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霍普菲爾類神經網路控制器設計及其應用 

 
研究生：甘能捷                 指導教授：王啟旭 教授 

 
國立交通大學電機與控制工程研究所 

 

摘要 

 

本篇論文是將霍普菲爾類神經網路當作一個控制器應用在控制領域上。先將霍普菲爾神

經網路做訓練，使其能夠產生較佳的控制訊號，訓練完之後再當一個即時的控制器使

用。霍普菲爾神經網路是一個有迴授的具有保持穩定特性的類神經網路。我們利用兩種

方法來做網路的訓練法則，其中一個是倒傳遞訓練演算法，而另一個動態最佳學習則可

以加速我們的學習過程。要使用倒傳遞訓練演算法來訓練霍普菲爾類神經網路當作一個

即時控制器，最小能量的條件扮演了一個重要的角色。最後我們用倒單擺系統和飛機控

制系統當作我們的受控體得到了良好的結果，並討論如何實現霍普菲爾類神經網路。 
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Design of Hopfield Neural Network Controller with Its 

applications 

 

Student: Neng-Chieh Kan                 Advisor: Chi-Hsu Wang 
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National Chiao Tung University 

 

ABSTRACT 
 

This thesis explores the design of Hopfield neural network (NN) as a controller for control 

system. The training algorithms for Hopfield NN are first developed to generate proper 

control signal and then the Hopfield NN is used as a real-time controller after training. The 

Hopfield NN is a recurrent neural network which has the potential of maintaining stability. 

We use two approaches for training algorithm, one is normal back-propagation training, the 

other is dynamic optimal learning which can accelerate the learning process. The minimum 

energy requirement in Hopfield NN plays the key role in the back-propagation training of 

Hopfield NN as a real-time controller. Finally the inverted pendulum system and aircraft 

control system are illustrated as the plants to be controlled by Hopfield NN. Excellent results 

are obtained and the implementation of Hopfield NN is also discussed. 
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CHAPTER 1 

Introduction 
 

Neural network has increasing applications in many fields: pattern recognition, identification 

and control of dynamical systems, system modeling. The most interesting character of neural 

network is that it can learn how to achieve the goal by learning algorithm and training data 

sets. There are many kinds of neural network such as single-layer network, multilayer 

feed-forward network, radial basis function network, Hopfield network, ... etc [1]. Each kind 

of network has different applications in many fields. Among those neural networks, the 

Hopfield neural network will be discussed in this thesis. The Hopfield neural network is first 

proposed by Hopfield J.J. in 1984 [2]. The Hopfield neural network has applied on many 

fields: optimization [3, 4], system identification, [5, 6], and image processing [7, 8]. In this 

thesis, we want to use the Hopfield neural network as a controller. The Hopfield neural 

network is trained by one most popular algorithm of neural network which is the back 

propagation algorithm [9, 10]. The well-known back propagation algorithm for training 

multilayer feed-forward network was proposed by Rumelhart in 1986 [11]. By using the same 

basis, it also can be applied on the Hopfield neural network. But in back propagation 

algorithm, there is an important problem about the choice of the learning rate. For smaller 

learning rate, we may have a convergent result. But the speed of the output convergence is 

very slow and need more time to train the network. For larger learning rate, the speed of 

training can be accelerated, but it will cause the training result to fluctuate and even leads to 

divergent result. The dynamic optimum learning rate algorithm proposed in [12, 13] can help 

us to solve the learning rate problem. The basic theme in [12, 13] is to find a stable and 

optimal learning rate for the next iteration in back propagation algorithm such that the neural 

network can maintain in convergence. Thus, we use the back propagation algorithm with 
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optimum learning rate to train the Hopfield neural network as a controller. The inverted 

pendulum system and the aircraft control system are used to verify the algorithm in the end of 

this thesis. 
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CHAPTER 2 

The Hopfield Neural Network 
 

In this chapter, the Hopfield neural network will be reviewed. First the structure of recurrent 

neural network which the overall Hopfield neural network belong to will be discussed. The 

Hopfield neural network can be divided into continuous part and discrete part, and the two 

parts will be discussed in Section 2.2 and Section 2.4. We will also talk about the energy 

function in the Hopfield neural network in Section 2.3 of this chapter. 

 

2.1 The Recurrent Neural Network 

Figure 2-1 shows a kind of recurrent neural network, which consists of a set of neurons form a 

multiple-loop feedback system. The output of each neuron is fed back to each of all the 

neurons in the neural network. 

Hopfield 
neuron

Hopfield 
neuron

Hopfield 
neuron

 

Figure 2-1. The continuous Hopfield neural network 
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When each neuron in Figure 2-1 is a Hopfield neuron (which will be discussed in the next 

section), Figure 2-1 is the so-called Hopfield neural network. It is actually a nonlinear 

closed-loop feedback system which will have dynamic responses in each of the output signals. 

The stability analysis of the Hopfield neural network plays a major role in the applicability of 

Hopfield neural network to engineering fields. 

 

2.2 The Hopfield Neuron with Closed-Loop Dynamics 

As mentioned in Section 2.1, we use the additive model of a neuron to form the continuous 

Hopfield neural network [14]. The Hopfield neuron is defined in Figure 2-2 as a continuous 

RC electrical network with a nonlinear activation function ( )ϕ ⋅  to confine jv  to yield the 

final output signal jx . The dotted line ellipse in Figure 2-2 is the Hopfield neuron in Figure 

2-1. 

 

Figure 2-2. The additive model of a single Hopfield neuron 

 

In Figure 2-2, the inputs ( )ix t  ( 1,...,i N= ) are fed-back from the outputs ( )jx t  

( ). The inputs 1,...,j = N ( )ix t  are represented by potentials, and the synaptic weighting 

factors jiw  are represented by conductance. The summing junction is a unit current gain 
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summing junction with low input resistance and high output resistance. We also may have a 

bias current jI  in the additive model. The ( )ϕ ⋅  in this additive model is a nonlinear 

sigmoid function which is defined by hyperbolic tangent function [2, 14]: 

( ) ( )
( )

1 exp
tanh

2 1 exp
j jj j

j j
j j

a va v
x v

a v
ϕ

− −⎛ ⎞
= = =⎜ ⎟ + −⎝ ⎠

                (2-1) 

which has a slope of  at the origin as shown by /2ja

0
2

j

j

j v

a d
dv
ϕ

=

=                          (2-2) 

Hence we can say that ja  is the gain parameter of neuron j . Figure 2-3 shows a plot of 

standard sigmoidal nonlinearity ( )vϕ . 
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Figure 2-3. The hyperbolic tangent function 

 

Now, we should also investigate the inverse function of ( )ϕ ⋅ . The inverse input- output 

relation of (2-1) may be written as: 

