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EEG Activities Related to Kinesthetic Stimuli in

Virtual Reality Simulated Dynamic Driving

Student: Li-Sor Hsiao Advisor: Dr. Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

The purpose of this study is to investigate Electroencephalography (EEG) dynamics in
response to kinesthetic stimuli during driving. Te study human cognition under specific
driving task, we used Virtual Reality (VR) based driving simulator to create practical driving
events; including acceleration, decelerationtand deviation. The driving simulator includes
Hydraulic Hexapod Motion Platform that provides tilt mechanism (to give roll, yaw, etc.) to
simulate vehicle movement. In this study, we compare the EEG dynamics in response to
kinesthetic stimulus while the platform is in action, compared to that were recorded when the
platform is stationary. The scalp-recorded EEG channel signals were first separated into
independent brain sources by Independent Component Analysis (ICA), then analyzed in time
and frequency domains. Our results showed that independent component processes near the
somatomotor cortex exhibited alpha power decreases that were consistent across sessions
within subjects. Negative potential phase-locked to deviation events under motion condition
was observed in a midline central component, which was consisted with the finding in the
literature. The brain dynamics appears reproducible across sessions and subjects. This thesis,
for the first time in the literature, reports distinctive brain dynamics measured by

Event-Related-Potentials (ERP) and Event-Related-Spectral-Perturbations (ERSP) in response
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to kinesthetic inputs of different types. The results help us to better understand different brain
networks involving in driving and provide a foundation in studying EEG activities related to

kinesthetic stimuli.

Keyword: Kinesthetic Stimulus, EEG, ICA, Component Clustering, ERSP, ERP, Mu Rhythm,
EMG
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l. Introduction

The kinesthetic perception, the sensory apparatus that detects motions, is one of the most
important sensations to human being, yet we usually overlook the contributions of vestibular
system to our live, simply because it doesn’t give us the sense to this vivid and harmonic
world like our eyes and ears do. Kinesthetic perception doesn’t taste or smell, making it less
appreciated. However, we would not have a complete sensation without motion perception. If
our vestibular system fails to perform, we would feel uncomfortable and/or even sick, for
instance, the motion sickness. We cannot even stand still or walk in straight line without the
vestibular system working properly. The vestibular system, thus, plays an important role in

our life.

1.1. Vestibular system and:kinesthetic stimulus response

Otolithic
Organs

Semicircular

Canals

Figure 1-1: The human vestibular system and anatomic identifications [41].

Human vestibular system, a sensory apparatus locate bilaterally in the inners which
detects the motion of the head and body in space [3]. It is composed of two functional parts
shown as Figure 1-1: (1) the otolithic organs (blue and green colored areas), and (2) the
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semicircular canals (red, pink and orange areas). The otolithic organs detect linear

accelerations [5][6][7], while the semicircular canals detect rotary accelerations [4].

Vestibular information has important roles in perceptual tasks such as ego-motion
estimation [1]. In recent research, vestibular information was shown to disambiguate the
interpretation of dynamic visual information during observer’s movement [2]. A complete
investigation of either motion perception or vestibular system should include 6 Degree of
Freedom (DOF), the movement in three linear axes: X-, Y-, and Z- axis, and rotations in all
three rotary axes: pitch-, roll- and yaw-axis. So far very few papers had investigated all these
6 degree of movement. It is an extreme difficult task to study all kinds of movements, because

of the lack of an appropriate platform to provide all 6 degrees of movements.

Researchers have tried to measuré evoked: potentials of vestibular origin for near 30
years. Three kinds of vestibular evoked potentialr (VESTEP) — short (<15ms), middle
(15-30ms) and long (>30ms) latency brainstem potentials, defined by the duration of response,
have been reported. The short lateriey: potentials evoked by high angular acceleration impulses
stimulating semicircular canals in humans [15][16][17][23] have been recorded. Elidan et al
[15] reported the ERP response to high speed and short time vertical Z axis rotation. Subjects
were rotated at speed of 10,000°/sec’ and duration of 2 ms Signals were measured from
forehead mastoid electrode, negative peak at about 15 ms were observed, as shown in Figure
1-2(a). Baudonniere et al [25] showed the result of short (30 ms) linear displacements of
subjects without co-stimulation of the semicircular canals evoked a biphasic negative wave,

most prominent at midline central electrode (Cz) as shown in Figure 1-2(b).
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Long latency cortical potential evoked by stimulating horizontal semicircular canals with
active head movements [26][27] and passive whole body movements [24][28][29] have been
recorded. The VESTEP, evoked by stimulating otolithic and semicircular canals with different
orientation of rotation or direction of movement was investigated in depth by Probst et al.
[9][20][21][22]. One of their studies created microgravity condition by parabolic flight in
order to avoid the co-stimulation of otolithic and semicircular canals. Figure 1-3 shows the
ERP of rolling at X axis, bell-shaped negativity at midline central channel was recorded for

roll up and down motion during microgravity.
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gravity; Lower plot: The rotation ERP under 0-G gravity

All aforementioned studies focused on the contribution of vestibular system, thus
stimulus from visual and audio are completely isolated. Some studies [8] discussed about the
perception to self-body movements, with participation of visual stimulation. Specialized
motion platforms generated required body movements. Physiological acquisitions or
questionnaire was used as a measurement to motion perception. Thilo et al., [8] used
visual-evoked-potential (VEP) to compare the perception of object-motion and self-motion.

They reported significant N70 amplitude difference in VEP when they compared perception



to “Static Body with Rotating Picture” and “Rotating Body with Static Picture.”

The experimental variables in these studies were well controlled, for instance, subjects
were blindfolded VESTEP investigations [9][15] [25], or watching pixels moving or rotating
on screen [8]. It might be desirable from the perspectives of scientific research, but less
practical because we rarely experience vestibular stimulation without visual co-stimulation or
watch pixels rotating or moving in a real world. We were actually living in a visual-vestibular
co-stimulation world and the visual cue is always a meaningful and continuous scene, for

instance, the driving motion.

1.2. Kinesthetic perception during driving

One of the most experienced kinesthetic pereeptions in our life is the driving motion, in
other word, the perception we sensed during the vehicle speed or direction change. Whenever
the vehicle accelerates, decelerates or curves.in.a corner, we experience a force pulling our
body against the direction of moving. For a driver, the perception to motion includes
kinesthetic and visual stimulus. A driver does not sense only the pushing or pulling his/her
body by a force, but also the scene change related to vehicle movement. The driving
perception includes the co-stimulation of visual cue, vestibular stimulation, muscle reaction
and skin pressure. It is indeed a complicated mechanism to understand.

There are numbers of difficulties in investigating the driving perception. First of all, the
safety of subject must be guaranteed. Experiments should be held under a safe driving
environment, it is very dangerous to conduct driving experiments on the road. Second,
appropriate monitoring and data acquisition are needed to study the influence of kinesthetic
stimuli. The stimulation should be simple enough and repeatable to keep experiment under
control. Third, objective evaluation should be assessed in the studies.

One of the solutions is to conduct driving experiments using an realistic simulator, which
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is widely used in driving related researches [41]. For the necessity of motion during driving,
literatures showed that the absence of motion information increased reaction times to external
movement perturbations [32], and decreased safety margins in the control of lateral
acceleration in curve driving [33]. In real driving, improper signals from disordered vestibular
organs were reported to determine inappropriate steering adjustment [34]. Moreover, the
presence of vestibular information in driving simulators shows the importance for it
influences the perception of illusory self-tilt and illusory self-motion [35]. These studies
emphasized the importance of motion perception during driving with the assessment of
driving performance and behavior. Another research investigated how to duplicate the real
driving motion to simulated driving [30]. However, assessing driving performance or
behavior is not objective enough since the performance and behavior varies due to subject
training or learning effect. In this thesis, we usea direct and objective method to evaluate

human cognition during driving.

1.3. EEG studies under VR based dynamic driving

The electroencephalogram (EEG) has been used for 80 years in clinical paratices as well
as basic scientific studies, it is a popular method for evaluating human cognition nowadays. It
directly measures brain responses to external or internal stimulation. Much more information
can be obtained from EEG compared to appearance behavior. Comparing to another widely
used neuroimaging modality, functional Magnetic Resonance Imaging (fMRI), EEG is much
less expensive and more portable, thus it is applicable in daily live, especially on the move.

