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基於模擬聲門來源波型 

之語者辨識系統與確認技術 

 

 

學生：游家昇    指導教授：林進燈 博士 

 

國立交通大學電機與控制工程研究所 

Chinese Abstract 
中文摘要 

 

本論文提出一個詞語不相關且能自動化計算及模擬聲門來源波型並能將其模型

參數傳遞至語者辨識與確認的系統。由於語音訊號的產生是由聲門來源波型與人體

口腔交互作用產生，而我們假設聲門來源波型包含大部分語者生物特徵，進而以本

論文中的實驗加以驗證。聲門來源波型的取得是利用大量 X光為基礎而以數位訊號

方式模擬人體口腔模型而將所需要的反函數求出再將之與原語音的頻譜圖做相乘而

得之。而所得的模型參數被用於具有 26 維度其中包含 12 維的梅爾倒頻譜參數、8

維的 delta cepstral 參數、4 維的 delta-delta-cepstral 參數、1 維的 delta-energy 參數和

1維的 delta-delta-energy 參數置入高斯混合模型辨識器 (Gaussian Mixture Model，

GMM)。此辨識器使用傳統的高斯混合模型與最大相似度法則 (Maximization 

Likelihood，ML) 去計算背景模型與假設模型間高斯混合模型分數的差異量。如前

述本論文的目的在於驗證聲門來源波型是否包含語者生物特徵而非針對其辨識率做

最佳化。本論文利用 TIMIT 的龐大資料庫，在不分男性女性的情況下辨識率約在

60%左右，且利用相同語者資料的情況能比傳統以 MFCC 及 ML 做為最佳化 GMM 的架構

相比，本論文所提出的新架構有較佳的辨識結果亦驗證說明聲門來源波型部分的確

能夠傳送語者的生物特徵。 
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English Abstract 
Abstract 

 

A text-independent and automatic technique for estimating and modeling the glottal 

flow derivative source waveform from speech signals and applying the model parameters 

to speaker recognition system, is presented. Because a speech signal is produced by the 

interactions between the glottal flow derivative and human vocal tract, we assume that 

the speaker identity information is included in the glottal flow derivative waveform, in 

this thesis we setup some experiments to verify the assumption. The glottal flow 

derivative is estimated by using an inverse filtering technique which obtained from the 

vocal tract system which is established by large database of x-ray pictures and simulated 

by digital signal processing multiplies the frequency domain value of the original speech 

signals. And the model parameters are used in a ML-based Gaussian Mixture Model 

(GMM) classifier with 26 dimensions features including 12 order Mel-Frequency 

Cepstral Coefficient、8 order delta-cepstral、4 order delta-delta-cepstral、1 order 

delta-energy and 1 order delta-delta-energy parameters. The classifier uses the traditional 

ML-based GMM and Expectation Maximization (EM) algorithm to calculate the 

differences between the scores of the background model and the hypothesized model. For 



 4

a large TIMIT database set, the average correct rate over male and female in our 

experiments is about 60%. And under the same criterions, the recognition rate of our 

proposed structure is better than the ML-based GMM model with MFCC features. This 

corresponds to our assumption that the glottal flow derivative waveform indeed can 

convey the speaker identity information. 
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1 Chapter 1 

Introduction 
 

1.1 Motivation 

Recently, there has been a noticeable research in the use of biometrics characteristics 

as a means of recognizing a person’s identity such as human voice、fingerprint、iris 

structure、facial characteristics and so on. Among the above characteristics, the speaker 

recognition system is the most convenient way to the user because one does not have to 

raise his/her hand nor move to the sensor. What the user needs to do is just opening 

his/her mouth and then speaking some specific sentences. Especially in text-independent 

speaker recognition, the user can speak anything he/she wants. Speaker recognition [1],[2] 

is generally separated into two categories, i.e. speaker identification and speaker 

verification. The former task is to identify an unknown speaker from a known population 

based on the individual’s utterances. The latter task, speaker verification is the process of 

verifying the identity of a claimed speaker from a known population. But from the 

Text-to-Speech (TTS) system usually used in synthesizing voice, we found that because 

of the effects of motor equivalence the human vocal tract didn’t contribute too much in 

the speaker’s identity information included in speech signals. For example, two of our 

friends, A and B, say “Hello” to us at the same time. For human hearing, we can not only 

identify what they say but also who they are. From the TTS system and the observed 

phenomenon, we assume two things, 1) what we say is dominated by the vocal tract 

configuration, 2) who we are is dominated by the glottal flow derivatives. Based on the 

reason listed above, we assumed that if we could remove the effects caused by human 
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vocal tract such as the perturbations occurs around the lips, and we can use the glottal 

flow derivative to speaker recognition system to increase the recognition rate. This is 

because we suppose that the variations of vocal tract configurations between different 

speakers with the same words/sentences are small than the glottal flow derivatives 

between different speakers. Therefore, the main purpose of this thesis, however, is not to 

optimize the classifier or the features vectors, but rather to use an established classifier 

and features to show that the glottal flow derivative conveys speaker identity information. 

In order to distinguish the traditional way of speaker recognition system and our 

proposed scheme, a common speaker recognition system is shown in Fig. 1-1, and our 

proposed scheme is in Fig. 1-2. In the traditional speaker recognition system shown in 

Fig. 1-1, first, the features are extracted from the speech signal and then they will be used 

as inputs to a classifier. Second, the classifier makes the final decision regarding 

identification or verification. On the other hand, in our proposed scheme shown in Fig. 

1-2, we can see the difference is that we build a human vocal tract model based on the 

x-ray pictures to inverse the transfer function of the vocal tract in order to obtain the 

glottal flow derivative waveform. 

 
Fig. 1-1 : Speaker Recognition System 
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Signal 
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Feature 

Extraction 

Feature 
Vectors 

Identification 
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Fig. 1-2 : Our Proposed Scheme 

Speaker recognition is expected to create new services such as the entrance guard 

system, phone banking, the security for confidential areas, and remote access to 

computers. However, the current performance of state-of-the-art speaker recognition is 

substantially inferior to the human performance. For the safety purpose, we have to 

enhance the speaker recognition performance, which means we have to raise the 

recognition rate of the system. But as mentioned above, the major objective of this thesis 

is trying to verify a new feature that would reduce the noises might occur during the 

recognition and improve the performance of the speaker recognition system. 

 

1.2 Literature Survey 

When we obtain the speech signal, we will not use them directly to recognize a 

speaker because of its huge computation and messy representation. Hence we must 

extract the features hidden in the speech signal. So feature extraction is the essential 

process in speech recognition systems. The popular and useful feature extraction 

approaches focus on the spectrum of the speech signals, and most of the proposed 
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speaker recognition systems use either the mel-frequency cepstral coefficients (MFCCs) 

or the linear predictive cepstral coefficients (LPCCs) as feature vectors. MFCCs are 

calculated based on the energy accumulated in the frequency filter banks whose ranges 

are decided according to the mel-scale [3]; while LPCCs is depending on the linear 

predictive coding.  

