
 i

基於本體論的 DNS 網路服務系統之研製

學生: 劉建良 指導教授: 曾憲雄

博士

國立交通大學電機資訊學院

資訊科學系

摘要

領域名稱伺服系統 (Domain Name System，以下簡稱 DNS) 是現今網際網路

基礎設施的重要環節之一。然而，目前市面上卻很少以 DNS 為主的專業網站。

另外，隨著新的網路應用 (比如說 IPv6 或是 ENUM)出現，DNS 的管理也變的更

加複雜。我們在 2003 年提出一套智慧型 DNS 整合管理系統 (iDNS-MS)的架構，

並據以實作出一套實驗系統，開放於網路上面，提供給因為 DNS 系統管理問題而

求助無門，以及其他希望了解更多 DNS 統合知識的網友，透過線上操作與學習，

能夠學到更完整的 DNS 管理知識，得以掌握所管理系統的狀況，進而改善系統

整體的服務效能。雖然 DNS 診斷系統可以提供使用者關於 DNS 問題所需要的建

議，然而這樣的建議往往都是需要擁有相當的 DNS 背景知識才有辦法確切的瞭

解。因此，與 DNS 診斷系統結合之 DNS 教學系統是非常需要的。除如何提供個

人化的學習環境，規劃參考個人特質之適性化學習環境對於學生學習與教學教材

的重複使用性與透通性也非常的重要；由於 SCORM 即可重複使用既有的教材，

因此我們採用 SCORM 作為網路教學系統平台。另外除了診斷系統與教學系統之

外，我們以 DNS 本體論架構作為背景知識，提出一個基於 DNS 本體論的三層式

搜尋系統架構來輔助資料搜尋；三層式架構包含表現層、邏輯層與資料層，經由

不同層次的分工可以讓整個架構更彈性並且擁有高度的可重複使用性。在本論文

中，我們著重在使用專家系統與本體論技術來設計與實做包含診斷系統，教學系

統與搜尋系的 DNS 知識入口網站。

 ii

從 2003 年 iDNS-MS 開始對外提供服務而且收到的反應大都是正面的；所以

基於 DNS 本體論來建構專家系統是可以得到不錯的成效的；透過整合診斷服

務、教學服務與搜尋服務的 DNS 知識入口網站將可以把 DNS 知識做更大程度的

分享與使用。另外，只要再稍加修改，同樣一套開發模式與所發展的技術，應該

可以套用到許多科學及工程領域，來進行系統知識的擷取與類似專家系統的開

發。

關鍵辭: 網域名稱伺服系統, 專家系統, 知識擷取, 知識本體, 規則擷取

 iii

Design and Implementation of Ontology-Based DNS Web

Services
Student: Chien-Liang Liu Advisor: Dr. Shian-Shyong Tseng

Department of Computer and Information Science
National Chiao Tung University

ABSTRACT

The Domain Name System (DNS) is an essential part of the Internet infrastructure.

However, few DNS professional web services can provide the DNS related

knowledge. In addition, the new trend of DNS (such as IPv6 and ENUM) makes DNS

management more complex. In 2003, we proposed a unifying intelligent system for

DNS management, which provides the framework for DNS-related services. Although

the diagnosis service could provide some suggestion about the DNS problem, for

some novice DNS administrators, the suggested information is not enough. General

speaking, the suggested information is not self-explanatory and often needs some

DNS background knowledge to understand. Therefore, in addition to the online DNS

diagnosis results, the DNS-related tutoring materials would also be required after the

diagnosis process. In addition to the tutoring information combined with diagnosis

system, tutoring system which could provide individualized learning environment, the

reusability and interoperability issues of the teaching material are important as well.

Since SCORM (Sharable Content Object Reference Model) could reuse existing

teaching material, we adopt SCORM as web-based tutoring platform. In addition to

diagnosis service and tutoring service, based on DNS ontology as the background

knowledge, we propose a three-layer DNS ontology based search system framework

 iv

to facilitate information search. The framework consists of presentation layer, logic

layer and data layer. The separation of the layers would make the whole system more

flexible and reusable. In this thesis, we focus on the design and building of DNS

portal web service (including DNS diagnosis, DNS tutoring service and search service)

by using knowledge-based system and ontological engineering technologies.

We have started to offer diagnosis service since 2003 and feedback shows that the

paradigm of using DNS ontology to build knowledge-based system works good and

effective. The integration of DNS diagnosis service, tutoring service and search

service would benefits the sharing and reusing of DNS knowledge. In addition, with a

few modifications, the same paradigm and developed algorithms could be easily

adapted to other scientific or engineering domains.

Keywords: DNS, Knowledge-based System, Knowledge Acquisition, Ontology, Rule
Extraction

 v

誌謝

首先感謝恩師曾憲雄教授多年來的指導，沒有曾教授的指導，本論文將無法

完成；在曾教授不厭其煩的指導下，引導我逐步學習與培養許多獨立研究的方法

及技巧，讓我不僅僅只是完成本論文，同時也讓我瞭解到研究的本質；同時，也

要感謝論文口試委員中央大學資工系 李允中教授、成功大學電機系 謝錫堃教

授、東華大學電機系 趙涵捷教授、中央研究院資訊所 陳孟彰教授，以及本校資

科系 孫春在教授、袁賢銘教授、施仁忠教授的建議，使整篇論文的理論與實務

內容，更加趨於完整。
其次，本篇論文得以順利完成，要感謝許多人的協助、體諒與鼓勵。我必須

要特別感謝陳昌盛博士以及陳瑞言、張俊彥兩位學弟的幫忙，使得本論文的主要

理論基礎與架構，能夠逐漸成形，最後終於能圓滿完成；同時，也要感謝實驗室

其他學長或學弟妹的幫忙，使得本篇論文實際的研究探索過程，能夠順利地進

行，一直到論文完成。
最後，感謝家人的鼓勵與支持；在我決定念博士班的時候，你們的默默支持，

讓我可以心無旁騖，專心於博士論文的研究；在我面臨挫折時，你們的關懷與支

持，讓我能夠將眼前遭遇的困難，逐漸轉化成為克服困境的動力，衝破難關，繼

續堅持到底。

僅將這一篇論文，獻給老師、實驗室的學長與學弟妹、論文口試委員、以及我最

親愛的家人。

 vi

Contents

ABSTRACT (In Chinese)...i
ABSTRACT... iii
Acknowledgement ...v
Contents ..vi
List of Figures .. viii
List of Tables..x
List of Algorithms ...xi
Chapter 1 Introduction...1

1.1 Motivation..1
1.2 DNS Ontology based Knowledge Portal ...5
1.3 DNS diagnosis service ...5
1.4 Ontology-based DNS Model-Tracing Tutoring System7
1.5 DNS Ontology-based Search Engine...8

Chapter 2 Preliminaries ...11
2.1 DNS Domain Knowledge and Ontology ...12

2.1.1 Basics of the DNS System ..12
2.1.2 Use case modeling and DNS ontology building...............................16
2.1.3 DNS ontology ...18

2.2 New Trend in DNS ..21
2.2.1 DNS and IPv6 ...21
2.2.2 SIP and ENUM ...22

2.3 Model Tracing Tutoring...24
2.4 Sharable Content Object Reference Model (SCORM)................................27
2.5 Overview of DRAMA/NORM ..32

Chapter 3 The Problem Situations...35
3.1 Knowledge-Based System Rules Extraction ...35
3.2 Intelligent Tutoring System ...37
3.3 Intelligent Search System ..38
3.4 Typical DNS management issues...39
3.5 ENUM DNS management issues...40

3.5.1 Scenario 1: Network attacks on ENUM DNS...................................41
3.5.2 Scenario 2: DNS spoofing ..42
3.5.3 Scenario 3: Mailing errors due to the lack of reverse DNS entries ..43

Chapter 4 DNS Knowledge Portal...45

 vii

4.1 DNS knowledge Representation ..45
4.1.1 Ontology Knowledge Representation ...46
4.1.2 Rule-based Knowledge Representation ..51
4.1.3 Hybrid Knowledge Model ..53

4.2 Ontology-based Learning Sequence Construction.......................................54
4.3 Diagnosis-Learning-Search Model ..60

Chapter 5 DNS Ontology and Ontology-Driven Model..63
5.1 ENUM DNS Knowledge and Ontology ..63
5.2 Ontology-driven model for rule extraction ..65
5.3 DNS Ontology-based Model-Tracing Tutoring ...73
5.4 DNS Ontology-based Search System ..76

Chapter 6 System Architecture ..79
6.1 Diagnosis-Learning-Search Model ..79
6.2 DNS Diagnosis System..80
6.3 DNS Ontology-Based Model-Tracing Tutoring ..84
6.4 DNS Ontology-Based Searching ...90

Chapter 7 Implementation and Evaluation ..97
7.1 System implementation..97
7.2 Diagnosis examples ...98
7.3 Model Tracing Tutoring examples...102
7.4 Building an ENUM DNS server ..103
7.5 DNS Ontology-based Search Service ..107
7.6 Evaluation .. 111

Chapter 8 Concluding Remarks...113
Reference ...116

 viii

List of Figures

Fig. 2.1: DNS operation model..13
Fig. 2.2: DNS modeling and DNS ontology construction17
Fig. 2.3: Snapshot of DNS ontology ..19
Fig. 2.4: ENUM operational model ..24
Fig. 2.5: Possible problem-solving path about algebra problem26
Fig. 2.6: An activity tree with clusters..27
Fig. 2.7: An example of objectives ..30
Fig. 2.8: The tracking models..32
Fig. 3.1: The management hierarchy of general/IPv6/ENUM DNS

server ...40
Fig. 4.1: Building the DNS ontology using Protégé-200050
Fig. 4.2: Employee and department table schema50
Fig. 4.3: Animal ontology hierarchy ...51
Fig. 4.4: Ontology-based learning sequence construction......................56
Fig. 4.5: Ontology-based learning sequence construction module57
Fig. 4.6: Example annotation in SPOF rule...58
Fig. 4.7 Meta knowledge extraction module ..58
Fig. 4.8: Example and quiz annotation module.......................................59
Fig. 4.9: Diagnosis-Tutoring model ..61
Fig. 4.10: Ontology-based search service ...62
Fig. 5.1: Domain knowledge in the KBS to aid the DNS management .64
Fig. 5.2: Ontology to DRAMA knowledge class65
Fig. 5.3: The knowledge class structure of diagnosis service67
Fig. 5.4: Ontology-based model-tracing tutoring structure generation 74
Fig. 5.5: Model-tracing tutoring for SPOF problem...............................75
Fig. 5.6: DNS ontology examples ..76
Fig. 6.1: iDNS-MS system architecture ..80
Fig. 6.2: System architecture of DNS diagnosis system81
Fig. 6.3: “DNS Registration” KC acquires the facts of “DNS server”

KC..83
Fig. 6.4: System architecture of DNS tutoring system............................85
Fig. 6.5: DNS tutoring teaching material hierarchy86
Fig. 6.6: DNS tutoring flow ...89
Fig. 6.7: System architecture of ontology-based search system90
Fig. 6.8: The AI hierarchy ...92
Fig: 6.9: Ontology inference engine flow ...95

 ix

Fig. 6.10: DNS ontology XML...96
Fig. 7.1: The DNS diagnostic subsystem ..98
Fig. 7.2: DNS testing on DNS diagnosis system.....................................101
Fig. 7.3: Inference results of DNS-related mail delivery problems101
Fig. 7.4: DNS tutoring subsystem ...103
Fig. 7.5: DNS SCORM Example...103
Fig. 7.6: ENUM DNS result page..106
Fig. 7.7: DNS information content management system107
Fig. 7.8: DNS related data insertion interface108
Fig. 7.9: DNS ontology-based search interface......................................110
Fig. 7.10: Search result using query string “Master DNS”110
Fig. 7.11: Daily statistics for March 2005...112

 x

List of Tables

Table 2.1: A simple classification of typical DNS problems13
Table 2.2: List of DNS assistant software..15
Table 2.3: The description of Sequencing Control Mode (SCM)28
Table 3.1: Management issues of IPv4, IPv6 and ENUM DNS39
Table 5.1: SPOF case description ..70
Table 5.2: Attribute ordering table for single server/single server cases70
Table 5.3: Attributes and values of NS Records for Single Server70
Table 5.4: Attributes and values of physical location for Single Network ..71
Table 5.5: SPOF pseudo rules..71
Table 6.1: Teaching materials for specific pseudo-rules..............................87
Table 7.1: ENUM DNS properties...104

 xi

List of Algorithms

Algorithm 4.1: Basic learning sequence construction algorithm...........55
Algorithm 4.2: The example annotation algorithm59
Algorithm 5.1: DNS ontology constructing algorithm............................66
Algorithm 5.2: Ontology to knowledge class transformation algorithm

..68
Algorithm 5.3: Knowledge class facts/rules loading algorithm72

 1

Chapter 1 Introduction

The Domain Name System (DNS) is an essential part of the Internet software

infrastructure. Unfortunately, due to the distributed nature of DNS systems and lack of

efficient knowledge sharing mechanisms among DNS administrators, even though

DNS is so important to network operation today, rather few DNS administrators have

the expertise to do the jobs well. Besides, we could often find lots of poorly

performed DNS servers on lots of Internet sites [M&M03]. In this thesis, we propose

an ontology-based problem solving approach to strengthen the sharing of DNS

knowledge.

Currently, most administrators learn to enhance their DNS management skills by

fixing their encountered DNS problems or other reported cases through DNS

administration books and public mailing lists such as those on ISC-BIND [BIND2005]

web page. However, due to the limitation of one’s own experience and lack of

required domain knowledge about DNS, it is often the case that many people usually

have a long and hard time before they could finally benefit from these readings and

discussions. Moreover, with the furtherance of new DNS-related issues such as IPv6

[HD98], ENUM and multilingual DNS, the DNS management tasks might become

even more complicated than ever before. Therefore, a system with integrated

functionalities (including diagnosing, tutoring, etc.) to help DNS administrators learn

and manage their DNS servers is required and highly recommended.

1.1 Motivation

C.S. Chen, S.S. Tseng, and C.L. Liu (2003) proposed a framework for the design

and implementation of a unifying intelligent system (i.e., Integrated DNS

 2

Management System, iDNS-MS) for DNS management, including DNS configuration,

DNS design, outstanding traffic monitoring and analysis [CT+02-1], DNS diagnosis,

and DNS tutoring systems [CT+03]. The iDNS-MS has started to provide services

since 2003 and most of the feedbacks from users are positive. However, by analyzing

the usage logs and studying the feedbacks collected, we find that there are still many

ways for attacking the problem and improving. For example,

 First, although the diagnosis service could provide some suggestion about the

DNS problem. However, for some novice DNS administrators, the suggested

information is not enough. General speaking, the suggested information is not

self-explanatory and it often needs some DNS background knowledge.

 Second, new Internet application issues should be incorporated into the existing

system to enhance existing system.

 Third, the tutoring system is important for some DNS administrators, so the

design of the learning sequence about DNS domain is important as well. With

appropriate learning sequence design, the users will benefit more from the

tutoring system.

In the following, we will briefly describe the main ideas of this research. First of all,

even though the diagnosis service could provide the suggestions to network users,

however, the provided suggestion information is not enough for many novice

administrators. General speaking, the diagnosis suggestion focuses on how to fix

users’ problem only and it is often concise and pithy. In other words, the suggested

information is not so self-explanatory and it needs some DNS background knowledge.

However, for many novice DNS administrators, the incorrect configuration is due to

that they do not have correct or enough DNS background knowledge. Therefore, in

addition to the online DNS diagnosis results, the DNS-related tutoring materials

would also be required after the diagnosis process.

 3

On the other hand, in addition to the tutoring information combined with diagnosis

system, the tutoring system is important as well. In iDNS-MS, we present the DNS

tutoring system on the web using HTML format and topic-oriented structure. In

general, the topic-oriented structure presents the teaching material passively and it

could not present the most appropriate teaching material at appropriate time. General

speaking, it is important to provide individualized learning environment and that

would facilitate users’ learning. Moreover, the reusability and interoperability issues

of the teaching material are important as well. When the teaching material is reusable,

other tutoring system could reuse the teaching material directly. On considering these,

we adopt the SCORM (Sharable Content Object Reference Model) model for building

the web-based tutoring system. Theoretically, SCORM is a suite of technical

standards that enable web-based learning systems to find, import, share, reuse and

export learning content in a standard way.

Moreover, new Internet services make DNS management more complex as well.

For example, Internet telephony becomes more and more active now since Internet

telephony system is motivated due to the possibility for cost-saving and the

integration of new services. Nowadays, many people start consider about the

possibility for the integration of voice and data applications that could connect the

PSTN with the IP network and apply a unique identical methodology to provide most

interesting services.

 ENUM [Faltstrom00], developed as a solution to the question of how to find

services on the Internet using only a telephone number, is the proposed IETF protocol

that could assist in the convergence of the PSTN and the IP network. Since DNS is the

existing distributed infrastructure for the translation between hostname and IP address

and existing DNS system works well. Thus, ENUM propose to adopt DNS as ENUM

infrastructure. An ENUM Domain Name System (DNS) [AL01] server is used to

 4

convert the phone numbers into the domain names and vice versa. In other words, it is

the mapping of a telephone number from the PSTN to Internet services.

Furthermore, current Internet is mainly based on IPv4, which has shown its

inability on adapting itself to many real-world applications. First, the shortage of IPv4

address space becomes a serious problem. For example, many telephony devices need

the "always-on" [HH02] capability. In other words, these devices might need their

own IP addresses during the communicating process. Second, new applications

requiring important functionalities such as real-time and bandwidth reservation

usually could not find good QoS (Quality of Service) support since IPv4 is primarily

based on the best-effort working model. Third, the lack of data security and integrity

mechanism on IPv4 becomes a big concern when e-commerce applications are

performed on the Internet platform. Based on the above observations, IPv6 [HD98] [C

H97], the next generation Internet protocol, is designed to replace IPv4. As we know,

IPv6 having 128-bit IP address space not only could provide us enough IP addresses,

but also could have a much better intrinsic security and QoS support. By these

considerations, the IPv6 protocol stack is supposed to be required in ENUM

environment and be superior to IPv4 for deploying massively IP telephony system.

However, most people still have limited IPv6 experience. Hence, the dual-stack

IPv4/IPv6 model is usually adopted by most sites as a solution.

In short, new application issues make DNS management more difficult. Therefore,

it is supposed that a DNS portal system which could help novice DNS administrators

learn and improve their DNS skills is required. In essence, our main contributions are

listed as follows:

1. We propose an ontology-driven model for rules extraction. That could

facilitate the rules extraction on DNS diagnosis system.

2. To eliminate self-explanatory problem of diagnosis system, we propose to

 5

adopt model-tracing tutoring for further DNS tutoring. Besides, we propose an

ontology-based model-tracing tutoring construction algorithm

3. We propose a DNS Ontology-Based search framework, which adopt DNS

ontology as background knowledge, to facilitate the information search.