In recent years, some researchers have designed the Virtual-Reality (VR) senses to
provide appropriate environments for assessing brain activity during driving [68][70][72]. VR
technology is gradually being recognized as a useful tool for the study and assessment of
normal and abnormal brain function, as well as for cognitive rehabilitation. The high fidelity

6



VR environment combined with physiological and behavioral response recording offer more
assessment options that are not available by traditional neuropsychological study approaches.
The VR technique allows subjects to interact directly with a virtual environment rather than
monotonic auditory and visual stimuli. It is an excellent strategy for brain research to provide
interactive and realistic tasks due to low cost and preventing risks of operating actual vehicle
in real environment. Integrating VR scenes with a dynamic motion platform, it is easier to
study the brain activity response to kinesthetic stimulus. Therefore, the VR-based dynamic
motion platform combined with EEG monitoring is an innovation in cognitive engineering

research [68][69].

1.4. Motivations and goal of this thesis

The goal of this study is to-assess'the EEG dynamics in response to kinesthetic inputs
during driving. To study human cognition under specific driving task we first construct a
Virtual-Reality based interactive driving environment which integrates surrounded scene and
hydraulic hexapod motion platform. The VR scene shows a vehicle driving on a 4-lane
highway with high speed. A hexapod platform provides 6 DOF motion to simulate the
dynamics in driving. This dynamic VR environment supports visual-vestibular co-stimulation
for driving event. Using simple driving behavior such as deceleration, acceleration, and
deviation, we study brain responses of kinesthetic input by comparing subjects’ EEG
differences in motion and motionless conditions of dynamic platform. In the mean time, the
posture of platform motion is recorded by an accelerometer, which allows us to observe the
relationship between EEG response and platform motion. This thesis also provides a good
evidence to show that the dynamic motion platform is required for the study of human

cognitive state estimation under driving.



The thesis is organized in 7 chapters. Chapter 1 briefly introduces current knowledge in
vestibular system and the goal of our study. Chapter 2 details the apparatus and materials of
our study. Chapter 3 describes the details of experimental setup, including the time course of
driving event and the platform motion setup. In chapter 4, we explore the EEG with
innovative methods by combining Independent Component Analysis (ICA), time-frequency
spectral analysis, ERP and component clustering. Chapter 5 shows the results. Chapter 6
discusses and compares our finding with previous studies, and finally we concluded in

Chapter 7.



1. Material

This chapter describes how a VR-based dynamic driving environment is designed and
built up for interactive driving experiments. Figure 2-1 shows four major parts of the
architecture: (1) a 3D highway driving scene based on the VR technology, (2) a real vehicle
mounted on a 6-DOF motion platform, (3) a physiological signal measurement system with
36-channel EEG/EOG/ECG sensors, and (4) a signal processing module based on ICA
decomposition, power spectral analysis and component clustering. The details of this

environment will be presented as follows.

Physiological Signal Recorder Virtual-Reality Scene

EEG/EOG + G Dynamic Driving Simulator

Figure 2-1: The dynamic VR driving environment with physiological measurement system.



2.1. Dynamic driving environment

The dynamic driving environment provides a safe, time saving and low cost approach to
study human cognition under realistic driving events. Our driving simulator provides not only
high-fidelity VR scene, but also kinesthetic inputs and realistic driving environment (as
shown in Figure 2-2). These make subjects feel that they are driving in a real vehicle on the

real road.

Figure 2-2: The dynamic VR dr1V1ng _.éhvironmqnt,"Brain Research Center, National Chiao

Tung University, Taiwan, ROC

2.1.1. VR scene

Our VR scene was developed by using the World Tool Kit (WTK) 3D engine. The 3D
view was composed of seven identical PCs running the same VR program. Seven PCs were
synchronized by LAN so all scenes were going at exactly same pace. The VR scenes of
different viewpoints were projected on corresponding locations. Figure 2-3 shows the layout
of our simulator. The front screen marked 1 and 2 was overlapped by two polarized frames to
reach the binocular parallax. The frames for the left and right eyes were projected onto the
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frontal screen with two projectors, respectively. By wearing special glasses with a polarized

filter, the configuration provides a stereoscopic VR scene for a 3D visualization.

Figure 2-3: The configuration of the 3D surrounded scene. The 3D VR scene consists of 7
projectors, creating a surrounded view. Frontal screen is overlapped by 2 projector frames in

different polarizations, providing a stereoscopic VR scene for 3D visualization.

Literatures showed that the horizontal field of view (FOV) of 120° was needed for
correct speed perception [31]. In our VR scene, the surrounded screens covered 206° frontal
FOV and 40° back FOV, as shown in Figure 2-4. Frames projected from 7 projectors are
connected side by side to construct a surrounded VR scene. The size of each screen has
diagonal measuring 2.6-3.75 meters. The vehicle was placed at the center of the surrounded
screens. Detailed information is shown in Table 2-1.
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Table 2-1: The Specification of driving simulator

Screen Number or Location Dimension
Screen Number 1, 2, 3, 4 (FOV 42°) (W)x(H) = (300 cm)x(225 cm)
Screen Number 5, 6 (FOV 40°) (W)x(H) = (270 cm)x(202 cm)
Screen Number 7 (FOV 40°) (W)x(H) = (210 cm)x(157 cm)
Vehicle Dimension (L)x(W)x(H) =

(430 cm)x(155 cm)x(140 cm)
Driver to Front Screen (1, 2) 370 cm
Driver to Left and Right Screen (5, 6) 220 cm (Left) and 300 cm (Right)
Driver Head Height Relate to Screen 1 120 cm

>
o iR

Figure 2-4: The overview of surrounded VR ‘scene. The VR-based four-lane highway scenes are

projected into surround screen with seven projectors.

2.1.2. Hydraulic Hexapod Motion Platform

Several studies showed that vestibular cues have a role in speed control and steering
[32][33]. The vestibular cues or the motion cues could be provided by a motion platform
controlled by six hydraulic linear actuators. This hexapod configuration was also called
Stewart Platform [36] (as shown in Figure 2-5). The platform generated accelerations in

vertical, lateral and longitudinal direction of vehicle as well as pitch, roll and yaw angular

12



Base Platform

(a) (b)
Figure 2-5: The Stewart platform. (a) The sketch map for the Stewart platform. (b) The

actual Stewart platform. A driving cabin is meunted on this platform in our Lab.

Deceleration Acceleration

Deceleration pushes driver against belts Acceleration pushes driver into seat

Gravity pushes driver against belts Gravity pushes driver into seat

Figure 2-6: How motion platform works. http://www.force-dynamics.com/

accelerations. Figure 2-6 shows a basic idea how the motion platform simulates driving
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motion. When in deceleration, the driver feels a force pushes him/her against the belts, the
platform tilts forward simultaneously to change the gravity direction sensed by the driver, and
thus simulates the deceleration force. Similarly, the platform tilts backward to simulate
acceleration force. This (or comparable) technique had been used widely in driving simulation
studies [37].

The Hexapod Stewart Platform has superior performance in position control compared to
traditional series manipulator. The parallel manipulator provides high-precision platform
manipulations. Six extensible actuators equally share the loading of the platform, which
provide high capability for realistic applications. Inverse kinematics analysis is used to solve
the problem of converting the position and orientation of the payload platform with respect to
the base platform. A singular solution of the inverse kinematics can be evaluated by simple
formulae [38], which provides a.high-speed platform and creats many possibilities for

applications.

