence frequencies should
be tracked. In market-basket analysis, patterns along with
their frequencies are extracted from a sliding window in
transactions. So the data expires after a user-specified time
window. As time advances, new data is included while
obsolete data is discarded. With the mining task for discov-
ering frequent temporal patterns, only patterns with occur-
rence frequencies no less than a specified threshold are
being tracked. We focus in this paper on handling the dif-
ferent sliding windows to find emerging frequent itemsets.

An example showing the basic process in transforming
transactions into numerical time series, for discovering fre-
quent temporal patterns, is provided as follows.

Example 1. Consider the transaction flows shown in Fig. 1.
Given the window size w = 3 and the minimum support
value as 40%, occurrence frequencies of the inter-transac-
tion itemset {c, g} from time t = 1 to t = 5 can be obtained
as shown in Table 1.
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Fig. 2. Potentially emerging frequent itemsets in DB2345.

C.-J. Chu et al. / Expert Systems with Applications 36 (2009) 885–893 887

A

D

With the sliding window model, the frequent temporal
patterns can be discovered for different time windows.
The main goal of our research is to discover interesting
emerging itemsets under progressive time windows.

2.2. Emerging frequent itemsets and interesting emerging
itemsets

In a database, the frequent itemsets will be changed
when new datum is added. As time progresses, we can
see many interesting patterns with regards to the change
in status of individual itemsets. An itemset that was infre-
quent may become frequent (large), while frequent itemsets
may become infrequent (small) and an itemset may remain
frequent or infrequent. We define infrequent itemsets that
are moving toward being frequent as emerging. Conversely,
frequent itemsets moving toward infrequent are submerg-

ing. An infrequent (frequent) itemset that becomes large,
i.e. with support above (below) minimum support value,
is said to have emerged (submerged). The problems we
address in this paper are: (1) How can we identify itemsets
that are emerging (submerging)? (2) Which of these item-
sets have the potential to emerge (submerge) within the
next time window? That is, we focus on finding emerging
frequent itemsets in this paper.

According to the emerging itemsets of incremental
scheme, we develop this concept on the temporal data min-
ing. Temporal data mining has the limitation on window
size for finding emerging itemsets. Therefore, we must
change the formula for finding emerging itemsets. For the
remainder of this paper, we give definitions to the formula.

Definition 2.1. dbk is the transactions in t = k, i.e., db1 is
the transactions in t = 1.

Definition 2.2. DBi,i+1,. . .,j is the transactions in t = i to j,
i.e., DB12345 is the transactions in t = 1–5. We also view
DB12345 as the accumulation of db1 + db2 + db3 + db4 +
db5.

Suppose the original database is DBi,i+1,. . .,j with win-
dow size = N and N = j � i + 1. Due to the limitation of
window size, we should discard the old database dbi when
adding a database dbj+1. The new database should be
DBi+1,i+2,. . .,j+1. In our scheme, we should find emerging
itemsets before a new database is added. So we should
focus on the database DBi+1,i+2,. . .,j. The old database dbi

is useless for finding emerging itemsets. For example, sup-
pose an original database is DB1234 and we set the limita-
tion of window size as 5. If a database db5 is added, the
new database will be DB12345. Due to the limitation of win-
dow size, when adding a database db6, we should discard
the old database db1. Thus, the new database becomes
DB23456. In our scheme, we would find potential emerging
frequent itemsets before a database is added. So we should
focus on the database DB2345 finding potential emerging
frequent itemsets. And the potential emerging frequent
itemsets of the database DB2345 can be represented more
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accurate in the new database DB23456. In practice, with
the feature of data stream, we first remove db1 from
DB1234 and then add db5 to form the database DB2345.
So we could find potential emerging frequent itemsets from
the database DB2345 before adding a new database db6 to
form DB23456, and this conforms the limitation of window
size. Fig. 2 shows that we would find potential emerging
frequent itemsets from the database DB2345. So the window
size should be N � 1 for finding potential emerging
itemsets.CTE

3. Mining temporal emerging itemsets

In Section 3.1, we give an example for mining temporal
emerging itemsets from data stream. The proposed algo-
rithm, EFI-Mine, is described in details in Section 3.2.
3.1. An example for mining emerging itemsets

Fig. 3 shows an example of emerging itemsets modified
on that proposed by Dong and Li (1999) for the special
case of EFI. It shows partitions of the space of itemsets,
indicating all possible transitions for an itemset X from ori-
ginal database DB to the new database DB + db.

