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摘要 

 

本篇論文是針對三層類神經網路提出一個改良式動態最佳訓練法則，其中類神經

網路的隱藏層經過一個 S型激發函數，輸出層經過一個線性的激發函數。這種三

層的網路可以被運用於處理分類的問題，像是蝴蝶花的品種分類。我們將對這種

三層神經網路的動態最佳訓練方法提出一個完整的証明，用來說明這種動態最佳

訓練方法保證神經網路能在最短的迭代次數下達到收斂的輸出結果。這種改良式

動態最佳訓練方法，是在每一次的迭代過程中不斷的尋找，來取得下一次迭代過

程所需要的最佳學習速率以及穩定學習速率的上限值，以保證最佳的收斂的訓練

結果。經由調整初始加權值矩陣，改變激發函數，改良式動態最佳學習法則比原

先的動態最佳學習法則更加省時以及更加穩定。我們可以由 XOR 和蝴蝶花的測試

例子得到良好的結論。 
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ABSTRACT 
 

This thesis proposes a revised dynamic optimal training algorithm for a three layer 

neural network with sigmoid activation function in the hidden layer and linear 

activation function in the output layer. This three layer neural network can be used for 

classification problems, such as the classification of Iris data. Rigorous proof has been 

presented for the revised dynamical optimal training process for this three layer neural 

network, which guarantees the convergence of the training in a minimum number of 

epochs. This revised dynamic optimal training finds optimal learning rate with its 

upper-bound for next iteration to guarantee optimal convergence of training result. 

With modification of initial weighting factors and activation functions, revised 

dynamic optimal training algorithm is more stable and faster than dynamic optimal 

training algorithm. Excellent improvements of computing time and robustness have 

been obtained for XOR and Iris data set. 
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CHAPTER 1 

Introduction 

Artificial neural network (ANN) is the science of investigating and analyzing the 

algorithms of the human brain, and using similar algorithm to build up a powerful 

computational system to do the tasks like pattern recognition [1], [2], identification 

[3], [4] and control of dynamical systems [5], [6], system modeling [7], [8] and 

nonlinear prediction of time series [9]. The first model of artificial neural network was 

proposed for simulating human brain by F. Rosenblatt in 1958, 1962 [10], [11]. So the 

most attractive character of artificial neural network is that it can be taught to achieve 

the complex tasks we had experienced before by using some learning algorithms and 

training examples. Among most popular training algorithms of artificial neural 

network, Error Back-Propagation Algorithm [12], [13] is widely used for 

classification problems. The well-known error back-propagation algorithm or simply 

the back-propagation algorithm (BPA), for training multi-layer perceptrons was 

proposed by Rumelhart et al. in 1986 [14]. Although the popular back-propagation 

algorithm is easier to understand and to implement for most applications, it has the 

problems of converging to local minimum and a slow convergence rate. It is well 

known that performance of BPA is significantly affected by several parameters, i.e., 

learning rate, initial weighting factors and activation functions. In this thesis, the 

effect of each adjustable parameter will be analyzed, in order to find a new training 

algorithm with better performance compared with BPA. 

 

There are many research works on the learning of multilayer NN with saturated 

nonlinear activation functions, e.g., sigmoid function. Some researches work on the 

learning process of multilayer NN with linear activation functions [15]. However, the 
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authors in [16] state that if activation functions of each layer of multilayer NN are all 

sigmoid, the back-propagated error signal may be seriously discounted by the 

saturation region of sigmoid function. Hence, convergence rate of learning will slow 

down. Although, multilayer linear neural network does not have the problem of 

saturation, its learning capability is not as good as multilayer sigmoid neural network. 

To retain the advantages of both kinds of activation function, and to easy the bad 

effect of they, the architecture with combination of linear and nonlinear activation 

functions will be proposed in this investigation. We will also propose an adequate 

analysis and excellent experimental results to support that the learning of NN will 

have better performance with an unlimited linear activation in output layer and a 

sigmoid function in hidden layer. 

It is well known that initial weighting factors have a significant impact on the 

performance of multilayer NN. In almost all applications of back-propagation, the 

initial weighting factors are selected randomly from a problem-dependent range. In 

the investigation of Hosein et al. in 1989 [17], high initial weighting factors can 

accelerate convergence rate of learning, but may suffer the problem of local minimum. 

Low initial weighting factors can be used over a wide range of applications for 

reliable learning, but convergence rate may slow down. In this thesis, we will propose 

a clear and definite way to find proper initial weighting factors which can reduce the 

probability of falling into local minimum on the error surface during the back 

propagation process. 

 

Learning rate is always the most important adjustable parameter in BPA and other 

algorithms which are generalized from BPA. Learning rate controls the convergence 

of the algorithm to an optimal local solution, and it also dominates the convergence 

rate. Hence, the choice of learning rate is a critical decision for convergence of BPA. 
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For smaller learning rate, we may have a convergent result. But the speed of the 

output convergence is very slow and need more number of epochs to train the network. 

For larger learning rate, the speed of training can be accelerated, but it will cause the 

training result to fluctuate and even leads to divergent result. However, Rumelhart et 

al. did not show how to get a good value for the learning rate in [14]. Since, several 

researches have used empirical rule, heuristic methods, and adaptive algorithm to set a 

good value for leaning rate. The dynamical optimal learning rate was proposed in [18] 

for a simple two layer neural network (without hidden layers) without any activation 

functions in the output layer. To break the limited learning capability for the two-layer 

NN, authors in [19] presented the dynamical optimal learning rate for the three-layer 

NN with sigmoid activation functions in the hidden and output layers. The basic 

theme in [18] and [19] is to find a stable and optimal learning for the next iteration in 

BPA. Cerqueira et al. [20] developed a local convergence analysis made through 

Lyapunov’s second method for the BPA and supplied an upper bound for the learning 

rate. Cerqueira et al. also present an adaptive algorithm with upper bound of learning 

rate in [21]. In this thesis we combine the basic theme in [18] and [19] with upper 

bound of learning rate presented in [20] and [21] to present a revised dynamic optimal 

learning rate with dynamic upper bound in this thesis. 

 

The goal of this thesis is to propose a revised dynamic optimal training algorithm 

based on modifications made for three key parameters, i.e., learning rate, initial 

weighting factor and activation function. Rigorous proof will be proposed and the 

popular XOR [22] and Iris data [23], [24] classification benchmarks will be fully 

illustrated. Excellent results have been obtained by comparing our optimal training 

results with previous results using fixed small learning rates. 
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CHAPTER 2 

Neural Network and Back-Propagation Algorithm 

 

In this chapter, the multi-layer feed-forward perceptron (MLP) structure of artificial 

neural networks (ANN) and the training algorithm will be introduced. First the model of 

a neuron will be introduced. Then, the single layer perceptron will be explained and it 

will lead to the multi-layer perceptrons in later sections. The back-propagation 

algorithm for multi-layer feed forward perceptrons will be explained in Section 2.4. 

Finally, the dynamic optimal training algorithm will be introduced in Section 2.5. 

 

2.1  Models of A Neuron 

A neuron is an information-processing unit that is fundamental to the operation of a 

neural network. It is the basic unit in a neural network. It forms the basis for designing 

artificial neural network. The block diagram of the model of a neuron is shown in 

Figure 2-1. The neural model can be divided into three basic elements. 

 

Figure 2-1. Model of A Neuron 
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1. A set of synaptic links, each of which is characterized by a weight factor. Symbol 

xj denotes the input signal at the input of synapse j. The input signal xj connected to 

neuron k is multiplied by the synaptic weight wkj. Symbol wkj denotes the weight 

factor from jth neuron to kth neuron. 

2. An adder for summing the input signals which are weighted by the respective 

synapses of the neuron. These operations constitute a linear combiner. 

3. An activation function for limiting the amplitude of the output of a neuron. The 

activation function squashes or limits the amplitude range of the output signal to 

some finite value. It can also set a saturation region for the output signal. 

 

The neuron model of Figure 2-1 also includes an externally applied bias, denoted by bk. 

The bias bk has the effect of increasing or decreasing the net input of the activation 

function, depending on whether it is positive or negative, respectively. In mathematical 

terms, we can describe the model of a neuron k by using the following pair of equations: 

1

m

k k j j
j

v w x
=

= ∑            (2.1) 

and 

( )k k ky v bφ= +           (2.2) 

 

where x1, x2, …., xm are the input signals; wk1, wk2, …., wkm are the synaptic weights of 

neuron k; Vk is the linear combiner output; bk is the bias; ( )φ  is the activation 

function; and yk is the output signal of the neuron. The bias bk is an external parameter 

of artificial neuron k. It can be expressed in another form. In Figure 2-1, we add a new 

synapse, it input is x0 = 1 and its weight is wk0 = bk. We may therefore redefine a new 

model of neuron k as in Figure 2-2. 
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Figure 2-2. Another Model of A Neuron 

Activation function ( )φ  defines the output of a neuron k in terms of the induced 

local field Vk . There are three basic types of activation functions. 

 

1. Threshold Function. (Figure 2-3(a)) 

1   0
( )

0   0
if v

v
if v

φ
≥⎧

= ⎨ <⎩
      (2.3) 

In this type, the output of a neuron has the value 1 if the induced local field of the 

neuron is nonnegative and 0 otherwise. The output of neuron k applies into such a 

threshold function can be expressed as 

1   0
0   0

k
k

k

if v
y

if v
≥⎧

= ⎨ <⎩
      (2.4) 

2. Piecewise-Linear Function. (Figure 2-3(b)) 

11                 2
1 1( ) 0.5        2 2

10                2

v

v v v

v

φ

⎧ ≥ +
⎪
⎪= + + > > −⎨
⎪

≤ −⎪⎩

      (2.5) 

This form of an activation function can be viewed as an approximation to a 

nonlinear amplifier. A linear function can be viewed as the special form of 
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piecewise-linear function when piecewise-linear function maintains in the linear 

region of operation without running into saturation. 

 

1. Sigmoid Function. (Figure 2-3(c)) 

Sigmoid function is the most common form of activation function used in 

construction of artificial neural network. The graph of sigmoid function is s-shaped. 

It is defined as a strictly increasing function and it exhibits a graceful balance 

between linear and nonlinear behavior. A common form of sigmoid function is the 

logistics function [25] which is defined by 

1( )
1 exp( )

v
av

φ =
+ −

     (2.6) 

where a is the slope parameter of the sigmoid function. By varying the slope 

parameter a, we have different types of sigmoid function. It is noted that the slope 

at original point equals a/4. A sigmoid function gives a continuous range of values 

from 0 to 1. Sigmoid function is differentiable over the all range of values, whereas 

threshold function and piecewise-linear function are not. It is an important fact of 

neural network theory discussed in the later chapter. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

v  

(a) 
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Figure 2-3. (a) Threshold function (b) Piecewise-linear function  

(c) Sigmoid function for varying slope parameter a 

 

2.2  Single Layer Perceptron 

The first model of the feed-forward network, perceptron, was proposed by F. Rosenblatt 

in 1958 [10]. He hoped to find a suitable model to simulate the animal’s brain and the 

visual system so that he proposed the “perceptron” model, which is a supervised 

learning model. The supervised learning is also referred to as the learning with a teacher, 

and the teacher here means the input-output data sets for training. It also means that the 
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perceptron can be trained by the given input-output data. The perceptron is the simplest 

form of a neural network used for classification of patterns which are said to be linear 

separable. Basically, the structure of the perceptron consists of a neuron with adjustable 

synaptic weights, bias, and desired output. The structure of the perceptron is depicted in 

Figure 2-4. The limiter is using a threshold function; its graph is shown in Figure 2-3(a). 

 

Figure 2-4. Single layer perceptron 

 

In Figure 2-4, the input data set of the perceptron is denoted by {x1, x2,…, xm} and the 

corresponding synaptic weights of the perceptron are denoted by {w1, w2,…, wm}. The 

external bias is denoted by b. The first part of the percpetron computes the linear 

combination of the products of input data and synaptic weight with an externally 

applied bias. So the result of the first part of the perceptron, v, can be expressed as 

1

m

i i
i

v b w x
=

= +∑
                              (2.7) 

Then in the second part, the resulted sum v is applied to a hard limiter. Therefore, the 

output of the perceptron equals +1 or 0. The output of perceptron equals to +1 if the 

resulted sum v is positive or zero; and the output of perceptron equals to 0 if v is 

negative. This can be simply expressed by (2.8). 
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m

i=1
m

i=1

1  if     + 0

0  if     + 0 

i i

i i

b x w
y

b x w

⎧+ ≥⎪⎪= ⎨
⎪ <
⎪⎩

∑

∑

，

，
                        (2.8) 

The goal of the perceptron is to classify the input data represents by the set {x1, x2,…, xm} 

into one of two classes, C1 and C2. If the output of the perceptron equals to +1, the input 

data represented by the set {x1, x2,…,  xm}will be assigned to class C1. Otherwise, the 

input data will be assigned to class C2. The single layer perceptron with only a single 

neuron is limited to performing pattern classification with only two classes. By 

expending the output layer of the perceptron to include more than one neuron, we can 

perform classification with more than two classes. However, these classes must be 

linearly separable for the perceptron to work properly. If we need to deal with classes 

which are not linearly separable, we need multi-layer feed-forward perceptron to handle 

such classes. 

 

2.3  Multi-layer Feed-forward Perceptron 

In this section we will introduce the multi-layer feed-forward network, an important 

class of neural network. The difference between single layer perceptron and multi-layer 

feed-forward perceptron is the “hidden layer”. The multi-layer network consists of a set 

of input nodes (input layer), one or more hidden layers, and a set of output nodes that 

constitute the output layer. The input signals will propagate through the network in the 

forward direction. A multi-layer feed-forward fully-connected network is shown in 

Figure 2-5 with only one hidden layer. 
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Figure 2-5. A three layer feed-forward network 

A multi-layer perceptron has three major characteristics: 

1. The model of each neuron in the network includes a nonlinear activation function. 

Note that the activation function used in the multilayer perceptron is smooth, 

means the activation function is differentiable everywhere. It is different from the 

threshold function (Figure 2-3(a)) used in the model of single-layer perceptron. A 

commonly used form of nonlinear activation function is a sigmoid function.  