2.2. Introduction to motion tracking device

An accelerometer (inertia sensing, InertiaCube?2 [39], as shown in Figure 2-7) was placed
in the vehicle, at the center of movement. The InertiaCube?2 is an inertial 3-DOF (Degree of
Freedom) orientation tracking system. It obtains its motion sensing using a miniature
solid-state inertial measurement unit, which senses angular rate of rotation, gravity and earth
magnetic field along three perpendicular axes. The angular rates are integrated to obtain the
orientations (yaw, pitch, and roll) of the sensors. Gravitometer and compass measurements are

used to prevent the accumulation of gyroscopic drift. The InertiaCube?2 is a monolithic part
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Figure 2-7: The accelerometer or platform motion tracking, Inertia Sensing, InertiaCube 300

Roll

(a) (b)
Figure 2-8: The recording of orientation of InertiaCube2. (a) The demo program that shows
Pitch, Yaw and Roll recording. (b) The Roll, Pitch and Yaw axes.

based on micro-electro-mechanical systems (MEMS) technology involving no pinning wheels
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that might generate noise, inertial forces and mechanical failures [40]. InertiaCube2 transfers
digital data using RS232 protocol and converts it to USB with a small converter box. This
accelerometer records orientations of the vehicle in pitch, roll and yaw during driving
simulation, as shown in Figure 2-8. We will analyze physiological data and the orientation

recording to investigate the relationship between human cognition and kinesthetic stimulus.

2.3. EEG and EMG acquisition

Subjects wore a movement-proof electrode cap with 36 sintered Ag/AgCl electrodes to
measure the electrical activities of brain, i.e., EEG. The EEG electrodes were placed according
to the international 10-20 system (as shown in Figure 2-9) with a unipolar reference at the

right earlobe.

Front
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(a) (b)

Figure 2-9: The International 10-20 system of electrode placement [43]. (a) lateral view.

(b) top view.
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The impedance between EEG electrodes and skin was kept to less than 5kQ by injecting
NaCl based conductive gel. Data were amplified and recorded by the Scan NuAmps Express
system (Compumedics Ltd., VIC, Australia) shown in Figure 2-10, a high-quality 40-channel
digital EEG amplifier capable of 32-bit precision sampled at 1000 Hz. Table 2-2 shows the
specifications of the NuAmps amplifier. The EEG data were recorded with 16-bit quantization

levels at a sampling rate of 500 Hz in this study.

Data were preprocessed using a low-pass filter with a cut-off frequency of 50 Hz in
order to remove the power line noise and other high-frequency noise. Similarly, a high-pass

filter with a cut-off frequency at 0.5 Hz was applied to remove baseline drifts.

Figure 2-10: The NuAmps EEG Amplifier and the Electrode Cap
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Table 2-2: NuAmps Specifications

Analog inputs 40 unipolar (bipolar derivations can be computed)

Sampling frequencies 125, 250, 500, 1000 Hz per channel

Input Range 130mV

Input Impedance Not less than 80 MOhm

Input noise 1 uV RMS (6 pV peak-to-peak)

Bandwidth 3dB down from DC to 262.5 Hz, dependent upon
sampling frequency selected

2.4. Subjects

The purpose of this study is to investigate the subject brain responses to kinesthetic
stimulus. The subjects were instructed toyperform:the driving task consciously. Statistical
results showed that the drowsiest period occurs from late night to early morning, and during
the early afternoon hours [42]. Accerding-to-these results, the driving experiments were
conducted in middle morning or late afternoon to avoid the drowsiest time.

Ten healthy subjects participated in this research (one female and eleven males, aged
between 20 and 28). Subjects were instructed to keep the car at the center of the lane by
controlling the steering wheel, and to perform the driving task consciously. Each subject
completed four 25-minute sessions in each driving experiment. To prevent subjects from
feeling drowsy during experiments, they rested for few minutes after each session until they
were ready for the next one. The whole driving experiment lasted about 2 hours. Subjects
performed at least 2 driving experiments on different days for verifying the cross-session

consistency.
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I11. Experimental Setup

To investigate the influence of driving kinesthetic stimulus on cognitive states, we
designed three simple driving events: deceleration, acceleration and deviation. The 6-DOF
motion platform provided corresponding movements for different driving events. By
switching the platform between “motion mode” and “motionless mode”, we produced two
identical driving conditions with the only difference of the presence of platform motion. The

EEG signals were recorded, analyzed and compared under these two conditions.

3.1. Driving Experiment Event

Figure 3-1: The simulated high way scene. The visual information is reduced to minimum to

avoid unnecessary stimuli.

We developed a VR highway environment with a monotonic scene as shown in Figure
3-1 and eliminated all unnecessary visual stimuli. In the VR scene, the simulated driving
speed was controlled by a scheduled program, thus subjects needed not to step on paddles, to

prevent large muscle activity on the throttle or brake. We designed three driving events: stop,
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go and deviation event. The stop and go events are paired, which means go event always
follow the stop event, so we defined stop and go events as Stop-Go event. The deceleration
and acceleration in Stop-Go event was controlled by a program. Figure 3-2 shows the time
course of a Stop-Go event. If we define beginning of stop event as 0 second (bold arrow in
Figure 3-2), a yellow light cue was shown on screen 1 second prior to the stop event. When a
stop event began, the yellow light was replaced with a red light in same position, and the
deceleration began. The car then slowed down and completely stopped in 4 seconds, the red
light out. Stop lasted 7 seconds, and then the go event began. A green light was shown on
screen, and start accelerating for 3 second. Then the green light was out, the vehicle was

moving at constant speed, and a Stop-Go event ended.

Stop and Go event

Yellow nght . Red Light No Light | GreenLight |  Constant
Speed

Cue : Deceleration Stop Acceleration

Course 2 ; L

T : T T

9 Sec to next event>

ngle Degree
o
[

| i
5000 10000 1 5000
Time (ms)

Sl B B S el

Figure 3-2: Illustration of the design for stop-go event.

5 (

Platform

During the experiment, subjects did not need to do anything in the stop and go events,
but subjects were asked to handle the wheel to keep the car position at the center of cruising
lane. During the experiment, the vehicle were randomly drifted away the crusing position, and
the subjects were instructed to steer the vehicle back to the center of the crusing lane as
quickly as possible. The onsets of the drifting events and the subject reaction times, the
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moment the subject first steered the wheel to compensate the drift, were recorded for further

analysis.

. -'hicle moving in straight line. (b)
0) ‘é(ﬁd) Vehicle back to middle lane.

Figure 3-3 illustrates a deviation event. In phase 1 (Figure 3-3a), vehicle was moving
forward in a straight line. Deviation event first occurred at the beginning of Phase 2 (Figure
3-3b), in which the vehicle deviated from the original cruising position. The vehicle deviated
either to left or right. The deviation event enters Phase 3 when the subject started steering the
vehicle back to the cruising position (Figure 3-3¢). The subject would continue to steer the car
until s/he thinks the car has returned to the center of the cruising lane. The moment of subject
stopped the steering effort marked the beginning of the Phase 4 of the drift event (Figure
3-3d). The inter-event interval is 9 seconds. The Stop-Go event and deviation event were
randomly occurred with the probability of 50%.
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3.2. Motion Profile

The experiment includes two conditions, the “motion mode” and “motionless mode”.
This was achieved by enabling or disabling the motion platform action. The platform motion
in “motion session” was recorded through accelerometer as shown in Figure 3-2. The
platform performed a pitching forward action in a stop-event, the angle was nearly 5 degrees,
and a pitching backward action was performed in a go-event, the angle was nearly 4 degrees.
With these movements, subjects felt forward force while decelerating, backward force while
accelerating and a sudden shaking while deviating due to the platform position change. In the
“motionless session” the platform was static and not response to the speed change or
deviation of vehicle, only visually event was presented to driver. Each subject completed 4
sessions in a driving experiment, sgssions were motion and motionless counterbalanced and
each lasted 25 minutes. After each session subjects took a 5-10 min rest to prevent the
drowsiness in driving. In order to confitm. the consistency of subject’s brain activities from
different experiments, each subjects completed 2~4 driving experiments for within-subject

analysis.
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IV. Data Analysis Procedure

In this study, the mutli-channel EEG signals were first separated into independent brain
sources using Independent Component Analysis (ICA) [71]. Then we ploted the separated
signals using Event Related Spectral Perturbation (ERSP) plot developed by Makeig, 1993
[61] and Event Related Potential (ERP). We then investigated the stability of component
activations and scalp topographies of meaningful components across sessions within each
subject. To test the reproducibility of component maps and activations across subjects, we

performed component clustering analysis (detailed below).

