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利用虛擬實境駕駛模擬進行動態刺激下之 
腦波反應研究 

 

學生：蕭力碩    指導教授：林進燈 博士 

 

國立交通大學電機與控制工程研究所 

Chinese Abstract 
中文摘要 

 本論文以腦電波(Electroencephalogram, EEG)研究駕車動態刺激下之人類認知反

應，為研究特定行車事件下之人類認知狀態，研究中使用基於虛擬實境技術之動態駕車

模擬裝置來建立一逼真之駕車環境及駕車事件，包括在公路上的車輛加速、減速及偏

移。駕車模擬裝置中使用液壓六軸動態平臺提供駕駛員的動態感覺，此平臺依照車輛不

同方向的加速度變化會做出相對的傾斜動作。為了找出動態刺激對認知狀態之影響，我

們比較平臺開啟/關閉兩種狀態下受測者的EEG訊號來研究動態刺激對認知狀態的影響。 

首先，EEG 訊號經過獨立成份分析(Independent Component Analysis, ICA)後分離成數

個獨立的訊號源。結果顯示出在運動皮質區有獨立之成份，並且與加減速行車動態相關

之 Alpha 頻帶 (8~12Hz) 能量抑制，並且在不同次實驗之間有很高的一致性。而在動

態偏移事件中，我們發現在大腦中心線 (Central Midline) 位置有負電位的產生。所

發現的大腦動態結果在不同受測者之間表現出重複的特性。本論文以事件相關電位

(Event Related Potential) 及 事 件 相 關 頻 譜 擾 動 (Event Related Spectral 

Perturbation)觀察腦動態，並首次發現可辨認、不同類動態刺激相關之腦電波。實驗

結果幫助我們更了解與動態感知相關的腦神經網路，也奠定了動態刺激與腦電波之相關

性研究一個重要基礎。 

 

關鍵字：動態感知、動態刺激、腦電波、事件相關頻譜擾動、獨立成份分析、Mu 波 
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Department of Electrical and Control Engineering 

National Chiao Tung University 

English Abstract 
Abstract 

 
 

 The purpose of this study is to investigate Electroencephalography (EEG) dynamics in 

response to kinesthetic stimuli during driving. To study human cognition under specific 

driving task, we used Virtual Reality (VR) based driving simulator to create practical driving 

events; including acceleration, deceleration and deviation. The driving simulator includes 

Hydraulic Hexapod Motion Platform that provides tilt mechanism (to give roll, yaw, etc.) to 

simulate vehicle movement. In this study, we compare the EEG dynamics in response to 

kinesthetic stimulus while the platform is in action, compared to that were recorded when the 

platform is stationary. The scalp-recorded EEG channel signals were first separated into 

independent brain sources by Independent Component Analysis (ICA), then analyzed in time 

and frequency domains. Our results showed that independent component processes near the 

somatomotor cortex exhibited alpha power decreases that were consistent across sessions 

within subjects. Negative potential phase-locked to deviation events under motion condition 

was observed in a midline central component, which was consisted with the finding in the 

literature. The brain dynamics appears reproducible across sessions and subjects. This thesis, 

for the first time in the literature, reports distinctive brain dynamics measured by 

Event-Related-Potentials (ERP) and Event-Related-Spectral-Perturbations (ERSP) in response 
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to kinesthetic inputs of different types. The results help us to better understand different brain 

networks involving in driving and provide a foundation in studying EEG activities related to 

kinesthetic stimuli. 

 
Keyword: Kinesthetic Stimulus, EEG, ICA, Component Clustering, ERSP, ERP, Mu Rhythm, 
EMG Chinese Acknowledgements 
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I. Introduction 

  

The kinesthetic perception, the sensory apparatus that detects motions, is one of the most 

important sensations to human being, yet we usually overlook the contributions of vestibular 

system to our live, simply because it doesn’t give us the sense to this vivid and harmonic 

world like our eyes and ears do. Kinesthetic perception doesn’t taste or smell, making it less   

appreciated. However, we would not have a complete sensation without motion perception. If 

our vestibular system fails to perform, we would feel uncomfortable and/or even sick, for 

instance, the motion sickness. We cannot even stand still or walk in straight line without the 

vestibular system working properly. The vestibular system, thus, plays an important role in 

our life. 

 

1.1. Vestibular system and kinesthetic stimulus response 
 

 

Human vestibular system, a sensory apparatus locate bilaterally in the inners which 

detects the motion of the head and body in space [3]. It is composed of two functional parts 

shown as Figure 1-1: (1) the otolithic organs (blue and green colored areas), and (2) the 

 

Figure 1-1: The human vestibular system and anatomic identifications [41]. 

 

Semicircular 
Canals 

Otolithic 
Organs 
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semicircular canals (red, pink and orange areas). The otolithic organs detect linear 

accelerations [5][6][7], while the semicircular canals detect rotary accelerations [4]. 

Vestibular information has important roles in perceptual tasks such as ego-motion 

estimation [1]. In recent research, vestibular information was shown to disambiguate the 

interpretation of dynamic visual information during observer’s movement [2]. A complete 

investigation of either motion perception or vestibular system should include 6 Degree of 

Freedom (DOF), the movement in three linear axes: X-, Y-, and Z- axis, and rotations in all 

three rotary axes: pitch-, roll- and yaw-axis. So far very few papers had investigated all these 

6 degree of movement. It is an extreme difficult task to study all kinds of movements, because 

of the lack of an appropriate platform to provide all 6 degrees of movements. 

Researchers have tried to measure evoked potentials of vestibular origin for near 30 

years. Three kinds of vestibular evoked potential (VESTEP) – short (<15ms), middle 

(15-30ms) and long (>30ms) latency brainstem potentials, defined by the duration of response, 

have been reported. The short latency potentials evoked by high angular acceleration impulses 

stimulating semicircular canals in humans [15][16][17][23] have been recorded. Elidan et al 

[15] reported the ERP response to high speed and short time vertical Z axis rotation. Subjects 

were rotated at speed of 10,000°/sec2 and duration of 2 ms Signals were measured from 

forehead mastoid electrode, negative peak at about 15 ms were observed, as shown in Figure 

1-2(a). Baudonniere et al [25] showed the result of short (30 ms) linear displacements of 

subjects without co-stimulation of the semicircular canals evoked a biphasic negative wave, 

most prominent at midline central electrode (Cz) as shown in Figure 1-2(b). 
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(a) (b) 

Figure 1-2: The ERP response to vertical Z axis rotation and acceleration. (a) ERP response 
to vertical Z axis rotation. 10,000°/sec2, 2 ms. (b) ERP response to vertical Z axis 
acceleration. 0.4g, 30 ms. 

 

 

Long latency cortical potential evoked by stimulating horizontal semicircular canals with 

active head movements [26][27] and passive whole body movements [24][28][29] have been 

recorded. The VESTEP, evoked by stimulating otolithic and semicircular canals with different 

orientation of rotation or direction of movement was investigated in depth by Probst et al. 

[9][20][21][22]. One of their studies created microgravity condition by parabolic flight in 

order to avoid the co-stimulation of otolithic and semicircular canals. Figure 1-3 shows the 

ERP of rolling at X axis, bell-shaped negativity at midline central channel was recorded for 

roll up and down motion during microgravity.  
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Figure 1-3: The ERP response to X axis rotation. Upper plot: The rotation ERP under 1-G 
gravity; Lower plot: The rotation ERP under 0-G gravity 

 

 

All aforementioned studies focused on the contribution of vestibular system, thus 

stimulus from visual and audio are completely isolated. Some studies [8] discussed about the 

perception to self-body movements, with participation of visual stimulation. Specialized 

motion platforms generated required body movements. Physiological acquisitions or 

questionnaire was used as a measurement to motion perception. Thilo et al., [8] used 

visual-evoked-potential (VEP) to compare the perception of object-motion and self-motion. 

They reported significant N70 amplitude difference in VEP when they compared perception 

Rotate Up Rotate Down 
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to “Static Body with Rotating Picture” and “Rotating Body with Static Picture.” 

The experimental variables in these studies were well controlled, for instance, subjects 

were blindfolded VESTEP investigations [9][15] [25], or watching pixels moving or rotating 

on screen [8]. It might be desirable from the perspectives of scientific research, but less 

practical because we rarely experience vestibular stimulation without visual co-stimulation or 

watch pixels rotating or moving in a real world. We were actually living in a visual-vestibular 

co-stimulation world and the visual cue is always a meaningful and continuous scene, for 

instance, the driving motion. 