Further, when we extract the feature, some useful modification can be pre-processed. 

An example is that we discovered recently there are some papers about source 

information was used in speaker ID systems [4],[5]. Videos of vocal fold vibration [6] 

show large variations in the movement of the vocal folds from one individual to another. 

For certain speakers, the vocal folds may close completely, while for others, the folds 

may never reach full closure. The manner and speed in which the vocal folds close also 

vary differently across speakers. For example, the cords may close in a zipper-like 

fashion, or may close along the length of the vocal folds at approximately the same time. 

Differences in fold vibration correspond to differences in the time-varying area of the 

slit-like opening between the folds, referred to as the glottis, and therefore in volume 

velocity air flow through the glottis. The flow may be smooth, as when the folds never 

close completely, corresponding perhaps to a “soft” voice, or discontinuous, as when they 

closed rapidly, giving perhaps a “hard” voice. The flow at the glottis may be turbulent, as 

when air passes near a small portion of the folds that remains partly open. Turbulence at 

the glottis is referred to as aspiration when occurring during vocal cord vibration can 

result in a “breathy” voice. In order to determine quantitatively whether such glottal 

characteristics contain speaker dependence, we must extract features such as the vocal 

fold opening or closing, the general shape of the glottal flow and the extent at the vocal 

folds. 

This thesis describes a technique to automatically estimate and model the glottal 

flow derivative waveform from voiced speech, and uses the parameters for speaker 
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recognition. A block diagram of the approach is given in Fig. 1-3. Our first goal of 

estimating the derivative of the glottal flow, rather than the glottal flow itself, stems from 

the availability of pressure measurements of the speech waveform, pressure being the 

derivative of volume velocity airflow. Estimation of the glottal flow derivation relies on 

inverse filtering the speech waveform with an estimate of the vocal tract transfer function. 

This estimation is typically performed during the glottal closed phase within which the 

vocal folds are in a closed position and there is no dynamic source/vocal tract interaction. 

Wang et al. [7] and Cummings and Clements [8] perform, for example, a sliding 

covariance analysis with a one sample shift, using a function of the linear prediction error 

to identify the glottal closed phase. This method relying on the prediction errors, has been 

observed to have difficulty when the vocal folds do not close completely or when the 

folds open slowly. The approach of this thesis estimates the glottal closed phase, relying 

on a digital simulation method of the vocal tract system [9], uses vocal tract formant 

modulation which is predicted by Shinji Maeda to vary more slowly in the glottal closed 

phase than in its open phase and to respond quickly to a change in glottal area. A 

“stationary” region of formant modulation gives a closed phase time interval, over which 

we estimate the vocal tract transfer function; a stationary region is present even when the 

vocal folds remain partly open. The glottal flow derivative waveform that results from 

inverse filtering is characterized by the speakers themselves. 
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Fig. 1-3 : Block Diagram of Glottal Flow Derivation 

 

After extracting the glottal flow derivation, the features are applied to a speaker 

verification task using MFCCs feature vectors and a Gaussian Mixture Model (GMM). A 

speaker model which represents each speaker in the speaker recognition system will be 

built in the training phase and then be used for speaker matching in the test phase. The 

modeling approaches are various, including the artificial neural network (ANN) [7],[10], 

the vector quantization (VQ) [11],[12], the Gaussian mixture models (GMM) [13],[14], 

the hidden Markov model (HMM) [15],[16],[17] and so on. In 1995, Reynolds 

demonstrated that the GMM-based classifier works well in text-independent speaker 

recognition even with speech features that contain rich linguistic information like MFCCs 

[18]. GMM provides a probability model of the underlying sounds of speaker’s voice. It 
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uses several Gaussian density functions to model a speaker and each density function has 

its own mean and covariance. For a feature vector denoted as jx , the mixture density for 

each speaker is denoted as ( ) ( )∑ =
=

M

i j
s
i

s
isj xpxp

1
| ωλ . Gaussian density function is 

defined as: 

( )
( )

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −∑−−

∑
= −

ijiij
i

Dj
s
i xxxp µµ

π
1'

2/12/ 2
1exp

||2
1         (1.1) 

The density is a weighted linear combination of M component uni-modal Gaussian 

density each parameterized by a mean vector s
iµ
r  and covariance matrix s

i∑ . 

Collectively, the parameters of a speaker’s density model are denoted as 

{ }s
i

s
i

s
is ∑= ,,µωλ r  and maximum likelihood (ML) estimates of the model parameters are 

obtained by using the expectation maximization (EM) algorithm. Therefore, for an 

utterance { }NXXX ,.....,1=  and a reference group of speakers { }sSSS ,......,, 21  

represented by models { }sλλλ ,......, 21 , the identification is executed by the maximum 

likelihood classification rule ( )SSs Xps λ|maxargˆ 1 ≤≤=  which decides who the 

candidates speaker [19] is. 

In the following, we will describe the framework of our proposed speaker 

recognition system briefly. 

First, we choose 11 vowels from MAEDA’s vocal tract system, the 11 vowels are 

shown in Table 1-1. From the vocal tract simulation of the system, we can calculate the 

transfer function of each vowel then we can use it as an inverse filtering applied to the 

corresponding vowel grabbed from input sentences of the TIMIT database. In the next 

procedure, we choose the MFCCs as our feature since the mel-scale mimics the human 

hearing which is sensitive to the sound in low-frequency domain. After the feature of 

each frame has been extracted, we applied the vowels of each speaker to a ML-based 

GMM speaker verification system to construct a model for each speaker. The glottal flow 
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derivation method is to enhance the GMM model for considering the overall recognition 

system and reducing the system error rate. The detail of the MAEDA’s vocal tract system 

and overall speaker recognition system will be described separately in Chapter 2 and 

Chapter 3. 

 

Table 1-1 : 11 Vowels with Inverse Filtering 

0 1 2 3 4 5 6 7 8 9 10 11 

None iy ey eh ah aa ao oh uw iw ew Oe 

 

Organization of Thesis 

This thesis is organized as follow: In Chapter 2 we will review MAEDA’s digital 

simulation method of the vocal-tract system. And in Chapter 3 we will describe the 

proposed structure of the speaker recognition, including MFCCs, glottal flow derivation 

with inverse filtering, and the GMM model classifier. We depict the used database and 

show the experimental results to verify that the glottal flow derivative conveys speaker 

identity information and the performance of our speaker recognition system in Chapter 4. 

Finally, we will give the conclusions of this thesis and the future work in Chapter 5. 
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2 Chapter 2 

Framework of the Vocal-Tract System in 

Speaker Recognition System 
 

2.1 Introduction 

This Chapter first describes qualitatively the properties of the components of glottal 

flow and its derivative, and then briefly reviews Shinji MAEDA’s theory in simulating 

the model of vocal tract and associated source/vocal tract interaction, and ends with a 

glottal flow derivative model for extracting features to be used in speaker recognition.  