4.1. Independent Component:Analysis

The joint problems of electtoencephalographic (EEG) source segregation, identification,
and localization are very difficult since.the EEG data collected from any point on the human
scalp includes activity generated within a large brain area. The problem of determining brain
electrical sources from potential patterns recorded on the scalp surface is mathematically
underdetermined. Although the conductivity between the skull and brain is different, the
spatial smearing of EEG data by volume conduction does not cause significant time delay and
it suggests that the ICA algorithm is suitable for performing blind source separation on EEG
data. The ICA methods were extensively applied to blind source separation problem since
1990s [45]-[52]. In recent years, subsequent technical reports [53]-[60] demonstrated that I[CA
was a suitable solution to the problem of EEG source segregation, identification, and
localization based on the following assumptions: (1) The conduction of the EEG sensors is
instantaneous and linear such that the measured mixing signals are linear and the propagation
delays are negligible. (2) The signal source of muscle activity, eye, and, cardiac signals are
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not time locked to the sources of EEG activity which is regarded as reflecting synaptic
activity of cortical neurons [53][54].

In this study, we attempt to completely separate the twin problems of source
identification and source localization by using a generally applicable ICA. Thus, the artifacts
including the eye-movement (EOG), eye-blinking, heart-beating (EKG), muscle-movement
(EMG), and line noises can be successfully separated from EEG activities. The ICA is a

statistical “latent variables” model with generative form:
X(t)=As(t) (D

where A is a linear transform called a mixing matrix and the S; are statistically mutually

independent. The ICA model describes how the observed data are generated by a process of

mixing the components S, . The independent components S; (often abbreviated as 1Cs) are

latent variables, meaning that they cannet be directly observed. Also the mixing matrix A is
assumed to be unknown. All we-observed are the random variables X;, and we must estimate

both the mixing matrix and the IC’s. ;" -using-the X:
Therefore, given time series of the observed data X(t)= [Xl(t) X,(t) - xy(t )]T in

N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are

statically independent.
u(t)=W x(t). (2)
Supposed the probability density function of the observations X can be expressed as:

p(x)=|det(W )p(u), (3)

the learning algorithm can be derived using the maximum likelihood formulation with the

log-likelihood function derived as:
N
L(uW )= Iog|det(W )| + ZIog pi(u;), 4)
i=1
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Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood

with respect to W gives:

AW o HIWDyymy 1= puya v, 5)
oW
where the nonlinearity
ap(u) ap(u;) ap(uy) "
(0(U)=— ou —| ou, L ouy , (6)
p(u) p(u,) p(uy)

and W'W rescales the gradient, simplifies the learning rule and speeds the convergence
considerably. It is difficult to know a priori the parametric density function p(u), which
plays an essential role in the learning process. If we choose to approximate the estimated
probability density function with .an Edgewerth expansion or Gram-Charlier expansion for
generalizing the learning rule to-sources with-either sub- or super-Gaussian distributions, the

nonlinearity ¢(u) can be derived as:

u —tanh(u) : for'super - gaussian sources,
p(u) = . (7)
U+ tanh(u): for sub - gaussian sources,
Then,
W= [I —tanh(u)u’ —uu’ ]\N :super - gaussian, )
[I +tanh(u)u’ —uu’ ]\N :sub - gaussian,

Since there is no general definition for sub- and super-Gaussian sources, we choose
p(u):%(N(1,1)+ N(-1,1)) and p(u)=N(0,1)sech’(u) for sub- and super-Gaussian,

respectively, where N(,u,az) is a normal distribution. The learning rules differ in the sign

before the tanh function and can be determined using a switching criterion as:

k. = 1l:super - gaussian,
AW oc [ - K tanh(uyu” —uu” W, where{ ber-gaus )
K, =—1:sub - gaussian,
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where
x; = sign(Efsech? (u,)E {u? |- E {tanh(u, u, }) (10)

represents the elements of N-dimensional diagonal matrix K. After ICA training, we can
obtain N ICA components U(t) decomposed from the measured N-channel EEG data Xx(t). In

this study, N=30, thus we obtain 30 components from 30 channel signals.

Xl (t) Wl,l Wl,2 W1,33
X, (t W, W W,

X(t) = 2:() =Wu)=| 7 u®+ 7 O+ ug (D). (11)
X33 (t) W33,1 W33,2 W33,33

Figure 4-1 shows a result of the scalp topographies of ICA weighting matrix W
corresponding to each ICA component.by!projecting each component onto the surface of the

scalp, which provide evidence for the c@hgoﬁgntsf ‘physiological origins, e.g., eye activity

sI3050427

Figure 4-1: Scalp topography of ICA decomposition.
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was projected mainly to frontal sites, and the drowsiness-related potential is on the parietal
lobe and occipital lobe [68], motor related potential will locate at left and right side of front
parietal lobe, etc. We can see that most of artifacts and channel noises are effectively

separated into independent components 1 and 3.

4.2. ERP Analysis

Dawson first recorded the evoked potentials (EP) from cerebral cortex by taking pictures
and accumulation skill in 1947 [73]. Dawson initiated the new field of neuro-physiology by
introducing the technology of averaging evoked potentials (AEP) in 1951. The AEP
technology is extensively applied to many experiments which relate to specific stimulus event,
and is named event-related potentials (ERP) ini recent years. The narrow definition of ERP is
to present a specific region of perceptual systems. and elicit potential changes on the cerebral
cortex when the stimulus appears or disappears. The board definition of ERP suggests the

responses come from all parts of néural system.

Generally, the ERP induced by the stimulus is 2 ~ 10 pV, much smaller than the
amplitudes of ongoing EEG, and it is thus often buried in the EEG recordings. EEG signals
are composed of small signals and big noise. In order to extract the ERP from EEG signal, we
need to increase the signal to noise ratio by presenting the same type of stimuli to the subject
repeatedly. ERP is often obtained by averaging EEG signals of accumulated single trials of
the same condition. Ongoing EEG signals across single trials are considered random and
independent of the stimulus. However, it is assumed that the waveform and latency of ERP
pattern are invariant to the same stimulus. Through phase cancellation, time- and phase locked
EEG signals will be more prominent. For example, if the number of trials for condition is n,
the ERP will be n times the amplitude of original wave pattern and the EEG amplitude will

only be+/n times of the initial signal. Therefore, the signal to noise ratio (SNR) will be
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improved by Jn  times. Therefore, ERP sometimes can be named Averaged Evoked

Potentials and this is the basic theorem of extracting the ERP [44].

@ Left Motion, Comp. 11

(R ]

B hE s & & 8

Sorted Trials

Time {ms)

Figure 4-2: An ERP image includes the averaged ERP, response time and inter-trial

information.

4.3. ERSP Analysis

The Event Related Spectral Perturbation, or ERSP, was first proposed by Makeig [61].
The ERSP reveals aspects of event-related brain dynamics not contained in the ERP average
of the same response epochs. The limitation of ERP is that it must be coherent
time-and-phase-locked activities. Averaging same response epochs would involve phase
cancellation, brain activities not exactly synchronized in both time and phase are averaged out.
The ERSP measures average dynamic changes in amplitudes of the broad band EEG spectrum
as a function of time following cognitive events. Through ERSP, we are able to observe
time-locked but not necessary phase-lock activities.
The processing flow is shown in Figure 4-2. The time sequence of EEG channel data or

ICA activations are subject to Fast Fourier Transform (FFT) with overlapped moving
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windows. Spectrums prior to event onsets are considered as baseline spectra. The mean
baseline spectra were converted into dB power and subtracted from spectral power after
stimulus onsets so that we can visualize spectral ‘perturbation’ from the baseline. To reduce
random error, spectrums in each epoch were smoothed by 3-windows moving-average. This
procedure is applied to all the epochs, the results are then averaged to yield ERSP image.

The ERSP image mainly shows spectral differences after event, since the baseline spectra
prior to event onsets have been removed. For instance, in the bottom of Figure 4-2 we can see
very clearly that only little or no changes in high frequency band (the lower position the
higher frequency) but very significant changes in low frequency band after event. This allows
us to visualize spectral power change related to event.

After performing bootstrap analysis (usually 0.01 or 0.03, here we use 0.01) on ERSP,
only statistically significant (p<0.01) spectral changes will be shown in the ERSP images.
Non-significant time/frequency points are masked (replaced with zero). Any perturbations in
frequency domain become relatively prominent.

