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based on the Modeling of the Glottal Flow Derivation

Waveform

Student: Chia-Shen Yu Advisor: Dr. Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

A text-independent and automatic technique for estimating and modeling the glottal
flow derivative source waveform from speech signals and applying the model parameters
to speaker recognition system, is presented. Because a speech signal is produced by the
interactions between the glottal flow derivative and human vocal tract, we assume that
the speaker identity information is included in the glottal flow derivative waveform, in
this thesis we setup some experiments to verify the assumption. The glottal flow
derivative is estimated by using an inverse filtering technique which obtained from the
vocal tract system which is established by large database of x-ray pictures and simulated
by digital signal processing multiplies the frequency domain value of the original speech
signals. And the model parameters are used in a ML-based Gaussian Mixture Model
(GMM) classifier with 26 dimensions features including 12 order Mel-Frequency
Cepstral Coefficient ~ 8 order delta-cepstral ~ 4 order delta-delta-cepstral ~ 1 order
delta-energy and 1 order delta-delta-energy parameters. The classifier uses the traditional
ML-based GMM and Expectation Maximization (EM) algorithm to calculate the

differences between the scores of the background model and the hypothesized model. For
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a large TIMIT database set, the average correct rate over male and female in our
experiments is about 60%. And under the same criterions, the recognition rate of our
proposed structure is better than the ML-based GMM model with MFCC features. This
corresponds to our assumption that the glottal flow derivative waveform indeed can

convey the speaker identity information.
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Chapter 1

Introduction

1.1 Motivation

Recently, there has been a noticeable research in the use of biometrics characteristics
as a means of recognizing a person’s identity such as human voice ~ fingerprint -~ iris
structure ~ facial characteristics and so on. Among the above characteristics, the speaker
recognition system is the most convenient way to the user because one does not have to
raise his/her hand nor move to the.sensor. What the user needs to do is just opening
his/her mouth and then speaking some specific sentences. Especially in text-independent
speaker recognition, the user can speak anything he/she wants. Speaker recognition [1],[2]
is generally separated into twao. categories, I.e. speaker identification and speaker
verification. The former task is to identify an unknown speaker from a known population
based on the individual’s utterances. The latter task, speaker verification is the process of
verifying the identity of a claimed speaker from a known population. But from the
Text-to-Speech (TTS) system usually used in synthesizing voice, we found that because
of the effects of motor equivalence the human vocal tract didn’t contribute too much in
the speaker’s identity information included in speech signals. For example, two of our
friends, A and B, say “Hello” to us at the same time. For human hearing, we can not only
identify what they say but also who they are. From the TTS system and the observed
phenomenon, we assume two things, 1) what we say is dominated by the vocal tract
configuration, 2) who we are is dominated by the glottal flow derivatives. Based on the

reason listed above, we assumed that if we could remove the effects caused by human
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vocal tract such as the perturbations occurs around the lips, and we can use the glottal
flow derivative to speaker recognition system to increase the recognition rate. This is
because we suppose that the variations of vocal tract configurations between different
speakers with the same words/sentences are small than the glottal flow derivatives
between different speakers. Therefore, the main purpose of this thesis, however, is not to
optimize the classifier or the features vectors, but rather to use an established classifier
and features to show that the glottal flow derivative conveys speaker identity information.
In order to distinguish the traditional way of speaker recognition system and our
proposed scheme, a common speaker recognition system is shown in Fig. 1-1, and our
proposed scheme is in Fig. 1-2. In the traditional speaker recognition system shown in
Fig. 1-1, first, the features are extracted from the speech signal and then they will be used
as inputs to a classifier. Second, the classifier. makes the final decision regarding
identification or verification. On the other hand, in our proposed scheme shown in Fig.
1-2, we can see the difference is that we-build-a human vocal tract model based on the
X-ray pictures to inverse the transfer function of the vocal tract in order to obtain the

glottal flow derivative waveform.

Identification
Feature

Speech Feature o @]
—> _ ——» Classification | —>
Signal Extraction Vectors Verification

Fig. 1-1 : Speaker Recognition System

11



Identification

Build Vocal Feature
S!oeech Glottal Feature | oassification | Ory
Signal " ract Model | F1OW Extraction | /e¢tors Verification

Fig. 1-2 : Our Proposed Scheme

Speaker recognition is expected to create new services such as the entrance guard
system, phone banking, the security for confidential areas, and remote access to
computers. However, the current ‘performance of -state-of-the-art speaker recognition is
substantially inferior to the human performance. For the safety purpose, we have to
enhance the speaker recognition performance, which means we have to raise the
recognition rate of the system. But as mentioned above, the major objective of this thesis
is trying to verify a new feature that would reduce the noises might occur during the

recognition and improve the performance of the speaker recognition system.

1.2 Literature Survey

When we obtain the speech signal, we will not use them directly to recognize a
speaker because of its huge computation and messy representation. Hence we must
extract the features hidden in the speech signal. So feature extraction is the essential
process in speech recognition systems. The popular and useful feature extraction

approaches focus on the spectrum of the speech signals, and most of the proposed
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speaker recognition systems use either the mel-frequency cepstral coefficients (MFCCs)
or the linear predictive cepstral coefficients (LPCCs) as feature vectors. MFCCs are
calculated based on the energy accumulated in the frequency filter banks whose ranges
are decided according to the mel-scale [3]; while LPCCs is depending on the linear
predictive coding.

Further, when we extract the feature, some useful modification can be pre-processed.
An example is that we discovered recently there are some papers about source
information was used in speaker ID systems [4],[5]. Videos of vocal fold vibration [6]
show large variations in the movement of the vocal folds from one individual to another.
For certain speakers, the vocal folds may close completely, while for others, the folds
may never reach full closure. The manner and speed in which the vocal folds close also
vary differently across speakers..For example, the cords may close in a zipper-like
fashion, or may close along the-length of the vocal folds at approximately the same time.
Differences in fold vibration correspond-to-differences in the time-varying area of the
slit-like opening between the folds, referred to as the glottis, and therefore in volume
velocity air flow through the glottis. The flow may be smooth, as when the folds never
close completely, corresponding perhaps to a “soft” voice, or discontinuous, as when they
closed rapidly, giving perhaps a “hard” voice. The flow at the glottis may be turbulent, as
when air passes near a small portion of the folds that remains partly open. Turbulence at
the glottis is referred to as aspiration when occurring during vocal cord vibration can
result in a “breathy” voice. In order to determine quantitatively whether such glottal
characteristics contain speaker dependence, we must extract features such as the vocal
fold opening or closing, the general shape of the glottal flow and the extent at the vocal
folds.