1
1 exp( )

y
ax

=
+ −  

where x is the induced local field, the weighted sum of all synaptic inputs plus the 

bias. y is the output of the neuron. And a is the slope parameter of the sigmoid 

function. Usually, we set the value of a to be 1.  

2. The neural network contains one or more layers of hidden neurons between input 

layer and output layer. The hidden neurons enable the multi-layer networks to deal 

with more complex problems which can not be solved by single layer perceptron. 

The number of hidden layers for different problems is also an open question. From 
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previous researches, one hidden layer is enough to handle many problems properly. 

Two or more hidden layers can do more complex tasks, but take a huge 

computation time. 

3. The network exhibits a high degree of connectivity. Any change in the connectivity 

of the network requires a change in the population of synaptic weights. This 

character makes network more like the human brain. 

 

2.4  The Back-Propagation Algorithm (BPA) 

The most serious problem of the single-layer perceptron is that we don’t have any 

proper learning algorithm to adjust the synaptic weights of the perceptron. But the 

multi-layer feed-forward perceptron doesn’t have this problem. The synaptic weights of 

the multi-layer perceptrons can be trained by using the highly popular algorithm known 

as the error back-propagation algorithm (EBP algorithm) [14]. We can view the error 

back-propagation algorithm as the general form of the least-mean square algorithm 

(LMS) [26]. The error back-propagation algorithm (or the back-propagation algorithm) 

consists of two parts, one is the forward pass and the other is the backward pass. In the 

forward pass, the effect of the input data propagates through the network layer by layer. 

During this process, the synaptic weights of the networks are all fixed. On the other 

hand, the synaptic weights of the multi-layer perceptron are all adjusted in accordance 

with the error-correction rule during the backward pass. Before using error-correction 

rule, we have to define the error signal of the learning process. Because the goal of the 

learning algorithm is to find one set of weights which makes the actual outputs of the 

network equal to the desired outputs, so we can define the error signal as the difference 

between the actual output and the desired output. Specifically, the desired response is 

subtracted from the actual response of the network to produce the error signal. In the 

backward pass, the error signal propagates backward through the network from output 
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layer. During the backward pass, the synaptic weights of the multi-layer perceptron are 

adjusted to make the actual outputs of the network move closer to the desired outputs. 

This is why we call this algorithm as “error back-propagation algorithm”. 

 

Back-propagation algorithm: 

First, we define the error signal at the output of the neuron j at iteration t 

( ) ( ) ( )j j je t y t d t= −       (2.9) 

where dj is the desired output of output node j and yj is the actual output of output node j. 

We define the square error of output node j.  

( )21=
2j je tζ          (2.10) 

By the same way, we can define the total square error J of the network as: 

21
2j j

j j

J eζ= =∑ ∑                (2.11) 

The goal of the back-propagation algorithm is to find one set of weights so that the actual 

outputs can be as close as possible to the desired outputs. In other words, the purpose of 

the back-propagation algorithm is to reduce the total square error J, as described in (2.11). 

In the method of steepest descent, the successive adjustments applied to the weight matrix 

W are in the direction opposite to the gradient matrix /J W∂ ∂ . The adjustment of weight 

matrix W can be expressed as: 

( 1) ( ) ( ) ( )t t t t
t

JW W W W
W

η+

∂
= −∆ = −

∂
 

( )
t

JW t
W

η ∂
∆ = −

∂
       (2.12) 

where η is the learning rate parameter of the back-propagation algorithm. It decides the 

step-size of correction of the method of steepest descent. Note that the learning rate is a 

positive constant. Fig. 2-6 shows the signal-flow graph of multi-layer perceptron with 

the ith neuron in the (k-1)th layer and jth neuron in the kth layer. The activation functions 
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in each layer are assumed to be the same sigmoid function in Fig. 2-6. By using the 

chain rule, the element of matrix J W∂ ∂ , i.e., ( , )j i
kJ W∂ ∂ , can be represented as: 

 
( ,:) ( ,:)

( , ) ( ,:) ( ,:) ( , )

j j
k k

j i j j j i
k k k k

V SJ J
W V S W

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
      (2.13) 

 

Figure 2-6 The signal-flow graph of multi-layer perceptron 

 

where ( , )j i
kW  is the weight value between the ith neuron in the (k-1)th layer and jth 

neuron in the kth layer, as shown in Figure 2-6. ( )kϕ  denotes the activation function 

used in the kth layer. ( ,:)j
kV  denotes the activation function output of jth neuron in the kth 

layer. If kth layer is output layer, ( ,:)j
kV  is equal to yj. ( ,:)j

kS  denotes the linear 

combination output of jth neuron in the kth layer. It can be shown as: 

( )( ,:) ( , ) ( ,:)j j i i
k k k

i
S W X=∑       (2.14) 
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where Xk
i is the input of neuron in the kth layer. The superscript i means this input comes 

from ith neuron in the (k-1)th layer. Note that Xk
i is also the activation function output of 

ith neuron in the (k-1)th layer. So it has another form as: 

( ,:) ( ,:)
1

i i
k kX V −=        (2.15) 

Sk
(j,:)can also be viewed as the input of activation function of jth neuron in the kth layer. 

We use sigmoid function as activation function, so the relation between Vk
(j,:) and Sk

(j,:) 

can be expressed as: 

( )( ,:) ( ,:)
( ,:)

1
1 exp( )

j j
k k k j

k

V S
S

ϕ= =
+ −

     (2.16) 

The following computation can be discussed in two different situations: 

 

1. If kth layer is an output layer. 

In this section, we change symbol k to symbol y for representing the output-layer. 

( , ) ( , )
( 1) ( ) ( , )

( )

j i j i
y t y t j i

y t

JW W
W

η+
∂

= −
∂

       (2.17) 

We can substitute (2.13) into (2.17) to have 

( ,:) ( ,:)
( , ) ( , )
( 1) ( ) ( ,:) ( ,:) ( , )

j j
y yj i j i

y t y t j j j i
y y Y

V SJW W
V S W

η+

∂ ∂∂
= −

∂ ∂ ∂
     (2.18) 

where  

( ) ( )2( ,:) ( ,:) ( ,:) ( ,:)
( ,:) ( ,:)

1
2

j j j j
y yj j

jy y

J V D V D
V V

⎛ ⎞∂ ∂
= − = −⎜ ⎟∂ ∂ ⎝ ⎠

∑   (2.19) 

( )
( )

( ,:) ( ,:)
( ,:) ( ,:)

2( ,:) ( ,:) ( ,:) ( ,:)

exp( )1 1
1 exp( ) 1 exp( )

j j
y y j j

y yj j j j
y y y y

V S
V V

S S S S

⎛ ⎞∂ −∂
= = = −⎜ ⎟⎜ ⎟∂ ∂ + − + −⎝ ⎠

  (2.20) 

( ,:)
( , ) ( ,:) ( ,:) ( ,:)

1( , ) ( , )

j
y j i i i i

y y y yj i j i
iy y

S
W X X V

W W −

∂ ∂ ⎛ ⎞= = =⎜ ⎟∂ ∂ ⎝ ⎠
∑              (2.21) 

Substitute (2.19), (2.20), and (2.21) into (2.18), (2.18) can be rewritten as: 
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( , ) ( , ) ( ,:) ( ,:) ( ,:) ( ,:) ( ,:)
( 1) ( ) 1( ) (1 )j i j i j j j j i

y t y t y y y yW W V D V V Vη+ −= − − −     (2.22) 

 

2. If kth layer is a hidden layer 

In this section, we change symbol k to symbol h for representing hidden-layer.  

( , ) ( , )
( 1) ( ) ( , )

( )

j i j i
h t h t j i

h t

JW W
W

η+

∂
= −

∂
       (2.23) 

 

We can substitute (2.13) into (2.23) to have 
( ,:) ( ,:)

( , ) ( , )
( 1) ( ) ( ,:) ( ,:) ( , )

j j
j i j i h h

h t h t j j j i
h h h

V SJW W
V S W

η+

∂ ∂∂
= −

∂ ∂ ∂
      (2.24) 

where  
( ,:)

1
( ,:) ( ,:) ( ,:)

1

l
h

j l j
lh h h

SJ J
V S V

+

+

∂∂ ∂
=

∂ ∂ ∂∑       (2.25) 

and 

( ,:)
( , ) ( ,:) ( , ) ( ,:) ( , )1

1 1 1 1( ,:) ( ,:) ( ,:)

l
l j j l j j l jh

h h h h hj j j
j jh h h

S W X W V W
V V V

+
+ + + +

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑   (2.26) 

where Wh+1
(l,j) is the synaptic weight between the lth neuron in the (h+1)th layer and the jth 

neuron in the kth layer. For simplicity, we assume the item ( ),:
1/ l

hJ S +∂ ∂  in (2.25) to have the 

following form: 

1( ,:)
1

l
hl

h

J
S

δ +
+

∂
=

∂
                        (2.27) 

Substitute (2.26) and (2.27) into (2.25), we have 

   ( )
( )( ),

1 1,:
l jl

h hj
lk

J W
V

δ + +
∂

=
∂

∑                      (2.28) 

Then, ( ,:) ( ,:)j j
h hV S∂ ∂  and ( ,:) ( , )j j i

h hS W∂ ∂  can be represented as   

( )
( )

( ,:) ( ,:)
( ,:) ( ,:)

2( ,:) ( ,:) ( ,:) ( ,:)

exp( )1 1
1 exp( ) 1 exp( )

j j
j jh h

h hj j j j
h h h h

V S V V
S S S S

⎛ ⎞∂ −∂
= = = −⎜ ⎟∂ ∂ + − + −⎝ ⎠

 (2.29) 

and 
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( )
( ,:)

,:( , ) ( ,:) ( ,:)
1( , ) ( , )

j
ij i i ih

h h h hj i j i
ih h

S W X X V
W W −

∂ ∂ ⎛ ⎞= = =⎜ ⎟∂ ∂ ⎝ ⎠
∑    (2.30) 

 

So we can substitute (2.28), (2.29), and (2.30) into (2.24), then rewrite (2.24) as  

( )( , ) ( , ) ( , ) ( ,:) ( ,:) ( ,:)
( 1) ( ) 1 1 11j i j i l l j j j i

h t h t h h h h h
l

W W W V V Vη δ+ + + −
⎛ ⎞= − −⎜ ⎟
⎝ ⎠
∑     (2.31) 

 

From (2.17) to (2.31), we have the following observations: 

1. If the synaptic weights are between the hidden layer and output layer, then 

( ,:) ( ,:) ( ,:) ( ,:) ( ,:)
1( , ) ( ) (1 )j j j j i

y y y yj i
y

J V D V V V
W −
∂

= − −
∂

               (2.32) 

        ( ), ( ,:) ( ,:) ( ,:) ( ,:) ( ,:)
1( ) (1 )j i j j j j i

y y y y yW V D V V Vη −∆ = − −               (2.33) 

2. If the synaptic weights are between the hidden layers or between the input layer and 

the hidden layer, then  

( ) ( )( , ) ( ,:) ( ,:) ( ,:)
1 1 1, 1l l j j j i

h h h h hj i
lh

J W V V V
W

δ + + −

∂ ⎛ ⎞= −⎜ ⎟∂ ⎝ ⎠
∑            (2.34) 

         ( )( , ) ( , ) ( ,:) ( ,:) ( ,:)
1 1 11j i l l j j j i

h h h h h h
l

W W V V Vη δ + + −
⎛ ⎞∆ = −⎜ ⎟
⎝ ⎠
∑           (2.35) 

 

Equation (2.33) and (2.35) are the most important formulas of the back-propagation 

algorithm. The synaptic weights can be adjusted by substituting (2.33) and (2.35) into 

the following (2.36): 

( , ) ( , ) ( , )
( 1) ( ) ( )

j i j i j i
k t k t k tW W W+ = − ∆                 (2.36) 
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The learning process of back-propagation learning algorithm can be expressed by the 

following steps: 

Back-Propagation learning algorithm: 

Step 1: Decide the structure of the network for the problem.  

Step 2: Choosing a suitable value between 0 and 1 for the learning rate η. 

Step 3: Picking the initial synaptic weights from a uniform distribution whose value is 

usually small, like between -1 and 1. 

Step 4: Calculate the output signal of the network by using (2.16). 

Step 5: Calculate the error energy function J by using (2.11). 

Step 6: Using (2.36) to update the synaptic weights. 

Step 7: Back to Step 4 and repeat Step 4 to Step 6 until the error energy function J is 

small enough. 

 

2.5  Dynamic optimal training algorithm of a Three-layer Neural Network 

Although back-propagation algorithm (BPA) is well known for dealing with more 

complex problems, which can not be solved by the single-layer perceptron, it still has 

some problems. An important issue is the value of learning rate. The learning rate 

decides the step-size of learning process. Although smaller learning rate can have a better 

chance to have convergent results, the speed of convergence is very slow and need more 

number of epochs. For larger learning rate, it can speed up the learning process, but it will 

create more unpredictable results. So how to find a suitable learning rate is also an 

important problem of the training of neural network. For solving this problem, we need 

to find a dynamic optimal learning rate of every iteration [19]. In most cases, a 

three-layer structure of neural network is enough to solve classification problems, so the 

dynamical optimal training algorithm will be proposed in this Chapter for a three layer 

neural network with sigmoid activation functions in the hidden and output layers. 
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2.5.1  The Architecture of A Three-Layer Network 

Figure 2-7 shows a three-layer neural network adopted in this paper. 

