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A multiple-vehicle detection anlt{ _i:lraclgiﬂrgj—féﬁ%DT)l.—_sj;stem with prior occlusion detection
and resolution by lane information andaqueue feat;.}ire'__s::{ﬁ;ls various applications — tracking and
classifying vehicles, determining traffic p-.air'a.l'-n;;té:'r.é.:..rnoreover, detecting violations of vehicles.
The characteristics of MVDT system are real-time operation, robustness, precision, and ease
of setup which are all important consideration for a vehicle detector. In this study, the
proposed tracking reasoning is applied to track vehicles after the dynamic segmentation firstly.
Next, some functional methods, such as lane-based run-length shadow suppression and prior
lane-based occlusion detection and resolution, are proposed to enhance the accuracy of the
tracking processing. Then, the edge-based queue detection and resolution is exploited to keep
tracking trajectories when vehicles are waiting at the traffic lights or at traffic jam.
Furthermore, tracking trajectories and the lane mask are applied to derive the values of traffic
parameters and the direction of vehicle movement. Finally, for ease of setup, the adaptation of

the system parameters is proposed.
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Chapter 1 Introduction

1.1 Motivation

When the transportation is getting growth with years, the traffic information becomes
more and more important for drivers and traffic supervisors in that the traffic is becoming
more and more serious. To provide more comprehensive travel information, the vehicle
detector has to be developed necessarily for the complicated traffic environment in Taiwan

with lots of motorcycles and traffic jam.

There are also other kinds of vehicle detector existed to be used practically, such as loop

d L LLAE 5

detector, microwave detector, infraredidetector, and‘upersonic detector etc. which are high

B ] i

cost and inconvenient installment. Forthis réaoil,a ﬁl"()\.'v-%;:ost and simple-equipped resolution
should be developed conforming tq."the:ifié%iﬁl'—&qr_’?ﬁc situation for generalization of vehicle

o U

detection. (y,, O

A vision-based vehicle detector is one of the most applicable devices to collect traffic
information, e.g. traffic volume and speed. By automatic detection and tracking, the traffic
management is more efficient that not only increases the recognition accuracy but also
decreases the equipment cost. Therefore, the traffic information service more reliable and
accessible any time. However, except the highway systems, the quantity of detectors in their
motorways is very insufficient due to high installation cost and the poor recognition ability on

motorcycles.

Also, two situations are always occurred both in the urban area and in the
expressway-stopping in front of traffic lights and the traffic jam. The tracking processing is

hard to apply to above situations in that the stopped moving objects would connect to the



boundary object which would be deleted. So, we propose the method to resolve and detect the

queue in order that the tracking processing would be kept during the queue time.

1.2Background

In vehicle detection processing, virtual slit [9] and virtual loop [1] exploits the concept of
inductive loop [13] to detect vehicle passing by monitoring illumination change in
pre-specified regions of a frame. As the kind of processing checks the pre-specified regions of
frame only, its processing speed is fast. However, it is hard to setup, expensive, and functional
limited. Another alternative uses double-difference operator [5] with gradient magnitude to
detect vehicles. Although the kind of processing is more complicated than previous one, it can

d L LLAE 5

gather more vehicle information. R T

For vehicle tracking, Kato et al .[8 I.(al‘nllge et al [9] and Tao et al. [20] employed
maximum a posterior (MAP) to track Qcchded—¥eh1cles based on Markov random field
(MRF), spatiotemporal MRF (ST- MRF 5 and d.ynamlc layer shape, motion, and the appearance
model, respectively. However, MAP requires much computational power. For complexity
reduction, Li et al. [15] and Smith et al. [18] used sequential importance sampling (SIS),
which is a class of Monte Carlo method and the Sum-of-Squared Differences (SSD) with
dynamic pyramiding, to reduce the amount of inputs (samples). Even with these
improvements, MAP can not quite deliver full real-time performance. The extended Kalman
filter (EKF)-based techniques are faster [13], [1], [21]. These techniques estimated the
positions and velocities (states) of vehicles that are represented using dynamic models. Lou et
al. [7] proposed the modified EKF to reduce the sensitivity of the filter to the uncertainty of
motion model. Although EKF-based techniques are robust when tracking objects with random
invocations and noisy measurements, most invocations (operations of drivers) and

measurements (movements of vehicles) for tracking vehicles are not very random or noisy.



Furthermore, the approach may converge to wrong states if the vehicles are occluded.
Therefore, Benjamin et al. [4] utilized a feature based tracker to obtain feature trajectories and
select one trajectory to represent a group of common motions. However, the motions of
vehicle features will be indistinguishable if two or more occluded vehicles perform similar
movement. Consequently, the rule-based reasoning method is applied to reduce the processing
time and to solve the occlusion problem. For instance, Cucchiara et al. [S] applied a forward
chaining production rule and urban traffic rules and Gupte et al. [6] analyzed the states of
moving regions to create, delete, extend, split, or merge trajectories. However, the former
merely resolves only up to two occluded vehicles. Furthermore, it requires much time to test
the intersection of any previous-vehicle and current-vehicle pair. Although the latter does not

limit the number of occluded vehicles, it requires a much longer processing time as the

AR RALALE 5
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number of occluded vehicles increasessd "
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In queue detection, the differel'i.lg:e' of thé;fii'iﬁp}itudé- of FFT between empty road and
el | 2T L ~
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occupied road is utilized to detect queuesm [16]. Théﬁfefore, queue length is computed by
edge-based vehicle detection method. Otherwfs_e,Zanln et al. [17] proposed a queue detection
system based on vehicle presence detection and movement analysis. Nevertheless, the
research of queue resolution is rare in that if vehicles are not moving objects, it is hard to

detect or track them.

1.3 System Overview

The real-time multiple-vehicle detection and tracking (MVDT) system is proposed in this
thesis which can successfully identify the traffic condition by a forward looking CCD camera.
The proposed MVDT system contains 3 major procedures such as dynamic segmentation,
tracking processing, and queue resolution. In the dynamic segmentation, moving objects are

segmented from video frames with reference to a regularly updated background and previous



trajectories. In rule-based tracking reasoning, spatiotemporal characteristics of the moving
objects are utilized to update trajectories. Furthermore, the queue would be detected and split
in the queue resolution. The block diagram is shown in Fig. 1-1.Consequently, the system

flowchart is shown in Fig. 1-2.

The work is organized as follows. Chapter 2 and Chapter 3 introduce the methods of
dynamic segmentation and rule-based tracking reasoning, respectively. Chapter 4 presents the
methods of queue detection and resolution. Chapter 5 addresses the experimental results

obtained by the proposed system, and Chapter 6 draws conclusions.
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Fig. 1-1 Block diagram of the proposed MVDT system
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Chapter 2 Dynamic Moving Object

and Background Segmentation

In order to segment desired moving objects, a color background of the image sequence
should be extracted firstly. In this chapter, a pre-processing of the vehicle detection system
will be introduced. Next, a color background extraction method will be described. Then, a
moving object segmentation will be presented. Finally, the segmented moving object will be

refined by a compensation method.

2.1 Extraction of Color Background,

Color background extraction exﬂiéi}s thea;Lpearance ﬁrobability (AP) of each pixel’s color.
That is, after a sufficiently long tilq_l-_"e, t.l_;fq_':cééﬁéssopi?ied with the maximum AP is most
probably a background color. Howeve:;},:: «obtammgtheAP of each pixel’s color requires a large
memory. Hence, the AP of each pixel’s color class is adopted instead. The flowchart of the

color background extraction is shown in Fig. 2-1
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2.1.1 Creation and Inltlallzatlon "o €1ﬁm'uﬁlass

A color class located at coordinate (x, ) is uniquely identified by an ordered number. A

color counter, CC(x, y, ¢), and a color mean: CM(x, y, c)of the class are created to calculate

AP and to classify the pixel’s color in RGB (R: red, G: green, and B: blue) color space. For

convenience, CM(x, y, c¢) i1s defined as a vector with three RGB color components:
[CM ,(x, y), CM(x, ¥), CM ,(x, y)]" . The total number of classes at a particular coordinate
isNC(x, y).