    

1.2. Kinesthetic perception during driving  

 

 One of the most experienced kinesthetic perceptions in our life is the driving motion, in 

other word, the perception we sensed during the vehicle speed or direction change. Whenever 

the vehicle accelerates, decelerates or curves in a corner, we experience a force pulling our 

body against the direction of moving. For a driver, the perception to motion includes 

kinesthetic and visual stimulus. A driver does not sense only the pushing or pulling his/her 

body by a force, but also the scene change related to vehicle movement. The driving 

perception includes the co-stimulation of visual cue, vestibular stimulation, muscle reaction 

and skin pressure. It is indeed a complicated mechanism to understand. 

There are numbers of difficulties in investigating the driving perception. First of all, the 

safety of subject must be guaranteed. Experiments should be held under a safe driving 

environment, it is very dangerous to conduct driving experiments on the road. Second, 

appropriate monitoring and data acquisition are needed to study the influence of kinesthetic 

stimuli. The stimulation should be simple enough and repeatable to keep experiment under 

control. Third, objective evaluation should be assessed in the studies. 

One of the solutions is to conduct driving experiments using an realistic simulator, which 
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is widely used in driving related researches [41]. For the necessity of motion during driving, 

literatures showed that the absence of motion information increased reaction times to external 

movement perturbations [32], and decreased safety margins in the control of lateral 

acceleration in curve driving [33]. In real driving, improper signals from disordered vestibular 

organs were reported to determine inappropriate steering adjustment [34]. Moreover, the 

presence of vestibular information in driving simulators shows the importance for it 

influences the perception of illusory self-tilt and illusory self-motion [35]. These studies 

emphasized the importance of motion perception during driving with the assessment of 

driving performance and behavior. Another research investigated how to duplicate the real 

driving motion to simulated driving [30]. However, assessing driving performance or 

behavior is not objective enough since the performance and behavior varies due to subject 

training or learning effect. In this thesis, we use a direct and objective method to evaluate 

human cognition during driving. 

 

1.3. EEG studies under VR based dynamic driving 

 

The electroencephalogram (EEG) has been used for 80 years in clinical paratices as well 

as basic scientific studies, it is a popular method for evaluating human cognition nowadays. It 

directly measures brain responses to external or internal stimulation. Much more information 

can be obtained from EEG compared to appearance behavior. Comparing to another widely 

used neuroimaging modality, functional Magnetic Resonance Imaging (fMRI), EEG is much 

less expensive and more portable, thus it is applicable in daily live, especially on the move. 

In recent years, some researchers have designed the Virtual-Reality (VR) senses to 

provide appropriate environments for assessing brain activity during driving [68][70][72]. VR 

technology is gradually being recognized as a useful tool for the study and assessment of 

normal and abnormal brain function, as well as for cognitive rehabilitation. The high fidelity 
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VR environment combined with physiological and behavioral response recording offer more 

assessment options that are not available by traditional neuropsychological study approaches. 

The VR technique allows subjects to interact directly with a virtual environment rather than 

monotonic auditory and visual stimuli. It is an excellent strategy for brain research to provide 

interactive and realistic tasks due to low cost and preventing risks of operating actual vehicle 

in real environment. Integrating VR scenes with a dynamic motion platform, it is easier to 

study the brain activity response to kinesthetic stimulus. Therefore, the VR-based dynamic 

motion platform combined with EEG monitoring is an innovation in cognitive engineering 

research [68][69]. 

  

 

1.4. Motivations and goal of this thesis 

 

The goal of this study is to assess the EEG dynamics in response to kinesthetic inputs 

during driving. To study human cognition under specific driving task we first construct a 

Virtual-Reality based interactive driving environment which integrates surrounded scene and 

hydraulic hexapod motion platform. The VR scene shows a vehicle driving on a 4-lane 

highway with high speed. A hexapod platform provides 6 DOF motion to simulate the 

dynamics in driving. This dynamic VR environment supports visual-vestibular co-stimulation 

for driving event. Using simple driving behavior such as deceleration, acceleration, and 

deviation, we study brain responses of kinesthetic input by comparing subjects’ EEG 

differences in motion and motionless conditions of dynamic platform. In the mean time, the 

posture of platform motion is recorded by an accelerometer, which allows us to observe the 

relationship between EEG response and platform motion. This thesis also provides a good 

evidence to show that the dynamic motion platform is required for the study of human 

cognitive state estimation under driving. 
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The thesis is organized in 7 chapters. Chapter 1 briefly introduces current knowledge in 

vestibular system and the goal of our study. Chapter 2 details the apparatus and materials of 

our study. Chapter 3 describes the details of experimental setup, including the time course of 

driving event and the platform motion setup. In chapter 4, we explore the EEG with 

innovative methods by combining Independent Component Analysis (ICA), time-frequency 

spectral analysis, ERP and component clustering. Chapter 5 shows the results. Chapter 6 

discusses and compares our finding with previous studies, and finally we concluded in 

Chapter 7. 
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II. Material 

 

This chapter describes how a VR-based dynamic driving environment is designed and 

built up for interactive driving experiments. Figure 2-1 shows four major parts of the 

architecture: (1) a 3D highway driving scene based on the VR technology, (2) a real vehicle 

mounted on a 6-DOF motion platform, (3) a physiological signal measurement system with 

36-channel EEG/EOG/ECG sensors, and (4) a signal processing module based on ICA 

decomposition, power spectral analysis and component clustering. The details of this 

environment will be presented as follows.  

 

Figure 2-1: The dynamic VR driving environment with physiological measurement system.
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 2.1. Dynamic driving environment 

 

The dynamic driving environment provides a safe, time saving and low cost approach to 

study human cognition under realistic driving events. Our driving simulator provides not only 

high-fidelity VR scene, but also kinesthetic inputs and realistic driving environment (as 

shown in Figure 2-2). These make subjects feel that they are driving in a real vehicle on the 

real road. 

 

  
Figure 2-2: The dynamic VR driving environment, Brain Research Center, National Chiao 
Tung University, Taiwan, ROC 

 

 

 

2.1.1. VR scene   
 

Our VR scene was developed by using the World Tool Kit (WTK) 3D engine. The 3D 

view was composed of seven identical PCs running the same VR program. Seven PCs were 

synchronized by LAN so all scenes were going at exactly same pace. The VR scenes of 

different viewpoints were projected on corresponding locations. Figure 2-3 shows the layout 

of our simulator. The front screen marked 1 and 2 was overlapped by two polarized frames to 

reach the binocular parallax. The frames for the left and right eyes were projected onto the 
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frontal screen with two projectors, respectively. By wearing special glasses with a polarized 

filter, the configuration provides a stereoscopic VR scene for a 3D visualization. 

 

 

Literatures showed that the horizontal field of view (FOV) of 120° was needed for 

correct speed perception [31]. In our VR scene, the surrounded screens covered 206° frontal 

FOV and 40° back FOV, as shown in Figure 2-4. Frames projected from 7 projectors are 

connected side by side to construct a surrounded VR scene. The size of each screen has 

diagonal measuring 2.6-3.75 meters. The vehicle was placed at the center of the surrounded 

screens. Detailed information is shown in Table 2-1.  

 
Figure 2-3: The configuration of the 3D surrounded scene. The 3D VR scene consists of 7 
projectors, creating a surrounded view. Frontal screen is overlapped by 2 projector frames in 
different polarizations, providing a stereoscopic VR scene for 3D visualization. 
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2.1.2. Hydraulic Hexapod Motion Platform   
 

 Several studies showed that vestibular cues have a role in speed control and steering 

[32][33]. The vestibular cues or the motion cues could be provided by a motion platform 

controlled by six hydraulic linear actuators. This hexapod configuration was also called 

Stewart Platform [36] (as shown in Figure 2-5). The platform generated accelerations in 

vertical, lateral and longitudinal direction of vehicle as well as pitch, roll and yaw angular  

Table 2-1: The Specification of driving simulator 
Screen Number or Location Dimension 
Screen Number 1, 2, 3, 4 (FOV 42°) (W)×(H) = (300 cm)×(225 cm) 
Screen Number 5, 6 (FOV 40°) (W)×(H) = (270 cm)×(202 cm) 
Screen Number 7 (FOV 40°) (W)×(H) = (210 cm)×(157 cm) 
Vehicle Dimension (L)×(W)x(H) = 

(430 cm)×(155 cm)×(140 cm) 
Driver to Front Screen (1, 2)  370 cm 
Driver to Left and Right Screen (5, 6) 220 cm (Left) and 300 cm (Right) 
Driver Head Height Relate to Screen 1 120 cm 

Figure 2-4: The overview of surrounded VR scene. The VR-based four-lane highway scenes are 
projected into surround screen with seven projectors. 
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accelerations. Figure 2-6 shows a basic idea how the motion platform simulates driving 

 

(a) 

 

(b) 

Figure 2-5: The Stewart platform. (a) The sketch map for the Stewart platform. (b) The 
actual Stewart platform. A driving cabin is mounted on this platform in our Lab. 