( )1 11 log
1

j
j j

j j

x
v x

a x
ϕ−

⎛ ⎞−
= = ⎜⎜ +⎝ ⎠

⎟⎟                       (2-3) 
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Figure 2-4. The inverse of hyperbolic tangent function 

 

Figure 2-4 shows the corresponding plot of the inverse nonlinearity ( )1 xϕ− .From Figure 2-2 

with the closed-loop configuration in Figure 2-1, we can get the neural dynamics in the 

overall Hopfield neural network as follows [14]. By using the Kirchhoff’s law which states 

that the total current entering a junction is equal to that leaving the same junction, we can 

obtain the following dynamic node equation in this model: 

( ) ( ) ( )
1

,     1,...,
N

j
j j ji i j

ij

v tdC v t w x t I j N
dt R =

+ = + =∑             (2-4) 

The input ( )ix t  is the feedback of the output of the nonlinear sigmoid function ( )ϕ ⋅ , so the 

dynamic equation becomes: 

( ) ( ) ( )( )
1

,     1,...,
N

j
j j ji i j

ij

v tdC v t w v t I j
dt R

ϕ
=

= − + + =∑ N           (2-5) 

Eq. (2-5) completely describes the time evolution of the system. If each node is given an 

initial value , then the value ( )0jv ( )jv t  and the nonlinear activation function output 

( ) ( )(j j )x t v tϕ=  at time t  can be known by solving the differential equation in (2-5). 
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The stability analysis of the above continuous Hopfield neural network can be discussed via 

the energy (or Lyapunov) function of the Hopfield neural network, which will be introduced 

in the next section. 

 

2.3 Stability Analysis of Hopfield Neural Network 

The energy (Lyapunov) function [2, 14] of the continuous type Hopfield neural network can 

be defined by 

( )1

0
1 1 1 1

1 1 
2

j
N N N Nx

ji i j j j
i j j jj

E w x x x dx
R

ϕ−

= = = =

= − + −∑∑ ∑ ∑∫ I x              (2-6) 

In order for the Hopfield neural network to be asymptotically stable, the time derivative of the 

above energy function E  must be negative. By differentiating the energy function E  with 

respect to time and using the relationship of jx  and jv  in (2-3), we can get 

1 1

N N
j

ji i j
j j j

v ddE w x I
dt R dt= =

⎛ ⎞
= − − +⎜⎜

⎝ ⎠
∑ ∑ jx

⎟⎟                    (2-7) 

The term inside the parentheses in (2-7) is actually equal to j
j

dv
C

dt
 via (2-4). We may thus 

simplify (2-7) to 

1

N
j j

j
j

dv dxdE C
dt dt dt=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑                       (2-8) 

Since ( )1
j jv ϕ−= x  from (2-3), the above (2-8) becomes 

( )1

1

N
j j

j
j

d x dxdE C
dt dt dt

ϕ−

=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∑                    (2-9) 

By using the chain rule, (2-9) can be further simplified as: 

( )
2

1

1

N
j

j
j j

dxdE dC
dt dt dx

ϕ−

=

⎛ ⎞⎛ ⎞
= − ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
∑ jx ⎟⎟                 (2-10) 
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It is obvious from Figure 2-4 that that ( )1
jxϕ−  is an increasing function of jx . It follows 

therefore that 

( )1 0j
j

d x
dx

ϕ− > ,  for all jx                   (2-11) 

It is also true that 

2

0jdx
dt

⎛ ⎞
≥⎜ ⎟

⎝ ⎠
  for all jx                     (2-12) 

Therefore, according to (2-11) and (2-12), we have the final fact: 

( )
2

1

1

0
N

j
j j

j j

dxdE dC
dt dt dx

ϕ−

=

⎛ ⎞⎛ ⎞
jx= − ≤⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

∑ ⎟⎟               (2-13) 

Eq. (2-13) says that if the nonlinear activation function is defined as the hyperbolic tangent 

function shown in Figure 2-3, then the set of nonlinear differential equations defined in (2-5), 

which represents the dynamical equations of the continuous Hopfield neural network, is 

asymptotically stable. From (2-13), we also know that 0dE
dt

=  if 0jdx
dt

= . The points where 

0jdx
dt

=  are defined as the fixed points in the trajectory space, where the energy function 

 of those fixed points will remain still. These fixed points are also sometimes called 

“attractors” due to the fact that the surrounding states will sometimes be attracted to the fixed 

points as the stable states. Thus, we use a second order example which means only 

( )E t

1x  and 

2x  to explain the attractor trajectory of Hopfield neural network in Figure 2-5 [2]. 
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Figure 2-5. The attractor trajectory of second order Hopfield neural network 

 

The contours are the energy contour of Hopfield neural network, and the arrows are the state 

trajectory. The attractors are located near the lower left and upper right corners. All the other 

unstable states will be attracted to the fixed points. The arrows show the motion of the states. 

 

2.4 The Discrete Hopfield Neural Network 

The continuous mode of Hopfield neural network is based on an additive model, as previously 

discussed. If the nonlinear activation function ( )ϕ ⋅  in Figure 2-2 is replaced by the 

following sgn function [1, 14]: 

 

Figure 2-6. The sgn function 

 9



 

Thus we can basically have a discrete Hopfield neural network, like Figure 2-7. The discrete 

Hopfield neural network eliminates the self-loop feedback as shown in Figure 2-1. In the 

continuous mode, the nonlinear activation sigmoid function is the hyperbolic tangent function 

((2-1)). The gain parameter ja  in (2-2) is the slope of the hyperbolic tangent function. If we 

let , then the input-output relation in a neuron of discrete mode becomes ja →∞

1  for 0
1  for 0

j
j

j

v
x

v
+ >⎧

= ⎨− <⎩
                        (2-14) 

( )0jϕ 0=                           (2-15) 

 

Figure 2-7. The discrete Hopfield neural network without self-loop feedback 

 

The energy function  for discrete Hopfield neural network can be derived from that in ( )E t
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(2-6), i.e., the  for continuous Hopfield neural network. In discrete case, the gain 

parameter 

( )E t

ja  is infinite and this will make the term ( )1

0
1

1 j
N x

j j

x dx
R

ϕ−

=
∑ ∫  very small (from 

(2-3) and Figure 2-4). There is also no bias current jI  in discrete case. Thus, the energy 

function  of discrete Hopfield neural network becomes: ( )E t

1 1

1 
2

N N

ji i j
i j

E w x x
= =

= − ∑∑                       (2-16) 

