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Abstract 

 

In numbers of video compression standard, such as MPEG-1, MPEG-2, MPEG-4 

and H.264/MPEG-4 AVC, motion estimation requires the most computational time 

and hence dominates main power requirement in video compression. Lots of 

published papers have presented efficient algorithms for simplifying motion 

estimation. But they don’t consider the influence of the video content. In our 

observation, the video content affects on the performance of motion estimation. So we 

base on the video content to select the suitable motion estimation in order to achieve a 

stable quality for most of video content. In this thesis, we develop an adaptive motion 

estimation algorithm with variable subsample ratios and this proposed algorithm can 

adaptively select the suitable subsample ratio for each current frame. The proposed 

algorithm also has been successfully implemented in the encoder model of 

H.264/MPEG-4 AVC reference software JM9.2. Experimental results has shown the 

proposed algorithm can not only adaptively select the suitable subsample ratio to 

various video sequences but also maintain ΔPSNRY of 0.5dB at most to save about 

60.75% time for CIF sequences and 32.13% for D1 sequences of motion estimation in 

a fixed bit rate control on average. 
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隨影像內容調整之移動估測加速技術 

 

學生：陳泰佑      指導教授：董蘭榮 博士 

 

國立交通大學 

電機與控制工程學系研究所 

 

摘要 

 

 最新的影像壓縮規格中，如MPEG-1，MPEG-2，MPEG-4 and H.264/MPEG-4 

AVC，移動估測需要龐大的移動估測時間與能量消耗。因此，移動估測主導了在

影像壓縮中的計算量與能量需求。針對移動估測，很多論文已經提出了不同的快

速演算法，可是他們並沒有考慮到影像內容的影響。在我們的觀察之下，影像內

容是會對移動估測的品質有所影響的。所以，我們根據影像內容來選擇適當的移

估測演算法，在大多數的影像內容都可以達到畫質穩定的效果。在此篇論文裡，

我們發展出一種利用變動取樣率可動態調整的移動估測演算法，並且此演算法可

針對每一張畫面內容的變動而動態選擇不同的取樣率。我們提出的這個演算法已

經成功的實現在H.264/MPEG-4 AVC的軟體模型JM9.2中，實驗結果顯示這個演算

法不只可以動態的依照不同的影像內容來選擇適合的取樣率，而且可以維持最多

0.5 dB的畫質衰退，在固定的傳輸頻率下，對於CIF解析度的影片平均可以節省

60.75％的移動估測時間,而對於D1解析度的影片則平均可以節省32.13％的移動

估測時間。 
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Chapter 1 Introduction  
 

In numbers of video compression standard, such as MPEG-1 [1], MPEG-2 [2], 

MPEG-4 [3] and H.264/MPEG-4 AVC [4], motion estimation requires the most 

computational time and hence dominates main power requirement in video 

compression. Lots of published papers [5] ~ [17] and [27] ~ [35] have presented 

efficient algorithms for simplifying motion estimation. But they don’t consider the 

influence of the video content. In other words, they can not keep the quality stable for 

different video sequence. In our observation, the video content affects on the 

performance of motion estimation. So we base on the video content to select the 

suitable motion estimation in order to achieve a stable quality for most of video 

content. We think that we must use the different motion estimation in the different 

video content. By the way, we can keep quality stable and save the motion estimation 

time simultaneously. Among many fast algorithms [5] ~ [17], the subsample 

algorithms [11] ~ [17] and [27] ~ [35] can not only easily combine with other 

approaches mentioned above but also reduce numbers of matching points with 

flexibly changing subsample ratio. 

The subsample algorithm, also called the pixel decimation algorithm, in general, 

classified into two categories. One is fixed patterns [11] ~ [15], and the other is 

adaptive patterns [16] [17]. Bierling used an orthogonal sampling lattice with a 4:1 

subsample [11]. Liu and Zaccarin implemented pixel decimation that is similar to 

Bierling’s approach with four alternating subsample patterns selected for each step so 

that all the pixels in the current block are visited [12]. T.Chiang et al presented an 

N-queen decimation approach to address the spatial homogeneity and directional 

coverage [14] [15]. The pixel decimation can be adapted based on the spatial 
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luminance variation within a picture [16] [17]. The content-based subsample 

algorithm is proposed in [27] ~ [35]. Adaptive techniques can achieve better coding 

efficiency as compared to the uniform subsample schemes with an overhead in 

deciding which pattern is more representative. These presented subsample algorithms 

can successfully reduce the computational complexity of motion estimation to save 

much motion estimation time. 

The reason why we choose the adaptive subsample ratios is because we believe 

that the subsample ratios should be varying with the video content. These subsample 

algorithms [11] ~ [15] are fixed patterns and they all don’t mention the spatial 

luminance variation within a picture. They result in serious aliasing problems in high 

frequency band to degrade the visual quality without considering the spatial variation. 