Initially, only one class (the 0" class) is created for each pixel. The total number of classes,

h .
color counter and the color mean of the 0" class are given as

NC(x,y)=1, (2-1)



CC(x,y,0)=1, (2-2)
and
CM(-x’y5O) :p(X, Y, tO) (2_3)

respectively, wherep(x, y, ¢,) is a frame pixel located at coordinate (x, y)and sampled at the

initial time ¢, . Again, p(x,y, ?,) 1s a vector with three RGB color components

_[pR(x5 Y, to): pG(xa Y, t0)5 pB(x’ Y, to)]T'

A color background BG(x, y) which is a vector with three RGB color components
[BG,(x, ¥), BG,(x, ), BG,(x, y)]" is required to store converged color means.
BG,(x, ), BG.(x, y), and BG,(x, y) are initialized as

BG,(x,y)=-1 ey T

BG,(x,y) =1 (2-4)

BG,(x,y)=-1 3 ._
'| L L s ' I .
to specify that all pixels of the backlglj"oungh-j v ot et..é__;"c)‘nverged_
-.";;__. -.f;'::_rl-.__ 1856 W .:._-‘..
2.1.2 Updating Color Class et

The sum of absolute the differences (S4D)between a frame pixel sampled at current time ¢
and the corresponding ¢™ color mean is calculated as follows, to determine whether the pixel

.. th .
is in the ¢ class or whether a new class must be created for it;

SAD(x,y,c)= Y |p,(x,y.)=CM,(x,y,¢)| (2-5)

i=R,G,B
, which is a decision function.

First, the decision function classifies the pixel into a class j according to

j=arg min SAD(x,y,c). (2-6)

0<c<NC(x,y)



After that, SAD(x, y, j) is compared with a fixed threshold TH,.If SAD(x, y, j) is less than

TH,, thenCM(x, y, j)and CC(x, y, j) are updated according to

. CC(x,y, H)xCM(x,y, ))+ p(x,y,t
CM(x. y. /) = (x,9,/) ( yJ) p(x, 1) 2-7)
CC(x,y,j)+1
and
CC(x,y,j)=CC(x,y,j)+1 (2-8)

respectively. Otherwise, a new class is created by

CM(xayaNC(xay)) =p(x>y>t)a (2'9)
CC(x,y,NC(x,y))=1, (2-10)

and

NC(x,y)=NC(x,y)+1. (2-11)

2.1.3 Update Converged Color,

As time passes, the color counter that belongs to the background increases rapidly.

Accordingly, the ¢™ color counter updated at time ¢ is utilized to derive the AP of the class

defined as
CC(x,y,c
AP(X, ) C) = NC(x,y)—(l z )
> CC(x, y,i)
i=0
_CCx,y.0) (2-12)
t+1
The AP of k™ class that is most probably classified as the background is given by
k=arg max AP(x,y,c). (2-13)

0<e<NC(x,y)



Hence, by applying a dynamic threshold TH,, the background can converge according to

BG(x,y) =[CM(x, k)]
if
BG,(x,y)=-1 and AP(x, y,k) >TH, (2-14)

where [] is a rounding operation for each tuple in a vector.

2.2 Segmentation of Moving Objects

Once the background has been extracted, the moving objects can be deleted by checking

the SAD between the background and the input frame

i=R,G,B .

N
g 3 - e s
B ol ] N ..
¥ g, ¥
- —Edelie N N i

SAD(x,»)= Y |(p.(x, y,t)—BGf.‘.(??_c_;.}g)jl:'—._.'-r’-f._,:__::f* (2-15)

Given two dynamic thresholdsf’.q1f 'extrdqt-i_ng 3‘¥noviﬁg'-11 object, MTH; and MTHy, a binary

mask on the moving objects is obtairied according o H_.;j_i-:'l'

1, MSD(x,y)<MTH, and MSD(x,y) > MTH,

0 , otherwise

MM(x, y) ={ (2-16)

The following section describes the method proposed to calculate MTH; and MTHy,.
2.3Adaptation of Background Extraction

The changeable environment will highly affect the background extraction, such as
illumination. On the other hand, the illumination varying also influences on the segmentation
of moving object. Consequently, the illumination adaptation methods are presented in the

following.

10



2.3.1 Adaptation in Illumination

A background mask BM(x, y) defined as the complement of MM(x, y) is used to select the
regions of a background that must be updated to adapt to a change in illumination. Given a

predefined n, the background is updated by

n—1

BG(x,y) = xBG(x,y) +l>< p(x,y,t), (2-17)
n

when BM(x, y) = 1. If n is large, then the background will not easily adapt to a slow
change in illumination change. However, if n is small, then the background will be easily

affected by moving objects and noise. In our experience, n = 8 is a good compromise.

Tl F

2.3.2 Adaptive Thresholdig.g“:fb'p

_ﬁ\’[ovmg Object Segmentation

As the background is updated a:teachﬂaﬁ&e,—ﬂ&e- dyr.ig{mic segmentation can overcome the
slow change in illumination, such asr.{t‘.ﬁéf. I‘-assq_c%a‘té&z;ith daylight or weather, with a fixed
threshold. However, for rapid illumination change, a fixed threshold will cause false detection.
Therefore, an adaptive thresholding procedure is developed to find the low-valley VL=[VLg,
VLig, VLB,]T and high-valley VH=[VH, VHg, VHB,]T of the filtered difference distribution

FD(n)=[FDx(n), FDg(n), FDs(n)]" between the background and the input frame.

The filtered difference distribution that depends on a difference distribution

D(n) = > 1, > 1, > 1 (2-18)

Pr(x.y,)=BGg(x,y)=n  pg(x,y,t)-BGg(x,y)=n  py(x,y,t)-BGg(x,y)=n

is obtained by
n+p
2.D0)
FD(n) =22 2-19
(n) 2yt (2-19)

11



where (2p+1) is the filer order of the specified moving average filter. The reason for not
using D(n) to find the valleys directly is due to that D(») is noisy. With the filtered difference

distribution, the Laplacian operator
V?FD(n) = FD(n + 1) — 2FD(n) + FD(n - 1) (2-20)

is utilized to find the correct valleys

VL = min(al;g(VZFD(n) = 0)), (2-21)
and

VH = max (a’rlg(szD(n) = o)) (2-22)

where min(), max(), and arg() are tuple-wised,operation.

el
.

'.éh-'fhe.'-'bbservation that the most frequently

-' .-_|

The finding of valleys of FD(ﬁi)"f-:i.s'.ba"

appearing differences in D(n) are a!ssomaﬁed -the backgronnd From the valleys, the dynamic

thresholds MTH; and MTHy can be obtamed by .

MTH, =VL, +VL, +VL,

(2-23)
MTH, =VH, +VH, +VH,

2.4 Fast Connected-Component Labeling with Equivalent Label

The moving object mask MM(x, y) is generated after processing of moving object
segmentation. Each 8-connected component in MM(x, y) is thought as a moving object. The
moving object may be a distinct vehicle, two or more vehicles overlapped as single object, a
part of a distinct vehicle (mis-detected objects), or noises (false detected objects). Each
moving object is given a label by proposed fast connected-component labeling with

equivalent label (FCLEL) algorithm.

12



The FCLEL is a sequential connected-component labeling algorithm. In comparison with
the parallel connected-component labeling algorithm, the sequential one is more suitable for
the proposed MVDT system. The reason is due to that the proposed MVDT system is a
PC-based system which can only execute operations and access data sequentially. Similar to
[10], the difference is that FCLEL records equivalent labels for each partition in the first
phase, and uses the equivalent labels to speed up the partitions combination in the second

phase. The detail FCLEL algorithm is described in the following.

The modified connected component labeling method involves two phases. In the first
phase, a frame pixel p(x, y) located at coordinate (x, y) is assumed to represent the image of
size WxH segmented after pre-processing, where g(x, y)eZ is a label image of p(x, y), and

LeN is a label counter, which stores the cumrent,minimum illegal label value obtained by the

1€ ffomjleft to right; E,(/)eZ represents the

raster scanning from top to bottorp'_"'éhd t
...r i

i

equivalence linkage of a label / < L?":. {xa, 20) .'§_1h53":éoordir§ates of the pixel encountered during
- | P o L _'I‘

the raster, and N(x¢, yo) denotes the '@Qor&fﬁét‘es‘-’-df'thle__i-ﬁ)ur previously scanned pixels, based

.

on the coordinates of the central pixel (xo,yo)_ o
N, 70) =400 =1y =D, (g =170, (e vy =D (g +1, v =D (2-24)

Initially, L is set to one to indicate that no label has yet been created. During raster
scanning, whenever the encountered pixel is in the background (MM(x,, yo) = 255), the
corresponding coordinates of the label of the image are set to 0 (g(xo, yo) = 0). However, if the
encountered pixel is in the foreground and disjointed to the previous foreground pixels, a new
component is generated by assigning the label counter to the coordinates of the label image
(g(x0, y0) = L) and then increasing the label counter by one (L=L + 1). The equivalent linkage
of the label thus generated is initialized to 0 (£,(g(xo, y0)) = 0; where 0 denotes unlabeled).
Otherwise, if the encountered pixel is in the foreground and is joined to previously scanned

foreground pixels, then the coordinates of the corresponding label image are set to the

13



minimum equivalent linkage roots of the image’s neighbors g(x,,y,)= . )I;IINI(I’)} " E,(g(x,»));

Eo(I) finds the root of the equivalent linkage for a specified label /.