Fig. 3 plots the support count in DB (denoted as SCDB)
against the support count in db (denoted as SCdb). Each
point in the graph depicts an ordered pair (SCdb, SCDB)
where the sum of SCdb and SCDB is an itemset’s support
count in DB + db at some increment interval. If the incre-
ment adds no transactions to an itemset’s support count,
then its support count in DB has to be equal to min-
SCDB + minSCdb in order to achieve minSCDB+db. This
corresponds to point H in Fig. 3. Alternatively, if an item-
set’s SC is equal to |db| in db, then its support in DB has to
be some SC = n, where n > 0, and n = minSCDB +
minSCdb �|db| for the itemset to be frequent. This is point
C in Fig. 3. Line HC partitions the space of all itemsets in
DB + db into frequent and infrequent. The shaded area in
Fig. 3 represents all the frequent itemsets and it includes



Fig. 3. Emerging frequent itemsets.
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Line HC. Specific partitions under HC contain itemsets
that are emerging in the current increment. For example,
the area defined by DHFG represents those itemsets that
were frequent itemsets in DB, infrequent itemsets in db,
and now are infrequent in DB + db. These itemsets have
therefore submerged. DGIC represents itemsets that were
infrequent in DB and frequent in db. These itemsets have
emerged. Therefore, we can find all itemsets in area ABCG
are emerging in the current interval and all itemsets in area
OAGH are submerging.

However, there are too many emerging itemsets in area
ABCG. In fact, we should focus more potential emerging
itemsets. To have the potential to emerge in the next incre-
ment, the support count of the itemset in DB + db needs to
be greater than or equal to 2minSCdb + minSCDB � |db| in
the current increment. All points with this value are repre-
sented by line RS in Fig. 4. R
Fig. 4. Potentially emerging frequent itemsets.
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For example, if we have a database with |DB| = 10,000,
|db| = 1000 and minsup = 0.2, then the minimum support
count for the current increment is 2200 (2000 from DB plus
200 from db). If an itemset can add the maximum support
from incremental support count, a total of 1000 from db, in
the next increment, it would need a support count of at
least 1400 in the current increment to be able to attain
the minimum support count of 2400 ((11,000 + 1000) *

0.2 = 2400) needed to become frequent.
The band of itemsets between line RS and line HC are

all itemsets that have the potential to become frequent in
the next increment, by this formula. Intersecting area
ABCG and HCSR, we get itemsets in GDSC are most
likely to emerge in the next increment.

3.2. Algorithm of EFI-Mine

With window size we mention in Section 2.2 and the
concepts of emerging itemsets in Section 3.1, we set support
value as S and assume the original database as
DBi,i+1,. . .,j�1. According to the scheme we mentioned pre-
viously, if we want to find frequent itemsets from
DBi+1,i+2,. . .,j+1, we should focus on DBi+1,i+2,. . .,j for find-
ing potential emerging frequent itemsets after adding data-
base dbj and then find potential emerging frequent itemsets
of the database DBi+1,i+2,. . .,j+1 before adding next incre-
mental new database dbj+1. It means dbi would be an old
database that needs not be considered. After adding new
database dbj+1, the new database would be DBi+1,i+2,. . .,j+1.
So the window size is N when database is changed from
dbi+1 to dbj+1. It also indicates N = (j + 1) � (i + 1) + 1.
By the feature of temporal data mining, we set
|db| = |dbi| = |dbi+1| = . . . = |dbj|. In Fig. 4, various lines
bear the following meaning:

LineHC ¼ minSCDBiþ1;iþ2;...;j�1
þminSCdbj

LineFI ¼ minSCDBiþ1;iþ2;...;j�1

LineRS ¼ 2minSCdbj þminSCDBiþ1;iþ2;...;j�1
� jdbjj

LineEC ¼ minSCdbj þminSCDBiþ1;iþ2;...;j�1
� jdbjj

LineAK ¼ minSCdbj

According to the feature of window size in temporal min-
ing, incremental database means adding length of original
transactions and also promoting the probability of infre-
quent itemsets to become frequent. Because we focus on
N � 1 window size for finding potential emerging frequent
itemsets, these formulas should be divided by N � 1 base
on the number of database as follows:

LineHC ¼ ðminSCDBiþ1;iþ2;...;j�1
þminSCdbjÞ=N � 1

LineRS ¼ ð2minSCdbj þminSCDBiþ1;iþ2;...;j�1
� jdbjjÞ=N � 1

Because Line FI does not add new database, it should be
divided by (N � 1) � 1. It means Line FI should be divided
by N � 2 as follows:

LineFI ¼ minSCDBiþ1;iþ2;...;j�1
=N � 2

CTED
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Line EC means that adding new database dbj and an item-
set’s SC is equal to |dbj| in dbj, so it should be divided by
(N � 1) as follows:

LineEC ¼ ðminSCdbj þminSCDBiþ1;iþ2;...;j�1
� jdbjjÞ=N � 1

Because dbj belongs to one of N window size, the formula
should be divided by N as follows:

LineAK ¼ minSCdbj=N

Fig. 5 illustrates the potentially emerging frequent itemsets
in area GDSC with window size limitation. The formula
for each line is as mentioned above.