The spatial variation in the video means the degree of edge complexity. The degree of 

edge complexity is larger, and the spatial variation is stronger. Although the high 

subsample ratio cause aliasing in high frequency band, the degree of spatial variation 

will affect the degree of quality degradation. If the spatial variation is strong, aliasing 

problems will degrade the validity of motion estimation and result in visual quality 

degradation to video sequences obviously. On the contrary, if the spatial variation is 

weak, aliasing problems will not degrade the validity of motion estimation although 

the high subsample ratio still cause aliasing in high frequency band. That is because 

we do not need the high frequency band information to find the motion vector when 

the degree of object-moving is slow. Hence, using lower subsample ratio to reduce the 

prediction residual is necessary when spatial variation is stronger. 

Although the subsample algorithms [16] [17] use the adaptive subsample 

patterns based on the spatial luminance variation within a picture, they don’t mention 

the temporal variation. They result in a serious problem to degrade the visual quality, 

because the motion estimation error would be propagated. If the temporal variation is 
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strong, the motion estimation results more residual. So, the encoder would let the 

quantization parameter larger to make the bit rate stable in fixed bit-rate control. In 

video compression, the big quantization parameter will result in visual quality 

degradation to video sequences obviously. On the contrary, if the temporal variation is 

weak, the visual quality degradation to video sequences is not obviously. Hence, using 

lower subsample ratio to reduce the prediction residual is necessary when temporal 

variation is stronger. In addition, scene change is a serious problem in the video 

compression. It will result a lot of residual when scene change occurs, and let 

quantization parameter rising immediately to bring out visual quality degradation 

obviously. The sudden degradation of visual quality will make the user uncomfortable, 

so we must detect the scene change phenomenon before encode one frame. We will 

propose a simple and effective method embedded in our algorithm. 

In DSP theory [18] the subsample process will induce the aliasing in high 

frequency band. The aliasing problem affects the variance of the prediction residual 

under a fixed bit-rate constraint. The variance of the prediction residual affects the 

compression quality. The quality degradation of 0.5 dB is empirically reasonable for 

the perceptual tolerance of decompressed visual quality in video coding community. 

Therefore, in order to efficiently alleviate the aliasing problem to satisfy the visual 

quality under the quality threshold of 0.5 dB for general video sequences, adaptively 

selecting the suitable subsample ratio according to the degree of spatial and temporal 

variation in the content is imperative. 
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Fig.1.1 The proposed system diagram in H.264/MPEG-4 AVC encoder 

 

In this thesis, we develop an adaptive motion estimation algorithm with variable 

subsample ratios and this proposed algorithm can adaptively select the suitable 

subsample ratio for each current frame. Before this, there has been developed a group 

of picture (GOP) layer adaptive motion estimation algorithm with variable subsample 

ratios [26]. But it is not fine enough because it can not monitor video content change 

frame by frame immediately. The proposed algorithm is first to analyze the degree of 

the content in the spatial domain and temporal domain between the current frame and 

previous frame, then we can adaptively select the suitable subsample ratio to the 

current frame according to analysis results. The proposed algorithm also has been 

successfully implemented in the encoder model of H.264/MPEG-4 AVC [4] reference 

software JM9.2 [23] and the proposed system diagram is shown in Fig.1.1. The 

dash-lined region is the proposed motion estimation algorithm and the proposed 

algorithm offers four kinds of subsample ratios to switch adaptively. We use the 

statistics science to analyze the quality degradation of every frame, zero motion block 

counts (ZMBC) and edge counts (EC). And we get several different threshold values 

to experiment. The experimental results have been shown that the proposed algorithm 
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with the optimal threshold values can not only adaptively maintain visual quality 

under the quality degradation of 0.5 dB in a fixed bit-rate control for general video 

sequences but also meaningfully achieve the target of saving motion estimation time. 

The rest of the thesis is organized as follows. We introduce the study background 

in chapter 2. In chapter 3, we describe the proposed algorithm. Chapter 4 shows the 

experimental performance of the proposed algorithm in H.264/MPEG-4 AVC [4] 

software model JM9.2 [23]. Finally, Chapter 5 concludes our contribution and merits 

of this work. 
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Chapter 2 Background 
 

In this chapter, technical overview of H.264/MPEG-4 AVC [4] will be 

introduced [19] [20]. The feature of H.264/MPEG-4 AVC [4] different from MPEG-4 

[3] will be pointed out [19] [20]. About the full-search algorithm, it is particularly 

attractive to ones who require extremely high quality. However, it requires a huge 

number of arithmetic operations and results in highly computational load and power 

dissipation. In order to reduce the computational complexity of the FSBM (full-search 

block-matching), lots of published papers [5] ~ [17] and [27] ~ [35] have presented 

efficient algorithms for motion estimation. Among these fast algorithms [5] ~ [17] and 

[27] ~ [35], the subsample algorithms [11] ~ [17] and [27] ~ [35] can not only easily 

combine with other approaches mentioned above but also reduce the number of 

matching points with flexibly changing subsample ratio. In general, the subsample 

algorithm, also called the pixel decimation algorithm, can be classified into two 

categories. One is fixed patterns [11] ~ [15], and the other is adaptive patterns [16] 

[17] and [27] ~ [35]. Adaptive techniques can achieve better coding efficiency as 

compared to the uniform subsample schemes with an overhead in deciding which 

pattern is more representative. These presented subsample algorithms [11] ~ [17] and 

[27] ~ [35] can successfully reduce the computational complexity of motion 

estimation to save much motion estimation time. 