 

 

Figure 2-6: How motion platform works. http://www.force-dynamics.com/ 
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motion. When in deceleration, the driver feels a force pushes him/her against the belts, the 

platform tilts forward simultaneously to change the gravity direction sensed by the driver, and 

thus simulates the deceleration force. Similarly, the platform tilts backward to simulate 

acceleration force. This (or comparable) technique had been used widely in driving simulation 

studies [37].  

The Hexapod Stewart Platform has superior performance in position control compared to 

traditional series manipulator. The parallel manipulator provides high-precision platform 

manipulations. Six extensible actuators equally share the loading of the platform, which 

provide high capability for realistic applications. Inverse kinematics analysis is used to solve 

the problem of converting the position and orientation of the payload platform with respect to 

the base platform. A singular solution of the inverse kinematics can be evaluated by simple 

formulae [38], which provides a high-speed platform and creats many possibilities for 

applications. 

 
 

 

2.2. Introduction to motion tracking device   

 

An accelerometer (inertia sensing, InertiaCube2 [39], as shown in Figure 2-7) was placed 

in the vehicle, at the center of movement. The InertiaCube2 is an inertial 3-DOF (Degree of 

Freedom) orientation tracking system. It obtains its motion sensing using a miniature 

solid-state inertial measurement unit, which senses angular rate of rotation, gravity and earth 

magnetic field along three perpendicular axes. The angular rates are integrated to obtain the 

orientations (yaw, pitch, and roll) of the sensors. Gravitometer and compass measurements are 

used to prevent the accumulation of gyroscopic drift. The InertiaCube2 is a monolithic part  
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based on micro-electro-mechanical systems (MEMS) technology involving no pinning wheels 

  
Figure 2-7: The accelerometer or platform motion tracking, Inertia Sensing, InertiaCube 300

 

 

 

(a) (b) 

Figure 2-8: The recording of orientation of InertiaCube2. (a) The demo program that shows 
Pitch, Yaw and Roll recording. (b) The Roll, Pitch and Yaw axes. 
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that might generate noise, inertial forces and mechanical failures [40]. InertiaCube2 transfers 

digital data using RS232 protocol and converts it to USB with a small converter box. This 

accelerometer records orientations of the vehicle in pitch, roll and yaw during driving 

simulation, as shown in Figure 2-8. We will analyze physiological data and the orientation 

recording to investigate the relationship between human cognition and kinesthetic stimulus.  

 

 

2.3. EEG and EMG acquisition  

 

 Subjects wore a movement-proof electrode cap with 36 sintered Ag/AgCl electrodes to 

measure the electrical activities of brain, i.e., EEG. The EEG electrodes were placed according 

to the international 10-20 system (as shown in Figure 2-9) with a unipolar reference at the 

right earlobe.  

 

 

 
 

(a) (b) 

Figure 2-9: The International 10-20 system of electrode placement [43].  (a) lateral view. 
(b) top view. 
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The impedance between EEG electrodes and skin was kept to less than 5kΩ by injecting 

NaCl based conductive gel. Data were amplified and recorded by the Scan NuAmps Express 

system (Compumedics Ltd., VIC, Australia) shown in Figure 2-10, a high-quality 40-channel 

digital EEG amplifier capable of 32-bit precision sampled at 1000 Hz. Table 2-2 shows the 

specifications of the NuAmps amplifier. The EEG data were recorded with 16-bit quantization 

levels at a sampling rate of 500 Hz in this study. 

 Data were preprocessed using a low-pass filter with a cut-off frequency of 50 Hz in 

order to remove the power line noise and other high-frequency noise. Similarly, a high-pass 

filter with a cut-off frequency at 0.5 Hz was applied to remove baseline drifts.  

 

 

 

Figure 2-10: The NuAmps EEG Amplifier and the Electrode Cap 



 18

 

 

 

 

 

 

2.4. Subjects  
 
 

The purpose of this study is to investigate the subject brain responses to kinesthetic 

stimulus. The subjects were instructed to perform the driving task consciously. Statistical 

results showed that the drowsiest period occurs from late night to early morning, and during 

the early afternoon hours [42]. According to these results, the driving experiments were 

conducted in middle morning or late afternoon to avoid the drowsiest time.  

Ten healthy subjects participated in this research (one female and eleven males, aged 

between 20 and 28). Subjects were instructed to keep the car at the center of the lane by 

controlling the steering wheel, and to perform the driving task consciously. Each subject 

completed four 25-minute sessions in each driving experiment. To prevent subjects from 

feeling drowsy during experiments, they rested for few minutes after each session until they 

were ready for the next one. The whole driving experiment lasted about 2 hours. Subjects 

performed at least 2 driving experiments on different days for verifying the cross-session 

consistency.  

Table 2-2: NuAmps Specifications 
Analog inputs 40 unipolar (bipolar derivations can be computed)
Sampling frequencies 125, 250, 500, 1000 Hz per channel 
Input Range ±130mV  
Input Impedance Not less than 80 MOhm 
Input noise 1 µV RMS (6 µV peak-to-peak) 
Bandwidth 3dB down from DC to 262.5 Hz, dependent upon 

sampling frequency selected 
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III. Experimental Setup 

 

To investigate the influence of driving kinesthetic stimulus on cognitive states, we 

designed three simple driving events: deceleration, acceleration and deviation. The 6-DOF 

motion platform provided corresponding movements for different driving events. By 

switching the platform between “motion mode” and “motionless mode”, we produced two 

identical driving conditions with the only difference of the presence of platform motion. The 

EEG signals were recorded, analyzed and compared under these two conditions.  

 

3.1. Driving Experiment Event 
 

 
Figure 3-1: The simulated high way scene. The visual information is reduced to minimum to 
avoid unnecessary stimuli. 

 

 
 

We developed a VR highway environment with a monotonic scene as shown in Figure 

3-1 and eliminated all unnecessary visual stimuli. In the VR scene, the simulated driving 

speed was controlled by a scheduled program, thus subjects needed not to step on paddles, to 

prevent large muscle activity on the throttle or brake. We designed three driving events: stop, 
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go and deviation event. The stop and go events are paired, which means go event always 

follow the stop event, so we defined stop and go events as Stop-Go event. The deceleration 

and acceleration in Stop-Go event was controlled by a program. Figure 3-2 shows the time 

course of a Stop-Go event. If we define beginning of stop event as 0 second (bold arrow in 

Figure 3-2), a yellow light cue was shown on screen 1 second prior to the stop event. When a 

stop event began, the yellow light was replaced with a red light in same position, and the 

deceleration began. The car then slowed down and completely stopped in 4 seconds, the red 

light out. Stop lasted 7 seconds, and then the go event began. A green light was shown on 

screen, and start accelerating for 3 second. Then the green light was out, the vehicle was 

moving at constant speed, and a Stop-Go event ended.  

 

 

During the experiment, subjects did not need to do anything in the stop and go events, 

but subjects were asked to handle the wheel to keep the car position at the center of cruising 

lane. During the experiment, the vehicle were randomly drifted away the crusing position, and 

the subjects were instructed to steer the vehicle back to the center of the crusing lane as 

quickly as possible. The onsets of the drifting events and the subject reaction times, the 

Figure 3-2: Illustration of the design for stop-go event.  



 21

moment the subject first steered the wheel to compensate the drift, were recorded for further 

analysis.  

 

 

Figure 3-3 illustrates a deviation event. In phase 1 (Figure 3-3a), vehicle was moving 

forward in a straight line. Deviation event first occurred at the beginning of Phase 2 (Figure 

3-3b), in which the vehicle deviated from the original cruising position. The vehicle deviated 

either to left or right. The deviation event enters Phase 3 when the subject started steering the 

vehicle back to the cruising position (Figure 3-3c). The subject would continue to steer the car 

until s/he thinks the car has returned to the center of the cruising lane. The moment of subject 

stopped the steering effort marked the beginning of the Phase 4 of the drift event (Figure 

3-3d). The inter-event interval is 9 seconds. The Stop-Go event and deviation event were 

randomly occurred with the probability of 50%.  

