

國 立 交 通 大 學

電 機 與 控 制 工 程 學 系

碩 士 論 文

霍普菲爾類神經網路控制器設計及其應用

Design of Hopfield Neural Network Controller with Its

applications

研究生：甘能捷

指導教授：王啟旭 教授

中華民國九十五年十月

 1

霍普菲爾類神經網路控制器設計及其應用

Design of Hopfield Neural Network Controller with Its

applications

 研究生：甘能捷 Student: Neng-Chieh Kan

 指導教授：王啟旭 教授 Advisor: Chi-Hsu Wang

國 立 交 通 大 學

電機與控制工程學系

碩士論文

A Thesis

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electrical and Control Engineering

October 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年十月

 1

霍普菲爾類神經網路控制器設計及其應用

研究生：甘能捷 指導教授：王啟旭 教授

國立交通大學電機與控制工程研究所

摘要

本篇論文是將霍普菲爾類神經網路當作一個控制器應用在控制領域上。先將霍普菲爾神

經網路做訓練，使其能夠產生較佳的控制訊號，訓練完之後再當一個即時的控制器使

用。霍普菲爾神經網路是一個有迴授的具有保持穩定特性的類神經網路。我們利用兩種

方法來做網路的訓練法則，其中一個是倒傳遞訓練演算法，而另一個動態最佳學習則可

以加速我們的學習過程。要使用倒傳遞訓練演算法來訓練霍普菲爾類神經網路當作一個

即時控制器，最小能量的條件扮演了一個重要的角色。最後我們用倒單擺系統和飛機控

制系統當作我們的受控體得到了良好的結果，並討論如何實現霍普菲爾類神經網路。

 i

Design of Hopfield Neural Network Controller with Its

applications

Student: Neng-Chieh Kan Advisor: Chi-Hsu Wang

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

This thesis explores the design of Hopfield neural network (NN) as a controller for control

system. The training algorithms for Hopfield NN are first developed to generate proper

control signal and then the Hopfield NN is used as a real-time controller after training. The

Hopfield NN is a recurrent neural network which has the potential of maintaining stability.

We use two approaches for training algorithm, one is normal back-propagation training, the

other is dynamic optimal learning which can accelerate the learning process. The minimum

energy requirement in Hopfield NN plays the key role in the back-propagation training of

Hopfield NN as a real-time controller. Finally the inverted pendulum system and aircraft

control system are illustrated as the plants to be controlled by Hopfield NN. Excellent results

are obtained and the implementation of Hopfield NN is also discussed.

 ii

ACKNOWLEDGEMENT

I feel external gratitude to my advisor, Chi-Hsu Wang for teaching me many things about how

to do the research in the two years. When I get some problems in my research, he always

gives me a hand at the right moment such that my thesis can finish in time.

And I am grateful to everyone in ECL. I am very happy to get along with all of you. Finally, I

appreciate my family’s support and encouragement; therefore I can finish my master degree

smoothly.

 iii

TABLE OF CONTENTS
摘要 ...i

ABSTRACT ...ii

ACKNOWLEDGEMENT...iii

TABLE OF CONTENTS...iv

LIST OF TABLES..v

LIST OF FIGURES...vi

CHAPTER 1 Introduction ..1

CHAPTER 2 The Hopfield Neural Network..3

2.1 The Recurrent Neural Network ..3

2.2 The Hopfield Neuron with Closed-Loop Dynamics...4

2.3 Stability Analysis of Hopfield Neural Network ...7

2.4 The Discrete Hopfield Neural Network..9

CHAPTER 3 Training Algorithm of Continuous Hopfield Neural Network for Control

Applications..16

3.1 Back-propagation of continuous Hopfield neural network ..17

3.2 Optimum learning rate for the training of continuous Hopfield NN..........................23

3.3 Hopfield NN as a Real-Time Controller...27

CHAPTER 4 Experimental Results..30

4.1 Example 1: The Inverted Pendulum System (IPS) ...30

4.2 Example 2: The aircraft attitude control system...37

CHAPTER 5 Conclusions ..42

REFERENCES ...43

 iv

LIST OF TABLES
TABLE 4-1. TRAINED WEIGHTING FACTORS OF IPS.. 33

TABLE 4-2. TRAINED WEIGHTING FACTORS OF AIRCRAFT SYSTEM.. 40

 v

LIST OF FIGURES
FIGURE 2-1. THE CONTINUOUS HOPFIELD NEURAL NETWORK.. 3

FIGURE 2-2. THE ADDITIVE MODEL OF A SINGLE HOPFIELD NEURON.. 4

FIGURE 2-3. THE HYPERBOLIC TANGENT FUNCTION .. 5

FIGURE 2-4. THE INVERSE OF HYPERBOLIC TANGENT FUNCTION .. 6

FIGURE 2-5. THE ATTRACTOR TRAJECTORY OF SECOND ORDER HOPFIELD NEURAL NETWORK . 9

FIGURE 2-6. THE SGN FUNCTION... 9

FIGURE 2-7. THE DISCRETE HOPFIELD NEURAL NETWORK WITHOUT SELF-LOOP FEEDBACK.... 10

FIGURE 2-8. EXAMPLE OF THE DISCRETE HOPFIELD MODEL.. 15

FIGURE 3-1. THE HOPFIELD NN AS A REAL-TIME SISO CONTROLLER ... 16

FIGURE 4-1. THE INVERTED PENDULUM SYSTEM .. 30

FIGURE 4-2. THE SIX TRAINING CURVES FOR THE CONTROL OF IPS USING HOPFIELD NN........... 32

FIGURE 4-3. REAL-TIME SISO CONTROL ARCHITECTURE OF HOPFIELD NN CONTROLLER 32

FIGURE 4-4. THE ACTUAL RUNNING STABLE SITUATION FOR CASE 1 .. 34

FIGURE 4-5. THE CONTROL SIGNAL OF THE INVERTED PENDULUM SYSTEM FOR CASE 1............ 34

FIGURE 4-6. THE ACTUAL RUNNING STABLE SITUATION FOR CASE 2 .. 35

FIGURE 4-7. THE CONTROL SIGNAL OF THE INVERTED PENDULUM SYSTEM FOR CASE 2............ 35

FIGURE 4-8. THE ACTUAL RUNNING STABLE SITUATION FOR CASE 3 .. 36

FIGURE 4-9. THE CONTROL SIGNAL OF THE INVERTED PENDULUM SYSTEM FOR CASE 3............ 36

FIGURE 4-10. BLOCK DIAGRAM OF AN ATTITUDE-CONTROL SYSTEM OF AN AIRCRAFT............... 37

FIGURE 4-11. REAL CONTROL ARCHITECTURE OF HOPFIELD NN CONTROLLER 39

FIGURE 4-12. THE TRAINING DATA OF THE AIRCRAFT CONTROL SYSTEM .. 39

FIGURE 4-13. THE OUTPUT OF THE AIRCRAFT CONTROL SYSTEM BY HOPFIELD NN

CONTROLLER... 40

FIGURE 4-14. THE PLOT OF FIGURE 4-13 IN TRANSIENT PERIOD... 41

 vi

FIGURE 4-15. THE CONTROL SIGNAL THE AIRCRAFT CONTROL SYSTEM .. 41

FIGURE 5-1 THE INCLUSION OF MULTIPLEXER IN HOPFIELD NN... 42

 vii

CHAPTER 1

Introduction

Neural network has increasing applications in many fields: pattern recognition, identification

and control of dynamical systems, system modeling. The most interesting character of neural

network is that it can learn how to achieve the goal by learning algorithm and training data

sets. There are many kinds of neural network such as single-layer network, multilayer

feed-forward network, radial basis function network, Hopfield network, ... etc [1]. Each kind

of network has different applications in many fields. Among those neural networks, the