 

2.1 H.264/MPEG-4 AVC Video Coding System 

 

H.264/MPEG-4 AVC [4] provides ultra high coding efficiency and network 

friendly functionalities. It has been a hot candidate for future video streaming and 
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communications. Fig.2.1 [21] shows that rate-distortion curve comparison of 

H.264/MPEG-4 AVC [4] with previous video coding standards. Under medium 

bit-rate, its PSNR quality outperforms MPEG-4 [3] simple profile by more than 3 dB. 

Fig.2.2 shows H.264 baseline subjective view comparison with MPEG-4 advanced 

simple profile at the specification of QCIF and bit-rate 112Kbps.  

H.264/MPEG-4 AVC [4] has such high performance because it adopts several 

novel coding tools in its algorithm design. For example, variable block size motion 

estimation, multiple reference frame motion estimation, and intra frame prediction are 

used in its prediction algorithm. In-loop deblocking filter offers good subjective view. 

The 6-tap filter is incorporated to do the quarter pixel interpolation. CAVLC 

(Context-Adaptive Variable Length Coding) and CABAC (Context-Adaptive Binary 

Arithmetic Coding) are adopted in its entropy coding design. H.264/MPEG-4 AVC [4] 

is the first video coding standard that adopts the arithmetic coding into its entropy 

design. The block diagram of H.264/MPEG-4 AVC encoder is shown in Fig.2.3. 

Video frames are captured into intra prediction and inter prediction parts. If the frame 

type is intra, the inter prediction part will be disabled. Multiple reference frames and 

variable block size motion estimation is used for inter prediction. The best mode 

among these prediction modes is chosen in the mode selection block. The input frame 

is then subtracted from the prediction and forms the residue block. The residue blocks 

are transformed by 4×4 integer DCT for luminance and 2×2 transform for 

chrominance DC coefficient. Scan and quantization procedures are then applied to the 

coefficients. The entropy coder receives these quantized coefficients and generates 

codeword. The mode information is also transformed by the mode tables and fed into 

the entropy coder. The reconstruction loop includes the dequantization, inverse 

transform and deblocking filter. Finally, the reconstruct frame is written to the frame 

buffer for motion estimation.  
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There are three kinds of profile for H.264/MPEG-4 AVC standard [4]: baseline 

profile is for real-time communication, main profile is for digital storage application, 

and x-profile is for network streaming application. In the baseline profile, B-frame is 

not used and CAVLC is adopted in entropy coding. In the main profile, B-frame 

coding is used and CABAC is adopted for entropy coding. And X-profile has all the 

features of baseline profile while B-frame coding, SI-frame coding, and SP-frame [22] 

coding are included. Although the coding performance of H.264 is good, more than 

four times of the algorithm complexity compared to MPEG-4 simple profile prevents 

its practical implementation. Several previous papers and documents have addressed 

the coding complexity of this new state of art video coding algorithm. 

 

 
Fig.2.1 Rate-distortion curve comparison of H.264/MPEG-4 AVC with previous 

standards (Excerpted from [21]) 
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Fig.2.2 Subjective view comparison of MPEG-4 ASP (left) and H.264/MPEG-4 AVC 

baseline (right) at bit-rate 112Kbps (Excerpted from [21]) 

 

Fig.2.3 Block diagram of H.264/MPEG-4 AVC encoder 

 

 Next section, we will discuss the motion estimation, it is the most important 

part in the video encoder.  

 

2.2 Block-based Motion Estimation 

 

Motion estimation is the most important component in the video encoder and it 

directly affects the encoding speed and image quality. According to statistics, it 

consumes about 70% of the whole encoding time. Therefore, a good motion 

estimation algorithm can not only reduce the temporal redundancy of video sequence 
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but also get high quality of the reconstructed images. In the H.264/MPEG-4 AVC 

standard, motion estimation involves multiple prediction modes, multiple reference 

frames, and variable block sizes to achieve more accurate prediction and higher 

compression efficiency. However, the computational load of motion estimation 

increases greatly in H.264 because of the new features. In the H.264 codec, the 

motion estimation can consume 60%~80% of the total encoding time. Much higher 

proportion can be consumed if some optimization tools e.g. rate distortion 

optimization or a larger search range is used, but it can get higher quality.  

Motion estimation of a macroblock involves finding a 16×16-sample region in a 

reference frame that closely matches the current macroblock. The reference frame is a 

previously-encoded frame from the sequence and may be before or after the current 

frame in display order. An area in the reference frame centered on the current 

macroblock position (the search area) is searched and the 16×16 region within the 

search area that minimizes a matching criterion is chosen as the ‘best match’.Fig.2.4 

 

 
Fig.2.4 Block-based motion estimation 
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In a sequence of frames, the current frame is predicted from a previous frame 

known as reference frame. The current frame is divided into macroblocks, typically 

16×16 pixels in size. This choice of size is a good trade-off between accuracy and 

computational cost. However, motion estimation techniques may choose different 

block sizes, and may vary the size of the blocks within a given frame.  