 

2.2 Properties of the Glottal Flow 

 Speech production is typically viewed as a linear filtering process which can be 

considered time invariant over short time intervals. The glottal flow volume velocity, 

denoted by ( )tgµ , acts as the source, sometimes also referred to as the “glottal flow 

excitation,” to the vocal tract with impulse response h(t). The volume velocity output of 

the vocal tract is then modified by the lip impedance. Because the pressure/volume 

velocity relation at the lips can be approximated by a differentiator [20], the speech 

pressure waveform s(t) measured in front of the lips can be expressed as 

( ) ( ) ( ) ( ) ( )thdttddtthtdts gg ∗=∗≈ ]/[/][ µµ . The effect of radiation is typically 

included in the source function [20]; the source to the vocal tract, therefore, becomes the 

derivative of the glottal flow volume velocity, which we henceforth denote by ( )tvg , i.e. 
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( ) ( )ttv gg µ&= . Following the approach of Ananthapadmanabha and Fant [21], we assume 

that the glottal flow and its derivative consist of coarse- and fine-structure components. 

1) Coarse Structure: The relation between the coarse structure of the glottal flow, 

denoted by ( )tgcµ , and its derivative, ( )tvgc , is shown in Fig. 2-1 for an idealized glottal 

flow function. In obtaining the glottal flow derivative, applying the lip radiation effect of 

the source flow, rapid closing of the vocal folds results in a large negative impulse-like 

response at glottal closure, called the glottal pulse, as shown in Fig. 2-1. The coarse 

structure represents the general shape of the glottal flow. The time interval during which 

the vocal folds are closed, and during which no flow occurs, is referred to as the glottal 

closed phase. The time interval over which there is nonzero flow and the vocal folds are 

fully or partially open is referred to as the glottal open phase. The time interval from the 

most negative value of the glottal flow derivative to the time of glottal closure is referred 

to as the return phase. The asymmetry of the glottal flow shape during the open phase, 

sometimes referred to as skew in the glottal flow, is due approximately in part to the 

manner in which the glottis changes in time, and in part to the loading by the vocal tract 

during the glottal open phase [21]. In this glottal flow model, the return phase is 

particularly important, as this determines the amount of high-frequency energy present in 

both the source and the speech. The more rapidly the vocal folds close, the shorter the 

return phase, result in more high-frequency energy and less spectral tilt. 
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Fig. 2-1 : Relation between glottal flow and its derivative: (a) glottal volume velocity 

(flow); (b) glottal flow derivative. 

 

2) Fine Structure: Fine structure of the glottal flow derivative, denoted by ( )tgfν , 

is the residual waveform obtained by subtracting the coarse structure from the glottal 

flow derivative, i.e. ( ) ( ) ( )ttt gcggf ννν −= . Two contributions of fine structure are 

discussed in this section, ripple and aspiration. As illustrated in Fig. 2-2, ripple is a 

sinusoidal-like perturbation that overlays the coarse glottal flow, and thus the glottal flow 

derivative, and arises from the time-varying and nonlinear coupling of the glottal flow 

with the vocal tract cavity, due to primarily the vocal tract first formant [21]. The timing 

and amount of ripple is dependent on the configuration of the glottis during both the open 

and closed phases [21],[22],[23]. For example, with folds that open in a zipper-like 

fashion, ripple may begin at a low level early into the glottal cycle, and then grow as the 
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vocal folds open more completely.  

Our second form of fine structure, aspiration at the glottis, arises when turbulence is 

created as air flows through constricted vocal folds, and is also dependent on the glottis 

for its timing and magnitude. For example, a long, narrow opening, which constricts the 

air flow along the entire glottal length, tends to produce more aspiration than, for 

example, a triangular-shaped opening with partial constriction. The creation of turbulence 

at the glottis is highly nonlinear and a satisfactory physical model has yet to be developed. 

A simplification is to model aspiration as a random noise process, which is the source to 

the linear vocal tract. The complete fine-structure source is modeled as the addition of the 

aspiration and ripple source components. But in this thesis, for the simplifications, we 

will only consider ripples and aspiration as a random noise process, which is the source to 

the linear vocal tract.  

Amplitude

Time

Ripple

 

Fig. 2-2 : Glottal flow derivative waveform showing coarse and ripple component of fine 

structure due to source/vocal tract interaction.  
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2.3 Physical Model of Vocal Tract 

 A model of the vocal-tract system under consideration is shown in Fig. 2-3, which 

oral, nasal cavities, and pharyngeal is included. The innermost end of the pharyngeal tube 

is a pressure source through the narrow constriction representing the glottal orifice. The 

tracheal tube is omitted in this simulation, since the effects on the acoustic effect upon the 

speech spectrum seems to be not so important, except for unvoiced sounds where the 

glottal opening is fairly large enough [24],[25]. Universally, it’s almost accepted that the 

acoustic waves inside the vocal tract can be regarded as plane or one dimensional for 

frequencies below 4 kHz. So, only the cross-sectional area and the perimeter along the 

length of the vocal tract determine the acoustic characteristics. Furthermore, if the 

cross-sectional shapes can be assumed to be uniform, for example, as circular, the area 

function ( )txA , , as shown in Fig. 2-4, determines completely the acoustic properties of 

the vocal tract. The area function ( )txA ,'  specifies that of the nasal tract. The entities 

related to the nasal tract are marked by the prime ‘/’. And in this thesis, all the 

assumptions introduced in Chapter 3 are based on the uniform vocal tract as circular.  

 The pressure ( )txp ,  and the volume velocity ( )txu g ,  inside an acoustic tube with 

non-rigid walls are governed, in the first order approximation, by the following partial 

differential equations; the equation of Motion (EQM), the continuity (EQC), and that of 

wall vibration (EQW), shown as below 
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Respectively, in eqs., (2.1) and (2.2), 0ρ  and c  indicate that density of the air at 

equilibrium, and the sound velocity. The area function is denoted by ( )txA ,0 , which is 

related to the previously defined area function ( )txA ,  by 

( ) ( ) ( ) ),(,,, 00 txStxytxAtxA +=         (2.4) 

where ( )txS ,0  indicates a given perimeter of the vocal tract, and ( )txy ,  the amplitude 

of the yielding of walls due to the sound pressure inside the tube.  

VELUM

PRESSURE SOURCEP sub

GLOTTIS

PHARYNGEAL CAVITY

ORAL CAVITY

LIPS

NOSTRILS

NASAL CAVITY

 

Fig. 2-3 : A schematized vocal-tract model. 
 