While the ERSP reveals new and-potentially important information about event-related
brain dynamics, it cannot reveal interactions between the ERP amplitude, latency variability,
and EEG spectral modulation. Figure 4-4 shows the ERSP of deviation event in motion and
motionless conditions, and the limitation of ERSP. We can’t find obvious difference related to
kinesthetic stimulus. In contrast, the ERP (the bottom of Figure 4-4) showed very clear
difference between two ERPs, a negative potential appear in motion-deviation but not in
motionless-deviation. This example shows that ERSP and ERP are complimentary and should
be take into account when we compare and contrast the brain responses across different

conditions.
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Figure 4-4: ERSP of deviation event on central midline.
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4.4. Component Clustering

To study the cross-subject component stability of ICA decomposition, components from
multiple sessions and subjects were clustered based on their spatial distributions and EEG
characteristics. The usual practice to analyze cross-subject consistency was to compare the
components one by one. However, this was a time-consuming task and might not be objective
enough since analyst chose similar components by his/her own decision. There is no natural
and easy way to identify a component from one subject with one or more components from
another subject. A pair of independent components from two subjects might resemble and/or
differ from each other in many ways and to different degrees. Furthermore, there is rather a lot
of inter-subject variability not only in gross brain anatomy, but in functional mapping
(electrical). Independent component analysis might derive different mixing matrix that maps
brain source activity to the scalp to alleviate: the inter-subject anatomical variability. But,
component activations might remainsquaitevariable because of the inter-subject functional
variability. Components from different-subjects'thus may differ in many ways such as scalp
maps, power spectra, ERPs and ERSPs.

Westerfield, Makeig, Delorme and Onton et al [62][63][64] attempted to solve this
problem by calculating the similarities (distance) among different independent components.
Components from multiple subjects were clustered in terms of their scalp maps and activation
power spectra. Individual component clusters were characterized by their mean cluster map

and activity spectrum. This method was also known as component clustering.
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4.4.1. The typical flow of clustering

Component Clustering divided massive components into several significant clusters (Figure
4-5), for instance, assuming we have 10 subjects each of which includes 30 components after
ICA decomposition, results in totally 300 components. To cluster these components into small
number (for instance, 10) of groups, one approach is to apply kmeans on their scalp map and
power spectral. Before the classification we apply PCA on scalp map and power spectral
sequences to reduce dimensionality of the data. The kmeans algorithm measures the distance
of every component pair and groups components into clusters. Ideally, components in the
same cluster would have similar scalp map and power spectral characteristics, as shown in the
bottom of Figure 4-5.

In practice, we can hardly achieye such clean clusters as in Figure 4-5 if we rely entirely
on kmeans to classify components, sinceless then half of components were meaningful after
ICA decomposition, others were-usually account for noises. These components might confuse
kmeans algorithm and reduce the ‘consistency of €ach clusters. Another problem arises from
combining scalp map and power spectral information for kmean classification. It remains an
open question how to weight the spatial information (scalp maps) and source activity,
accounted for by power spectra in the kmeans clustering. Below we propose a two-step

clustering method.
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4.4.2. Practical clustering

In previous session we mentioned 2 critical problems while applying typical kmean
clustering. The first problem is the large number of ‘noisy’ components from ICA, making
kmeans unable to group meaningful components together. This can be solved by selecting
good components before kmeans. As shown in Figure 4-6, in ICA decompositions, half of
them are considered as noisy components. These noisy components are removed from any

further analysis.

¥ XoX XYW,
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o200

Figure 4-6: Component selection preceding clustering.

Another problem is how to concatenate scalp map and power spectral information. We
purpose to modify the typical classification (Figure 4-5) into a 2-stage clustering method
(Figure 4-7) to solve this problem. The 2 stage clustering is to apply kmean twice, first stage
classifies scalp map and second stage classifies power spectral. The first kmeans guarantees
consistent anatomic features within the same cluster, and second kmeans guarantees

consistent within-cluster functionality, characterized by power spectra.
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Figure 4-7 shows our clustering flow. Components are first selected by observation and
largely reduce to about half. Secondly, the selected components are classified by kmeans
algorithm into 40 clusters in terms of component scalp maps (EEG.icawinv). Then we group
40 clusters into 10 significant clusters and discard some non-significant clusters manually.
The resultant clusters are named according to the source locations of components. To uarantee
the final results are with same functionality, we apply kmeans again on each of 10 significant
clusters based on power spectra of the components. The second stage kmeans classifies
components within some clusters into 4 sub-clusters. By observing the content of clusters we
reject the minority one, which includes components with unwanted spectral, and group the

remaining clusters. The resultant clusters have consistent anatomic and functional features.

Stagel Stage 2
Component Kmean by  Group similar Kmean by
Selection scalpmap  clusters by hand power spectral
= »| Cluster A
Bad Components ’l S ‘ ‘ Eye Blink ‘ » Cluster B
- > About 450 comp. -
Entire (discard) —bl Cluster 2 ‘ ‘ Left Mu Cluster C
Components L _ »| Cluster D
30 comp. x 31 Exps —bl Cluster 3 ‘ ‘ Parietal ‘ :
Total 930 comps.
L Good Componets | | >| Cluster 4 ‘ ‘ Central -
About 480 comp. . . T »{ Cluster A
’ »| Cluster B
>| Cluster 40 ‘ ‘ Right Mu H » Cluster C
»| Cluster D

Figure 4-7: Practical Clustering flowchart for our study.
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V. Results

In the thesis we collect and analyze 31 driving experiments from 10 subjects, as listed in
table 5-1, each subject completed 2~5 experiments. Each experiment includes 4 sessions and
lasts 2 hours. Sessions are divided into ‘motion’ and ‘motionless’ sessions with stop, go and
deviation events. Thus we have six conditions: “Motion-Stop”, “Motion-Go”,
“Motion-Deviation”, “Motionless-Stop”, “Motionless-Go” and finally
“Motionless-Deviation”. By comparing the motion & motionless pair, we may find some
differences between these two conditions. Below we will first show our final result and then
present detailed information of how we make the conclusion, starting from within-subject

analysis, cross-subject analysis and finally component clusters.

Table 5-1: Subject list

Subject No. | Exp.1 Exp.2 Exp:3 Exp.4 Exp.5
S03 05/04/27 05/04/29 05/05/03 05/05/10
S04 05/05/02 05/05/04 05/05/09 05/05/11 05/05/16
S05 05/05/17 05/06/03 05/06/07 05/06/10
S06 06/02/16 06/02/21 06/02/23
S07 06/02/17 06/03/21 06/03/22
S08 06/02/24 06/03/02
S09 06/02/24 06/03/09 06/03/15
S10 06/04/18 06/04/19
S11 06/04/20 06/04/21
S12 06/04/24 06/04/28 06/05/02

36



5.1. Brain sources of kinesthetic stimulus response

First of all, we compare the ERP or ERSP of the driving events in the two conditions:
motion or motionless, to find some significant components. Figure 5-1 showed the
components we are interested in, which were selected based on their characteristic scalp maps,
dipole source locations, spectral signatures, and within subject consistency. Through detailed
observation of 31 experiments results from 10 subjects, some localized components had been
selected. The circled components in Figure 5-1, left Mu, right Mu and central midline
components, show statistically significant response differences across conditions.

The ERP of the central midline component and the ERSPs of Mu components showed
significant activity in response to kinesthetic stimulus. Figure 5-2 showed the result from
stop-go events. ERSP images on the left are brain.responses in “motion” conditions and the
ones on the right are under “motionless” condition; respectively. The curves below the images
are platform motion recordings  (pitching, rotate; by Y axis). We found Mu blocking
time-locked to peak of platform motion in Stop-Motion and Go-Motion events, as shown in
Figure 5-2a and 5-2b. In contrast, no Mu blocking occurred in Stop-Motionless and
Go-Motionless events. Thus the Mu blocking is considered as brain responses to the
kinesthetic input response of stop and go events. Figure 5-2¢ and 5-2d show the central
midline component ERP image of stop-go events. Biphasic ERP peaks at 4000 ms after cue in
stop event, similar ERPs can be found in go events, though it was not as clear as in stop
events.