Each macroblock is compared to a macroblock in the reference frame using some 

error measure e.g. MSE (mean square error), MAE (mean absolute error), or SAD 

(sum of absolute difference) and the best matching macroblock is selected. The search 

is conducted over a predetermined search area. A vector denoting the displacement of 

the macroblock in the reference frame with respect to the macroblock in the current 

frame is determined. This vector is known as ‘motion vector’.  

When a previous frame is used as a reference, the prediction is referred to as 

forward prediction. If the reference frame is a future frame, then the prediction is 

referred to as backward prediction. Backward prediction is typically used with 

forward prediction, and this is referred to as bidirectional prediction.  

In video compression schemes that rely on interframe coding, motion estimation 

is typically one of the most computationally intensive tasks. So, the subsample 

technique can alleviate the motion estimation computational load. We discuss it in the 

next section.  

 

2.3 Subsample Technology 

 

The subsample algorithm, also called the pixel decimation algorithm, it can not 

only easily combine with other approaches but also reduce numbers of matching 

points with flexibly changing subsample ratio. In general, it classified into two 

categories. One is fixed patterns [11] ~ [15], and the other is adaptive patterns [16] 

http://stargate.ecn.purdue.edu/%7Eips/tutorials/me/motestterms.html
http://stargate.ecn.purdue.edu/%7Eips/tutorials/me/motestterms.html
http://stargate.ecn.purdue.edu/%7Eips/tutorials/me/motestterms.html
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[17]. For the fixed patterns, we can be sure that the time of the motion estimation will 

be down by subsample scale. But different patterns will case the different degree of 

quality degradations. For the adaptive patterns, can achieve better coding efficiency as 

compared to the uniform subsample schemes with an overhead in deciding which 

pattern is more representative. In the last, we present a generic subsample algorithm 

in which the subsample ratio ranges from 16:2 to 16:16. Because we believe that the 

subsample ratio should be varying with the video content. So we will apply that in the 

adaptive subsample ratio algorithm. 

 

2.3.1 The Subsample Algorithm Using Fixed Pattern 

 

Bierling used an orthogonal sampling lattice with a 4:1 subsample [11]. The 

pattern they used is the quarter pattern, shown in Fig.2.5 (b) [14]. The quarter pattern 

can save the motion estimation time for 75%. And the paper [12] uses four different 

quarter pattern to the different search area. They are based on motion-field and pixel 

subsample. They first determine a subsample motion field by estimating the motion 

vectors for a fraction of the blocks. The motion vectors for these blocks are 

determined by using only a fraction of the pixels at any searched location and by 

alternating the pixel subsample patterns with the searched locations. They then 

interpolate the subsample motion field so that a motion vector is determined for each 

block of pixels. Fig.2.6 (a) shows a block of 8×8 pixels with each pixel labeled a, b, c, 

or d in a regular pattern. We call pattern A the subsample pattern that consists of all 

the “a” pixels, as the quarter pattern. Similarly, patterns B, C, and D are the 

subsample patterns that consist of all the “b”, “c”, and “d” pixels, respectively. If only 

the pixels of pattern A are used for block matching, then the computation is reduced 

by a factor of 4. However, since 3/4 of the pixels do not enter to the matching 
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computation, the use of this subsample pattern alone can seriously affect the accuracy 

of the motion vectors. To reduce this drawback, they proposed using all four quarter 

patterns, but only one at each location of the search area and in a specific alternating 

manner. Fig.26. (b) shows some pixels forming part of the search region in the 

previous frame. The pixels are labeled 1, 2, 3, and 4 in a regular pattern. The labeling 

of the pixels refers to which of the four quarter patterns of Fig.2.6 (a) is to be used for 

computing the matching at that location. That is, when computing the match at 

locations labeled 1 (i.e., when the upper-left pixel of the block to match those 

locations), pattern A is used. Similarly, pattern B, C, or D is used when computing the 

match at locations labeled 2, 3, or 4.  

 

 
Fig.2.5 Pixel patterns for decimation. (a) Full pattern with N×N pixels selected. (b) 

Quarter pattern uses 4:1 subsample ratio. (c) Four-queen pattern is tiled with 

four identical patterns. (d) Eight-queen pattern. (c) and (d) are derived from the 

N-queen approach with N = 4 and N = 8, respectively (Excerpted from [14]) 
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Fig.2.6 (a) Patterns of pixels used for computing the matching criterion with a 4 to 1 

subsample ratio. (b) Alternating schedule of the four pixel subsample patterns 

over the search area (Excerpted from [12]) 

 

We can analyze the subsample pattern with the spatial homogeneity and 

directional coverage [14]. The spatial homogeneity is measured by the average and 

variance of spatial distances from each skipped pixel to its nearest selected pixel 

where N is the dimension of the block, and indicates the coordinates of the 

selected pixel nearest to the pixel at the position . K is the number of the selected 

pixels. Smaller 

),( yxS

),( yx

dμ  and  indicate a more spatially homogeneous sampling lattice. 