Hopfield neural network will be discussed in this thesis. The Hopfield neural network is first

proposed by Hopfield J.J. in 1984 [2]. The Hopfield neural network has applied on many

fields: optimization [3, 4], system identification, [5, 6], and image processing [7, 8]. In this

thesis, we want to use the Hopfield neural network as a controller. The Hopfield neural

network is trained by one most popular algorithm of neural network which is the back

propagation algorithm [9, 10]. The well-known back propagation algorithm for training

multilayer feed-forward network was proposed by Rumelhart in 1986 [11]. By using the same

basis, it also can be applied on the Hopfield neural network. But in back propagation

algorithm, there is an important problem about the choice of the learning rate. For smaller

learning rate, we may have a convergent result. But the speed of the output convergence is

very slow and need more time to train the network. For larger learning rate, the speed of

training can be accelerated, but it will cause the training result to fluctuate and even leads to

divergent result. The dynamic optimum learning rate algorithm proposed in [12, 13] can help

us to solve the learning rate problem. The basic theme in [12, 13] is to find a stable and

optimal learning rate for the next iteration in back propagation algorithm such that the neural

network can maintain in convergence. Thus, we use the back propagation algorithm with

 1

optimum learning rate to train the Hopfield neural network as a controller. The inverted

pendulum system and the aircraft control system are used to verify the algorithm in the end of

this thesis.

 2

CHAPTER 2

The Hopfield Neural Network

In this chapter, the Hopfield neural network will be reviewed. First the structure of recurrent

neural network which the overall Hopfield neural network belong to will be discussed. The

Hopfield neural network can be divided into continuous part and discrete part, and the two

parts will be discussed in Section 2.2 and Section 2.4. We will also talk about the energy

function in the Hopfield neural network in Section 2.3 of this chapter.

2.1 The Recurrent Neural Network

Figure 2-1 shows a kind of recurrent neural network, which consists of a set of neurons form a

multiple-loop feedback system. The output of each neuron is fed back to each of all the

neurons in the neural network.

Hopfield
neuron

Hopfield
neuron

Hopfield
neuron

Figure 2-1. The continuous Hopfield neural network

 3

When each neuron in Figure 2-1 is a Hopfield neuron (which will be discussed in the next

section), Figure 2-1 is the so-called Hopfield neural network. It is actually a nonlinear

closed-loop feedback system which will have dynamic responses in each of the output signals.

The stability analysis of the Hopfield neural network plays a major role in the applicability of

Hopfield neural network to engineering fields.

2.2 The Hopfield Neuron with Closed-Loop Dynamics

As mentioned in Section 2.1, we use the additive model of a neuron to form the continuous

Hopfield neural network [14]. The Hopfield neuron is defined in Figure 2-2 as a continuous

RC electrical network with a nonlinear activation function ()ϕ ⋅ to confine jv to yield the

final output signal jx . The dotted line ellipse in Figure 2-2 is the Hopfield neuron in Figure

2-1.

Figure 2-2. The additive model of a single Hopfield neuron

In Figure 2-2, the inputs ()ix t (1,...,i N=) are fed-back from the outputs ()jx t

(). The inputs 1,...,j = N ()ix t are represented by potentials, and the synaptic weighting

factors jiw are represented by conductance. The summing junction is a unit current gain

 4

summing junction with low input resistance and high output resistance. We also may have a

bias current jI in the additive model. The ()ϕ ⋅ in this additive model is a nonlinear

sigmoid function which is defined by hyperbolic tangent function [2, 14]:

() ()
()

1 exp
tanh

2 1 exp
j jj j

j j
j j

a va v
x v

a v
ϕ

− −⎛ ⎞
= = =⎜ ⎟ + −⎝ ⎠

 (2-1)

which has a slope of at the origin as shown by /2ja

0
2

j

j

j v

a d
dv
ϕ

=

= (2-2)

Hence we can say that ja is the gain parameter of neuron j . Figure 2-3 shows a plot of

standard sigmoidal nonlinearity ()vϕ .

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v

ϕ

Figure 2-3. The hyperbolic tangent function

Now, we should also investigate the inverse function of ()ϕ ⋅ . The inverse input- output

relation of (2-1) may be written as:

()1 11 log
1

j
j j

j j

x
v x

a x
ϕ−

⎛ ⎞−
= = ⎜⎜ +⎝ ⎠

⎟⎟ (2-3)

 5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

1ϕ−

Figure 2-4. The inverse of hyperbolic tangent function

Figure 2-4 shows the corresponding plot of the inverse nonlinearity ()1 xϕ− .From Figure 2-2

with the closed-loop configuration in Figure 2-1, we can get the neural dynamics in the

overall Hopfield neural network as follows [14]. By using the Kirchhoff’s law which states

that the total current entering a junction is equal to that leaving the same junction, we can

obtain the following dynamic node equation in this model:

() () ()
1

, 1,...,
N

j
j j ji i j

ij

v tdC v t w x t I j N
dt R =

+ = + =∑ (2-4)

The input ()ix t is the feedback of the output of the nonlinear sigmoid function ()ϕ ⋅ , so the

dynamic equation becomes:

() () ()()
1

, 1,...,
N

j
j j ji i j

ij

v tdC v t w v t I j
dt R

ϕ
=

= − + + =∑ N (2-5)

Eq. (2-5) completely describes the time evolution of the system. If each node is given an

initial value , then the value ()0jv ()jv t and the nonlinear activation function output

() ()(j j)x t v tϕ= at time t can be known by solving the differential equation in (2-5).

 6

The stability analysis of the above continuous Hopfield neural network can be discussed via

the energy (or Lyapunov) function of the Hopfield neural network, which will be introduced

in the next section.

2.3 Stability Analysis of Hopfield Neural Network

The energy (Lyapunov) function [2, 14] of the continuous type Hopfield neural network can

be defined by

()1

0
1 1 1 1

1 1
2

j
N N N Nx

ji i j j j
i j j jj

E w x x x dx
R

ϕ−

= = = =

= − + −∑∑ ∑ ∑∫ I x (2-6)

In order for the Hopfield neural network to be asymptotically stable, the time derivative of the

above energy function E must be negative. By differentiating the energy function E with

respect to time and using the relationship of jx and jv in (2-3), we can get

1 1

N N
j

ji i j
j j j

v ddE w x I
dt R dt= =

⎛ ⎞
= − − +⎜⎜

⎝ ⎠
∑ ∑ jx

⎟⎟ (2-7)

The term inside the parentheses in (2-7) is actually equal to j
j

dv
C

dt
 via (2-4). We may thus

simplify (2-7) to

1

N
j j

j
j

dv dxdE C
dt dt dt=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ (2-8)

Since ()1
j jv ϕ−= x from (2-3), the above (2-8) becomes

()1

1

N
j j

j
j

d x dxdE C
dt dt dt

ϕ−

=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∑ (2-9)

By using the chain rule, (2-9) can be further simplified as:

()
2

1

1

N
j

j
j j

dxdE dC
dt dt dx

ϕ−

=

⎛ ⎞⎛ ⎞
= − ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
∑ jx ⎟⎟ (2-10)