The equation of walls, eq. (2.3) has been derived assuming that walls are locally 

reacting, i.e., the motion, normal to the surface, of one portion of the walls is dependent 

only upon the acoustic pressure on that portion and independent of the motion of any 

other part of the walls. The coefficients m, b, and k in eq. (2.3) respectively represent the 

mass, mechanical resistance, and the stiffness of the wall per unit length of the tube. 
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These coefficients, for simplification, are assumed to be constant and uniform along the 

vocal tract, even though that the actual values vary according to the location and also the 

tenseness of the muscles beneath the wall surface [26],[27]. Often in the literature, these 

constants have been specified in terms of a unit surface area. In such cases, the total mass 

of the walls may vary unrealistically depending on the vocal tract configuration. On the 

contrary, in the specification per unit length, the total mass should be kept relatively 

constant, since the length variation of the tract is relatively small, especially in 

comparison with the surface area variation. Considering the fact that the total mass of the 

vocal tract system is constant, we feel that the specification of mass per unit length seems 

to be more reasonable than its counterpart. We have discussed only the mass coefficient, 

since the mass is the dominant component of the non-rigid walls in terms of its acoustic 

consequences, The values of these constants are estimated from the data reported by [26], 

assuming the cross-sectional area of 4 2cm . 

This is a rather crude representation of the non-rigidity of vocal-tract walls. 

Nevertheless, this approximation should be able to account for the dispersive propagation 

of acoustic waves and for an increase in the bandwidth of the formants due to the loss of 

energy through the mechanical resistance of low frequencies. 

The flow resistances only become relevant at an extremely narrow constriction. 

Such a constriction is formed at the glottis during the production of voiced or aspired 

sounds, and at the place of articulation along the vocal tract during the production of 

certain consonants. And the resistance at the glottal orifice has been investigated by [28]. 

They formulated the total resistance as: 
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where µ  indicates the viscosity of the air, and gA , gl , and gX correspond to the 
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cross-sectional area, the length, and the thickness, respectively, of a rectangular duct 

representing the glottal orifice, and ck  is a coefficient having a typical value of 1.38, it’s 

determined to account for a normal condition of the larynx being about 3 mm  thick. In 

eq. (2.5), the first term represents a laminar resistance due to the viscosity of the air, and 

the second term represents a kinetic loss, which depends on the volume velocity gu . 

Because of an abrupt contraction and expansion in the passage of airflow at the glottis, 

eddies are formed at its inlet and outlet. In fact, the value of the coefficient ck  in eq. (2.5) 

varies from 0.05 to 0.5 at the inlet, and from 0.2 to 1.0 at the outlet, depending on the 

shapes.  

In the case of a constriction along the vocal tract, the shape of the constriction may 

be so different from the larynx that eq. (2.5) is no longer valid. In addition, the shape of 

the constriction would vary significantly, depending on the manner of articulation. In this 

implementation, we abandoned this constriction. Instead, a formula for a laminar 

resistance in a circular duct is used. The resistance per unit length is given by  

2/8 AR πµ=               (2.6) 

where A indicates the cross-sectional area of the circular duct. 

 In Fig. 2-3, the glottal end of the pharyngeal tube is directly connected to the 

pressure source. The boundary condition is represented by 

( ) ( )txptPsub ,0=               (2.7) 

where subP  indicates a give sub-glottal air pressure, and 0x  is the coordinate value of 

that end. 
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Fig. 2-4 : The ideal function of the time-varying vocal tract. 

The location of the nasal coupling point is defined as kxx =  in Fig. 2-4. The boundary 

condition of volume velocity and the pressure must satisfy the following equations 

( ) ( ) ( )tutxutxu kk ,0',, += +−
           (2.8) 

),0('),(),( tptxptxp kk == +−
           (2.9) 

Where the superscript ‘-’ indicates the pharyngeal end, and ‘+’ means the inlet of the oral 

cavity. 

 The outlet of the oral and nasal tract is connected to a space where sound is radiated. 

Since we don’t concern with the propagation of sound in the radiation filed in this thesis, 

it should suffice to characterize the space as an acoustic load specifying the 

velocity-pressure relationship at the mouth opening and at the nostrils. Morse and Ingard 

[29] have formulated the radiation load as an impedance composed of a resistance and an 

inductance in series. The resistance is proportional to 2ω , which is difficult to 
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implement into the time-domain simulation. Fortunately, Flanagan [30] has suggested the 

parallel circuit approximation, where both the conductance, radG , and the susceptance, 

radS , are independent of frequencies. Thus, at the lip opening and at the nostrils, we 

obtain the following boundary condition 

( ) ( ) ( ) ( ) ( )∫ +=
t

MradMradM txptGdttxptStxu
0

,,,       (2.10) 

where ( ) ( ) ctxAtS Mrad 00 128/,9 ρπ=  

   ( ) ( ) 00 8/,3 ρππ txAtG Mrad =  

Considering that we don’t know exactly how to describe the real lip opening shapes, 

nor their acoustic effects, it may not be justifiable to further elaborate the specification of 

the radiation load on the basis of the circular vibrating piston equivalent.  

 

2.4 Frequency Response of a Uniform Tube 

 For a given configuration, the simulation results can be evaluated in terms of the 

transfer function of the discrete time system. For calculating the transfer function, we 

derive an impulse response of the system as the pressure variation at the mouth opening 

when the system was excited by abruptly closing the glottal section after a steady airflow 

had be created in the glottis. The situation of acoustic wave propagates in the vocal tract 

is shown in Fig. 2-5. The horizontal axes indicate time in millisecond. The curve at the 

top, marked by ‘AG’, represents a stepwise variation of the glottal area. At t = 5 ms , the 

glottal area is closed instantaneously. The second curve, marked by ‘UG’, represents the 

glottal airflow as a function of time. At t = 0, the sub-glottal are pressure (8 cm  H2O) is 

applied to create the airflow. Notice that the glottal flow increases with time, but with 

some oscillatory components, indicating the influence of the vocal tract resonances. 
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About 3 ms  later, the oscillation has been completely suppressed, primarily because of 

the loss of energy through the glottal resistances, and the flow reached a steady state. The 

airflow drops abruptly to zero at the instant of the glottal closure, which causes a sudden 

pressure drop at the pharyngeal end of the vocal tract, as shown at ‘P6’ in Fig. 2-5. ‘P6’ is 

corresponding to 3 cm  above the glottis, and ‘P36’ to the mouth opening. From ‘P11’ to 

‘P31’ along the vocal tract are intermediate points with equally spaced intervals of 2.5 cm . 

It indicates that the sudden pressure drop propagates toward the mouth opening. At the 

exit of the tube, the negative pressure is immediately reflected back inside the tube so that 

a sharp negative impulse-like peak is formed at the beginning. The ringing following the 

first several pulses in the manifestation of Gibbs’ phenomenon, due to the fact that the 

frequency bandwidth of the discrete system is finite. After several reflections of the 

pressure wave, the high frequency components are sufficiently damped out and the 

ringing effect disappears as well as the marked impulse-like pressure peaks. 
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Fig. 2-5 : A given step function for the glottal area (AG), the calculated glottal airflow 

(UG), and acoustic pressures at different places (From P6 to P36) along the uniform tube. 