An edge is defined as a line passing through the sampling grids in any of , , 

and directions in Fig.2.5 (d). The directional coverage is measured as the 

percentage of edges that at least one of the selected pixels exists on an edge. Table 2.1 

shows that the quarter pattern has less spatial homogeneity and lacks half of the 

coverage in the specified directions. To address the issues of spatial homogeneity and 

directional coverage, the paper [14] construct a new N-queen sampling lattice Fig.2.5 

(c) and (d).  

2
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In the paper [14], to fully represent the spatial information of an N×N block, it is 

required that at least one pixel should be selected for each row, column, and diagonal. 

To satisfy such a constraint, the solution is identical to the problem of placing queens 

on a chessboard, which is referred to as N-queen pattern. For an N×N block, as shown 

in Fig 2.5 (c) and (d), every pixel of the N-queen pattern occupies a dominant position, 

which is located at the center. All the other pixels located on the four lines in the 

vertical, horizontal and diagonal directions are removed from the list of the selected 

pixels. With such elimination process, there is exactly one pixel selected for each row, 

column, and (not necessarily main) diagonal of the block. Thus, the N-queen patterns 

present a subsample lattice that can provide N times of speedup improvement. Despite 

the randomized lattice, the paper [15] designed compact data storage architecture for 

efficient memory access and simple hardware implementation for the N-queen 

patterns. 
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Table 2.1 

Comparison of the sampling lattices an 8×8 block in measuring the directional 

coverage, four orientation described in Fig 2.5 (d) are used for horizontal, vertical and 

diagonal directions, there are eight, eight, and 15 possible edges, respectively, while 

for the diagonal directions, there are 15 possible edges (Excerpted from [14]) 

Spatial homogeneity Directional coverage (θ ) Pattern 

dμ  2
dσ  

d

d
μ

σ °0  °45  °90  °135  

Full 0 0  8/8 8/8 15/15 15/15 

Quarter [11] 1.14 0.04 17.16% 4/8 4/8 7/15 7/15 

Hexagonal [13] 1.03 0.11 11.07% 4/8 8/8 12/15 12/15 

4-Queen [14] 1 0  8/8 8/8 10/15 10/15 

8-Queen [14] 1.32 0.14 28.77% 8/8 8/8 8/15 8/15 

 

2.3.2 The Subsample Algorithm Using Adaptive Pattern 

 

The approach using the fixed patterns could possibly be able to obtain a good 

estimation of motion when the intensity of the block is nearly uniform. However, in 

the case of high activity blocks, some details may be neglected. Thus, it probably 

would introduce excessive prediction error. The paper [16] is based on the fact that 

high activity in spatial domain such as edges and texture mainly contributes to the 

MAD criterion. We can vary the number of selected pixels based on the image details. 

In other words, we can use fewer pixels when the block has uniform intensity. But in 

the high activity block, more pixels can be employed for the MAD matching criterion. 

This adaptive approach [16] can reduce the prediction error compared with standard 

pixel decimation [11] ~ [15]. In the algorithm [16], they used the relationship between 
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a pixel and its neighbors to select the most representative pixels. For example in 8×8 

block size, initially, nine pixels are selected as shown in Fig.2.7 (a). The 8×8 pixel 

block is divided into nine regions, depicted in Fig.2.7 (b), and each region has its 

corresponding central pixel. In each region, the difference is defined the difference 

between central pixel and one of its neighbor pixels. If the difference is greater 

than threshold, this pixel is selected. We have used block size of 8×8 as an example 

for the description of the proposed algorithm in the paper [16]; however, the extension 

of the proposed scheme to a large block size, say 16×16, is straightforward. 

kD

kD

Kkk IkhIkhD −= ),(),( , where (h, k) is the location of the neighbor pixel in 

region K, with (h, k) as the displacements from the central pixel . kI

 

 

Fig.2.7 Adaptive pixel selection (a) Nine selected pixels. (b) The selected pixels in (a) 

are considered as the central pixel for each region, the dotted lines indicate the 

neighbor pixels of respective central pixels in each region (Excerpted from 

[16]) 
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Fig.2.8 An edge in a 16×16 block for tested the subsample algorithm [17] 

 

About the paper [16], their scheme still requires an initial uniform division of a 

block, and therefore the pattern is locally adaptive. The pixel-decimation algorithm 

proposed in the paper [17] also utilizes edge information. Compared to Chan’s 

method [16], it extends the adaptively from local to global. To realize global 

adaptively, the algorithm [17] looks directly for edge pixels instead of requiring an 

initial uniform division of a block. This task [17] is made easier in a 1-D space with 

the help of Hilbert scan [37]. The Hilbert scan was named after the great German 

mathematician Hilbert, who found the simplest family of curves (Hilbert curves) that 

pass through all the grid points only once in a 2-D space [37]. The Hilbert scan, 

defined as a scan of a 2-D image through one of its Hilbert curves, is equivalent to a 

depth-first scanning of a quad-tree representation of the 2-D image. Some interesting 

features of this scan method used in previous applications include: 1) it is easier to 

extract clusters in an image with a Hilbert scan than other scan methods, e.g., row 

scan, row-prime scan, Morton scan, etc., and 2) it preserves 2-D coherence [38] ~ [43]. 