 

Figure 2-7. Three-layer Neural Network 

Where 

[ ]1 2
T M N

MX X X X ×= ∈RL  is the input matrix,  

[ ]1 2
T R N

H H H HRS S S S ×= ∈RL  is the output matrix of hidden-layer neurons, 

[ ]1 2
T R N

H H H HRV V V V ×= ∈RL  is the output matrix of hidden-layer activation 

function, 

1 2
T P N

O O O OPS S S S ×= ∈⎡ ⎤⎣ ⎦ RL  is the output matrix of output-layer neurons, 

1 2
T P N

O O O OPV V V V ×= ∈⎡ ⎤⎣ ⎦ RL  is the output matrix of output-layer activation 

function,  

1 2
T P N

PY Y Y Y ×= ∈⎡ ⎤⎣ ⎦ RL  is the actual output of neural network, 

And N denotes the number of training data. M, R and P denote the number of input 

neurons, hidden-layer neurons and output-layer neurons, respectively. Further we define 

the weighting matrices: 

 

,1Hϕ

,H rϕ

,H Rϕ

,1Oϕ

,O Pϕ

,O pϕ

HVX HS OS OV Y

1X

mX

MX

1Y

pY

PY

YWHW
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(1,1) (1, )

( ,1) ( , )

H H M

H

H R H R M R M

W W

W

W W
×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L L

M O M

M O M

L L

               (2.37) 

(1,1) (1, )

( ,1) ( , )

Y Y R

Y

Y P Y P R P R

W W

W

W W
×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L L

M O M

M O M

L L

                (2.38) 

Where: 

( , )H r mW  denotes weight value between the mth neuron in the input layer and rth neuron in 

the hidden layer.  

( , )Y p rW  denotes weight value between the rth neuron in the hidden layer and pth neuron 

in the output layer. 

 

And ( )H xϕ  is the activation function of the hidden layer. ( )O xϕ  is the activation 

function of the output layer. Usually, we both use the same sigmoid function for them. 

So we have 

1( ) ( )
1H O xx x

e
ϕ ϕ −= =

+
              (2.39) 

 

2.5.2  Updating Process of a Three Layer Neural Network 

Let 1 2
T P N

PD D D D ×= ∈⎡ ⎤⎣ ⎦ RL  represents the desired output matrix and E 

denotes the error matrix and cost function J represents a normalized total square error 

function with η  stands for the learning rate parameter in back-propagation algorithm. 

Based on BAP, the training process includes the following forward and backward 

passes: 
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(1)  Forward pass (computing cost function): 

H H R NS W X ×= ;  ( )H H H R NV Sϕ ×= ; O Y H P NS W V ×= ; ( )O O O P NY V Sϕ ×= =  

P NE Y D ×= − ; 

The normalized total square error function is defined as: 

( ) ( )
2

( , ) ( , )

1 1

1 1 trace
2 2

P N
p n p n

p n

J Y D EE
PN PN= =

′= − =∑∑     (2.40) 

(2) Backward pass (update rule of synaptic weights): 

( 1) ( ) ( ) ( )t t t t
t

JW W W W
W

η+

∂
= −∆ = −

∂
                (2.41) 

( , ) ( , ) ( ,:) ( ,:) ( ,:) ( ,:) ( ,:)
( 1) ( )

1 ( ) (1 )p r p r p p p p r
Y t Y t O O O HW W V D V V V

PN
η+ = − − −         (2.42) 

( ) ( )( , ) ( , ) ( ,:) ( ,:) ( ,:) ( ,:) ( , ) ( ,:) ( ,:) ( ,:)
( 1) ( )

1

1 (1 ) 1
P

r m r m p p p p p r r r m
H t H t O O O Y H H

p

W W V D V V W V V X
PN

η+
=

⎛ ⎞
= − − − −⎜ ⎟

⎝ ⎠
∑ (2.43) 

 

2.5.3  Dynamical Optimal Training via Lyapunov’s Method 

We define the Lyapunov function as: 

V = J 

The item J is normalized total square error, defined in (2.40). Now if we consider 

learning rate η as a variable, then J(η) denotes a positive function of η. We use WY(t+1) 

and WH(t+1) to compute the normalized total square error of iteration t+1: Jt+1. And we 

can define the difference of the Lyapunov function as:  

( , ) ( , 1) ( , )t t tV J J Jη η η+∆ = ∆ = −  

So if we can find a learning rate η to make both ΔJ(η ,t) < 0 and ΔJ(η ,t)  be at its 

minimum then we can get a stable and optimal convergence network. By using (2.40) 

we can get 
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( ) ( )
2 2

( , ) ( , ) ( , ) ( , )
1 1

1 1 1 1

1 1
2 2

P N P N
p n p n p n p n

t t t t
p n p n

J J Y D Y D
PN PN+ +

= = = =

− = − − −∑∑ ∑∑   (2.41) 

( ) ( )2 2( , ) ( , ) ( , ) ( , )
1

1 1

1
2

P N
p n p n p n p n

t t
p n

Y D Y D
PN +

= =

⎡ ⎤= − − −⎢ ⎥⎣ ⎦∑∑      

( )( )G tη=                                             (2.42) 

From (2.42), if the parameter η(t) satisfies Jt+1 - Jt = G(η(t)) <0, then η(t) is the stable 

learning rate of the system at the tth iteration. For stable η(t), if the ηopt(t) will let that Jt+1 

- Jt  be at its minimum, the ηopt(t) is the optimal learning rate at the tth iteration. The 

optimal learning rate ηopt(t) will not only guarantee the stability of the training process, 

but it also has the fastest speed of convergence. 

 

How to find the optimal learning rate ηopt(t) from G(η(t))? Because G(η(t)) is a very 

complicated nonlinear algebraic function, it is hard to have a well designed formula for 

finding the optimal learning rate ηopt(t) from G(η(t)). Hence, we use the MATLAB 

routine “fminbnd” to search the optimal learning rate from (2.41).The calling sequence 

of “fminbnd” is [27]: 

 

FMINBND Scalar bounded nonlinear function minimization. 

X = FMINBND(FUN,x1,x2) starts at X0 and finds a local minimizer X of the function 

FUN in the interval x1 <= X <= x2. FUN accepts scalar input X and returns a scalar 

function value F evaluated at X. 

 

The capability of the Matlab routine “fminbnd” is to find a local minimizer ηopt of the 

function G(η), which has only one independent variable η, in a given interval. So we 

have to define an interval when we use this routine. 
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Algorithm 1: 

Dynamic optimal training algorithm of a Three Layer Neural Network [19] 

Step 0: Give input matrix X and desired output matrix D.  

Step 1: Set initial weight factor WH and WY, which are random values in a small random 

    range. Set maximum acceptable final value of the cost function J0.  

Step 2: Iteration count k=1. 

Step 3: Start forward pass of back-propagation training process. 

Step 4: Compute error function E(k)=Y(k)-D(k) and cost function J(k). If J(k) is smaller 

    than acceptable value J0 , the algorithm goes to Step 8. If no, it goes to Step 5. 

Step 5: Using Matlab routine “fminbnd” with the search interval [0.01, 100] to solve the 

    nonlinear function J(k)∆ =J(k+1)-J(k) and find the optimal learning rate ηopt(t). 

Step 6: Start backward pass of back-propagation training process. Update the synaptic 

    weights matrix to yield WH(k+1) and WY(k+1) by using (2.42) and (2.43)  

    respectively. 

Step 7: Iteration count k=k+1, and algorithm goes back to Step 3. 

Step 8: End the algorithm. 
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CHAPTER 3 

Dynamic Optimal Training Algorithm of A Three-Layer 

Neural Network with Better Performance 

 

The structure of three layer neural network was presented in Chapter 2 with preparation 

for its improved dynamical optimal training to be presented in this Chapter 3. Although 

the dynamical optimal training of a three layer neural network was presented in [19], its 

back propagation algorithm with dynamical optimal learning rates can not guarantee 

global convergence. Although we can decrease the learning rate to have a better chance 

of global convergence, its convergence speed will be really slow. Also, the sigmoid 

function adopted for the activation functions for each layer will also slow down the 

training process. Therefore the following approaches will be proposed to further 

improve the performance of the dynamical optimal training of a three layer neural 

network. They are: 

1. Simplification of activation function: Replace the sigmoid activation function 

in the second (output) layer with a linear activation function. (Section 3.2) 

2. Selection of proper initial weighting factors: By confining the initial 

weighting matrices in a reasonable range, the training process can have a better 

chance to reach global convergence. (Section 3.3) 

3. Determine the upper-bound of learning rate in each iteration: Therefore the 

search of optimal learning rate in each iteration can be simplified to increase the 

speed of convergence. (Section 3.4) 
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3.1  Problems in the Training of Three Layer Neural Network 

There are two layers of sigmoid activation functions in Fig. 2-6, i.e., VH and VO for 

hidden and output layers. The purpose of activation function is to confine the output in 

each layer to a proper level. But the computing effort in computing the sigmoid function 

is much more than that in computing a linear function. Further it may be good enough to 

confine the output of hidden layer to a reasonable level. Once the data flow thru the 

output layer, the chance of the output data to lie outside proper level is small. These 

observations lead us to simplify the activation function in the output layer so that the 

speed of training process can be increased. Considering the defects of sigmoid function, 

whose graph is s-shaped, as shown below (Figure 3-1) with 

1
1 exp( )

y
ax

=
+ −

                        (3.1) 

where y is the output signal of the neuron and x is the input signal. And the parameter a is 

the slope parameter of the sigmoid function. We can get different sigmoid functions by 

varying the slope parameter a, but we usually choose the sigmoid function with a =1.  
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Figure 3-1. The sigmoid function 
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When x is far away from 0, we will get a saturated output value which is very close to 

extreme value, i.e., 0 or 1. Now we will discuss the problem which is caused by this 

saturation. First consider (2.42), which is update rule of weighting factors in output 

layer 

( , ) ( , ) ( ,:) ( ,:) ( ,:) ( ,:) ( ,:)
( 1) ( )

1 ( ) (1 )p r p r p p p p r
Y t Y t O O O HW W V D V V V

PN
η+ = − − −  

We define the error signal of the weight between pth output layer neuron and rth hidden 

layer neuron as  

( , ) ( ,:) ( ,:) ( ,:) ( ,:)1 ( ) (1 )p r p p p r
O O O O HV D V V V

PN
δ = − −              (3.2) 

So (2.42) can be rewritten as 

( , ) ( , ) ( , )
( 1) ( )
p r p r p r

Y t Y t OW W ηδ+ = −       (3.3) 

Consider (2.43), which is update rule of weighting factors in hidden layer 

( ) ( )( , ) ( , ) ( ,:) ( ,:) ( ,:) ( ,:) ( , ) ( ,:) ( ,:) ( ,:)
( 1) ( )

1

1 (1 ) 1
P

r m r m p p p p p r r r m
H t H t O O O Y H H

p
W W V D V V W V V X

PN
η+

=

⎛ ⎞
= − − − −⎜ ⎟

⎝ ⎠
∑  

For simplicity, we define a new error signal as 

( )( , ) ( ,:) ( ,:) ( ,:) ( ,:)1 (1 )p r p p p p
H O O OV D V V

PN
δ = − −               (3.4) 

and the error signal of the weight between rth hidden layer neuron and mth input layer 

neuron as 

( )( , ) ( , ) ( , ) ( ,:) ( ,:) ( ,:)

1
1

P
r m p r p r r r m

H H Y H H
p

W V V Xδ δ
=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑     (3.5) 

So, (2.43) can be rewritten as  

( , ) ( , ) ( , )
( 1) ( )
r m r m r m

H t H t HW W ηδ+ = −       (3.6) 

In (3.2) & (3.4) the term VO
(p,n)(1-VO

(p,n)) will propagate back to the hidden and input 

layers to adjust weighting factors. The term VO
(p,n)(1-VO

(p,n)) will be very small if VO
(p,n) 

is close to extreme values, i.e., 0 or 1. It will make error signal δO
(p,r) very small. In this 
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case, the back-propagated error signal δO
(p,r) will not actually reflect the true error 

VO
(p,n)-D = Y-D. This will lead to local minima problem. Note that the term 

VO
(p,n)(1-VO

(p,n)) is originated from the derivative of the sigmoid activation function. So 

it is important not to let the term VO
(p,n)(1-VO

(p,n)) closed to 0 or 1 in the beginning phase 

of training. Therefore the initial weighting factors must be carefully chosen. Further the 

sigmoid function may not be a good choice for the sake of computation effort and the 

above mentioned problem. Thus the search for a better and yet simplified activation 

function with the selection of proper initial weighting factors will be mentioned in 3.2 

and 3.3. 