 The frequency response obtained by applying the discrete Fourier Transfer to the 

pressure waveform at the mouth opening can be regarded as the transfer function of the 

vocal tract in the closed glottis condition. In our implementation, all the transfer functions 

of vowels are defined when the glottis is closed.  

 There are some examples of the impulse response and their corresponding frequency 

response of a uniform tube with 5 2cm  in a cross-sectional area and 16 cm  in length are 

shown as below 
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Fig. 2-6 : The impulse and frequency response of a uniform tube. Those from the 
simulation with kHzf s 40=  and X = 1 cm are plotted by the solid line as a reference. 
The frequency response with kHzf s 20=  is indicated by the dotted line. 

 
Fig. 2-7 : The impulse and frequency response of a uniform tube. Those from the 
simulation with kHzf s 40=  and X = 1 cm  are plotted by the solid line as a reference. 
The frequency response with X = 2 cm  is indicated by the dotted line. 
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2.5 Frequency Response of Vowels 

Mrayati [31] has calculated the transfer function of the vocal tract for 11 different 

French vowels by means of the transmission-line analog of the tract as described here. In 

his experiment, the transfer functions were computed directly in the frequency domain, 

and the area functions, the frequencies and the bandwidths of the first three formants of 

the 11 vowels are reported. So, there are some comparison results between the two 

methods; one in the frequency domain (FDS) and the other in the time domain (TDS). 

The area functions are described by a piecewise-constant function having a fixed 

section length of 1 cm  (i.e., X = 1 cm ). The sampling rate of 40 kHz or 20 kHz is used in 

TDS method. The impulse and frequency response for the vowel /a/ simulated with 

kHzf s 40=  is shown in Fig. 2-8.  

The formant frequencies computed in TDS agreed well with those in FDS method, 

except for the first formant (F1) of the vowel /i/. The value of the F1 frequency is 268 Hz, 

which is about 10% higher than the 224 Hz calculated in FDS method. The difference 

seems to be attributed to the different manner of specifying the walls of vocal tract. The 

parameters, m, b, and k in eq. (2.3) make per unit length in TDS tend to result in lower 

wall impedance that that per unit area in FDS, for this particular vowel having sections 

with a large area. For the other vowels, the difference in F1 frequency is less than 5% and 

typically 2%, which means below difference limens (DL) of F1 frequencies. The 

difference limens for the first and second formants are about 3% to 5% [30].  

The discrepancy in the second (F2) and third formant (F3) frequencies in the two 

methods was quite small and never exceeded 1.5%, when kHzf s 40=  is used. A closed 

observation has indicated, however, that F3 frequencies in TDS are always slightly lower 

than the corresponding F3 in FDS, indicating the trace of the frequency warping in TDS. 

The effect of the warping on the F3 frequencies become quite noticeable as kHzf s 20=  
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is used. In this case, the F3 frequencies in TDS were typically 4% and as much as 7% 

below the corresponding F3 in FDS. Since this simulation is workable and the error rate 

is pretty low, we use the 11 vowels’ transfer function calculated in the TDS method as our 

basis to estimate the glottal flow excitation for our speaker recognition system. The 

simulation method will be discussed later in Chapter 3. 
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Fig. 2-8 : The impulse and frequency response of the vowel /a/ simulated with 

kHzf s 40=  and X = 1 cm . 
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3 Chapter 3 

Speaker Recognition System by Using 

Inverse Transfer Function of Vocal Tract 

System 
 

3.1 Overall Speaker Recognition System 

 The framework of our overall speaker recognition system is shown in Fig. 3-1 and 
Fig. 3-2.  
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Fig. 3-1 : Training Phase of our Speaker Recognition System for Speaker s. 
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Fig. 3-2 : Test Phase of our Speaker Recognition System for Speaker y. 

In the training phase of our speaker recognition system, first we cut out the 11 

vowels from the original speech signal and turn them into the spectrum domain. And then 

we calculate the corresponding inverse transfer function of the vowel from the vocal tract 

simulation system mentioned in Chapter 2. After multiplying the spectrums from the 

original speech signal and the inverse transfer function of the vocal tract frame by frame, 

we can obtain the glottal flow derivative known as the simple equation below 

( ) ( ) ( )ωωω HES ×=              (3.1) 

( ) ( ) ( ) 1−×= ωωω HSE              (3.2) 

where ( )ωE  represents the glottal flow derivative, ( )ωH  represents the transfer 

function of the vocal tract, and ( )ωS  indicates the speech signal in the frequency 

domain. After obtaining the glottal flow derivative, we extract the MFCC and other 
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features, which are usually used in speaker recognition system from the glottal flow 

derivative ( )ωE . After vector quantization, we set a training threshold equals 0.005 to 

determine that the GMM parameters are well calculated or not. If the training rate is 

greater than training threshold, the GMM parameters will be re-calculated and the 

iteration will continue. If not, the GMM parameters will be saved and be used by the test 

phase as the background model. From the above steps, we can obtain the Gaussian 

Mixture Model of speaker s in the training phase. 

 In the test phase, we also calculate the 11 vowels’ glottal flow derivative from the 

same steps mentioned in training phase from the speech signal. Still we extract the 

MFCC feature of the speech signal and use the feature vectors to rebuild other Gaussian 

Mixture Model and parameters. In the testing phase, we compare the hypothesis GMM 

model parameters with the background GMM model parameters and use the equation 

below the determine the score of speaker y 

( ) ( ) ( )hyphyp ypypy λλ |log|log −=Λ         (3.3) 

The speaker evaluation system is shown in Fig. 3-3. After we calculate all the scores 

of speakers, we use the speaker evaluation system to find equal error rate and the 

threshold for all of the speakers according to the statistic method called Receiver 

Operating Characteristic (ROC). The speaker evaluation system will read the login and 

impostor scores separately, and estimates the ROC curve by 500 times iteration. The 

Resolution Scale here is 500, and we can adjust the value in our program. When the 

threshold is decided, the evaluation system judges the scores of speakers to decide the 

speaker is our customer or just an impostor. If the score is smaller than threshold, the 

system rejects the speaker and takes him/her as impostor, on the contrary, the system 

accepts the speaker and take him/her as a customer. 
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Fig. 3-3 : Speaker Evaluation System 

3.2 Each Block of Speaker Recognition System 

 In the section, we will decompose the entire speaker recognition system into blocks. 

After that, we will detail each block of the recognition system. 

 

3.2.1 Glottal Flow Derivative 

 In this block, it actually combines two sub-blocks including collection of vowels’ 

spectrum diagram and vowels’ inverse filtering function. We will introduce the two parts 

step by step.  

 In the inverse filtering sub-block on the left side of Fig. 3-4, we can obtain the 

vowels’ transfer function and frequency response from simulating the 11 vowels’ vocal 
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tract configuration mentioned in Chapter 2. After inverse filtering, we can obtain ( ) 1−ωH  

(Inverse Transfer Function), and ( ) 1−ωH  will be substitute into equation (3.2) in order 

to get the glottal flow derivative ( )ωE . 