In addition, Kamata has shown that edge information in a 2-D image is preserved in 

its 1-D Hilbert-scan sequence, and has demonstrated an effective compression of 2-D 

images by compressing their 1-D sequences using the edge information [42]. The 

compressed images have a similar visual quality to that of the JPEG images at a high 
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compression rate.  

To illustrate how edges are detected in a 1-D Hilbert sequence, Fig.2.8 shows a 

2-D block with a closed circular edge, and Fig.2.9 (a) is the 1-D Hilbert sequence 

converted from the block in Fig.2.8. If edge pixels are defined at where pixel intensity 

changes the most, 22 edge pixels can be located in Fig.2.9 (a). All of the 22 pixels, 

when mapped back to 2-D, appear evenly distributed on the circular edge as shown in 

Fig.2.9 (b). For comparison, Fig.2.9 (c) is the 1-D row sequence converted from the 

same block in Fig.2.8. Although the row sequence contains 20 edge pixels, they all 

appear at the left and right vertical portion of the circular edge, and none appear on 

the upper and lower horizontal edges, as shown in Fig.2.9 (d). In general, the Hilbert 

scan not only provides edge information with little directional preference, but also 

preserves pixel coherence more effectively than other scan methods. In contrast, row 

scan, typical of many other scan methods, may miss edges due to its scan direction. 

Based on edge information in 1-D Hilbert sequences [37], the algorithm [16] selects 

pixels at which the matching criterion is evaluated.  

 



 20

 

Fig.2.9 (a) 1-D Hilbert sequence converted from Fig.2.8. (b) Edge pixels detected 

from 1-D Hilbert sequence. (c) 1-D row sequence converted from Fig.2.8. (d) 

Edge pixels detected from 1-D row sequence (Excerpted from [17]) 

 

The paper [27] ~ [35] proposed that the general subsample algorithm has aliasing 

problem when it is in high subsample rate. The aliasing problem leads to considerable quality 

degradation because the high frequency band is messed up. To alleviate the problem, he uses 

edge extraction techniques to separate the edge pixels from a macro-block and then perform 

subsampling to the remaining pixels. 

 

 

 



 21

2.3.3 Generic Subsample Algorithm 

 

We present a generic subsample algorithm in which the subsample ratio ranges 

from 16-to-2 to 16-to-16. The basic operation of the generic subsample algorithm is to 

find the best motion estimation with less SAD computation. The generic subsample 

algorithm uses Eq.2.1 as a matching criterion, called as subsample sum of absolute 

difference (SSAD), where the macroblock size is N-by-N, R(i,j) is the luminance 

value at (i,j) of the current macroblock (CMB). The S (i+u,v+j) is the luminance 

value at (i,j) of the reference macroblock (RMB) which offsets (u,v) from the CMB in 

the searching area 2p-by-2p. SM16:2m is the subsample mask for the subsample ratio 

16-to-2m as shown in Eq.2.2 and the subsample mask SM16:2m is generated from basic 

mask as shown in Eq.2.3. When the subsample ratios are fixed at powers of two 

because of regularly spatial distribution, these ratios are 16:16, 16:8, 16:4 and 16:2 

respectively. These subsample masks can be generated in a 16-by-16 macroblock 

using Eq.2.3 and are shown in Fig.10. From Eq.2.3, given a subsample mask 

generated, the computational cost of SSAD can be lower than that of SAD calculation; 

hence, the generic subsample algorithm can achieve the target of saving the motion 

estimation time with flexibly changing subsample ratio. However, the generic 

subsample algorithm suffers aliasing problem for high frequency band. The aliasing 

problem will degrade the validity of motion vector (MV) and obviously result in 

visual quality degradation for some video sequences.  

We use the fixed subsample ratio from 16:2 to 16:16 to experiment the eleven 

CIF and five D1 video sequences [37] in H.264/MPEG-4 AVC [4] coder with JM9.2 

[23]. Here, we define one group of picture (GOP) is fifteen frames, the frame rate is 

30 frames/s, the bit rate is 128k bits/s and initial Qp is 34. We can observe the quality 

degradation of the video sequences in the Fig.2.11 and Fig.2.12. In Fig.2.11 and 
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Fig.2.12, the large quality degradation is caused at the higher subsample ratios and the 

lower subsample ratio cause small quality degradation. Hence, using lower subsample 

ratio to reduce the prediction residual is necessary when temporal variation or spatial 

variation is stronger. For those most stationary video sequences, we can use the 

highest subsample ratio to save the most motion estimation time. That is because the 

quality degradation is acceptable. 