 7

It is obvious from Figure 2-4 that that ()1
jxϕ− is an increasing function of jx . It follows

therefore that

()1 0j
j

d x
dx

ϕ− > , for all jx (2-11)

It is also true that

2

0jdx
dt

⎛ ⎞
≥⎜ ⎟

⎝ ⎠
 for all jx (2-12)

Therefore, according to (2-11) and (2-12), we have the final fact:

()
2

1

1

0
N

j
j j

j j

dxdE dC
dt dt dx

ϕ−

=

⎛ ⎞⎛ ⎞
jx= − ≤⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

∑ ⎟⎟ (2-13)

Eq. (2-13) says that if the nonlinear activation function is defined as the hyperbolic tangent

function shown in Figure 2-3, then the set of nonlinear differential equations defined in (2-5),

which represents the dynamical equations of the continuous Hopfield neural network, is

asymptotically stable. From (2-13), we also know that 0dE
dt

= if 0jdx
dt

= . The points where

0jdx
dt

= are defined as the fixed points in the trajectory space, where the energy function

 of those fixed points will remain still. These fixed points are also sometimes called

“attractors” due to the fact that the surrounding states will sometimes be attracted to the fixed

points as the stable states. Thus, we use a second order example which means only

()E t

1x and

2x to explain the attractor trajectory of Hopfield neural network in Figure 2-5 [2].

 8

Figure 2-5. The attractor trajectory of second order Hopfield neural network

The contours are the energy contour of Hopfield neural network, and the arrows are the state

trajectory. The attractors are located near the lower left and upper right corners. All the other

unstable states will be attracted to the fixed points. The arrows show the motion of the states.

2.4 The Discrete Hopfield Neural Network

The continuous mode of Hopfield neural network is based on an additive model, as previously

discussed. If the nonlinear activation function ()ϕ ⋅ in Figure 2-2 is replaced by the

following sgn function [1, 14]:

Figure 2-6. The sgn function

 9

Thus we can basically have a discrete Hopfield neural network, like Figure 2-7. The discrete

Hopfield neural network eliminates the self-loop feedback as shown in Figure 2-1. In the

continuous mode, the nonlinear activation sigmoid function is the hyperbolic tangent function

((2-1)). The gain parameter ja in (2-2) is the slope of the hyperbolic tangent function. If we

let , then the input-output relation in a neuron of discrete mode becomes ja →∞

1 for 0
1 for 0

j
j

j

v
x

v
+ >⎧

= ⎨− <⎩
 (2-14)

()0jϕ 0= (2-15)

Figure 2-7. The discrete Hopfield neural network without self-loop feedback

The energy function for discrete Hopfield neural network can be derived from that in ()E t

 10

(2-6), i.e., the for continuous Hopfield neural network. In discrete case, the gain

parameter

()E t

ja is infinite and this will make the term ()1

0
1

1 j
N x

j j

x dx
R

ϕ−

=
∑ ∫ very small (from

(2-3) and Figure 2-4). There is also no bias current jI in discrete case. Thus, the energy

function of discrete Hopfield neural network becomes: ()E t

1 1

1
2

N N

ji i j
i j

E w x x
= =

= − ∑∑ (2-16)

The most important application of the discrete model is working as a content-addressable

memory (CAM) [14]. In this application, a content-addressable memory is error-correcting in

the sense to retrieve a stored pattern, given a reasonable subset of the information content of

that pattern. However, the synaptic weighting factors of the network that produce the desired

fixed points are unknown, and the problem is how to determine them. There are two phases to

the operation of the discrete Hopfield network as a CAM, namely the storage phase and the

retrieval phase. Now we introduce the process of the discrete Hopfield model as CAM:

1. Storage phase:

There are M N-dimensional vectors called fundamental memories denoted by

, ,1 ,2 ,.... Nμ μ μ μξ ξ ξ ξ⎡ ⎤⎦ M= ⎣ 1, 2,...,μ = . And each ,iμξ is a binary code, it means

that , 1iμξ = + or . The fundamental memories are the stable states to be stored and

memorized by the network. Then we use the following Hebb’s learning rule to define the

weighting matrix of the discrete Hopfield network[14]:

1−

1

1W
M

T MI
N μ μ

μ

ξ ξ
=

⎛ ⎞
= ⎜

⎝ ⎠
∑ − ⎟ (2-17)

where I is the identity matrix with dimensions. We need to minus N MI because the

discrete model doesn’t have self-loop feedback. We also find that the weighting matrix is

 11

symmetric, i.e., . The following theorem will explain why the weighting matrix

in discrete Hopfield neural network be decided by (2-17).

TW W=

Theorem 1

The updating rule

1

1W
M

T MI
N μ μ

μ

ξ ξ
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

will minimize the energy function ()E t of discrete Hopfield neural network when the state

X is the fundamental memory μξ .

Proof:

We use the vector and matrix form to express the energy function in (2-16).

1
2

TE X WX= − (2-18)

where X is a N dimensional column vector. We use the definition of weighting matrix in

(2-17) to rewrite (2-18).

1

1

1 1
2

1
2

M
T T

M
T T T

E X MI X
N

X X MX X
N

μ μ
μ

μ μ
μ

ξ ξ

ξ ξ

=

=

⎛ ⎞
= − −⎜ ⎟

⎝
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

∑

∑

⎠ (2-19)

Because X and μξ are both N dimensional column vectors with 1+ or elements, we

can get the result of (2-19).

1−

()

()

2

1

2

1

1
2

1
2 2

M
T

M
T

E X MN
N

M X
N

μ
μ

μ
μ

ξ

ξ

=

=

⎛ ⎞
= − −⎜ ⎟

⎝

= − −

∑

∑
⎠ (2-20)

The reason for using Hebb’s learning rule to decide the weighting matrix is right here. When

 12

the state X is equal to the fundamental memory μξ , ()2T Xμξ will reach the maximum. It

means that the energy function E would reach the minimum if we choose the weighting

matrix as (2-17).

2. Retrieval phase:

Now we start the algorithm to stabilize the system and retrieve the pattern. We get a initial

wrong state ()0x called “probe”, which is a noisy version of the correct stable state μξ .

The initial probe has elements equal to 1± . Then we use the following formula to

update ()x n :

() ()1x n W x+ = ⋅ n⎡ ⎤⎣ ⎦sgn (2-21)

where the function is defined by: sgn

[]
1, 0
1, 0

previous state, 0

u
u

u
u

+ >⎧
⎪= −⎨
⎪

<
=⎩

sgn (2-22)

If ()W x n⋅ is greater than zero, neuron j will switch its states to or remain in that

state if it is already there. Similarly, if

1+

()W x n⋅ is less than zero, neuron j will switch

its states to or remain in that state if it is already there. If 1− ()W x n⋅ is exactly zero,

neuron j is left in its previous state, regardless of whether it is or . When 1+ 1−

() (1)x n x+ = n , the system reaches the stable state. It means that the state ()x n is

transformed to one of the stable states μξ . Let us use an example to verify this process.