The most important application of the discrete model is working as a content-addressable 

memory (CAM) [14]. In this application, a content-addressable memory is error-correcting in 

the sense to retrieve a stored pattern, given a reasonable subset of the information content of 

that pattern. However, the synaptic weighting factors of the network that produce the desired 

fixed points are unknown, and the problem is how to determine them. There are two phases to 

the operation of the discrete Hopfield network as a CAM, namely the storage phase and the 

retrieval phase. Now we introduce the process of the discrete Hopfield model as CAM: 

 

1. Storage phase: 

There are M  N-dimensional vectors called fundamental memories denoted by 

, ,1 ,2 ,.... Nμ μ μ μξ ξ ξ ξ⎡ ⎤⎦ M= ⎣ 1, 2,...,μ = . And each ,iμξ  is a binary code, it means 

that , 1iμξ = +  or . The fundamental memories are the stable states to be stored and 

memorized by the network. Then we use the following Hebb’s learning rule to define the 

weighting matrix of the discrete Hopfield network[14]: 

1−

1

1W
M

T MI
N μ μ

μ

ξ ξ
=

⎛ ⎞
= ⎜

⎝ ⎠
∑ − ⎟                    (2-17) 

where I  is the identity matrix with  dimensions. We need to minus N MI  because the 

discrete model doesn’t have self-loop feedback. We also find that the weighting matrix is 
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symmetric, i.e., . The following theorem will explain why the weighting matrix 

in discrete Hopfield neural network be decided by (2-17). 

TW W=

 

Theorem 1 

The updating rule 

1

1W
M

T MI
N μ μ

μ

ξ ξ
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  

will minimize the energy function ( )E t  of discrete Hopfield neural network when the state 

X  is the fundamental memory μξ . 

Proof: 

We use the vector and matrix form to express the energy function in (2-16). 

1 
2

TE X WX= −                          (2-18) 

where X  is a N dimensional column vector. We use the definition of weighting matrix in 

(2-17) to rewrite (2-18). 

1

1

1 1          
2

1 
2

M
T T

M
T T T

E X MI X
N

X X MX X
N

μ μ
μ

μ μ
μ

ξ ξ

ξ ξ

=

=

⎛ ⎞
= − −⎜ ⎟

⎝
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

∑

∑

⎠                (2-19) 

Because X  and μξ  are both N dimensional column vectors with 1+  or  elements, we 

can get the result of (2-19). 

1−

( )

( )

2

1

2

1

1          
2

1 
2 2

M
T

M
T

E X MN
N

M X
N

μ
μ

μ
μ

ξ

ξ

=

=

⎛ ⎞
= − −⎜ ⎟

⎝

= − −

∑

∑
⎠                  (2-20) 

The reason for using Hebb’s learning rule to decide the weighting matrix is right here. When 

 12



the state X  is equal to the fundamental memory μξ , ( )2T Xμξ  will reach the maximum. It 

means that the energy function E  would reach the minimum if we choose the weighting 

matrix as (2-17). 

 

2. Retrieval phase: 

Now we start the algorithm to stabilize the system and retrieve the pattern. We get a initial 

wrong state ( )0x  called “probe”, which is a noisy version of the correct stable state μξ . 

The initial probe has elements equal to 1± . Then we use the following formula to 

update ( )x n : 

( ) ( )1x n W x+ = ⋅ n⎡ ⎤⎣ ⎦sgn                    (2-21) 

where the  function is defined by: sgn

[ ]
1,                   0
1,                   0

previous state, 0

u
u

u
u

+ >⎧
⎪= −⎨
⎪

<
=⎩

sgn                   (2-22) 

If ( )W x n⋅  is greater than zero, neuron j  will switch its states to  or remain in that 

state if it is already there. Similarly, if 

1+

( )W x n⋅  is less than zero, neuron j  will switch 

its states to  or remain in that state if it is already there. If 1− ( )W x n⋅  is exactly zero, 

neuron j  is left in its previous state, regardless of whether it is  or . When 1+ 1−

( ) (1 )x n x+ = n , the system reaches the stable state. It means that the state ( )x n  is 

transformed to one of the stable states μξ . Let us use an example to verify this process. 

 

Example:  and [ ]1 1 1 1ξ ′= − [2 1 1 1ξ ]′= − −  are the two stable states (fundamental 
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memories). Only the two states will be stable, the other unstable states will converge to 

the two stable states after some iteration. Then we compute the weighting matrix by 

(2-17): 

[ ] [ ]
1 1 1 0 0 0

1 11 1 1 1 1 1 1 1 2 0 1 0 2 0 2
3 3

1 1 0 0 1 2
W

⎛ − ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + − − − = − −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

2 2

2 0

−

]

 

Now suppose the initial wrong unstable states is ( ) [0 1 1 1x ′= , we can get, 

( ) ( )( )

( ) ( )( ) ( )

0 1
11 sgn 0 sgn 4 1
3

0 1

4 1
12 sgn 1 sgn 4 1 1
3

4 1

x W x

x W x x

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅ = − = −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅ = − = − =⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 

Because ( ) ( )1 2x x= , the system reaches its stable condition ( ) (1 )x n x+ = n . From 

( )0x  to , the initial unstable states [( )2x ]1 1 1 ′  converges to the fundamental 

memory . [ ]1 1 1 1ξ ′= −
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Figure 2-8. Example of the discrete Hopfield model 

 

In Figure 2-7, the left upper corner [1 1 1 1ξ ]′= −  and the right down corner 

 are the two fundamental memories. The nearby unstable wrong states like 

 or [  will converge to the two stable states. 

[2 1 1 1ξ ′= − − ]

][ ]1 1 1 ′ 1 1 1 ′−
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CHAPTER 3 

Training Algorithm of Continuous Hopfield Neural Network for 

Control Applications 
 

We have discussed how to find the weighting factors of discrete Hopfield neural network (NN) 

in Chapter 2. In this chapter, the training algorithm to find the weighting factors of continuous 

Hopfield NN will be proposed. The back-propagation skill is mainly adopted for this problem. 

Further the optimal training algorithm is also proposed to accelerate the learning speed. We 

assume the following unity feedback Single Input Single Output (SISO) control system using 

Hopfield NN as a controller: 

Hopfield NN 
Controller System plant...

...
...

...

1x 1x

jx jx

Nx Nx

d yje+
-

closed for t = 0
  open for t > 0

(0) (0),

(0) 0, .
j j

i

e x

x i j

=⎧⎪
⎨

= ≠⎪⎩

jxjx

 

Figure 3-1. The Hopfield NN as a real-time SISO controller 

 

The control goal is to design a Hopfield NN as a controller so that the output y  will follow 

the input . The design process will include the training of weighting factors in Hopfield NN. 