 

3.2  Simplification of activation function 

We define the linear function (without saturation) as 

( )O x axϕ =  

where a  is an adjustable parameter which means slope of the function. The reason of 

using an unbounded linear function in stead of a saturated one can be found in Appendix 

A. Usually, we set parameter 1a = .With the replacement of the sigmoid activation 

function by a linear activation function, we can redefine the new error signal of the 

weight between pth output layer neuron and rth hidden layer neuron. Consider (2.41), 

which is the update rule of weighting factors for BP algorithm 
( ,:) ( ,:)

( , ) ( , ) ( , )
( 1) ( ) ( )( , ) ( ,:) ( ,:) ( , )

p p
p r p r p r O O

Y t Y t Y tp r p p p r
Y O O Y

V SJ JW W W
W V S W

η η+

∂ ∂∂ ∂
= − = −

∂ ∂ ∂ ∂
      (3.7) 

 

If ( )O x axϕ = , then the term ( ,:) ( ,:)p p
O OV S∂ ∂ will be equal to a.  So ( ,:)p

OJ V∂ ∂ , 

( ,:) ( ,:)p p
O OV S∂ ∂ , and ( ,:) ( ,:)p p

O YS W∂ ∂  have new presentations as 

( ) ( )2( ,:) ( ,:) ( ,:) ( ,:)
( ,:) ( ,:)

1

1 1
2

P
p p p p

O Op p
pO O

J V D V D
V V PN PN=

⎛ ⎞∂ ∂
= − = −⎜ ⎟∂ ∂ ⎝ ⎠

∑   (3.8) 
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( ,:)
( , ) ( ,:) ( ,:)

( , ) ( , )
1

p R
p r r rO

Y H Hp r p r
rY Y

S W V V
W W =

∂ ∂ ⎛ ⎞= =⎜ ⎟∂ ∂ ⎝ ⎠
∑        (3.9) 

( )
( ,:)

( ,:)
( ,:) ( ,:)

p
pO

Op p
O O

V aS a
S S

∂ ∂
= =

∂ ∂
         (3.10) 

From previous three equations, we can rewrite the update rule of weighting factors in 

output layer as 

( , ) ( , ) ( ,:) ( ,:) ( ,:)
( 1) ( ) ( )p r p r p p r

Y t Y t O H
aW W V D V

PN
η+ = − −               (3.11) 

And update rule of weighting factors in hidden layer can be expressed as 

( ) ( )( , ) ( , ) ( ,:) ( ,:) ( , ) ( ,:) ( ,:) ( ,:)
( 1) ( )

1
1

P
r m r m p p p r r r m

H t H t O Y H H
p

aW W V D W V V X
PN

η+
=

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑   (3.12) 

Hence, the error signals ( , )p r
Oδ  and ( , )r m

Hδ  become 

( , ) ( ,:) ( ,:)( )p r p r
O O H

a V D V
PN

δ = −                    (3.13) 

( ) ( )( , ) ( ,:) ( ,:) ( , ) ( ,:) ( ,:) ( ,:)

1
1

P
r m p p p r r r m

H O Y H H
p

a V D W V V X
PN

δ
=

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠
∑       (3.14) 

We can see that the error signal ( , )p r
Oδ  in (3.13) will not be discounted by the term 

VO
(p,n)(1-VO

(p,n)), like that in (2.42) (or (3.3)). This will remove the effect of improper 

initial weighting factors to let the term VO
(p,n)(1-VO

(p,n)) close to 0 or 1 in the beginning 

phase of training. From (3.14), although the term VO
(p,n)(1-VO

(p,n)) is also eliminated 

(from (3.4)), we still have the similar term VH
(r,n)(1-VH

(r,n)) in (3.14). Therefore we 

should do is to confine the selection of initial weighting factors in a proper range so that 

the term VH
(r,n)(1-VH

(r,n)) will not be closed to 1 or 0 in the beginning phase of training. 

The reason why we can not replace the sigmoid activation function in the hidden layer 

with the similar linear activation function can be shown in Appendix B. 

 

3.3  Selection of Initial Weighting Factors 

For simplicity, we define that 
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( )( ,:) ( ,:) ( , )

1

P
p p p r

H O Y
p

a V D W
PN

δ
=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑%     (3.15) 

So (3.14), which is the new error signal in hidden layer, can be rewritten as 

( )( , ) ( ,:) ( ,:) ( ,:)1r m r r m
H H H HV V Xδ δ= −%       (3.16) 

It can be found that the term VH
(r,n)(1-VH

(r,n)) still causes the saturation problem. When 

VH
(r,n) closes to 0 or 1, the term VH

(r,n)(1-VH
(r,n)) will discount back-propagated real error 

signal (3.15). In (3.16), the term VH
(r,n) is the output of sigmoid activation function, and 

it is a function of initial weighting factors. If we can confine VH
(r,n) in the range of, say 

[0.2, 0.8], then the term (1-VH
(r,n)) in (3.16) will also be confined in the range of [0.2, 

0.8]. Therefore the whole term VH
(r,n)(1-VH

(r,n)) in (3.16) will not close to zero if proper 

initial weighting factors are selected. This will prevent the error signal of hidden layer 

in (3.16) be discounted by the whole term VH
(r,n)(1-VH

(r,n)) in the beginning phase of 

training. The VH
(r,n) can be expressed as 

( , ) ( , ) ( ,:)1 1 expr n j i i
H h h

i
V W X

⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑        (3.17) 

where Xh
i is the fixed input data. To decrease the effect of saturation region, we can 

choose proper initial weighting factors so that the term VH
(r,n) will locate in the range of 

[0.2, 0.8] at the beginning of training process. 

 

It is a normal practice to use random number generator to select the initial weighting 

factors. Let 

max

min

( )
( )

w Max W
w Min W

=
=

 

Where W is the weighting matrix. It is also shown in [17] that the training of NN will 

have better convergence if the mean of random initial weighting factors is zero. 

Therefore we let min max0w w< <  and max minw w= − . We use a sigmoid activation 
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function with parameter a = 1 in hidden layer. Then we must select minw  and maxw  to 

satisfy the following inequality: 

min max0.2 ( , ) ( , ) ( , ) 0.8s s sy w y w y wλ λ λ= ≤ ≤ =              (3.18) 

with 

s
1y ( , )

1 exp( )
w

w
λ

λ
=

+ −
                      (3.19) 

We let maxxλ =  in the following Theorem 1, where maxx  is the maximum absolute 

value of the elements of input matrix and min maxw w w≤ ≤ . From (3.18), we can have 

max
max

max
min

max

ln 4
ln 4   

ln 4

w
x

w
xw

x

⎧ =⎪
⎪ ⇒ ≤⎨ −⎪ =
⎪⎩

                    (3.20) 

 

 

 

Theorem 1: 

If w satisfies (3.20), then the output of sigmoid function in (3.19), i.e., max( , )sy w x , will 

be in the range of [0.2, 0.8].  

Proof: 

Know that min maxw w w≤ ≤  

∵ ( ),sy w λ  is a strictly increasing function so if ( ) ( )s sw w y w y wλ λ λ λ≤ ⇒ ≤  

∴ ( ) ( ) ( )min max max max max, , ,s s sy w x y w x y w x≤ ≤  

∵ min
max

ln 4w
x

= −   and  max
max

ln 4w
x

=  
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∴ 

( )

( )

min max

max
max

max max

max
max

1, 0.2ln 41 exp( ( ))

1, 0.8ln 41 exp( )

s

s

y w x
x

x

y w x
x

x

= =
+ − −

= =
+ −

 

∴ ( ) ( ) ( )min max max max max0.2 , , , 0.8s s sy w x y w x y w x= ≤ ≤ =  

( )max0.2 , 0.8sy w x⇒ ≤ ≤  

Q.E.D. 

Theorem 2: 

If max0.2 ( , ) 0.8sy w x≤ ≤ , then 0.2 ( , ) 0.8s iy w x≤ ≤ . Here max( , )sy w x  & ( , )s iy w x  

are defined in (3.19) and w is selected from (3.20). 

Proof: 

(1) For w > 0  

∵ max0 iw x w x≤ ≤  

∴ ( ) ( ) ( )max0.5 ,0 , ,s s i sy w y w x y w x= ≤ ≤  

∴ ( ), 0.5s iy w x ≥  

∵ ( )max, 0.8sy w x ≤  

∴ ( )0.5 , 0.8s iy w x≤ ≤   ⇒   ( )0.2 , 0.8s iy w x< ≤ ……(a) 

(2) For w < 0 

∵ max 0iw x w x≤ ≤  

∴ ( ) ( ) ( )max, , ,0 0.5s s i sy w x y w x y w≤ ≤ =  

∴ ( ), 0.5s iy w x ≤  

∵ ( )max, 0.2sy w x ≥  
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∴ ( )0.2 , 0.5s iy w x≤ ≤   ⇒   ( )0.2 , 0.8s iy w x≤ < ……(b) 

From (a) and (b), we have the final conclusion 

0.2 ( , ) 0.8s iy w x≤ ≤  

Q.E.D. 

Theorem 3: 

If 0.2 ( , ) 0.8s iy w x≤ ≤ , then 0.2 ( , ) 0.8s iy w x≤ ≤ . Here w is selected from (3.20). 

Proof: 

(1) 0ix >  

∵ ( , ) ( , )s i s iy w x y w x=  

∴ 0.2 ( , ) ( , ) 0.8s i s iy w x y w x≤ = ≤   ⇒   0.2 ( , ) 0.8s iy w x≤ ≤  

(2) 0ix <  

∵ ( , ) ( , )s i s iy w x y w x= −  

⇒  ( ) ( )1 1, ,
1 exp( ( )) 1 exp( ( ) )s i s i

i i

y w x y w x
w x w x

− = = = −
+ − − + − −

 

⇒  ( ) ( ), ,s i s iy w x y w x− = %  

∴ ( , ) ( , )s i s iy w x y w x= %  

From Theorem 2, we have ( )0.2 , 0.8s iy w x≤ ≤%  

∴ 0.2 ( , ) 0.8s iy w x≤ ≤  

Q.E.D. 

 

The above Theorem 3 is our final conclusion, which selects proper weighting factors to 

let 10.2 ( , ) 0.8
1 exp( )s i

i

y w x
wx

≤ = ≤
+ −

, so that the error signal (3.16) in hidden layer 

will not be discounted in the beginning of training process. This will also reduce the 
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probability of falling into in local minimum on the error surface during the back 

propagation process. 

 

Example 3-1: Selection of Initial Weighting Factors 

Give the following neural network with three layers, two inputs in the input layer, one 

output neuron in the output layer, and two neurons in the hidden layer. It adopts sigmoid 

function as hidden layer activation function, and the above mentioned linear function as 

output layer activation function. The input signals are bound at (-2, 2). The architecture 

of the neural network is shown in Figure 3-2. Find the initial weighting factors so that 

the initial outputs of the sigmoid functions in the hidden layer will be in the range of 

[0.2, 0.8]. 

 

Figure 3-2. Neural Network for Example 3-1 

Solution: 

Since max 2x = , from (3.19) we can get: 

min
max

ln 4 ln 4 ln 4 0.6931
2 2

w
x
− − −

= = = = −  and max
max

ln 4 ln 4 ln 4 0.6931
2 2

w
x

= = = =  

Hence, the range of initial weight factors is [-0.6931, 0.6931]. For verification, we 

assume four different input pair [x1, x2] and randomly choose four initial weighting 

factors [w11, w12, w21, w22] = [-0.22669, -0.15842, 0.33254, -0.17167] from [-0.6931, 

0.6931], we have the following Table 3-1.  
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Table 3-1 Output of Sigmoid function in hidden layer 

x1 -0.01 0.7 -1.91 0.67 

x2 1.2 2 -1.5 0.34 

h1 0.45318 0.38331 0.66164 0.44874 
h2 0.44786 0.47239 0.40670 0.54102 

 

From Table 3-1, we can find that for every input pair [x1, x2], the initial outputs of 

hidden neurons [h1, h2] are all in the range of [0.2, 0.8]. 

END 

 

To summarize the above proposed issues, the following Figure 3-3 shows the modified 

three-layer NN proposed in this Chapter 3. 

 

Figure 3-3. Revised Three Layer Neural Network 

 

3.4  Determine the upper-bound of learning rate in each iteration 

In the dynamic optimal training algorithm, we use matlab function “fminbnd” to find 

optimal learning rate. The calling sequence of “fminbnd” is [27]: 

 

FMINBND Scalar bounded nonlinear function minimization. 

X = FMINBND(FUN,x1,x2) starts at X0 and finds a local minimizer X of the function 
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FUN in the interval x1 <= X <= x2. FUN accepts scalar input X and returns a scalar 

function value F evaluated at X. 

 

Matlab function “fminbnd” can find a global minima value in a given range. Usually, we 

give a fixed interval to find the optimal learning rate. But it take too mach time to search 

because of fixed interval. From the experimental result, we can see that the optimal 

learning rate may go from 0.001 to 1000. It is a very large interval. Further, it can be 

discovered that most learning rate in each iteration does not exceed 100. So a fixed 

range will waste a lot of time to find an optimal learning rate during the learning 

process. Besides, most of other mathematical methods also need an interval to find a 

global minima value. Indeed, the upper bound of stable learning rate of the three layer 

NN shown in Figure 3-3 can be found in the following Theorem 4. This upper-bound 

will be updated in each iteration and changed according to the maxima value of input 

matrix and output weighting matrix. 

 

Theorem 4: 

The upper-bound of the stable learning rate of the three-layer NN shown in Figure 3-3 

can be shown as follows: 

( ) 2 2 2
max max

32
16u p

Y

P N
a N R P R M W X

η ⋅
=

+ ⋅ ⋅ ⋅ ⋅
 

where a  is the slope of the output layer activation function, WYmax and Xmax are the 

acceptable maximum absolute value for the second (output) layer weighting matrix and 

for input matrix, respectively. 
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Proof: 

Figure 3-3 is a three-layer NN which has a sigmoid activation function in the hidden 

layer and a linear activation function with slope is a  in the output layer. M is the 

number of input neurons, R is the number of hidden-layer neurons, P is the number of 

output-layer neurons, and N is the length of input data vector. k is the time instant. 