4. To reduce the complexity of SCORM learning sequence construction, we

propose an ontology-based learning sequence construction model to generate

the DNS learning sequence scheme.

1.2 DNS Ontology based Knowledge Portal

In this thesis, we pro pose to attack the above sub-problems by strengthening the

iDNS-MS web services using DNS-portal like approach. Now the whole system

consists of DNS diagnosis service, DNS tutoring service and DNS search service,

where DNS diagnosis service helps DNS administrators diagnose their existing DNS

servers, DNS tutoring service helps DNS administrators learn correct DNS knowledge,

and DNS search service could help users search the information in the DNS portal

system more efficiently. In essence, all the services are based on a DNS ontology. In

DNS diagnosis service, we propose an ontology-driven rule extraction model to assist

the rule generation. In tutoring service, we propose an ontology-based DNS

model-tracing tutoring model to help knowledge engineer construct the skeleton of

the model-tracing tutoring. In DNS search service, we make use of ontology concepts

and relationships to enhance the search capability.

1.3 DNS diagnosis service

As with the popularity of Internet, the expert system (ES) [Durkin94] [Gaines00]

technology has been applied to various applications in internetworking services,

producing a considerable amount of knowledge as a by-product. Such knowledge

 6

compiled through internetworking applications can offer learning opportunities to the

Internet communities for knowledge sharing and improving the management of the

Internet [NS+00].

In DNS diagnosis service, we adopt DRAMA/NORM [LT+03] as the expert system

shell because of its client-server architecture and the object-oriented knowledge base

structure. The client-server feature of DRAMA/NORM makes it easy to develop KBS

(Knowledge-Based System) for supporting intelligent DNS management through web

interface. On the other hand, the knowledge model of DRARA/NORM is based on

knowledge classes, which are like the concepts of ontology. Therefore, the

transformation between the ontology concepts and the knowledge classes becomes

easy. In NORM, a KC represents a kind of concept that people realize. It consists of

rules, facts declarations and relations (with other KCs). The facts and rules denote the

internal characteristics of the knowledge class and the relations between the

knowledge classes simulate the interaction of the concepts. In addition, because of the

object-oriented knowledge base structure, the knowledge can be modularly managed.

There are many advantages of using such a modular knowledge base design. First, the

knowledge base is partitioned into general clusters of concepts and rules are grouped

into sets of specific concept domains. Thus, it provides a logical partitioning of the

rule base, which facilitates the management of rules in each knowledge class. Second,

it is easy to reuse existing rules based on modular knowledge base design. Therefore,

this can help provide personalized service for different users.

In this thesis, we propose an ontology-driven model [LT+04-1] to help extract KBS

rules from DNS problem cases. There are three phases in the ontology-driven model:

ontology construction phase, knowledge class organization phase and facts/rules

loading phase. Ontology construction phase is used to construct the domain ontology,

knowledge class organization phase is used to organize the relationship between the

 7

knowledge classes, and facts/rules loading phase is used to fill in the facts/rules of

knowledge classes extracted from domain experts. As mentioned in [CJ+99], the role

of ontologies is to capture domain knowledge and provide a commonly agreed upon

understanding of a domain; however, like many real-world applications, most

problems in DNS domain could be easily addressed by using rules. However, rules

extraction from domain experts is not necessarily a straightforward job; we often need

some knowledge acquisition processes to help achieve the goal. The main

functionality of ontology-driven model is to help the KEs to extract the rules with the

help of ontology. In essence, ontology representation is suitable for communications

and natural for human thinking, meanwhile rule representation is powerful for

machine to manipulate the concepts. Ontology-driven model could facilitate the

transformation of ontology representation and rule representation.

1.4 Ontology-based DNS Model-Tracing Tutoring System

Currently, with the exception of some specific applications (e.g., peer-to-peer

applications [Shirky00], etc.), most internetworking services are based on the working

model in which there will be some successful DNS queries before the communication

activities. In principle, the hierarchical and distributed properties of the DNS system

make the administration duties to be distributed among different organizations and

networking sites and make the whole system more scalable and robust. However, the

debugging and tracing issues of network system become more difficult as well. Many

network services might not work properly and seem to fail whenever there are

contingency events that make their DNS servers unable to work properly as expected.

Theoretically, DNS tutoring service is important for those who would like to know

the DNS operation principles in more detail. If DNS administrators could have basic

and correct DNS knowledge, the possibility of incorrect configuration would be less

 8

when building a new DNS service. Thus, we design and implement a DNS

model-tracing tutoring system. Instead of providing DNS diagnosis and tutoring

course separately, we further propose a diagnosis-driven tutoring system to address

these kinds of issues. In practice, through DNS diagnosis process, users could identify

their problems and the DNS configuration information reflects the users’ activities on

DNS server. In essence, DNS diagnosis system could be viewed as problem-driven

model and diagnosis rules could be used to trace users’ action. In theory,

model-tracing methodology [AB+90] for tutoring is based on the ACT theory of skill

acquisition. Accordingly, a skill can be analyzed into a set of productions rules and

instruction can be organized around these rules. Based on above observations, it

seems model-tracing tutoring is appropriate for DNS tutoring system.

However, model-tracing tutoring construction is not necessarily a straightforward

job; it usually needs some knowledge acquisition to help construct the model.

Consequently, we further propose an ontology-based approach for the model-tracing

tutoring skeleton construction [LT04-3]. The main functionality of ontology-based

model-tracing model is to help the knowledge engineers construct the skeleton of

model-tracing tutoring with the help of ontology and extract the production rules for

simulating users’ behaviors.

1.5 DNS Ontology-based Search Engine

Search engine often plays an important role in the information system or portal

server. Because much information exists in the Internet or system, search engine is

one of the most convenient tools for us to find required information. However, most

of traditional search engines are based on keyword search which ignores semantic

information. The drawbacks of keyword search are listed as follows:

1. Ambiguity problems:

 9

Term ambiguity often occurs during keyword search and that would lead to irrelevant

information result. For example, the single term “bank” could be referred to the

institution that accepts money deposits or the slope beside a body of water. Without

any other information providing, the search engine would misunderstand the meaning.

2. Expression problems

Sometimes it is not easy to express what we want with keyword expression.

Especially when we are not familiar with that domain, general term expression would

be a convenient way. For example, for most of novice DNS administrators, they know

that the term “DNS security” could be used to represent DNS security issues, but they

do not know the specific DNS security issues (e.g. “DNS Dynamic Update” or “Zone

Data Protection” issues).

3. Synonym problem

Different domains have domain-specific abbreviation about the term sometimes. For

example, in DNS domain, the term “Master DNS” is identical to “Primary DNS”.

Without the background knowledge, the users would miss some required information.

When users would like to search “Master DNS” information and enter “Master DNS”

as the keyword, “SPOF” information may be excluded.

In essence, the domain ontology could represent the term semantics by the concepts

and relationships between the concepts. Besides, if the application focuses on specific

domain, ontology would be viewed as the background knowledge of the domain and

that would improve the search capability. Hence, based on DNS ontology as the

background knowledge, we propose a three-layer DNS ontology based search system

framework, which consists of presentation layer, logic layer and data layer. The

 10

separation of the layers would make the whole system more flexible and reusable.

With minor modification, we could change the presentation from web interface to

other user interfaces (e.g. PDA, email, etc.). Moreover, the flexibility of importing

new data source (e.g. mailing list archie, PDF files, WORD files, etc.) is reserved.

 11

Chapter 2 Preliminaries

In our system design, we adopt expert system as the system backend system.

Therefore, we need to perform knowledge acquisition process to extract knowledge

from domain experts. General speaking, different knowledge representation schemes

exist for the knowledge representation. Different knowledge representations have

different focus. In our system, we adopt ontology and rules as the knowledge

representation schemes. In C.S. Chen, S.S. Tseng and C.L. Liu (2003), the DNS

ontology is constructed based on the use case modeling. The middle-out approach

takes into account the cases from users and the skeleton structure from domain

experts both and then perform the merge process to combine these two kinds of DNS

knowledge. Use case modeling for ontology construction works well and could make

the knowledge acquisition process more successfully. In essence, the ontology should

be able to evolve when the original knowledge modified or new knowledge comes. In

Chen et al. (2003), the DNS ontology focuses on IPv4 only and that needs some

modification because of the requirement of new applications domain.

In addition to diagnosis system, the intelligent tutoring system is important as well.

The integration of diagnosis system and tutoring system would be helpful for those

who would like to know the DNS operation model more detail after the diagnosis

process. Furthermore, we adopt SCROM standard as the web-based learning platform

to achieve the goal of reusability and interoperability. In Section 2.1, we would

describe the DNS domain knowledge and ontology representation. In Section 2.2, we

would describe the new application trend that related to DNS. Section 2.3 and Section

2.4 introduce model-tracing tutoring and SCORM, respectively. Finally, in Section 2.5,

we describe the DRAMA/NORM, which is the expert system shell in our system

 12

design.

2.1 DNS Domain Knowledge and Ontology

2.1.1 Basics of the DNS System

The Domain Name System [Mockapetris87-1, Mockapetris87-2] is responsible for

translating between hostnames and the corresponding IP addresses needed by

software. The mapping of data is stored in a tree-structured distributed database where

each name server is authoritative (responsible) for a portion of the naming hierarchy

tree. The client side query process typically starts with an application program on the

end user's workstation, which contacts a local name server via a resolver library. That

client side name server queries the root servers for the name in question and gets back

a referral to a name server who should know the answer. The client's name server will

recursively follow referrals re-asking the query until it gets an answer or is told there

is none. Caching of that answer should happen at all name servers except those at the

root or top-level domains (.com for example). The working paradigm could be

illustrated in Fig. 2.1.

 13

Arpa

in-addr

0 255140

113

250

5

hk, jp,... tw

com
edu

org

ntu
nctu

ncku

cc am

www

gov

com gov

root

www.nctu.edu.tw = 140.113.250.5

Fig. 2.1: DNS operation model

There are many operational, planning and management issues that need expertise to

improve the DNS system. Unfortunately, new administrators or administrators that

manage a small scale of network usually do not know the theoretical and practical

knowledge of DNS system very well. It takes a long time for them to gain the related

knowledge without the assistance of the experts.

Table 2.1: A simple classification of typical DNS problems

Category Examples
1. Configuration errors Lame Server, etc.
2. Inappropriate planning and management

(e.g., Improper defaults, etc.)
Inappropriate DNS dynamic update,
WINS-to-DNS forwarding, etc.

3. Inappropriate software implementation
(e.g., not immune to cache poisoning, etc.)

DNS-spoofing, server root
vulnerability exploited, etc.

4. Attacks to the DNS systems DDoS, forwarding attacks, etc.

Table 2.1 shows a simple classification of DNS problems that most DNS

 14

administrators might encounter. Due to the complex and distributed nature of the

DNS system, we could often find lots of poorly performed DNS servers (i.e. by

mis-configuration, inappropriate planning, etc.) on lots of Internet sites. Many

factors contribute to these and the important ones are listed below:

 Lots of novice DNS administrators do not know the theoretical and practical

knowledge of DNS system very well. It takes a long time for them to gain the

related knowledge without the assistance of the experts.

 Many administrators that manage a small scale of network lack the experiences

for dealing with global Internet traffic. Some serious problems (e.g., using buggy

versions of DNS software, inappropriate configuration or planning problems, etc.)

had not been identified or even been ignored on these sites. Initially, these

small-scale anomalous activities may seem immaterial on the sites; however, these

issues can become fatal problems when the overall traffic grows larger and larger.

 Moreover, given the importance of DNS servers, direct or indirect attacks on the

DNS systems are common [BIND05] [Hanley00] [Koh01]. The shutdown of

Microsoft web sites (on January 24, 2001) through the use of DoS attacks on their

DNS servers (rather than their web servers) may be a beginning of a new wave of

attacks against vulnerable DNS server infrastructures.

As mentioned in [CT+02-2], many companies and people develop assistant

software to help DNS administrators managing their DNS systems as shown in Table

2.2. However, most of these software packages are built by using conventional

methodology. Basically, they are mainly used to solve syntax problems and provide

friendly user interface, help domain zone management, find domain zone

configuration errors, etc. Few, if any, address the DNS semantics issues, or the

complex DNS management problems. DNSreport [DNSreport05], which is popular

 15

now, provides a web site to help DNS administrators to find DNS problems and to fix

them. All users need to do is enter a domain name that they want, and this site will

report DNS problems. However, this report lacks：

 For DNS beginners, this report will be useless if there is no DNS server.

 For DNS planning, such as Topology, DNS performance, and DNS security, this

report can not provide any suggestion.

 There is no debugging function for DNS configuration in DNSreport.

 DNSreport lacks detailed knowledge for users to learn how the problems occurred

or how to avoid similar problems.

Table 2.2: List of DNS assistant software

Software Benefits Company
Quick DNS Manages more zones in less time (i.e., time

saving zone editor).

 Manages larger zones in less time (i.e.,
automatic set-up of secondary DNS servers).

 Manages DNS while at home or on the road
(i.e., fast remote management).

Men &
Mice

DNS Expert AD Bridges the gap between active directory and
DNS.

 Helps prevent active directory errors.

 Reports on 200 DNS and AD configuration
errors.

Men &
Mice

DNS Expert
Monitor

 Warns instantly of errors and helps users fix
them.

 Saves valuable troubleshooting and
maintenance time.

 Monitors internal and external DNS on any
platform.

Men &
Mice

 16

 Increases security level from malicious attacks.

DNS Expert Verifies DNS setup for reliability.

 Tests for availability of backup mail and DNS
services.

 Checks for the general configuration of zones
and connections to the parent domain(s).

 Conducts security tests for DNS spoofing and
mail rely.

Men &
Mice

Dlint Conducts DNS Server Zone verification.

 Analyzes DNS zone.

 Reports zone problems.

Domtools

DOMTOOLS Provides some high-level tools that do things,
which most DNS administrators will find
valuable.

 Provides computer-parsable output from all
commands so that high-level tools are easy to
develop.

Domtools

DNSstuff Provides many web-based tools to verify
network conditions.

DNSstuff

2.1.2 Use case modeling and DNS ontology building

An information system cannot be written without a commitment to a model of the

relevant world – commitments to entities, properties, and relations in that world

[CJ+99]. The role of ontologies is to capture domain knowledge and provide a

commonly agree upon understanding of a domain. The common vocabulary of an

ontology, defining the meaning of terms and their relations, is usually organized in a

taxonomy and contains modeling primitives such as concepts, relations, and axioms

[HS+97]. In essence, each knowledge base is an extension of some application

 17

domain ontology, where the ontology provides a roadmap for the class of the concepts

that will comprise the knowledge base. Therefore, just as a schema provides the

organizing framework for a database, an ontology provides the framework for the

domain knowledge base [SO+00].

As shown in Fig. 2.2 [CT+03], we extract the concepts and attributes by using a

hybrid method consisting of the brainstorming and use case modeling [Cockburn97].

The power of a few critical cases described in terms of relevant attributes to build

domain ontologies is remarkable. This is because it is often easier and more accurate

for the experts to provide critical cases and it would not take too much time from

them. In addition, we could also get lots of use cases from many well-known domain

related mailing lists that contain enough and not too much information, so the

knowledge engineers can modify the ontological components easily. Hence, use cases

analysis is adequate for our DNS knowledge acquisition.

Domain Experts Books/Internet Cases

UML Use Cases
Analysis

Attributes
and

Relationship
Extraction

DNS Ontology

Skeletal Concept Model

Domain Experts

Merge
Procedure

Fig. 2.2: DNS modeling and DNS ontology construction

 18

2.1.3 DNS ontology

Just like the concept of object-oriented programming, we could view all the entities

in the real world as concepts and it is natural for us to model the world using concepts

hierarchy. For example, a DNS server is a concept, and it contains attributes or slots:

hostId (i.e., IPv4/IPv6 address), serverType (e.g., authoritative server, caching server,

etc.), hostInventory (e.g., 1Gb RAM, 2.80-GHz CPU, 100Mb Ethernet, etc.),

dnsServerSoftware (e.g., FreeBSD 4.9, BIND-9.2.3, etc.), etc. Furthermore, people

tend to group the knowledge and build structural information when they learn new

concepts. The grouped knowledge could be viewed as a bigger concept as well. For

example, both SPOF (Single-Point-Of-Failure) and DNS configuration error (e.g.,

lamed DNS servers) are typical types of the DNS availability problems. Hence, the

SPOF concept (and lame-server concept, too) inherits the DNS availability concept,

and there exists an “Is_a” relationship between them. Similarly, when we learn

DNS-related issues, the same approach could be applied to cover other issues

including DNS securities, performance, etc. On the other hand, people often need to

reference other concepts when learning specific concepts. For example, when we refer

to the DHCP-DNS attack concept, we will also reference the concept about dynamic

host configuration (i.e., DNS dynamic update) via the DHCP mechanism. By

combining these, we could group all DNS-related knowledge together and build a

concept hierarchy about DNS.

 19

Fig. 2.3: Snapshot of DNS ontology

In essence, ontology representation is suitable for communications and natural for

human thinking, meanwhile rule representation is powerful for machine to manipulate

the concepts. As described above, ontology could be used to model the concept

hierarchy and relationships between concepts. However, it is not easy to model the

behavior of concepts using ontology only. When the problem domain can be described

clearly and well modeled, it is much easier to build a rule-base expert system because

DNS
Registration

A Record

PTR
Record

MX Record

NS Record Rel

Opt

Master DNS
Server

DNS Server

is_a

Slave DNS
Server

is_a

DNS
Version

BIND
9.x

BIND
8.x

BIND
4.x

Is_a Is_a

is_a

Caching-
Only DNS

Server

DNS
Performanc

e

DNS Security

Rel

Rel

DNS Anomaly
Detection

DNS Anomaly
Identification

DNS Server
Host Protection

DNS Zone Data
Protection

DNS Dynamic
Update ProtectionR

el Rel

R
el

R
el

Authoritative-
only DNS Server

Single point of
failure (SPOF)

Rel

Rel

is_a
Authoritative
DNS Server

is_a

Rel

Legend

Relations: Constratints:
 Is_a Is-a Pre Pre-requisite
 Rel Related to
 Case Case

is_a
Delegated
DNS server

Pre

Pre

Mail
Delivery

Mail
Relaying

Pr
e

Case Multi-therading
support

Rel

EDNS0Rel

Rel

Temp Pre

Pre

Case

Single
Network

Single
Server

Pr
ePre

Rel

DNS
Availability C

as
e

Lame
Server

R
el

ZoneData

Case

Case

Case

Case

 20

many tools (called expert system shells) can offer assistances. Hence, in practice,

rule-based representation is more suitable for building applications. On the other hand,

since most applications need complex rules to solve real world problems, the

information captured in an ontology for the problem domain could become very

helpful for rule extractions when building complex systems.