Example: and []1 1 1 1ξ ′= − [2 1 1 1ξ]′= − − are the two stable states (fundamental

 13

memories). Only the two states will be stable, the other unstable states will converge to

the two stable states after some iteration. Then we compute the weighting matrix by

(2-17):

[] []
1 1 1 0 0 0

1 11 1 1 1 1 1 1 1 2 0 1 0 2 0 2
3 3

1 1 0 0 1 2
W

⎛ − ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + − − − = − −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

2 2

2 0

−

]

Now suppose the initial wrong unstable states is () [0 1 1 1x ′= , we can get,

() ()()

() ()() ()

0 1
11 sgn 0 sgn 4 1
3

0 1

4 1
12 sgn 1 sgn 4 1 1
3

4 1

x W x

x W x x

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅ = − = −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅ = − = − =⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

Because () ()1 2x x= , the system reaches its stable condition () (1)x n x+ = n . From

()0x to , the initial unstable states [()2x]1 1 1 ′ converges to the fundamental

memory . []1 1 1 1ξ ′= −

 14

Figure 2-8. Example of the discrete Hopfield model

In Figure 2-7, the left upper corner [1 1 1 1ξ]′= − and the right down corner

 are the two fundamental memories. The nearby unstable wrong states like

 or [will converge to the two stable states.

[2 1 1 1ξ ′= − −]

][]1 1 1 ′ 1 1 1 ′−

 15

CHAPTER 3

Training Algorithm of Continuous Hopfield Neural Network for

Control Applications

We have discussed how to find the weighting factors of discrete Hopfield neural network (NN)

in Chapter 2. In this chapter, the training algorithm to find the weighting factors of continuous

Hopfield NN will be proposed. The back-propagation skill is mainly adopted for this problem.

Further the optimal training algorithm is also proposed to accelerate the learning speed. We

assume the following unity feedback Single Input Single Output (SISO) control system using

Hopfield NN as a controller:

Hopfield NN
Controller System plant...

...
...

...

1x 1x

jx jx

Nx Nx

d yje+
-

closed for t = 0
 open for t > 0

(0) (0),

(0) 0, .
j j

i

e x

x i j

=⎧⎪
⎨

= ≠⎪⎩

jxjx

Figure 3-1. The Hopfield NN as a real-time SISO controller

The control goal is to design a Hopfield NN as a controller so that the output y will follow

the input . The design process will include the training of weighting factors in Hopfield NN.

Note that it can be shown in Figure 3-1 that the output

d

jx of the Hopfield NN is the control

input to the system plant and there is a switch placed between the error signal and

the input

je d= − y

jx of Hopfield NN. This implies that { () () ()0 0 , 0j j ix e x 0= = for i }. The

reason for this initial arrangement is that Hopfield NN will need non-zero initializations for

j≠

 16

all ix to serve as a real-time controller. This will be explained in more details in later

section.

3.1 Back-propagation of continuous Hopfield neural network

The back-propagation learning algorithm is one of the most important historical developments

in neural networks [14, 15]. The back-propagation learning algorithm is originally applied to

multilayer feed-forward networks consisting of processing elements with continuous

differentiable activation functions. Given a training set of input-output pairs { () (),d n y n },

the algorithm provides a procedure for the finding of weighting factors in back-propagation

network. Now, we use the popular back-propagation algorithm in the continuous Hopfield NN

to find the way for the training weighting factors. Let the output of neuron j (i.e., jx) be the

control input to the plant (see Figure 3-1). We define the error signal of the output

neuron

()je n

j at step n as the difference between ()y n and ()d n :

() () ()je n d n y n= − (3-1)

The error signal can be used to decide the cost function. The cost function is a

measure of learning performance which can be defined as

()je n

() () (){ 221 1
2 2jJ e n d n y n= = − } (3-2)

To minimize the cost function , the update of the weighting factors can be obtained from

the following rule:

J

() ()1ji jiw n w n wji+ = + Δ (3-3)

where is defined by: ()jiw nΔ

ji
ji

Jw
w

η ∂
Δ = −

∂
 (3-4)

 17

The parameter η is the learning rate or step size of our continuous Hopfield NN

back-propagation algorithm. In (3-3) and (3-4), we can find that the back-propagation

algorithm applies a correction ()jiw nΔ to the synaptic weighting factor , which is

proportional to the partial derivative

()jiw n

ji

J
w
∂
∂

. Thus, we have the following update rule:

() ()1ji ji
ji

Jw n w n
w

η ∂
+ = −

∂
 (3-5)

According to the chain rule, we can get the gradient of
ji

J
w
∂
∂

 in the following form:

ji j

J J y
w y w i

∂ ∂ ∂
=

∂ ∂ ∂
 (3-6)

Then (3-5) can be further expressed as

() ()1ji ji
ji

J yw n w n
y w

η ∂ ∂
+ = −

∂ ∂
 (3-7)

We can have

() (21
2

J d y d y
y y
∂ ∂ ⎡ ⎤)= − = − −⎢ ⎥∂ ∂ ⎣ ⎦

 (3-8)

Since we can not find the relation between and y jiw directly, we have to apply the chain

rule again for j

ji

y
w
∂

∂
 as follows:

j j

ji j j ji

x vy y
w x v w

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
 (3-9)

This implies that (3-7) can be further expressed as

() ()1 j j
ji ji

j j ji

x vJ yw n w n
y x v w

η
∂ ∂∂ ∂

+ = −
∂ ∂ ∂ ∂

 (3-10)

In (3-9), jx is the continuous Hopfield NN output, and it is also the control signal to control

the system plant. The signal y is just the system plant output due to the control signal jx .

Because the system plant is uncertain, the first part
j

y
x
∂
∂

 in (3-9) can be approximated by

j

y
x
Δ
Δ

 as follows:

 18

() ()
()

1
(1)j j j j

y n y ny y
x x x n x n

+ −∂ Δ
≅ =

∂ Δ + −
 (3-11)

For j

j

x
v
∂

∂
 and j

ji

v
w
∂

∂
, (2-1) and (2-4) in Chapter 2 are repeated as follows as (3-12) and (3-13):

() ()
()

1 exp
tanh

2 1 exp
j jj j

j j
j j

a va v
x v

a v
ϕ

− −⎛ ⎞
= = =⎜ ⎟ + −⎝ ⎠

 (3-12)

1

N
j

j ji i
i

vdC v w x
dt R =

+ =∑ (3-13)

From (3-12), it is obvious that

() ()
()()2

2 exp

1 exp

j jj
j

j j j

a a vx
v

v a v
ϕ

−∂
′= =

∂ + −

j (3-14)

For j

ji

v
w
∂

∂
 in (3-9), we may obtain some hints from (3-13), which is the continuous Hopfield

NN dynamic equation. From (3-12), we can rewrite (3-13) as:

()
1

n
j j

ji i
i

dv v
C w

dt R
ϕ

=

+ =∑ v (3-15)

The above (3-15) is a nonlinear differential equation, which describes the relationship

between jv and jiw . Thus j

ji

v
w
∂

∂
 can not be found in (3-15) directly.