This thesis describes a technique to automatically estimate and model the glottal

flow derivative waveform from voiced speech, and uses the parameters for speaker
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recognition. A block diagram of the approach is given in Fig. 1-3. Our first goal of
estimating the derivative of the glottal flow, rather than the glottal flow itself, stems from
the availability of pressure measurements of the speech waveform, pressure being the
derivative of volume velocity airflow. Estimation of the glottal flow derivation relies on
inverse filtering the speech waveform with an estimate of the vocal tract transfer function.
This estimation is typically performed during the glottal closed phase within which the
vocal folds are in a closed position and there is no dynamic source/vocal tract interaction.
Wang et al. [7] and Cummings and Clements [8] perform, for example, a sliding
covariance analysis with a one sample shift, using a function of the linear prediction error
to identify the glottal closed phase. This method relying on the prediction errors, has been
observed to have difficulty when the vocal folds do not close completely or when the
folds open slowly. The approach of this thesis estimates the glottal closed phase, relying
on a digital simulation method- of the vocal-tract system [9], uses vocal tract formant
modulation which is predicted by Shinji-Maeda-to vary more slowly in the glottal closed
phase than in its open phase and-to respond quickly to a change in glottal area. A
“stationary” region of formant modulation gives a closed phase time interval, over which
we estimate the vocal tract transfer function; a stationary region is present even when the
vocal folds remain partly open. The glottal flow derivative waveform that results from

inverse filtering is characterized by the speakers themselves.
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P— Glotal flow

Speech input  To extract 11 vowels’ A, derivation
—_— > X
Phonemes 'y

Feature Vectors
— Speaker Recognition
extraction
I
P

Vocal-tract To simulate the 11 To calculate the
SysteT’ Vowels’ _ — Inverse _

Transfer function transfer function

Fig. 1-3 : Block Diagram of Glottal Flow Derivation

After extracting the glottal flow derivation, the features are applied to a speaker
verification task using MFCCs feature vectors and a Gaussian Mixture Model (GMM). A
speaker model which represents each speaker in the speaker recognition system will be
built in the training phase and then be used for speaker matching in the test phase. The
modeling approaches are various, including the artificial neural network (ANN) [7],[10],
the vector gquantization (VQ) [11],[12], the Gaussian mixture models (GMM) [13],[14],
the hidden Markov model (HMM) [15],[16],[17] and so on. In 1995, Reynolds
demonstrated that the GMM-based classifier works well in text-independent speaker
recognition even with speech features that contain rich linguistic information like MFCCs

[18]. GMM provides a probability model of the underlying sounds of speaker’s voice. It
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uses several Gaussian density functions to model a speaker and each density function has

its own mean and covariance. For a feature vector denoted as x;, the mixture density for

each speaker is denoted as p(xj |/15):Zihila)ispf (xj). Gaussian density function is

defined as:

(X )= ! expl—2(x. = 1 V() x - u .
pi(xj)_(ZE)D/2|Zi|l/2 p{ 2(1 lul)(zl) (j ﬂ.)} (1.1)

The density is a weighted linear combination of M component uni-modal Gaussian
density each parameterized by a mean vector 4z° and covariance matrix X .
Collectively, the parameters of a speaker’s density model are denoted as

A = {a)f,ﬁf,Z?} and maximum likelihood (ML) estimates of the model parameters are

obtained by using the expectation-maximization (EM) algorithm. Therefore, for an
utterance X ={X,,...., X} and la reference group of speakers {S,,S,.,....,S,}

represented by models {ﬂl,ﬂz, ...... /15}, the identification is executed by the maximum

w>

likelihood classification rule “§=argmax, . p(X |4;) which decides who the
candidates speaker [19] is.

In the following, we will describe the framework of our proposed speaker
recognition system briefly.

First, we choose 11 vowels from MAEDA'’s vocal tract system, the 11 vowels are
shown in Table 1-1. From the vocal tract simulation of the system, we can calculate the
transfer function of each vowel then we can use it as an inverse filtering applied to the
corresponding vowel grabbed from input sentences of the TIMIT database. In the next
procedure, we choose the MFCCs as our feature since the mel-scale mimics the human
hearing which is sensitive to the sound in low-frequency domain. After the feature of

each frame has been extracted, we applied the vowels of each speaker to a ML-based

GMM speaker verification system to construct a model for each speaker. The glottal flow
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derivation method is to enhance the GMM model for considering the overall recognition
system and reducing the system error rate. The detail of the MAEDA’s vocal tract system
and overall speaker recognition system will be described separately in Chapter 2 and

Chapter 3.

Table 1-1 : 11 Vowels with Inverse Filtering

0 1 2 3 4 5 6 7 8 9 10 11

None | iy ey eh ah aa ao oh uw | iw | ew | Oe

Organization of Thesis

This thesis is organized as follow: In Chapter 2 we will review MAEDA'’s digital
simulation method of the vocal-tract system. And in Chapter 3 we will describe the
proposed structure of the speaker recognition, including MFCCs, glottal flow derivation
with inverse filtering, and the GMM maodel classifier. We depict the used database and
show the experimental results to verify that the glottal flow derivative conveys speaker
identity information and the performance of our speaker recognition system in Chapter 4.

Finally, we will give the conclusions of this thesis and the future work in Chapter 5.

17



Chapter 2
Framework of the Vocal-Tract System In

Speaker Recognition System

2.1 Introduction

This Chapter first describes qualitatively the properties of the components of glottal
flow and its derivative, and then briefly reviews Shinji MAEDA’s theory in simulating
the model of vocal tract and associated source/vocal tract interaction, and ends with a

glottal flow derivative model for extracting features to be used in speaker recognition.

2.2 Properties of the Glottal Flow

Speech production is typically viewed as a linear filtering process which can be

considered time invariant over short time intervals. The glottal flow volume velocity,
denoted by (t) acts as the source, sometimes also referred to as the “glottal flow
excitation,” to the vocal tract with impulse response h(t). The volume velocity output of
the vocal tract is then modified by the lip impedance. Because the pressure/volume

velocity relation at the lips can be approximated by a differentiator [20], the speech

pressure waveform s(t) measured in front of the lips can be expressed as
s(t)~ dls, (t)*=h(t)]/dt = [du, (t)/ dt]*h(t). The effect of radiation is typically
included in the source function [20]; the source to the vocal tract, therefore, becomes the

derivative of the glottal flow volume velocity, which we henceforth denote by v, (t), i.e.
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v, (t)= £, (t). Following the approach of Ananthapadmanabha and Fant [21], we assume

that the glottal flow and its derivative consist of coarse- and fine-structure components.