    

(a) (b) (c) (d) 

Figure 3-3: Illustration of the deviation event. (a) Vehicle moving in straight line. (b) 
Deviation event occurred. (c) Subject’s reaction. (d) Vehicle back to middle lane. 

Response time was 
recorded 
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3.2. Motion Profile 

 

The experiment includes two conditions, the “motion mode” and “motionless mode”. 

This was achieved by enabling or disabling the motion platform action. The platform motion 

in “motion session” was recorded through accelerometer as shown in Figure 3-2. The 

platform performed a pitching forward action in a stop-event, the angle was nearly 5 degrees, 

and a pitching backward action was performed in a go-event, the angle was nearly 4 degrees. 

With these movements, subjects felt forward force while decelerating, backward force while 

accelerating and a sudden shaking while deviating due to the platform position change. In the 

“motionless session” the platform was static and not response to the speed change or 

deviation of vehicle, only visually event was presented to driver. Each subject completed 4 

sessions in a driving experiment, sessions were motion and motionless counterbalanced and 

each lasted 25 minutes. After each session subjects took a 5-10 min rest to prevent the 

drowsiness in driving. In order to confirm the consistency of subject’s brain activities from 

different experiments, each subjects completed 2~4 driving experiments for within-subject 

analysis. 
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IV. Data Analysis Procedure 

 

In this study, the mutli-channel EEG signals were first separated into independent brain 

sources using Independent Component Analysis (ICA) [71]. Then we ploted the separated 

signals using Event Related Spectral Perturbation (ERSP) plot developed by Makeig, 1993 

[61] and Event Related Potential (ERP). We then investigated the stability of component 

activations and scalp topographies of meaningful components across sessions within each 

subject. To test the reproducibility of component maps and activations across subjects, we 

performed component clustering analysis (detailed below).   

 

4.1. Independent Component Analysis 

 

The joint problems of electroencephalographic (EEG) source segregation, identification, 

and localization are very difficult since the EEG data collected from any point on the human 

scalp includes activity generated within a large brain area. The problem of determining brain 

electrical sources from potential patterns recorded on the scalp surface is mathematically 

underdetermined. Although the conductivity between the skull and brain is different, the 

spatial smearing of EEG data by volume conduction does not cause significant time delay and 

it suggests that the ICA algorithm is suitable for performing blind source separation on EEG 

data. The ICA methods were extensively applied to blind source separation problem since 

1990s [45]-[52]. In recent years, subsequent technical reports [53]-[60] demonstrated that ICA 

was a suitable solution to the problem of EEG source segregation, identification, and 

localization based on the following assumptions: (1) The conduction of the EEG sensors is 

instantaneous and linear such that the measured mixing signals are linear and the propagation 

delays are negligible. (2) The signal source of muscle activity, eye, and, cardiac signals are 
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not time locked to the sources of EEG activity which is regarded as reflecting synaptic 

activity of cortical neurons [53][54]. 

In this study, we attempt to completely separate the twin problems of source 

identification and source localization by using a generally applicable ICA. Thus, the artifacts 

including the eye-movement (EOG), eye-blinking, heart-beating (EKG), muscle-movement 

(EMG), and line noises can be successfully separated from EEG activities. The ICA is a 

statistical “latent variables” model with generative form: 

 )t()t( sAx =  (1) 

where A is a linear transform called a mixing matrix and the is  are statistically mutually 

independent. The ICA model describes how the observed data are generated by a process of 

mixing the components is  . The independent components is  (often abbreviated as ICs) are 

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A is 

assumed to be unknown. All we observed are the random variables ix , and we must estimate 

both the mixing matrix and the IC’s is  using the ix . 

    Therefore, given time series of the observed data [ ]TN )t(x)t(x)t(x)t( L21=x  in 

N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are 

statically independent. 

 )t()t( xWu = . (2) 

Supposed the probability density function of the observations x can be expressed as: 

 )(p)det()(p uWx = , (3) 

the learning algorithm can be derived using the maximum likelihood formulation with the 

log-likelihood function derived as: 
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Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood 

with respect to W gives: 
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and WW T  rescales the gradient, simplifies the learning rule and speeds the convergence 

considerably. It is difficult to know a priori the parametric density function )(p u , which 

plays an essential role in the learning process. If we choose to approximate the estimated 

probability density function with an Edgeworth expansion or Gram-Charlier expansion for 

generalizing the learning rule to sources with either sub- or super-Gaussian distributions, the 

nonlinearity )( uϕ  can be derived as: 
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Since there is no general definition for sub- and super-Gaussian sources, we choose 

( )1) (-1,1) (1,2
1 NN)(p +=u  and )(hsecN)(p uu 2(0,1)=  for sub- and super-Gaussian, 

respectively, where ( )2σμ ,N  is a normal distribution. The learning rules differ in the sign 

before the tanh function and can be determined using a switching criterion as: 
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where 

 { } { } { }( ),)tanh()(sec 22
iiiii uuEuEuhEsign −=κ  (10) 

represents the elements of N-dimensional diagonal matrix K. After ICA training, we can 

obtain N ICA components u(t) decomposed from the measured N-channel EEG data x(t). In 

this study, N=30, thus we obtain 30 components from 30 channel signals. 
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 Figure 4-1 shows a result of the scalp topographies of ICA weighting matrix W 

corresponding to each ICA component by projecting each component onto the surface of the 

scalp, which provide evidence for the components' physiological origins, e.g., eye activity 

 
Figure 4-1: Scalp topography of ICA decomposition. 
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was projected mainly to frontal sites, and the drowsiness-related potential is on the parietal 

lobe and occipital lobe [68], motor related potential will locate at left and right side of front 

parietal lobe, etc. We can see that most of artifacts and channel noises are effectively 

separated into independent components 1 and 3.  

 

4.2. ERP Analysis 
 

   Dawson first recorded the evoked potentials (EP) from cerebral cortex by taking pictures 

and accumulation skill in 1947 [73]. Dawson initiated the new field of neuro-physiology by 

introducing the technology of averaging evoked potentials (AEP) in 1951. The AEP 

technology is extensively applied to many experiments which relate to specific stimulus event, 

and is named event-related potentials (ERP) in recent years. The narrow definition of ERP is 

to present a specific region of perceptual systems and elicit potential changes on the cerebral 

cortex when the stimulus appears or disappears. The board definition of ERP suggests the 

responses come from all parts of neural system. 

    Generally, the ERP induced by the stimulus is 2 ~ 10 μV, much smaller than the 

amplitudes of ongoing EEG, and it is thus often buried in the EEG recordings. EEG signals 

are composed of small signals and big noise. In order to extract the ERP from EEG signal, we 

need to increase the signal to noise ratio by presenting the same type of stimuli to the subject 

repeatedly. ERP is often obtained by averaging EEG signals of accumulated single trials of 

the same condition. Ongoing EEG signals across single trials are considered random and 

independent of the stimulus. However, it is assumed that the waveform and latency of ERP 

pattern are invariant to the same stimulus. Through phase cancellation, time- and phase locked 

EEG signals will be more prominent. For example, if the number of trials for condition is n, 

the ERP will be n times the amplitude of original wave pattern and the EEG amplitude will 

only be n  times of the initial signal. Therefore, the signal to noise ratio (SNR) will be 
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improved by n  times. Therefore, ERP sometimes can be named Averaged Evoked 

Potentials and this is the basic theorem of extracting the ERP [44].  

 
Figure 4-2: An ERP image includes the averaged ERP, response time and inter-trial 
information. 
 
 
 

4.3. ERSP Analysis 

 

 The Event Related Spectral Perturbation, or ERSP, was first proposed by Makeig [61]. 

The ERSP reveals aspects of event-related brain dynamics not contained in the ERP average 

of the same response epochs. The limitation of ERP is that it must be coherent 

time-and-phase-locked activities. Averaging same response epochs would involve phase 

cancellation, brain activities not exactly synchronized in both time and phase are averaged out. 

The ERSP measures average dynamic changes in amplitudes of the broad band EEG spectrum 

as a function of time following cognitive events. Through ERSP, we are able to observe 

time-locked but not necessary phase-lock activities. 