According to these formulas, we can simplify these lines
as follows:

HC = [S * (j � 1 � (i + 1) + 1)*|db| + S * |db|]/
N � 1 = [S * (N � 2)*|db| + S * |db|]/N � 1 = S * |db|
FI = [S * (j � 1 � (i + 1) + 1)|db|]/N � 2 = S * |db|
RS = [2*S * |db| + S*[(j � 1) � (i + 1) + 1]*|db| � |db|]/
N � 1 = [2*S * |db| + S * (N � 2)*|db| � |db|]/
N � 1 = [(S * N) � 1]*|db|/N � 1
EC = [S * |db| + S*[(j � 1) � (i + 1) + 1]*|db| � |db|]/
N � 1 = [S * |db| + S * (N � 2)*|db| � |db|]/
N � 1 = [S * (N � 1) � 1]*|db|/N � 1
AK = S*db/N

We can also find potentially emerging frequent itemsets
in area HRSC without concerning support count in dbj.
However, it will reduce the accuracy with potentially
emerging frequent itemsets. Taking into consideration of
dbj would get the trend of itemsets and get better accuracy
with potentially emerging frequent itemsets. Therefore,
itemsets in GDSC are most likely to emerge in the next
increment.

Fig. 6 shows the algorithm of EFI-Mine and the process-
ing procedure is outlined below. The basic processing pro-
cedure is like A priori except the definition of for minimum
support value for finding temporal emerging itemsets from

R

Fig. 5. Potentially emerging frequent itemsets for temporal patterns.
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data stream. With window size N, we would not only
remove dbi but also add new database dbj for finding
1-emerging itemsets on the database DBi+1,i+2,. . .,j and find-
ing large 1-itemsets on the database dbj from Step 1 to Step
3. So the purpose is to find potential emerging frequent
itemsets of the database DBi+1,i+2,. . .,j+1 before adding next
new database dbj+1. We generate k-candidates and find k-
emerging itemsets by calculating support count as men-
tioned previously from Step 4 to Step 13. Then, we gener-
ate k-candidates and find k-large itemsets by support count
we mention from Step 14 to Step 23. Finally, those itemsets
meeting the constraints S * |db| > c.count = [(S * N) � 1]*

|db|/N � 1 on DBi+1,i+2,. . .,j and c.count =S * db/N dbj

are obtained as the potentially emerging frequent itemsets.
We may utilize the formulas mentioned before to discuss

the following situations. Notice that an itemset is emerging
or not depends on support count of the itemset. Given an
itemset whose support counts in DBi+1,i+2,. . .,j�1 and
DBi+1, i+2,. . .,j�1+dbj

are SC DBiþ1;iþ2;...;j�1
and SCDBiþ1;iþ2;...;j�1þdbj ,

respectively, the growth rate of that itemset is
SCDBiþ1;iþ2;...;j�1þdbj � SCDBiþ1;iþ2;...;j�1

. The growth rate of an
itemset that maintains minimal support is
minSCDBiþ1;iþ2;...;j�1þdbj � minSCDBiþ1;iþ2;...;j�1

. An itemset meet-

ing the
SCDBiþ1;iþ2;...;j�1þdbj�SC DBiþ1;iþ2;...;j�1

minSCDBiþ1;iþ2;...;j�1þdbj�minSCDBiþ1;iþ2;...;j�1
> 1 is an emerging

itemset. An itemset needs a support count of at least
minSCDBiþ1;iþ2;...;j�1þdbjþdbjþ1

¼minSC DBiþ1;iþ2;...;j�1þ2db to emerge
in adding a new database dbj+1 with expanding one
window size. A potential emerging frequent itemset is the
one that is emerging and meets the following constraint:
SCDBiþ1;iþ2;...;j�1þdbj þ ð SCDBiþ1;iþ2;...;j�1þdbj � SCDBiþ1;iþ2;...;j�1