Note that it can be shown in Figure 3-1 that the output 

d

jx  of the Hopfield NN is the control 

input to the system plant and there is a switch placed between the error signal  and 

the input 

je d= − y

jx  of Hopfield NN. This implies that { ( ) ( ) ( )0 0  , 0j j ix e x 0= =  for i }. The 

reason for this initial arrangement is that Hopfield NN will need non-zero initializations for 

j≠
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all ix  to serve as a real-time controller. This will be explained in more details in later 

section. 

 

3.1 Back-propagation of continuous Hopfield neural network 

The back-propagation learning algorithm is one of the most important historical developments 

in neural networks [14, 15]. The back-propagation learning algorithm is originally applied to 

multilayer feed-forward networks consisting of processing elements with continuous 

differentiable activation functions. Given a training set of input-output pairs { ( ) ( ),d n y n }, 

the algorithm provides a procedure for the finding of weighting factors in back-propagation 

network. Now, we use the popular back-propagation algorithm in the continuous Hopfield NN 

to find the way for the training weighting factors. Let the output of neuron j  (i.e., jx ) be the 

control input to the plant (see Figure 3-1). We define the error signal  of the output 

neuron 

( )je n

j  at step n  as the difference between ( )y n  and ( )d n : 

( ) ( ) ( )je n d n y n= −                       (3-1) 

The error signal  can be used to decide the cost function. The cost function is a 

measure of learning performance which can be defined as 

( )je n

( ) ( ) ( ){ 221 1
2 2jJ e n d n y n= = − }                 (3-2) 

To minimize the cost function , the update of the weighting factors can be obtained from 

the following rule: 

J

( ) ( )1ji jiw n w n wji+ = + Δ                    (3-3) 

where is defined by: ( )jiw nΔ

ji
ji

Jw
w

η ∂
Δ = −

∂
                       (3-4) 
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The parameter η  is the learning rate or step size of our continuous Hopfield NN 

back-propagation algorithm. In (3-3) and (3-4), we can find that the back-propagation 

algorithm applies a correction ( )jiw nΔ  to the synaptic weighting factor , which is 

proportional to the partial derivative 

( )jiw n

ji

J
w
∂
∂

. Thus, we have the following update rule: 

( ) ( )1ji ji
ji

Jw n w n
w

η ∂
+ = −

∂
                    (3-5) 

According to the chain rule, we can get the gradient of 
ji

J
w
∂
∂

 in the following form: 

ji j

J J y
w y w i

∂ ∂ ∂
=

∂ ∂ ∂
                         (3-6) 

Then (3-5) can be further expressed as 

( ) ( )1ji ji
ji

J yw n w n
y w

η ∂ ∂
+ = −

∂ ∂
                  (3-7) 

We can have 

( ) (21
2

J d y d y
y y
∂ ∂ ⎡ ⎤ )= − = − −⎢ ⎥∂ ∂ ⎣ ⎦

                  (3-8) 

Since we can not find the relation between  and y jiw  directly, we have to apply the chain 

rule again for j

ji

y
w
∂

∂
 as follows: 

j j

ji j j ji

x vy y
w x v w

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
                        (3-9) 

This implies that (3-7) can be further expressed as 

( ) ( )1 j j
ji ji

j j ji

x vJ yw n w n
y x v w

η
∂ ∂∂ ∂

+ = −
∂ ∂ ∂ ∂

               (3-10) 

In (3-9), jx  is the continuous Hopfield NN output, and it is also the control signal to control 

the system plant. The signal y  is just the system plant output due to the control signal jx . 

Because the system plant is uncertain, the first part 
j

y
x
∂
∂

 in (3-9) can be approximated by 

j

y
x
Δ
Δ

 as follows: 
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( ) ( )
( )

1
( 1)j j j j

y n y ny y
x x x n x n

+ −∂ Δ
≅ =

∂ Δ + −
                  (3-11) 

For j

j

x
v
∂

∂
 and j

ji

v
w
∂

∂
, (2-1) and (2-4) in Chapter 2 are repeated as follows as (3-12) and (3-13): 

( ) ( )
( )

1 exp
tanh

2 1 exp
j jj j

j j
j j

a va v
x v

a v
ϕ

− −⎛ ⎞
= = =⎜ ⎟ + −⎝ ⎠

             (3-12) 

1

N
j

j ji i
i

vdC v w x
dt R =

+ =∑                      (3-13) 

From (3-12), it is obvious that 

( ) ( )
( )( )2

2 exp

1 exp

j jj
j

j j j

a a vx
v

v a v
ϕ

−∂
′= =

∂ + −

j                 (3-14) 

For j

ji

v
w
∂

∂
 in (3-9), we may obtain some hints from (3-13), which is the continuous Hopfield 

NN dynamic equation. From (3-12), we can rewrite (3-13) as: 

( )
1

n
j j

ji i
i

dv v
C w

dt R
ϕ

=

+ =∑ v                     (3-15) 

The above (3-15) is a nonlinear differential equation, which describes the relationship 

between jv  and jiw . Thus j

ji

v
w
∂

∂
 can not be found in (3-15) directly. 

However, the basic theme of all training algorithms is to force the system state to have 

minimum energy. Theorem 1 in Chapter 2 shows the weighting vector to get the minimum 

energy of a discrete Hopfield NN. This minimum energy weighting vector is then applied for 

the training of discrete Hopfield NN. The same philosophy can also be applied in the training 

of continuous Hopfield NN. From Chapter 2, we have the derivate of energy function ( )E t  

for continuous Hopfield NN as 

1

N
j

j

dv dxdE C
dt dt dt=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ j                      (3-16) 

For minimum energy, we must let 0dE
dt

= . From (3-16), it is obvious that if  0jdv
dt

=  for 
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N ; then 0dE
dt

= . Based on this, (3-15) can be rewritten as 1,...,j =

( )
1

n
j

ji i
i

v
w v

R
ϕ

=

=∑                         (3-17) 

Therefore we can have 

( )
1

n

j ji
i

v R w vϕ
=

= ⋅∑ i                        (3-18) 

Up to this stage, we can find j

ji

v
w
∂

∂
 easily from the above (3-18) as follows: 

( )j
i

ji

v
R v

w
ϕ

∂
= ⋅

∂
                       (3-19) 

Form (3-12), we can further express (3-19) as a more complete form: 

( ) ( )
( )

1 exp
1 exp

j i i
i

ji i i

v a v
R v R

w a
ϕ

v
∂ − −

= ⋅ = ⋅
∂ + −

              (3-20) 

Now the three terms 
j

y
x
∂
∂

, j

j

x
v
∂

∂
, and j

ji

v
w
∂

∂
 in (3-9) have been found, we can express 

ji

y
w
∂
∂

 

in the following form: 

( ) ( )

( ) ( )
( )

( )( )
( )( )( )

( )( )
( )( )2

   