Therefore, we can conclude that we must use the different subsample ratio to 

keep the quality degradation acceptable. It is not enough to only use the fixed 

subsample pattern for all video sequences. Next section will describe how the high 

frequency aliasing problem occurs for subsample algorithm. 
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Fig.2.10 The subsample patterns with 16:16, 16:8, 16:4 and 16:2 respectively 

 

 

Fig.2.11 The results ΔPSNRY of the CIF tested video sequences 
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Fig.2.12 The results ΔPSNRY of the D1 tested video sequences 

 

2.4 High-frequency Aliasing Problem 

 

The subsample process is like the down-sampling process in DSP theory [18]. In 

general, the operation of reducing the sampling ratio will be called down-sampling. 

Down-sampling is illustrated in Fig.2.13 We assume that the Fig.2.13 (a) is the 

conceptual spectrum of a macroblock in a frame of a video sequence. If this 

macroblock is down-sampling by 2, then his new conceptual spectrum will be 

Fig.2.13 (b). Because the original conceptual spectrum is low bandwidth and the 

down-sampling ratio is low, the aliasing don’t happen in this case. If the 

down-sampling ratio becomes 3, the aliasing will happen shown in Fig.2.13 (c). The 

aliasing in the high frequency band will case the motion estimation is no accurate. 

Aliasing problems affect the variance of the prediction residual under a fixed bit-rate 

constraint. The variance of the prediction residual affects the compression quality. 

Therefore, in order to efficiently alleviate aliasing problems to satisfy the visual 
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quality under the quality threshold of 0.5 dB for general video sequences, adaptively 

selecting the suitable subsample ratio according to the degree of spatial variation in 

the content is imperative. 

According to sampling theory, the decrease of sampling frequency will result in 

aliasing problem for high frequency band. On the other hand, when the bandwidth of 

signal is narrow, lower downsample ratio or lower sampling frequency is allowed 

without aliasing problem. When applying the generic subsample algorithm for video 

compression, for high-variation frames, the aliasing problem occurs and leads to 

considerable quality degradation because the high frequency band is messed up. 

The edge count (EC) is a good sign for the frame-level complexity detection 

because it is feasible for measurement. The large EC means that the spatial 

complexity is high. Hence, we can set low subsample ratio for large EC and high 

subsample ratio for small EC. Doing so, the aliasing problem can be alleviated and the 

quality can be frozen within an acceptable range. 

 

(a) The original conceptual spectrum 

 

(b) Down-sampling by 2 

 

(c) Down-sampling by 3 (with aliasing problem) 

Fig.2.13 Frequency-domain illustration of down-sampling (Excerpted from [18]) 
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2.5 GOP-Level Adaptive Motion Estimation with Variable Subsample 

Ratios  

 

The propose algorithm is aware of the motion-level of content and adaptively 

select the subsample ratio for each group of picture (GOP). Fig.2.14 shows the 

application of proposed algorithm. The dash-lined region is the proposed motion 

estimation algorithm and the proposed algorithm switches the subsample ratios 

according to the zero motion vector count (ZMVC). The larger ZMVC is used the 

higher subsample ratio. As the result of applying the algorithm for H.264/AVC 

applications, the proposed algorithm can produce stationary quality at the PSNR of 

0.36 dB for a given bitrate while saving about 69.6% motion estimation time for 

FSBM, and save the PSNR of 0.27 dB and 62.2% motion estimation time for FBMA.  

So, to efficiently maintain the visual quality for video sequences with variable 

motion levels, we propose an adaptive motion estimation algorithm with variable 

subsample ratios. The proposed algorithm determines the suitable subsample ratio for 

each GOP based on the ZMVC. The ZMVC is a feasible measure for indicating the 

motion-level of video. The larger ZMVC is the lower the motion-level. Fig.2.16 

shows the ZMVC of the first P-frame in each GOP for the “Table” sequence. 

Comparing with Fig.2.15, we can see that when ZMVC is large the ΔQ is little for the 

subsample ratio of 16:2. For the third and seventh GOP, ΔQ becomes high and the 

ZMVC is relatively small. Thus, the ZMVC is a good reference index to determine 

the suitable subsample ratio. 

In the procedure of the proposed algorithm, we determine the subsample ratio at 

the beginning of each GOP because the ZMVC of the first inter-frame prediction is 

the most accurate. Hence, we only calculate the ZMVC of the first P-frame for the 

subsample ratio and efficiently save the computational load of ZMVC. Note that the 
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ZMVC of the first P-frame is calculated by using 16:16 subsample ratio. Given the 

ZMVC of the first P-frame, the motion-level is determined by comparing the ZMVC 

with pre-estimated threshold values. The threshold values are decided statistically 

using popular video clips. 

To set the threshold values for motion-level detection, we first built up the 

statistical distribution of ΔQ versus ZMVC for video sequences with subsample ratios 

of 16:2, 16:4, 16:8 and 16:16. Fig.2.17 illustrates the distribution. Then, we calculated 

the coverage of given PSNR degradation ΔQ. In this paper, the given ΔQ is 0.3 dB. 

Rk,p% indicates the covered range of p% of GOPs having ΔQ less than 0.3 dB for 

subsample ratio of 16:k. Accordingly, we set the threshold values for the use of 

subsample ratios. Table 2.2 finally shows the summary of threshold values for the 

quality degradation requirement of 0.3 dB. 