0 lf W(_XO’ yo) — 255’
8%,3p) =\ L(L=L+]) dseif g(cy) = 0 V{(x))eN(y.y)},  (2-25)
NG o(g(x,y)  otherwise
E, ()= { o(E,(D) i q(‘) -
otherwise.

Additionally, the equivalent linkages of the neighbors of encountered pixel in the label

image must be updated by:

no operation if MM(x,, y,)=255,
E,(8(%,),)=0 else if g(x,.y)TO V{(x ¥ €N, )} (2-27)
update equivalent linkages otheﬂmsb

where the pseudo code of update equi,valeq{ce lmkages is/ éhown below:

3 b ” F
W "J_.- | --.--
-.-‘-'- b 1856 _.’_.;‘_;.-

for each Qx, y) in N wa yo)

E=E, (g(x, »);
lf(EQ(E) # g(X0, 1) )

{ do
{ E =E/(E);
Eq(E)zg(xoayo);
E = FE',

twhile( £ is unequal to 0);

The first phase resolves all equivalent linkages but not the label image. Consequently, in
the second phase, labels must be reassigned to resolve the label values stored in the label

image. The label reassignment for each pixel with coordinates (x, yy) is described:

no operation  if g(x,, y,)=0 or E, (g(x,,))=0,

g(xo’yo) ={

2-28
Ey(g%,%,))  otherwise. (228

14



After the second phase, all connected components are labeled.

-: 110022 ]2]0]0]0O0
0O(0j]0]0|0]O0|2]21]0
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5151510022 ]2]2
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(a) MM(x, y) (b) g(x, y) after the first phase
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0100 (2]0]0]|21]2]|0
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0/0(0(0]O0O]O0O]|2]0/|0

(c) g(x, y) after the second phase (d) The colorful representation of connected

components (component 1: light gray and

component 2: dark gray)

Fig. 2-2 An example of FCLEL.
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Chapter 3 Rule-based Tracking

Reasoning

3.1 Background Compensation

Although the background extraction can obtain the initial background rapidly and robustly,
it maybe contains some vehicles as the initial background. That is because some vehicles park
on the roadside or stop in queue during the background extraction. If the stopped vehicles
start to move away, the moving object'r'éégin:é;it-é‘t-iéﬁ will false detect the regions as moving
objects. Further, the false detected feglons olf “a_c;k;ground will never be updated because we

do not update moving object reglons of baekgfeﬂnd Hence a background compensation

technique is proposed to correct the false detectlons

The background compensation technique uses the trajectories feedback from vehicle
tracking processing to decide whether the moving objects are false detected or not. If the

moving objects are false detected, the following three situations will occur:
1. The centers of moving objects does not change too much for a period of time;

2. Before update, the edge property of moving object would be checked. If it contains

obvious edge property, the vehicle-like tracking node can’t be updated in the background.
3. The starting nodes of trajectories are not near the boundary of a frame;

If any trajectory of moving objects satisfies the three situations, the regions of moving

objects will be set as background and re-initial the region.

16



Otherwise, some stopped vehicles are considered as false detected objects in tracking
processing. So, the above method is not effect to compensate the background. The difference

between the current image and the preceding background (Dys3) is checked:

Dy = )" p(x,y.1)=BG(x, ) (3-1)

If the difference is small, the background would be updated; if the difference is large
enough, the background would not be renewed. This would protect background update from
interference of moving objects. Fig. 3-1(b) is the background update without above
processing with Fig. 3-1(a) that Fig. 3-1(c) demonstrates this background compensation is

effective.

A background mask BM(x, y) defined a, 3@‘ gmplement of MM(x, y) is used to select the

to a change in illumination. Given a

regions of a background that must by daiﬁ a
S oy
predefined n, the background is up }’V ,,;

| 3 @AE#@
BG(x,y) = p xBG(x, y)+—><p(x ??Fﬁ“’ﬁ % (3-2)
FTInt

when BM(x, y) = 1. If n is large, then the background will not easily adapt to a slow
change in illumination change. However, if n is small, then the background will be easily

affected by moving objects and noise. In our experience, n = 8 is a good compromise.

(b)
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Fig. 3-1. (a) Original image with lots of stopped vehicles. (b) Background image of (a)

with error update. (c) Correct background image of (a).

3.2 Prior Split by Lane Mask

d L LLAE 5

,\.._ Lt ll o

If vehicles are occluded when they just en‘Tance t.o the frame, the tracking processing will
e ] m ) 5

have trouble to create correct traj eCtl)ljleS Even t};le \;.)ost ;plltt1ng technique could not split the
kind of occlusion. Therefore, a sph‘;tmg te;r}nn:q;urrs requlred to resolve the occlusion prior to
tracking processing. In the study, a lane masleag shown in Fig. 3-2 is used as a reference of
separations of occluded vehicles. The concept is-most vehicles are occluded side by side
horizontally across adjacent lanes as shown in Fig. 3-3 when they are moving vertically. In the

following, the proposed prior occlusion detection and resolution based on the concept are

described.

(b)
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Fig. 3-2 (a) One of the detection scene and the ROI bounded by magenta bounding box. (b)

The lane mask of (a).

(b)

Fig. 3-3. Vehicles may be occluded side by side horizontally across the lane.

Before occlusion detection, the lagéeﬁﬁ?*lz‘griﬂ{j&e label ID image g(x, y) of a moving

object obtained after connected- comﬁéne{n{ Q@I‘ﬁﬁ"&uffhe lane mask LM(x, y) are used. Also,

=g '*-fr’h

the spatial properties used top- mos’.ﬁcow leﬂ?—most coordinate L(/), bottom-most
..v-"-'f‘-u \VQH_-LE - 4 <.-
coordinate B(/), right-most coordmateﬁ}'%) width VI{‘@) and height H (/) . Recalling that, the

‘Irn
values in lane mask are: -1 (ignored), 0 (separators or boundaries), 1 (first lane), 2 (second

lane), and so on.

For occlusion detection, first of all, we judge whether the bounding box of the label

contains occluded vehicles shown in Fig. 3-4(a) by:
MM (x,y)=0
when H(l)/W(l)>TH,,,,g(x,y) =1 and LM (x,y) =0 (3-3)

before splitting, where 7H,,,, is the threshold of the height-width ratio .
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A
A

5(1,2)

"

H(l

LM (x,y) =1 LM(x,,y,)=2

(a) (b)

Fig. 3-4 (a)Two blue ellipses represented two occluded vehicles bounded by red bounding

box locate on two different lanes. (b) The statistics of two ellipses in (a).
For occlusion detection, each pixel ofythes/" moving object is checked to determine
whether the pixel should amount to gshistogram or not by,
S(UL,LM(x,y)) = S(I,LM (x, y)) 1
when g(x,y) =1/ and LM (x,y) # —1 and M (x, v) #0: (3-4)

satisfied.

Certainly, each element in the histograms should be assigned to 0 in advance. With the

histograms, the occurrence of occlusion can be detected by
|S(1,h)-S(I,h+1)|<TH5 (3-5)

where, in authors’ experience, a reasonable value of threshold THS is 5.

For occlusion resolution, the /™ moving object is split by
MM (x,y)=0

ife(x,y)=1and LM(x,y)=0. (3-6)
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The occluded vehicles shown in Fig. 3-5(a) and (c) are split by lane information

successfully which are shown in Fig. 3-5 (b) and (d).

7 7 ol

II

B = f
i

(© B & (d)
: *b?l-r'“.. A
T

Fig. 3-5 The occluded vehicles are split by lane information successfully.