2 exp 1 exp1
( 1) 1 exp1 exp

j j

ji j j ji

j i
j

j j j i i

j j i ij j

x vy y
w x v w

y v R v
x

a a v n a v ny n y n
R

x n x n a v na v n

ϕ ϕ

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂

Δ ′= ⋅
Δ

− − −+ −
= ⋅ ⋅

+ − + −+ −

     (3-21) 

Finally we can find the 
ji

J
w
∂
∂

in (3-6) as: 

( ) ( ) ( )
( )

( )( )
( )( )( )

( )( )
( )( )2

   

2 exp 1 exp1
( 1) 1 exp1 exp

ji ji

j j

j j ji

j j j i i

j j i ij j

J J y
w y w

x vJ y
y x v w

a a v n a v ny n y n
d y R

x n x n a v na v n

∂ ∂ ∂
=

∂ ∂ ∂

∂ ∂∂ ∂
=
∂ ∂ ∂ ∂

− − −+ −
= − − ⋅ ⋅ ⋅

+ − + −+ −

  (3-22) 

Therefore the final step to perform the back-propagation algorithm of the continuous Hopfield 

NN is to combine all the above equations to get 
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( ) ( ) ( )
( )

( )( )
( )( )( )

( )( )
( )( )

( ) ( ) ( )
( )

( )( )
( )( )( )

( )( )
( )( )

2

2

    

2 exp 1 exp1
( 1) 1 exp1 exp

2 exp 1 exp1
( 1) 1 exp1 exp

ji
ji

j j j i i

j j i ij j

j j j i i

j j i ij j

Jw
w

a a v n a v ny n y n
d y R

x n x n a v na v n

a a v n a v ny n y n
d y R

x n x n a v na v n

η

η

η

∂
Δ = −

⎡ ⎤− − −+ −⎢ ⎥= − − − ⋅ ⋅ ⋅⎢ ⎥+ − + −+ −⎢ ⎥⎣ ⎦

− − −+ −
= − ⋅ ⋅ ⋅

+ − + −+ −

 (3-23) 

The complete back propagation equation for the training of continuous Hopfield NN is 

therefore 

( ) ( )

( ) ( )( ) ( ) ( )
( )

( )( )
( )( )( )

( )(
( )( )

)
2

1

2 exp 1 exp1
( 1) 1 exp1 exp

ji ji

j j j i i

j j i ij j

w n w n

a a v n a v ny n y n
d n y n R

x n x n a v na v n
η

+ = +

− − −+ −
− ⋅ ⋅ ⋅

+ − + −+ −

  (3-24) 

Up to this stage, we still need to find the jv  for next iteration. This can be easily obtained 

from (3-18) (repeated here for convenience, as (3-25)), as we assume minimum energy 

requirement. 

( ) ( ) ( )(
1

1 1
n

j ji
i

v n R w n v nϕ
=

+ = ⋅ +∑ )i                   (3-25) 

The following algorithm summarizes the above steps to complete the training process. 
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Algorithm 3-1: Back-propagation learning for continuous Hopfield neural network 

 

Step 0: Given training pair { ( ) ( ),  ,d n y n  0,1,...,n N= }, with the following initial 

conditions: 

1. ja : The slope of hyperbolic tangent function 

2. : Initial value of continuous Hopfield NN ( )0jx

3. : Initial synaptic weighting factors of the continuous Hopfield NN. ( )0jiw

Step 1: Define the error signal as (3-1). 

( ) ( ) ( )je n d n y n= −  

Step 2: Define the cost function  using the error signal as (3-2). J

( ) ( ) ( ){ }221 1
2 2jJ e n d n y n= = −  

Step 3: Decide the back-propagation update rule in (3-5). 

( ) ( )1ji ji
ji

Jw n w n
w

η ∂
+ = −

∂
 

Step 4: Separate the partial derivative 
ji

J
w
∂
∂

 in (3-6). 

ji ji

J J y
w y w
∂ ∂ ∂

=
∂ ∂ ∂

 

Step 5: Get the result of 
j

J
y
∂
∂

 in (3-8). 

( ) ( ) ( )( )21
2

J d y d n y n
y y
∂ ∂ ⎡ ⎤= − = − −⎢ ⎥∂ ∂ ⎣ ⎦

 

Step 6: Separate the partial derivative term 
ji

y
w
∂
∂

 in (3-9). 

j j

ji j j ji

x vy y
w x v w

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
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Step 7: Get the approximation form of 
j

y
x
∂
∂

 in (3-11). 

( ) ( )
( )

1
( 1)j j j j

y n y ny y
x x x n x n

+ −∂ Δ
= =

∂ Δ + −
 

Step 8: Get the result of j

j

x
v
∂

∂
 in (3-14). 

( ) ( )( )
( )( )( )2

2 exp

1 exp

j j jj
j

j j j

a a v nx
v

v a v n
ϕ

−∂
′= =

∂ + −
 

Step 9: Get the result of j

ji

v
w
∂

∂
 in (3-20). 

( ) ( )( )
( )( )

1 exp
1 exp

i ij
i

ji i i

a v nv
R v R

w a v n
ϕ

− −∂
= ⋅ = ⋅

∂ + −
 

Step 10: Define the correction ( )jiw nΔ  as (3-23). 

( ) ( )( ) ( ) ( )
( )

( )( )
( )( )( )

( )( )
( )( )2

2 exp 1 exp1
( 1) 1 exp1 exp

ji
ji

j j j i i

j j i ij j

Jw
w

a a v n a v ny n y n
d n y n R

x n x n a v na v n

η

η

∂
Δ = − =

− − −+ −
− ⋅ ⋅ ⋅

+ − + −+ −

 

Step 11: Complete the back-propagation in (3-24). 

( )

( ) ( ) ( )( ) ( ) ( )
( )

( )( )
( )( )( )

( )( )
( )( )2

1

2 exp 1 exp1
( 1) 1 exp1 exp

ji

j j j i i
ji

j j i ij j

w n

a a v n a v ny n y n
w n d n y n R

x n x n a v na v n
η

+ =

− − −+ −
+ − ⋅ ⋅ ⋅

+ − + −+ −

 

Step 12: Solve the differential equation with minimum energy condition: 

( ) ( ) (
1

1 1
n

j ji
i

v n R w n x n
=

+ = ⋅ +∑ )i  

Step 13:  , if , GOTO Step 1. 1n n= + n N≠

Step 14:  Stop. 

 

3.2 Optimum learning rate for the training of continuous Hopfield NN 
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In Section 3.1, we have developed the back-propagation algorithm for the training of 

weighting factors in continuous Hopfield NN. The back-propagation algorithm will train the 

continuous Hopfield NN to generate the control signal to control the plant such that the output 

signal of the plant will be as close as possible to the desired input signal. But the training 

speed is very slow in Algorithm 3.1 with a arbitrary fixed learning rate. It is better if we can 

find a better dynamic learning rate in each iteration so that the convergent speed can be 

increased [12, 13]. 