Consider the following cost function to be minimized: 

1( ) ( ) ( )
2

J k e k e k
PN

′=                      (3.21) 

where ( ) ( ) ( )e k D k y k= −  is the error vector with D 1P×∈  and y 1P×∈  denote the 

desired output and real output vectors, respectively. W is the weighting matrix. We 

define the update rule of the weighting matrix W in the form: 

 

( ) ( 1) ( ) ( )WW k W k W k J kη∆ = + − = − ⋅∇               (3.22) 

where η  is a positive variable called learning rate of the learning algorithm based on 

the update rule (3.22), with cost function (3.21). ( )W J k∇  is the cost function gradient 

related to the vector of adjustable weights, which can be expressed as 

1 ( )( ) ( )

-1 ( )            ( )
PN

W
e kJ k e k

PN W

y k e k
W

′∂⎡ ⎤∇ = ⎢ ⎥∂⎣ ⎦
′∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦

                   (3.23) 

where ( ) P Sy k W ×∂ ∂ ∈  is the Jacobian of the NN’s output related to the weighting 

vector. The update of W(k) will continue until 0( )J J≤ . Here J0 is the specified 

tolerance for the process to converge. After convergence, we should have 

( ) ( 1) ( ) ( ) 0WW k W k W k J kη∆ = + − = − ⋅∇ ≈  

The difference of error vector e(k) can be approximated by the first form of Taylor’s 

series 
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( )( ) ( )

( 1) ( )

e ke k W k
W

e k e k

∂
∆ ≅ ∆

∂
= + −

                      (3.24) 

Consider the Lyapunov function: 

( ) ( ) ( )k e k e kν ′=  

( ) ( 1) ( )k k kν ν ν∆ = + −  

( ) ( 1) ( 1) ( ) ( )k e k e k e k e kν ′ ′⇒ ∆ = + + −               (3.25) 

( )kν∆  is the difference between two instants of time in Lyapunov function during the 

training process. Applying (3.22) and (3.23) into (3.24), and we can rewrite ∆e(k) as the 

following equation. 

( )

( )( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

W

e ke k W k
W
y k J k
W

y k y k e k
W PN W

y k y k e k
PN W W

η

η

η

∂
∆ ≅ ∆

∂
∂

= − − ∇
∂

′∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠
′∂ ∂⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 

 

We denote ( )y k W∂ ∂  by A, and rewrite ∆e(k) in the form of 

( ) ( ) ( )e k AA e k Qe k
PN PN
η η′∆ = − = −       (3.26) 

where P PQ AA ×′= ∈R  is a symmetrical positive definite matrix. 

From (3.26), we have 

( 1) ( ) ( ) ( 1) ( ) ( )e k e k Qe k e k e k Qe k
PN PN
η η

+ − = − ⇒ + = −  

( 1) ( )P Pe k Q I e k
PN
η ×⎧ ⎫∴ + = − +⎨ ⎬

⎩ ⎭
                   (3.27) 

Substituting (3.27) into (3.25), we can rewrite ( )kν∆  in the form of 
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2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )       ( , )

k Q I e k Q I e k e k e k
PN PN

e k Q I Q I e k e k e k
PN PN

e k Q I e k e k e k Q Q I I
PN

η ην

η η

η

′⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ′∆ = − + − + −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
′⎛ ⎞ ⎛ ⎞′ ′= − + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞′ ′ ′ ′= − + − = =⎜ ⎟
⎝ ⎠

Q

 

2

2
2 2

2

          ( ) ( )

          ( ) 2 ( )

          ( ) 2 ( )

e k Q I I e k
PN

e k I I Q Q I e k
PN PN

e k Q Q e k
PN PN

η

η η

η η

⎡ ⎤⎛ ⎞′= − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞′= − + −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
⎛ ⎞⎛ ⎞′= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

        

     ( ) ( ) 2 ( )k e k Q I Q e k
PN PN
η ην ⎧ ⎫′⇒ ∆ = − −⎨ ⎬

⎩ ⎭
             (3.28) 

 

Let * RW ⊂ R  be the vector of optimal weight that minimizes the cost function in (3.21) 

and 0 *W W⊂  be the initial weighting factor. By Lyapunov’s second method, if 

( ) 0kν∆ <  then the learning of NN will be stable and the learning algorithm will 

converge, i.e., the weighting matrix will converge to *W  from 0W . In (3.28), we have 

already known that 0,η > 0, P > 0 ,  0Q and N> > . So the term: 2 ( )B I PN Qη= −  

must be a positive definite matrix. In other word, all eigenvalues of the matrix B must 

be positive. We let ( )max ( )Q kλ  be the maximum eigenvalue of Q at kth iteration with 

*
max *

max

22 0 0PN
PN
η λ η

λ
− > ⇒ > >  

( ){ }*
max maxwhere max ( )Q kλ λ= . The term Q is a time variant matrix, so it is hard to 

find its maximum eigenvalue for the whole training process. In order to simplify the 

calculation, we use the trace of Q at kth iteration. Trace of Q is the summation of all 
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eigenvalues of Q, so its value is larger than *
maxλ . Define 2  for 2-norm, 2x x x′=  

for vector x, and 2 ( )A trace A A′=  for matrix A. Hence, we have 

2*
max

2 2 2 2 0
( ) ( ) ( )

PN PN PN PN
tr Q tr AA y k W

η
λ

⇒ ≥ = = > >
′ ∂ ∂

 

2
2  0

( )
PN

y k W
η⇒ < <

∂ ∂
        (3.29) 

The term 2( )y k W∂ ∂  in (3.29) can not be easily found. So we can rewrite (3.29) as: 

{ }2

20
max ( )

k

PN
y k W

η< <
∂ ∂

      (3.30) 

The advantage of (3.30) is that we can find a clear and definite presentation for the term 

2max{ ( ) }
k

y k W∂ ∂ . The maximum value of Jacobian of the NN’s output related to the 

matrix of weighting matrix W can be expressed as  

2

2 2

( ) ( ) ( )max max

( ) ( )max

( ) ( ) ( ) ( )max

k k

k
Y H

k
Y Y H H

Y k Y k Y ktrace
W W W

Y k Y k
W W

Y k Y k Y k Y ktr tr
W W W W

⎧ ⎫⎡ ⎤′⎧ ⎫∂ ∂ ∂⎪ ⎪ ⎪ ⎪⎛ ⎞⎛ ⎞⎢ ⎥=⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦⎩ ⎭
⎧ ⎫∂ ∂⎪ ⎪= +⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
⎧ ⎡ ⎤ ⎡ ⎤′ ′⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎪ ⎢ ⎥ ⎢ ⎥= +⎨ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎣ ⎦ ⎣ ⎦⎩

⎫
⎪
⎬
⎪⎭

 (3.31) 

From Figure 3-3, the revised algorithm of the learning process can be expressed as: 

( )

; ( )

; ( )

( ) 1 1 ; ( )

H H R N H H H R N

O Y H P N O O O P N

O

x
H O

S W X V S

S W V V S
Y V

x e x ax

ϕ

ϕ

ϕ ϕ

× ×

× ×

−

⎧ = =
⎪

= =⎪
⎨ =⎪
⎪ = + =⎩

    (3.32) 

where a is the slope of the output layer linear activation function. X is the input matrix 

with dimension M×N. WY is the weighting matrix of output layer with dimension P×R. 
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WH is the weighting matrix of hidden layer with dimension R×M. By chain rule, term 

[ ]( ) ( )Y HY k W Y k W∂ ∂ ∂ ∂  can be expressed as 

( ) ( )( )

( ) ( ) ( ) ( )( )

O O

Y O Y

O O H H

H O H H H

k S kY k
W S W

k S k k S kY k
W S S W

ϕ

ϕ ϕ
ϕ

∂ ∂∂⎧ =⎪ ∂ ∂ ∂⎪
⎨ ∂ ∂ ∂ ∂∂⎪ =
⎪ ∂ ∂ ∂ ∂ ∂⎩

          (3.33) 

 

From (3.32) and (3.33), the update rule of synaptic weighting matrix (W = [WY, WH]) of 

the neural network during the learning process can be defined by 

00                                                                                                                          ( )

( ) ( ) ( ) ( )( ) ( )
( ) O H H

Y
Y H Y H

if J J

W k S k k S kY k Y k
e k a aW

PN W W PN W S
ϕη η

⋅ ≤

′∆ = ∂ ∂ ∂∂ ∂
=

∂ ∂ ∂ ∂

⎡ ⎤
⎢ ⎥
⎣ ⎦

0( )    ( )

(0) 0
H

e k if J J
W

W

′
⋅ >

∂

∆ =

⎧ ⎧
⎪ ⎪
⎪ ⎨ ⎡ ⎤
⎨ ⎪ ⎢ ⎥
⎪ ⎣ ⎦⎩
⎪
⎩

 (3.34) 

We define that WY max and X max are the maximum absolute value for the element of 

output layer weighting matrix and for the element of input matrix, respectively. From 

(3.32) to (3.34), we can find ( ) YY k W∂ ∂ as 

( ){ }( ) ( )max max H Hk k
Y Y

Y k Y ktr tr aV V a
W W

⎧ ⎫⎛ ⎞′⎛ ⎞∂ ∂⎪ ⎪⎜ ⎟ ′=⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 

2 2
(1,1) (1, )

2

2 2
( ,1) ( , )

( ) ( )max max
H H N

k k
Y Y

H R H R N

V V
Y k Y ktr tr a
W W

V V

⎧ ⎫⎛ ⎞⎡ ⎤+⎧ ⎫⎛ ⎞′ ⎪ ⎪⎜ ⎟⎛ ⎞∂ ∂ ⎢ ⎥⎪ ⎪⎜ ⎟⇒ =⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪ ⎪ ⎪⎜ ⎟⎢ ⎥+⎝ ⎠⎩ ⎭ ⎣ ⎦⎝ ⎠⎩ ⎭

K

O

K

 

2 2
max

( ) ( )max Hk
Y Y

Y k Y ktr a RNV
W W

⎧ ⎫⎛ ⎞′⎛ ⎞∂ ∂⎪ ⎪⎜ ⎟⇒ =⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

           (3.35) 

From (3.32) to (3.34), we can find ( ) HY k W∂ ∂ as 

2
2

( ) ( )( ) ( )max max

( )max

H H
Y Yk k

H H H H

H
Y Yk

H

k kY k Y ktr tr aW XX W a
W W S S

ktr a W W XX
S

ϕ ϕ

ϕ

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞′ ′⎛ ⎞ ⎡ ⎤∂ ∂∂ ∂⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟′′=⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
⎧ ⎫⎛ ⎞∂⎪ ⎪′ ′⎜ ⎟= ⎨ ⎬⎜ ⎟∂⎪ ⎪⎝ ⎠⎩ ⎭
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2
2 2 2

max max
max

( )( ) ( ) max H
Yk

H H H

kY k Y ktr a PRW MNX
W W S

ϕ
⎧ ⎫⎛ ⎞′⎛ ⎞ ∂∂ ∂⎪ ⎪⎜ ⎟∴ =⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

     (3.36) 

 

In (3.35), HV  is the output of sigmoid function, so we can get 2
max max1 1H HV V= → = . 

In (3.36), | ( ) |H Hk Sϕ∂ ∂  is the slope of sigmoid function with slope parameter a =1, 

so its maximum value is a/4 =0.25. 2
max max| ( ) | 1 4 | ( ) | 1 16H H H Hk S k Sϕ ϕ∂ ∂ = → ∂ ∂ =  

Substituting (3.35) and (3.36) into (3.31), we can obtain 

22
2 2 2 2 2

max max max
max

2 2 2
2 max max

( )( )max

16

H
H Yk

H

Y

kY k a RNV a PRMNW X
W S

a PRMNW Xa RN

ϕ⎧ ⎫ ∂∂⎪ ⎪ = +⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭

= +

  (3.37) 

Then we can say that the system is stable and will converge to *W  if  

{ }2

20
max ( )

k

PN
Y k W

η< <
∂ ∂

 

Substituting (3.37) into (3.30), then we get 

( )2 2 2
max max

320
16 Y

P N
a N R P R M W X

η ⋅
< <

+ ⋅ ⋅ ⋅ ⋅
       Q.E.D. 

 

Example 3-2: Finding the upper-bound of optimal learning rate 

Give the following neural network with three layers, four inputs in the input layer, three 

output neurons in the output layer, and four neurons in the hidden layer. WH is a 4×4 

matrix and WY is a 3×4 matrix. The architecture of the neural network is shown in 

Figure 3-4. The sigmoid function is adopted as hidden layer activation function, and a 

linear function as output layer activation function. The input signals are bounded at (-2, 

2). The slope parameter of linear activation function is given as 1. Try to get an upper 

bound for the learning rate at first iteration. 
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Figure 3-4. Neural network for Example 3-2 

Solution: 

Give a=1, M=4, R=4, P=3, and Xmax=2. From (3.19) we can get: 

min
max

ln 4 ln 4 ln 4 0.6931
2 2

W
X
− − −

= = = = −  and max
max

ln 4 ln 4 ln 4 0.6931
2 2

W
X

= = = =  

Hence, the range of initial weighting factors is [-0.6931, 0.6931]. Therefore 

WYmax=0.6931. Using Theorem 4, we can get the upper bound for the learning rate at 

first iteration: 

( ) 2 2 22 2 2
max max

32 32 3
1 (16 4 3 4 4 (0.6931) 2 )16upper bound

Y

P N
a N R P R M W X

η −

⋅ ⋅
= =

⋅ + ⋅ ⋅ ⋅ ⋅+ ⋅ ⋅ ⋅ ⋅  

                0.614461=  

END 

3.5  Conclusion 

From Section 3.1 to Section 3.4, we can summarize the revised dynamic optimal 

training algorithm for a modified three-layer neural network as shown in Figure 3-3. 

 

Math model in matrix format: 

The math model of revised dynamic optimal training algorithm is shown as: 
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(1)  Feed-forward process: 

H H R NS W X ×=  

( )H H H R NV Sϕ ×=  

O Y H P NS W V ×=  

( )O O O P NY V Sϕ ×= =  

( )1 and   trace
2P NE Y D J EE

PN× ′= − =  

(2)  Back-forward process: 

( 1) ( ) ( ) ( )t t t t
t

JW W W W
W

η+

∂
= −∆ = −

∂
 

Update rule of synaptic weight factors: 

( , ) ( , ) ( , )
( 1 ) ( )
p r p r p r

Y t Y t O r e v is e dW W η δ+ −= −     (3.38) 

( , ) ( , ) ( , )
( 1 ) ( )
r m r m r m

H t H t H re v is e dW W η δ+ −= −     (3.39) 

( , ) ( ,:) ( ,:)( )p r p r
O r e v is e d O H

a V D V
P N

δ − = −            (3.40) 

( ) ( )( , ) ( ,:) ( ,:) ( , ) ( ,:) ( ,:) ( ,:)

1

1
P

r m p p p r r r m
H rev ised O Y H H

p

a V D W V V X
P N

δ −
=

⎛ ⎞
= − −⎜ ⎟
⎝ ⎠
∑ (3.41) 

 

 

 

Algorithm 2: Revised dynamic optimal training algorithm 

Step 0: Give input matrix X and desired output matrix D. Find the maxima absolute 

value of input matrix: |Xmax|. Compute the bound of initial weight factors 

m in m ax[ , ]w w  by using (3.20). 