1) Coarse Structure: The relation between the coarse structure of the glottal flow,

denoted by 4, (t), and its derivative, v (t), is shown in Fig. 2-1 for an idealized glottal

flow function. In obtaining the glottal flow derivative, applying the lip radiation effect of
the source flow, rapid closing of the vocal folds results in a large negative impulse-like
response at glottal closure, called the glottal pulse, as shown in Fig. 2-1. The coarse
structure represents the general shape of the glottal flow. The time interval during which
the vocal folds are closed, and during which no flow occurs, is referred to as the glottal
closed phase. The time interval over which there is nonzero flow and the vocal folds are
fully or partially open is referred to.as the glottal open phase. The time interval from the
most negative value of the glottal flow derivative to the time of glottal closure is referred
to as the return phase. The asymmetry of the glottal flow shape during the open phase,
sometimes referred to as skew in the glottal flow, is due approximately in part to the
manner in which the glottis changes in time, and in part to the loading by the vocal tract
during the glottal open phase [21]. In this glottal flow model, the return phase is
particularly important, as this determines the amount of high-frequency energy present in
both the source and the speech. The more rapidly the vocal folds close, the shorter the

return phase, result in more high-frequency energy and less spectral tilt.
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Fig. 2-1 : Relation between glottal flow and-its derivative: (a) glottal volume velocity

(flow); (b) glottal-flow derivative.

2)  Fine Structure: Fine structure of the glottal flow derivative, denoted by v (t)

is the residual waveform obtained by subtracting the coarse structure from the glottal

flow derivative, i.e. v, (t)=v,(t)-v,(t). Two contributions of fine structure are

discussed in this section, ripple and aspiration. As illustrated in Fig. 2-2, ripple is a
sinusoidal-like perturbation that overlays the coarse glottal flow, and thus the glottal flow
derivative, and arises from the time-varying and nonlinear coupling of the glottal flow
with the vocal tract cavity, due to primarily the vocal tract first formant [21]. The timing
and amount of ripple is dependent on the configuration of the glottis during both the open
and closed phases [21],[22],[23]. For example, with folds that open in a zipper-like

fashion, ripple may begin at a low level early into the glottal cycle, and then grow as the
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vocal folds open more completely.

Our second form of fine structure, aspiration at the glottis, arises when turbulence is
created as air flows through constricted vocal folds, and is also dependent on the glottis
for its timing and magnitude. For example, a long, narrow opening, which constricts the
air flow along the entire glottal length, tends to produce more aspiration than, for
example, a triangular-shaped opening with partial constriction. The creation of turbulence
at the glottis is highly nonlinear and a satisfactory physical model has yet to be developed.
A simplification is to model aspiration as a random noise process, which is the source to
the linear vocal tract. The complete fine-structure source is modeled as the addition of the
aspiration and ripple source components. But in this thesis, for the simplifications, we
will only consider ripples and aspiration as a random noise process, which is the source to

the linear vocal tract.

Amplitude

Ripple

Time

Fig. 2-2 : Glottal flow derivative waveform showing coarse and ripple component of fine

structure due to source/vocal tract interaction.
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2.3 Physical Model of Vocal Tract

A model of the vocal-tract system under consideration is shown in Fig. 2-3, which
oral, nasal cavities, and pharyngeal is included. The innermost end of the pharyngeal tube
IS a pressure source through the narrow constriction representing the glottal orifice. The
tracheal tube is omitted in this simulation, since the effects on the acoustic effect upon the
speech spectrum seems to be not so important, except for unvoiced sounds where the
glottal opening is fairly large enough [24],[25]. Universally, it’s almost accepted that the
acoustic waves inside the vocal tract can be regarded as plane or one dimensional for
frequencies below 4 kHz. So, only the cross-sectional area and the perimeter along the
length of the vocal tract determine the acoustic characteristics. Furthermore, if the
cross-sectional shapes can be assumed to be uniform, for example, as circular, the area
function A(x,t), as shown in Fig. 2-4, determines completely the acoustic properties of
the vocal tract. The area function A'(x,t)-specifies that of the nasal tract. The entities
related to the nasal tract are marked by the prime */°. And in this thesis, all the

assumptions introduced in Chapter 3 are based on the uniform vocal tract as circular.
The pressure p(x,t) and the volume velocity u(x,t) inside an acoustic tube with
non-rigid walls are governed, in the first order approximation, by the following partial

differential equations; the equation of Motion (EQM), the continuity (EQC), and that of

wall vibration (EQW), shown as below

P, 0 Pty Ty

=0 (2.1)
ox ot A, A,

ou +i A, p +aAO +880y=

0 2.2

ox ot p,c® ot ot @2)
o’y . oy

m +b—=L+ky=0 2.3

ot 2 ot Y (23)
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Respectively, in egs., (2.1) and (2.2), p, and c indicate that density of the air at
equilibrium, and the sound velocity. The area function is denoted by A, (x,t), which is

related to the previously defined area function A(x,t) by

Alx,t) = Ag(x,1)+ y(x,1)S, (x,1) (2.4
where S,(x,t) indicates a given perimeter of the vocal tract, and y(x,t) the amplitude

of the yielding of walls due to the sound pressure inside the tube.

NASAL CAVITY

l

NOSTRILS

VELUM —> [ (7

LIPS

T

ORAL CAVITY

—— PHARYNGEAL CAVITY

———— GLOTTIS

— PRESSURE SOURCE

Fig. 2-3 : A schematized vocal-tract model.

The equation of walls, eq. (2.3) has been derived assuming that walls are locally
reacting, i.e., the motion, normal to the surface, of one portion of the walls is dependent
only upon the acoustic pressure on that portion and independent of the motion of any
other part of the walls. The coefficients m, b, and k in eq. (2.3) respectively represent the

mass, mechanical resistance, and the stiffness of the wall per unit length of the tube.
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These coefficients, for simplification, are assumed to be constant and uniform along the
vocal tract, even though that the actual values vary according to the location and also the
tenseness of the muscles beneath the wall surface [26],[27]. Often in the literature, these
constants have been specified in terms of a unit surface area. In such cases, the total mass
of the walls may vary unrealistically depending on the vocal tract configuration. On the
contrary, in the specification per unit length, the total mass should be kept relatively
constant, since the length variation of the tract is relatively small, especially in
comparison with the surface area variation. Considering the fact that the total mass of the
vocal tract system is constant, we feel that the specification of mass per unit length seems
to be more reasonable than its counterpart. We have discussed only the mass coefficient,
since the mass is the dominant component of the non-rigid walls in terms of its acoustic
consequences, The values of these.constants are estimated from the data reported by [26],
assuming the cross-sectional area of 4cm?.