For many people (e.g., DNS beginners, etc.), information of DNS taxonomy will

help them understand operating details of the DNS and describe encountered

problems more explicitly. Fig. 2.3 shows a snapshot of DNS ontology [CT+02-2].

Three types of relationships and one constraint are described as follows:

 Three types of relationships: (1) “is_a” is a generalization relationship, which

could be used to describe the concept taxonomies in the class hierarchy. For

example, either a master (class) or a slave DNS server (class) is a kind of

authoritative DNS server (class). (2) “Rel” (i.e., related-to relationship) denotes

that there exists some relationship between these terms. For example, we could

use “Rel” relationship to denote that the DNS security class is related to the DNS

server class. (3) “Case” is “case of” relationship. For example, “Single Point of

Failure (SPOF)” concept is one of the cases leading to “DNS availability”

concept.

 Identification of Constraints: (1) Pre-requisite constraint: one

term/relationship depends upon another. For example, the “SPOF

(Single-Point-Of-Failure)” concept depends on many concepts including: “Single

Network”, “Single Router” and “Single Server”.

 21

2.2 New Trend in DNS

2.2.1 DNS and IPv6

The DNS is an essential part of the Internet infrastructure since it provides not only

an efficient and distributed working model, but also a universal global addressing

mechanism [AL01]. We need the help of DNS to translate the domain names into IP

addresses and vice versa. This is especially true on IPv6 environment, since the

128-bit address makes it difficult for most people to remember.

Moreover, in the process of migration from IPv4 into IPv6, or running in a hybrid

IPv4/IPv6 environment, the administrators have to do a lot of things. First, almost all

applications need updating to support both IPv4 and IPv6. For example, if e-mail

routing, including both IPv4 and IPv6, is inappropriately configured, mails might not

be delivered successfully to their destinations, or even might get lost in IPv6/IPv4

environment. Second, the DNS server programs also have to support both protocol

stacks as well. Finally, since there are inherently different management issues between

IPv4 and IPv6 DNS, the adjustment of the DNS should be adaptive. For example, in

the DNS, only the IPv4 address records (e.g., A and PTR), or the IPv6 address records

(e.g. AAAA, A6 and PTR), or both groups of IPv4/IPv6 records can be stored for each

name. In the last case, deciding whether to use the IPv4 or IPv6 address is not easy,

and the choice is the result of much consideration. At first, determining whether the

node has an IPv6 direct connectivity is necessary. If not, the use of the IPv6 address

will require the transmission of an IPv6 packet in an IPv4 tunnel. This approach can

be less convenient than the use of native IPv4 or even impossible if the node cannot

use tunnels.

 22

2.2.2 SIP and ENUM

SIP (Session Initiation Protocol) [HS+99] is a signaling protocol for Internet

multimedia conferencing, Internet telephone calls and multimedia distribution. SIP

supports five features of establishing and terminating multimedia communications,

user location, user availability, user capabilities, session setup and session

management. User location, user availability and user capabilities indicate where the

callee is, whether the callee is available or not and what kind of service the callee

accepts respectively. SIP invitations used to create sessions carry session descriptions,

which allow participants to agree on a set of compatible media types. When the user

would like to send a request, the request will be sent to a locally configured SIP proxy

server or to the corresponding IP address and port according to the request-URI.

For example, SIP applications could not only connect the IP system, but also work

with traditional PSTN telephone system. With the help of SIP/PSTN gateways, the

SIP clients could reach PSTN clients and vice versa. There are three types of SIP

servers, namely, SIP proxy servers, SIP redirect servers and SIP registrar servers. A

SIP proxy server forwards requests from user agents to next SIP servers. A SIP

redirect server responds to client requests and informs them of the requested servers’

addresses. A SIP register server receives registration information from user agents and

saves them in a location service using a non-SIP protocol and informs the user agents.

To achieve the above functionalities, SIP applications need a global addressing

mechanism; that is, each client needs a unique identify address for facilitating the

locating of the corresponding caller easily. There are a number of possible candidates

such as E-mail address and telephone numbers for implementing the unique

identifying mechanism. In particular, telephone numbers are preferred for most PSTN

clients since the installed base is much bigger than email addresses and they are easier

 23

to remember.

One of the primary goals of ENUM is that each user can be reached in a number of

ways by using only one number. To accomplish this, we need some mechanisms to

make the phone numbers globally accessible and the subscribers can define their

preferences for incoming communications. As mentioned previously, the DNS

provides not only an efficient and distributed working model, but also a universal

global addressing mechanism. Therefore, it is appropriate to choose the DNS for

implementing ENUM. For example, based on [Faltstrom00], the phone number

+886-3-1234567 will be converted into the domain name

7.6.5.4.3.2.1.3.6.8.8.e164.arpa. The NAPTR [MD00] record could be used for

identifying available ways of contacting a specific node identified by that name.

Specifically, it can be used for finding out what services exist for a specific domain

name, including phone numbers by the use of the e164.arpa domain. As shown in

Figure 2.4, when the user dials the telephone number, the number will be translated

into the corresponding domain name. Just like general domain name queries, the DNS

server will return the related NAPTR records for this domain name. In this case, based

on the NAPTR information, we could find out that there are two kinds of contacting

methods and SIP protocol is the preferred method.

 24

Fig. 2.4: ENUM operational model

2.3 Model Tracing Tutoring

In traditional classroom instruction approach, it is not easy for students to receive

one-on-one instruction. The concept, known as intelligent tutoring systems (ITS) or

intelligent computer-aided instruction (ICAI), has been pursued for more than three

decades by researchers in education, psychology, and artificial intelligence. The goal

of ITS is to provide individualized tutoring automatically and cost-effectively. To

achieve the goal, ITS needs to consider what students know, what the students need to

know and which part of the curriculum is to be taught next.

Model-tracing methodology [AB+90] for tutoring is based on the ACT [AC93]

theory of skill acquisition. According to the theory, a skill can be decomposed into a

set of productions rules and instructions can be organized around these rules.

Students’ problem-solving behavior can be interpreted and tutored by tracing their

$ORIGIN 7.6.5.4.3.2.1.3.6.8.8.e164.arpa

IN NAPTR 100 10 “u” “sip+E2U” “!^.*$!sip:jacky@nctu.edu.tw!”

IN NAPTR 101 10 “u” “tel+E2U” “!^.*$!tel:+886287654321!”

 25

solution through production rules [AP91]. Model-tracing tutoring has been

successfully used on tutors for many domains (e.g. LISP programming, high-school

geometry and algebraic manipulation etc.). Instead of telling the students the correct

answers directly, model-tracing tutors try to simulate users’ activities by the

production rules and provide appropriate assistances when needed. Even though the

users enter incorrect answers, we could still get some information from their answers.

For example, as shown in Fig. 2.5, there is an example algebra equation

“ xx −=−−)4(33 ” and if we represent all possible problem-solving answers (correct

and incorrect) with tree nodes and have them connected, the whole problem-solving

space could be represented by using tree structure. As we know, one of the correct

problem-solving paths in Fig. 2.4 could be derived from the path

“node1-node3-node5-node7-node8”. However, in practice, many students may derive

incorrect answers from some alternative paths for the sample problem. Hence, it is

important that the system should (or could) provide appropriate assistances or online

help when users enter incorrect paths. For example, when the users go through the

path, “node1-node3-node5-node6”, we could infer that they have made the classical

sign error. The tutors should recognize this kind of errors and provide appropriate

remedial message if users request for help.

 26

xx −=−−)4(33

xx −=−− 1233 xx −=+− 1233 3)4(3 −−=−− xx

xx −=−315

x415 −= x215 =

2
15

=x

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6 Node 7

Node 8

Fig. 2.5: Possible problem-solving path about algebra problem

 Even though model-tracing tutoring has been shown to be a promising approach

for building educational systems, yet the process of building model-tracing tutor is not

easy. For example, as described above, for a simple equation like, xx −=−−)3(33 ,

there might be lots of possible problem-solving paths. Nonetheless, the more possible

paths are found, the more information about users’ activities is obtained. Therefore, if

we would like to design production rules for specific problem domain, there must be

some mechanisms for KEs to decompose the problems into sub-problems and analyze

users’ activities against the production rules.

 27

2.4 Sharable Content Object Reference Model (SCORM)

In recent years, many e-learning standards have been developed. The Sharable

Content Object Reference Model (SCORM) is an aggregated specification for

asynchronous distance learning, organized by the Advanced Distributed Learning

Initiative (ADL) (http://www.adlnet.org/). SCORM contains the definitions about the

meta-data of learning material, Content Aggregation Model (CAM) which defines

how to organize a course into a tree-like structure called Activity Tree (AT). Fig. 2.6

shows an example of AT. It is a structure that provides the hierarchical organization of

learning content. According to SCORM 1.3 specification, an AT is structured by a set

of clusters. A cluster is an organized aggregation of activities consisting of a single

parent activity and its first level children, but not the descendants of its children. The

cluster is considered to be the basic sequencing building block. The parent activity of

a cluster will contain the information about the sequencing strategy for the cluster.

The status information of all child activities will be collected and can be used to

sequence these activities in the structure.

Fig. 2.6: An activity tree with clusters

 28

2.4.1 The Sequencing and Navigation (SN) Specification

The SCORM Sequencing & Navigation (SN) Specification is based upon the

Instructional Management System (IMS, http://www.imsproject.org/) Simple

Sequencing Definition Model. It provides a profile about information of specific

behaviors between activities and restrictions while learning an activity. The

Sequencing Definition Model (SDM) defines the following categories: Sequencing

Control Modes, Sequencing Rules, Limit Conditions, Auxiliary Resource, Objectives,

Objective Map, Rollup Controls, Selection Controls, Randomization Controls and

Delivery Controls.

(1) Sequencing Control Mode (SCM):

The Sequencing Control Mode (SCM) allows the content developer to determine

how navigation requests are applied to a cluster and how the cluster’s activities are

considered while processing sequencing requests. Table 2.3 describes the SCM that

may be applied. Sequencing Control Modes can be applied to any activity in the AT

and multiple modes are enabled to create combination of control mode behaviors.

Nevertheless, the Sequencing Control Choice, Sequencing Control Flow and

Sequencing Control Forward Only modes will have no effect if applied to leaf

activities.

Table 2.3: The description of Sequencing Control Mode (SCM)

SDM Description

Sequencing Control

Choice

Indicates that a Choice navigation request is permitted to target the children of the activity

 29

Sequencing Control

Choice Exit

Indicates that the activity is permitted to terminate if a Choice sequencing request is

processed.

Sequencing Control

Flow

Indicates the Flow Sub-process may be applied to the children of the activity.

Sequencing Control

Forward Only

Indicates that backward targets (in terms of Activity Tree traversal) are not permitted for the

children of the activity.

Use Current Attempt

Objective Information

Indicates that the Objective Progress Information for the children of the activity will only be

used in rule evaluations and rollup if that information was recorded during the current

attempt on the activity.

Use Current Attempt

Progress Information

Indicates that the Attempt Progress Information for the children of the activity will only be

used in rule evaluations and rollup if that information was recorded during the current

attempt on the activity.

(2) Sequencing Rule:

The IMS Simple Sequencing Specification (IMS SSS) employs a rule-based

sequencing model. The behaviors between activities are defined by Sequencing Rules.

Sequencing Rule is composed of a set of conditions and a corresponding action. The

structure of sequencing rule is:

if [condition_set] then [action].

The conditions are evaluated using tracking information with the activity. The action

of sequencing rule will be triggered if its condition-set evaluates to true. There are

three kinds of sequencing actions SCORM proposes: Precondition Actions,

Post-condition Actions and Exit Actions, which describe different learning strategies.

 30

(3) Objective:

IMS SSS proposes a mechanism of objectives of each activity for sequencing

propose. Each learning objective associated with an activity will have a set of tracking

status information which is used to decide which sequencing decision should be

triggered according to student’s current learning progress. Two kinds of learning

objective are defined in IMS SSS: Local Objective and Global Shared Objective. The

Local Objective is only referenced by one activity; however, the Global Shared

Objective can be shared by sets of activities. Therefore, activities may have more than

one associated local objective and may reference multiple global shared objectives.

Fig. 2.7 shows an example of objectives. All objectives except Objective 5 are local to

their associated activities; Objective 5 is a global shared objective shared between

Activity AA and Activity BB.

Fig. 2.7: An example of objectives

(4) Rollup Rule

Cluster activities are not associated with teaching materials; therefore, there is no

direct way for learner progress information to be applied to a cluster activity. The

 31

IMS SSS defines the way of how to evaluate the learner progress of cluster activity.

The structure of rollup rule is:

if [condition_set] True for [child activity set] then [action].

The conditions of rollup rule are evaluated against the tracking information of the

included child activities, and a corresponding action will set the cluster’s tracking

status information if the conditions are evaluated to true.

2.4.2 Tracking Model

The tracking model is a collection of dynamic sequencing state information

associated with each activity in the activity tree for each learner. Tracking model

elements will be updated to reflect learner interactions with the currently launched

content object during a learning experience. It defines the following sets of tracking

status information:

(1) Objective Progress Information: describe the learner’s progress related to a

learning objective.

(2) Activity Progress Information: describe a learner’s progress on an activity. This

information describes the cumulative learner progress across all attempts on an

activity.

(3) Attempt Progress Information: describe a learner’s progress on an activity. This

information describes the attempted progress on an activity. Fig. 2.7 shows the

Tracking Models for an Activity Tree.

 32

Fig. 2.8: The tracking models

Currently, more and more researches about constructing an intelligent tutoring

system based on SCORM standard. However, the processes of building an activity

tree and defining sequencing behaviors are very complicated for teachers, because the

formats of meta-data and Simple Sequencing are described by XML. The

functionality within a lesson or between lessons is hard-coded whether based on linear

or an adaptive model. It means teachers must edit lots of XML files for building a

course; definitely, it will bring more burdens to teachers and limit the reusability of

individual learning objects (SCOs). It also limits the ability to create new or custom

content structures from the same instructional materials. Therefore, in addition to the

tools for editing the SCORM-compatible content packages, the mechanism for the

SCORM learning sequence construction is important as well.

2.5 Overview of DRAMA/NORM

In traditional forward rule-base expert system, the rule base consists of all rules and

facts. The system needs to go through every matching rule when conducting inference

for the proper result. This might become inefficient when the number of rules and

 33

facts become large. Therefore, many researches aim to improve the maintenance of

rule-based expert system by incorporating the objected-oriented approach.

We apply the DRAMA/NORM package for building up the expert system.

DRAMA is a rule-based, client-server tool/environment for KBS development. It can

assist knowledge engineers in building up an expert system. Briefly, DRAMA

contains lots of innovative techniques including Object-Oriented technology,

knowledge inheritance, etc. It also contains useful tools, like rule verification tool,

knowledge acquisition assistant tool and the inference server. Using the client-server

architecture of DRAMA, the knowledge base is maintained on a server and clients

could access this server for inference services.

The kernel knowledge model of DRAMA, named NORM (New Object-Oriented

Rule-base Model), is developed by the KDE Lab at Dept. of Computer & Information

Science of National Chiao-Tung University. The working model of NORM,

containing knowledge classes (KCs) and the relationships between KCs, is based on

the principles about how people ponder and learn to acquire knowledge.

According to domain expertise, when a person is trying to learn something, there are

often some topics for him/her to study. A lot of new knowledge is built upon the

original knowledge according to the discipline of Educational Psychology. Thus, new

knowledge about the topics could easily be built one by one after the person

successfully studies them. And, these topics could be transformed to KCs easily. In

other words, learning is an activity to construct the relationships between different

KCs. Since this knowledge model fits in quite well with the thought of human and

KCs are modularized, we can build and maintain the knowledge base more

conveniently. It is very important to use such knowledge model for the knowledge

engineers. Whenever there is a need to update some knowledge, it is unnecessary to

change all the knowledge base. All we have to do is just to add or modify the modules

 34

involved. In addition, the client-server architecture of DRAMA makes the web

services plausible and more easily. Thus, the benefits of the expert system approach

can be utilized throughout the Internet.

 35

Chapter 3 The Problem Situations

3.1 Knowledge-Based System Rules Extraction

In 2003, we design and implement the DNS diagnosis system which could tell the

DNS administrators if their system(s) work as expected. The diagnosis system has

opened to the public since 2003 and the diagnosis model for DNS domain works wells

and most of the feedbacks are positive. In practice, the KBS should be able to evolve

as well. In other words, when the new knowledge is discovered or the old knowledge

should be modified, the KEs would update the KBS. Since our diagnosis system is

rule based knowledge system, the new knowledge means new rules should be

discovered.

However, the rules extraction is not necessary a straightforward job. In general, the

knowledge engineers are not familiar with the domain related knowledge, while the

domain experts do not know how to express their own knowledge explicitly. The KA

problem often dominates KBS construction process among the problems and

resembles the system analysis in the same way as the expert systems resemble the

classical computer programs. The problems that we are faced with during the KA

process are usually very hard. In general, knowledge acquisition involves: (1)

elicitation (gathering) of data from the expert, (2) interpretation of the data to infer the

underlying knowledge or reasoning procedure, and (3) creation of a model of the

expert’s domain knowledge and performance.

The KA process is not a monolithic process but makes use of many sources of

information in several forms, such as specifications, experience, principles, laws,

observation, and so on, recorded in a variety of media. Knowledge sources are where

 36

we get data that related to our problem domain. After data collection, we use the

knowledge acquisition method to transfer the data into knowledge. In this work, there

are three main knowledge sources and we will describe each of them briefly in the

following.

 Domain Experts

Experts are those who have domain knowledge that can help knowledge engineers

to understand more about the problem domain and find appropriate ways to construct

and represent the domain knowledge. However, since not all experts could show their

expertise, knowledge engineers must learn some communication skills to help get the

required information from the domain experts. In this work, we have interviewed

several human experts that mastered the skills in the DNS management and planning

over years.

 Documents

Documents are another important type of knowledge sources. Before the

knowledge engineers interview the experts, they have to read some documents to help

themselves understand the basics of the problem domain. Furthermore, these

documents can also provide the KE’s with some general ideas, such as how to divide

the entire problem into sub problems or what kind of attributes are more important

and more relevant to the problem domain. So when they interview the experts, they

can ask more proper and advanced questions to acquire more knowledge from them.

 Experiment results

Since the DNS system is such an important system to the network infrastructure,

some groups had performed a lot of experiments to evaluate the effects when they

applied some management strategies to the DNS servers. The results and the

strategies of these experiments also provide us with some insight and important issues

for developing our system.