Step 1: Set initial weight factor WH and WY, which are random values in the bound of 

m in m ax[ , ]w w . Set maximum acceptable final value of the cost function J0.  
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Step 2: Iteration count k=1. 

Step 3: Start feed-forward part of back-propagation training process. 

Step 4: Compute error function E(k)=Y(k)-D(k) and cost function J(k). If J(k) is smaller 

than acceptable value J0 , the algorithm goes to Step 9. If no, it goes to Step 5. 

Step 5: Find the maxima absolute value of WY: |WYmax|. Compute learning rate 

upper-bound:  u pη by using Theorem 4. 

Step 6: Using Matlab routine “fminbnd” with the search interval [0.01, upη ] to solve the 

nonlinear function J(k)∆ =J(k+1)-J(k) and find the stable learning rate o p tη . 

Step 7: Start back-forward part of back-propagation training process. Update the 

synaptic weights matrix to yield WH(k+1) and WY(k+1) by using (3.38) and (3.39) 

respectively. 

Step 8: Iteration count k = k+1, and algorithm goes back to Step 3. 

Step 9: End the algorithm 
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CHAPTER 4 

Experimental Results 

 

In this chapter, we will solve the classification problems of XOR and Iris Data via the 

revised dynamic optimal training algorithm discussed in Chapter 3. The training result 

will be compared with dynamic optimal training algorithm and back-propagation 

training algorithm using a fixed learning rate. 

 

4.1  Example 1: The XOR problem 

The task is to train the network to produce the Boolean “Exclusive OR” (XOR) 

function of two variables. The XOR operator yields true if exactly one (but not both) of 

two conditions is true, otherwise the XOR operator yields false. The truth table of XOR 

function is shown in Figure 4-1. 

 

A B Y 
T T F 
T F T 
F T T 
F F F 

Figure 4-1. The truth table of XOR function: Y = A ♁ B 

 

4.1.1  System modeling and Problem definition 

We need only consider four input data (0,0), (0,1), (1,1), and (1,0) in this problem. The 

first and third input patterns are in class 0, which means the XOR operator yields 

“False” when the input data is (0,0) or (1,1). The second and fourth input patterns are in 

class 1, which means the XOR operator yields “True” when the input data is (0,1) or 

(1,0). The distribution of the input data is shown in Figure 4-2. Because there are two 
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variables of XOR function, we choose the input layer with two neurons and the output 

layer with one neuron. Then we use one hidden layer with two neurons to solve XOR 

problem [22], as shown in Figure 4-3. The architecture of the neural network is 2-2-1 

network. 

 

The input data of XOR

0, 0

1, 1

1, 0

0, 1

X1

X2
Class 0

Class 1

 

Figure 4-2. The distribution of XOR input data sets 

 

 

 

Figure 4-3. The neural network for solving XOR 
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Hence, we have the weight matrix which is between input layer and hidden layer in the 

form 

(1,1) (1,2) 1 2

(2,1) (2,2) 3 4

H H
H

H H

W W W W
W

W W W W
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

And the weight matrix between hidden layer and output layer can be expressed as 

[ ](1,1) (1,2) 5 6Y Y YW W W W W⎡ ⎤= =⎣ ⎦  

 

4.1.2  Experimental result analysis 

We first compare the training experimental result by respectively using 

Back-propagation Algorithm (BPA), Dynamic Optimal Training Algorithm (DOA), and 

Revised Dynamic Optimal Training Algorithm (RDOA). Table 4-1 shows experimental 

results of three kinds of algorithm. All results are averaged over 20 trials. For BPA, we 

use a learning rate of 0.9 and the initial weight are drawn from a uniform distribution 

over interval [-1, 1]. For DOA, we search optimal learning rate by using Matlab routine 

“fminbnd” with searching range [0.01, 100] and the initial weight are drawn from a 

uniform distribution over interval [-1, 1]..  

 

Table 4-1 Training results of XOR problems for a 2-2-1 neural network with three 

different kinds of algorithm: BPA, DOA, and RDOA 

 BPA DOA RDOA 
J  

(final normalized total 

square error) 

0.063825 
(diverged result)

0.000617 0.000994 

T 
(training time, sec) 

Diverged 17.617 22.63 

SI 
(convergence iteration 

when J(k)<0.0078125) 

Diverged 2684 775 



 48

ST 
(convergence time, sec) 

Diverged 4.72 1.75 

C 
(convergence probability in 

20 trials) 

0% 20% 70% 

 

J is total square error and it can be expressed in the form of  
4 4

2 21 1
2 8k k

k k

J e e
PN

= =∑ ∑  

For XOR problem, P=1 and N=4. ek is error signal for kth element of output vector. 

T is total training time for 10000 training iteration. SI is first iteration at which the value 

of J is smaller than 0.005. We assume that when ek=0.1, it is enough to say that the 

network can classify XOR data set. So it means that when J=0.005, the network can 

achieve our requirement. ST is actual settling time and it can be calculate in the form of 

[ST = T × SI ÷ (total iteration)]. C is times of successful convergence for training 

neural network in 20 trials.  

For DOA and RDOA, we averaged the value of J, T, and S only when we have 

convergence. But the column of BPA listed in Table 4-1 is somehow different from 

others. For BPA, we averaged the value of J and T for all 20 trials. Because the output 

of network trained by BPA can not get a correct result for all 20 trials. From Table 4-1, 

we can find that BPA is the worst algorithm to train a neural network. The convergence 

probability C of BPA is 0%, so BPA has no settling iteration. From row J in Table 4-1, 

DOA has a better normalized total square error (.000617) than RDOA (.000994) if both 

algorithms have correct results. But the small J in both algorithms are small enough to 

classify XOR data set. From row C, we see that RDOA has a greater probability (70%) 

than DOA (20%) to have a correct result. It means that RDOA has a high capability of 

jumping out local minimum. From row ST, we can know that RDOA only spend 1.75 

seconds to get normalized total square error J smaller than 0.005 or get into a steady 
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state. RDOA is 2.7 times faster than DOA (4.72 sec). 

 

The best result of using BP algorithm with fixed learning rate 0.9 to train the XOR is 

shown Figure 4-4. The best result of using DO algorithm with initial weight drawn from 

a uniform distribution over interval [-1, 1] to train the XOR is shown in Figure 4-5. The 

best result of using RDO algorithm to train XOR is shown in Figure 4-6. The 

comparison of the best results of three algorithms is shown in Figure 4-7-1 and Figure 

4-7-2. 
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Figure 4-4. Normalized square error J of the standard BPA with fixed η = 0.9 
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Figure 4-5. The best normalized square error J of the DOA in 20 trials 
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Figure 4-6. The best normalized square error J of the RDOA in 20 trials 

 

In Figure 4-7-1, RDOA and DOA have almost the same performance at the end of 

training process. They are different at the beginning of training process. In Figure 4-7-2, 

it is obvious that RDOA achieves the minimum acceptable square error 0.005 around 
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the 800th iteration. At the same iteration, DOA still has a higher square error 0.02. So 

RDOA can train the XOR data set faster than that of DOA . 
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Figure 4-7-1. Training error of RDOA, DOA, and BPA 
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Figure 4-7-2. The close look of training error  
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Tables 4-2 ~ 4-4 show the complete training results of three algorithm. F in the column 

C denotes failed result of convergence. S in the column C denotes successful result of 

convergence. 

 

Table 4-2 Detailed Training results of XOR problems for a 2-2-1 neural network 

with Back-propagation algorithm. 

BAP_fixed rate_0.9  (Have tuning initial weight) 
  J (total square 

error) 
T (cost time)  

sec 
SI (convergent 

iteration) 
C 

(convergence) 

1 0.0842000 1.34 N/A F 
2 0.0890000 1.64 N/A F 
3 0.0891000 1.67 N/A F 
4 0.0899000 1.73 N/A F 
5 0.0507000 1.64 N/A F 
6 0.0841000 1.60 N/A F 
7 0.0891000 1.53 N/A F 
8 0.0133000 1.68 N/A F 
9 0.0634000 1.51 N/A F 
10 0.0844000 1.46 N/A F 
11 0.0160000 1.46 N/A F 
12 0.0515000 1.54 N/A F 
13 0.0227000 1.59 N/A F 
14 0.0129000 1.5 N/A F 
15 0.0908000 1.59 N/A F 
16 0.0634000 1.62 N/A F 
17 0.0841000 1.59 N/A F 
18 0.0577000 1.60 N/A F 
19 0.0894000 1.81 N/A F 
20 0.0508000 1.64 N/A F 

Average 0.0638250 1.59135 N/A 0% 
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Table 4-3 Detailed Training results of XOR problems for a 2-2-1 neural network 

with Dynamic Optimal Training algorithm. 

XOR_Dynamic Optimal(Have tuning initial weight) 
  J (total square 

error) 
T (cost time)  

sec 
SI (convergent 

iteration) 
C 

(convergence) 

1 0.0008415 17.28 3189 S 
2 0.0833000 24.25 N/A F 
3 0.0004563 17.67 2330 S 
4 0.0360000 35.35 N/A F 
5 0.0003109 18.04 2007 S 
6 0.0008610 17.46 3209 S 
7 0.0902000 23.28 N/A F 
8 0.0625000 40.35 N/A F 
9 0.0360000 32.35 N/A F 
10 0.0360000 35.43 N/A F 
11 0.0880000 23.34 N/A F 
12 0.0360000 34.09 N/A F 
13 0.1143000 24.29 N/A F 
14 0.0902000 22.92 N/A F 
15 0.0902000 22.57 N/A F 
16 0.0902000 22.78 N/A F 
17 0.0625000 40.75 N/A F 
18 0.0360000 32.96 N/A F 
19 0.0625000 40.40 N/A F 
20 0.0880000 23.07 N/A F 

Average 0.0006174 17.617 2683.75 20% 
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Table 4-4 Detailed Training results of XOR problems for a 2-2-1 neural network 

with Revised Dynamic Optimal Training algorithm. 

XOR_Revised Dynamic Optimal 
  J (total square 

error) 
T (cost time)  

sec 
SI (convergent 

iteration) 
C 

(convergence) 

1 0.0007546 20.68 798 S 
2 0.0009093 24.78 1173 S 
3 0.0296000 24.56 N/A F 
4 0.0305000 27.12 N/A F 
5 0.0015000 29.32 582 S 
6 0.0007413 21.43 416 S 
7 0.0007545 22.03 798 S 
8 0.0007598 21.31 957 S 
9 0.0384000 19.84 N/A F 
10 0.0296000 26.70 N/A F 
11 0.0015000 30.64 582 S 
12 0.0879000 14 N/A F 
13 0.0297000 27.09 N/A F 
14 0.0007413 22.81 416 S 
15 0.0015000 29.48 591 S 
16 0.0008408 12.92 966 S 
17 0.0008372 14.18 935 S 
18 0.0015000 30.67 736 S 
19 0.0007652 22.26 1068 S 
20 0.0008195 14.34 829 S 

Average 0.0009945 22.636143 774.78571 70% 

 

 

Table 4-5 shows the training result via revised dynamical optimal training (RDOA) for 

XOR problem. Table 4-6 shows the training result via dynamical optimal training (DOA) 
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for XOR problem. To compare Table 4-5 with Table 4-6, we can see that the training 

result via revised dynamical optimal training is faster with better result than other 

approaches.  

 

Table 4-5. The training result for XOR using revised dynamical optimal training 

Iterations
Training Results 

1 1000 5000 10000 

W1 (after trained) 1.2480 5.1970 5.8972 8.4681 
W2 (after trained) 0.2963 5.2356 5.9167 8.4703 
W3 (after trained) -0.7454 1.3695 1.8095 0.9573 
W4 (after trained) -0.0388 1.3708 1.8100 0.9573 
W5 (after trained) 1.0849 5.6486 8.1003 9.1849 
W6 (after trained) 0.7266 -5.8580 -8.2528 -9.3141 

Actual Output Y for (x1, x2) = (0,0) 0.9058 -0.10308 -0.0759 -0.0644 
Actual Output Y for (x1, x2) = (0,1) 0.9785 0.9503 0.9871 0.9918 
Actual Output Y for (x1, x2) = (1,0) 1.0768 0.9503 0.9871 0.9918 
Actual Output Y for (x1, x2) = (1,1) 1.1218 0.1496 0.0634 0.0484 

J 0.2606 0.0047 0.0012 0.0008 

 

Table 4-6. The training result for XOR using dynamical optimal training 

Iterations
Training Results 

1 1000 5000 10000 

W1 (after trained) 0.6428 6.5146 7.6615 8.1360 
W2 (after trained) 0.2309 6.5302 7.6665 8.1391 
W3 (after trained) -0.1106 0.8578 0.9246 0.9454 
W4 (after trained) 0.5839 0.8579 0.9246 0.9454 
W5 (after trained) 0.8436 14.698 25.604 32.201 
W6 (after trained) 0.4764 -18.751 -32.213 -40.337 

Actual Output Y for (x1, x2) = (0,0) 0.6592 0.1167 0.0354 0.0162 
Actual Output Y for (x1, x2) = (0,1) 0.6848 0.8226 0.9260 0.9589 
Actual Output Y for (x1, x2) = (1,0) 0.6852 0.8226 0.9260 0.9589 
Actual Output Y for (x1, x2) = (1,1) 0.7086 0.2381 0.0984 0.0554 

J 0.1419 0.0166 0.0027 0.0008 
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4.2  Example 2: Classification of Iris Data Set 

In this example, our task is to train the neural network to classify Iris data sets [23], [24]. 