This is a rather crude representation--of the non-rigidity of vocal-tract walls.
Nevertheless, this approximation should be able to account for the dispersive propagation
of acoustic waves and for an increase in the bandwidth of the formants due to the loss of
energy through the mechanical resistance of low frequencies.

The flow resistances only become relevant at an extremely narrow constriction.
Such a constriction is formed at the glottis during the production of voiced or aspired
sounds, and at the place of articulation along the vocal tract during the production of
certain consonants. And the resistance at the glottal orifice has been investigated by [28].

They formulated the total resistance as:

12 ylg‘)2 pou

- X, +k g (2.5)
g 3 g c 2
Ag 2A,

where x indicates the viscosity of the air, and A;, |, and X correspond to the

g
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cross-sectional area, the length, and the thickness, respectively, of a rectangular duct
representing the glottal orifice, and k_ is a coefficient having a typical value of 1.38, it’s
determined to account for a normal condition of the larynx being about 3 mm thick. In

eq. (2.5), the first term represents a laminar resistance due to the viscosity of the air, and

the second term represents a kinetic loss, which depends on the volume velocity u, .

Because of an abrupt contraction and expansion in the passage of airflow at the glottis,
eddies are formed at its inlet and outlet. In fact, the value of the coefficient k. ineq. (2.5)
varies from 0.05 to 0.5 at the inlet, and from 0.2 to 1.0 at the outlet, depending on the
shapes.

In the case of a constriction along the vocal tract, the shape of the constriction may
be so different from the larynx that eq. (2.5). is no longer valid. In addition, the shape of
the constriction would vary significantly, depending.on the manner of articulation. In this
implementation, we abandoned this constriction. Instead, a formula for a laminar
resistance in a circular duct is used. The resistance per unit length is given by
R=8zu/lA”? (2.6)
where A indicates the cross-sectional area of the circular duct.

In Fig. 2-3, the glottal end of the pharyngeal tube is directly connected to the

pressure source. The boundary condition is represented by
Psub(t) = p(XO,'[) (2.7)

where P,, indicates a give sub-glottal air pressure, and x, is the coordinate value of

that end.

25



>
4 A’(x,t)
A(xt)
Nostrils
» X
X'y

0 X > X

! <1 Xl
GLOTTIS NASAL BRANCHING LIPS

Fig. 2-4 : The ideal function of.the time-varying vocal tract.

The location of the nasal coupling point is defined as x = x, in Fig. 2-4. The boundary

condition of volume velocity and the pressure must satisfy the following equations
ulx t)=ulx; t)}+u'(01) (2.8)

P01 = P60 =p' (1) (2.9)
Where the superscript ‘-’ indicates the pharyngeal end, and ‘+’ means the inlet of the oral
cavity.

The outlet of the oral and nasal tract is connected to a space where sound is radiated.
Since we don’t concern with the propagation of sound in the radiation filed in this thesis,
it should suffice to characterize the space as an acoustic load specifying the
velocity-pressure relationship at the mouth opening and at the nostrils. Morse and Ingard
[29] have formulated the radiation load as an impedance composed of a resistance and an

inductance in series. The resistance is proportional to @, which is difficult to
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implement into the time-domain simulation. Fortunately, Flanagan [30] has suggested the

parallel circuit approximation, where both the conductance, G,,,, and the susceptance,

rad !

S are independent of frequencies. Thus, at the lip opening and at the nostrils, we

rad !

obtain the following boundary condition

u(XM ’t) = Srad (t)p(XM 't)dt + Grad (t)p(XM ’t) (2.10)

ol—..—o-

where S, (t)=97A,(x,, ,t)/128p,c

Grad (t): 37[\/ ”AO (XM ’t)/8p0

Considering that we don’t know exactly how to describe the real lip opening shapes,
nor their acoustic effects, it may not be justifiable to further elaborate the specification of

the radiation load on the basis of the circular vibrating piston equivalent.

2.4 Frequency Response of a Uniform Tube

For a given configuration, the simulation results can be evaluated in terms of the
transfer function of the discrete time system. For calculating the transfer function, we
derive an impulse response of the system as the pressure variation at the mouth opening
when the system was excited by abruptly closing the glottal section after a steady airflow
had be created in the glottis. The situation of acoustic wave propagates in the vocal tract
is shown in Fig. 2-5. The horizontal axes indicate time in millisecond. The curve at the
top, marked by ‘AG’, represents a stepwise variation of the glottal area. Att = 5ms, the
glottal area is closed instantaneously. The second curve, marked by ‘UG’, represents the
glottal airflow as a function of time. At t = 0, the sub-glottal are pressure (8cm H,0) is
applied to create the airflow. Notice that the glottal flow increases with time, but with

some oscillatory components, indicating the influence of the vocal tract resonances.
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About 3 ms later, the oscillation has been completely suppressed, primarily because of
the loss of energy through the glottal resistances, and the flow reached a steady state. The
airflow drops abruptly to zero at the instant of the glottal closure, which causes a sudden
pressure drop at the pharyngeal end of the vocal tract, as shown at ‘P6’ in Fig. 2-5. ‘P6’ is
corresponding to 3cm above the glottis, and ‘P36’ to the mouth opening. From ‘P11’ to
‘P31’ along the vocal tract are intermediate points with equally spaced intervals of 2.5cm .
It indicates that the sudden pressure drop propagates toward the mouth opening. At the
exit of the tube, the negative pressure is immediately reflected back inside the tube so that
a sharp negative impulse-like peak is formed at the beginning. The ringing following the
first several pulses in the manifestation of Gibbs” phenomenon, due to the fact that the
frequency bandwidth of the discrete system is finite. After several reflections of the
pressure wave, the high frequency components.are sufficiently damped out and the

ringing effect disappears as well-as the marked impulse-like pressure peaks.
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Fig. 2-5 : A given step function-forthe glottal area (AG), the calculated glottal airflow
(UG), and acoustic pressures at different places (From P6 to P36) along the uniform tube.

The frequency response obtained by applying the discrete Fourier Transfer to the
pressure waveform at the mouth opening can be regarded as the transfer function of the
vocal tract in the closed glottis condition. In our implementation, all the transfer functions
of vowels are defined when the glottis is closed.

There are some examples of the impulse response and their corresponding frequency
response of a uniform tube with 5cm? in a cross-sectional area and 16cm in length are

shown as below
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Fig. 2-6 : The impulse and frequency ‘response of a uniform tube. Those from the
simulation with f, =40kHz and'X = 1cmare plotted by the solid line as a reference.
The frequency response with f. = 20kHz s indicated by the dotted line.
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Fig. 2-7 : The impulse and frequency response of a uniform tube. Those from the
simulation with f, =40kHz and X = 1cm are plotted by the solid line as a reference.