 37

3.2 Intelligent Tutoring System

In traditional tutoring system, teaching materials are organized by chapters and

students usually learn the topics sequentially. In general, however, the

chapter-structure representation of DNS domain knowledge might not be a good

enough way for many people (i.e., especially for the inexperience DNS administrators)

on DNS learning for several reasons. First, when dealing with abrupt DNS problems,

many inexperienced administrators would like to know the reasons leading to the

problems and how to fix them quickly instead of learning all the DNS-related

knowledge sequentially. Second, many internetworking problems, looking like

unrelated to DNS at first, happened due to improper configuration or deployment of

the DNS systems. The typical ones include: (1) not knowing how to configure the

DNS MX Resource Records for deploying multiple mail gateways (i.e., to facilitate

the anti-spam and anti-virus filtering on the mail system); (2) not knowing how to

protect an authoritative DNS server (e.g., a master or slave server) of the specified

zone from abusing; and (3) not knowing how to avoid DNS SPOF problems (i.e.,

DNS-SPOF might affect the overall internetworking operation of the site severely

under specific environment).

Therefore, it is supposed that the problem-driven approach is a more appropriate

way for DNS tutoring than the traditional one. Since the original DNS diagnosis

subsystem focuses on the DNS problems only, this approach might fail to address the

needs of some inexperience people. On considering these, we propose to refine our

DNS tutoring system with model-tracing theory and have it integrated with the DNS

diagnosis subsystem. As compared to the traditional tutoring approach, it is supposed

that most users could benefit much more from the refined DNS tutoring.

 38

3.3 Intelligent Search System

In the search system, we often adopt the keyword search as the front-end. In

addition to the keywords mechanism, some search system would provide the Boolean

operations to enhance the search capability. However, most of the search systems

focusing on the keywords only may lead to information loss. The semantics of the

terms could make the search system more intelligent. In addition, if we would like to

rely on the agents for the search system, the semantics of the term would be very

important. In general, to achieve the goal of intelligent search system, there are two

approaches.

1. Make the data source and the query terms both semantic and apply the semantic

query string on the semantic data source. To make the data source semantic is not

an easy job, since we have a common vocabulary to communicate. In practice,

W3C proposes to use semantic web to achieve the goal of information exchange

between human and machines. The Semantic Web is an extension of the current

web in which information is given well-defined meaning, better enabling

computers and people to work in cooperation (Berners-Lee et al., 2001). It is a

collaborative effort led by W3C with participation from a large number of

researchers and industrial partners. It is based on the Resource Description

Framework (RDF), which integrates a variety of applications using XML for

syntax and URIs for naming. However, for most of the people, RDF is more

complex than HTML and most of the web pages are still semantics-less.

2. Make the query terms be semantic only and apply the semantic query string on

the original data source. If we focus on specific domain, the domain ontology

would be more easily built and we could transform the query string into semantic

 39

ones. In theory, this approach is less effective. However, this approach is more

practical in existing environment.

3.4 Typical DNS management issues

Table 3.1: Management issues of IPv4, IPv6 and ENUM DNS

Item Descriptions IPv4 IPv6 ENUM
Correctness
(Configuration)

Delegations of domain zones, illegal
setting of DNS entries, etc.

Availability Master/slave architecture, data
synchronization among authoritative
servers, etc.

Performance DNS caching, forwarding, etc.

Security Access control, Dynamic Update,
Intrusion detection, etc.

Software
Interoperability

BIND (version 4,8,9,etc.), Microsoft
DNS, etc.

IPv6/IPv4
Interoperability

IPv6, IPv4

512 bytes limit in
DNS query/answer
UDP packet

Some of the older DNS server
software could not transfer the packet
with TCP when query/answer UDP
packet is larger than 512 bytes

Table 3.1 shows typical DNS management issues concerning IPv4, IPv6 and

ENUM DNS. The correctness issues ensure that the data of a DNS server is correct

and the DNS server runs well. Availability issues make sure the DNS server is still

available under any condition. Performance issues make sure the DNS server

processes the requests more efficiently. Security issues deal with how to build robust

servers to avoid problems such as illegal access and DDoS attacks. Different DNS

server software or environment might lead to interoperability problems such as

 40

IPv4/IPv6 protocols and between different versions of the DNS software programs

(e.g., BIND v4/v8/v9). Finally, 512-byte limit issue exists for DNS query/answer

UDP packets. Judging from this list of questions, we could find that some of the

problem issues are related to general DNS servers, and others are related to IPv6 only

(e.g., 512-byte limit, mail routing and application issues, etc.). To meet the

requirements of TELECOM carrier level, an ENUM DNS needs more enhanced

mechanisms on issues such as correctness, availability, performance, and security than

IPv4 and IPv6 DNS.

3.5 ENUM DNS management issues

DNS server management issue

IPv6 DNS server management issue ENUM DNS server management issue

Is_a Is_a

Is_a

Fig. 3.1: The management hierarchy of general/IPv6/ENUM DNS server

Fig. 3.1 diagrams a simple hierarchy of management issues among

general/IPv6/ENUM DNS servers. Just like the object-oriented language class

hierarchy, the higher-level class is more general than the lower-level class. As a result,

an IPv6 DNS server will inherit the management issues of a general DNS server.

Similarly, the security measures in ENUM DNS servers should be much more

 41

reinforced than those in general DNS servers; that is, more resources (e.g., server

hardware, bandwidth, man power, etc.) are supposed to be involved.

Traditional PSTN service should meet the TELECOM carrier level; i.e., high

reliability, capacity and speech quality. Therefore, ENUM DNS servers should meet

the above criterions as well, which differentiate them from ordinary DNS servers.

Moreover, if an ENUM DNS is located on the IP network, most of the existing

network attacks (e.g., DDoS attacks, system compromising, DNS spoofing, etc.)

could possibly occur on the ENUM DNS. Since the DNS is the infrastructure of

SIP/ENUM, if some ENUM DNS server fails, then the telephone number translation

using ENUM DNS server will fail as well. Next, two scenarios will be given for

illustrating the main ideas.

3.5.1 Scenario 1: Network attacks on ENUM DNS

In practice, DNS servers not only translate domain names into IP addresses, but

also provide MX RR's for mail routing to deliver the mails. Moreover, on many

Internet sites (e.g., SOHO people, etc.), all-in-one server (e.g., WWW, SMTP and

DNS, etc.) is very common. However, the more unnecessary services are, the higher

security threat is. For implementing ENUM DNS, it is supposed that the above

situations should be avoided. For example, assume that a company X has its own

ENUM DNS with all its subscribers' contacting information to provide the service.

When someone needs to reach some subscribers of X, he/she queries the ENUM DNS

to get the related contacting information. Suppose some attacker Y would like to shut

down X's services by DDoS attacks. If there is not any protecting mechanism (e.g.,

DNS, router, etc.), Y might flood the ENUM DNS server with as many packets (e.g.,

mail, DNS, web, etc.) as possible and make it become un-available or the subscribers

 42

might wait for long time to get new connections.

Generally speaking, to secure the ENUM DNS, we need to take appropriate

measures to implement and deploy the system architecture. First, it is necessary to

separate other services from the ENUM DNS servers. Second, the ENUM DNS

servers should be behind specific routers, separated from other internetworking

equipments. Third, firewalls are required for helping filter out unwanted packets.

Finally, network behavior analysis via IDS (Intrusion Detection System) for early

detecting the anomalous traffic could help identify possible attack sources in advance.

3.5.2 Scenario 2: DNS spoofing

Assume that a commercial bank X has its own ENUM DNS and provides service

phone numbers in its web pages, from which the customers could get expected service

information. For example, suppose a phone number, +886-2-23456789, is put on

some web page of X and the corresponding E.164 domain name is

9.8.7.6.5.4.3.2.2.6.8.8.e164.arpa. Basically, if some user Z from his/her ISP using

DNS server Dz would like to call X's service, the X's ENUM DNS should map the

domain name into the sip service, "sip:service@bankX.com.tw" and return it to Dz for

Z's usage.

Now suppose there is no well protection mechanism on X's ENUM DNS, if a bad

guy Y would try to get the customers' personal banking information of X by cheating,

he might establish another faked site with similar web pages in advance and follow

this by conducting DNS spoofing. For example, another different scenario, with DNS

spoofing involved, about user Z using DNS server Dz might be as follows.

First, Y would set up his own ENUM DNS server containing some true

authoritative data about Y and faked data about X. Second, Y might manage to bring

 43

the attention of Dz by using Dz directly (or indirectly via some other legal user of Dz,

say, W) to query some domain data about Y. Third, the ENUM DNS of Y will return

faked responses containing additional records of X (e.g., an NAPTR of

9.8.7.6.5.4.3.2.2.6.8.8.e164.arpa maps to sip:service@bankFake.com.tw., etc.) to Dz.

Fourth, the poisoned data about X is put into the DNS cache of Dz. Finally, if

someone (e.g., the user Z, etc.) using Dz would like to call X's service later, the phone

call would be mis-directed and intercepted by Y.

Even though DNS spoofing problems had been identified, and some mechanisms

had been proposed and implemented to address the problem on newer versions of

DNS software programs; however, most DNS servers on many Internet sites only

implement parts of these mechanisms, or even none at all, due to many problems such

as performance and ignorance. Moreover, if we would like to adopt the ENUM DNS

approach for providing commercial transactions in the future, it is also important to

ensure the authenticity and integrity of the data by adopting DNS software with

appropriate characteristics, which will be discussed later.

3.5.3 Scenario 3: Mailing errors due to the lack of reverse DNS entries

The mail server of a small company W worked fine for a long period time.

However, due to the cost/performance considerations, the administrator was asked by

the boss to move their Internet connection (e.g., originally with a leased line Internet

connection) to another new ISP that provided cheaper ADSL links, with their mail

domain name(s) kept unchanged. In the first few days, it seemed that all were OK.

However, after that, users started complaining that they had mailing problems. While

some users said that their outbound messages to specific destinations got bounced

immediately each time, others complained that they got intermittent (e.g. sometimes

successful, sometimes failed) bounced messages to many destinations. At first, the

 44

administrator suspected that the remote SMTP hosts might have some unusual (even

unreasonable?) changes of the access control mechanisms against their mail host.

However, after contacting many recognized administrators of some remote sites and

having discussions with them, he finally got the solution to the problems.

Currently, there is a convention by many Internet sites to block SMTP connections

from personal ADSL users since most of the SPAM messages were found to be

injected from personal ADSL and dialup users [LT+03-1] [LT+03-2]. It turned out that

their mail server, with a new ADSL link, had a reverse DNS mapping name under the

ISP’s ADSL-styled name. After changing it to another one different from the

ADSL-styled format, the problem was fixed.

 45

Chapter 4 DNS Knowledge Portal

DNS is one of the key components of the Internet infrastructure. Many Internet

services (e.g., WWW, Email, etc.) rely on the proper operation of DNS. If DNS fails,

these services might suffer from being unable to operate smoothly as well. In Chapter

4, we describe the main ideas (e.g., knowledge representation, etc.) on the design and

implementation of the proposed DNS knowledge portal.

4.1 DNS knowledge Representation

As we may know, knowledge representation is one of the most central and familiar

concepts in AI. Five distinct roles of knowledge representation are described in

(DS+93). They are listed below:

 A knowledge representation (KR) is most fundamentally a surrogate.

 It is a set of ontological commitments.

 It is a fragmentary theory of intelligent reasoning.

 It is a medium for pragmatically efficient computation.

 It is a medium of human expression.

In our system, we adopt ontology representation and rules representation as the

knowledge representation. From the above, we know that a knowledge representation

is used as a substitution for the real world object. In principle, it is impossible for us

to describe the real object completely because the one that could really denote the

object is itself. In general, different knowledge representations focus on different

views. Furthermore, different applications may need different representations on the

same problem domain.

 46

4.1.1 Ontology Knowledge Representation

An ontology is an explicit specification of a conceptualization [Gruber93].

Ontologies are useful in a range of applications, where they provide a source of

precisely defined terms that can be communicated across people and applications

[CJ+99]. The role of ontologies is to capture domain knowledge and provide a

commonly agreed upon understanding of a domain. Ontology defines the concepts,

the attributes of the concepts, and the relationships among concepts. With the help of

ontology, the knowledge is not only human-readable but also machine-readable

[CJ+99] [GS93]. Furthermore, the graphical representation of ontology could simplify

the communication between the domain experts and knowledge engineers.

As mentioned in [Fernandez99], the ontology building process is still a craft rather

than an engineering activity. Each development team usually follows its own set of

principles, design criteria and phases on the ontology development process. In

[FG+97], the authors of METHONTOLOGY explain that the life of an ontology

moves on through the following states: specification, conceptualization, formalization,

integration, implementation, and maintenance. Knowledge acquisition, documentation

and evaluation are supporting activities that are carried out during the majority of

these states. Since the DNS is still evolving, we have to update the DNS ontology

whenever possible. The evolving prototype life cycle of METHONTOLOGY allows

the ontologist to go back from any state to other if some definition is missed or wrong.

So, this life cycle permits the inclusion, removal or modification of definitions

anytime of the ontology life cycle.

Tools are helpful to aid ontologists in constructing ontologies, and merging

multiple ontologies since such conceptual models are often complex,

multi-dimensional graphs that are difficult to manage. These tools also usually contain

 47

mechanisms for visualizing and checking the resulting models – over and above the

logical means for checking the satisfiability of the specified models. Protégé-2000

[NF+00] is an easy-to-use knowledge acquisition tool that could construct the domain

ontology and achieve the interoperability with other knowledge-representation

systems. In [CT+02-2], we built a DNS ontology using the METHONTOLOGY

[FG+97] methodology and Protégé-2000 [Gennari+03] system from scratch. The

knowledge model of Protégé-2000 is frame-based and the ontology built consists of

classes, slots, facets, instances. The class elements are used to describe the concepts,

from which we could build the class hierarchy of the taxonomy. For example, Figure

4.1 shows a diagram about the DNS class mentioned above. In the DNS ontology,

since both master and slave DNS servers are DNS servers, they both belong to the

subclasses of the DNS authoritative server class and thus inherit the DNS property.

Slots in Protégé-2000 describe the properties of classes and instances, such as the

configuration of the DNS server, or the software version of the DNS server program.

A slot could be created without being attached to a specific class. For example, a

version slot could be used to denote the version of the ISC BIND or the Microsoft

DNS server software. On the other hand, when we need to bind one slot to a specific

class, it could have some value. For example, if we attached the version to the BIND

software, it could have some value of 8.2.2., 9.2.1, or other similar one.

Facets in Protégé-2000 are used to define the constraints of the slots. For example,

the cardinality of the version attribute in the DNS ontology is single numeric value

and its type is symbol. We also could define the minimum and maximum value for the

numeric slots. In this way, we could set up the constraints of cardinality or the value

type of the specific slot. In addition to the ontology classes, slots and facets, the

physical elements of the ontology are instances. In other words, the ontology classes,

slots and facets define the skeleton and instances element fill in the physical

 48

information. In essence, when we would like to design database, we would first define

database schema. The ontology class information is similar to the database schema.

For example, as shown in Fig. 4.2, the employee and department tables define the

employee table attributes and department attributes. In addition, the foreign key

information associate employee table with department table. After the database

schema design, we may insert the real data into the tables. For example, we may insert

a data record with the following information:

The data record above represents the instance of the database schema. We could

manipulate the data by SQL command (e.g. SELECT, UPDATE, or DELETE etc.).

For example, if we would like to retrieve the employees whose salaries are more than

40,000, we could use the following SQL command:

SELECT * FROM EMPLOYEE WHERE SALARY > 40000

Protégé provides the similar query mechanism for knowledge retrieval. In essence, the

ontology class information and instances are similar to the database schema and data

records respectively. In addition to the retrieval functionality, the ontology KBS

EmployeeID: 1234

EmployeeName: Alice

Age: 29

Salary: 50,000

DepartmentID: 1

DepartmentID: 1

DepartmentName: RD

 49

provides the logic reasoning mechanism. For example, as shown in Fig. 4.3, the

animal ontology hierarchy shows the hierarchy information. “Mammal” is a kind of

“Animal” and “Person” is a kind of “Mammal”. After the logic reasoning process, we

could infer that “Person” is a kind of “Animal”.

In essence, database ER model diagram could give us the overview of the

application domain. Ontology could play the same role during the knowledge

construction process. Ontology could be used as the communication media between

domain experts and knowledge engineers. In addition, the graphic representation of

ontology is more user friendly representation and that could improve the knowledge

acquisition. Therefore, in our design, ontology often plays an important role during

knowledge acquisition and system construction. In general, if constructing ontology

KBS, we would need the instances to fill in the KBS and based on the ontology

information for reasoning. However, in some application domain, the instances do not

exist. In DNS domain, although we could define the DNS ontology properties and

relationships, the instances of DNS ontology are meaningless. For example, our DNS

ontology defines a DNS class which consists of NS record property, domain name

property and MX record property. The instance would be:

However, the above information would exist when diagnosis system retrieves by

DNS

Domain_Name: (the domain name of DNS server)

NS: (the NS record information of DNS server)

MX: (the MX record information of DNS server)

 50

querying users’ DNS server. In other words, it is meaningless to store arbitrary DNS

server information. What we are interested is to infer the diagnosis result based on the

above value. For example, if the number of users’ DNS NS records is less than two,

we could infer that SPOF problem exists in users’ DNS. Therefore, we propose a

hybrid knowledge model for DNS domain, which considers ontology knowledge and

rules knowledge.

Fig. 4.1: Building the DNS ontology using Protégé-2000

Employee

PK EmployeeID

 EmployeeName
 Age
 Salary
FK1 DepartmentID

Department

PK DepartmentID

 DepartmentName

Fig. 4.2: Employee and department table schema

 51

Fig. 4.3: Animal ontology hierarchy

4.1.2 Rule-based Knowledge Representation

One of the most popular approaches to knowledge representation is to use

production rules, sometimes called IF-THEN rules. The basic form of the rule

representation is:

If <condition> Then <Action>

When the incoming faces meet the condition, the inference engine would infer that the

rule should be fired and the action part would be active. Some benefits of the

IF-THEN rule representation are that they are modular, each defining a relatively

small and, at least in principle, independent piece of knowledge. In addition, the

IF-THEN is similar to natural language and it is easily understood. Furthermore, the

 52

IF-THEN rules are powerful to define the mechanism for the application domain. For

example, most of the firewall software is typical rule based system. The network

administrator defines the firewall rules to filter out unwanted network packets or

protocol. Due to the network attacks, most of the network administrators would only

allow web access and the pseudo rule may be:

If the port of destination server <> 80 Then Reject

In addition, many network services (e.g. IDS (Intrusion Detection System), antiSPAM

software etc.) adopt rules as the engine to perform the jobs. Furthermore, rule

representation is suitable for DNS domain as well. In DNS diagnosis system, we

would like to diagnose DNS problems from user’ DNS configuration. The DNS

configuration information could be viewed as the facts and our system would start the

diagnosis process. In essence, the whole process is a typical forward reasoning

process. For example, we could define the SPOF (Single Point Of Failure) rule as

follows:

If number of NS record < 2 Then SPOF

The fact section of the above rule is the number of NS record, which could be

retrieved from users’ DNS configuration. The rule representation is more readable for

DNS administrator. Hence, rule representation is suitable for DNS diagnosis system.