In the collection of vowels’ spectrum diagram sub-block on the right side of Fig. 3-4, 

first, we cut off the specific vowels in Table 1-1 out from the speech utterances of TIMIT 

database. After that, we remove the DC-offset in the output waveform by using offset 

compensation, and then the signal is pre-processed by a high-pass filter. Next, the speech 

signal is passed through a Hamming Window and we will cut into segments (frames). In 

order to match up the data frame after inverse filtering, we should transform the speech 

signal frames to the frequency domain via the Fast Fourier Transform. The data is 

multiplied with ( ) 1−ωH  as shown in Fig. 3-4.  
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Fig. 3-4 : Block Diagram of Glottal Flow Derivative. 

 

3.2.2 Feature Extraction 

 MFCC is widely used in the automatic speech recognition (ASR) applications. It is 

primarily for three reasons [32]: 1) The cepstral features are roughly orthogonal because 

of the discrete cosine transformation (DCT), 2) cepstral mean subtraction eliminates 

static channel noise, and 3) MFCC is less sensitive to additive noise than linear prediction 

cepstral coefficients (LPCC). The key component of MFCC responsible for noise 

robustness is the filter bank; the filters smooth the spectrum, reducing variation due to 

additive noise across the bandwidth of each filter.  

 Some of the traditional ways of feature extraction has been moved to process the 
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data of the collection of vowels’ spectrum diagram sub-block. So, in our feature 

extraction block, we extract 26 order features. First, the spectrum data of the glottal flow 

derivative is passed through a 12 order Mel frequency cepstral coefficients filter. And 

then the spectrum data is passed through 8 order delta-cepstral coefficients filter and 4 

order delta-delta-cepstral coefficients filter. Finally, we will let the data pass through 1 

order delta-energy and 1 order delta-delta-energy filter banks and we use the cepstral 

mean subtraction (CMS) in order to eliminate the tunnel effects. The block of feature 

extraction is shown in Fig. 3-5. 
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Fig. 3-5 : Block Diagram of Feature Extraction. 
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3.2.3 Build GMM Model of Training Phase 

 For determining the speaker identification of our source features, we use a Gaussian 

mixture model (GMM) speaker identification system. Each Gaussian is assumed 

characterized by a diagonal covariance matrix. This choice is based on the empirical 

evidence that diagonal matrices outperform full matrices and the face that the probability 

density modeling of an Nth-order full covariance mixture can equally well be achieved 

using a larger order, diagonal covariance mixture. Maximum Likelihood speaker model 

parameters are estimated using the iterative expectation-maximization (EM) algorithm. 

Here, we use some equations to symbolize the algorithm. 

( ) ( )∑ =
=

M

i j
s
i

s
isj xpxp

1
| ωλ            (3.4) 

( )
( )

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −∑−−

∑
= −

ijiij
i

Dj
s
i xxxp µµ

π
1'

2/12/ 2
1exp

||2
1      (3.5) 
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where eq. (3.4) indicates the mixture density, and eq. (3.5) indicates Gaussian density 

function, eq. (3.6) represents to iterate the best parameters for Maximum Likelihood (ML) 

by Expectation-Maximization (EM) algorithm.  

 The use of the GMM classifier is justified by its being an established, general 

classifier, which assumes predetermined distributions, and nonparametric classifiers 

which typically are computationally expensive, such as K-Nearest Neighbors [33],[34]. 

Another advantage is that it is insensitive to the temporal change when used in text 

independent task. It is well known that if the number of component densities in the 

mixture model is not limited, we can approximate virtually any “smooth” density. 

 The input training vectors (X) in our system can be represented by 
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|log|log λλ , it is passed through the Expectation-Maximization (EM) 
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algorithm. Finally, we can obtain the GMM model parameters of the training set after the 

iteration progress of the EM algorithm. The block flow chart of Build GMM Model for 

training phase and test phase are shown separately in Fig. 3-6 and Fig. 3-7. 
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Fig. 3-6 : Block Diagram of Building GMM Model of Training Phase. 
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Fig. 3-7 : Block Diagram of Build GMM Model of Test Phase. 
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4 Chapter 4 

Experiment Results and Discussion 
 

4.1 Introduction 

 In the previous chapter, we described the structures of the proposed speaker 

recognition system. For investigating and showing the contribution and verification of 

these methods we applied, several sets of experiments were done. There are thirteen sets 

of experiment in total, and two subsets of experiment result are included in each 

experiment. In the first part of experiments, we evaluated the effects glottal flow 

derivative in a single region with ML-based GMM with MFCC features, the results are 

separated by eight regions. In subset I, we give the results which the speech signals were 

processed by our proposed scheme. On the contrary, in subset II, we give the results of 11 

vowels which we used the same features and classifier but without processed by our 

glottal flow derivative method. That means we cut of the 11 vowels from a speaker’s 

utterances and directly send them into the feature extraction parts and build they own 

Gaussian Mixture Model just as the traditional ways of speaker recognition does. We did 

these subsets of experiment in order to verify the assumptions we had made and to show 

the efficiency of our proposed scheme. In the second part of experiments, we used a 

random number of impostors across the 8 dialect regions to evaluate the effects when our 

scheme was used in different dialect regions. And in the last part of experiments, we give 

results of the cases when we focus on some security control system, such as an entrance 

guard system, we can adjust the threshold or change the dimensions of feature vectors to 

reduce the error rate. The experimental results showed the contribution of this model. 
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 For these experiments, several processing steps occur in the front-end speech 

analysis. First, the speech signal was decomposed in frames of 256 samples with an 

overlap of 128 samples (the sampling rate is 16k Hz). For each frame, FFT was computed 

and provided the square values of the original sample values representing the short term 

power spectrum in the 0~4k Hz band. And then, this Fourier power spectrum was used to 

compute the power accumulated in each filter bank and the discrete cosine transformation 

(DCT) to get the cepstral coefficients called MFCC with 12 orders. 

4.2 Experiment Database 

 The database for the experiments is the TIMIT acoustic-phonetic speech corpus. 