The frequency response with X =2cm s indicated by the dotted line.
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2.5 Frequency Response of Vowels

Mrayati [31] has calculated the transfer function of the vocal tract for 11 different
French vowels by means of the transmission-line analog of the tract as described here. In
his experiment, the transfer functions were computed directly in the frequency domain,
and the area functions, the frequencies and the bandwidths of the first three formants of
the 11 vowels are reported. So, there are some comparison results between the two
methods; one in the frequency domain (FDS) and the other in the time domain (TDS).

The area functions are described by a piecewise-constant function having a fixed
section length of 1.cm (i.e., X =1cm). The sampling rate of 40 kHz or 20 kHz is used in
TDS method. The impulse and frequency response for the vowel /a/ simulated with
f, =40kHz is shown in Fig. 2-8.

The formant frequencies computed in TDS agreed well with those in FDS method,
except for the first formant (F1)-of the vowel -/i/.. The value of the F1 frequency is 268 Hz,
which is about 10% higher than the 224 Hz calculated in FDS method. The difference
seems to be attributed to the different manner of specifying the walls of vocal tract. The
parameters, m, b, and Kk in eq. (2.3) make per unit length in TDS tend to result in lower
wall impedance that that per unit area in FDS, for this particular vowel having sections
with a large area. For the other vowels, the difference in F1 frequency is less than 5% and
typically 2%, which means below difference limens (DL) of F1 frequencies. The
difference limens for the first and second formants are about 3% to 5% [30].

The discrepancy in the second (F2) and third formant (F3) frequencies in the two
methods was quite small and never exceeded 1.5%, when f, =40kHz is used. A closed
observation has indicated, however, that F3 frequencies in TDS are always slightly lower
than the corresponding F3 in FDS, indicating the trace of the frequency warping in TDS.
The effect of the warping on the F3 frequencies become quite noticeable as f, = 20kHz
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is used. In this case, the F3 frequencies in TDS were typically 4% and as much as 7%
below the corresponding F3 in FDS. Since this simulation is workable and the error rate
is pretty low, we use the 11 vowels’ transfer function calculated in the TDS method as our
basis to estimate the glottal flow excitation for our speaker recognition system. The

simulation method will be discussed later in Chapter 3.
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Fig. 2-8 : The impulse and frequency response of the vowel /a/ simulated with

f, =40kHz and X =1cm.
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Chapter 3
Speaker Recognition System by Using
Inverse Transfer Function of Vocal Tract

System

3.1 Overall Speaker Recognition System

The framework of our overall speaker recognition system is shown in Fig. 3-1 and
Fig. 3-2.

Speech Signal oliec owels

—
X

S

Glottal Flow .
X — Derivative " Feature Extraction

!! UOWElS |TIV€I'S€

Vocal Tract

26 order Feature VVector

NO
» GMM

’ (13)
P

Vector YES
Quantization

. I
Re-estimate

GMM parameters

—» > Training threshold?

Fig. 3-1 : Training Phase of our Speaker Recognition System for Speaker s.
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Fig. 3-2 : Test Phase of our Speaker Recognition System for Speaker y.

In the training phase of our speaker recognition system, first we cut out the 11
vowels from the original speech signal and turn them into the spectrum domain. And then
we calculate the corresponding inverse transfer function of the vowel from the vocal tract
simulation system mentioned in Chapter 2. After multiplying the spectrums from the
original speech signal and the inverse transfer function of the vocal tract frame by frame,

we can obtain the glottal flow derivative known as the simple equation below

S(w)=E(w)x H(w) (3.2)
E(w)=S(w)x H(w)™ (3.2)
where E(w) represents the glottal flow derivative, H(w) represents the transfer

function of the vocal tract, and S(w) indicates the speech signal in the frequency

domain. After obtaining the glottal flow derivative, we extract the MFCC and other
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features, which are usually used in speaker recognition system from the glottal flow
derivative E(a)) After vector gquantization, we set a training threshold equals 0.005 to
determine that the GMM parameters are well calculated or not. If the training rate is
greater than training threshold, the GMM parameters will be re-calculated and the
iteration will continue. If not, the GMM parameters will be saved and be used by the test
phase as the background model. From the above steps, we can obtain the Gaussian
Mixture Model of speaker s in the training phase.

In the test phase, we also calculate the 11 vowels’ glottal flow derivative from the
same steps mentioned in training phase from the speech signal. Still we extract the
MFCC feature of the speech signal and use the feature vectors to rebuild other Gaussian
Mixture Model and parameters. In the testing phase, we compare the hypothesis GMM
model parameters with the background GMM model parameters and use the equation

below the determine the score of speaker y
A(y)=1og ply | A, )-log ply | 4] (33)

The speaker evaluation system is shown in Fig. 3-3. After we calculate all the scores
of speakers, we use the speaker evaluation system to find equal error rate and the
threshold for all of the speakers according to the statistic method called Receiver
Operating Characteristic (ROC). The speaker evaluation system will read the login and
impostor scores separately, and estimates the ROC curve by 500 times iteration. The
Resolution Scale here is 500, and we can adjust the value in our program. When the
threshold is decided, the evaluation system judges the scores of speakers to decide the
speaker is our customer or just an impostor. If the score is smaller than threshold, the
system rejects the speaker and takes him/her as impostor, on the contrary, the system

accepts the speaker and take him/her as a customer.
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Fig. 3-3 : Speaker Evaluation System
3.2 Each Block of Speaker Recognition System

In the section, we will decompose the entire speaker recognition system into blocks.

After that, we will detail each block of the recognition system.

3.2.1 Glottal Flow Derivative

In this block, it actually combines two sub-blocks including collection of vowels’
spectrum diagram and vowels’ inverse filtering function. We will introduce the two parts
step by step.

In the inverse filtering sub-block on the left side of Fig. 3-4, we can obtain the

vowels’ transfer function and frequency response from simulating the 11 vowels’ vocal

37



tract configuration mentioned in Chapter 2. After inverse filtering, we can obtain H (@)™

(Inverse Transfer Function), and H(a))’1 will be substitute into equation (3.2) in order

to get the glottal flow derivative E(w).