3.3 Filter Out False Detected Objects

In general, false detected objects can be eliminated by the spatial properties obtained after
connected component labeling ([19]). The spatial properties used top-most coordinate 7'(/),
left-most coordinate L(/), bottom-most coordinate B(/), right-most coordinate R(/), total
pixel p(l),area A(l), width W(/), height H(l), aspect ratio AR(l/), size S(/), and
density D(!), where [ islabel ID. Among the spatial properties, the first 5 properties can be
obtained during connected-component labeling. The others are derived from the 5 properties

as shown below:
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W(l)=R(l)—L(I)+1 (3-7)

H()=B1)-T()+1 (3-8)
H(I)
ARU)_W“D (3-9)
A=W ()< H(l) (3-10)
S(y=Y p(L) (3-11)
_S@ ]
DU)_AU) (3-12)

Moreover, some moving objects have general width-height ratio but small density

considered as a noise in that the bounding box of vehicles and motorcycles have large density.
" AL

Sk l'};

However, some regions of moving objEcts would b&‘malnated after shadow suppression or

background extraction as shown 1nF-1g 3 6, b]e aus;e of tht; similarity of color between vehicle

windows and shadows or the ground Th@rbfef_e:;the shgpe of the moving object is the most

f-" h? .f
important consideration. So, the boundmg box_Qf the movmg object is divided into 9 parts as

shown in Fig. 3-7. We only count up the number of pixels of the blue region in Fig. 3-7, that is,
the edge of the moving object. The new density definition of the moving object is:

S. (D)
o <AD

D(l) = (3-13)

where S, (/)1s the amount of the pixel of moving object edge.
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(b)

Fig. 3-6(a) The original image (b) The moving object image that middle part of moving

object is eliminated.

Fig. 3-7 The blue region of thi e calculated for density judgment.

The spatial properties are used he false detected objects by using a

thresholding method. The thresholding operators are shown in Table 3-1.
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Table 3-1 The procedures of how to filter out the false detected objects

Properties

Procedure

W)eN

<2x WV (L,1),

{Eliminate the label /

Do nothing otherwise.

where the WM (l,t) and WV (l,t) are mean and variance of the width of all

moving objects found until now.

H()eN

<2xJHV (L),

{Elimjnate the label /

Do nothing otherwise.

where the HM (l,t) and HV(/,t) are mean and variance of the height of all

moving objects found until now.

AR(eN Eliminate the label / 1f AR(Z)‘I‘ i, t) AV (d,0) ,
WM(f L) WV (1)
Do nothing E;(“)th is¢ -
b , I:'“i
A()eN || Eliminate the label / THM <2xJHM (I,0)x WM (L,1),
Do nothing Oﬂgxerwme _ _,-;=:-'-.1’-

D())eN

Eliminate the label / if D(I)<TH,,
Do nothing otherwise.

where TH, is the threshold of density.

For spatiotemporal noises, the spatiotemporal properties that contain inter-relationships

between a frame and its previous frames are used to eliminate them.

The first case of spatiotemporal noise is the roadside noises. To delete the roadside noises

due to the

original stopped vehicles moving away, the three conditions considered in the

background compensation are used.

The second case of spatiotemporal noise is called vibrated moving objects, such as the

leaves which are vibrated by the wind. Although these moving objects can not be classified to
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false detected objects, they are undesired in the vehicle tracking processing. For such a reason,

the kind of spatiotemporal noises is stated in the sub-section H.

The last case of spatiotemporal noise is called uncompleted objects when parts of the
moving objects are out of the frame. Such kind of moving objects might cause wrong
judgment in the tracking processing. In Eq.(3-13), the inequalities formed by MT€ N, ML €N,

MBEN, and MR € N are used to eliminate the uncompleted objects.

Eliminate the boundary object with label /,
if { [T(])<MT and B(l) < RT] or [L(/) < ML and R(!) < RL] (3-14)
or [B(l)>MB and T(!) > RB] or [R(/) > MR and L(/) > RR]}
However, for large moving objects, such as trucks and buses, parts of the objects are
mostly out of the frame. Therefore, an additional criterion is used to reject large moving

adLLLLES

objects from being eliminated. In Eq (32) the 1nequalitles formed by RT€N, RLEN, RBEN,
and RRE N are used to reject large movmg og]ects, from E;emg eliminated even when they are
close to the boundary. A visual example ok fthe—beﬂﬁdarymarglns and boundary rejections are
shown in Fig. 3-8. The red region is formed b;Lboundary margins and green region is formed
by boundary rejections. In Fig. 3-8(a), the B(l) of the truck and B(l) of the car are close to the
boundary, and both vehicles will be eliminated before tracking processing. In Fig. 3-8(b), the
car will not be eliminated because it is not close to the boundary. Although the B(1) of the bus

is still close to the boundary, the bus will not be eliminated because the B(l) of the bus is

greater than RT.
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(a) (b)

Fig. 3-8. A visual example of boundary margins and rejections.

According to the filtering out the uncompleted objects method, the vehicle near the
boundary would be deleted. But at the queue time, more than one vehicles occluded near the

boundary would be eliminated that the tragking process of following vehicles would be

. )

interrupted as shown in Fig. 3-9. Thi;fé:'é:équeI{éF-,S_h?)ﬁé’_ihat when a rear vehicle approaches to
fo ,_|f_ 'i}l *_. '... :-
the fore stopped preceding vehicle near trllbejijﬁﬁundary;: the trajectory of the rear vehicle
- | N . _‘ 7 B “

(magenta line) would be deleted bece't"t}:_se_:_ of the lack (I)_,f-:;tﬁ'e next tracking nodes.

ol
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Fig. 3-9. The incorrect tracking processing of image sequence no.1040 to no.1044 in the
first lane shows the tracking trajectory is disappeared if the moving object connected to the

boundary.

Therefore, if the bounding boxes of moving objects are connected to the boundary of the

detection zone and the speeds of movn‘lg ob]ects bgcome slower, the boundary occlusion

resolution is utilized. If the 1ntersect10n of a~n‘]ov1ng object and a last trajectory node is large

enough, the moving object would be spht based on the last trajectory node. Consequently, the

- 1 d
k=2 ._,

queue of stopped vehicle would not be‘ ;gglgted an_gi_ _t-h__e "trackmg trajectory is kept as shown in

Fig. 3-10
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Fig. 3-10. The complete ¢ an‘d corres@l t]:acktng processmg of image sequence

n0.1040~n0.1044 in that the movmg Obj elct d‘onnected to the boundary is separated from the

.l

bOundary object

3.4 Shadow Suppression

Shadows are always the serious problem of tracking processing in that the occlusion and
error detection are occurred frequently. Consequently, the methods of shadow suppression are

introduced in this subsection.

3.4.1 Prior Shadow Suppression in the ROI

After background extraction, the information of a moving object mask will be refined by
shadow suppression. The purpose of refining a moving object mask is to resolve some

occluded vehicles caused by shadows. The flowchart of processing of shadow suppression is
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shown in Fig. 3-11.

M2, 0

Luminanee
Processing

h

ML (x,0

Gradient
Processing

e —— e ——

v LS (L p0

- ES
Lé::;:tg Chrominance
Mask Processing
—_—

A Cx, 1) I MM (x, 5)

End

Run-length
Processing

Ve, 1 B

L

Fig. 3-11 The floviehart o

f s:.ha_(-l__(_):vl\_’if{'é:ﬂppression in the ROI

In Fig. 3-11, the luminance processing reserves low luminance regions based on the

moving object mask MM(x, y) by

1, If(MM(x,y)=1and I(x,y)<TH,)

MM, (x,y) = )
L)) {O , otherwise

(3-15)
where the /(x, y) is the transformation from color to luminance.

Next, the gradient processing eliminates edges of the remained regions MM;(x, y) by

1, If(MM,(x,y)=1and G(x,y)<TH)

MM . (x,y)=
6 (%)) {O , otherwise

(3-16)

where the G(x, y) is the gradient value after the Sobel operator.
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Then, the chrominance processing further pertains to low chrominance regions of the
remained regions MMg(x,y) by

1, f(MM,(x,y)=1and C(x,y)<TH,)

MM . (x,y)=
() {O , otherwise (3-17)

where the C(x, y) is the sum of chrominance value, Cb + Cr.

The corresponding values TH, , TH,

> and TH_. are fixed thresholds of maximum

allowable luminance, gradient, and chrominance, respectively.

MM, is considered as a shadow-candidate mask. Nevertheless, it is difficult to set the

properTH, ,TH;, and TH_ for all cases to eliminate the shadow. Because there are some

'es to shadows, some detected vehicles are

T R

dark parts of vehicles with similar above prope
fragmented in Fig. 3-12(a) or some

3-12(b). As shown in Fig. 3-13(a), oSt

Fig. 3-12(a)The detected vehicles are fragmented with inexact shadow judgment. (b)The

detected vehicles are with some shadows which are not eliminated clearly.