However, the rules extraction is not easy and rule management is difficult when the

number of rules become huge. Therefore, the mechanism for rules extraction and

management is required.

 53

4.1.3 Hybrid Knowledge Model

Database schema design is an important process when we would like to construct a

system. In general, the logics of the database application are often related to the

database design. The database schema reflects the attributes required during the

system process. In essence, the graphical representation of database ER model could

be used as the communication media between the DBAs and the software engineers.

In essence, knowledge acquisition is often the bottleneck of KBS. It is not easy to

extract knowledge directly from domain experts. Therefore, some mechanism is

required during the knowledge acquisition. In essence, ontology representation is

easily understood by domain experts and knowledge engineers. The concept hierarchy,

concept attributes and relationships are similar to the object-oriented design or

database schema design. In addition, many existing ontology tools (such as Protégé)

can simplify ontology construction. Therefore, just like the role of database schema in

software engineering, ontology representation is also suitable for knowledge

engineers and domain experts to model the domain knowledge.

As described above, rules representation is more suitable for DNS domain but the

rule extraction is not a straightforward process. In [LT+04-1], we proposed an

ontology-driven model for rule extraction. The whole process is to facilitate the

domain experts to extract the rules by the help of ontology. The ontology could guide

the rules extraction and simplify the whole process. In addition, ontology hierarchy

information could represent the problem decomposition process. For example, in

SPOF problems, we could further decompose SPOF into single server problem and

single network problem. Model-tracing tutoring [AB+00], which is based on the ACT

[AC93] theory of skill acquisition, makes use of production rules to simulate the skills.

In practice, model-tracing tutoring has been applied in many domains (e.g. LISP,

 54

algebra, etc.). However, the construction of model-tracing tutoring is not

straightforward as well. Therefore, in [LT+04-3], we propose an ontology-based DNS

model-tracing tutoring model which helps knowledge engineers to construct the

skeleton of the model-tracing tutoring and extract the production rules to simulate

users’ behavior and skills. In DNS knowledge portal, we adopt both ontology and rule

knowledge representations to model the knowledge. The advantages of the hybrid

knowledge model are as follows.

 Ontology representation could make domain problem modeling more easily.

 Ontology could facilitate the KBS rules extraction and model-tracing tutoring

production rules extraction.

 DNS diagnosis could be addressed by rules

 Ontology could help the knowledge engineers construct the skeleton of

model-tracing tutoring

4.2 Ontology-based Learning Sequence Construction

As described above, ontology could represent the knowledge structure. In addition,

the learning sequence of the tutoring system often could reflect the course structure.

For example, in algebra domain, the symbolization course should be introduced

before the algebra equation course, since the basic element of the algebra equation is

the symbolization of the unknown element. In general, the structure of the course

needs many domain experts involved. In addition, to provide the students the course

content adaptively, individualized learning is important as well. Therefore, the

mechanism which could help the domain experts during the course structure

construction process is required. As described above, the ontology structure could

simplify the communication between domain experts and knowledge engineers. In

 55

addition to ontology knowledge, rules representation is appropriate in DNS domain.

In general, the examples are very important for DNS administrators. Because the

examples could provide concrete DNS configuration, the DNS administrators could

apply the examples on their own DNS configuration with some little modifications. In

addition to the examples, the quiz could help the domain experts to verify whether

they understand the course or not. In this section, we would describe how to apply

ontology and meta-rules to build the learning sequence scheme.

As shown in Fig. 4.4, the whole process consists of ontology-based learning

sequence construction model, meta-knowledge extraction module and example and

quiz annotation module. As shown in Fig. 4.5, the ontology-based learning sequence

is used to generate basic DNS course scheme. In essence, to meet the requirement of

individualized learning, the DNS course scheme should be adaptively presented based

on different criteria (e.g., students’ profile, students’ behavior, students’ background

knowledge, etc.). Different domain may need different criteria, so we focus on the

DNS ontology in this section. Algorithm 4.1 shows that the input is the domain

ontology and the output is the basic course scheme.

Algorithm 4.1: Basic learning sequence construction algorithm

Input: The domain ontology

Output: The basic course scheme

Step 1: Take the core class as the now-class.

Step 2: Find available relationship and associated-class pairs of the now-class.

Step 2.1: Find all the relationship and associated-class pairs of the now-class.

Step 2.2: If the relationship is not available, then eliminate the relationship and

associated-class pair.

Step 3: Sort the relationship and associated-class pairs by the priority of the

 56

relationships.

Step 4: According to the order of the sorted list, construct the corresponding

learning sequences.

Step 5: Take the associated-class as the now-class and go to Step 2 in turn.

User Profile

 Ontology-based
Learning Sequences

Construction
Module

Basic DNS Course Scheme

Vocabulary Base Rules

Related Classes and
Explanations

DNS Ontology

DNS Course Scheme

Meta Knowledge
Extraction Module

Example & Quiz
Annotation Module

Domain Expert

Course
Refinement

Refined DNS Course Scheme

Fig. 4.4: Ontology-based learning sequence construction

 57

User Profile

 Ontology-based
Learning Sequences

Construction
Module

Basic DNS Course Scheme

DNS Ontology

Fig. 4.5: Ontology-based learning sequence construction module

In addition to the ontology representation, the rules representation could provide us

some information about the quiz or example construction. In the example annotation

section, the examples are attached on rules. For example, the DNS SPOF rule is listed

as follows:

IF number of NS records < 2 THEN SPOF = true

Explanation = “DNS availability”

Based on the above rule information, the domain experts could provide the related

examples and explanation which could be attached on the rules. As shown in Fig. 4.6,

the SPOF rule is related with NS records and the SPOF result and the NS record is the

fact section which could be viewed as the reason of SPOF. In general, when users

learn NS record course, they still do have the knowledge about SPOF problem, so that

it would be better if the example of SPOF is presented after SPOF course is

introduced. Furthermore, NS record and SPOF are both DNS ontology concepts and

they could be located from the DNS ontology vocabulary. As shown in Fig. 4.7, the

 58

DNS ontology vocabulary and rules are the inputs and the meta knowledge extraction

module would extract related classes and explanations.

Fig. 4.6: Example annotation in SPOF rule

Vocabulary Base Rules

Related Classes and
Explanations

Meta Knowledge
Extraction Module

Fig. 4.7 Meta knowledge extraction module

After the DNS basic course skeleton, related class and explanation are discovered,

we would start the process of annotation. Algorithm 4.2 shows example annotation

algorithm. The example annotation algorithm would traverse the DNS ontology tree

to discover the appropriate node related to the explanations. In other words, after

example annotation process, the examples would be located on appropriate course. As

shown in Fig. 4.8, the annotated result would be verified by domain experts and the

domain experts would refine the course scheme if needed.

 59

Algorithm 4.2: The example annotation algorithm

Input: The basic DNS course, related classes and explanations.

Output: The DNS course with example annotated.

Step 1: Start from the beginning class of the basic DNS course. Take this class as the

now-class.

Step 2: Check each rule, and mark the related class which is the same as the

now-class.

Step 3: If all the related classes of a rule have been marked, then annotate the

explanation as an example to the now-class.

Step 4: Go through the learning sequences, take the next class as the now-class, and

go to Step 2.

DNS Course Scheme

Example & Quiz
Annotation Module

Domain Expert

Course
Refinement

Refined DNS Course Scheme

Fig. 4.8: Example and quiz annotation module

 60

4.3 Diagnosis-Learning-Search Model

We have started to provide DNS diagnosis service since 2003. The diagnosis

service could help the DNS administrators diagnose their DNS servers and most of

the feedbacks are positive. However, many users feel that more instructions are

required after the diagnosis result presented. In general, the target users of DNS

diagnosis system are the DNS administrators who have built DNS servers.

Furthermore, since DNS is the infrastructure of Internet, many Internet services rely

on DNS (e.g. WWW, email etc.). Therefore, if they meet the DNS configuration

problems, they would need the solutions as soon as possible. In essence, DNS

diagnosis system would fulfill their requirements. In other words, DNS is a

problem-driven domain and the combination of diagnosis system and tutoring system

is required for some users who would like to know the DNS operational model in

more detail.

As described above, model-tracking tutoring focuses on the problems issues as well.

In addition, DNS configuration could be viewed as users’ behavior and the diagnosis

system could retrieve the configuration information through network DNS query.

Therefore, the DNS diagnosis system could act as the quiz of the DNS and the DNS

configuration information is users’ answer. As shown in Fig. 4.9, the whole

diagnosis-tutoring model could be summarized as following:

1. Users start the DNS diagnosis service.

2. If the users are interested in more information about the operational model, they

could start the tutoring service. The tutoring service would adopt users’

configuration information, which is retrieved from DNS diagnosis service, as

users’ behavior.

3. User could start to navigate the tutoring materials.

 61

4. The users could modify their own DNS configuration and start the diagnosis to

test whether they understand the operational principles.

In addition to diagnosis-tutoring model, search is another service of existing DNS

knowledge portal. The search service could search articles in the file system, data

records in the database, or other information sources. Therefore, when the users

would like to find out required information, search service would facilitate a lot. Most

of the traditional search system is based on keyword search without semantics

embedded in the search string and that may lead to inappropriate result. In theory,

ontology could represent the semantics of the terms. Therefore, we adopt the ontology

as the semantics resolution mechanism to improve the search capability. As shown in

Fig. 4.10, the whole process is as follows:

1. Users submit the query string to the search service.

2. The search service starts to inference the query string based on DNS ontology

and starts to search the data source based on the inference result.

3. The search service returns the search result to the users.

1

2

3

4

User

DNS Diagnosis

DNS Tutoring

Fig. 4.9: Diagnosis-Tutoring model

 62

DNS Ontology-based Search
1

2

3

Articles/DB/Tutoring Materials/…

Fig. 4.10: Ontology-based search service

 63

Chapter 5 DNS Ontology and Ontology-Driven

Model

As mentioned in Section 4.1, ontologies are becoming an important mechanism to

build knowledge-based information systems. In essence, ontology representation is

suitable for communications and natural for human thinking. The role of ontologies is

to capture domain knowledge and provide a commonly agreed upon understanding of

a domain. In this chapter, we would focus on describing the ontology-driven model

for diagnosis rules extraction, model-tracing tutoring, SCORM learning sequence

construction and ontology-based search respectively.

5.1 ENUM DNS Knowledge and Ontology

An information system cannot be written without a commitment to a model of the

relevant world – commitments to entities, properties, and relations in that world

[CJ+99]. The role of ontologies is to capture domain knowledge and provide a

commonly agreed upon understanding of a domain. The common vocabulary of an

ontology, defining the meaning of terms and their relations, is usually organized in a

taxonomy and contains modeling primitives such as concepts, relations, and axioms

[HS+97].

In general, Ontology modeling is similar to object-oriented design modeling. In

principle, we could view all the entities in the world as objects or concepts. When we

would like to describe the objects or concepts, we could describe their attributes or

slots. In addition to the internal attributes, we could represent the interaction between

the objects by using relationships mechanism.

 64

In Chen et al. (2003), we built a DNS ontology, which was used to fulfill the

skeleton of our KBS. The domain knowledge of our KBS has been described through

a semantic network as shown in Fig 5-1. The taxonomy of DNS concepts could help

us classify DNS and related knowledge.

Fig. 5.1: Domain knowledge in the KBS to aid the DNS management

As described above, we could view the information from both the server and client

sides. From the former, DNS is the main concept, which has many services (e.g., DNS

registration, DNS query resolving, etc.). And, we could further divide the services into

central-service and non-central service. From the latter, what the client does is to send

queries to the DNS server and we could find that there are many common query types

such as A, MX, and PTR. NAPTR [HS+99] is a new query type, so NAPTR is located

in specialty concept. In addition, the resource concept describes the required

resources for DNS server.

In the following sections, we would focus on describing the ontology-driven model

for diagnosis rules extraction, model-tracing tutoring, SCORM learning sequence

a_kind_of

is_
a

is_
a

is_
a

a_kind_of

 65

construction and ontology-based search respectively. In addition, we would like to

integrate all the services into the portal system. It is supposed that the integrated

services could help DNS administrators to solve DNS problems and learn DNS

related knowledge more efficiently.

5.2 Ontology-driven model for rule extraction

For dealing with maintenance issues, knowledge classes could group the related

knowledge together to improve the maintenance of the rules. As for construction

issues, ontology could still play an important role even though it is not easy to extract

rules directly from the ontology. First, as described above, the ontology could be used

as the common language between knowledge engineers and domain experts. Second,

the ontology provides the hints of rules extraction to assist knowledge engineers in

interviewing domain experts.

Ontology

KC1

KC2

KC3

KC4

KC5

KC1

KC11 KC12 KC13

KC2

KC3

KC4

KC5

KC31 KC32

Domain Expert

Cases Pseudo Rules

Knowledge Engineer

Verify

Knowledge Class
Generation

Knowledge Class
Relationships

Generation

Phase 3:
Knowledge Class Facts/Rules Loading

Phase 1:
Ontology Construction

Attribute ordering table

Phase 2:
Knowledge class organization

Fig. 5.2: Ontology to DRAMA knowledge class

As shown in Fig. 5.2, we propose an ontology-driven model for rules extraction.

The whole process is described as follows:

 Ontology construction phase

 66

The first phase is ontology construction. Up till now, the ontology building process

is still a craft rather than an engineering activity [HS+97]. Each development team

usually follows its own set of principles, design criteria and phases on the ontology

development process. In Chen et al. (2003), we proposed to construct ontology by

using a hybrid method consisting of the brainstorming and use case modeling

[Cockburn97]. Fig. 2.3 shows a snapshot of the DNS ontology. The DNS construction

algorithm is summarized as follows:

Algorithm 5.1: DNS ontology constructing algorithm

Input: Every kind of DNS cases.

Output: DNS Ontology.

Step1: Build the Skeleton DNS ontology (top-down)

Step2: Initiate (or conduct) use case modeling

Step3: Conduct the attributes and relation extraction.

Step4: Merge the ontological components collected in Step1 and Step3 above.

Step5: Experts verify the ontology.

Step6: After experts’ verification, the DNS ontology is constructed to cover DNS

domain knowledge.

 Knowledge class organization phase

As described above, since the knowledge class of NORM knowledge model is

based on the concepts, the transformation between the ontology concept class and the

knowledge class could be very straightforward. However, generally speaking, the

knowledge for specific domain is usually large and we need some directions to

narrow down the scope. In other words, the major problem on “which concept classes

need to be transferred” should be determined. The ontology relationships could give

 67

us some hints during the transformation. For example, the DNS diagnosis application

focuses on the DNS problems, so the knowledge engineer needs to explore the DNS

related problems first. Therefore, we could transfer the major ontology concept

classes about DNS diagnosis into the corresponding knowledge classes as described

in Fig. 5.3.

Diagnosis

DNS Server

DNS
Registration

DNS
Availability

DNS
Security

Mail Delivery

AUP
violation

No-existent
reverse DNS

mapping

Unmatched
forward FQDN

Zone Data

MX
Record A RecordPTR

Record
Reverse
mapping SPOF

Suggestion SuggestionTrigger Trigger

Trigger Trigger

Acquire

case casecase case case

AcquireAcquireAcquirecasecasecase

Reference

Reference

Reference

Reference

start

Fig. 5.3: The knowledge class structure of diagnosis service

In the process of DNS construction, we should consider DNS issues including

availability, performance and registration, etc. Fig. 5.3 shows the inference scheme of

diagnostic examples about DNS-related mailing problems. The rectangles mean

KC’es in NORM and the rounded rectangles mean cases of some particular KC’es. In

addition, the solid lines indicate relations of the KC’es and their correlated cases.

As specified in Fig. 2.3, the “Rel” relationships in DNS ontology show the

DNS-related issues during building a DNS server. We may need to decompose the

concepts into smaller sub-concepts to help analyze the cases. In this thesis, a

top-down approach is adopted to explore the knowledge; that is, we start from general

concepts and then drill down to specific concepts. In addition, the relationships

 68

between knowledge classes are constructed as well. For example, there exists an

“is_a” relationship between the DNS availability concept and the SPOF concept.

Therefore, when considering the DNS availability issue, we should take measures to

avoid the SPOF problem. The whole process could be summarized as follows:

Algorithm 5.2: Ontology to knowledge class transformation algorithm

Input: DNS ontology

Output: DNS Knowledge Classes and the relationships of Knowledge classes

Step1: Transfer the needed ontology concepts into knowledge classes: For each DNS

ontology concept, we could transfer the concept into the knowledge class.

Step 2: Define or identify the relationships between the knowledge classes.

Step 2.1: If there is an “Is_a” relationship between concept Ontology_X and concept

Ontology_Y, we could infer that concept Ontology_X inherits concept

Ontology_Y and that introduces the “Extension-of” relationship between the

knowledge classes KC_X and KC_Y.

Step 2.2: If there is a “Rel” relationship between concepts Ontology_X and

Ontology_Y, we could infer that when we talk about Ontology_X, we may

talk about Ontology_Y as well. Therefore, that introduces the “Acquire”

relationship between the knowledge classes KC_X and KC_Y.

Step 2.3: If there is a “Rel” relationship between concept Ontology_X and concept

Ontology_Y, and “Case” relationship between concept Ontology_Y and

concept Ontology_Z, then that means concept Ontology_X may reference

Ontology_Z. So, that introduces the “Reference” relationship the knowledge

classes KC_X and KC_Z.

Step 2.4: If there exists other relationship between any pair of concept Ontology_X

 69

and concept Ontology_Y, KEs should contact the domain experts for further

analyzing.

 Facts/rules loading phase

As described above, the KC consists of rules, relations (with other KCs) and fact

declarations. After the KC organization stage, the KCs hierarchy is built but the rules

and facts of the KCs are still empty. Next, in the facts/rules-loading phase, we will

load the facts and rules into the corresponding KCs. In this phase, we could further

divide the stages into two sub-phases.

 Cases Attribute ordering table

As mentioned in [GS92], Personal Construct Psychology (PCP), developed by

George Kelly in the early 1950s, has wide application in modeling human knowledge

processes. PCP gives an account of how people experience the world and makes sense

of that experience. The repertory grid was an instrument designed by Kelly to bypass

cognitive defenses and give access to a person’s underlying construction system by

asking the person to compare and contrast relevant examples. In this thesis, we make

use of repertory grid like concept to help elicit knowledge. Table 5.1 shows the four

cases resulting in SPOF. Knowledge Engineers construct the empty attribute ordering

table first and then interview the domain experts to fill in the table with appropriate

value. The value indicates whether the case relates to the attributes or not. Table 5.2

shows the ordering table of single server and single network.