This corpus is widely used throughout the world and provides a standard that permits 

direct comparison of experimental results obtained by different methodologies. In this 

thesis, we used the entire corpus of TIMIT database including 8 dialect regions. Table 4-1 

shows the number of speakers for the 8 dialect regions, broken down by sex. There are 10 

sentences spoken by each of 630 speakers from 8 major dialect regions of the United 

States. In the first eight sets of experiment, there are two subsets .In subset I, we chose 9 

sentences to train, the rest of 1 sentence for login test and the other speakers of the same 

region for impostors. In experiments subset II, we will create exactly the same conditions 

of subset I but without processed with the inverse filtering process obtained from glottal 

flow derivative estimate, this subset of experiment are used for comparison. In the ninth 

to eleventh experiments, we randomly chose a number of speakers for training and the 

other as impostors which across dialect regions were chosen for impostor test. In the last 

two experiments, we give the results to show that we can achieve high performances by 

using our proposed scheme. 
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Table 4-1 : Dialect Distribution of Speakers 

Dialect Region (dr) # Male # Female Total 

dr1: New England 31 (63%) 18 (27%) 49 (8%) 

dr2: Northern 71 (70%) 31 (30%) 102 (16%) 

dr3: North Midland 79 (67%) 23 (23%) 102 (16%) 

dr4: South Midland 69 (69%) 31 (31%) 100 (16%) 

dr5: Southern 62 (63%) 36 (37%) 98 (16%) 

dr6: New York City 30 (65%) 16 (35%) 46 (7%) 

dr7: Western 74 (74%) 26 (26%) 100 (16%) 

dr8: Army Brat 22 (67%) 11 (33%) 33 (5%) 

8 438 (70%) 192 (30%) 630 (100%) 

 

4.3 Experiment Results 

 In the following, three sets of experiments would be carried out to evaluate and 

verify our recognition system. 

 We assigned one class to each of features, and after the process of voting by the 

classifications of features, we would make sure which person the speaker was. The 

recognition rate was calculated by the result of the error classification. 
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Part I – Experiment 1 

 
Fig. 4-1 : Sketch of the feature and the GMM model of Experiment Part I 

 

Subset I 

Table 4-2 : Recognition Results of Subset I for 1 Customer (48 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 22/49 1033/2352 44.4090130% 

64 Bits 30/49 431/2352 39.7746600% 

 

Subset II 

Table 4-3 : Recognition Results of Subset II for 1 Customer (48 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 22/49 1039/2352 44.5365640% 

64 Bits 15/49 1154/2352 39.8384360% 

 

 In these tables, “Code Book Size” means how many bits we used to store the code 

vectors; “FR_NO.” means the number of false rejection and it is represented in the way 

of “FR_NO./Total Sentences” so as the FA_NO. is represented; “FA_NO.” means the 

number of false alarm; and “EER” means the equal error rate, it is the average of false 

rejection rate and false alarm rate. 

Dr1 to Dr8 MFCC 
ML-Based  

GMM 
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Part I – Experiment 2 

Subset I 

Table 4-4 : Recognition Results of Subset I for 1 Customer (101 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 38/102 3890/10211 38.6755375% 

64 Bits 42/102 4378/10211 42.0259015% 

Subset II 

Table 4-5 : Recognition Results of Subset II for 1 Customer (101 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 45/102 4353/10211 43.3740720% 

64 Bits 12/102 8446/10211 47.2397125% 

Part I - Experiment 3 

Subset I 

Table 4-6 : Recognition Results of Subset I for 1 Customer (101 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 38/102 4099/10302 38.5216455% 

64 Bits 35/102 4702/10302 39.9776737% 

Subset II 

Table 4-7 : Recognition Results of Subset II for 1 Customer (101 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 41/102 4199/10302 40.4775770% 

64 Bits 22/102 6359/10302 41.6472535% 
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Part I - Experiment 4 

Subset I 

Table 4-8 : Recognition Results of Subset I for 1 Customer (99 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 40/100 3914/9900 39.7676770% 

64 Bits 43/100 4271/9900 43.0707070% 

Subset II 

Table 4-9 : Recognition Results of Subset II for 1 Customer (99 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 42/100 3871/9900 40.5505055% 

64 Bits 22/100 6187/9900 43.2474755% 

Part I - Experiment 5 

Subset I 

Table 4-10 : Recognition Results of Subset I for 1 Customer (97 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 39/98 3721/9506 39.4698200% 

64 Bits 31/98 4532/9506 39.6539035% 

Subset II 

Table 4-11 : Recognition Results of Subset II for 1 Customer (97 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 44/98 4308/9506 45.1083530% 

64 Bits 44/98 4180/9506 44.4351145% 
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Part I - Experiment 6 

Subset I 

Table 4-12 : Recognition Results of Subset I for 1 Customer (45 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 19/46 583/2000 41.9771730% 

64 Bits 21/46 889/2000 45.0510875% 

Subset II 

Table 4-13 : Recognition Results of Subset II for 1 Customer (45 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 21/46 901/2000 45.3510880% 

64 Bits 22/46 1019/2000 49.3880450% 

Part I - Experiment 7 

Subset I 

Table 4-14 : Recognition Results of Subset I for 1 Customer (99 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 38/100 3874/9900 38.5656570% 

64 Bits 34/100 4872/9900 41.6060610% 

Subset II 

Table 4-15 : Recognition Results of Subset II for 1 Customer (99 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 43/100 4295/9900 43.1919205% 

64 Bits 43/100 4331/9900 43.3737385% 
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Part I - Experiment 8 

Subset I 

Table 4-16 : Recognition Results of Subset I for 1 Customer (32 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 13/33 426/1056 39.8674250% 

64 Bits 15/33 471/1056 45.0284095% 

Subset II 

Table 4-17 : Recognition Results of Subset II for 1 Customer (32 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 14/33 442/1056 42.1401515% 

64 Bits 4/33 865/1056 47.0170465% 

  

 In order to verify that our proposed scheme is stable and the glottal flow derivative 

indeed convey the speaker identification information, the eight experiments above used 

all the speakers in the TIMIT. The eight experiments were taken by different dialect 

regions of the United States, in order to verify the efficiency of our scheme applied to 

different regions, we mixed the dialect regions together with a random number of 

speakers in the following three experiments shown as below: 
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Part II - Experiment 9 

 
Fig. 4-2 : Sketch of the feature and the GMM model of Experiment Part II 

 

Subset I 

Table 4-18 : Recognition Results of Subset I for 1 Customer (94 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 43/95 4108/8930 45.6326990% 

64 Bits 58/95 2478/8930 44.4008960% 

 

Subset II 

Table 4-19 : Recognition Results of Subset II for 1 Customer (94 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 44/95 4088/8930 46.0470320% 

64 Bits 17/95 6960/8930 47.9171325% 

 

 Here, the meaning of mixing of the dialect regions represents that we chose a 

random number of speakers across the eight dialect regions of the TIMIT database. This 

part of experiments was set to verify the effects of our proposed scheme applied to across 

different regions.  