In the collection of vowels’ spectrum diagram sub-block on the right side of Fig. 3-4,
first, we cut off the specific vowels in Table 1-1 out from the speech utterances of TIMIT
database. After that, we remove the DC-offset in the output waveform by using offset
compensation, and then the signal is pre-processed by a high-pass filter. Next, the speech
signal is passed through a Hamming Window and we will cut into segments (frames). In
order to match up the data frame after inverse filtering, we should transform the speech

signal frames to the frequency domain via the Fast Fourier Transform. The data is

multiplied with H (@)™ as shown.in Fig. 3-4.
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Fig. 3-4 : Block Diagram of Glottal Flow Derivative.

3.2.2 Feature Extraction

MFCC is widely used in the automatic speech recognition (ASR) applications. It is
primarily for three reasons [32]: 1) The cepstral features are roughly orthogonal because
of the discrete cosine transformation (DCT), 2) cepstral mean subtraction eliminates
static channel noise, and 3) MFCC is less sensitive to additive noise than linear prediction
cepstral coefficients (LPCC). The key component of MFCC responsible for noise
robustness is the filter bank; the filters smooth the spectrum, reducing variation due to
additive noise across the bandwidth of each filter.

Some of the traditional ways of feature extraction has been moved to process the
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data of the collection of vowels’ spectrum diagram sub-block. So, in our feature
extraction block, we extract 26 order features. First, the spectrum data of the glottal flow
derivative is passed through a 12 order Mel frequency cepstral coefficients filter. And
then the spectrum data is passed through 8 order delta-cepstral coefficients filter and 4
order delta-delta-cepstral coefficients filter. Finally, we will let the data pass through 1
order delta-energy and 1 order delta-delta-energy filter banks and we use the cepstral
mean subtraction (CMS) in order to eliminate the tunnel effects. The block of feature

extraction is shown in Fig. 3-5.
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Fig. 3-5 : Block Diagram of Feature Extraction.
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3.2.3 Build GMM Model of Training Phase

For determining the speaker identification of our source features, we use a Gaussian
mixture model (GMM) speaker identification system. Each Gaussian is assumed
characterized by a diagonal covariance matrix. This choice is based on the empirical
evidence that diagonal matrices outperform full matrices and the face that the probability
density modeling of an Nth-order full covariance mixture can equally well be achieved
using a larger order, diagonal covariance mixture. Maximum Likelihood speaker model
parameters are estimated using the iterative expectation-maximization (EM) algorithm.

Here, we use some equations to symbolize the algorithm.

p(Xj |/15)= zi’\ila)ispis (Xj) (3.4)
s _ 1 -1 A i x - u :
pi (Xj)_ (271')D/2|Zi |l/2 exp{ Z(XJ ﬂ')(zl) (XJ /u')} (35)
p(X | A%Y)> p(x | A®) (3.6)

where eq. (3.4) indicates the mixture density, and eq. (3.5) indicates Gaussian density
function, eq. (3.6) represents to iterate the best parameters for Maximum Likelihood (ML)
by Expectation-Maximization (EM) algorithm.

The use of the GMM classifier is justified by its being an established, general
classifier, which assumes predetermined distributions, and nonparametric classifiers
which typically are computationally expensive, such as K-Nearest Neighbors [33],[34].
Another advantage is that it is insensitive to the temporal change when used in text
independent task. It is well known that if the number of component densities in the
mixture model is not limited, we can approximate virtually any “smooth” density.

The input training vectors (X) in our system can be represented by

;
log p(X [4)=_log p(x, | 1), it is passed through the Expectation-Maximization (EM)

t=1

41



algorithm. Finally, we can obtain the GMM model parameters of the training set after the
iteration progress of the EM algorithm. The block flow chart of Build GMM Model for

training phase and test phase are shown separately in Fig. 3-6 and Fig. 3-7.
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Fig. 3-6 : Block Diagram of Building GMM Model of Training Phase.
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Chapter 4

Experiment Results and Discussion

4.1 Introduction

In the previous chapter, we described the structures of the proposed speaker
recognition system. For investigating and showing the contribution and verification of
these methods we applied, several sets of experiments were done. There are thirteen sets
of experiment in total, and two subsets of experiment result are included in each
experiment. In the first part of experiments, we evaluated the effects glottal flow
derivative in a single region with ML-based GMM with MFCC features, the results are
separated by eight regions. In subset I, we give the results which the speech signals were
processed by our proposed scheme. On the contrary, in subset 11, we give the results of 11
vowels which we used the same: features and classifier but without processed by our
glottal flow derivative method. That means we cut of the 11 vowels from a speaker’s
utterances and directly send them into the feature extraction parts and build they own
Gaussian Mixture Model just as the traditional ways of speaker recognition does. We did
these subsets of experiment in order to verify the assumptions we had made and to show
the efficiency of our proposed scheme. In the second part of experiments, we used a
random number of impostors across the 8 dialect regions to evaluate the effects when our
scheme was used in different dialect regions. And in the last part of experiments, we give
results of the cases when we focus on some security control system, such as an entrance
guard system, we can adjust the threshold or change the dimensions of feature vectors to

reduce the error rate. The experimental results showed the contribution of this model.
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For these experiments, several processing steps occur in the front-end speech
analysis. First, the speech signal was decomposed in frames of 256 samples with an
overlap of 128 samples (the sampling rate is 16k Hz). For each frame, FFT was computed
and provided the square values of the original sample values representing the short term
power spectrum in the 0~4k Hz band. And then, this Fourier power spectrum was used to
compute the power accumulated in each filter bank and the discrete cosine transformation

(DCT) to get the cepstral coefficients called MFCC with 12 orders.

4.2 Experiment Database

The database for the experiments is the TIMIT acoustic-phonetic speech corpus.
This corpus is widely used throughout the world and provides a standard that permits
direct comparison of experimental results obtained by different methodologies. In this
thesis, we used the entire corpus of TIMIT database including 8 dialect regions. Table 4-1
shows the number of speakers for the 8 dialect regions, broken down by sex. There are 10
sentences spoken by each of 630 ‘speakers from 8 major dialect regions of the United
States. In the first eight sets of experiment, there are two subsets .In subset I, we chose 9
sentences to train, the rest of 1 sentence for login test and the other speakers of the same
region for impostors. In experiments subset 11, we will create exactly the same conditions
of subset I but without processed with the inverse filtering process obtained from glottal
flow derivative estimate, this subset of experiment are used for comparison. In the ninth
to eleventh experiments, we randomly chose a number of speakers for training and the
other as impostors which across dialect regions were chosen for impostor test. In the last
two experiments, we give the results to show that we can achieve high performances by

using our proposed scheme.
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Table 4-1 : Dialect Distribution of Speakers

Dialect Region (dr) # Male # Female Total
drl: New England 31 (63%) 18 (27%) 49 (8%)
dr2: Northern 71 (70%) 31 (30%) 102 (16%)
dr3: North Midland 79 (67%) 23 (23%) 102 (16%)
dr4: South Midland 69 (69%) 31 (31%) 100 (16%)
dr5: Southern 62 (63%) 36 (37%) 98 (16%)
dr6: New York City 30 (65%) 16 (35%) 46 (7%)
dr7: Western 74 (74%) 26 (26%) 100 (16%)
dr8: Army Brat 22 (67%) 11 (33%) 33 (5%)

8 438 (70%) 192 (30%) 630 (100%)

4.3 Experiment Results

In the following, three sets of experiments would be carried out to evaluate and
verify our recognition system.