Þ >
minSCDBiþ1;iþ2;...;j�1þ2db. Hence, we can infer that an itemset
that will potentially emerge with expanding n window
sizes is an itemset that is currently emerging and
SCDBiþ1;iþ2;...;j�1þdbj þ nðSC DBiþ1;iþ2;...;j�1þdbj � SCDBiþ1;iþ2;...;j�1

Þ >
minSCDBiþ1;iþ2;...;j�1þndb. Of course, the larger n is, the less
accurate with finding potential emerging frequent itemsets
might be.
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4. Experimental evaluation

To evaluate the performance of EFI-Mine, we con-
ducted experiments of using synthetic dataset generated
via a randomized transaction generation algorithm in
Agrawal and Srikant (1995). The synthetic data generation
program takes the parameters as shown in Table 2, and the
values of parameters used to generate the datasets are
shown in Table 3. The simulation is implemented in C++
and conducted in a machine with 1.4 GHz CPU and
512 MB memory. The main performance metrices used
are execution time and accuracy. We recorded the execu-
tion time that EFI-Mine spends in finding potential emerg-
ing frequent itemsets. The accuracy is to measure the
number of actual emerging frequent itemset in ratio of
the total potential emerging frequent itemsets that we
found. Hence, the accuracy is defined as follows:



Fig. 6. Algorithm of EFI-Mine.

Table 2
Parameters of the synthetic datasets

N Number of items
T Average numbers of items per transaction
C Number of customers
D Number of transactions
W Windows size
S Support value

Table 3
Parameter settings of synthetic datasets

Dataset parameters N T C D W

N100T5C1000 100 5 1000 100,000 10
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Fig. 7. Accuracy under different support values (N100T5C1000, w = 10).
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Accuracy¼ ðnumber of actual emerging frequent itemsetÞ=
ðtotal potential emerging frequent itemsetsÞ
R

4.1. Effects of varying support threshold

In this experiment, we vary the values of support thresh-
old from 30% to 70% for interesting the effects on the accu-
racy. The other parameters were kept fixed as default
values. Fig. 7 shows the accuracy of EFI-Mine under differ-
ent support threshold values. It is observed that the average
accuracy of potential emerging frequent itemsets raises as
the support value is increased. Especially, the accuracy
reaches to 100% when the support value is beyond 60%.
Hence, EFI-Mine is verified to be very effective in finding
the emerging itemsets.
4.2. Comparisons with A priori in execution time

In this experiment, we compare the average execution
time in different support values between A priori and
EFI-Mine. Both of these two algorithms could find fre-
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Fig. 9. Accuracy under different window sizes.

C.-J. Chu et al. / Expert Systems with Applications 36 (2009) 885–893 891

D

quent itemsets. However, A priori can only find frequent
itemsets, while EFI-Mine can find frequent itemsets that
were infrequent in the past. A priori algorithm processes
DBi+1,i+2,. . .,j+1 to find frequent itemsets, while our EFI-

Mine algorithm needs to process fewer database
DBi+1,i+2,. . .,j to find potentially emerging frequent itemsets.
From Fig. 8, EFI-Mine spends few seconds with high sta-
bility for finding potentially emerging frequent itemsets.
Compared to A priori, the improvement is about 90.6%
for support values varied from 30% to 60%. Although
EFI-Mine does not always obtain frequent itemsets with
100% accuracy, it reduces substantially the time in finding
frequent itemsets. Moreover, the frequent itemsets
obtained by A priori are not suitable for applications in
data streams since we need frequent itemsets which are
infrequent in the past and frequent in the current by the
time change. Hence, EFI-Mine meets the requirements of
high efficiency and high scalability in terms of execution
time for data stream mining.
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4.3. Effects of varying window size

In this experiment, we investigate the effects of varying
window size on the accuracy of mining results. As shown
in Fig. 9, we could observe that the larger window size,
the higher with accuracy. In fact, the accuracy is almost
100% when window size is large than 15 in the experiments.
This is because the itemsets are tended to be stable accord-
ing to the past databases. This indicates that EFI-Mine fits
for mining data streams with large window size.
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Fig. 10. Accuracy under different numbers of items per transaction with
w = 10.
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4.4. Effects of varying transaction size

In this experiment, we investigate the effects of varying
transaction size on the accuracy of mining results i.e., the
average number of items per transaction. As shown in
Fig. 10, if T is larger, the accuracy is higher than under
T. This is because T can bring more information and trend
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from past transactions. This indicates that EFI-Mine fits
for mining data streams with large transaction size.
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Fig. 11. Accuracy under different numbers of items.
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4.5. Effects of varying number of items

In this last experiment, we investigate the effects of vary-
ing the numbers of items on the accuracy of mining results.
The results are as shown in Fig. 11. We observe that the
accuracy decreases when the numbers of items are
increased. This is because too many items will affect the sta-
bility of the patterns. On the contrary, the accuracy under
smaller numbers of items could reach almost 100%. This
indicates that EFI-Mine fits for mining data streams with
small numbers of items.