The processing flow is shown in Figure 4-2. The time sequence of EEG channel data or 

ICA activations are subject to Fast Fourier Transform (FFT) with overlapped moving 
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windows. Spectrums prior to event onsets are considered as baseline spectra. The mean 

baseline spectra were converted into dB power and subtracted from spectral power after 

stimulus onsets so that we can visualize spectral ‘perturbation’ from the baseline. To reduce 

random error, spectrums in each epoch were smoothed by 3-windows moving-average. This 

procedure is applied to all the epochs, the results are then averaged to yield ERSP image. 

The ERSP image mainly shows spectral differences after event, since the baseline spectra 

prior to event onsets have been removed. For instance, in the bottom of Figure 4-2 we can see 

very clearly that only little or no changes in high frequency band (the lower position the 

higher frequency) but very significant changes in low frequency band after event. This allows 

us to visualize spectral power change related to event.  

 After performing bootstrap analysis (usually 0.01 or 0.03, here we use 0.01) on ERSP, 

only statistically significant (p<0.01) spectral changes will be shown in the ERSP images. 

Non-significant time/frequency points are masked (replaced with zero). Any perturbations in 

frequency domain become relatively prominent.  

While the ERSP reveals new and potentially important information about event-related 

brain dynamics, it cannot reveal interactions between the ERP amplitude, latency variability, 

and EEG spectral modulation. Figure 4-4 shows the ERSP of deviation event in motion and 

motionless conditions, and the limitation of ERSP. We can’t find obvious difference related to 

kinesthetic stimulus. In contrast, the ERP (the bottom of Figure 4-4) showed very clear 

difference between two ERPs, a negative potential appear in motion-deviation but not in 

motionless-deviation. This example shows that ERSP and ERP are complimentary and should 

be take into account when we compare and contrast the brain responses across different 

conditions. 
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Figure 4-4: ERSP of deviation event on central midline. 
 

 
Figure 4-3: The data processing in ERSP analysis.  
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4.4. Component Clustering 

 

 To study the cross-subject component stability of ICA decomposition, components from 

multiple sessions and subjects were clustered based on their spatial distributions and EEG 

characteristics. The usual practice to analyze cross-subject consistency was to compare the 

components one by one. However, this was a time-consuming task and might not be objective 

enough since analyst chose similar components by his/her own decision. There is no natural 

and easy way to identify a component from one subject with one or more components from 

another subject. A pair of independent components from two subjects might resemble and/or 

differ from each other in many ways and to different degrees. Furthermore, there is rather a lot 

of inter-subject variability not only in gross brain anatomy, but in functional mapping 

(electrical). Independent component analysis might derive different mixing matrix that maps 

brain source activity to the scalp to alleviate the inter-subject anatomical variability. But, 

component activations might remain quite variable because of the inter-subject functional 

variability. Components from different subjects thus may differ in many ways such as scalp 

maps, power spectra, ERPs and ERSPs.  

Westerfield, Makeig, Delorme and Onton et al [62][63][64] attempted to solve this 

problem by calculating the similarities (distance) among different independent components. 

Components from multiple subjects were clustered in terms of their scalp maps and activation 

power spectra. Individual component clusters were characterized by their mean cluster map 

and activity spectrum. This method was also known as component clustering. 
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4.4.1. The typical flow of clustering 
 

Component Clustering divided massive components into several significant clusters (Figure 

4-5), for instance, assuming we have 10 subjects each of which includes 30 components after 

ICA decomposition, results in totally 300 components. To cluster these components into small 

number (for instance, 10) of groups, one approach is to apply kmeans on their scalp map and 

power spectral. Before the classification we apply PCA on scalp map and power spectral 

sequences to reduce dimensionality of the data. The kmeans algorithm measures the distance 

of every component pair and groups components into clusters. Ideally, components in the 

same cluster would have similar scalp map and power spectral characteristics, as shown in the 

bottom of Figure 4-5.  

In practice, we can hardly achieve such clean clusters as in Figure 4-5 if we rely entirely 

on  kmeans to classify components, since less then half of components were meaningful after 

ICA decomposition, others were usually account for noises. These components might confuse 

kmeans algorithm and reduce the consistency of each clusters. Another problem arises from 

combining scalp map and power spectral information for kmean classification. It remains an 

open question how to weight the spatial information (scalp maps) and source activity, 

accounted for by power spectra in the kmeans clustering.  Below we propose a two-step 

clustering method. 

 



 33

 

 
Figure 4-5: A basic idea of component clustering. 
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4.4.2. Practical clustering 

 

In previous session we mentioned 2 critical problems while applying typical kmean 

clustering. The first problem is the large number of ‘noisy’ components from ICA, making 

kmeans unable to group meaningful components together. This can be solved by selecting 

good components before kmeans. As shown in Figure 4-6, in ICA decompositions, half of 

them are considered as noisy components. These noisy components are removed from any 

further analysis. 

 

Another problem is how to concatenate scalp map and power spectral information. We 

purpose to modify the typical classification (Figure 4-5) into a 2-stage clustering method 

(Figure 4-7) to solve this problem. The 2 stage clustering is to apply kmean twice, first stage 

classifies scalp map and second stage classifies power spectral. The first kmeans guarantees 

consistent anatomic features within the same cluster, and second kmeans guarantees 

consistent within-cluster functionality, characterized by power spectra. 

 

Figure 4-6: Component selection preceding clustering. 
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Figure 4-7 shows our clustering flow. Components are first selected by observation and 

largely reduce to about half. Secondly, the selected components are classified by kmeans 

algorithm into 40 clusters in terms of component scalp maps (EEG.icawinv). Then we group 

40 clusters into 10 significant clusters and discard some non-significant clusters manually. 

The resultant clusters are named according to the source locations of components. To uarantee 

the final results are with same functionality, we apply kmeans again on each of 10 significant 

clusters based on power spectra of the components. The second stage kmeans classifies 

components within some clusters into 4 sub-clusters. By observing the content of clusters we 

reject the minority one, which includes components with unwanted spectral, and group the 

remaining clusters. The resultant clusters have consistent anatomic and functional features. 

 

 

Figure 4-7: Practical Clustering flowchart for our study. 
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V. Results 
 

In the thesis we collect and analyze 31 driving experiments from 10 subjects, as listed in 

table 5-1, each subject completed 2~5 experiments. Each experiment includes 4 sessions and 

lasts 2 hours. Sessions are divided into ‘motion’ and ‘motionless’ sessions with stop, go and 

deviation events. Thus we have six conditions: “Motion-Stop”, “Motion-Go”, 

“Motion-Deviation”, “Motionless-Stop”, “Motionless-Go” and finally 

“Motionless-Deviation”. By comparing the motion & motionless pair, we may find some 

differences between these two conditions. Below we will first show our final result and then 

present detailed information of how we make the conclusion, starting from within-subject 

analysis, cross-subject analysis and finally component clusters. 

 

Table 5-1: Subject list 
 

Subject No. Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 

S03 05/04/27 05/04/29 05/05/03 05/05/10  

S04 05/05/02 05/05/04 05/05/09 05/05/11 05/05/16 

S05 05/05/17 05/06/03 05/06/07 05/06/10  

S06 06/02/16 06/02/21 06/02/23   

S07 06/02/17 06/03/21 06/03/22   

S08 06/02/24 06/03/02    

S09 06/02/24 06/03/09 06/03/15   

S10 06/04/18 06/04/19    

S11 06/04/20 06/04/21    

S12 06/04/24 06/04/28 06/05/02   
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5.1. Brain sources of kinesthetic stimulus response  

 

First of all, we compare the ERP or ERSP of the driving events in the two conditions: 

motion or motionless, to find some significant components. Figure 5-1 showed the 

components we are interested in, which were selected based on their characteristic scalp maps, 

dipole source locations, spectral signatures, and within subject consistency. Through detailed 

observation of 31 experiments results from 10 subjects, some localized components had been 

selected. The circled components in Figure 5-1, left Mu, right Mu and central midline 

components, show statistically significant response differences across conditions.  