However, the basic theme of all training algorithms is to force the system state to have

minimum energy. Theorem 1 in Chapter 2 shows the weighting vector to get the minimum

energy of a discrete Hopfield NN. This minimum energy weighting vector is then applied for

the training of discrete Hopfield NN. The same philosophy can also be applied in the training

of continuous Hopfield NN. From Chapter 2, we have the derivate of energy function ()E t

for continuous Hopfield NN as

1

N
j

j

dv dxdE C
dt dt dt=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ j (3-16)

For minimum energy, we must let 0dE
dt

= . From (3-16), it is obvious that if 0jdv
dt

= for

 19

N ; then 0dE
dt

= . Based on this, (3-15) can be rewritten as 1,...,j =

()
1

n
j

ji i
i

v
w v

R
ϕ

=

=∑ (3-17)

Therefore we can have

()
1

n

j ji
i

v R w vϕ
=

= ⋅∑ i (3-18)

Up to this stage, we can find j

ji

v
w
∂

∂
 easily from the above (3-18) as follows:

()j
i

ji

v
R v

w
ϕ

∂
= ⋅

∂
 (3-19)

Form (3-12), we can further express (3-19) as a more complete form:

() ()
()

1 exp
1 exp

j i i
i

ji i i

v a v
R v R

w a
ϕ

v
∂ − −

= ⋅ = ⋅
∂ + −

 (3-20)

Now the three terms
j

y
x
∂
∂

, j

j

x
v
∂

∂
, and j

ji

v
w
∂

∂
 in (3-9) have been found, we can express

ji

y
w
∂
∂

in the following form:

() ()

() ()
()

()()
()()()

()()
()()2

2 exp 1 exp1
(1) 1 exp1 exp

j j

ji j j ji

j i
j

j j j i i

j j i ij j

x vy y
w x v w

y v R v
x

a a v n a v ny n y n
R

x n x n a v na v n

ϕ ϕ

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂

Δ ′= ⋅
Δ

− − −+ −
= ⋅ ⋅

+ − + −+ −

 (3-21)

Finally we can find the
ji

J
w
∂
∂

in (3-6) as:

() () ()
()

()()
()()()

()()
()()2

2 exp 1 exp1
(1) 1 exp1 exp

ji ji

j j

j j ji

j j j i i

j j i ij j

J J y
w y w

x vJ y
y x v w

a a v n a v ny n y n
d y R

x n x n a v na v n

∂ ∂ ∂
=

∂ ∂ ∂

∂ ∂∂ ∂
=
∂ ∂ ∂ ∂

− − −+ −
= − − ⋅ ⋅ ⋅

+ − + −+ −

 (3-22)

Therefore the final step to perform the back-propagation algorithm of the continuous Hopfield

NN is to combine all the above equations to get

 20

() () ()
()

()()
()()()

()()
()()

() () ()
()

()()
()()()

()()
()()

2

2

2 exp 1 exp1
(1) 1 exp1 exp

2 exp 1 exp1
(1) 1 exp1 exp

ji
ji

j j j i i

j j i ij j

j j j i i

j j i ij j

Jw
w

a a v n a v ny n y n
d y R

x n x n a v na v n

a a v n a v ny n y n
d y R

x n x n a v na v n

η

η

η

∂
Δ = −

⎡ ⎤− − −+ −⎢ ⎥= − − − ⋅ ⋅ ⋅⎢ ⎥+ − + −+ −⎢ ⎥⎣ ⎦

− − −+ −
= − ⋅ ⋅ ⋅

+ − + −+ −

 (3-23)

The complete back propagation equation for the training of continuous Hopfield NN is

therefore

() ()

() ()() () ()
()

()()
()()()

()(
()()

)
2

1

2 exp 1 exp1
(1) 1 exp1 exp

ji ji

j j j i i

j j i ij j

w n w n

a a v n a v ny n y n
d n y n R

x n x n a v na v n
η

+ = +

− − −+ −
− ⋅ ⋅ ⋅

+ − + −+ −

 (3-24)

Up to this stage, we still need to find the jv for next iteration. This can be easily obtained

from (3-18) (repeated here for convenience, as (3-25)), as we assume minimum energy

requirement.

() () ()(
1

1 1
n

j ji
i

v n R w n v nϕ
=

+ = ⋅ +∑)i (3-25)

The following algorithm summarizes the above steps to complete the training process.

 21

Algorithm 3-1: Back-propagation learning for continuous Hopfield neural network

Step 0: Given training pair { () (), ,d n y n 0,1,...,n N= }, with the following initial

conditions:

1. ja : The slope of hyperbolic tangent function

2. : Initial value of continuous Hopfield NN ()0jx

3. : Initial synaptic weighting factors of the continuous Hopfield NN. ()0jiw

Step 1: Define the error signal as (3-1).

() () ()je n d n y n= −

Step 2: Define the cost function using the error signal as (3-2). J

() () (){ }221 1
2 2jJ e n d n y n= = −

Step 3: Decide the back-propagation update rule in (3-5).

() ()1ji ji
ji

Jw n w n
w

η ∂
+ = −

∂

Step 4: Separate the partial derivative
ji

J
w
∂
∂

 in (3-6).

ji ji

J J y
w y w
∂ ∂ ∂

=
∂ ∂ ∂

Step 5: Get the result of
j

J
y
∂
∂

 in (3-8).

() () ()()21
2

J d y d n y n
y y
∂ ∂ ⎡ ⎤= − = − −⎢ ⎥∂ ∂ ⎣ ⎦

Step 6: Separate the partial derivative term
ji

y
w
∂
∂

 in (3-9).

j j

ji j j ji

x vy y
w x v w

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂

 22

Step 7: Get the approximation form of
j

y
x
∂
∂

 in (3-11).

() ()
()

1
(1)j j j j

y n y ny y
x x x n x n

+ −∂ Δ
= =

∂ Δ + −

Step 8: Get the result of j

j

x
v
∂

∂
 in (3-14).

() ()()
()()()2

2 exp

1 exp

j j jj
j

j j j

a a v nx
v

v a v n
ϕ

−∂
′= =

∂ + −

Step 9: Get the result of j

ji

v
w
∂

∂
 in (3-20).

() ()()
()()

1 exp
1 exp

i ij
i

ji i i

a v nv
R v R

w a v n
ϕ

− −∂
= ⋅ = ⋅

∂ + −

Step 10: Define the correction ()jiw nΔ as (3-23).

() ()() () ()
()

()()
()()()

()()
()()2

2 exp 1 exp1
(1) 1 exp1 exp

ji
ji

j j j i i

j j i ij j

Jw
w

a a v n a v ny n y n
d n y n R

x n x n a v na v n

η

η

∂
Δ = − =

− − −+ −
− ⋅ ⋅ ⋅

+ − + −+ −

Step 11: Complete the back-propagation in (3-24).

()

() () ()() () ()
()

()()
()()()

()()
()()2

1

2 exp 1 exp1
(1) 1 exp1 exp

ji

j j j i i
ji

j j i ij j

w n

a a v n a v ny n y n
w n d n y n R

x n x n a v na v n
η

+ =

− − −+ −
+ − ⋅ ⋅ ⋅

+ − + −+ −

Step 12: Solve the differential equation with minimum energy condition:

() () (
1

1 1
n

j ji
i

v n R w n x n
=

+ = ⋅ +∑)i

Step 13: , if , GOTO Step 1. 1n n= + n N≠

Step 14: Stop.

3.2 Optimum learning rate for the training of continuous Hopfield NN

 23

In Section 3.1, we have developed the back-propagation algorithm for the training of

weighting factors in continuous Hopfield NN. The back-propagation algorithm will train the

continuous Hopfield NN to generate the control signal to control the plant such that the output

signal of the plant will be as close as possible to the desired input signal. But the training

speed is very slow in Algorithm 3.1 with a arbitrary fixed learning rate. It is better if we can

find a better dynamic learning rate in each iteration so that the convergent speed can be

increased [12, 13].

It is very important to choose an appropriate learning rate (or step size) in the training process.