The deviation events showed similar results. Figure 5-3 shows the ERSP of left Mu
components in deviation events. The curve below the ERSP shows the recorded platform
motion, notice that the motion platform tilted along different directions in stop-go and
deviation. In deviation events, platform rotated slightly along vertical Z axis. Since it was
known that Mu been blocked whenever subject intended to move any part of his/her body.
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The ERSP was dominated by Mu blockings in both motion and motionless conditions,
resulted from subjects’ steering during deviation events. However, if we examine the ERSP
carefully, we could find some differences between motion and motionless conditions. In
particular, the Mu activity was blocked slightly earlier in motion-deviations, and the reaction
time in motion-deviations was shorter than that in motionless-deviations. Figure 5-4 showed
the central midline component ERP image and response time following deviation events. A
negative ERP occurred in the central midline area, peaks at ~250 ms, which was very close to
the beginning of the platform movement. The negativity is time-locked to deviation event and
but not the response time. This negative ERP did not occurred in motionless condition. Thus,

the negativity was primarily induced by the platform motion.

| Centra! MidlineE

Figure 5-1 ICA decompositions and our interested components.
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Figure 5-2 The feature related to kinesthetic stimulus in stop-go events.
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From the ERP images in Figure 5-4 we can also see the response time of steering (the
bold curve). The dashed curve in left side ERP indicated the response time in motionless
deviations, thus we can easily compare the response time in two different conditions. It was
evident that subject reacted faster in motion-deviation than in motionless-deviation.

We briefly concluded that, whenever a kinesthetic stimulus happened in driving, it
induced Mu blocking (as shown in Figures 5-2a and 5-2b) and negative ERP in central
midline component (as shown in Figures 5-2c, 5-2d, and 5-4). The presence of motion in
driving also decreased response time (which was observed from deviation events). This will

be discussed in detailed in the next chapter.
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5.2. Within subject consistency

To test the reliability of experiment results, first we compare results of different
experiments from the same subject in order to ensure the features are reproducable. The
following 5 pages show the results from 2 experiments recorded on different days from
Subject 7 for the stop , go and deviation events. Table 5-2 summarizes the findings.

In Figures 5-5, 5-6, 5-7 and 5-8, the scalp map, power spectral and dipole location are
shown in upper half figure, ERSPs of 4 different conditions (motion-go, motion-stop,
motionless-go and motionless-stop) and the platform motion recording are shown in lower
half of the figure. The results show that alpha and beta band suppression time-locked to
movement in the left and right Mu components, and are consistent across different sessions.

Figures 5-9 and 5-10 show theiresult of deviation event. Four ERP images in the figure
represent deviate-left-motion, deviate-right-motion, deviate-left-motionless, and deviate-right-
motionless. The platform motion-recordings-are_shown below the ERP. Figures 5-9 and 5-10
show evident stimulus-locked negative potential following the deviation. The results are very

consistent across session from the subject.

Table 5-2: Within-subject result of subject 7

Page | Fig.NO | Event Location Date Analysis

39 5-5 Stop-Go | Right Mu | 06/03/21 | ERSPs show 10 & 20 Hz

40 5-6 06/03/22 | suppression time-locked to
41 5-7 Left Mu 06/02/17 | movement on left and right Mu
42 5-8 06/03/21 | components

43 5-9 Deviation Central 06/02/17 | ERPs show stimulus-locked

43 5-10 Midline 06/03/22 | negative potential
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5.3. Cross subject consistency

To examine the cross subject consistency of experiment results, we plot the results of
subjects 3, 4, 6 and 9 in the next 3 pages in the events of stop, go and deviation. Table 5-3
summarizes the results of the figures.

In Figure 5-11 and 5-12, the scalp map, power spectral and dipole location are shown in
upper half of the figure, ERSPs of 4 different conditions (motion-go, motion- stop,
motionless-go and motionless-stop) and the platform motion recording are shown in lower
half figure. The results show alpha band suppression time-locked to platform movement in
right Mu components, which is consistent in subject 3 and subject 6.

Figure 5-13 and 5-14 show the result of deviation events. Four ERP images in the figure
represent deviate-left-motion, deviate-right-motion;.deviate-left-motionless, and deviate-right-
motionless, respectively. The platform motion recordings are shown below the ERP plots. The
figures show evident stimulus-locked megative potential which is very consistent in subjects 4

and 9.

Table 5-3 List of cross-subject analysis

Page | Fig.NO | Event Location | Subject Analysis

45 5-11 Stop-Go | Right Mu S3 ERSPs show alpha suppression

time-locked to the platform

46 5-12 S6

movement
47 5-13 | Deviation | Central S4 ERP images show stimulus-locked
47 5-14 Midline S9 negative potential in response to

the platform movement.
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Figure 5-11: ERSP of S03-050503 COMOS, Stop and Go event.
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Figure 5-12: ERSP of S06-060215 COMO6, Stop and Go event.
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From these figures we find alpha suppression in stop and go events in Mu components of
subject 3 and 6, and negative event-related potential stimulus-locked to deviation in central
midline component of subjects 4 and 9. A more detailed result is shown in Table 5-4. In ten
subjects, eight of them exhibit 10 or 10+20 Hz activity suppression in stop and go events,
subjects 10 and 11 did not show any suppression in the motor cortex. It is very interesting that
we observe power increase at 10~20 Hz in the stop event of subject 8 but power decrease in
go event of same subject. Since this phenomenon is only found in subject 8 so we consider it
as an outliner. Following deviation events, we fine negative ERP related to kinesthetic
stimulus, in central midline component. These results show great consistency across nine of

ten subjects participated in the study.

Table 5-4;The experiment result table

& & i i Py
Subject| 4§ . E& E& .

Stop Go Stop Go | Deviation
S3(4d) | 10Hz| | 10&201 | 10 | |10&20 | ERP
S4(5d) | 10 | 10 | 10 | 10 | ERP
S5(4d) | 10~20 | | 10~20 | | 10~20 | | 10~20 | ERP
S6(3d) | 10 | 10 | 10 | 10 | ERP
S7T(3d) | 10 | |10&20 | | 10&20 | | 10&20 | ERP
S8 (2d) |10~20 1 | 10~201 | 10~20 1 | 10~20] ERP
S9@3d) | 10 | 10 | 10 | 10 | ERP
$10 (2d) — — — — ERP
S11 (2d) — — — — —
S12(3d) | 10 | 10 | 10 | 10 | ERP

| : power decrease in spectral

} . power increase in spectral
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5.4. Component Stability

From 10 subjects we collected a total of 930 components (30 components x 31 subjects)
after ICA decomposition. The massive components are clustered into 10 largest
non-artifactual clusters. The average scalp maps of these clusters are shown in Figure 5-15.

Components in the same cluster have similar characteristics of scalp maps and power spectra.

Figure 5-15: Final Clustering result.

The group average ERSPs of left and right Mu Components are shown in Figures 5-16
and 5-17. Figure 5-16 shows the ERSPs of stop and go event averaged from 29 left Mu
components. Similarly, Figure 5-17 shows the average of 32 right Mu components. Figure
5-18 shows the averaged ERP following deviation events of the central midline component

cluster.
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Figure 5-16: Group Average of Left Mu Component.
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Figure 5-17: Group average of right Mu component.
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The ERSP in the top panels of Figure 5-16 and 5-17 show stop-event, and the lower
panels show ERSPs of go-event. ERSPs were from dynamic driving and right side images
were from static driving. From Figure 5-16 and 5-17, the frequency spectra and ERSP of stop
and go events showed typical Mu characteristics [66], i.e., the 10 Hz peak in frequency
spectral, and the EEG alpha band blocking following the stop and go events. This
phenomenon is consistent across subjects. The average of cluster was considered as a
representative of all components from participated subjects. This helps us conclude that
kinesthetic stimuli in stop and go events induced Mu blocking.

Similarly, Figure 5-18 showed the average of central midline ERP of deviation event.
The upper ERP images are the responses following the deviation to left and lower images are
those following the deviation to right. Left panels are in the motion-deviation condition and
right panels are in the motionless-deviations. Werfound 2 prominent features in these ERP
image. First one is a negative ERP following kinesthetic stimuli, which is time-locked to the
event and not observed in motionless-deviations. The second feature is the negative ERP
time-locked to subjects’ reaction. This:was found'in all deviation conditions. Since this ERP
was not precisely synchronized, we can only find slightly negative wave in average ERP.