The ERP of the central midline component and the ERSPs of Mu components showed 

significant activity in response to kinesthetic stimulus. Figure 5-2 showed the result from 

stop-go events. ERSP images on the left are brain responses in “motion” conditions and the 

ones on the right are under “motionless” condition, respectively. The curves below the images 

are platform motion recordings (pitching, rotate by Y axis). We found Mu blocking 

time-locked to peak of platform motion in Stop-Motion and Go-Motion events, as shown in 

Figure 5-2a and 5-2b. In contrast, no Mu blocking occurred in Stop-Motionless and 

Go-Motionless events. Thus the Mu blocking is considered as brain responses to the 

kinesthetic input response of stop and go events. Figure 5-2c and 5-2d show the central 

midline component ERP image of stop-go events. Biphasic ERP peaks at 4000 ms after cue in 

stop event, similar ERPs can be found in go events, though it was not as clear as in stop 

events.  

The deviation events showed similar results. Figure 5-3 shows the ERSP of left Mu 

components in deviation events. The curve below the ERSP shows the recorded platform 

motion, notice that the motion platform tilted along different directions in stop-go and 

deviation. In deviation events, platform rotated slightly along vertical Z axis. Since it was 

known that Mu been blocked whenever subject intended to move any part of his/her body. 
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The ERSP was dominated by Mu blockings in both motion and motionless conditions, 

resulted from subjects’ steering during deviation events. However, if we examine the ERSP 

carefully, we could find some differences between motion and motionless conditions. In 

particular, the Mu activity was blocked slightly earlier in motion-deviations, and the reaction 

time in motion-deviations was shorter than that in motionless-deviations. Figure 5-4 showed 

the central midline component ERP image and response time following deviation events. A 

negative ERP occurred in the central midline area, peaks at ~250 ms, which was very close to 

the beginning of the platform movement. The negativity is time-locked to deviation event and 

but not the response time. This negative ERP did not occurred in motionless condition. Thus, 

the negativity was primarily induced by the platform motion. 

 

 
Figure 5-1 ICA decompositions and our interested components. 

 

Central Midline  

Left Mu Right Mu 
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Figure 5-2 The feature related to kinesthetic stimulus in stop-go events. 

(b) Go Event 

(a) Stop Event 

(c) Stop 
Event 

(d) Go 
Event 

Motion                          Motionless 



 40

 

 

 

 

 

 

 
 

Motion             Motionless 
 

Figure 5-3: ERSP group average of Mu components, deviation event. 

 

 

 

 

 

 

 

 

 

 

 

Motion             Motionless 
Figure 5-4: ERP group average of central midline component, deviation event. 
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 From the ERP images in Figure 5-4 we can also see the response time of steering (the 

bold curve). The dashed curve in left side ERP indicated the response time in motionless 

deviations, thus we can easily compare the response time in two different conditions. It was 

evident that subject reacted faster in motion-deviation than in motionless-deviation.  

We briefly concluded that, whenever a kinesthetic stimulus happened in driving, it 

induced Mu blocking (as shown in Figures 5-2a and 5-2b) and negative ERP in central 

midline component (as shown in Figures 5-2c, 5-2d, and 5-4). The presence of motion in 

driving also decreased response time (which was observed from deviation events). This will 

be discussed in detailed in the next chapter. 
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5.2. Within subject consistency 

 

To test the reliability of experiment results, first we compare results of different 

experiments from the same subject in order to ensure the features are reproducable. The 

following 5 pages show the results from 2 experiments recorded on different days from 

Subject 7 for the stop , go and deviation events. Table 5-2 summarizes the findings.  

In Figures 5-5, 5-6, 5-7 and 5-8, the scalp map, power spectral and dipole location are 

shown in upper half figure, ERSPs of 4 different conditions (motion-go, motion-stop, 

motionless-go and motionless-stop) and the platform motion recording are shown in lower 

half of the figure. The results show that alpha and beta band suppression time-locked to 

movement in the left and right Mu components, and are consistent across different sessions. 

 Figures 5-9 and 5-10 show the result of deviation event. Four ERP images in the figure 

represent deviate-left-motion, deviate-right-motion, deviate-left-motionless, and deviate-right- 

motionless. The platform motion recordings are shown below the ERP. Figures 5-9 and 5-10 

show evident stimulus-locked negative potential following the deviation. The results are very 

consistent across session from the subject. 

Table 5-2: Within-subject result of subject 7 
 

 

Page Fig.NO Event Location Date Analysis 

39 5-5 06/03/21 

40 5-6 

Right Mu

06/03/22 

41 5-7 06/02/17 

42 5-8 

Stop-Go 

Left Mu 

06/03/21 

ERSPs show 10 & 20 Hz 

suppression time-locked to 

movement on left and right Mu 

components 

43 5-9 06/02/17 

43 5-10 

Deviation Central 

Midline 06/03/22 

ERPs show stimulus-locked 

negative potential 
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Stop – Motion              Stop – Motionless 

Go – Motion               Go – Motionless 

Figure 5-5: ERSP of S07-060321 COM12, Stop and Go event. 
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Stop – Motion              Stop – Motionless 

Go – Motion               Go – Motionless 
Figure 5-6: ERSP of S07-060322 COM10, Stop and Go event. 
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Stop – Motion              Stop – Motionless 

Go – Motion               Go – Motionless 
Figure 5-7: ERSP of S07-060217 COM10, Stop and Go event. 
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Stop – Motion              Stop – Motionless 

Go – Motion               Go – Motionless 
Figure 5-8: ERSP of S07-060321 COM09, Stop and Go event. 
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              Motion            Motionless 

Figure 5-9: ERP of S07-060217 COM03, Deviation event. 

 

 
               Motion            Motionless 

Figure 5-10: ERP of S07-060322, Deviation event. 

 

Deviation Left 

Deviation Right 

Deviation Left 

Deviation Right 
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5.3. Cross subject consistency 

 

To examine the cross subject consistency of experiment results, we plot the results of 

subjects 3, 4, 6 and 9 in the next 3 pages in the events of stop, go and deviation. Table 5-3 

summarizes the results of the figures.  

In Figure 5-11 and 5-12, the scalp map, power spectral and dipole location are shown in 

upper half of the figure, ERSPs of 4 different conditions (motion-go, motion- stop, 

motionless-go and motionless-stop) and the platform motion recording are shown in lower 

half figure. The results show alpha band suppression time-locked to platform movement in 

right Mu components, which is consistent in subject 3 and subject 6.   

Figure 5-13 and 5-14 show the result of deviation events. Four ERP images in the figure 

represent deviate-left-motion, deviate-right-motion, deviate-left-motionless, and deviate-right- 

motionless, respectively. The platform motion recordings are shown below the ERP plots. The 

figures show evident stimulus-locked negative potential which is very consistent in subjects 4 

and 9. 

 

Table 5-3 List of cross-subject analysis 
 

 

Page Fig.NO Event Location Subject Analysis 

45 5-11 S3 

46 5-12 

Stop-Go Right Mu

S6 

ERSPs show alpha suppression 

time-locked to the platform 

movement  

47 5-13 S4 

47 5-14 

Deviation Central 

Midline S9 

ERP images show stimulus-locked 

negative potential in response to 

the platform movement. 
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Stop – Motion              Stop – Motionless 

Go – Motion               Go – Motionless 
Figure 5-11: ERSP of S03-050503 COM08, Stop and Go event. 
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Stop – Motion              Stop – Motionless 

Go – Motion               Go – Motionless 
Figure 5-12: ERSP of S06-060215 COM06, Stop and Go event. 
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               Motion            Motionless 

Figure 5-13: ERP of S04-050509 COM02, Deviation event. 

 

 
               Motion            Motionless 
Figure 5-14: ERP of S09-060315 COM03, Deviation event. 

 

Deviation Right 

Deviation Right 

Deviation Left 

Deviation Left 
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From these figures we find alpha suppression in stop and go events in Mu components of 

subject 3 and 6, and negative event-related potential stimulus-locked to deviation in central 

midline component of subjects 4 and 9. A more detailed result is shown in Table 5-4. In ten 

subjects, eight of them exhibit 10 or 10+20 Hz activity suppression in stop and go events, 

subjects 10 and 11 did not show any suppression in the motor cortex. It is very interesting that 

we observe power increase at 10~20 Hz in the stop event of subject 8 but power decrease in 

go event of same subject. Since this phenomenon is only found in subject 8 so we consider it 

as an outliner. Following deviation events, we fine negative ERP related to kinesthetic 

stimulus, in central midline component. These results show great consistency across nine of 

ten subjects participated in the study. 