If the learning rate is too large, the learning process will jump to the next iteration in a larger

step and this may cause divergence in the training process. If the learning is too small, the

learning process will be slow, and yet the convergence is not guaranteed. Thus, how to choose

a suitable learning rate is important. With the concept of dynamic optimal training in [12, 13],

we will develop a similar optimal training algorithm for the training of Hopfield NN. This

process is to decide the learning rate η in each iteration so that the error energy will be

reduced as much as possible. This will not yield a stable training process, but the convergence

speed is also the fastest. The error energy function (cost function) at step has been defined

in (3-2) and is listed here as (3-32):

n

() (){ 21
2

J d n y n= − } (3-26)

The cost function in the next step (1n+) is:

() () (){ 211 1
2

J n d n y n+ = + − + }1 (3-27)

Now, it is our purpose to find an optimum learning rate optη such that () ()1 0J n J n+ − ≤

and () ()1J n J+ − n is maximized. Suppose the function ()G ⋅ represents an input

dependent function so that we can have the output ()jy G x= . This implies may be a ()G ⋅

 24

linear transfer function, a nonlinear differential equation, or even a look-up table. Thus we can

get the following equation:

() ()

() (){ } () ()

() (){ } () ()

() ()(){ } () ()

() () () ()

22

2 2

2 2

2
2

1

 1
1 11 1
2 2
1 11 1
2 2
1 11 1
2 2

1 11 1
2 2

j

j

N

ji i
i

J n J n

d n y n d n y n

d n G x n d n y n

d n G v n d n y n

d n G R w n x d n y n

ϕ

ϕ
=

+ −

= + − + − −⎡ ⎤⎣ ⎦

⎡ ⎤= + − + − −⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤= + − + − −⎡ ⎤⎣ ⎦⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + − ⋅ + − −⎡ ⎤⎨ ⎬⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑

 (3-28)

We have already known that (1jv n)+ is a function of the weighting factors ()1jiw n+ . So

we know that (3-28) is also a function of the uncertain weighting factors ()1jiw n+ . Further

we may rewrite the update of weighting factors in Step 10 of Algorithm 3-1 as follows:

()

() ()() () ()
()

()()
()()()

()(
()()

)
2

2 exp 1 exp1
(1) 1 exp1 exp

ji

j j j i i
opt

j j i ij j

w n

a a v n a v ny n y n
d n y n R

x n x n a v na v n
η

Δ =

− − −+ −
⋅ − ⋅ ⋅ ⋅

+ − + −+ −

 (3-29)

Where ηopt is the dynamical optimal learning rate to be decided. Thus, we have the uncertain

correction with an uncertain learning rate ()jiw nΔ optη . According to (3-24), we also get the

uncertain new weighting factors ()1jiw n+ . As we have discussed, () ()1J n J n+ − is a

function of the uncertain weighting factors ()1jiw n+ . Combine all the above relations, we

may express as a function of the uncertain variable () (1J n J n+ −) optη . It means that what

we have to do is to find an optimum value for the variable optη such that

 and () ()1 0J n J n+ − ≤ () ()1J n J+ − n

)

 is maximized. Now, we know that

 is a function of uncertain variable () (1J n J n+ − optη .

 25

() () ()1 optJ n J n H η+ − = (3-30)

In other neural networks, the function ()H ⋅ may be a simple parabolic curve, thus we can

find optη easily. But in this continuous Hopfield NN optimum learning rate algorithm, the

function is very complicated, we can apply the Matlab routine fminbnd()H ⋅ [13] to find

the optimal learning rate optη from () ()1J n J n+ − . After using Matlab routine to find optη ,

we have finished the process of optimum learning rate. At the end of this section, we combine

the important result in Section 3.1 and 3.2 to perform the training algorithm in continuous

Hopfield NN.

Algorithm 3-2: Back-propagation learning of continuous Hopfield network with optimal

learning rate

Step 0: Given training pair { () (), ,d n y n 0,1,...,n N= }, with the following initial

conditions:

1. ja : The slope of hyperbolic tangent function

2. ()0jx : Initial value of continuous Hopfield NN

3. : Initial synaptic weighting factors of the continuous Hopfield NN. ()0jiw

Step 1: Use the hyperbolic tangent function () ()() ()()
()()

1 exp

1 exp
j j

j j
j j

a v n
x n v n

a v n
ϕ

− −
= =

+ −
 to get

initial Hopfield controller output ()jx n .

Step 2: Use control signal ()jx n to control system plant ()G ⋅ and get output ()y n .

Step 3: is the function of () (1J n J n+ −) optη , () () (1 optJ n J n H η+ − =) . Apply the

 26

Matlab routine fminbnd to find the optimal learning rate optη .

Step 4: Use the Algorithm 3-1 to get the new weighting factors:

() ()() () ()
()

()()
()()()

()()
()()

() ()

2

2 exp 1 exp1

(1) 1 exp1 exp

1

j j j i i
ji opt

i ij j

ji ji ji

a a v n a v ny n y n
w d n y n R

x n x n a v na v n

w n w n w

η
⎧ − − −+ −

Δ = ⋅ − ⋅ ⋅ ⋅⎪⎪ + − + −+ −⎨
⎪

+ = + Δ⎪⎩

Step 5: Use the new weighting factors to get the solution of the Hopfield NN differential

equation with minimum energy requirement:

() () (
1

1 1
n

j ji
i

v n R w n x n
=

+ = ⋅ +∑)i

Step 6: , if , GOTO Step 1. 1n n= + n N≠

Step 7: Stop.

3.3 Hopfield NN as a Real-Time Controller

The above mentioned back propagation training for Hopfield NN can only be performed in a

batch off-line processing. Once the training process is completed, the Hopfield must be

connected in a real-time environment to serve as a real-time controller. However, we know

that the Hopfield NN is a recurrent dynamic system. It has dynamic response from initial

excitations. The Hopfield NN dynamic equation is in (3-13) (repeated here for convenience as

(3-31)),

1

N
j

j
i

vdC v w x
dt R =

+ =∑ ji i (3-31)

If the Hopfield NN is with zero initial conditions, i.e., ()0ix 0= for all i , then it is obvious

that Hopfield NN will not have any response at all for . Therefore we need to set a

non-zero initial condition for the control configuration in Figure 3-1. In Figure 3-1,

0t >

jx is

connected to je at , and disconnected for , where 0t = 0t > jx is also the control input to

 27

the plant. This implies that { () ()0 0j jx e= , ()0ix 0= for i j≠ }.To see the effect of this

initial configuration, we have the following Theorem 2.

Theorem 2:

If jjw is negative, then the initial excitation to the Hopfield NN in Figure 3-1 will have a

stable response in terms of the maximum decay of ()jv t with respect to . ()0je

Proof:

The following (3-32) is the solution of (3-31):

()
1

1 1
0

N N t
RC

j ji i j ji i
i i

v R w x v R w x e
−

= =

⎛= ⋅ + − ⋅ ⋅⎜
⎝ ⎠

∑ ∑ ⎞
⎟

i

 (3-32)

Further, substituting into (3-32), we have ()
1

(0) 0
N

j ji
i

v w x
=

= ∑

()
1

1 1 1
0

N N N t
RC

j ji i ji i ji i
i i i

v R w x w x R w x e
−

= = =

⎛= ⋅ + − ⋅ ⋅⎜
⎝ ⎠

∑ ∑ ∑ ⎞
⎟ (3-33)

Since the output of Hopfield NN controller is a particular neuron output jx . Thus, we can

rewrite (3-33) as:

() ()
1

1 1 1
0 0

N N N t
RC

j ji i jj j ji i ji i
i i i

i j

v R w x w x w x R w x e
−

= = =
≠

⎛ ⎞
⎜ ⎟= ⋅ + + − ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑ (3-34)

Now, the initial excitations of the Hopfield NN are ()0j jx e= and for ()0ix = 0 i j≠ .