5. Related work

In association rules mining, A priori (Agrawal et al.,
1993), DHP (Park, Chen, & Yu, 1997), and partition-based
ones (Lin & Dunham, 1998; Savasere, Omiecinski, & Nav-
athe, 1995) are proposed to find frequent itemsets. Many
important applications have called for the need of incre-
mental mining. This is due to the increasing use of the
record-based databases whose data are being continuously
added. Many algorithms like FUP (Cheung, Han, Ng, &
Wong, 1996a), FUP2 (Cheung, Lee, & Kao, 1997a) and
UWEP (Ayn, Tansel, & Arun, 1999a, 1999b) are proposed
to solve incremental database for finding frequent itemsets.
The FUP algorithm updates the association rules in a data-
base when new transactions are added to the database.
Algorithm FUP is based on the framework of A priori
and is designed to discover the new frequent itemsets iter-
atively. The idea is to store the counts of all the frequent
itemsets found in a previous mining operation. Using these
stored counts and examining the newly added transactions,
the overall count of these candidate itemsets are then
obtained by scanning the original database. An extension
to the work in Cheung et al. (1996a) was reported in Che-
ung et al. (1997a) where the authors propose an algorithm
FUP2 for updating the existing association rules when
transactions are added to and deleted from the database.
UWEP (update with early pruning) is an efficient incremen-
tal algorithm, that counts the original database at most
once, and the increment exactly once. In addition the num-
ber of candidates generated and counted is minimum.

In recent years, processing data from data streams is a
very popular topic in data mining. Many algorithms like
FTP-DS (Teng et al., 2003) and RAM-DS (Teng, Chen,
& Yu, 2004) are proposed to process data in data streams.
FTP-DS is a regression-based algorithm to mine frequent
temporal patterns for data streams. A wavelet-based algo-
rithm, called algorithm RAM-DS, to perform pattern min-
ing tasks for data streams by exploring both temporal and
support count granularities.

Some algorithms like SWF (Lee, Lin, & Chen, 2001) and
Moment (Chi, Wang, Yu, & Muntz, 2004) are proposed to
find frequent itemsets over a stream sliding window. By
partitioning a transaction database into several partitions,
algorithm SWF employs a filtering threshold in each parti-
tion to deal with the candidate itemset generation. Moment

RETR
algorithm use the closed enumeration tree (CET), to main-
tain a dynamically selected set of itemsets over a sliding
window.

Dong and Li define an emerging pattern as an itemset
the support of which increases significantly between two
databases. We view emerging frequent itemsets as a special
case of the emerging patterns described by Dong and Li.
Recently, a new algorithm modifies an existing incremental
algorithm, UWEP, so that it can identify emergent large
itemsets. It uses incremental scheme for finding emerging
frequent itemsets (Imberman et al., 2004).

Although there existed numerous studies on frequent
itemsets mining and data stream analysis as described
above, there is no algorithm proposed for finding emerging
frequent itemsets in data streams. This motivates our
exploration on the issue of efficiently mining emerging fre-
quent itemsets in temporal databases like data streams in
this research.

6. Conclusions

In this paper, we addressed the problem of discovering
temporal emerging itemsets in data streams, i.e., the item-
sets that are infrequent in current time window but have
the high potential to become frequent in the subsequent
time windows. We propose a new approach, namely EFI-

Mine, which can discover emerging frequent itemsets from
data streams efficiently and effectively. The novel contribu-
tion of EFI-Mine is that it can effectively identify the poten-
tial emerging itemsets such that the execution time can be
reduced substantially in mining all frequent itemsets in
data streams.

The experimental results show that EFI-Mine can find
the emerging frequent itemsets with high precision under
different conditions like varied window size, transaction
size and number of items, etc. This also indicates that
EFI-Mine fits for mining data streams with large window
size transaction size and number of items. Moreover, it is
highly efficient and scalable in terms of execution time.
Hence, EFI-Mine promising for mining temporal emerging
patterns in data streams. For the future work, we would
extend the concepts of this paper to discover other interest-
ing patterns in data streams like the frequent closed sets
(Bastide, Taouil, Pasquier, Stumme, & Lakhal, 2000; Pas-
quier, Bastide, Taouil, & Lakhal, 1999; Pei, Han, & Mao,
2000).
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