Generally, Iris has three kinds of subspecies: setosa, versicolor, virginica. The 

classification will depend on the length and width of the petal and the length and width 

of the sepal. 

 

4.2.1  System modeling and Problem definition 

The total Iris data are shown in Figures 4-8-1 and 4-8-2. The first 75 samples of total 

data are the training data, which are shown in Figures 4-9-1 and 4-9-2. The Iris data 

samples are available in [28]. There are 150 samples of three species of the Iris flowers 

in this data. We choose 75 samples to train the network and using the other 75 samples 

to test the network. We will have four kinds of input data, so we adopt the network 

which has four nodes in the input layer and three nodes in the output layer for this 

problem. Then the architecture of the neural network is a 4-4-3 network as shown in 

Figure 4-10. In which, we use the network with four hidden nodes in the hidden layer. 

When the input data set belongs to class setosa, the output of network will be expressed 

as [1 0 0]. For class versicolor, the output is set to [0 1 0]. For class virginica, the output 

is set to [0 0 1]. 
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Figure 4-8-1. The total Iris data set (Sepal) 
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Figure 4-8-2. The total Iris data set (Petal) 
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Figure 4-9-1. The training set of Iris data (Sepal) 
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Figure 4-9-2. The training set of Iris data (Petal) 
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Figure 4-10. The neural network for solving Iris problem 

 

We have the weight matrix which is between input layer and hidden layer in the form 

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4) 4 x 4

H H H H

H H H H
H

H H H H

H H H H

W W W W
W W W W

W
W W W W
W W W W

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

And the weight matrix between hidden layer and output layer can be expressed as 

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4) 3 x 4

Y Y Y Y

Y Y Y Y Y

Y Y Y Y

W W W W
W W W W W

W W W W

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

4.2.2  Experimental result analysis 

We first compare the training experimental result of network by respectively using 

Back-propagation Algorithm (BPA), Dynamic Optimal Training Algorithm (DOA), 

and Revised Dynamic Optimal Training Algorithm (RDOA). Table 4-7 shows 

experimental results of three kinds of algorithm. All results are averaged over 20 trials. 
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For BPA, we use a learning rate of 0.01 for 10 trials and a learning rate of 0.1 for 

another 10 trials. Initial weights of BPA are drawn from a uniform distribution over 

interval [-1, 1]. For DOA, we search optimal learning rate by using Matlab routine 

“fminbnd” with searching range [0.01, 1000] and the initial weight are drawn from a 

uniform distribution over interval [-1, 1]. 

 

Table 4-7 Training results of IRIS problems for a 4-4-3 neural network with three 

different kinds of algorithm: BPA, DOA, and RDOA 

 BPA DOA RDOA 
J  

(final normalized total 

square error) 

0.079515 
(diverged result)

0.000626 0.003836 

T 
(training time, sec) 

Diverged 41.09 22.87 

SI 
(convergence iteration 

when J(k)<0.0078125) 

Diverged 654 529 

ST 
(convergence time, sec) 

Diverged 2.68 1.21 

C 
(convergence probability in 

20 trials) 

0% 20% 95% 

 

J is total square error and it can be expressed in the form of  
3 75

2 21 1
2 450

P N

kh kh
h k h k

J e e
PN

= =∑∑ ∑∑  

For IRIS problem, P=3 and N=75; ekh is error signal for (kth ,hth) element of output 

vector; T is total training time for 10000 training iteration; SI is first iteration at which 

the value of J is smaller than 0.0078125. We assume that when ek=0.125, it is enough 

to say that the network can classify IRIS data set. So it means that when J=0.0078125, 

the network can achieve our requirement. ST is actual settling time and it can be 
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calculate in the form of [ST = T × SI ÷ (total iteration)]. C is times of successful 

convergence for training neural network in 20 trials.  

 

From row J in Table 4-7, DOA has a better normalized total square error (.000626) 

than RDOA (.003836) if both algorithms have correct results. But the Js in both 

algorithms are small enough to classify IRIS data set. From row C, we see that RDOA 

has a greater probability (95%) than DOA (20%) to have a correct result. It means that 

RDOA has a high capability of jumping out local minimum. From row ST, we can 

know that RDOA only spends 1.21 seconds to get normalized total square error J 

smaller than 0.0078125 or get into a steady state. RDOA is 2.21 times faster than 

DOA (2.68sec). The result of using BP algorithm with fixed learning rate 0.1 to train 

the IRIS is shown Figure 4-11. The result of using DO algorithm with initial weight 

drawn from a uniform distribution over interval [-1, 1] to train the IRIS is shown in 

Figure 4-12. The result of using RDO algorithm to train IRIS is shown in Figure 4-13. 

The comparison of the results of three algorithms is shown in Figure 4-14-1 and 

Figure 4-14-2. 
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Figure 4-11. Normalized square error J of the standard BPA with fixed η = 0.1 
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Figure 4-12. The normalized square error J of the DOA  
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Figure 4-13. The normalized square error J of the RDOA. 
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Figure 4-14-1. Training error of RDOA, DOA, and BPA 
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Figure 4-14-2. The close look of training error for Iris problem. 

 

In Figure 4-14-1, DOA has a slightly better performance than that RDOA has at the 

end of training process. Both of them have acceptable performance at the end of 

training process. In Figure 4-14-2, it is obvious that RDOA and DOA both achieve the 

minimum acceptable square error 0.0078125 around the 800th iteration. RDOA has a 
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faster convergent rate at very beginning of training process and the convergent rate of 

RDOA slow down when network gets into a steady state. Tables 4-8 ~ 4-10 show the 

complete training results of three algorithms for Iris classification problem. F in the 

column C denotes failed result of convergence. S in the column C denotes successful 

result of convergence. 

 

Table 4-8 Detailed Training results of Iris problems for a 4-4-3 neural network 

with Back-propagation algorithm. 

Iris_BPA with fixed learning rate 0.01(first 10 trials) and 
0.1 (rest 10 trials) 

  
J (total square 

error) 
T (cost time)  

sec 
E (convergent 

iteration) 
C 

(convergence) 

1 0.1007000 2.656 N/A F 
2 0.1092000 2.625 N/A F 
3 0.1072000 2.938 N/A F 
4 0.1089000 3.031 N/A F 
5 0.1098000 3.125 N/A F 
6 0.1088000 3.078 N/A F 
7 0.0991000 3.141 N/A F 
8 0.1085000 3.093 N/A F 
9 0.1072000 3.297 N/A F 
10 0.1087000 3.063 N/A F 
11 0.0272000 3.235 N/A F 
12 0.0266000 3.156 N/A F 
13 0.0436000 3.078 N/A F 
14 0.0411000 3.094 N/A F 
15 0.0387000 3.109 N/A F 
16 0.0324000 3.157 N/A F 
17 0.0614000 3.235 N/A F 
18 0.0982000 3.094 N/A F 
19 0.0509000 3.172 N/A F 
20 0.0301000 3.203 N/A F 

Average 0.0759150 3.079 N/A 0% 
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Table 4-9 Detailed Training results of Iris problems for a 4-4-3 neural network 

with Dynamic Optimal Training algorithm 

Iris_Dynamic Optimal Training Algorithm 
  J (total square 

error) 
T (cost time)  

sec 
E (convergent 

iteration) 
C 

(convergence) 

1 0.1250000 76.156 N/A F 
2 0.1111000 50.922 N/A F 
3 0.0833000 81.469 N/A F 
4 0.0005039 40.985 615 S 
5 0.0404000 44.735 N/A F 
6 0.1250000 76.594 N/A F 
7 0.1389000 41.516 N/A F 
8 0.0556000 38.828 N/A F 
9 0.0004618 41.453 661 S 
10 0.1296000 76.625 N/A F 
11 0.1296000 49.656 N/A F 
12 0.1250000 76.625 N/A F 
13 0.0004626 40.782 569 S 
14 0.1111000 62.031 N/A F 
15 0.0833000 81.703 N/A F 
16 0.0004516 41.172 771 S 
17 0.0833000 81.969 N/A F 
18 0.1296000 67.359 N/A F 
19 0.0574000 44.719 N/A F 
20 0.0556000 49.875 N/A F 

Average 0.0006266 41.098 654 20% 
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Table 4-10 Detailed Training results of Iris problems for a 4-4-3 neural network 

with Revised Dynamic Optimal Training algorithm. 

Iris_Revised Dynamic Optimal Training Algorithm 
  J (total square 

error) 
T (cost time)  

sec 
E (convergent 

iteration) 
C 

(convergence) 

1 0.0037000 22.875 353 S 
2 0.0043000 19.265 442 S 
3 0.0039000 24 345 S 
4 0.0027000 22.203 489 S 
5 0.0044000 18.781 447 S 
6 0.0035000 23.312 456 S 
7 0.0039000 18.797 576 S 
8 0.0037000 32.25 507 S 
9 0.0048000 22.36 353 S 
10 0.0046000 22.34 695 S 
11 0.0040000 21.078 759 S 
12 0.0041000 25.828 538 S 
13 0.0042000 24.86 560 S 
14 0.0028000 21.578 496 S 
15 0.0033000 22.672 891 S 
16 0.0556000 34.156 N/A F 
17 0.0029000 22.547 374 S 
18 0.0039000 21.343 429 S 
19 0.0042000 24.453 832 S 
20 0.0040000 24.047 503 S 

Average 0.0038368 22.873105 528.68421 95% 

 

 

From Table 4-10, we choose one successful convergent result for the test of real 

classification performance. After 10000 training iterations, the resulting weighting 

factors and total square error J are shown below. The actual output and desired output 

of 10000 training iteration are shown in Table 4-11 and the testing output and desired 

output are shown in Table 4-12. After we substitute the above weighting matrices into 
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the network to perform real testing, we find that there is no classification error by 

using training set (the first 75 data set). However there are 4 classification errors by 

using testing set (the later 75 data set), which are index 34, 55, 57, 59 in Table 4-12. 

This is better than that of using DO [19], which generate 5 classification errors. 

 

H

-2.9855 -2.5472 3.5321 4.9206
0.7139 0.8761 -1.7383 -1.4481

W =
-0.2861 0.4348 -0.1717 -0.5248
0.6269 0.1752 0.5665 0.1341

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Y

0.0874 1.1824 -0.1976 -0.0696
W -1.1929 -1.6309 1.3376 1.0304

1.1153 0.3748 -0.8871 0.0136

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 Normalized total square error J = 0.043 

 

Table 4-11. Actual and desired outputs after 10000 training iterations 

Actual Output Desired Output  
Index Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