 70

Table 5.1: SPOF case description

Description DNS server is the infrastructure of the Internet, and if your DNS is
unavailable at all times, the services depending on DNS (such as
WWW, Email etc.) will fail as well.

Case NO. Case Name Description Actor
Case 1 Single DNS Server You have only one DNS server listed

for your domain

DNS

Case 2 Improper DNS
configuration

Of the servers listed for your domain,
only one of them is properly
configured for your domain.

DNS

Case 3 The same physical
position

All of the DNS servers that are both
listed in your domain registration and
properly configured for your domain
reside on the same physical subnet, or
in the same physical location, or
otherwise rely on any one single piece
of equipment.

DNS

Case 4 The same router All the DNS servers are behind the
same router

DNS

Table 5.2: Attribute ordering table for single server/single server cases

 Single Server Single Network
NS Record 5 1
MX Record 1 1
A Record 1 1
PTR Record 1 1
SOA Record 1 1
Physical Location 1 5
CNAME 1 1
Zone Data 1 1

Table 5.3: Attributes and values of NS Records for Single Server

Attribute Value
The Number of NS Record < 2

 71

The IP address of NS Records Master DNS and Slave
DNS are not alive.

Table 5.4: Attributes and values of physical location for Single Network

Attribute Value
Master DNS Server Location
and Slave DNS Server Location

In the same network
location

Master DNS Server Location
and Slave DNS Server Location

Behind the same
router

Table 5.5: SPOF pseudo rules

Case Name Rule
Single DNS Server If number of NS Record <2,

Then SPOF (Single Point Of Failure)
Improper DNS
configuration

If Master DNS and Slave DNS are not live,
Then SPOF

The same physical
position

If master DNS Server and slave DNS server are in the same
network location,
Then SPOF

The same router If the location of Master and Slave DNS servers are behind
the same router,
Then SPOF

 Attribute ordering table Pseudo rules

After the generation of repertory grid, we need to analyze the higher relative

attributes of the cases. For example, when we refer to NS record attribute, we will

refer the number of NS record and the IP address of each NS record as well. That is,

we would like to find out the attribute/value pair of the facts. As described above,

ontology contains the attributes of the concepts. Therefore, KEs could conduct the

ontology to construct the empty attribute table for the higher relative slot of repertory

grid and then interview the domain experts to fill in the values of the attributes. Table

5.3 and Table 5.4 show the attribute/value pair tables for single network and single

 72

server respectively. Finally, KEs could generate the pseudo rules, as shown in Table

5.5, based on the attribute/value pair.

In practice, while the KEs often do not have much knowledge about the problem

domain, the domain experts usually do not have the programming concepts. Pseudo

rules, viewed as the bridge between the domain experts and the KEs, are abstractions

of the cases. They are understandable for the KEs and easier to be verified by the

domain experts. If there is anything wrong, the domain experts could tell the KEs to

modify the pseudo rules.

Algorithm 5.3: Knowledge class facts/rules loading algorithm

Input: DNS ontology

Output: DNS Knowledge Class with facts and rules

Step 1: Find out the ontology concepts that contain “Case” relationship.

Step 2: Choose exemplary attributes that could characterize the domain.

Step 3: Interview domain experts to rate each case based on the attributes. The value

of the slot ranges from 1 to 5, where 5 means highly related with the construct

while 1 means lowly related.

Step 4: Find the highly related constructs and further analyze.

Step 4.1: Conduct the ontology to construct the attribute tables.

Step 4.2: Interview the domain experts to fill in the values of the attribute tables.

Step 5: Generate pseudo rules, where facts coming from the attributes/values pairs of

step 4.1.

Step 6: Verify the pseudo rules by domain experts and ask the KEs to modify the
pseudo rules if needed.

 73

5.3 DNS Ontology-based Model-Tracing Tutoring

In general, ontology representation is appropriate for knowledge modeling. For

example, the DNS problem taxonomy structure could provide the DNS problem space.

However, as we know, the rule-based representation is more appropriate when the

problem domain can be described clearly and well modeled. In essence, DNS

diagnosis system is triggered by rules and users’ DNS configuration is acted as the

facts of rules. Users input the DNS configuration data when constructing DNS servers,

so the DNS configuration information could reflect users’ activities. For example,

when the diagnosis system finds the fact, only one NS resource record listed in the

user’s specified DNS configuration zone, it will fire the single-server rule under the

SPOF knowledge class (i.e., the single-server rule firing could infer that the SPOF

problem exists). Therefore, ontology hierarchy information could provide the possible

problem-solving space and the rules could be used to model users’ activities.

In essence, DNS problem domain is very complex and varies greatly on different

sites because too many things, like management strategies and resources, need

considering [Bellovin95] [Bc+01] [CERT00] [CJ+99] [DNSBL03] [Faltstrom03]

[Kumar+93] and most DNS administrators are primarily interested in the issues

related to their DNS problems. Hence, DNS could basically be classified as a

problem-driven domain. On the other hand, model-tracing tutoring tries to model

users’ behaviors by production rules and focus on tracing the problem issues as well.

Therefore, model-tracing tutoring is very suitable to apply on the DNS domain

because of its problem-driven characteristics.

In general, the construction of model-tracing tutoring needs domain experts to help

analyze the domain problems and decompose the problems into sub-problems to

simulate users’ activities during the problem-solving process. Usually, this is not a

 74

straightforward job. Therefore, as shown in Fig. 5.4, we propose an ontology-based

model-tracing tutoring structure construction model for facilitating the model-tracing

tutoring and the whole process is described as follows:..

Ontology

Domain Expert

Cases Pseudo Rules

Knowledge Engineer

Verify

P ha se 3:
 F a c ts/R ule s Ge ne r a tion

P ha se 1:
Ontology C onstr uc tion

Attribute ordering table

P ha se 2:
P r oble m De c om position

P1

P11 P12

P121 P122

R1 R2

P ha se 4:
 M ode l-Tr a c ing Tutor ing S ke le ton Ge ne r a tion

Fig. 5.4: Ontology-based model-tracing tutoring structure generation

(i) Ontology Construction Phase
As described in Section 5.2 Ontology Construction Phase.

(ii) Problem Decomposition Phase

As described above, model-tracing tutoring decomposes the problems into

sub-problems and tracks students’ progress and keeps them within a specified

tolerance of an acceptable solution path. Therefore, if the focus of ontology is on the

application problem issues, the problem decomposition process could be facilitated

from ontology hierarchy information. For example, in DNS problem ontology, “Is-a”

relationship exists between single-server concept and SPOF concept. That is, we

could say that a single-server concept is a specialization case for SPOF and that could

be further inferred that single-server problem is a sub-problem of the DNS SPOF

problem. Hence, if we focus on SPOF problem, we could decompose SPOF problem

into “Single Network” and “Single Server” sub-problems.

(iii) Facts/Rules Generation Phase

 75

As described in Section 5.2 Facts/Rules Generation Phase
.
(iv) Model-Tracing Tutoring Skeleton Generation

As described above, ontology hierarchy information could be used to construct the

skeleton of model tracing tutoring. Furthermore, the fact section of rules could reflect

users’ DNS configuration activities information. In addition, we need to interview

domain expert for the correct configuration for each problem. Finally, we could

generate model tracing tutoring for SPOF problem as shown in Fig. 5.5. Fig. 5.5

shows the DNS diagnosis knowledge class structure for SPOF knowledge class and

model-tracing tutoring production rules structure for SPOF problem. For example,

when the users fire rule R1, that means SPOF problem happened in users’ DNS server

and the result could infer that the users may not have knowledge about DNS SPOF

problem. Furthermore, it also gives us the clue for providing appropriate teaching

material or online help.

SPOF

Single Server Single Network

Single DNS
Server

Improper DNS
Configuration

The sampe
Physical
location

The sampe
Router

R1 R2 R3 R4

Correct
Configuration

Fig. 5.5: Model-tracing tutoring for SPOF problem

 76

5.4 DNS Ontology-based Search System

DNS

Master DNS

Primary DNS

is_a

Synonym

Slave DNS

is_a

DNS
Security

DNS
Dynamic
Update

Zone
Data

Protection

Related

Related
Related

Fig. 5.6: DNS ontology examples

Most traditional search systems compute the similarities between objects (or

concepts) based on the term frequency (TF) or inverse document frequency (IDF).

However if we consider only the term, we would miss the semantic information of the

term. It is not easy to take into account the term semantics information directly.

Especially when we are not familiar with the domains, it is difficult for us to describe

the terms correctly. For example, many issues (e.g. DNS spoofing, DNS zone data

protection etc.) exist under DNS security issue. However, for most of the users, what

they could describe is the term “DNS security”. In other words, the general terms

expression is easy for most of the users. Furthermore, the semantics information is

important as well. For example, there maybe exist synonyms for every domain.

However, if we consider only keyword mapping, the synonyms of the query string

 77

will be ignored and that may lead to information loss. Therefore, a system which

could expand users’ query string based on the background knowledge and understand

the term semantics is required.

Ontologies are useful in a range of applications, where they provide a source of

precisely defined terms that can be communicated across people and applications. An

information system cannot be written without a commitment to a model of the

relevant world – commitments to entities, properties, and relations in that world

[CJ+99]. The role of ontologies is to capture domain knowledge and provide a

commonly agreed upon understanding of a domain. The common vocabulary of an

ontology, defining the meaning of terms and their relations, is usually organized in a

taxonomy and contains modeling primitives such as concepts, relations, and axioms

[HS+97]. With the help of ontology, the knowledge is not only human-readable but

also machine-readable. Having developed a formal specification for a domain

ontology, it is possible for database and software developers to agree on its use.

 As shown in Fig. 5.6, the DNS ontology could represent the relationship between

concepts. General speaking, we could represent the semantic information by the

attributes of ontology concept or the relationship between the ontology concepts. The

attributes of ontology represent the internal state of the concept, while the relationship

between the ontology concepts represents the outside context information of concepts.

If we focus on specific domain, the ontology would provide us much background

domain knowledge. First, the taxonomy hierarchy information could provide us the

inheritance information. As shown in Fig. 5.6, the “is_a” relationship between DNS

concepts and Master/Slave DNS concepts indicate that both master/slave DNS

concepts are a kind of DNS. Second, we could define required relationship for

application requirement. For example, if we need to represent synonym information,

we could define the “synonym” relationship. Hence, during the ontology construction,

 78

we would take into account “synonym” relationship. For example, the “synonym”

relationship indicates that “Master DNS” concept and “Primary DNS” concept are

identical. As for “Related” relationship, “DNS Dynamic Update” concept and “Zone

Data Protection” concepts are related to “DNS Security” concept. Therefore, when the

users are interested in “DNS Security”, they may be interested in “DNS Dynamic

Update” concept or “Zone Data Protection” concept as well. Third, ontology could

provide basic inference mechanism. The reasoning capability is useful, because the

inference engine could infer more results based on known information. For example,

if “is_a” relationship exists between concept A and concept B and “is_a” relationship

exist between concept B and concept C. We would infer that the “is_a” relationship

exist between concept A and concept C.

 79

Chapter 6 System Architecture

Even though DNS is so important to network operation today, many novice DNS

administrators often do not know whether their DNS servers work well. Therefore, a

knowledge portal which focuses on DNS domain is required. In Chapter 6, we will

describe what our DNS portal is and how it operates.

6.1 Diagnosis-Learning-Search Model

It is expected that our DNS knowledge portal could at least achieve four goals. First,

for those who are lack of domain knowledge and want to build up new DNS servers,

our DNS knowledge portal could provide DNS-related knowledge for them. Second,

for those who want to check whether their DNS works well and do not know how to

do that, our DNS knowledge portal could help diagnose their DNS servers. Third, for

facilitating the reusability and interoperability, the DNS teaching materials would be

wrapped by the SCORM standard. Fourth, for those who would like to search

required information on the portal, we provide DNS ontology-based search service to

enhance the searching capability and improve the usability of the search service.

Fig. 6.1 shows the overview of the whole system, which consists of the diagnosis

service, the tutoring service and the search service. One of the key features (or

requirements) of the proposed portal system is that, in addition to the individual

services, the integration of all the services is important as well. For example, the DNS

model-tracing tutoring could adopt the diagnosis service as the DNS knowledge test

interface. On the other hand, the DNS diagnosis service could adopt the model-tracing

service as the further tutoring system. And, the search service could provide the

search mechanism (i.e., as for traditional searching the data records in the database,

 80

the articles in the file system or the teaching materials) to look for required

information such as the most appropriate tutoring material and related configuration

and design suggestions.

DNS Ontology

Diagnosis System Tutoring System

Search System

Fig. 6.1: iDNS-MS system architecture

In the following sections, we would describe DNS diagnosis service, tutoring service

and search service respectively.

6.2 DNS Diagnosis System

It is expected that our DNS knowledge portal could at least achieve four goals. First,

for those who are lack of domain knowledge and want to build up new DNS servers,

our DNS knowledge portal could provide DNS-related knowledge for them. Second,

for those who want to check whether their DNS works well and do not know how to

do that, our DNS knowledge portal could help diagnose their DNS servers. Third, for

facilitating the reusability and interoperability, the DNS teaching materials would be

 81

wrapped by the SCORM standard. Fourth, for those who would like to search

required information on the portal, we provide DNS ontology-based search service to

enhance the searching capability and improve the usability of the search service.

Fig. 6.1 shows the overview of the whole system, which consists of the diagnosis

service, the tutoring service and the search service. One of the key features (or

requirements) of the proposed portal system is that, in addition to the individual

services, the integration of all the services is important as well. For example, the DNS

model-tracing tutoring could adopt the diagnosis service as the DNS knowledge test

interface. On the other hand, the DNS diagnosis service could adopt the model-tracing

service as the further tutoring system. And, the search service could provide the

search mechanism (i.e., as for traditional searching the data records in the database,

the articles in the file system or the teaching materials) to look for required

information such as the most appropriate tutoring material and related configuration

and design suggestions.

Fig. 6.2: System architecture of DNS diagnosis system

In traditional rule-base expert system, the rule base consists of all rules and facts.

The system needs to go through every matching rule when the inference engine is

 82

working. This might become inefficient when the number of rules and facts become

large. Therefore, many researches aim to improve the maintenance of rule-based

expert system by incorporating the objected-oriented approach. DRAMA/NORM

adopts knowledge class to manipulate the knowledge and loads only the required

knowledge classes. That could simplify the rules management and improve the

efficiency of the KBS. In essence, each knowledge module is corresponding to the

knowledge class (KC) structure of DRAMA. There are many advantages of using

such a modular knowledge base design. First, the knowledge base is partitioned into

general clusters of concepts and rules are grouped into sets of specific concept

domains. Thus, it provides a logical partitioning of the rule base, which facilitates the

management of rules in each knowledge class. Second, it is easy to reuse existing

rules based on modular knowledge base design. Therefore, we can provide

personalized service for different users.

In addition, the design of knowledge classes takes into account knowledge reuse.

For example, the rule,

If TTL1 != TTL2 then LameServer = true

, is located in “DNS Registration” knowledge class and it needs the facts of DNS

server knowledge class. In principle, the facts “TTL1” and “TTL2” in the “DNS

Server” KC will be taken (transferred) to the “DNS Registration” KC. Therefore, as

shown in Fig. 6.3, there is a relation “Acquire” between them.

 Rule ：If TTL1 != TTL2 then LameServer = true

 83

Fig. 6.3: “DNS Registration” KC acquires the facts of “DNS server” KC

In our system, two mechanisms are used to collect the user’s DNS server

information:

 If the user knows only the domain name, we will perform query operation to

collect the DNS server information.

 If the user could provide the information about the DNS environment in more

detail, the questions and answer model is used to help acquire the user’s DNS

information.

In addition, we adopt Model-View-Controller design pattern [KP98] to separate

core business model functionality from the presentation and control logic. Such

separation allows multiple views to share the same enterprise data model, which

makes it easier to implement, test, and maintain. The view section, made up by JSP

files, is used to collect users’ DNS server information and display the diagnosis results

back to the users. The collected information, gathering directly by querying or

indirectly by asking questions, will be stored in the model section, the javabean,

which is translated from the DNS ontology. The controller is composed by java

servlets. Based on the user interactions and the outcome of the inference engine, the

controller responds by selecting an appropriate view.

 84

6.3 DNS Ontology-Based Model-Tracing Tutoring

In DNS diagnosis system, the system will provide the suggestions when something

wrong with users’ DNS configurations. However, the suggestions could only reflect

the actions required to fix the problems and some of the users will not really

understand the reasons. Therefore, we start to think about the integration model of

diagnosis system and tutoring system. As described above, the DNS domain is

problem driven and most of the DNS administrators are interested in the topics that

are related to their DNS configuration errors. Therefore, for those who would like to

know the DNS operation model in more detail, the system could provide more

tutoring teaching materials. In addition, the diagnosis system could diagnose users’

DNS configurations and that could be viewed as users’ DNS configuration behaviors.

Fig. 6.4 shows the proposed architecture of the integrated DNS tutoring/diagnosis

system. As described above, in diagnosis system, we propose an ontology-driven

model for rule extraction and store the knowledge into the KBS (DRAMA/NORM). In

previous design [LT+04-1], these collected facts will be sent to the inference engine

and then the inference results will return to the web interface. As we all know, the

more detailed information is collected, the more accurate suggestions could be

provided. To make the system more complete, we further refine the working paradigm.

When the users finish the diagnosis processes, the diagnosis system will return some

suggestions about their DNS hosts. If any users would like to know more about their

problems, they could start the DNS tutoring process based on the firing rules (in the

diagnosis results) to learn more about their DNS systems and related problems.

In short, DNS tutoring system, based on ontology-based model-tracing tutoring

model, will provide users appropriate teaching materials or online help when

receiving inference result (DNS problem and firing rules) from diagnosis system. In

 85

addition, on specific conditions (such as lame servers and SPOF) when the users

finish some tutoring courses, DNS tutoring system might ask the users to reconfigure

their own DNS hosts again and start another diagnosis. The new diagnosis result will

be used to analyze whether the users understand the courses.

Fig. 6.4: System architecture of DNS tutoring system

In traditional tutoring system, the teaching materials are arranged by chapters and

the students usually learn the topics in the listed order sequentially. In a sense, the

chapter structure would represent learning paths for the course. For example, algebra

symbolization should be introduced before learning mathematics equations and the

students would learn algebra symbolization before mathematics equations. However,

in general, the chapter-structure representation of DNS domain knowledge might not

be a good enough way to provide DNS learning for many people (i.e., especially for

the inexperience DNS administrators) to deal with the complicated internetworking

environment for several reasons such as timing issue and the complexity of the

knowledge. In other words, many DNS administrators usually attempt to know the

appropriate topics related to the problems of their DNS servers in a timely manner.