First of all, the label of a moving object is classified to a lane ID. The method used to

classify a label to a lane ID is specified as
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h*(l)=argm’?xS(l,h) (3-18)

where the way to obtain the histogram S(/,/) is the same as (3-17). Then, prior splitting by
lane information is utilized to avoid interference with occlusion before deciding the search
region depending on the bounding box of a label. Scan over the lane along the lane direction
represented by blue lines in Fig. 3-13(b) and (c) in which the magenta parts represent labels.
If the amount of continuous points of the scan line in shadow-candidate mask is large enough,
the line segment of this scanline is considered as a shadow and shadow mask R(x, y) will be

set as 1. The lane-base run-length processing filters the shadow-like mask MMj.

1 , f(MM_.(x,y)=1 and R(x,y)=1
MM, (x, ) = ( ‘c(x ») (x,»)=1) (3-19)
0 , otherwise
Finally, the remained regions, the shadows; WMr(x, y) are used to update the moving
object mask by
MM (x,y)=0 , If (MM ,(x,% 1
() (MM (v ) 520
do nothing , otherwise

As shown in Fig. 3-13(d), shadows are presented by cyan color. And then the horizontal
run-length process is performed on the lane mask R(x, y). Eventually, the result of shadow

suppression in the ROI is shown in Fig. 3-14.
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3.4.2 Shadow Suppression in Each Label

On the other hand, if the proposed shadow suppression method above is not effective in
some cases, there are some false moving objects (shadows) appeared in the tracking process
as shown in Fig. 3-15. In general, shadows of vehicles split by lane information would be
thought as another moving object. It is hard to eliminate the shadow moving object in that its

size and width-height ratio is similar to a vehicle.
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Fig. 3-15 The samples of the effect of large shadows

Checking the gradient of every tracking node, the normalized gradient (NG):

NG()= >, G, y)p(l) (3-21)

G(x,y)el

is utilized, where / is a Label ID, and*p(#) i the total pixels of the bounding box with

the same Label ID /. According to Flg i 6{1’)]

nd“(d),’c_he shadow moving object is deleted.
ol 'l.,__. — | -

| 4
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Fig. 3-16 The result of shadow suppression in each label.

3.5 Update Trajectories and Eliminate Vibrated Moving Objects

A tracking trajectory is simply a sequence of subsequent tracking nodes (moving objects)
which satisfy the relation constraints. The label ID / should be extended to /(%, f) to become a
function of the trajectory ID k& < N7(¢)e N and the time instance ¢t where N7(¢) is the number
of trajectories at the time instance ¢. Then, the &™ trajectory at time instance ¢ with NN(k, 1)
nodes is denoted as 7(k, t) = {l(k, t-NN(k, t) + 1), ..., Ik, t -1), Ik, t)} = T(k, ¢t -1)U {i(k, ©)},

where NN(k, ¢) is the number of nodes of ™ trajectory at time instance ¢.

In order to archive real-time issue, the center of each moving object is used. The benefit of

using centers of moving objects 1nst¢ad0f _usnlg .E__fggions of moving objects is that the
ri-..":. ] .I_- S :..-.\-"JL ..-.._..'.

computation complexity merely depends on thL‘_;:;_t_;mbei’.. of moving objects but the product of

current and previous number of moving ol;;jeéts'—-—-—ﬂ

First of all, the centers of trajectories are used fo relate current moving objects to current
existed trajectory. The creation and extension of a trajectory is executed by checking the
relation between the current moving object and the last node of the existed trajectory. The

Euclidean distance:

Euclidean(P(l,k,1)) =|P(l,k,1)| = \/|C(l) ~Clk,t - (3-22)

is utilized to check the relation between the center of current moving object and the last

trajectory node, where
C, () is the related center of the ™ moving object,

C,(k,t) is the related center of a node in the k™ existed trajectory at time instance t, and
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P(l,k,t)=C,(I)-C, (k,t—1).

In addition, the angle between the current moving object and the last node of the existed
trajectory is checked in that the vehicle-like moving object wouldn’t move in opposite

direction immediately. If NN(k, f) exceeds one then the angle with respect to the /™ moving

object,
AC(Lk,t) =P(,k,1)-Q(k,t) ~|P(L,k,0)| |Q(k,1)| cos(TH ) (3-23)
where
Qk, 1) =C(k,t =1)=C;(k,t=2). (3-24)

are checked. If AC(l, k, ) > 0, then the /™ moving object will satisfy the angle constraint

THswith the k™ trajectory at time 7. The, didg

ig. 3-17) illustrates the distance and angle

constraint. Accordingly, in authors’ gxperie ble value of THois 60°.

C,(k,i-3) C.(D)

7 b
CT(k,t 1)

Fig. 3-17The diagram of the relation between tracking trajectory and current moving

object.

If the distance and angle constraint are both not conformed, the further judgment for
updating the tracking trajectory -intersection of the current moving object and the last node of

the existed trajectory -is offered.

In order to reducing the computing power, Axr, Ayr,Axg, and Ay in Fig. 3-18 represented
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the degree of intersection are utilized; i.e. if these four distance parameter are small enough,
the intersection of C(/) and C(k,z-1) are large that we can safely arrive that C(/) is the next

tracking node of the tracking trajectory C(k,¢) without calculating the real intersection.

Fig. 3-18 The diagram of intersegtion ¢ timoving object and the last node of the

constraint, then a vibration counter associated with the trajectory will be increased by 1. If the
vibration counter of the trajectory exceeds 3, then the trajectory will be thought as that of

vibrating moving objects. That is, the trajectory will be ignored.

Eventually, any moving object that can not be related to an existed trajectory should
further check whether it is occluded or not. The schemes applied to detect occlusion and to
resolve the occlusion are presented in the following sub-section. Otherwise, a new tracking

trajectory will be created.

3.6 Traffic Parameters Calculation

In general, most traffic parameters can be derived by the tracking trajectories. However,
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each trajectory has to classify to a lane ID before calculating traffic parameters. The method
used to classify a trajectory to a lane ID is specified as (3-17), where the way to obtain the
histogram S(k, ¢, /) is similar to (3-17) where / is extended to I/(k, t-1) to indicate the K"

trajectory at time instance (z-1)

Besides, there are some major traffic parameters: speed (VS), quantity (VQ), headway
(VH), volume (VV), and occupancy (¥O). The speed (VS) of a detected vehicle obtained by
tracking trajectory is the average speed in the ROI. The quantity (VQ) of each lane means the
amount of vehicles in each lane and the headway (VH) is the distance between the rear of a
front vehicle and the head of a rear vehicle. In addition, the amount of vehicles divided by
time is volume (VV) and the occupancy (VO) is the percentage of the amount of vehicles

divided by time. <AL s

Equations used to calculate trafﬁc Ipart. .'éteﬁg?aﬁ}é‘;listed in Table 3-2. Note that the
=S wrami a0 T

moment we calculate the traffic pafahleterls?}j,ggt_the ﬁqu_l:ﬁent we delete the trajectory. Hence,
- WS 1806 3
rj -

the last node of the just deleted trajectory.is at time inStance t-1.
Re i, W

L

B
i . Y
TN L e

Table 3-2 Equations used to calculate traffic parameters.

Traffic Parameters Equations

VSR (k1)) = S VS(h (ot~ 1)) +

ZX |C(k9t_1)_C(k,t_N(k,t_1))| % 0005
8 N(k,t-1)x FPH W (k)

Speed: V5(h ) where FPH is the number of frame per hour; N(k, t) is the

number of nodes in the A" trajectory at time instance #; C(J)
is the center of the /™ moving object; W (k) is the average

width of nodes in the ™ trajectory.
If N(k, t-1) > 3, then
VQ(h*(k, ))=VQ(h*(k, t-1))+1

Quantity: VO(h")
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First, initialize ty (h) = 0 for all lane ID h.
t—t, (W (k,t—1))

xVS(h' (k,t—1
PH (h (k,1~1))

Headway: VH(h') VH(I (k,t)) =

tu (W (k, 1) =1t

VO(h' (k,t—1))x FPH
t

Volume: VV(h") VV(h (k,t)) =

If Nk, t-1)> 3, then

Occupancy: VO OF =0OF +1

V0=$x100%

The direction of vehicle movement is also important traffic information. In the cases of
two-direction road scene, the direction of vehicle movement will help us to count the

quantities in or out correctly that the traffic parameter will more make sense. In Fig. 3-19, x

cle, and there are four possible directions in
and right to left. The four directions are

defined by two lines: cot§x+ y= ;.3

0 with angle ¢, furthermore, the
regions of four directions are shown in Fig:

4

cot—x—y=0 cot9x+ =0
2" ) ¥y
N cotZt+y<0 7
\\ 2 //
\\ ¢ ///
N cot—x—y<0 ~
\\\ 2 y ///
cotZxry<0 S| cotZx+y>0
2 AN 2
ST ” >
cotgx—y>0 7 N cottx—y<0
2 // \\ 2
,’/ cot9x+y>0 \\
// 2 \\
// cotg x—y>0 \\
s 2 N
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Fig. 3-19 The diagram of direction classification.