It is very important to choose an appropriate learning rate (or step size) in the training process. 

If the learning rate is too large, the learning process will jump to the next iteration in a larger 

step and this may cause divergence in the training process. If the learning is too small, the 

learning process will be slow, and yet the convergence is not guaranteed. Thus, how to choose 

a suitable learning rate is important. With the concept of dynamic optimal training in [12, 13], 

we will develop a similar optimal training algorithm for the training of Hopfield NN. This 

process is to decide the learning rate η in each iteration so that the error energy will be 

reduced as much as possible. This will not yield a stable training process, but the convergence 

speed is also the fastest. The error energy function (cost function) at  step has been defined 

in (3-2) and is listed here as (3-32): 

n

( ) ( ){ 21
2

J d n y n= − }                       (3-26) 

The cost function in the next step ( 1n+ ) is:  

( ) ( ) ( ){ 211 1
2

J n d n y n+ = + − + }1                  (3-27) 

Now, it is our purpose to find an optimum learning rate optη  such that ( ) ( )1 0J n J n+ − ≤  

and ( ) ( )1J n J+ − n  is maximized. Suppose the function ( )G ⋅  represents an input 

dependent function so that we can have the output ( )jy G x= . This implies  may be a ( )G ⋅
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linear transfer function, a nonlinear differential equation, or even a look-up table. Thus we can 

get the following equation: 

( ) ( )

( ) ( ){ } ( ) ( )

( ) ( ){ } ( ) ( )

( ) ( )( ){ } ( ) ( )

( ) ( ) ( ) ( )

22

2 2

2 2

2
2

1

    1
1 11 1
2 2
1 11 1
2 2
1 11 1
2 2

1 11 1
2 2

j

j

N

ji i
i

J n J n

d n y n d n y n

d n G x n d n y n

d n G v n d n y n

d n G R w n x d n y n

ϕ

ϕ
=

+ −

= + − + − −⎡ ⎤⎣ ⎦

⎡ ⎤= + − + − −⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤= + − + − −⎡ ⎤⎣ ⎦⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + − ⋅ + − −⎡ ⎤⎨ ⎬⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑

      (3-28) 

We have already known that ( 1jv n )+  is a function of the weighting factors ( )1jiw n+ . So 

we know that (3-28) is also a function of the uncertain weighting factors ( )1jiw n+ . Further 

we may rewrite the update of weighting factors in Step 10 of Algorithm 3-1 as follows:  

( )

( ) ( )( ) ( ) ( )
( )

( )( )
( )( )( )

( )(
( )( )

)
2

2 exp 1 exp1
( 1) 1 exp1 exp

ji

j j j i i
opt

j j i ij j

w n

a a v n a v ny n y n
d n y n R

x n x n a v na v n
η

Δ =

− − −+ −
⋅ − ⋅ ⋅ ⋅

+ − + −+ −

  (3-29) 

Where ηopt is the dynamical optimal learning rate to be decided. Thus, we have the uncertain 

correction  with an uncertain learning rate ( )jiw nΔ optη . According to (3-24), we also get the 

uncertain new weighting factors ( )1jiw n+ . As we have discussed, ( ) ( )1J n J n+ −  is a 

function of the uncertain weighting factors ( )1jiw n+ . Combine all the above relations, we 

may express  as a function of the uncertain variable ( ) (1J n J n+ − ) optη . It means that what 

we have to do is to find an optimum value for the variable optη  such that 

 and ( ) ( )1 0J n J n+ − ≤ ( ) ( )1J n J+ − n

)

 is maximized. Now, we know that 

 is a function of uncertain variable ( ) (1J n J n+ − optη . 
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( ) ( ) ( )1 optJ n J n H η+ − =                     (3-30) 

In other neural networks, the function ( )H ⋅  may be a simple parabolic curve, thus we can 

find optη  easily. But in this continuous Hopfield NN optimum learning rate algorithm, the 

function  is very complicated, we can apply the Matlab routine fminbnd( )H ⋅  [13] to find 

the optimal learning rate optη  from ( ) ( )1J n J n+ − . After using Matlab routine to find optη , 

we have finished the process of optimum learning rate. At the end of this section, we combine 

the important result in Section 3.1 and 3.2 to perform the training algorithm in continuous 

Hopfield NN. 

 

Algorithm 3-2: Back-propagation learning of continuous Hopfield network with optimal 

learning rate 

Step 0: Given training pair { ( ) ( ),  ,d n y n  0,1,...,n N= }, with the following initial 

conditions: 

1. ja : The slope of hyperbolic tangent function 

2. ( )0jx : Initial value of continuous Hopfield NN 

3. : Initial synaptic weighting factors of the continuous Hopfield NN. ( )0jiw

Step 1:  Use the hyperbolic tangent function ( ) ( )( ) ( )( )
( )( )

1 exp

1 exp
j j

j j
j j

a v n
x n v n

a v n
ϕ

− −
= =

+ −
 to get 

initial Hopfield controller output ( )jx n . 

Step 2:  Use control signal ( )jx n  to control system plant ( )G ⋅  and get output ( )y n . 

Step 3:   is the function of ( ) (1J n J n+ − ) optη , ( ) ( ) (1 optJ n J n H η+ − = ) . Apply the 
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Matlab routine fminbnd to find the optimal learning rate optη . 

Step 4:  Use the Algorithm 3-1 to get the new weighting factors: 

( ) ( )( ) ( ) ( )
( )

( )( )
( )( )( )

( )( )
( )( )

( ) ( )

2

2 exp 1 exp1
    

( 1) 1 exp1 exp

1

j j j i i
ji opt

i ij j

ji ji ji

a a v n a v ny n y n
w d n y n R

x n x n a v na v n

w n w n w

η
⎧ − − −+ −

Δ = ⋅ − ⋅ ⋅ ⋅⎪⎪ + − + −+ −⎨
⎪

+ = + Δ⎪⎩

 

Step 5: Use the new weighting factors to get the solution of the Hopfield NN differential 

equation with minimum energy requirement: 

( ) ( ) (
1

1 1
n

j ji
i

v n R w n x n
=

+ = ⋅ +∑ )i  

Step 6:  , if , GOTO Step 1. 1n n= + n N≠

Step 7:  Stop. 