Fig. 6.6 shows a reference hierarchy of DNS tutoring materials, collected from the

 86

reference materials from domain experts and DNS-related books. For example,

introduction to DNS issues is the basis of DNS tutoring. It includes DNS terminology,

concepts, operations, etc. All of the other DNS issues except DNS introduction could

be viewed as independent courses and will refer to DNS introduction issue and other

DNS-related or network-related issues if needed.

DNS tutoring

Introductions to DNS BIND Configuration DNS Maintenance DNS Troubleshooting DNS Security

DNS Terminology

DNS Concepts

DNS Operations

DNS Resource Records

Master DNS Server
Configuration

Slave DNS Server
Configuration

Zone Data Management

DNS Logging

Troubleshooting tools
and techniques

Potential problems

TSIG

DNS Dynamic Update

DNS and Firewalls

Securing name server

Fig. 6.5: DNS tutoring teaching material hierarchy

In practice, during the tutoring process, it will be of great help for the system to

provide appropriate auxiliary mechanisms to assist the users to learn the course more

smoothly. Furthermore, in addition to the online help, the content and ways of

presentation of the teaching materials are important as well. Since the model-tracing

tutoring skeleton could provide possible problem-solving paths about the

diagnosis/tutoring process and the diagnosis rules could reflect users’ activities, the

domain experts could provide appropriate assistances more easily at proper time.

However, as to the design and arrangement of teaching materials, it is not easy to

provide them directly without domain experts’ help. For example, according to our

 87

experiences, the tree representation is more easily understood than many other ways.

After we finished transforming the knowledge embedded in the ontology into the

model-tracing tutor skeleton, the domain experts could provide appropriate teaching

materials on the tree nodes to facilitate the acquisition and growth of more knowledge

objects (i.e., course materials) on top of the skeleton.

Furthermore, the association relationship between the teaching materials is

important as well. For some cases, the specific administrators need only to know the

issues about their DNS hosts, but others may need more. For example, when dealing

with DNS SPOF problem, we might have to check the DNS NS resource records,

master DNS server, slave DNS server and network-related issues. Therefore, instead

of providing all related materials once, it is better to provide teaching materials

incrementally. On considering these, we interview the domain experts to build the

connections between the rules node as shown in Fig. 5.5 and teaching materials as

shown in Fig. 6.5. That is, we interview DNS domain experts for acquiring the

knowledge (and the relationships) among the required teaching materials based on the

pseudo rules and present the topics incrementally. For example, Table 6.1 shows the

required teaching material for DNS SPOF pseudo rules. When the users’ inference

results fire the rule “number of NS records < 2”, the DNS tutoring system will

provide “DNS operations” course first to them. After finishing “DNS operations”

course, the system will ask the users if they could manage to reconfigure their own

DNS server and start another diagnosis test after the reconfiguration is done.

Table 6.1: Teaching materials for specific pseudo-rules

Pseudo rule Suggestion in Diagnosis System Teaching Material

Number of NS At least two NS records (Master • DNS Operations

 88

Record <2 DNS server and Slave DNS

server) are required.

• DNS Resource Records

• DNS Concepts

• DNS Terminology

• Master DNS Configuration

• Slave DNS Configuration

Master DNS and

Slave DNS are

not live

Each zone should have one and

only one master DNS server.

Each zone should have at least

one slave DNS server (and may

be more).

• Master DNS Configuration

• Slave DNS Configuration

• DNS Operations

• DNS Resource Records

• DNS Concepts

Master DNS

Server and slave

DNS server are in

the same network

location

DNS servers should be located

in different network location

• DNS Operations

• DNS Concepts

The location of

Master and Slave

DNS servers are

behind the same

router

DNS servers should not located

behind the same router

• DNS Operations

• DNS Concepts

The next step will be based on the diagnosis test. If the users could not pass the

tests, in addition to “DNS operations” course, the system will provide “DNS Resource

Records” course as well. Instead of telling the users how to do it directly, we would

like to guide the users and let the users do it themselves. Therefore, the users might

need to re-configure their DNS to see whether they understand the course. Fig. 6.6

 89

shows the flow of DNS tutoring process, which adopts the DNS diagnosis subsystem

as the testing environment, the DNS tutoring subsystem as tutoring environment and

model-tracing model as the medium for connecting the two subsystems.

DNS Diagnosis

Tutoring?

Model Tacing
Model

DNS Tutoring

No

Yes

Finish

Fig. 6.6: DNS tutoring flow

 90

6.4 DNS Ontology-Based Searching

Search Layer Index
Repository

Index Module

Query Parser Layer

Presentation Layer

File System Database

Data Layer

Logic Layer

Ontology

Fig. 6.7: System architecture of ontology-based search system

In addition to diagnosis system and tutoring system, there are many DNS related

articles or information in the system. In the traditional information system, search

mechanism is the basic tool for the information search. Therefore, search is often the

core of the existing portal systems (e.g. yahoo, MSN, pc home etc.). However, most

of the existing search systems are based on keyword search and that may lead to

incorrect results. Some portal systems (such as yahoo) provide the directory taxonomy

information during the search process. The taxonomy information could provide

much help. For example, Fig. 6.8 shows the AI taxonomy hierarchy information and

we could infer that the expert system, GA, neural network and fuzzy all belong to AI

field. Furthermore, if the search engine posses the knowledge, the search engine

would be more intelligent. For example, when someone search the term “AI”, the

search engine could provide the category information and could provide more

 91

suggested search query term (such as, expert system, neural network, GA, fuzzy)

based on the taxonomy information. However, it is not easy to construct the general

purpose taxonomy hierarchy but for specific domain, the taxonomy hierarchy

structure would be possible.

Ontology could provide the basic taxonomy hierarchy information. In addition, the

ontology could provide inference mechanism for further information reasoning and

that could improve the capability of search system. In addition, the flexibility of the

search system is important as well. Now the data source of the system includes the

articles in the file system, the data record in the database. The new data source (e.g.

mailing list archie, news, blog etc.) may be taken into account in the future.

Furthermore, a scalable system which could provide robust services is important as

well. Therefore, in the system design, we take into account these issues and propose a

three-layer framework. As shown in Fig. 6.7, the whole system could be divided into

presentation layer, logic layer and data layer respectively. The descriptions of the

layers are listed as follows:

 Presentation Layer: The presentation layer focuses on the user interface and the

search result presentation. When the user enters the search keyword and criteria,

the presentation layer will collect and pass the information to the java servlet for

further processing.

 Logic layer: The role of logic layer is to act as the bridge between presentation

layer and data layer and the logic layer could be further divided into two

sub-layers, query parser layer and search layer. The logic layer will receive the

query input from presentation layer and the query parser layer will trigger the

internal inference engine based on DNS ontology. The inference result will then

pass to the search layer and start the search process. The search layer will search

the index repository for the required information and return to the presentation

 92

layer.

 Data layer: The data layer contains different data sources (e.g., the files in the file

system, the data record in the database etc.). To speed up the search process, it is

necessary to index these data. In addition, the design of data layer should take

into account into the flexibility. For example, when different data sources (e.g.,

the mailing list archie, the pages in the Internet etc.) are imported, the data layer

should be able to handle the new data source without changing the existing

design.

Just like the MVC design pattern, our design is focus on the separation of the

presentation, logic processing and data. Therefore, if we would like to change the

design of arbitrary layer, we need not change the design of the other layers. For

example, if we add more data sources into the data layer, the logic layer still access

the result of the index and the presentation layer presents the result as usual.

Furthermore, the way of domain ontology representation may vary. For example, we

could represent the ontology by using XML, RDF, or OWL etc. Different ontology

representations need different process logic. Therefore, to improve the flexibility of

the ontology representation, we use the java interface design to abstract the inference

engine design.

Fig. 6.8: The AI hierarchy

 93

Fig. 6.9 shows the ontology inference engine design flow. The input is the query

string from users. The inference engine could support many ontology representation

formats when we provide the required implementations. Interface and

implementations are separated and that could improve the reusability of the system. In

addition, we adopt Apache Lucene as the search framework, so we need to translate

the inference result into the format which is acceptable by Lucene.

Lucene is a high-performance and scalable search engine technology. The powerful

abstractions and useful concrete implementations make Lucene very flexible. It

provides the basic search architecture and it has been applied on many domains. As

for the search section, Lucene provides the query parser mechanisms that could fulfill

most of your requirements. For example, most of the search engines provide the

Boolean mechanism for the users to composite complex query. If you would like to

search the documents containing “DNS” and “Linux” but not “Windows”, you could

use the following query string:

DNS AND Linux Not Windows

In addition to Boolean query parser, Lucene provides other query parser mechanisms

(e.g. Term Query, Fuzzy Query, Wildcard Query etc.). In our system design, we make

use of the Lucene query parser mechanisms to represent the final inference result.

Furthermore, in our search system, we adopt XML as the ontology representation

format. Fig. 6.10 shows part of the DNS ontology. In the XML file, all the concepts

are represented by “class” tag. The concept could consist of property attribute. In

addition, we could define the relationship between the concepts. For example, we

 94

could define synonym relationship between “Primary DNS” and “Master DNS”

concepts. When the inference engine parses the XML file, it would reason that

“Primary DNS” and “Master DNS” are identical, and they should be taken into

account at the same time. Therefore, the inference engine would transfer the original

query string “Master DNS” into “(Master DNS OR Primary DNS)”. In addition to

synonym relationship, we define the “Related” relationship. The related relationship

could be used to model the general terms condition. For example, if the users would

like to find out the documents about DNS security issues. Although DNS security

consists of many other related issues (e.g. DNS Spoofing, Zone Data Protection etc.),

most of the users do not know these detail issues. In most of the traditional search

systems, the users may miss some information. Therefore, in our system, we define

the Related relationship to solve this kind of problem.

In the data layer design, we need to take into account the possibility of new data

source requirement. When the new data source comes, the system should not change

the original design. To facilitate the communication of programmer and system

analyzer, we adopt Unified Modeling Language (abbreviated as UML [Kobryn99]) as

the visualizing, construction and documenting language. Fig. 6.11 shows the class

diagram of the index class design. Since we may face different data source, we adopt

“Factory” design patter to achieve the goal. The IndexFactory is similar to a factory

which is used to create different index sources. The Factory design pattern could hide

the detail implementation from the clients. Therefore, if new data source comes, the

clients do not change. In addition, to separate the implementation from the design, the

IndexSource interface defines the required method addDocuments for every concrete

class that implement IndexSource interface. Therefore, if we need to add a new data

source, we could follow the following steps:

 95

1. Create a concrete class which implement IndexSource interface.

2. Fill in the required addDocuments method.

For example, if we would like to process HTML files, we could create a

FSHTMLIndexSource class which implements IndexSource interface. In the

addDocuments method, we would need to parse the HTML information first and then

extract the required information (e.g. title, body etc.) and composite these information

as Lucene Document object.

Fig: 6.9: Ontology inference engine flow

 96

<Ontology>
 <Class name="DNS">
 <Synonym name="Master DNS"/>
 <Property name="SOA"/>
 <Property name="NS"/>
 <property name="MX"/>
 </Class>

 <Class name="Primary DNS" >
 <Synonym name="Master DNS"/>
 </Class>

 <Class name="DNS Security">
 <Related name="DNS Spoofing"/>
 <Related name="Zone Data Protection"/>
 </Class>

 …

</Ontology>

Fig. 6.10: DNS ontology XML

Fig: 6.11: Index class diagram

 97

Chapter 7 Implementation and Evaluation

7.1 System implementation

As with the popularity of Internet, web application has become one of the most

popular application models and most of the people are familiar with the web interface.

In addition, we take into account the system portability issue as well. When the

number of users grows, we may need to move the existing system to different

environment. In general, the following issues are required during the design:

1. Robust issue:

The robust issue is the most important issue. When we provide the services, we hope

the user could access the services without any problem. For building a web-based

expert system, we use DRAMA as the expert system shell because of its client-server

architecture and the object-oriented knowledge base structure [Wu00]. DRAMA is

implemented by JAVA language and it uses JAVA RMI technique; thus, a web server

can be a client of DRAMA by calling remote functions in DRAMA server.

2. Portability issue::

To improve the system portability of the system, we adopt JAVA as the

implementation platform. Therefore, if we would like to change the OS, we do not

need to change the code.

3. Standard issue:

The standard issue is important as well. If we follow the standard, when we need to

exchange information with other system, the burden will be low. Therefore, we adopt

SCORM standard as the tutoring platform.

 In addition, open source software plays an important role in our system

 98

implementation. At the time of the writing: (1) the main operating system deployed is

Linux Redhat 9.0; (2) the expert system tool is DRAMA 2.0; (3) the web server

packages deployed are Apache 1.3.26, Tomcat 4.1.12. Interested users could refer to

the web site (http://idns-kde.nctu.edu.tw) for further details. In the following sections,

we would describe the diagnosis service example in Section 7.2, model-tracing

tutoring service example in Section 7.3, building an ENUM DNS example in Section

7.4, DNS ontology-based search service example in Section 7.5 and finally the

evaluation in Section 7.6.

7.2 Diagnosis examples

Fig. 7.1: The DNS diagnostic subsystem

As shown in Fig. 7.1, there are three diagnosis facilities for users to choose:

 99

 DNS on-line test：This will test the DNS servers that are supposed to be

responsible for the domain zone. All users need to do is to enter a domain name

and to select the DNS server. Then our system will conduct the required DNS

queries and collect the information about this server from Internet automatically.

After that, it will send the information to the server of DRAMA for inference.

Finally, the server of DRAMA will return the inference results to the users via

the web server.

 DNS off-line debugging：This facility is designed for the users, especially for

DNS beginners, who want to build DNS servers but cannot make the DNS work

by themselves. When the users have set the system files, they can upload these

files to the system for verifying and debugging. Our system will point out the

errors with colorful words and provide the possible way(s) to correct.

Diagnosis of DNS-related mail problem：This subsystem will provide diagnosis

services for people with the mail delivery problems related to DNS. Since there are

many possible situations, we need to communicate with each user interactively with a

list of questions to help identify and collect the facts that are needed for putting into

the knowledge base and for later inference. After that, the system could provide

plausible answers for the users to fix the problems on the related mail servers and/or

DNS servers.

Among the DNS-related problems, mail delivery problems are the most concerned.

When users encounter mail delivery problems (that might involve DNS) and have no

ideas what is really going on, they can use the diagnostic subsystem of iDNS-MS for

getting plausible solutions. As could be derived from Fig. 7.1, users will be asked

about which diagnosis type to try in the first place. If it is about DNS-related mailing

problems, the “Mail Delivery” knowledge class is triggered. Next, according to the

cases, our system will further try to identify the problem(s) by asking the particular

 100

users with a list of questions about the status of related mail server and the

corresponding DNS server(s).

Next, as shown in Fig. 7.2, the system will start to collect facts for later inference

by asking the users to enter the domain zone name (about their DNS servers) wanted.

Based on the users’ input information, the DNS diagnosis system then start another

private session(s) to access the DNS servers, regarding the domain zone under test,

for more facts (as shown in Fig. 12) and start the diagnosis process.

As shown in Fig. 5.3, for identifying possible “No-existent reverse DNS mapping”

case, users will be asked for the information about the network environment if

necessary. For example, the users will be first referred to the rules about checking the

possibility of missing “PTR record”. Moreover, if the very mail servers are built on

ADSL links, the cases might usually trigger additional processing. In these cases,

because ADSL users usually have only parts of a CLASS C (i.e. 255 hosts) IP

addresses, the PTR records of them usually have to be registered or configured

through the related ISPs. Therefore, the users will be further referred to the rules in

“DNS Registration” knowledge class. Finally, if any of the problem cases has been

identified, the final rule will trigger the "Suggestion" KC to provide appropriate

answer(s) for users to correct the problems as shown in Fig. 7.3.

 101

Fig. 7.2: DNS testing on DNS diagnosis system

Fig. 7.3: Inference results of DNS-related mail delivery problems

 102

7.3 Model Tracing Tutoring examples

According to domain expertise, DNS Single-Point-of-Failure (abbreviated as

SPOF-DNS) problem is one of the most common problems in DNS deployment on

Internet sites. In practice, however, due to the lack of experience and domain

knowledge, many inexperienced DNS administrators did not realize these might

become critical problems under specific network situations sometime in the future. In

principle, it will be an obvious weak point that abusers (or attackers) could exploit to

break the availability of the network services of the target site since DNS is the

infrastructure of Internet.

In our previous DNS diagnosis work, users can use the diagnosis system to get

plausible solutions on various types of DNS-related diagnosis services. After finishing

diagnosing, if the users would like to know more about the specific problem or DNS

operation principle, the DNS tutoring system would give the users appropriate

tutoring teaching materials. As shown in Fig. 7.4, the diagnosis system could retrieve

users’ DNS configuration information as shown in Fig. 7.2 as users’ DNS activities

and the production rules extracting in the process of ontology-driven rules extraction

model to simulate users’ behavior. In addition, as shown in Fig. 7.5, based on the

learning sequences construction using ontology and rules algorithm, we build the

DNS SCORM learning environment. That could provide the users another way to

learn DNS knowledge.

 103

Fig. 7.4: DNS tutoring subsystem

Fig. 7.5: DNS SCORM Example

7.4 Building an ENUM DNS server

In practice, it might be hard for most administrators to deal with the construction

 104

and management of ENUM DNS systems since it involves both the complex DNS

and new ENUM protocol suites. In this thesis, DNS knowledge portal is extended to

help deal with these issues. It is supposed that not only could the DNS knowledge

portal help some users solve their ENUM DNS deployment problems, but it also

provides other administrators with the insight about how to design and implement

their ENUM DNS systems. For example, if the administrators could have a deeper

understanding about these management issues in advance through some subsystems

such as the DNS term explanation and tutoring, the probability of making mistakes

will be lower in the future. Similarly, DNS design subsystem could give the

administrators some suggestions when the environment of ENUM DNS (number of

user, network topology etc.) changes. Meanwhile, DNS diagnosis and configuration

subsystems could help the user to debug and find the solutions.

As shown in Table 7.1, many management issues need considering during the

construction of ENUM DNS. First, because the IPv6 infrastructure on most sites is

still under construction, it might result in many new DNS problems. Second, since

ENUM DNS is a special kind of DNS, it needs many protection mechanisms (e.g.,

thorough planning, configuration, monitoring, diagnosis, etc.) to ensure that it

operates well.

Table 7.1: ENUM DNS properties

Problem/Issues Protection mechanisms

DDos attack/ SPAM

Mail attack

 System monitor

 Network software or hardware

 IDS

 Firewall

Availability Eliminate SPOF (Single Point Of Failure)

 105

 Keep the DNS server simple and light

 Exclude all Internet services (e.g. WWW, proxy, ftp,

etc.) that are not necessary for conducting DNS

services on the DNS server host.