The angle ¢ in Fig. 3-19 is represented as the acceptable range of each four directions.
That is, if @ is small, the acceptable range of direction of bottom-to-top and top—to-bottom

vehicles is boarder than left-to-right or right-to-left vehicles.

3.7 Parameter Adaptation

In order to adapt the MVDT system to diverse capture view conditions, such as lane
direction and vehicle size, all parameters applied to the system must be decided adaptively. In
this work, the average of weighted small vehicle width or height mean is referred to tune the
system parameters which are thought as a separation between the width of small vehicles and

1"’**_.9_-_1-’? .?F
large vehicles. This parameter automa}-fon proceé’srﬂg is configured each time before the

4 Jj H tja{"é.' %

b

system starts-up. Selecting the cen‘eaf_r glon (

: ,H

: are. “gathered in the region. The statistic
‘9’ £ - {, "‘{j‘

result is shown in Fig. 3-20(b) which ca%‘yalculatq\vﬁfe mean of vehicle width and height. The

mean of the vehicle width or height is thought as a separation between small vehicles and

large vehicles.

15 20 Car Width

(pixel)

(b)

Fig. 3-20 The statistics of vehicle width and height.
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3.8 Tracking Stability improvement

In order to improve the accuracy of traffic parameter and ensure the stability of the
tracking processing, some serious problem should be resolved such as losing the tracking

node during tracking processing, over counting, and so on.

Fig. 3-21 (a)~(f) the image sequence which the silver vehicle is not extracted in (d) and
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(e).

First, over counting is a serious problem due to mis-detected vehicles. If moving objects
are not extracted during segmentation or not found during tracking processing, the according
trajectories would be deleted as shown in Fig. 3-21(a)~(f). Tracking trajectories would be
reserved until the moving objects are not found or segmented for two or three frames in that
the moving might not be segmented in the previous processing due to the unapparent
information of original images. Fig. 3-21(a) shows that the tracking trajectory is deleted
immediately if the next tracking node is not found in (a). And Fig. 3-21(b) is the result of

reserving tracking node.

(@) | (b)

Fig. 3-22 The tracking trajectory is deleted immediately if the next tracking node is not

found in (a) and (b) is the result of reserving tracking node.

In addition, the accuracy of speed is another important problem. When the vehicles
stopped during the tracking processing, tracking nodes might be in the same position. It would
be incorrect to calculate speed based on the traffic parameter calculating method because of

the amount of tracking nodes.
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C,(k,t—2)

C, (k,t-3)

Cr (k,1=6) C, (k,t—4)

Crlet=3) Cr(kt)  Cplhot=1)
Fig. 3-23 Tracking nodes from vehicle moving slowly or stopping.

As shown in Fig. 3-23, there are some tracking nodes of a vehicle which is attempting to
stop in ROI (region of interest). The distance and the amount of tracking nodes are used to
calculate the speed of the vehicle. Therefore, the serial number of tracking nodes should be
given the same one, if the vehicle is stopping. Also, the number of squeeze nodes (Sq) of each

tracking trajectory is recorded to assure of the tracking processing as shown in Fig. 3-24.

C,(k,t-3)

Sq=0 C,(k,t)

Sq=3

Fig. 3-24 An example of squeeze tracking nodes for vehicle stopping or moving slowly

case.
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Chapter 4 Queue Resolution

4.1 Queue Detection

For queue detection, the trajectory information is used. If the distance between two
subsequent trajectory nodes is shorter than a previous given threshold, vehicle queue might be
occurred:

(4-1)

Queue Resolution  if |C,(k,)—C, (k,t —1)| < TH,
Tracking Processing otherwise

where TH, is the threshold of the distance'bétween two subsequent trajectory nodes.

Otherwise, the tracking traj ector& -'ﬁ}ight bedlsappeared if the moving objects are not
fitting the tracking conditions. Then',hihe h,elzight—ef—the l'f)b.él is utilized to decide the queue-like

o U

objects: (g

Queue Resolution ifH()>TH,,
Tracking Processing otherwise (4-2)

where TH,, is the threshold of the reasonable height of the label.

4.2 Vehicle Head and Rear Extraction

As shown inFig. 4-1, vehicles are always occluded at queuing. That is because the rear of
a vehicle is occluded to the head of the next vehicle. There is no tracking information to use to
separate distinguishing vehicles at this time. For such a reason, a prior queue detection and

resolution technique that utilizes the edge feature of vehicle head or rear is proposed.
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Fig. 4-1 The examples at queuing time

4.2.1 The Edge Property of Vehicle Head and Rear

The first stopped vehicle for each lane is always outside the detection zone. However,

vehicles because it is obvious even when two or more vehicles are occluded. The Sobel

horizontal gradient

Gx(Z,)=(Z,+2Z,+Zy)—(Z,+2Z,+Z,)

is firstly used to find the horizontal edges per lane, where Zn, n=1...9, is defined in Fig.

4-2.
Z1 | 72|73
74 | 75 | 76
77| Z8 | 79
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Fig. 4-2 The 3x3 mask for gradient calculation

The edges of a label are defined by:

{g(l,r,t)zl ifGx>TH, (4-4)

g(l,r,ty=0 ifGx<TH,

where g(/,7,t)1s an edge mask of label / at time instance ¢ and 7 is the row of the label /.
The row 7 in the edge mask g(/,7,#) with the amount of horizontal gradient greater than TH

is considered as an available edge line shown with black lines in Fig. 4-3.

Fig. 4-3The black lines in these images represent edges

Nevertheless, the available edge lines are not shown in every row even the row is an edge.

A run-length method is utilized to group the found edges in edge mask g(/,r,¢). Fig. 4-4(a)
shows edge lines without run-length processing and Fig. 4-4(b) shows the result of run-length

processing. Therefore, the threshold of run-length is 4 in authors’ experimental.
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(b)
Fig. 4-4The red lines in (b) are the results of green lines in (a) with run-length processing.
After run-length processing, the preliminary split line is located on the middle of notably

grouped edge lines. The edges of vehicles are represented as magenta lines in each lane in Fig.

4-5.

Fig. 4-5 The preliminary results of stopped vehicle split.

4.2.2 Color Space Analysis for Gradient Computation

In order to calculate gradient to find edges of vehicles, some candidate color spaces are
selected to experiment with which one is more discriminative. In our experiment, we collect

common colors of vehicles (Fig. 4-6) and some combinations of them (Fig. 4-7).
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Fig. 4-6The general colors of vehicles.

Fig. 4-7Two general color blocks combined represent two occluded vehicles.

4.2.2.1 YUV Color Space

The YUV model defines a color space in terms of one luminance and two chrominance
components. YUV is used in the PAL and NTSC systems of television broadcasting, which is

the standard in much of the world.

YUYV models human perception of color more closely than the standard RGB model used
in computer graphics hardware. YUV signals are created from an original RGB (red, green

and blue) source. The weighted values of R, G and B are added together to produce a single Y
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signal, representing the overall brightness, or luminance, of that spot. The U signal is then
created by subtracting the Y from the blue signal of the original RGB, and then scaling; and V

by subtracting the Y from the red, and then scaling by a different factor.

Y=0.299R+0.587G+0.114B
U=0.492(B-Y) (4-5)
V=0.877(R-Y)

4.2.2.2 HSI Color Space

The HSI color space which is non-linear deformations of the RGB color cube stands for
Hue, Saturation, Intensity. The angular parameter corresponds to hue, distance from the axis
corresponds to saturation, and distance along the black-white axis corresponds to intensity

wAALALL S

(Fig. 4-7). The equations of RGB—HSI&?@?E; Sl

undefined 1ﬁMAX=

G—B Il_:f!JIMA_\-X%'ﬁ;.- i
6OX—+09 "':J" “\'.l_*-"\ T T 1{__/ ) {:
MAX-MIN ah@; G N : {f%
_ if MU_ 1 'Iu?* v
e 60 L 360 AXeRey
MAX-MIN and G<B
60x$+120 EMAX=G
MAX-MIN
60 x L 240  if MAX=B
MAX-MIN
0 if MIN=MAX
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(a) (b)

Fig. 4-8 The HSI color model based on (a) circular color planes (b) hexagon color planes.