 

3.3 Hopfield NN as a Real-Time Controller 

The above mentioned back propagation training for Hopfield NN can only be performed in a 

batch off-line processing. Once the training process is completed, the Hopfield must be 

connected in a real-time environment to serve as a real-time controller. However, we know 

that the Hopfield NN is a recurrent dynamic system. It has dynamic response from initial 

excitations. The Hopfield NN dynamic equation is in (3-13) (repeated here for convenience as 

(3-31)), 

1

N
j

j
i

vdC v w x
dt R =

+ =∑ ji i                       (3-31) 

If the Hopfield NN is with zero initial conditions, i.e., ( )0ix 0=  for all i , then it is obvious 

that Hopfield NN will not have any response at all for . Therefore we need to set a 

non-zero initial condition for the control configuration in Figure 3-1. In Figure 3-1, 

0t >

jx  is 

connected to je  at , and disconnected for , where 0t = 0t > jx  is also the control input to 
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the plant. This implies that { ( ) ( )0 0j jx e= , ( )0ix 0=  for i j≠ }.To see the effect of this 

initial configuration, we have the following Theorem 2. 

 

Theorem 2: 

If jjw  is negative, then the initial excitation to the Hopfield NN in Figure 3-1 will have a 

stable response in terms of the maximum decay of ( )jv t  with respect to . ( )0je

Proof: 

The following (3-32) is the solution of (3-31):  

( )
1

1 1
0

N N t
RC

j ji i j ji i
i i

v R w x v R w x e
−

= =

⎛= ⋅ + − ⋅ ⋅⎜
⎝ ⎠

∑ ∑ ⎞
⎟

i

              (3-32) 

Further, substituting  into (3-32), we have ( )
1

(0) 0
N

j ji
i

v w x
=

= ∑

( )
1

1 1 1
0

N N N t
RC

j ji i ji i ji i
i i i

v R w x w x R w x e
−

= = =

⎛= ⋅ + − ⋅ ⋅⎜
⎝ ⎠

∑ ∑ ∑ ⎞
⎟            (3-33) 

Since the output of Hopfield NN controller is a particular neuron output jx . Thus, we can 

rewrite (3-33) as: 

( ) ( )
1

1 1 1
0 0

N N N t
RC

j ji i jj j ji i ji i
i i i

i j

v R w x w x w x R w x e
−

= = =
≠

⎛ ⎞
⎜ ⎟= ⋅ + + − ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑        (3-34) 

Now, the initial excitations of the Hopfield NN are ( )0j jx e=  and  for ( )0ix = 0 i j≠ . 

Therefore (3-34) becomes 
1

1 1

N N t
RC

j ji i jj j ji i
i i

v R w x w e R w x e
−

= =

⎛= ⋅ + − ⋅ ⋅⎜
⎝ ⎠

∑ ∑ ⎞
⎟              (3-35) 

Eq. (3-35) shows that jv  is a function of je . Differentiating (3-35) with respect to je , we 

can get: 
1 tj RC

jj
j

dv
e w

de

−

= ⋅                      (3-36) 
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The first term 
1 t

RCe
−

 in (3-36) is always positive, and the second term jjw  is the 

self-feedback of Hopfield neural network. In order for the function jv  to decay with 

increasing je , jjw  needs to be a negative number. Thus, if jjw  is a negative number, then 

jv  in (3-35) is a decreasing function of je . It means that we should choose a large je  to get 

the fastest response of jv . Ii is obvious that the initial value ( )0j je e=  is the largest, since 

the initial output is always zero. 

Q.E.D. 
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CHAPTER 4 

Experimental Results 
 

In this chapter, we use the algorithm introduced in Chapter 3 to control the inverted pendulum 

system in Section 4.1, and the aircraft attitude control in Section 4.2. 

 

4.1 Example 1: The Inverted Pendulum System (IPS) 

Inverted pendulum is a nonlinear and unstable system, and it is the most popular benchmark 

for new control algorithms to verify their advantages [16].  

m

cm u

lθ

 
Figure 4-1. The inverted pendulum system 

 

According to Figure 4-1, we let the angle θ  which is between the pendulum and the vertical 

line be equal to the first state 1θ , and the angular speed θ  be the second state 2θ . Then we 

can get the following state equation: 

1 2
2
2 1 1 1

1

2 2 2
1 1

cos sin cossin

cos cos4 4
3 3

c c

c c

mlg
m m m m u

m ml l
m m m m

θ θ

θ θ θ θθ
θ

θ θ

=

−
+ +

= +
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

              (4-1) 

Where 
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1

2

:
:
:

:
:
:

:

c

The constant of  acceleration of  gravity
The mass attached to the pendulum
The mass of  based car
The length of  pendulum arm
Angle between pendulum and vertical line
Angular speed
Control sig

g
m
m
l

u

θ
θ

nal

 

In our example, the parameters of the inverted pendulum are defined in the following values: 

29.8 / sec ; 0.1 
1 ; 0.5 c

m k
kg m

g m
m l
= =

= =

g
 

Thus, we can further express (4-1) as 

1 2
2

1 2 1 1 1
2 2 2

1 1

215.6sin cos sin 2cos
14.667 cos 14.667 cos

x u

θ θ

θ θ θ θθ
θ θ

=

−
= +

− −

             (4-2) 

The control objective is to stabilize the inverted pendulum with initial angle between 10  

and . Note that the state equations in (4-2) are only used for simulation purpose. It is by 

no means used to design the Hopfield NN controller. For training data set, we generate 6 data 

set which correspond to six initial angles, i.e., {10°, 7°, 3°, -3°, -7°, -10°}. The six data sets 

are shown in Figure 4-2. 

°

10°−
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Figure 4-2. The six training curves for the control of IPS using Hopfield NN 

The overall real control architecture of Hopfield NN controller is shown in Figure 4-3. The 

Hopfield NN in this application has two neurons and the first neuron output 1x  is the control 

signal. 

 

Figure 4-3. Real-time SISO control architecture of Hopfield NN controller 

 

After training by the Algorithm 3-2 developed in Chapter 3, the trained weighting factors in 

Hopfield NN can be used to generate control signal. The values of capacitor and resistance are 
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10 uF and 1K Ohms respectively. The final four weighting factors in this application are 

shown in the following Table 4-1. Table 4-1 also shows the resistance values for the weighting 

factors. 