We assigned one class to each of features, and after the process of voting by the
classifications of features, we would make sure which person the speaker was. The

recognition rate was calculated by the result of the error classification.
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Table 4-2 : Recognition Results of Subset | for 1 Customer (48 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 22/49 1033/2352 44.4090130%
64 Bits 30/49 431/2352 39.7746600%
Subset 11
Table 4-3 : Recognition Results of Subset Il for 1 Customer (48 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 22/49 1039/2352 44.5365640%
64 Bits 15/49 1154/2352 39.8384360%

In these tables, “Code Book Size” means how many bits we used to store the code
vectors; “FR_NO.” means the number of false rejection and it is represented in the way
of “FR_NO./Total Sentences” so as the FA_NO. is represented; “FA_NO.” means the

number of false alarm; and “EER” means the equal error rate, it is the average of false

rejection rate and false alarm rate.
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Part | — Experiment 2

Subset |

Table 4-4 : Recognition Results of Subset | for 1 Customer (101 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 38/102 3890/10211 38.6755375%
64 Bits 42/102 4378/10211 42.0259015%
Subset 11

Table 4-5 : Recognition Results of Subset 11 for 1 Customer (101 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 45/102 4353/10211 43.3740720%
64 Bits 12/102 8446/10211 47.2397125%

Part | - Experiment3

Subset |

Table 4-6 : Recognition Results of Subset | for 1 Customer (101 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 38/102 4099/10302 38.5216455%
64 Bits 35/102 4702/10302 39.9776737%
Subset 11

Table 4-7 : Recognition Results of Subset Il for 1 Customer (101 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 41/102 4199/10302 40.4775770%
64 Bits 22/102 6359/10302 41.6472535%
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Part | - Experiment 4

Subset |

Table 4-8 : Recognition Results of Subset | for 1 Customer (99 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 40/100 3914/9900 39.7676770%
64 Bits 43/100 4271/9900 43.0707070%
Subset 11

Table 4-9 : Recognition Results of Subset 11 for 1 Customer (99 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 42/100 3871/9900 40.5505055%
64 Bits 22/100 6187/9900 43.2474755%

Part | - Experiment5

Subset |

Table 4-10 : Recognition Results of Subset | for 1 Customer (97 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 39/98 3721/9506 39.4698200%
64 Bits 31/98 4532/9506 39.6539035%
Subset 11

Table 4-11 : Recognition Results of Subset Il for 1 Customer (97 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 44/98 4308/9506 45.1083530%
64 Bits 44/98 4180/9506 44.4351145%
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Part | - Experiment 6

Subset |
Table 4-12 : Recognition Results of Subset | for 1 Customer (45 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 19/46 583/2000 41.9771730%
64 Bits 21/46 889/2000 45.0510875%
Subset 11
Table 4-13 : Recognition Results of Subset Il for 1 Customer (45 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 21/46 901/2000 45.3510880%
64 Bits 22/46 1019/2000 49.3880450%

Part | - Experiment7

Subset |
Table 4-14 : Recognition Results of Subset | for 1 Customer (99 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 38/100 3874/9900 38.5656570%
64 Bits 34/100 4872/9900 41.6060610%
Subset 11
Table 4-15 : Recognition Results of Subset 11 for 1 Customer (99 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 43/100 4295/9900 43.1919205%
64 Bits 43/100 4331/9900 43.3737385%
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Part | - Experiment 8

Subset |
Table 4-16 : Recognition Results of Subset | for 1 Customer (32 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 13/33 426/1056 39.8674250%
64 Bits 15/33 471/1056 45.0284095%
Subset 11
Table 4-17 : Recognition Results of Subset Il for 1 Customer (32 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 14/33 442/1056 42.1401515%
64 Bits 4/33 865/1056 47.0170465%

In order to verify that our proposed scheme is stable and the glottal flow derivative
indeed convey the speaker identification-information, the eight experiments above used
all the speakers in the TIMIT. The eight experiments were taken by different dialect
regions of the United States, in order to verify the efficiency of our scheme applied to
different regions, we mixed the dialect regions together with a random number of

speakers in the following three experiments shown as below:
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Part Il - Experiment 9

Mixing of the

dialect regions

MFCC
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GMM

Fig. 4-2 : Sketch of the feature and the GMM model of Experiment Part 11

Subset |

Table 4-18 : Recognition Results of Subset | for 1 Customer (94 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 43/95 4108/8930 45.6326990%
64 Bits 58/95 2478/8930 44.4008960%
Subset 11

Table 4-19 : Recognition Results of Subset 11 for 1 Customer (94 impostors)

Code Book Size FR_NO. FA_NO. EER
32 Bits 44/95 4088/8930 46.0470320%
64 Bits 17/95 6960/8930 47.9171325%

Here, the meaning of mixing of the dialect regions represents that we chose a

random number of speakers across the eight dialect regions of the TIMIT database. This

part of experiments was set to verify the effects of our proposed scheme applied to across

different regions.
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Part Il - Experiment 10

Subset |
Table 4-20 : Recognition Results of Subset | for 1 Customer (83 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 30/84 2578/6972 36.3453825%
64 Bits 24/84 377716972 41.3726345%
Subset 11
Table 4-21 : Recognition Results of Subset Il for 1 Customer (83 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 36/84 3048/6972 43.2874350%
64 Bits 37/84 3033/6972 43.7750995%

Part Il - Experiment 11

Subset |
Table 4-22 : Recognition Results of Subset | for 1 Customer (83 impostors)
Code Book Size FR_NO. FA_NO. EER
32 Bits 30/84 2711/6972 37.2991980%
64 Bits 35/84 2952/6972 42.0037288%
Subset 11

Table 4-23 : Recognition Results of Subset 11 for 1 Customer (83 impostors)

Code Book Size FR_NO. FA_NO. EER

32 Bits 34/84 2855/6972 40.7128515%

64 Bits 67/84 593/6972 44.1336770%
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Comparison

Our Proposed Scheme V.S. Traditional Speaker Recognition
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Fig. 4-3 : The Verification R with Code Book Size 32 bits.
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Fig. 4-4 : The Verification Result of Our Scheme with Code Book Size 64 bits.
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Part I11 - Experiment 12