Figure 5-19 shows the comparison of steering response in motion and motionless
deviations. The bold curve is the response time under motion-deviations and the dashed curve
is under motionless-deviations. Result showed that subjects reacted faster in
motion-deviations, compared to motionless-deviations. We averaged the middle 70% response
time from deviation of four conditions, as listed in Table 5-5. The average response time in
motion-deviate-to-left is 699 ms, motionless-deviate-to-left is 752 ms, motion-deviate-to-right
is 680 ms, and motionless-deviate-to-right is 736 ms. Overall, the response time in dynamic

driving is about 50 ms faster than in static driving.
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Table 5-5 List of response time in deviation.

motion motionless
Deviate to left 699 ms 752 ms
Deviate to right 680 ms 736 ms
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Figure 5-20: Left Mu ERSP of deviation events.

Figure 5-20 showed averaged left Mu ERSP following deviations. Although the ERSP in
four conditions were dominated by Mu activations due to the steering actions and looked
identical, we could find some differences between motion and motionless if we examine the
results carefully. The lower two images showed the differences between motion and
motionless conditions, which were obtained by subtracting motionless ERSP (right side) from
motion ERSP (left side). We find brief alpha-band power suppression in these two images.

This indicates the Mu blocking occurred earlier in motion-deviation than in
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motionless-deviation, else we could not find any perturbation in the subtracted images. The
subtracted images showed that Mu blocking occurred 200 ms earlier in motion-deviation. The
dash line marked average response time.

Components that are not highly related to kinesthetic stimulus are also plotted. Figure
5-21 shows the group averages of occipital components. Alpha band power increase is found
in both stop-motion and stop-motionless event, and alpha band power decrease is found in
go-motion and go-motionless event. Since the same power changes in spectra appear
following both motion and motionless events, the phenomenon is considered as non-related to
kinesthetic stimuli. Similar activity can also be found in Figure 5-22, which is the average of
parietal components. The ERSPs show identical time-frequency results either in motion or
motionless. Thus parietal components are also considered as non-related components. Figure
5-23 shows the ERSPs of the frontal components do not appear any significant power

decrease or increase in four conditions.
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Figure 5-21: Group average of occipital components.
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Figure 5-23: Group average of frontal components.
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V1. Discussion

Literatures showed the importance of the presence of motion during driving simulation
[32] [33] [35] and real driving [34], in the reason of safety or making reactions. These studies
evaluated the influence of driving motion to driving performance and/or physical behavior.
On the contrary, this thesis investigates the influence of platform motion with another
approach, by assessing drivers’ EEG. In the study, 31 driving experiments from 10 subjects
had been collected and analyzed. We performed ICA to separate meaningful sources from
EEG data, and visualized EEG features by ERSP and ERP analysis. To make sure these
features are not restricted to specific subjects or specific experiment, we performed
within-subject analysis, cross-subject analysis and component clustering to verify the
component stability. After a serigs of analysis; we' found that kinesthetic stimulus induces
alpha blocking at sensory-motor=cortex and negative ERP in central midline component. The

detailed result would be discussed-in the following sections.

6.1. Mu Components

Mu rhythm (p rthythm) is an EEG rhythm recorded usually from the motor cortex of the
dominant hemisphere. It is also called arciform rhythm given the shape of the waveforms. It is
a variant of normality, and it can be suppressed by a simple motor activity such as clenching
the fist of the contra lateral side, or passively moved [65][66][67]. Mu is believed to be the
electrical output of the synchronization of large portions of pyramidal neurons of the motor
cortex which control the hand and arm movement when it is inactive.

By comparing ERSP (Figure 5-16 and Figure 5-17) of the Mu components and platform

motion recording in stop and go events, we observed alpha blocking time-locked to the peak
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of platform motion, and the blocking was not observed in motionless condition. This shows
the alpha blocking is induced by kinesthetic stimuli.

Mu blocking was usually induced by simple actions, but in our experimental design,
subjects did not need to move his arms or legs during the stop-go events. The Mu suppression
might be induced by passive movement of body caused by the platform motion, or subjects
moved other parts of his/her body, during the stop and go event. Through the observation of
on-board camera video during driving experiment, it was found that most subjects were
raising or nodding their head slightly following stop or go events. We hypothesize that subject
tried to balance or resisting the pulling force to their head subconsciously while the vehicle

was tilted to simulate the G-force change involving in stop and go motions. We suppose neck

muscle activities might be the reason of Mu blocking. To prove our assumption, we measured

Figure 6-1: The electrode location of EMG signal.
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lobe, same as 10-20 system. For EMG recordings, the NuAmps filter was set to 0.5Hz to 100
Hz in order to cover EMG bandwidth (30~100Hz). Signals from bilateral electrodes are

subtracted from each other.

Figures 6-2 and 6-3 showed ERSP of EMG activities in response to stop and go events.
The EMG power increased at 30~100 Hz in motion-stop event, and power decreased at
30~100 Hz in motion-go event, simultaneous to the Mu suppression in stop and go. This
result indicated that Mu blocking could be induced by body movement. But Mu blocking
occurred too early, which we could see from Figure 6-2, the beginning of Mu blocking was
500 ms preceding the EMG activation. It was also possible that the first 500 ms duration of

Mu blocking was induced by the platform kinesthetic stimulus.

Go-Motion-EMG Go-Motionless-EMG

[513-0606201Gio Motian][Ch 1'11 ERSP (dE) [213-0606201Go Matinless|[Ch11] ERSF ()

3 I

by -

8
s

Frequency [Hz)
5 & &
P,

o YO
1

1
I
I
I
1
1
L
|
) I

i i gl ) 2
i ] - 4, - =
0 0 T T T T T T T T T T T T T T 4
ERF
= | | 1 |
—2008 1000 a 1000 o000 BO00 44000 E000 &000  FOO0 —2800 1000 a 1000 2000 5000 4000 000 S000 7000
Time [m=) Time (m=}
|
|
|
[Lefl][Go-Mation TAVE][p=0 0] ERSF (dE) [Left][Go—Motionless][AVG][p=0 0 1] ERSF [dE)
7 T g = T 5
LI i ol 3 D i—
T = 1 W ~ !
S | . S0l f !
Pl L o Il : o
S wb i 3 WE g
7 ' f 7 I 1
& i 5 1 I [ | 1
H 1 !
< T T T |I T T T T T T 0.4 5 * T T T T T T T T T T 2
o 49 ) ] 48 —o.2
ERF 3 ERP [y "-"'w"'ﬁu‘vn.-““"'-'v'-qi-‘rr"‘lm"f" g e i 1
1 | 1 1 | | | 1 | 1 04 1 1 1 | 1 | | | | |
—2000 1000 0 100 EO00 2000 4000 2000 E0DD FOCO 2000 000 0 W00 Z000 W00 4000 000 600 e
I Time [m=) Tima (m=)
4 4
F2r I g 2r
[ 7 ]
2 g | 5 0
Z E
L . N , ; . <, . ‘ , . ; ;
4000 -2000 ] 2000 4000 E000 =000 -4000 -2000 0 2000 4000 E000 s000
Time (mg) Time [ms)

Figure 6-2: Go Event Neck EMG

64



Stop-Motion-EMG

[513-0606201Stop Motion][Ch11] | ERSF (d8)
o .
=% 3:35 : ! o
i | .
iy e = -
E’ o s I_‘_ -
| 5 X = &
23& 3 T i T T T I T T T =5 N
R | ! 1 1 | | | | i
o000 100 0 1000 2000 000 4of0 5000 B0GD  FOOO
Time (m=) I
|
|
[Left][Stop—Motion|[AVG][p=0.01] 1 ERSF (uﬁs)
T ' T
a0 4 ' [
i3 ] 1
sl
i
Pl ! I :
£ | ; I
L H 1
wr ¥ ; |
d i
I R LA TR [ S e
Sl 1 L 2 L -2

-2000 1000 0
Tima (ms)

1000 2OOO 3000 4000 5000 G000 FOOO

th

Angle Degree
(o]