 

Table 5-4: The experiment result table 
 

Subject  

Stop 

 

Go 

 

Stop 

 

Go 
 

Deviation 

S3 (4d) 10 Hz↓ 10&20↓ 10 ↓ 10&20 ↓ ERP 

S4 (5d) 10 ↓ 10 ↓ 10 ↓ 10 ↓ ERP 

S5 (4d) 10~20 ↓ 10~20 ↓ 10~20 ↓ 10~20 ↓ ERP 

S6 (3d) 10 ↓ 10 ↓ 10 ↓ 10 ↓ ERP 

S7 (3d) 10 ↓ 10&20 ↓ 10&20 ↓ 10&20 ↓ ERP 

S8 (2d) 10~20 ↑ 10~20↓ 10~20 ↑ 10~20↓ ERP 

S9 (3d) 10 ↓ 10 ↓ 10 ↓ 10 ↓ ERP 

S10 (2d) ─  ─ ─ ─ ERP 

S11 (2d) ─ ─ ─ ─ ─ 

S12 (3d) 10 ↓ 10 ↓ 10 ↓ 10 ↓ ERP 

↓: power decrease in spectral 

↑: power increase in spectral 

The “d” in the subject column indicates “days experiment” 
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5.4. Component Stability 

 

From 10 subjects we collected a total of 930 components (30 components x 31 subjects) 

after ICA decomposition. The massive components are clustered into 10 largest 

non-artifactual clusters. The average scalp maps of these clusters are shown in Figure 5-15. 

Components in the same cluster have similar characteristics of scalp maps and power spectra.  

 

  

  

 

  

Figure 5-15: Final Clustering result. 

 

 

 The group average ERSPs of left and right Mu Components are shown in Figures 5-16 

and 5-17. Figure 5-16 shows the ERSPs of stop and go event averaged from 29 left Mu 

components. Similarly, Figure 5-17 shows the average of 32 right Mu components. Figure 

5-18 shows the averaged ERP following deviation events of the central midline component 

cluster.  
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Figure 5-16: Group Average of Left Mu Component. 
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Figure 5-17: Group average of right Mu component. 
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Figure 5-18: Group average of the central midline components. 
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The ERSP in the top panels of Figure 5-16 and 5-17 show stop-event, and the lower 

panels show ERSPs of go-event. ERSPs were from dynamic driving and right side images 

were from static driving. From Figure 5-16 and 5-17, the frequency spectra and ERSP of stop 

and go events showed typical Mu characteristics [66], i.e., the 10 Hz peak in frequency 

spectral, and the EEG alpha band blocking following the stop and go events. This 

phenomenon is consistent across subjects. The average of cluster was considered as a 

representative of all components from participated subjects. This helps us conclude that 

kinesthetic stimuli in stop and go events induced Mu blocking. 

Similarly, Figure 5-18 showed the average of central midline ERP of deviation event. 

The upper ERP images are the responses following the deviation to left and lower images are 

those following the deviation to right. Left panels are in the motion-deviation condition and 

right panels are in the motionless-deviations. We found 2 prominent features in these ERP 

image. First one is a negative ERP following kinesthetic stimuli, which is time-locked to the 

event and not observed in motionless-deviations. The second feature is the negative ERP 

time-locked to subjects’ reaction. This was found in all deviation conditions. Since this ERP 

was not precisely synchronized, we can only find slightly negative wave in average ERP. 

 Figure 5-19 shows the comparison of steering response in motion and motionless 

deviations. The bold curve is the response time under motion-deviations and the dashed curve 

is under motionless-deviations. Result showed that subjects reacted faster in 

motion-deviations, compared to motionless-deviations. We averaged the middle 70% response 

time from deviation of four conditions, as listed in Table 5-5. The average response time in 

motion-deviate-to-left is 699 ms, motionless-deviate-to-left is 752 ms, motion-deviate-to-right 

is 680 ms, and motionless-deviate-to-right is 736 ms. Overall, the response time in dynamic 

driving is about 50 ms faster than in static driving. 
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Table 5-5 List of response time in deviation. 
 

 motion motionless 

Deviate to left 699 ms 752 ms 

Deviate to right 680 ms 736 ms 

 

 

 
Figure 5-19: ERP reation time comparison. 
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Figure 5-20: Left Mu ERSP of deviation events. 

 

Figure 5-20 showed averaged left Mu ERSP following deviations. Although the ERSP in 

four conditions were dominated by Mu activations due to the steering actions and looked 

identical, we could find some differences between motion and motionless if we examine the 

results carefully. The lower two images showed the differences between motion and 

motionless conditions, which were obtained by subtracting motionless ERSP (right side) from 

motion ERSP (left side). We find brief alpha-band power suppression in these two images. 

This indicates the Mu blocking occurred earlier in motion-deviation than in 

Motion 

Motion 

Motion ERSP – 

Motionless ERSP =  

Response time  

Motionless

Motionless
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motionless-deviation, else we could not find any perturbation in the subtracted images. The 

subtracted images showed that Mu blocking occurred 200 ms earlier in motion-deviation. The 

dash line marked average response time.  

 Components that are not highly related to kinesthetic stimulus are also plotted. Figure 

5-21 shows the group averages of occipital components. Alpha band power increase is found 

in both stop-motion and stop-motionless event, and alpha band power decrease is found in 

go-motion and go-motionless event. Since the same power changes in spectra appear 

following both motion and motionless events, the phenomenon is considered as non-related to 

kinesthetic stimuli. Similar activity can also be found in Figure 5-22, which is the average of 

parietal components. The ERSPs show identical time-frequency results either in motion or 

motionless. Thus parietal components are also considered as non-related components. Figure 

5-23 shows the ERSPs of the frontal components do not appear any significant power 

decrease or increase in four conditions.  

Figure 5-21: Group average of occipital components. 
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Figure 5-22: Group average of parietal components. 

Figure 5-23: Group average of frontal components. 
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VI. Discussion 

 

 Literatures showed the importance of the presence of motion during driving simulation 

[32] [33] [35] and real driving [34], in the reason of safety or making reactions. These studies 

evaluated the influence of driving motion to driving performance and/or physical behavior. 

On the contrary, this thesis investigates the influence of platform motion with another 

approach, by assessing drivers’ EEG. In the study, 31 driving experiments from 10 subjects 

had been collected and analyzed. We performed ICA to separate meaningful sources from 

EEG data, and visualized EEG features by ERSP and ERP analysis. To make sure these 

features are not restricted to specific subjects or specific experiment, we performed 

within-subject analysis, cross-subject analysis and component clustering to verify the 

component stability. After a series of analysis, we found that kinesthetic stimulus induces 

alpha blocking at sensory-motor cortex and negative ERP in central midline component. The 

detailed result would be discussed in the following sections.  

 

6.1. Mu Components 
 

Mu rhythm (μ rhythm) is an EEG rhythm recorded usually from the motor cortex of the 

dominant hemisphere. It is also called arciform rhythm given the shape of the waveforms. It is 

a variant of normality, and it can be suppressed by a simple motor activity such as clenching 

the fist of the contra lateral side, or passively moved [65][66][67]. Mu is believed to be the 

electrical output of the synchronization of large portions of pyramidal neurons of the motor 

cortex which control the hand and arm movement when it is inactive.  

By comparing ERSP (Figure 5-16 and Figure 5-17) of the Mu components and platform 

motion recording in stop and go events, we observed alpha blocking time-locked to the peak 
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of platform motion, and the blocking was not observed in motionless condition. This shows 

the alpha blocking is induced by kinesthetic stimuli. 

Mu blocking was usually induced by simple actions, but in our experimental design, 

subjects did not need to move his arms or legs during the stop-go events. The Mu suppression 

might be induced by passive movement of body caused by the platform motion, or subjects 

moved other parts of his/her body, during the stop and go event. Through the observation of 

on-board camera video during driving experiment, it was found that most subjects were 

raising or nodding their head slightly following stop or go events. We hypothesize that subject 

tried to balance or resisting the pulling force to their head subconsciously while the vehicle 

was tilted to simulate the G-force change involving in stop and go motions. We suppose neck 

muscle activities might be the reason of Mu blocking. To prove our assumption, we measured 

the neck muscle electro-potential, i.e., Electromyography (EMG).  

 The NuAmps System, which was for measuring EEG, was also be used in 

Electromyography (EMG) measuring. We placed electrodes bilaterally on the back side of 

subject’s neck (as shown in Figure 6-1), all refer to the reference electrode placed at the ear 

 

Figure 6-1: The electrode location of EMG signal. 
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lobe, same as 10-20 system. For EMG recordings, the NuAmps filter was set to 0.5Hz to 100 

Hz in order to cover EMG bandwidth (30~100Hz). Signals from bilateral electrodes are 

subtracted from each other.  