The range of Hue is 0°~360° as shown in Fig. 4-8(a). However, the angle of two similar

colors might be large. So, we formulate the gradient of Hue in:

Min(abs(H , -H,,)),abs(H , -H,,-360")) whe|reHA>HB @-7)

=l

where H, and H, are hue of :cj'?vo d;ffe}eﬁt—eelors

Fig. 4-9 shows the results of calculating gradients in G, H, S, I, Y, U, and V color planes.
The range of gradient is normalized from 0 to 255 according to the intensity of gradient value.
If the edge property is more obvious, the value of gradient is closed to 255. Based on Fig. 4-9,

it is conspicuous that H, I, and U color planes are more discriminative than others.
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Fig. 4-9 The results of gradient calculation in G, H, S, I, Y, U, and V color planes.

4.3 Queue Splitting Refinement

However, it is difficult to distinguish which split lines are the ones on vehicle heads or
rears. There are some fake split lines on the vehicles. That is because large vehicles are with
different edge properties from small vehicles or some vehicles have a lot of strong edges in

their windows and sunroofs. The wrong cases are shown in Fig. 4-10.

Fig. 4-10 The wrong cases'of occluded vehicle split.

First, a region below the center of a split line is selected to apply horizontal gradient. Then,
if the selected region is smooth, a split line nearby windows (i.e. a fake split line) will be
detected and will be removed. Otherwise, the split line is utilized to separate occluded
vehicles. A queued vehicle with a split line (the magenta line) and a region (the cyan
dashed-line box) is shown in Fig. 4-11(a) and (b). The horizontal gradient of Fig. 4-11(a)

without the split line and the region is shown in Fig. 4-11(b).
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(a) (b)
Fig. 4-11 The wrong cases of occluded vehicle split.
After filtering out fake lines on the window, the correct split line is obtained. Fig. 4-12(a)

displays a fake line on the white vehicle window and the fake line eliminated by the above

processing is shown in Fig. 4-12(b).

@ (b)

Fig. 4-12 A green line located on windshield in (a) is eliminated in (b).

There are also some edges located on vehicle sunroofs which should not be split. Because
the edge property of a sunroof is similar to the one of a vehicle head, it is hard to be
eliminated. However, a sunroof has a notable horizontal edge property but unapparent vertical
property comparing to a car head. So, the vertical gradient of a small region is applied to
eliminate fake split lines on car sunroofs. Before applying vertical gradient, a rectangular
region below the center of a candidate split line is picked. But, the feature of vertical gradient

is easily affected by moving direction. Fig. 4-13(a), the enlarged drawing of Fig. 4-13(b),

51



shows the color of a sunroof changing gradually resulted in the appearance of adjacent
vertical gradients. Consequently, the region with vertical gradients connected one by one
horizontally is filtered out (red points in Fig. 4-13(b)). The fake split line located on a car

sunroof is removed in Fig. 4-14.

(a) (b)

the points of vertical gradient are

@ (b)

Fig. 4-14 The fake green split line located on a vehicle sunroof in (a) is removed in (b).

After connected-component labeling processing, non-vehicle objects would be filtered out.
Then, queue detecting processing and object-oriented queue resolution are applied to each

label.

After choosing the highly discriminant color space to calculate gradient, there are some

edges of noise objects would be enhanced. Smoothing the moving object to reduce the edges
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of noise, the captured image with illuminate variation on the single-chrominance part will be
smoothed. Using the 13 colors to represent the vehicle in the original image inFig. 4-15, the
smoothed image (Fig. 4-15(b)) shows that the middle region in the red bounding box are
presented by only one color which means there is no edge property to interfere our judgment.
Otherwise, in Fig. 4-15(a), the same region is shown by different color to demonstrate that

this region is not smooth.

T

According to the filtering-out-the-fake-line processing, the front of vehicle window
should be smooth to distinguish the real split line and fake split line accurately. The result is
shown in Fig. 4-16which the fake split line located on the vehicle window in Fig. 4-16 (a) is

eliminated in Fig. 4-16(b)
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Fig. 4-16 The result of fake split line elimination.
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Chapter 5 Experimental Results

5.1 Results of Vehicle Detection

In order to capture the whole scene of lanes and vehicles, CCD should be built on the
high location as shown in Fig. 5-1. This experimental platform on which we can stand is more
convenient to execute real-time experiment and demonstration than the platform which CCD
is built on street nameplates (Fig. 5-1). But the platform which CCD is built on street

nameplates is suitable for collecting diverse test data because of the computer is placed near

the road as shown in Fig. 5-1.
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Fig. 5-10ne of the experimental environments and experimental equipments

In our experiment, some different road sections, weather conditions, and viewpoints of
CCD are tested to demonstrate the robustness of the vehicle detection system. To begin with,
Fig. 5-2 shows the detected result with bright sun. Since this test condition is almost the ideal
one without any interference, such as vehicle shadow and sufficient light, the result is
satisfactory that small vehicles, large vehicles, and motorcycles are all detected in Fig.
5-2(a)~(d). Therefore, the lane information is applied to split occluded vehicles across a lane

but vehicle on a lane as shown in Fig. 5-2(b).

Fig. 5-2Results of vehicle detection in the urban with sunlight.
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In addition, the vehicle detection system is used in the sunset scene that the shadow
effect is so serious both in the background and in the moving objects. Fig. 5-3(a)~(d) are all in
the same image sequence within 2 minutes, but the illumination are varying immensely and
the shadows of vehicles are enormous. However, both serious problems are resolved by the

proposed methods above, and the result of the detected vehicle is highly accurate.

(c) (d)

Fig. 5-3 Results of vehicle detection in the urban with serious shadows of vehicles and

roadside buildings.

In the rainy weather, rain drops on the CCD lens will blur or hide some parts of image
randomly and changeably. The proposed system is successfully to detect and identify the

vehicles in the rainy day as shown in Fig. 5-4. On the other hand, the vehicle turning on the

57



head lights is also detected as shown in Fig. 5-4(c) and (d). There is a glob located not on the

ROI in order that vehicles still can be detected successfully; however if a glob is on the ROI,

vehicles are difficult to be noted by most image processing rules.

(a) (b)

(©) (d)

Fig. 5-4 Results of vehicle detection in the urban with vehicle headlights and rain drops.

Also, the proposed vehicle detection system can adapt to the expressway with 8 lanes
and 2 different recognized directions. If there are lots of vehicle in a frame, the proposed
system can also be performed in real-time because the proposed tracking reasoning method
are low computation complication. Because vehicles are small and its characteristics are
obscure in the image, it is tougher to detect and classify vehicle accurately. Furthermore, due

to the lane information, the vehicles in the left side of Fig. 5-5(a) are detected correctly which



are occluded originally. However, small vehicles and large vehicles are detected well by

proposed vehicle detection system.

(c) (d)

Fig. 5-5 Results of vehicle detection in the expressway.

Finally, straight lanes and a curve lane presented in the same road are shown in Fig. 5-6.
Fig. 5-6(a)~(c) show that no matter a small vehicle or a large vehicle moves on a curve lane, it
will be detected and tracked effectively. Of course, vehicles on the straight lanes are also

detected at the same time.
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Fig. 5-6 Results of vehicle detection in the urban with curve and straight lanes.