Mixing of the 

dialect regions 
MFCC 

ML-Based  

GMM 
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Part II - Experiment 10 

Subset I 

Table 4-20 : Recognition Results of Subset I for 1 Customer (83 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 30/84 2578/6972 36.3453825% 

64 Bits 24/84 3777/6972 41.3726345% 

Subset II 

Table 4-21 : Recognition Results of Subset II for 1 Customer (83 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 36/84 3048/6972 43.2874350% 

64 Bits 37/84 3033/6972 43.7750995% 

Part II - Experiment 11 

Subset I 

Table 4-22 : Recognition Results of Subset I for 1 Customer (83 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 30/84 2711/6972 37.2991980% 

64 Bits 35/84 2952/6972 42.0037288% 

Subset II 

Table 4-23 : Recognition Results of Subset II for 1 Customer (83 impostors) 

Code Book Size FR_NO. FA_NO. EER 

32 Bits 34/84 2855/6972 40.7128515% 

64 Bits 67/84 593/6972 44.1336770% 
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Comparison 

Our Proposed Scheme V.S. Traditional Speaker Recognition
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Fig. 4-3 : The Verification Result of Our Scheme with Code Book Size 32 bits. 
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Fig. 4-4 : The Verification Result of Our Scheme with Code Book Size 64 bits. 
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Part III - Experiment 12 

 
Fig. 4-5 : Sketch of the feature and the GMM model of Experiment Part III 

 

Subset I 

Table 4-24 : Recognition Results of Subset I for 1 Customer (45 impostors) 

  Threshold 
      No. 
CB Size 

1 2 3 4 5 

32 Bits 10.200000% 8.800000% 7.550000% 6.150000% 4.900000%

64 Bits 11.800000% 8.250000% 7.450000% 5.800000% 4.250000%

 

Subset II 

Table 4-25 : Recognition Results of Subset I for 1 Customer (45 impostors) 

  Threshold 
      No. 
CB Size 

1 2 3 4 5 

32 Bits 15.650000% 13.600001% 11.700000% 10.900000% 9.950000%

64 Bits 13.869565% 12.826087% 10.869565% 9.200000% 7.000000%

A Population 
with Specific 

Purposes 

MFCC 
ML-Based  

GMM 
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Speaker Recognition for Specific Purpose
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Fig. 4-6 : SR for Specific Purpose with Code Book Size 32 bits. 
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Fig. 4-7 : SR for Specific Purpose with Code Book Size 64 bits. 
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Part III - Experiment 13 

Subset I 

Table 4-26 : Recognition Results of Subset I for 1 Customer (48 impostors) 

  Threshold 
      No. 
CB Size 

1 2 3 4 5 

32 Bits 11.224490% 9.311225% 8.290816% 7.270408% 6.972789%

64 Bits 10.664969% 8.686710% 7.864068% 6.169817% 4.181765%

 

Subset II 

Table 4-27 : Recognition Results of Subset I for 1 Customer (48 impostors) 

  Threshold 
      No. 
CB Size 

1 2 3 4 5 

32 Bits 13.731061% 11.458334% 9.753788% 8.238637% 7.670455%

64 Bits 12.121212% 10.664969% 9.878788% 7.148717% 6.060606%
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Fig. 4-8 : SR for Specific Purpose with Code Book Size 32 bits. 
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Fig. 4-9 : SR for Specific Purpose with Code Book Size 64 bits. 
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4.4 Discussion 

 We assumed that the vocal tract would cause unpredictable noises, and we tried to 

verify that the glottal flow derivative could convey the speaker identity information. We 

used all the speakers in the TIMIT database to test our assumptions mentioned above. 

From part I and part II of the experiments, we can see that the performance of our 

proposed scheme normally 3~5% higher than the traditional speaker recognition system, 

no matter the speakers are in the same region or not, that means our proposed scheme 

could eliminates the noises and the glottal flow derivative indeed conveyed the speaker 

identity information. As mentioned in the introduction, our aim was to verify our 

assumptions were correct, so we did not care much about the system’s performances. But 

in order to show that our proposed scheme was able to fit some specific purposes of 

applications, such as the entrance guard, which focused on the false alarm rates. That 

means in such systems, we couldn’t allow the situation that the impostors were falsely 

accepted even when we might have to login for several times. After adjusting the 

threshold, we still could achieve the requirements, the results were shown in the part III 

of the experiments. 
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5 Chapter 5 

Conclusion and Future Work 
 

5.1 Conclusion 

 In this thesis, we presented an automatic technique for estimating and modeling the 

glottal flow derivative waveform from speech signals, and applied the model parameters 

to speaker recognition. The glottal flow derivative was estimated using an inverse filter 

estimated during a closed phase estimate, determined by simulating the transfer function 

of the vocal tract described in Chapter 3. A statistical technique, used to identify the 

glottal closed phase estimate, allows this algorithm to adapt to the amount of formant 

variation during the closed phase, which is dependent on the degree of glottal closure.  

 A series of experiments are conducted to verify the usability of the glottal flow 

derivative waveform. Because we assume that there are more important components in 

the glottal flow derivative than in the original speech signals, and the experimental results 

show that this assumption is correct. And furthermore, maybe we can use other features 

or classifier to get better performance. But this is beyond the scope. 

 The experiments I~II has shown the performance of the glottal flow derivative with 

ML-based GMM. Compared our proposed system with the original speech with 

ML-based GMM, it is improved approximately 3~5%. 
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5.1 Future Work 

 By using MFCC, we can find the hidden predictive information of the speech signals 

and reduce the computation time of the data. However, how many dimensions we select 

will have the best performance is an interesting problem. If we are able to know about it, 

we could raise the recognition rate and would not waste the operations. Thus, we can use 

them directly instead of choosing them empirically. But so far, we use the dimensions of 

12 order of MFCC to save more computation time is a time efficiency way for our 

experiments. 

 For our glottal flow derivative estimate, a very important point is that we only get 11 

vowels for recognition. In our estimate, the 11 vowels’ data samples sometimes are not 

enough to establish a robust Gaussian Mixture Model, which means if we can simulate 

the entire speech signals’ vocal tract transfer function, it will advance the speaker 

recognition technique and reduce the error rates. Another important point is to find a 

reasonable method of controlling the smoothness of data samples when we combine the 

vowels together. 

 In addition, because of the ability of motor equivalence [35], we are not able to 

know the exactly vocal tract configuration of the person when he/she produces the 

sentences. So, there will be another important task to figure out a method to eliminate the 

effect of the motor equivalence. (Motor equivalence is the ability to carry out the same 

task using different motor means. For example, people are capable of producing a sound 

with very similar vocal tract configurations.) In our expected design as shown in Fig. 

1-1Fig. 5-1 , we are supposed to construct an algorithm that use a sentence as an input, 

and by adjusting the parameters of the vocal tract system to synthesis a similar waveform. 

After that, we will use a close loop neural network to verify the error and adjust the 

parameters iteratively (this is so called analysis by synthesis). In this way, we whould 
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calculate or say speculate the vocal tract configuration of the sentence. And then, we 

would use the inverse transfer function of the vocal tract to calculate the glottal flow 

derivatives of the speaker from the sentence. Finally, we use the glottal flow derivative to 

construct a GMM and for a speaker recognition system. 

 Finally, we can apply this speaker recognition system to other speaker recognition 

system since there are kinds of recognition. Of course, it requires some modification 

between the two systems. For example, we should use HMM to replace GMM for 

continuous speech signals. 

Guess vocal tract
And transfer function

Glottal Flow
Derivative

Synthesized 
Speech

Speech 
Signal

Neural Network

Speaker Recognition
System

+

-

 
Fig. 5-1 : Our Expected Design.. 
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