 Separation of DNS traffic

 Advertising server : incoming

 Resolving server: outgoing

Security Restrict zone transfer

 TSIG

 DNSSEC

 Avoid dynamic update

 Avoid DNS spoofing

 Turn-off recursive query

 Turn-off glue-fetching

 Jail DNS daemon with chroot

IPv6/IPv4

Interoperability

 Dual-stack DNS

Our system will base on the inputs from users and then the inference engine will

return the results to the users. We follow the object-oriented programming (OOP)

approach to design ENUM DNS KBS. Basically, the whole ENUM DNS could be

viewed as an object, which inherits both IPv6 and IPv4 DNS objects. The properties

of ENUM DNS could be viewed as the attributes of OOP and the ENUM DNS

architecture as the method of OOP. As shown in Table 3.1, some general issues will

trigger the IPv4 DNS rules. For example, the availability property (“Eliminate SPOF”)

will trigger the IPv4 DNS rules to eliminate SPOF problem. On the other hand,

 106

IPv6/IPv4 interoperability property is valid in both IPv6 and ENUM DNS, but absent

in IPv4 DNS. So, an ENUM DNS should trigger the rules in IPv6 DNS. These rules

imply that it is better for a dual-stack host to have separate names. For example, the

name “www.test.com” refers to the IPv4 address and its counterpart

“www.ipv6.test.com” has IPv6 address. If configured in this way, we could help

reduce the possibility for the DNS to respond with invalid information for the clients

to access the corresponding remote system.

Fig. 7.6: ENUM DNS result page

Fig. 7.6 shows the result page which contains a typical architecture for

implementing ENUM DNS, which includes firewall, IDS (Intrusion Detection Server),

monitor server and analysis server. The firewall will block all other unnecessary

packets. If the DNS traffic from specific IP address is more than the threshold, the

monitor server will trigger the analysis server to start dumping and analyze the traffic

 107

from the IP address. If some attacks are identified, new filtering rules will be

generated by the analysis server and forwarded to the firewall to block the traffic from

the IP address or traffic shaping for the IP address.

7.5 DNS Ontology-based Search Service

Fig. 7.7: DNS information content management system

 108

Fig. 7.8: DNS related data insertion interface

In our system, we would like to build the DNS knowledge portal. Therefore, we

need a lot of DNS related information. In addition to the teaching materials, we gather

the articles, FAQs and information in the books. The information would be located in

different data sources. For example, some of the articles would be stored as HTML

files in the file system and some of the articles are stored in the database. Furthermore,

to facilitate the information gathering, we build a content management system (CMS)

for the information management. Fig. 7.7 shows the CMS interface, which provides

“add”, “delete” and “edit” functions on the data. Fig. 7.8 shows the data insertion

interface and users could enter title, keyword, description, etc. information. The

backend of CMS is database, so the information would be stored into the database.

Hence, our system should take into account the data from different data sources. In

addition, new data format may be imported in the future. Therefore, a flexible

 109

architecture which allows different data source without changing most of the design is

required. As described above, we make use of Factory design patter to achieve the

goal.

To speed up the search performance, index mechanism is required. Apache Lucene

provides the index mechanism, so we could define what kind of data should be

extracted for indexing. In addition, when the users enter the search query string, the

search engine should transform the query string into semantic terms based on the

DNS ontology. The whole inference process is described in Section 6.4. Fig. 7.9

shows the search interface where users could use keyword and Boolean operations.

For example, if users would like to search information about DNS and Linux, they

could input the query string “DNS AND Linux”. When the search engine receives the

query string, the inference process would be active. As shown in Fig. 7.10, if the users

input “Master DNS” query string, the inference engine would transform the query

string into “Master DNS OR Primary DNS”. Since the synonym relationship exists

between Master DNS concept class and Primary DNS concept class. Therefore, the

inference engine extend the original terms using OR operation on these two concept

classes.

 110

Fig. 7.9: DNS ontology-based search interface

Fig. 7.10: Search result using query string “Master DNS”

 111

7.6 Evaluation

To study the completeness of the system and to understand users’ acceptance, a

questionnaire approach is adopted. We had invited a couple of domain experts and

ordinary domain users to test the system. This questionnaire is built in the web page

of the system, including the issues on correctness, acceptance, expressiveness,

completeness, etc. Here is a simple summary.

 On the issue of correctness, we made requests for a couple of DNS experts to test

our system. Thanks to their thorough examinations, some minor bugs had been

identified and corrected in the first stage.

 On the other hand, for acceptance and expressiveness, most people acknowledge

positive feedbacks on the adopted approach on our system. For example, some

DNS beginners acknowledged that they could benefit much more from the

system as compared to the traditional Q-n-A approach; however, if there could

be more simple classification schemes and give more examples(e.g., from simple

to advanced, in a hierarchical manner) on subsystems such as tutoring and term

explanations, their acceptance will be higher.

 On the issue of completeness, it seems that there is still more to do for improving.

While mail-related DNS problems are most concerned and hence are explored in

much more details, other DNS problems such as DNS performance and security

are still rather limited and need more efforts for improving on the issue of

completeness.

Fig. 7.11 shows the daily statistics for March 2005 of our system. There are

averagely 140 hits every day during September. In addition, we have a forum to

collect the user feedbacks and bug reports.

 112

Fig. 7.11: Daily statistics for March 2005

 113

Chapter 8 Concluding Remarks

In this thesis, we designed and implemented a DNS knowledge portal system. Our

main contributions are: (1) to propose a DNS knowledge portal system (including

DNS diagnosis service, DNS tutoring service and DNS ontology based search service)

for supporting intelligent DNS management using web interface and expert system

technology, (2) to propose a ontology-driven model for eliciting rules from a

previously-built DNS ontology and constructing the objected-oriented knowledge

base., (3) to propose an ontology-based model and algorithm for constructing the

skeleton of model-tracing tutoring, which is used to work with the DNS diagnosis

system to trace users’ problems and activities, and (4) to propose a ontology-based

search service framework, which could incorporate with ontology to enhance the

capability of search service and the flexible design could be easily reused and

extended.

The Domain Name System (DNS) is an essential part of the Internet infrastructure.

However, few existing DNS professional web services could provide the DNS related

knowledge. In addition, the new trend of DNS (such as IPv6 and ENUM) makes DNS

management more complex. In Chen et al. (2003), a unifying intelligent system was

proposed for DNS management, which provides the framework for DNS-related

services. Although the diagnosis service could provide the suggestions, the

suggestions information for some novice DNS administrators is not enough. In

addition, for some people, if they would like to know the DNS operation model in

more detail, the tutoring materials would be required. Moreover, DNS service is a

sustained and evolving task, which means that both the human resources (e.g., the

DNS administrators with good domain knowledge) and the system resources (e.g., the

 114

functionalities and protocols of the DNS software) of a site might need updating from

time to time. In general, this will be a great challenging task. Therefore, DNS tutoring

system which could provide the teaching materials after diagnosis service is required.

Furthermore, to improve the reusability and interoperability issues of the teaching

materials, we adopt SCORM (Sharable Content Object Reference Model) as

web-based tutoring platform.

In this thesis, we use DRAMA/NORM as an expert system shell because of its

client-server architecture and the object-oriented knowledge base structure. Based on

the client-server architecture, it thus becomes very easy for us to develop KBS for

supporting intelligent DNS management through www interface. On the other hand,

because of the object-oriented knowledge base structure, the knowledge can be

modularly managed. There are many advantages of using such a modular knowledge

base design. First, the knowledge base is partitioned into general clusters of concepts

and rules are grouped into sets of specific concept domains. Thus, it provides a logical

partitioning of the rule base, which facilitates the management of rules in each

knowledge class. Second, since the ontology is mainly of an object-oriented structure.

We can construct the object-oriented rule base more conveniently. Third, it is easy to

reuse existing rules based on modular knowledge base design. Therefore, we can

provide personalized service for different users.

According to the experimental results, the paradigm of using DNS ontology to

facilitate constructing DNS model-tracing tutoring system works good and effective.

The DNS tutoring system benefits the sharing and reusing of global DNS knowledge,

the reduction of people’s time to learn DNS management, and the improvement on the

DNS and network operations. It is supposed that, with some minor adaptations, the

same approach could be easily modified to many other engineering domains for

facilitating knowledge base construction.

 115

We have started to offer diagnosis service since 2003 and feedback shows that the

paradigm of using DNS ontology to build knowledge-based system works good and

effective. The integration of DNS diagnosis service, tutoring service and search

service would benefits the sharing and reusing of DNS knowledge. In addition, with a

few modifications, the same paradigm and developed algorithms could be easily

adapted to other scientific or engineering domains. Future researches will focus on

several issues. First, since the DNS system is still evolving, the DNS ontology should

be evolved as well. Therefore, the new applications issues related to DNS (e.g.,

multilingual DNS, intrusion detection mechanisms concerning DNS, etc.) will be

taken into account in the future. When the DNS ontology is more complete, DNS

knowledge portal would cover more DNS related issues. Second, the extensions

should be reflected on each of the appropriate services in our proposed DNS

knowledge portal. Finally, new DNS related services should be incorporated into

existing DNS knowledge portal to let more local DNS administrators gain more

insight of DNS administration in a systematic and effective approach.

 116

Reference

[AB+90] Anderson, J. R., Boyle, C. F., Corbett, A., & Lewis, M. (1990). Cognitive

modeling and intelligent tutoring. Artificial Intelligence, 42, 7-49.

[AC93] Anderson, J.R. and Corbett, A.T. (1993). Tutoring of cognitive skill. In J.R.

Anderson, Rules of the Mind (pp. 235-255). Hillsdale, NJ: Erlbaum

[AL01] Albitz, P. and Liu, C. (2001). DNS and BIND 4th edition, O’Reilly &

Associates, Inc., Sebastopol, CA, 2001

[AP91] Anderson, J. R., & Pelletier, R. (1991). A development system for

model-tracing tutors. In Proceedings of the International Conference of the Learning

Sciences (pp. 1-8). Evanston, IL

[BC+01] Brownlee, N. , Claffy, k., and Nemeth, E., “DNS Measurements at a Root

Server”, Globecom 2001.

[Bellovin95] Bellovin, S.M., “Using the Domain Name System for System Break-ins”,

In Proceedings of Fifth Usenix UNIX Security Symposium, June 1995.

[BH+01] Berners-Lee Tim, Hendler James and Lassila Ora, The Semantic Web,

“Scientific American, May 2001”

[BIND05] BIND (Berkeley Internet Domain), URL:http://www.isc.org, Accessed on

Jan. 23, 2005.

[CERT00] CERT/CC. "CERT Advisory CA-2000-20 Multiple Denial-of-Service

Problems in ISC BIND." 28 Nov. 2000 (revised). URL:

 117

http://www.cert.org/advisories/ (9 Feb. 2001), etc.

[CH97] Callon, R., Haskin, D., "Routing Aspects of IPv6 Transition", IETF RFC

2185, September 1997.

[CJ+99] Chandrasekaran, B. and Jorn R. Josephson, V. Richard Benjamins. (1999).

What Are Ontologies, and Why Do We Need Them? IEEE Intelligent Systems. 14 (1):

pp. 20 - 26.

[Cockburn97] Cockburn, Alistair. (1997). Structuring Use Cases with Goal. Journal of

Object-Oriented Programming, in two parts, the Sep-Oct issue and the Nov-Dec issue.

[CT+02-1] Chen, C.S., Tseng, S.S., Liu, C.L. (2002). A distributed intrusion detection

model for the domain name system. Special Issue on Parallel and Distributed

Systems, Journal of Information Science and Engineering, Vol.18, pp.999-1009.

[CT+02-2] Chen, C.S., Tseng, S.S., Liu, C.L., Ou, C.H. (2002). Building a DNS

ontology using METHONTOLOGY and Protege-2000. In Proceedings of 2002

International Computer Symposium Workshop on Artificial Intelligence, Dec. 18-21,

2002 .

[CT+03] Chen, C.S., Tseng, S.S., Liu, C.L. (2003). A unifying framework for

intelligent DNS management. International Journal of Human - Computer Studies,

Vol. 58/4, pp 415 – 445.

[DNSBL03] DNSBL (DNS Blocking List), How ip4r (DNSBL-style) DNS lookups

work, http://www.declude.com/JunkMail/Support/ip4rinfo.htm, 2003

[DNSreport05] DNSreport, http://www.dnsreport.com, Access on Jan 25, 2005.

[DS+93] Davis Randall, Shrobe Howard, Szolovits Peter, “What is a Knowledge

 118

Representation?”, AI Magazine, 14(1):17-33, 1993

[Durkin94] Durkin, J. (1994). Expert System: Design and Development, Macmillan

Publishing Company, 1994.

[Faltstrom00] Faltstrom, P.,"E.164 and DNS", IETF RFC 2916, September 2000.

[Faltstrom03] Faltstrom, P., Hoffman, P., Costello, A., “Internationalizing Domain

Names in Applications (IDNA)”, IETF RFC 3490, March 2003

[Fernandez99] Fernandez, M.L. (1999). Overview of methodologies for building

ontologies. In Proceedings of the IJCAI-99 Workshop on Ontologies and

Problem-Solving Methods: Lessons Learned and Future Trends. CEUR Publications.

[FG+97] Fernandez, M.L., Gomez-Perez, A.; Juristo, N. (1997). “METHONTOLOGY:

From Ontological Art Towards Ontological Engineering”, Workshop on Ontological

Engineering. Spring Symposium Series. AAAI97 Stanford, USA.

[Gaines00] Gaines, B.R., Knowledge Science and Technology: Operationalizing the

Enlightenment. In Proceedings of PAKW2000

[Gennari+03] Gennari, J.H., et al., The Evolution of Protégé: An Environment for

Knowledge-Based Systems Development, International Journal of Human-Computer

Interaction, 58(1), pp. 89-123, 2003

[Gruber93] Gruber, T. R., “A translation approach to portable ontologies”, Knowledge

Acquisition, 5(2):pp.199-220 (1993).

[GS92] Gaines, B.R., and Shaw, M.L.G. (1992). Knowledge Acquisition Tools based

on Personal Construct Psychology. Special Issues on "Automated Knowledge

Acquisition Tools" of the Knowledge Engineering Review.

[GS93] Gaines, B.R., and Shaw, M.L.G. (1993). Eliciting Knowledge and

Transferring it Effectively to a Knowledge-Based System, IEEE Transactions on Data

and Knowledge Engineering, 5(1), pp.4-14.

 119

[Hanley00] Hanley, Sinead. "DNS Overview with a discussion of DNS Spoofing." 6

Nov. 2000. URL: http://www.sans.org/infosecFAQ/DNS/DNS.htm (9 Feb. 2001).

[HD98] Hinden, R., Deering, S.,“IP Version 6 Addressing Architecture”, IETF RFC

2373, July 1998

[HH02] Haddad, I. and Hawwa, S., “The evolution of networking protocols to meet

the requirements of 3G services”, Tutorial Program of ACM Multimedia 2002,

December 1-6, 2002

[HS+97] Heijst, G.V., Schreiber, A.T., and Wielinga, B.J.. (1997). Using Explicit

Ontologies in KBS Development, International Journal of Human-Computer Studies,

Vol. 46, No. 2/3, pp. 183-292.

[HS+99] Handley, M., Schulzrinne, H., Schooler, E., Rosenberg, J., "SIP: Session

Initiation Protocol", IETF RFC 2543, March 1999.

[Kobryn99] Kobryn, Cris. (1999). UML 2001: A Standardization Odyssey. In

Communications of the ACM, vol. 42, no. 10.

[Koh01] Koh, J.L. (2001). Recent Developments and Emerging Defenses to D/DoS:

The Microsoft Attacks and Distributed Network Security. SANS Institute, URL:

http://www.sans.org/infosecFAQ/DNS/developments.htm.

[KP98] Krasner, G.E. and Pope, S.T. (1988.) A Cookbook for Using the

Model-View-Controller User Interface Paradigm in Smalltalk-80. Journal of

Object-Oriented Programming, 1(3), 26-49.

[LT+03] Lin, Y. T., Tseng, S. S., Tsai, C. F. (2003). "Design and Implementation of

New Object-Oriented Rule Base Management System", Journal of Expert Systems

with Applications, Vol. 25, pp369-385.

 120

[LT+03-1] Liu, C.L., Tseng, S.S., Chen, C.S., (2003). "Email Attack Ontology for

SPAM Fighting", in Proceedings of ICACT2003 (5th International Conference on

Advanced Communication Technology), Jan. 20-22, 2003, Korea.

[LT+03-2] Liu, C.L., Tseng, S.S., Chen, C.S. (2003). "The Design of Anti-SPAM

Knowledge-Based System", in Proceedings of Apricot2003, Taiwan

[LT+04-1] Liu, C.L., Tseng, S. S. and Chen, C. S. "Design and Implementation of an

Intelligent DNS Management System", Expert Systems with Applications, Volume 27,

Issue 2, August 2004, pp. 223-236

[LT+04-2]Liu, C.L., Tseng, S. S. and Chen, C. S. "Design of an ENUM DNS Server

on a Hybrid IPv6/IPv4 Internetworking Environment", in Journal of Internet

Technology, Vol.5 No.2 (2004)

[LT+04-3]Liu, C.L., Tseng, S. S. and Chen, C. S. "Ontology-based DNS

Model-Tracing Tutoring System", Submitted to International Journal of Human -

Computer Studies 2004

[M&M03] Man-Mice Company. (2003). Domain Health Survey for .COM - February

2003, http://www.menandmice.com/6000/61_recent_survey.html

[MD00] Mealling, M. and. Daniel, R., "The Naming Authority Pointer (NAPTR)

DNS Resource Record", IETF RFC 2915, September 2000.

[Mockapetris87-1] Mockapetris, P. (1987). "Domain Names - Concepts and

Facilities," RFCs 1034, November 1987.

[Mockapetris87-2] Mockapetris, P. (1987). ``Domain Names - Implementation and

Specification'' RFC 1035, Nov. 1987

[NF+00] Noy, N. F., Fergerson, R.W., Musen, M.A. (2000). The knowledge model of

Protege-2000: Combining interoperability and flexibility. Proceeding of the 2th

 121

International Conference on Knowledge Engineering and Knowledge Management

(EKAW'2000), Juan-les-Pins, France.

[NS+00] Nemeth, E., Snyder, G., Seebass, S., Hein, T.R. (2002), UNIX System

Administration Handbook (3rd Edition), Prentice Hall PTR; August 2000.

[Shirky00] Shirky, Clay. “What is P2P... And What Isn't?” The O'Reilly Network, 24

Nov 2000

[SO+00] Shadbolt, N., O’Hara, K., and Cottam, H. (2000). The Use of Ontologies for

Knowledge Acquisition. In: J. Cuena, et al., (eds) Knowledge Engineering and Agent

Technology. IOS Press, Amsterdam.

[Wu00] Wu, X., “Knowledge object modeling,” IEEE Transactions on System, Man,
and Cybernetics—Part a: Systems and Humans, Vol.30, NO.2, March 2000