Figures 6-2 and 6-3 showed ERSP of EMG activities in response to stop and go events. 

The EMG power increased at 30~100 Hz in motion-stop event, and power decreased at 

30~100 Hz in motion-go event, simultaneous to the Mu suppression in stop and go. This 

result indicated that Mu blocking could be induced by body movement. But Mu blocking 

occurred too early, which we could see from Figure 6-2, the beginning of Mu blocking was 

500 ms preceding the EMG activation. It was also possible that the first 500 ms duration of 

Mu blocking was induced by the platform kinesthetic stimulus. 

 

Figure 6-2: Go Event Neck EMG 
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Figure 6-3: Stop Event Neck EMG 

 

The reason why we couldn’t find similar phenomenon in stop event could be the 

magnitude of kinesthetic stimulus. The platform recording in go events showed a sudden 

change of platform posture (at about 4° / 1.5sec), but smoother in stop events (4° / 3sec). The 

responses from subjects in stop events were not as synchronized as in go events, thus the 

blockings in stop events were averaged out. 

The Mu component ERSP of deviation events (as shown in Figure 5-20) also showed 

that Mu blocking was induced by not only body movement, but also kinesthetic stimulus. The 

Mu blocking in motion-deviations was about 200 ms faster than motionless-deviations (from 

the lower part of Figure 5-20), but the response time in motion-deviations was only 50 ms 

faster than motionless-deviations (as shown in Table 5-5). If Mu blocking was induced by 
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making reactions, the blocking in motion-deviations should be only 50 ms faster than 

motionless-deviations, as same as the difference of response time. This meant that the first 

150 ms in Mu blocking of motion-deviations was not induced because of subjects’ reaction, 

but in response to kinesthetic stimulus. 

Recall the findings in Figure 6-2, which showed a short time Mu blocking period 

independent to body movements. With the evidence from both go event and deviation event, 

we conclude that kinesthetic stimulus during driving induced Mu blocking. The whole 

blocking was first induced by the kinesthetic perception, and than by body reaction. 

 

6.3. Central midline components 
 

From central midline components we observed negative ERP independent to subjects’ 

response. Figure 5-18 showed very obvious negative potential right after the beginning in 

motion-deviations, but not in motionless-deviations. The responses in deviate-to-right and 

deviate-to-left conditions were identical. In same image, a negative ERP time-locked to 

subjects’ reaction (the black line in ERP image) was observed. This phenomenon was 

observed in both motion and motionless deviation and was considered as the reaction related 

ERP. Since this was response-locked and not synchronized, we can only observe a slight 

negative potential in the average ERP. 

The response time showed significant result. Response time in motion-deviations was 

approximately 50 ms earlier than in motionless-deviations (as shown in Table 5-5). The Mu 

component ERSP also showed that Mu blocked 150 ms earlier in motion-deviations. These 

results verified the conclusion in previous study that the absence of motion information 

increased reaction times to external movement perturbations [32]. 

Similar ERPs were observed in stop-go event. Figure 5-2c and 5-2d showed the central 

midline component ERP images of stop and go event. We could find a strong potential peak 
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near the beginning of stop and go event in both motion and motionless condition, this was 

considered as a response to yellow light(in stop event) and green light(in go event). We didn’t 

find a same ERP related to red light in stop event, this was because the yellow light appeared 

1 second preceding the red light, and the happening of the red light was only a transition of 

light color from yellow to red. Thus the red light evoked a smaller peak in stop event.  

 

Figure 6-4: Subtraction of stop and go ERP 

 

Figure 6-4 showed the subtraction of motion and motionless of stop and go events. The 

red line indicated ERP in motion condition and blue line indicated the subtraction of motion 

and motionless. From the blue ERP we found significant potential change related to platform 

motion. The negative ERP was found in both stop and go event, which was consistent to our 

findings in deviation events. 

The finding in central midline component was also consistent to previous studies, as 

shown in Table 6-1. Previous VESTEP studies observed a negative potential near Cz or 

forehead, induced by external kinesthetic stimulus. We discovered similar brain responses 

follow vehicle deviations, as discussed in preceding paragraphs. In stop and go events, we 

Motion - Motionless 

Motion 

Stop Go



 68

found Mu blocking in response to the kinesthetic stimulus, which was not reported in the past. 

The reason at least in part is due to that fact that our experimental environment, which 

combined visual-vestibular interaction and driver response, was much more complicated and 

realistic than the experimental setups used in previous studies.  

 

 

Table 6-1: Comparison to previous study. 
 

 
 
 
 
 
 
 
 
 
 

Experiment Stimulus type Response type/Latency 

Elidan et al, 1990 Blindfolded Yaw Rotation at 

10,000°/sec2 , last 2ms 

Forehead negative ERP 

Baudonniere et al, 1999 Blindfolded Z direction ACC. at 

0.4g, last 30 ms 

Cz negative ERP 

Loose et al, 2002 Blindfolded Roll Rotation at 

40°/sec, last 2 s 

Cz negative ERP 

Our Study 

Stop & Go in driving 

Pitch and X direction movement 

±2°/sec, last more then 3s 

Central Midline negative 

ERP, Mu blocking 

Our Study 

Deviation in driving 

Roll and Yaw Rotation at 

5°/sec, last 100 ms 

Central Midline negative 

ERP, Mu blocking 
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6.4. Independent components not related to kinesthetic simuli 
 

Figures 5-17 and 5-18 showed parietal and occipital sources whose alpha band power 

increased in stop events but decreased in go events. Since the alpha band power varies 

identically in both motion and motionless condition, we conclude that the power change was 

not induced by kinesthetic inputs. The VR scene stopped moving 4 seconds after the “Stop” 

cue and started moving immediately after the “Go” cue. ERSPs in Figure 5-17 and 5-18 show 

that in both motion and motionless conditions, the power variation is time-locked to the 

moment when the  VR scene changes moving to stop or from stop to moving, and 

independent of the platform motion. 

 In contrast to occipital components, frontal midline component shows completely 

different reactivity (as shown in Figure 5-19), no power suppression or increase was found in 

this component, neither in motion-condition or motionless-condition. 
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VII. Conclusion 

 

 

We reported EEG activity in response to kinesthetic inputs in different kinds of driving 

events: deceleration, acceleration and deviation. This innovative study was conducted in a 

VR-environment on a 6 DOF motion platform. Our results show that EEG responses to 

kinesthetic stimulus during driving induce: (1) Mu blocking in the somatomotor components. 

(2) Negative ERP in the central midline component. The Mu blocking appeared to be induced 

by two kinds of stimuli. When the subjects received kinesthetic inputs, their alpha activities 

accounted for by the left and right mu components were blocked. After a short period, the 

subjects adjusted his/her body to balance him/herself, this induced Mu blocking again. 

Negative ERP was found in the central midline component following kinesthetic stimulus 

onsets. These results demonstrate that multiple cortical EEG sources response to the driving 

events differentially in dynamic and static environments. We showed that a static driving 

simulator might not be able to induce some cognitive responses that might be well involved in 

real driving. Thus a driving simulator with motion platform is very crucial to study brain 

activity involving in real driving. We also confirmed that the absence of driving motion will 

increase the reaction time to external perturbations by studying the response time in deviating 

events. Thus a driving simulator with motion platform is a necessary solution either in 

simulating real driving or investigating cognitive state during driving. 

Traditionally, EEG alpha band was used as an indicator of drowsiness estimation during 

driving [68][72]. In our study, we observed that alpha band variations occurred in many 

components (Mu, parietal, occipital) during driving, especially when the vehicle is moving. 

Alpha power has been reported to index the level of drowsiness in attention-sustained 

experiments in a laboratory setting. The alpha power variation induced by motion of the 
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vehicle might interfere with the estimation of driving cognitive state, so those estimations 

which were based on alpha band may not be always reliable. 

In the future, we will apply our finding on previous studied driving drowsiness estimator 

[68][69], in order to improve the performance of estimation. This thesis is a beginning of 

building up a foundation for studying EEG in a continuous driving experiment on a 6-DOF 

motion platform. We will further investigate more detailed about the driving events, for 

instance, to study subjects’ cognitive stage under deviation event without steering the wheel. 
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