 

Weighting factor 11w  12w  21w  22w  

Trained value -3.4275 -0.012878 -2.1702 0.2845 

| Resistance | 0.2918Ω 77.6518Ω 0.4608Ω 3.5149Ω 

Table 4-1. Trained weighting factors of IPS 

 

The first weighting factor  is negative. It is the fact from Theorem 211w  discussed in 

Chapter 3. Three cases with different initial angles and different initial angular speed will be 

adopted to test the Hopfield NN controller. There are two figures in each of those cases. The 

first one is about the final angle output 1θ  in actual real time control case, which is a stable 

situation in this inverted pendulum system. The second figure is the control signal generated 

from the trained Hopfield NN. 
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Case 1. Initial angle ( )1 0 10θ °= , initial angular speed ( ) ( )2 0 0 / secθ °=  
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Figure 4-4. The actual running stable situation for Case 1 
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Figure 4-5. The control signal of the inverted pendulum system for Case 1 
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Case 2. Initial angle , initial angular speed ( )1 0θ °= −8 ( ) ( )2 0 4 / secθ °=  
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Figure 4-6. The actual running stable situation for Case 2 
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Figure 4-7. The control signal of the inverted pendulum system for Case 2. 
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Case 3. Initial angle , initial angular speed ( )1 0θ °= −5 ( ) ( )2 0 3 / secθ °= −  
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Figure 4-8. The actual running stable situation for Case 3 

 

0 0.5 1 1.5 2 2.5
-1

0

1

2

3

4

5
The control signal generated from Hopfield neural network

Fo
rc

e 
(N

ew
to

n)

Time (Second)
 

Figure 4-9. The control signal of the inverted pendulum system for Case 3 

 

 36



In above three cases, we can find that the system output angles θ  will be stable in our 

desired range. It means that the algorithm discussed in Chapter 3 is useful to control the 

nonlinear inverted pendulum system. 

 

4.2 Example 2: The aircraft attitude control system 

The aircraft attitude control system is different from the inverted pendulum system. It is a 

simplified linear system [17]. The control surfaces of modern aircraft are controlled by 

electric actuators with electronics controls. Figure 4-10 illustrates the control block diagram 

of one axis of such a position control system. 

 

Figure 4-10. Block diagram of an attitude-control system of an aircraft 

 

The objective of the system is to have the output of the system, ( )y tθ , follow the unit step 

input ( )r tθ . The transfer function is defined as 

( ) ( )
( ) ( )

4500
361.2

y

r

s KG s
s s s

θ
θ

= =
+

                      (4-3) 

Where K is gain parameter of preamplifier. When we have introduced the aircraft attitude 

control system, we must set the specifications as follows: 

1. Steady state error due to unit ramp input ≤ 0.000443 

2. Maximum overshoot ≤ 5 percent 

3. Rise time ≤ 0.005 sec 
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4. Settling time ≤ 0.007 sec 

Now, we will design the Hopfield NN controller for this problem so that the above 

specifications can be satisfied. The first specification is different from the other specification, 

so we discuss it first. It is the specification about steady state error due to unit ramp input. It 

must be satisfied by using preamplifier K . The system transfer function in (4-3) has a  

term in denominator, so it is a type 1 system. For type 1 system, the steady state error due to 

unit step input is zero, but it is a constant for unit ramp input. Thus we must choose a proper 

gain of preamplifier 

s

K  to reach the first specification. Now, we compute the velocity error 

constant  of transfer function in (4-3): vk

( ) ( )0 0

4500lim lim 12.45847
361.2v s s

Kk sG s s
s s→ →

= = =
+

K               (4-4) 

As we get the velocity error constant , we can compute the steady state error due to unit 

ramp input 

vk

( )sse ramp : 

( ) 1 1 0.08026
12.45847ss

v

e ramp
k K

= = =
1
K

                (4-5) 

According to the first specification, we should let the result of (4-5) be smaller than 0.000443. 

Thus we calculate the minimum value of gain of preamplifier K: 

10.08026 0.000443 181.17K
K
≤ ⇒ ≥                  (4-6) 

In order to reach the first specification, we choose the gain of preamplifier K  equal to 

181.17. Thus the transfer function ( )G s  becomes to  

( ) ( )
815265

361.2
G s

s s
=

+
                        (4-7) 

Now we hope the output of the system can reach the specifications in actual real time control 

case. The overall real control architecture of Hopfield NN controller is shown in Figure 4-3. 

The Hopfield NN in this application has two neurons and the first neuron output 1x  is the 

control signal. 
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Figure 4-11. Real control architecture of Hopfield NN controller 

 

For training data set, we can generate time response curve as shown in Figure 4-12 so that the 

above 2, 3, 4 specifications. That is, maximum overshoot = 0.91 percent, rise time = 0.00284 

sec and settling time = 0.00424 sec in Figure 4-12. 
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Figure 4-12. The training data of the aircraft control system 

 

After training by Algorithm 3-2 developed in Chapter 3, the trained weighting factors in 
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Hopfield NN can be used to generate control signal. The final four weighting factors in this 

application are: 

Weighting factor 11w  12w  21w  22w  

Trained value -47.552 -0.000032 -44.98 -0.048 

| Resistance | 0.021Ω 31250Ω 0.0222Ω 20.833Ω 

Table 4-2. Trained weighting factors of aircraft system 

 

The following Figure 4-13 is the output when the Hopfield NN is applied to the closed-loop 

control of the attitude control of aircraft. 
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Figure 4-13. The output of the aircraft control system by Hopfield NN controller 

 

Figure 4-14 shows the response of Figure 4-13 in transient period (0 ~ 0.01 sec). It is obvious 

from Figure 4-14 that maximum overshoot is 3.77% ≤ 5 percent, rise time is 0.0028sec ≤ 

0.005 sec and settling time is 0.0052 sec ≤ 0.007 sec. These data shows that the Hopfield NN 

controller indeed can be applied as a controller in this linear control system. 
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Figure 4-14. The plot of Figure 4-13 in transient period 

Figure 4-15 shows the control signal generated from the Hopfield NN controller. 
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Figure 4-15. The control signal the aircraft control system 

 

In this problem, we have shown that the Hopfield NN controller can be used to control the 

linear system like the aircraft control system. 
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CHAPTER 5 

Conclusions 
 

The application of Hopfield NN is extended to control systems in this thesis. The problem of 

deciding weighting factors for continuous Hopfield NN is solved in this thesis using back 

propagation approach. To improve the convergence rate of the back propagation training of 

Hopfield NN, a dynamic optimal training algorithm is also proposed to speed up the 

convergence speed. A new architecture of using Hopfield NN as a real-time controller is also 

proposed in this thesis. The popular nonlinear inverted pendulum system is first illustrated 

and controlled by Hopfield NN. An aircraft attitude linear control system is also illustrated 

and controlled by Hopfield NN. Excellent results have been obtained. In comparison with 

classical approaches, the Hopfield NN is very easy to implement using simple RC circuit. For 

higher order systems, it is also suitable for VLSI implementation. The problem of negative 

resistance in the trained weighting factors can be easily solved by placing a multiplexer in 

front of every resistance to allow for negative resistance. The following Figure 5-1 shows the 

inclusion of multiplexer for input signal of Hopfield NN. 

 
Figure 5-1 The inclusion of multiplexer in Hopfield NN 
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