Therefore (3-34) becomes
1

1 1

N N t
RC

j ji i jj j ji i
i i

v R w x w e R w x e
−

= =

⎛= ⋅ + − ⋅ ⋅⎜
⎝ ⎠

∑ ∑ ⎞
⎟ (3-35)

Eq. (3-35) shows that jv is a function of je . Differentiating (3-35) with respect to je , we

can get:
1 tj RC

jj
j

dv
e w

de

−

= ⋅ (3-36)

 28

The first term
1 t

RCe
−

 in (3-36) is always positive, and the second term jjw is the

self-feedback of Hopfield neural network. In order for the function jv to decay with

increasing je , jjw needs to be a negative number. Thus, if jjw is a negative number, then

jv in (3-35) is a decreasing function of je . It means that we should choose a large je to get

the fastest response of jv . Ii is obvious that the initial value ()0j je e= is the largest, since

the initial output is always zero.

Q.E.D.

 29

CHAPTER 4

Experimental Results

In this chapter, we use the algorithm introduced in Chapter 3 to control the inverted pendulum

system in Section 4.1, and the aircraft attitude control in Section 4.2.

4.1 Example 1: The Inverted Pendulum System (IPS)

Inverted pendulum is a nonlinear and unstable system, and it is the most popular benchmark

for new control algorithms to verify their advantages [16].

m

cm u

lθ

Figure 4-1. The inverted pendulum system

According to Figure 4-1, we let the angle θ which is between the pendulum and the vertical

line be equal to the first state 1θ , and the angular speed θ be the second state 2θ . Then we

can get the following state equation:

1 2
2
2 1 1 1

1

2 2 2
1 1

cos sin cossin

cos cos4 4
3 3

c c

c c

mlg
m m m m u

m ml l
m m m m

θ θ

θ θ θ θθ
θ

θ θ

=

−
+ +

= +
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (4-1)

Where

 30

1

2

:
:
:

:
:
:

:

c

The constant of acceleration of gravity
The mass attached to the pendulum
The mass of based car
The length of pendulum arm
Angle between pendulum and vertical line
Angular speed
Control sig

g
m
m
l

u

θ
θ

nal

In our example, the parameters of the inverted pendulum are defined in the following values:

29.8 / sec ; 0.1
1 ; 0.5 c

m k
kg m

g m
m l
= =

= =

g

Thus, we can further express (4-1) as

1 2
2

1 2 1 1 1
2 2 2

1 1

215.6sin cos sin 2cos
14.667 cos 14.667 cos

x u

θ θ

θ θ θ θθ
θ θ

=

−
= +

− −

 (4-2)

The control objective is to stabilize the inverted pendulum with initial angle between 10

and . Note that the state equations in (4-2) are only used for simulation purpose. It is by

no means used to design the Hopfield NN controller. For training data set, we generate 6 data

set which correspond to six initial angles, i.e., {10°, 7°, 3°, -3°, -7°, -10°}. The six data sets

are shown in Figure 4-2.

°

10°−

 31

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15
Training data of inverted pendulum system

A
ng

le
 (D

eg
re

es
)

Time (Second)

Figure 4-2. The six training curves for the control of IPS using Hopfield NN

The overall real control architecture of Hopfield NN controller is shown in Figure 4-3. The

Hopfield NN in this application has two neurons and the first neuron output 1x is the control

signal.

Figure 4-3. Real-time SISO control architecture of Hopfield NN controller

After training by the Algorithm 3-2 developed in Chapter 3, the trained weighting factors in

Hopfield NN can be used to generate control signal. The values of capacitor and resistance are

 32

10 uF and 1K Ohms respectively. The final four weighting factors in this application are

shown in the following Table 4-1. Table 4-1 also shows the resistance values for the weighting

factors.

Weighting factor 11w 12w 21w 22w

Trained value -3.4275 -0.012878 -2.1702 0.2845

| Resistance | 0.2918Ω 77.6518Ω 0.4608Ω 3.5149Ω

Table 4-1. Trained weighting factors of IPS

The first weighting factor is negative. It is the fact from Theorem 211w discussed in

Chapter 3. Three cases with different initial angles and different initial angular speed will be

adopted to test the Hopfield NN controller. There are two figures in each of those cases. The

first one is about the final angle output 1θ in actual real time control case, which is a stable

situation in this inverted pendulum system. The second figure is the control signal generated

from the trained Hopfield NN.

 33

Case 1. Initial angle ()1 0 10θ °= , initial angular speed () ()2 0 0 / secθ °=

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15
Actual running case stable situation

A
ng

le
 (D

eg
re

es
)

Time (Second)

Figure 4-4. The actual running stable situation for Case 1

0 0.5 1 1.5 2 2.5
-5

-4

-3

-2

-1

0

1
The control signal generated from Hopfield neural network

Fo
rc

e
(N

ew
to

n)

Time (Second)

Figure 4-5. The control signal of the inverted pendulum system for Case 1

 34

Case 2. Initial angle , initial angular speed ()1 0θ °= −8 () ()2 0 4 / secθ °=

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15
Actual running case stable situation

A
ng

le
 (D

eg
re

es
)

Time (Second)

Figure 4-6. The actual running stable situation for Case 2

0 0.5 1 1.5 2 2.5
-1

0

1

2

3

4

5
The control signal generated from Hopfield neural network

Fo
rc

e
(N

ew
to

n)

Time (Second)

Figure 4-7. The control signal of the inverted pendulum system for Case 2.

 35

Case 3. Initial angle , initial angular speed ()1 0θ °= −5 () ()2 0 3 / secθ °= −

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

15
Actual running case stable situation

A
ng

le
 (D

eg
re

es
)

Time (Second)

Figure 4-8. The actual running stable situation for Case 3

0 0.5 1 1.5 2 2.5
-1

0

1

2

3

4

5
The control signal generated from Hopfield neural network

Fo
rc

e
(N

ew
to

n)

Time (Second)

Figure 4-9. The control signal of the inverted pendulum system for Case 3

 36

In above three cases, we can find that the system output angles θ will be stable in our

desired range. It means that the algorithm discussed in Chapter 3 is useful to control the

nonlinear inverted pendulum system.

4.2 Example 2: The aircraft attitude control system

The aircraft attitude control system is different from the inverted pendulum system. It is a

simplified linear system [17]. The control surfaces of modern aircraft are controlled by

electric actuators with electronics controls. Figure 4-10 illustrates the control block diagram

of one axis of such a position control system.

Figure 4-10. Block diagram of an attitude-control system of an aircraft

The objective of the system is to have the output of the system, ()y tθ , follow the unit step

input ()r tθ . The transfer function is defined as

() ()
() ()

4500
361.2

y

r

s KG s
s s s

θ
θ

= =
+

 (4-3)

Where K is gain parameter of preamplifier. When we have introduced the aircraft attitude

control system, we must set the specifications as follows:

1. Steady state error due to unit ramp input ≤ 0.000443

2. Maximum overshoot ≤ 5 percent

3. Rise time ≤ 0.005 sec

 37

4. Settling time ≤ 0.007 sec

Now, we will design the Hopfield NN controller for this problem so that the above

specifications can be satisfied. The first specification is different from the other specification,

so we discuss it first. It is the specification about steady state error due to unit ramp input. It

must be satisfied by using preamplifier K . The system transfer function in (4-3) has a

term in denominator, so it is a type 1 system. For type 1 system, the steady state error due to

unit step input is zero, but it is a constant for unit ramp input. Thus we must choose a proper

gain of preamplifier

s

K to reach the first specification. Now, we compute the velocity error

constant of transfer function in (4-3): vk

() ()0 0

4500lim lim 12.45847
361.2v s s

Kk sG s s
s s→ →

= = =
+

K (4-4)

As we get the velocity error constant , we can compute the steady state error due to unit

ramp input

vk

()sse ramp :

() 1 1 0.08026
12.45847ss

v

e ramp
k K

= = =
1
K

 (4-5)

According to the first specification, we should let the result of (4-5) be smaller than 0.000443.