5.2 Results of Traffic Parameter Calculation

Traffic parameter calculation is based on the tracking processing which provides the
information of moving vehicles such as trajectories, motivation length, size, and motivation
time. The formulae of traffic parameter are presented in Section 3.6. Fig. 5-7 and Fig. 5-8
show the result of several traffic parameters: the amount of both small and large vehicles,
speed which is more important for providing traffic information, calculating by the proposed

vehicle detection system in two different kinds of scenes: urban and expressway.
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Therefore, one long-time testing result of accuracy is shown in Table 5-1 which contains
the quantity counted by both the proposed vehicle detection system and human and the
detected and tracking rate. In the proposed system, the one of the classification rate of
different vehicles is shown in Table 5-2. The average classification rate in that case is 89.7%
which is lower than the detected rate in that there may be some misunderstanding of
difference from large vehicles and small vehicles between human and the proposed vehicle
detection system. Table 5-3 shows the accuracy rate of speed in three diverse lanes. The
overall evaluation of proposed system is shown in Table 5-4 with 6 different test conditions.
However, the evaluation of each test condition contains 3 time segments that a time segment
is 5 minutes. Eventually, there are 6 parameters for a comparison to other techniques as

shown in Table 5-5

Table 5-1 Average detection dnd tr'a,:cking' tatgoof total quantities of vehicles

Quantity 1* lane 2" lane 3" land Total
The proposed VD 179 209 01 479
System
Human 183 205 86 474
Error 4 4 5 13

Detected and

. 97.8% 98.0% 94.2% 97.3%
tracking rate

Table 5-2 Average classification rate of small or large vehicles
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Quantity 1" lane 2" lane 3" land Total

The proposed VD 134 151 75 360
System
Human 159 170 80 409
Error 25 19 5 49
classification rate 86.3% 90.7% 93.8% 88%

Table 5-3 Average speed detection rate of vehicles

1* lane 2" lane 3" land Total

th
r J;
=

Speed accurate 96.9% 94.0% 95.8% 95,
rate

Table 5-4Overall evaluation of proposed system at 6 different test conditions

Accuracy
(I) 0)
Detected and tracking
rate 94-34“""100
(per 5 minutes)
classification rate 89.4~100

(per 5 minutes)

Speed accurate rate 84.6~99.26

Table 5-5 Comparison to other techniques
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The [7]" s The [18] s  The autoscope The proposed
technique technique system[21] technique
Average detection 96.9% 90% 95.39% 97.3%
and tracking rate
Average
classification None 70% None 89.7%
rate
Average speed None 4 97% 95.5%
detection rate ’
5 (speed, 5 (speed,
quantity, quantity,
Number of traffic (quantity) 1 (quantity) headway, headway,
parameters volume, volume,
occupancy) occupancy)
Motorcycle
eretion None None None Yes
Queu.e None None None Yes
resolution

5.3 Parameter Adaptation

Parameter adaptation is used to adépt to different captured conditions. The strategy is to
utilize an average vehicle height and width as the “parent” parameter of all other “children”
parameters for tracking processing. Here, we illustrate two adaptive parameter examples in

distinct captured conditions to reveal the importance of the processing.

After gathering the statistics of the vehicle width and height by both programs and
human, the mean of them are calculated. Basically, the value of statistics is more precise if the
statistic time is longer; however, if the statistics processing takes too much time, the later
processing will be delayed. Therefore, we try to find out the best converged frame number
which the detected vehicle height and width mean have the least error of actual vehicle height

and width mean.
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In other respects, the vehicle number is directly related to the result of vehicle width and
height mean rather than the statistic time. Hence, the criterion of vehicle number is added to
the statistics. Nevertheless, if there are few vehicles when we start up the system, the adaptive
parameter processing might not be completed successfully. Either frame number or vehicle
number is the terminative condition of adaptive parameter processing depending on which

one is first reached.

Fig. 5-9 shows the mean of vehicle width and height of one of samples that the
converged frame number is 700 and the converged vehicle number is 6 as shown in Fig. 5-10.
Finally, we choose the frame number 700 or the vehicle number 6 as termination of this

processing.

According to above experiments, idth is selected to be the main parameter

of tracking processing which is mor:
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Fig. 5-9 The histogram of vehicle (a) width mean, and (b) height mean with respect to the

frame number
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Fig. 5-10 The histogram of vehicle (a) width mean, (b) and height mean with respective to

the vehicle number

5.4 Results of Queue Resolution

During the tracking processing, vehicles may wait at the traffic lights and at traffic jam
so that the stopped vehicles will interrupt the tracking processing. Consequently, the proposed
queue detection and resolution are posed to detect and split occluded vehicle. There are some
examples shown in Fig. 5-11. In Fig. 5-11, the first vehicle in the first or second lane is split
successfully but deleted by tracking reasoning in that it connected to the boundary. Therefore,

although the proposed queue detection and resolution techniques applied to stopped-vehicles

are based on the edge property of vehic influenced easily by illumination, the high
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Fig. 5-11 Stopped vehicles are detected and split by the proposed methods of queue

detection and resolution.

5.5 On-line Demonstration 888

In our experiments, the size ofes h 40 and the frame rate of the sequence
2.8 GHz CPU, 512M RAM. Therefore, th ;' processing time is 18 ms per frame. The

processing time is faster than capture time so that we can safely arrive that the proposed

system can process real-time.

In order to easy setup and maintain, a client and server architecture is utilized for the
proposed system to retrieve remote MPEG-4 compressed video captured from a CCD camera.
As the bandwidth of Internet is limited, a test of how bitrate of a compressed video affects the

proposed system should be performed.

Fig. 5-12 shows that the accuracy of detection doesn’t decrease a lot even the birate of
video is small. The sample shown in Fig. 5-12(b) and (c) display that the quality of images is
more important if the image sequence is with low frame rate. However, according to Fig.

5-12(a), the accuracy at bitrate 128Kbps and 256Kbps is larger than it at 256Kbps and

68



512Kbsp. Because the detected amount will highly affected by noise object, some vehicles are

not detected while the quality of images is well, but when the quality of images is bad, lots of

noise would appear to be detected and considered as vehicles possibly. Conceivably, there are

also some noises in the image of high quality but will be filtered out when the quality of

image is not well. Our system can detect vehicles in high accuracy with the bitrate higher than

128 Kbps. Therefore, although the frame rate of input video is 15 fps and 10 fps, the accuracy

of vehicle detection is precise as well.

Accuracy(%)

102

100

98

96

94

92

90

88

Accuracy of detection

128 256 512 1152 uncomp.
em—1301fps 99.25 97 96.2 97 100
m—5fps 90 92.5 98.5 96.3 99.3
e 10fps 91 91 94.8 97 96.3
Bitrate(K bps)

Fig. 5-12 The accuracy of detection of compressed images with bitrate 128Kbps to 1152Kbps

with frame rate 30 fps, 15 fps, and 10 fps.
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Chapter 6 Conclusions and Future

Work

6.1 Conclusion

This study presents an MVDT system with dynamic segmentation, adaptive
parametric evaluation, vehicle detection, prior splitting based on lane information, vehicle
tracking, queue detection and resolution, and comprehensive traffic parameter calculation.
Initially, spatiotemporal statistics-based color background extraction approach with luminance
adaptation and incorrect convergence cgp_qp_efr_l_s_a_tipp is utilized to segment moving objects

robustly. Next, prior splitting based p‘_ri-'l'ane_ il'g‘fcl)miafizojh_ is exploited using automatic straight

4

Therefore, the stopped vehicles ca""c};s__ed\-"iby thestraffic light or the traffic jam would be

e

lane detection technique to resolve: occluded_j_yéﬁfc}es hg}ve just entered the detection zone.

connected to the front vehicle so that they can’t be tracked successfully by proposed tracking
processing. Moreover, in order to keeping the tracking reasoning at queue time, the queue
detection and resolution are applied to split the stopped vehicles. Finally, traffic parameters

based on tracked trajectories are calculated to improve traffic monitoring.

Experimental results indicate that developed system can operate in real-time with high
accuracy. The precision and reliability of the proposed system is better because a lane mask is
utilized to help to resolve vehicle occlusion, under real-time conditions. Furthermore, the
accuracy of tracking at queue time increases due to the queue resolution. According to the
traffic situation in Taiwan, motorcycles are also detected and tracked by the proposed MVDT
system accurately. Due to the parameter adaptation, the developed system can be setup

without the need for any information about the environment in advance, except the lane mask.
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6.2 Future Work

Recently, an increasing number of MVDT applications have been applied to traffic
intersection for monitoring traffic due to its convenience for set-up and low cost. This MVDT
system built on PC-based can be set up on embedded system with portable size and lower cost.
But embedded systems contain low computing power and fewer memories so that the

PC-based application can’t be ported without reducing code size and computing complication.

In this thesis, the proposed background extraction is based on the probability of
appearance so that it will be failed due to traffic jam. Therefore, the other algorithm special

for background extraction of traffic jam is necessary to increase the robustness of the system.

Furthermore, the straight lane agtg_t;ﬁé‘t:ie-"abt__ecgion is used to resolve the occlusion.

However, this processing can also resolye t ":('j(:'()t_ils_i'oh on the curve lane if the curve lane

e =l

automatic detection is applied. E |

L]

Otherwise, vehicles occluded 51d619y31de_h(|>nzontally in the top-bottom direction can be
split by lane information; however, occluded vehicles in the left-right direction can’t be
separated using lane information in that the vehicles always across the lane visually in the
image. So, the proposed system can be extended by occlusion detection and resolution for the

left-right direction.
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