A Population
with Specific
Purposes
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GMM

Fig. 4-5 : Sketch of the feature and the GMM model of Experiment Part 111

Subset |

Table 4-24 : Recognition Results of Subset | for 1 Customer (45 impostors)

Threshold

No. 1 2 3 4 5
CB Size
32 Bits 10.200000% | 8.800000% | 7.550000% | 6.150000% | 4.900000%
64 Bits 11.800000% | 8.250000% | 7.450000% | 5.800000% | 4.250000%
Subset 11

Table 4-25 : Recognition Results of Subset | for 1 Customer (45 impostors)

Threshold
No. 1 2 3 4 5
CB Size
32 Bits 15.650000% | 13.600001% | 11.700000% | 10.900000% | 9.950000%
64 Bits 13.869565% | 12.826087% | 10.869565% | 9.200000% | 7.000000%
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Speaker Recognition for Specific Purpose
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Fig. 4-6 : SR for Speci Purf ode Book Size 32 bits.
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Fig. 4-7 : SR for Specific Purpose with Code Book Size 64 bits.
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Part I11 - Experiment 13

Subset |

Table 4-26 : Recognition Results of Subset | for 1 Customer (48 impostors)

Threshold

No. 1 2 3 4 5
CB Size
32 Bits 11.224490% | 9.311225% | 8.290816% | 7.270408% | 6.972789%
64 Bits 10.664969% | 8.686710% | 7.864068% | 6.169817% | 4.181765%
Subset 11

Table 4-27 : Recognition Results of Subset | for 1 Customer (48 impostors)

Threshold
No. 1 2 3 4 5
CB Size
32 Bits 13.731061% | 11.458334% | 9.753788% | 8.238637% | 7.670455%
64 Bits 12.121212% | 10.664969% | 9.878788% | 7.148717% | 6.060606%
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Speaker Recognition for Specific Purpose
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Fig. 4-8 : SR for Specif - Purpose with Code Book Size 32 bits.

Speaker Recognition for Specific Purpose

14.00%
12.00%
10.00%
8.00%
6.00%

False Alarm Rate

4.00%

2.00%

0.00%

1 2 3 4 5

—— QOur Proposed Scheme Threshold No.
—=— Traditional Speaker Recognition

Fig. 4-9 : SR for Specific Purpose with Code Book Size 64 bits.
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4.4 Discussion

We assumed that the vocal tract would cause unpredictable noises, and we tried to
verify that the glottal flow derivative could convey the speaker identity information. We
used all the speakers in the TIMIT database to test our assumptions mentioned above.
From part | and part Il of the experiments, we can see that the performance of our
proposed scheme normally 3~5% higher than the traditional speaker recognition system,
no matter the speakers are in the same region or not, that means our proposed scheme
could eliminates the noises and the glottal flow derivative indeed conveyed the speaker
identity information. As mentioned in the introduction, our aim was to verify our
assumptions were correct, so we did not care much about the system’s performances. But
in order to show that our proposed scheme was .able to fit some specific purposes of
applications, such as the entrance guard, which focused on the false alarm rates. That
means in such systems, we couldn’t allow-the situation that the impostors were falsely
accepted even when we might have to login for several times. After adjusting the
threshold, we still could achieve the requirements, the results were shown in the part 111

of the experiments.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we presented an automatic technique for estimating and modeling the
glottal flow derivative waveform from speech signals, and applied the model parameters
to speaker recognition. The glottal flow derivative was estimated using an inverse filter
estimated during a closed phase estimate, determined by simulating the transfer function
of the vocal tract described in Chapter 3. A statistical technique, used to identify the
glottal closed phase estimate, allows this algorithm to adapt to the amount of formant
variation during the closed phase, which is dependent on the degree of glottal closure.

A series of experiments are conducted-to verify the usability of the glottal flow
derivative waveform. Because we assume that there are more important components in
the glottal flow derivative than in the original speech signals, and the experimental results
show that this assumption is correct. And furthermore, maybe we can use other features
or classifier to get better performance. But this is beyond the scope.

The experiments I~1l has shown the performance of the glottal flow derivative with
ML-based GMM. Compared our proposed system with the original speech with

ML-based GMM, it is improved approximately 3~5%.
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5.1 Future Work

By using MFCC, we can find the hidden predictive information of the speech signals
and reduce the computation time of the data. However, how many dimensions we select
will have the best performance is an interesting problem. If we are able to know about it,
we could raise the recognition rate and would not waste the operations. Thus, we can use
them directly instead of choosing them empirically. But so far, we use the dimensions of
12 order of MFCC to save more computation time is a time efficiency way for our
experiments.

For our glottal flow derivative estimate, a very important point is that we only get 11
vowels for recognition. In our estimate, the 11 vowels’ data samples sometimes are not
enough to establish a robust Gaussian Mixture Model, which means if we can simulate
the entire speech signals’ vocal tract transfer function, it will advance the speaker
recognition technique and reduce the error rates. Another important point is to find a
reasonable method of controlling the smoothness of data samples when we combine the
vowels together.

In addition, because of the ability of motor equivalence [35], we are not able to
know the exactly vocal tract configuration of the person when he/she produces the
sentences. So, there will be another important task to figure out a method to eliminate the
effect of the motor equivalence. (Motor equivalence is the ability to carry out the same
task using different motor means. For example, people are capable of producing a sound
with very similar vocal tract configurations.) In our expected design as shown in Fig.
1-1Fig. 5-1 , we are supposed to construct an algorithm that use a sentence as an input,
and by adjusting the parameters of the vocal tract system to synthesis a similar waveform.
After that, we will use a close loop neural network to verify the error and adjust the

parameters iteratively (this is so called analysis by synthesis). In this way, we whould
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calculate or say speculate the vocal tract configuration of the sentence. And then, we
would use the inverse transfer function of the vocal tract to calculate the glottal flow
derivatives of the speaker from the sentence. Finally, we use the glottal flow derivative to
construct a GMM and for a speaker recognition system.

Finally, we can apply this speaker recognition system to other speaker recognition
system since there are kinds of recognition. Of course, it requires some modification
between the two systems. For example, we should use HMM to replace GMM for

continuous speech signals.

speccn | | iz ey

Signal
9 Glottal Flow

_ o+, Guessvocal tract al F
Derivative

And transfer function

S ) I

/ Speaker Recognition
System

Neural Network

Fig. 5-1 : Our Expected Design..
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