Thus we calculate the minimum value of gain of preamplifier K:

10.08026 0.000443 181.17K
K
≤ ⇒ ≥ (4-6)

In order to reach the first specification, we choose the gain of preamplifier K equal to

181.17. Thus the transfer function ()G s becomes to

() ()
815265

361.2
G s

s s
=

+
 (4-7)

Now we hope the output of the system can reach the specifications in actual real time control

case. The overall real control architecture of Hopfield NN controller is shown in Figure 4-3.

The Hopfield NN in this application has two neurons and the first neuron output 1x is the

control signal.

 38

Figure 4-11. Real control architecture of Hopfield NN controller

For training data set, we can generate time response curve as shown in Figure 4-12 so that the

above 2, 3, 4 specifications. That is, maximum overshoot = 0.91 percent, rise time = 0.00284

sec and settling time = 0.00424 sec in Figure 4-12.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

M
ag

ni
tu

de

Training data of aircraft control system

Figure 4-12. The training data of the aircraft control system

After training by Algorithm 3-2 developed in Chapter 3, the trained weighting factors in

 39

Hopfield NN can be used to generate control signal. The final four weighting factors in this

application are:

Weighting factor 11w 12w 21w 22w

Trained value -47.552 -0.000032 -44.98 -0.048

| Resistance | 0.021Ω 31250Ω 0.0222Ω 20.833Ω

Table 4-2. Trained weighting factors of aircraft system

The following Figure 4-13 is the output when the Hopfield NN is applied to the closed-loop

control of the attitude control of aircraft.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

M
ag

ni
tu

de

Actual running of aircraft control system

Figure 4-13. The output of the aircraft control system by Hopfield NN controller

Figure 4-14 shows the response of Figure 4-13 in transient period (0 ~ 0.01 sec). It is obvious

from Figure 4-14 that maximum overshoot is 3.77% ≤ 5 percent, rise time is 0.0028sec ≤

0.005 sec and settling time is 0.0052 sec ≤ 0.007 sec. These data shows that the Hopfield NN

controller indeed can be applied as a controller in this linear control system.

 40

Figure 4-14. The plot of Figure 4-13 in transient period

Figure 4-15 shows the control signal generated from the Hopfield NN controller.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The control signal generated from Hopfield neural network

M
ag

ni
tid

e

Time

Figure 4-15. The control signal the aircraft control system

In this problem, we have shown that the Hopfield NN controller can be used to control the

linear system like the aircraft control system.

 41

CHAPTER 5

Conclusions

The application of Hopfield NN is extended to control systems in this thesis. The problem of

deciding weighting factors for continuous Hopfield NN is solved in this thesis using back

propagation approach. To improve the convergence rate of the back propagation training of

Hopfield NN, a dynamic optimal training algorithm is also proposed to speed up the

convergence speed. A new architecture of using Hopfield NN as a real-time controller is also

proposed in this thesis. The popular nonlinear inverted pendulum system is first illustrated

and controlled by Hopfield NN. An aircraft attitude linear control system is also illustrated

and controlled by Hopfield NN. Excellent results have been obtained. In comparison with

classical approaches, the Hopfield NN is very easy to implement using simple RC circuit. For

higher order systems, it is also suitable for VLSI implementation. The problem of negative

resistance in the trained weighting factors can be easily solved by placing a multiplexer in

front of every resistance to allow for negative resistance. The following Figure 5-1 shows the

inclusion of multiplexer for input signal of Hopfield NN.

Figure 5-1 The inclusion of multiplexer in Hopfield NN

 42

REFERENCES

[1] C. T. Lin and C. S. George Lee, “Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to

Intelligent Systems,” Prentice-Hall , 1999.

[2] J. J. Hopfield, “Neurons with graded response have collective computational properties

like those of two states neurons,” Proceedings of National Academy of sciences, USA,

vol.81, pp3088-3092, 1982.

[3] M. A. Li and X. G. RUAN, “Optimal Control with Continuous Hopfield Neural

Network,” IEEE. Proceedings of International Conference on Robotics, Intelligent

Systems and Signal, pp758-762 , 2003.

[4] J. J. Hopfield and D.W. Tank, “Neural Computation of Decisions in Optimization

Problems,” Biol., Cyber., Vol.52, pp1-25, 1985.

[5] L. Wang, Y. S. Xiao, G. Zhou, and Q. Wu, “Further Discussion of Hopfield Neural

Network based DC Drive System Identification and Control,” IEEE. Proceedings of the

4'" World Congress on Intelligent Control and Automation, pp1990-1993, 2002.

[6] C. C. Chen, “Nonlinear System Identification Using Gaussian-Hopfield Neural

Networks,” MS Thesis, Department of Electronic Engineering, FJU, Taipei, Taiwan,

2004.

[7] J. S. Lin, K. S. Chen, and C. W. Mao, “A Fuzzy Hopfield Neural Network for Medical

Image Segmentation,” IEEE. Transactions On Nuclear Science, VOL. 43, NO. 4,

AUGUST 1996.

[8] G. Pajares, “A Hopfield Neural Network for Image Change Detection,” IEEE

Transactions On Nuclear Science, VOL. 17, NO. 5, SEPTEMBER 2006.

[9] R. P. Lippmann, “An introduction to computing with neural networks,” IEEE ASSP

Magazine, 1987.

 43

[10] D. E. Rumelhart et al., Learning representations by back propagating error,” Nature, Vol.

323, pp. 533-536, 1986

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by

error propagation,” Parallel Distributed Processing, Exploration in the Microstructure of

Cognition, Vol. 1, D. E. Rumelhart and J. L. McClelland, eds. Cambridge, MA: MIT

Press, 1986.

[12] C. H. Wang, H. L. Liu, and C. T. Lin, “Dynamic Optimal Learning Rates of a Certain

Class of Fuzzy Neural Networks and its Applications with Genetic Algorithm,” IEEE

Trans. Syst., Man, Cybern. Part B, Vol. 31, pp. 467-475, June 2001.

[13] Y. Y. Chi, “Dynamic Optimal Training of A Three Layer Neural Network with Sigmoid

Function,” MS Thesis, Department of Electrical and Control Engineering, NCTU,

Hsin-Chu, Taiwan, 2004.

[14] S. Haykin, “Neural Networks: A Comprehensive Foundation,” Prentice-Hall, second

edition, 1999.

[15] M. T. Hagan, H. B. Demuth, and M. Beale, “Neural Network Design,” PWS Publishing

Company, 1996.

[16] S. Y. Cavalcanti Catunda and J. H. Feitosa Cavaltanti, “Adaptive Hopfield Neural

Controller,” Industrial Electronics, 1997. Proceedings of the IEEE International

Symposium on 7-11, vol.3, pp.1206-1210, July 1997.

[17] B. C. Kuo, “Automatic Control Systems,” John Wiley and Sons, Inc., seventh edition,

1995.

 44