1 1.0069 -0.0060 0.0003 1.0000 0.0000 0.0000 
2 0.9983 -0.0374 0.0295 1.0000 0.0000 0.0000 
3 0.9976 0.0033 -0.0030 1.0000 0.0000 0.0000 
4 0.9803 0.0148 0.0014 1.0000 0.0000 0.0000 
5 1.0038 0.0168 -0.0153 1.0000 0.0000 0.0000 
6 1.0041 -0.0166 0.0133 1.0000 0.0000 0.0000 
7 0.9881 0.0290 -0.0153 1.0000 0.0000 0.0000 
8 1.0001 -0.0052 0.0047 1.0000 0.0000 0.0000 
9 0.9736 0.0178 0.0017 1.0000 0.0000 0.0000 
10 0.9966 -0.0143 0.0134 1.0000 0.0000 0.0000 
11 1.0116 -0.0145 0.0052 1.0000 0.0000 0.0000 
12 0.9875 0.0220 -0.0075 1.0000 0.0000 0.0000 
13 0.9971 -0.0160 0.0130 1.0000 0.0000 0.0000 
14 0.9934 0.0327 -0.0278 1.0000 0.0000 0.0000 
15 1.0197 -0.0072 -0.0059 1.0000 0.0000 0.0000 
16 1.0132 0.0151 -0.0173 1.0000 0.0000 0.0000 
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17 1.0145 -0.0145 0.0028 1.0000 0.0000 0.0000 
18 1.0061 -0.0185 0.0107 1.0000 0.0000 0.0000 
19 1.0141 -0.0493 0.0318 1.0000 0.0000 0.0000 
20 1.0026 0.0168 -0.0133 1.0000 0.0000 0.0000 
21 1.0052 -0.0475 0.0359 1.0000 0.0000 0.0000 
22 1.0015 -0.0067 0.0058 1.0000 0.0000 0.0000 
23 1.0022 0.0618 -0.0536 1.0000 0.0000 0.0000 
24 0.9779 -0.0397 0.0494 1.0000 0.0000 0.0000 
25 0.9636 0.0430 -0.0046 1.0000 0.0000 0.0000 
26 0.0088 1.0283 -0.0430 0.0000 1.0000 0.0000 
27 -0.0115 1.0568 -0.0463 0.0000 1.0000 0.0000 
28 -0.0329 1.0571 -0.0293 0.0000 1.0000 0.0000 
29 -0.0194 0.9345 0.0867 0.0000 1.0000 0.0000 
30 -0.0322 1.0271 0.0009 0.0000 1.0000 0.0000 
31 -0.0371 0.9821 0.0604 0.0000 1.0000 0.0000 
32 -0.0365 1.0444 -0.0069 0.0000 1.0000 0.0000 
33 0.0958 0.9842 -0.0740 0.0000 1.0000 0.0000 
34 -0.0104 1.0518 -0.0449 0.0000 1.0000 0.0000 
35 -0.0140 0.9531 0.0685 0.0000 1.0000 0.0000 
36 0.0219 1.0018 -0.0202 0.0000 1.0000 0.0000 
37 -0.0122 1.0405 -0.0265 0.0000 1.0000 0.0000 
38 0.0263 1.0146 -0.0444 0.0000 1.0000 0.0000 
39 -0.0412 0.9983 0.0444 0.0000 1.0000 0.0000 
40 0.0974 0.9636 -0.0598 0.0000 1.0000 0.0000 
41 0.0289 1.0098 -0.0438 0.0000 1.0000 0.0000 
42 -0.0348 0.8541 0.1881 0.0000 1.0000 0.0000 
43 0.0336 1.0402 -0.0705 0.0000 1.0000 0.0000 
44 -0.0298 0.7413 0.2845 0.0000 1.0000 0.0000 
45 0.0229 1.0356 -0.0562 0.0000 1.0000 0.0000 
46 -0.0244 0.5388 0.4914 0.0000 1.0000 0.0000 
47 0.0429 1.0043 -0.0495 0.0000 1.0000 0.0000 
48 -0.0324 0.6639 0.3668 0.0000 1.0000 0.0000 
49 -0.0381 1.0577 -0.0176 0.0000 1.0000 0.0000 
50 0.0203 1.0256 -0.0489 0.0000 1.0000 0.0000 
51 0.0068 -0.0792 1.0720 0.0000 0.0000 1.0000 
52 0.0043 -0.0094 1.0096 0.0000 0.0000 1.0000 
53 0.0035 0.0104 0.9829 0.0000 0.0000 1.0000 
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54 0.0009 0.0310 0.9709 0.0000 0.0000 1.0000 
55 0.0071 -0.0666 1.0589 0.0000 0.0000 1.0000 
56 0.0081 -0.0659 1.0524 0.0000 0.0000 1.0000 
57 0.0025 0.0255 0.9840 0.0000 0.0000 1.0000 
58 -0.0005 0.0567 0.9402 0.0000 0.0000 1.0000 
59 0.0058 -0.0313 1.0236 0.0000 0.0000 1.0000 
60 0.0067 -0.0466 1.0372 0.0000 0.0000 1.0000 
61 -0.0204 0.4357 0.5845 0.0000 0.0000 1.0000 
62 0.0017 0.0540 0.9446 0.0000 0.0000 1.0000 
63 0.0000 0.0795 0.9187 0.0000 0.0000 1.0000 
64 0.0065 -0.0461 1.0426 0.0000 0.0000 1.0000 
65 0.0072 -0.0685 1.0624 0.0000 0.0000 1.0000 
66 0.0052 -0.0062 1.0020 0.0000 0.0000 1.0000 
67 -0.0089 0.2004 0.8098 0.0000 0.0000 1.0000 
68 -0.0022 0.0721 0.9265 0.0000 0.0000 1.0000 
69 0.0122 -0.1202 1.0997 0.0000 0.0000 1.0000 
70 -0.0030 0.1452 0.8597 0.0000 0.0000 1.0000 
71 0.0054 -0.0152 1.0078 0.0000 0.0000 1.0000 
72 0.0045 -0.0077 1.0092 0.0000 0.0000 1.0000 
73 0.0087 -0.0727 1.0577 0.0000 0.0000 1.0000 
74 -0.0154 0.3805 0.6345 0.0000 0.0000 1.0000 
75 -0.0002 0.0598 0.9410 0.0000 0.0000 1.0000 

 

 

Table 4-12. Actual and desired outputs in real testing 

Actual Output Desired Output  
Index Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

1 0.9895 -0.0394 0.0390 1.0000 0.0000 0.0000 
2 0.9890 -0.0205 0.0254 1.0000 0.0000 0.0000 
3 1.0067 -0.0167 0.0096 1.0000 0.0000 0.0000 
4 1.0100 -0.0286 0.0158 1.0000 0.0000 0.0000 
5 0.9795 0.0168 0.0017 1.0000 0.0000 0.0000 
6 0.9821 -0.0049 0.0169 1.0000 0.0000 0.0000 
7 1.0102 -0.0727 0.0511 1.0000 0.0000 0.0000 
8 1.0029 0.0720 -0.0556 1.0000 0.0000 0.0000 
9 1.0101 0.0424 -0.0373 1.0000 0.0000 0.0000 
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10 0.9936 -0.0236 0.0228 1.0000 0.0000 0.0000 
11 1.0106 -0.0309 0.0150 1.0000 0.0000 0.0000 
12 1.0193 -0.0468 0.0239 1.0000 0.0000 0.0000 
13 1.0013 0.0409 -0.0327 1.0000 0.0000 0.0000 
14 0.9836 0.0191 -0.0073 1.0000 0.0000 0.0000 
15 1.0035 -0.0167 0.0115 1.0000 0.0000 0.0000 
16 1.0064 -0.0080 0.0015 1.0000 0.0000 0.0000 
17 0.9601 -0.0460 0.0601 1.0000 0.0000 0.0000 
18 0.9864 0.0387 -0.0241 1.0000 0.0000 0.0000 
19 0.9819 -0.0258 0.0352 1.0000 0.0000 0.0000 
20 0.9797 0.0186 0.0040 1.0000 0.0000 0.0000 
21 0.9906 -0.0335 0.0317 1.0000 0.0000 0.0000 
22 1.0002 0.0298 -0.0212 1.0000 0.0000 0.0000 
23 0.9887 0.0185 -0.0081 1.0000 0.0000 0.0000 
24 1.0090 -0.0039 -0.0015 1.0000 0.0000 0.0000 
25 1.0039 -0.0179 0.0111 1.0000 0.0000 0.0000 
26 0.0133 1.0264 -0.0442 0.0000 1.0000 0.0000 
27 -0.0327 1.0483 -0.0214 0.0000 1.0000 0.0000 
28 -0.0448 0.9100 0.1304 0.0000 1.0000 0.0000 
29 -0.0350 0.9818 0.0546 0.0000 1.0000 0.0000 
30 0.1751 0.8639 -0.0424 0.0000 1.0000 0.0000 
31 0.0249 1.0284 -0.0512 0.0000 1.0000 0.0000 
32 0.0612 1.0022 -0.0619 0.0000 1.0000 0.0000 
33 0.0426 1.0154 -0.0574 0.0000 1.0000 0.0000 
＊34 -0.0102 0.2448 0.7696 0.0000 1.0000 0.0000 
35 -0.0300 0.7176 0.3229 0.0000 1.0000 0.0000 
36 -0.0284 1.0562 -0.0232 0.0000 1.0000 0.0000 
37 -0.0232 1.0546 -0.0354 0.0000 1.0000 0.0000 
38 -0.0281 1.0090 0.0141 0.0000 1.0000 0.0000 
39 0.0020 1.0648 -0.0603 0.0000 1.0000 0.0000 
40 -0.0149 0.9960 0.0220 0.0000 1.0000 0.0000 
41 -0.0351 0.9481 0.0936 0.0000 1.0000 0.0000 
42 -0.0345 1.0454 -0.0091 0.0000 1.0000 0.0000 
43 0.0157 1.0352 -0.0503 0.0000 1.0000 0.0000 
44 0.0952 0.9744 -0.0660 0.0000 1.0000 0.0000 
45 -0.0228 1.0192 0.0081 0.0000 1.0000 0.0000 
46 0.0048 1.0731 -0.0714 0.0000 1.0000 0.0000 
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47 -0.0109 1.0595 -0.0437 0.0000 1.0000 0.0000 
48 0.0058 1.0457 -0.0522 0.0000 1.0000 0.0000 
49 0.2174 0.8265 -0.0462 0.0000 1.0000 0.0000 
50 -0.0036 1.0498 -0.0426 0.0000 1.0000 0.0000 
51 -0.0231 0.3941 0.6255 0.0000 0.0000 1.0000 
52 -0.0200 0.4748 0.5455 0.0000 0.0000 1.0000 
53 -0.0199 0.4459 0.5768 0.0000 0.0000 1.0000 
54 0.0071 -0.0578 1.0504 0.0000 0.0000 1.0000 
＊55 -0.0445 0.7323 0.3064 0.0000 0.0000 1.0000 
56 -0.0017 0.0873 0.9093 0.0000 0.0000 1.0000 
＊57 -0.0472 0.7346 0.3045 0.0000 0.0000 1.0000 
58 0.0078 -0.0705 1.0617 0.0000 0.0000 1.0000 
＊59 -0.0369 0.6932 0.3441 0.0000 0.0000 1.0000 
60 -0.0051 0.1123 0.8975 0.0000 0.0000 1.0000 
61 0.0048 0.0028 0.9858 0.0000 0.0000 1.0000 
62 0.0059 -0.0518 1.0478 0.0000 0.0000 1.0000 
63 -0.0092 0.1984 0.8135 0.0000 0.0000 1.0000 
64 -0.0199 0.4646 0.5589 0.0000 0.0000 1.0000 
65 -0.0105 0.2538 0.7538 0.0000 0.0000 1.0000 
66 0.0081 -0.0618 1.0517 0.0000 0.0000 1.0000 
67 -0.0087 0.2647 0.7399 0.0000 0.0000 1.0000 
68 0.0043 -0.0094 1.0096 0.0000 0.0000 1.0000 
69 0.0072 -0.0599 1.0511 0.0000 0.0000 1.0000 
70 0.0080 -0.0679 1.0583 0.0000 0.0000 1.0000 
71 0.0037 0.0463 0.9480 0.0000 0.0000 1.0000 
72 0.0018 0.0824 0.9154 0.0000 0.0000 1.0000 
73 -0.0071 0.2081 0.7990 0.0000 0.0000 1.0000 
74 0.0043 -0.0169 1.0162 0.0000 0.0000 1.0000 
75 -0.0049 0.1520 0.8593 0.0000 0.0000 1.0000 
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CHAPTER 5 

Conclusions 

In this thesis, a revised dynamic optimal training algorithm (RDOA) for modified 

three-layer neural network has been proposed. The RDOA includes three 

modifications proposed in Chapter 3. The three modifications are: “Simplification of 

activation function”, “Selection of proper initial weighting factors”, and 

“Determination of upper-bound of learning rate in each iteration”. Simplification of 

activation function will enhance the back-propagated error signal, and hence improves 

the convergence rate of dynamic optimal training algorithm (DOA). By finding proper 

initial weighting factors, the probability of escaping local minima will be increased. 

Also the finding of the upper-bound of stable learning rate can guarantee the 

convergence of training process and this will speed up the search of optimal learning 

rate. The classification problems of XOR and Iris data are proposed in Chapter 4. 

They are solved by using the revised dynamical optimal training for a modified 

three-layer neural network with sigmoid activation functions in hidden layer and 

linear activation function in output layer. Excellent results have obtained for XOR 

problem and Iris data problem, which indicate that the RDOA is considerably faster 

than DOA and BPA. In addition, the RDOA is easier to find global convergent results 

than those by using DOA and BPA. So RDOA can speed up convergence rate and has 

a higher chance of escaping local minima than the chance of DOA.
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APPENDIX  A 

In Section 3.1, we have proposed an unbounded linear activation function in the NN 

training process. In this section, we will explain the reason why it is not suitable to use 

bounded linear activation function in the NN training process. 

 

Defining an unbounded linear function as: 

( )x axϕ =  

Defining a saturated linear function as 

( ]

[ )

1 1

1 2

2 2

,  if ,
( ) ,    if ( , )

,    if ,
b

u x u
x ax x u u

u x u
ϕ

⎧− ∈ −∞ −
⎪

= ∈ −⎨
⎪ ∈ ∞⎩

 

For u1, u2 > 0, lower-bound and upper-bound are donated as u1 and u2, respectively. a  

is an adjustable parameter which means slope of the function. Usually, we set 

parameter 1a = . It is a piece-wise continuous linear function. Between u1 and u2, ( )b xϕ  

is the same as an unbounded linear activation function.  

 

Consider update rule of weighting factors in output layer 
( ,:) ( ,:)
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We only change the activation function, so the presentation of ( ,:)p
OJ V∂ ∂  and 

( ,:) ( ,:)p p
O YS W∂ ∂  is still the same as: 
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If ( ) ( )O bx xϕ ϕ= , then ( ,:) ( ,:)p p
O OV S∂ ∂  can be rewritten as 
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   (a.3) 

From (a.1), (a.2), and (a.3), we can rewrite update rule of output layer (2.42) as 
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       (a.4) 

Hence, the update rule of hidden layer (2.43) becomes to 
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From (a.4) & (a.5), we can discover that, if we use a bounded linear activation function, 

the weight matrix will not be updated in the saturation region of piece-wise linear 

function. In the saturation region, term VO
(p,:) is a constant, so its differential term is zero. 

Hence, the output of neural network will not change anymore and will make the 

network get into a steady state. Then the training process is stop. A narrow range of 

linear region will make system too early to enter a steady state; even total-square-error 

is still at a high level. A wide one is much better, but it still may make the system stop to 

update the weight matrix. Compare with sigmoid activation function, although it is also 

a saturated function, but its differential term is not zero in its saturation region. So the 

training process is capable of jumping out the local steady state which doesn’t have an 

acceptable result.  
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In a word, we can not use a saturated linear activation function; because its fixed 

boundary lets the network lose the capability of online updating when the network once 

gets stuck into saturation region. 
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APPENDIX  B 

We consider the activation function at the first (hidden) layer. Assume that we use the 

unbounded activation function in both hidden and output layer. Without boundary, the 

output of the activation function can be any real value. During the training process of 

neural network, this unlimited output may cause that the weight becomes to an 

unreasonable large value which is not acceptable in the real condition. So, a saturated 

activation function is needed in the NN. Now we assume that a saturated activation 

function has been given in the NN. 

 

From Appendix A and Section 3.2, we have already known that a saturated linear 

activation function is forbidden and second layer activation function has been corrected 

to a unbounded linear one. Hence, we can only put the saturated nonlinear activation 

function (ex: sigmoid function) in the hidden layer. 

 

 