\Eﬁ,

-2000 i} 2000 4o 000
Tirme (msg) |

-5
-4000

000

Stop-Motionless-EMG

[813-060E20TStop Mationless1Ch11] ERSF (dE)
= -— - e
_m E < : = = 2
= F B = = 1
g f i =
5 £ - o
Sl B 1= : = = -
f wiiy S
Sl R t R .
g ' = —
b T T 1 I T T T I T J —4
A AN A AL A Y
e | 1 ] | 1 1 | | | | —

1000 2000 2000 4000 000 €000 7O0Q
Tima {m=)

Stop-Motionless-ERSP

[Left][Stop—Motionless] AVG][p=001] EHSF'[G;)
Z T
. 3 3
2. 1 '
[ s |

E 20 { ! a
f 1
gm ) 1
; 1
s 1

i . bl T 1 T T =T T T o4 R

ERF u-_"_.A_.r.LW‘r\ A _1..‘"_.!.“{...?‘ rfen gt %
[ I 1 { I 1 | 1 | | | -0z

1000 2000 3000 4000 5000 6000 FOOO
Tima (me)

=200 =1000 o

m

Angle Degree
o

1 1 1 1 1 1
2000 o 2000 4000 6000 8000
Time [ms)

-5
-4000

Figute 6-3: Stop Event Neck EMG

The reason why we couldn’t find similar phenomenon in stop event could be the

magnitude of kinesthetic stimulus. The platform recording in go events showed a sudden

change of platform posture (at about 4° / 1.5sec), but smoother in stop events (4° / 3sec). The

responses from subjects in stop events were not as synchronized as in go events, thus the

blockings in stop events were averaged out.

The Mu component ERSP of deviation events (as shown in Figure 5-20) also showed

that Mu blocking was induced by not only body movement, but also kinesthetic stimulus. The

Mu blocking in motion-deviations was about 200 ms faster than motionless-deviations (from

the lower part of Figure 5-20), but the response time in motion-deviations was only 50 ms

faster than motionless-deviations (as shown in Table 5-5). If Mu blocking was induced by
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making reactions, the blocking in motion-deviations should be only 50 ms faster than
motionless-deviations, as same as the difference of response time. This meant that the first
150 ms in Mu blocking of motion-deviations was not induced because of subjects’ reaction,
but in response to kinesthetic stimulus.

Recall the findings in Figure 6-2, which showed a short time Mu blocking period
independent to body movements. With the evidence from both go event and deviation event,
we conclude that kinesthetic stimulus during driving induced Mu blocking. The whole

blocking was first induced by the kinesthetic perception, and than by body reaction.

6.3. Central midline components

From central midline components we observed negative ERP independent to subjects’
response. Figure 5-18 showed very obvious negative potential right after the beginning in
motion-deviations, but not in motionless-deviations.- The responses in deviate-to-right and
deviate-to-left conditions were identical. In same image, a negative ERP time-locked to
subjects’ reaction (the black line in ERP image) was observed. This phenomenon was
observed in both motion and motionless deviation and was considered as the reaction related
ERP. Since this was response-locked and not synchronized, we can only observe a slight
negative potential in the average ERP.

The response time showed significant result. Response time in motion-deviations was
approximately 50 ms earlier than in motionless-deviations (as shown in Table 5-5). The Mu
component ERSP also showed that Mu blocked 150 ms earlier in motion-deviations. These
results verified the conclusion in previous study that the absence of motion information
increased reaction times to external movement perturbations [32].

Similar ERPs were observed in stop-go event. Figure 5-2¢ and 5-2d showed the central
midline component ERP images of stop and go event. We could find a strong potential peak
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near the beginning of stop and go event in both motion and motionless condition, this was
considered as a response to yellow light(in stop event) and green light(in go event). We didn’t
find a same ERP related to red light in stop event, this was because the yellow light appeared
1 second preceding the red light, and the happening of the red light was only a transition of

light color from yellow to red. Thus the red light evoked a smaller peak in stop event.
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Figure 6-4: Subtraction of stop and go ERP

Figure 6-4 showed the subtraction of motion and motionless of stop and go events. The
red line indicated ERP in motion condition and blue line indicated the subtraction of motion
and motionless. From the blue ERP we found significant potential change related to platform
motion. The negative ERP was found in both stop and go event, which was consistent to our
findings in deviation events.

The finding in central midline component was also consistent to previous studies, as
shown in Table 6-1. Previous VESTEP studies observed a negative potential near Cz or
forehead, induced by external kinesthetic stimulus. We discovered similar brain responses

follow vehicle deviations, as discussed in preceding paragraphs. In stop and go events, we
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found Mu blocking in response to the kinesthetic stimulus, which was not reported in the past.
The reason at least in part is due to that fact that our experimental environment, which
combined visual-vestibular interaction and driver response, was much more complicated and

realistic than the experimental setups used in previous studies.

Table 6-1: Comparison to previous study.

Experiment Stimulus type Response type/Latency
Elidan et al, 1990 Blindfolded Yaw Rotation at Forehead negative ERP
10,000°/ sec’ , last 2ms
Baudonniere et al, 1999 | Blindfolded Z direction ACC. at Cz negative ERP
0.4g, last 30 ms
Loose et al, 2002 Blindfolded'Roll Rotation at Cz negative ERP

40°/sec, last2 s

Our Study Pitch and X direction movement Central Midline negative
Stop & Go in driving 12°/sec, last more then 3s ERP, Mu blocking
Our Study Roll and Yaw Rotation at Central Midline negative

Deviation in driving

5°/sec, last 100 ms

ERP, Mu blocking
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6.4. Independent components not related to kinesthetic simuli

Figures 5-17 and 5-18 showed parietal and occipital sources whose alpha band power
increased in stop events but decreased in go events. Since the alpha band power varies
identically in both motion and motionless condition, we conclude that the power change was
not induced by kinesthetic inputs. The VR scene stopped moving 4 seconds after the “Stop”
cue and started moving immediately after the “Go” cue. ERSPs in Figure 5-17 and 5-18 show
that in both motion and motionless conditions, the power variation is time-locked to the
moment when the VR scene changes moving to stop or from stop to moving, and
independent of the platform motion.

In contrast to occipital components, frontal midline component shows completely
different reactivity (as shown in Figure 5-19), no power suppression or increase was found in

this component, neither in motion-condition 'otr.motionless-condition.
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VI1I. Conclusion

We reported EEG activity in response to kinesthetic inputs in different kinds of driving
events: deceleration, acceleration and deviation. This innovative study was conducted in a
VR-environment on a 6 DOF motion platform. Our results show that EEG responses to
kinesthetic stimulus during driving induce: (1) Mu blocking in the somatomotor components.
(2) Negative ERP in the central midline component. The Mu blocking appeared to be induced
by two kinds of stimuli. When the subjects received kinesthetic inputs, their alpha activities
accounted for by the left and right mu components were blocked. After a short period, the
subjects adjusted his/her body to balance. him/herself, this induced Mu blocking again.
Negative ERP was found in the eentral imidline ‘component following kinesthetic stimulus
onsets. These results demonstrate that multiple cortical EEG sources response to the driving
events differentially in dynamic”and-static-environments. We showed that a static driving
simulator might not be able to induce some cognitive responses that might be well involved in
real driving. Thus a driving simulator with motion platform is very crucial to study brain
activity involving in real driving. We also confirmed that the absence of driving motion will
increase the reaction time to external perturbations by studying the response time in deviating
events. Thus a driving simulator with motion platform is a necessary solution either in
simulating real driving or investigating cognitive state during driving.

Traditionally, EEG alpha band was used as an indicator of drowsiness estimation during
driving [68][72]. In our study, we observed that alpha band variations occurred in many
components (Mu, parietal, occipital) during driving, especially when the vehicle is moving.
Alpha power has been reported to index the level of drowsiness in attention-sustained

experiments in a laboratory setting. The alpha power variation induced by motion of the
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vehicle might interfere with the estimation of driving cognitive state, so those estimations
which were based on alpha band may not be always reliable.

In the future, we will apply our finding on previous studied driving drowsiness estimator
[68][69], in order to improve the performance of estimation. This thesis is a beginning of
building up a foundation for studying EEG in a continuous driving experiment on a 6-DOF
motion platform. We will further investigate more detailed about the driving events, for

instance, to study subjects’ cognitive stage under deviation event without steering the wheel.
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