About-mentioned, that is GOP level adaptive control. But it is not fine enough 

because it can not monitor video content change frame by frame immediately, and 

maintain it. If there is a very high motion in a GOP, the video content variance is very 

strong, and the GOP level technique doesn’t make sense at this time. Furthermore, 

scene change would not come up between two GOP; it could happen but not always. 

So, we change the GOP level to frame level adaptive control and consider spatial and 

temporal condition at the same time. We will propose our algorithm in the next 

chapter. 

 



 28

Current
frame

Reference
frame

Motion-level
detection

Scalable fast 
ME

MC

Choose
intra

prediction

Intra
prediction

Filter

T

Q

Q-1

T-1

Reorder

Entropy
encoder

Inter

Intra

+

+

+

-

Coded
bistream

MV

 

Fig.2.14 The proposed system diagram for H.264/AVC encoder 

 

 

Fig.2.15 The diagram of ΔQ with 16:8, 16:4, 16:2 subsample ratios for the “Table” 

sequence (Excerpted from [26]) 
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Fig.2.16 The ZMVC of the first P-frame in each GOP for the “Table” sequence 

(Excerpted from [26]) 

 

Table 2.2  
Threshold setting for different condition under the 0.3 dB of visual quality 

degradation (Excerpted from [26]) 
The condition of percentage 90% 85% 80% 75% 70% 65% 60% 

Threshold of 16:2 (Th1) 393 387 376 344 305 232 190 

Threshold of 16:4 (Th2) 368 356 344 251 239 190 49 

Threshold of 16:8 (Th3) 265 242 227 297 179 49 x 
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Fig.2.17 The statistical distribution of ΔGOPs versus ZMVC (Excerpted from [26]) 
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Chapter 3 Adaptive Motion Estimation with 

Variable Subsample Ratios in Frame Level 
 

In this chapter, we describe the proposed algorithm in detail. We use one frame 

as a process unit, and get the zero motion block count (ZMBC) and edge count (EC) 

in the current frame. We must get the two motion indices before the current frame be 

encoded, because we want to predict how the temporal variation and spatial variation 

in the current frame earlier. According to these values of ZMBC and EC, we select 

the suitable subsample ratio for the current P-frame. Then the flowchart of the 

proposed algorithm is developed in Fig.3.1. Next, we provide four subsample ratios of 

16:16, 16:8, 16:4 and 16:2 in order to let the proposed algorithm having better 

adaptive ability. The reason why to choose those subsample ratios is because they are 

symmetry and their scale is power of two. Final, we propose an adaptive subsample 

ratio threshold decision to set the compatible threshold values and get the optimal 

result. The static science is adopted in the adaptive subsample ratio threshold decision. 

We test the percentage of 95% to 60% in the statistically data of the quality 

degradation versus ZMBC and EC to get the different threshold value. From the result 

of eleven tested video sequences of CIF (352×288) resolution and five D1 (720×480) 

tested video sequences and we take the 85% result as the optimal threshold value.  

 

3.1 Proposed Algorithm Development 

 

To efficiently alleviate the aliasing problems in subsample algorithm to maintain 

the visual quality under the threshold of 0.5 dB for general video sequences, we 

propose an adaptive motion estimation algorithm using variable subsample ratios and 
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the proposed algorithm is based on the observation from Fig3.5 ~ Fig.3.10. The 

spatial variation in a frame is proportion to edge count (EC) and the temporal 

variation in a frame is in proportion to moving motion block count (MMBC), meaning 

that it is in inverse proportion to zero motion block count (ZMBC). Therefore, we use 

one frame as a processing unit and calculate the ZMBC and EC of P-frames in a 

tested video sequence. Next, we compare ZMBC and EC with threshold values to 

determine the suitable subsample ratio for the current frame. We recursively execute 

those steps above, and we can adaptively apply the suitable subsample ratio to each 

frame in the video sequence and also achieve the target of saving the motion 

estimation time. 

A flowchart of the proposed algorithm is shown Fig.3.1 and the realization 

procedure of the adaptive motion estimation algorithm using variable subsample 

ratios is as follows. 

Step 1: Setting initial value 

Set i=1. 

We set the initial value in this proposed algorithm. And the proposed algorithm 

is ready to start 

Step 2: Starting 

When starting the proposed algorithm, the ith frame of the video sequence is 

picked out and goes to Step 3. 

Step 3: Determining the current frame whether an I-frame or not 

If the current frame is an I-frame, the proposed algorithm executes intra-frame 

coding to encode the current I-frame, and the current frame goes to Step 5; otherwise, 

the current frame is a P-frame and then goes to Step 4. 

 We can recognize the I-frame in the video sequence in this step. We don’t 

change the intra-predication in the proposed algorithm. Hence, the proposed algorithm 
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uses the same intra-prediction like H.264/MPEG-4 AVC for the I-frame. 

Step 4: Adaptively selecting the suitable subsample ratio to the current P-frame 

The proposed algorithm compares ZMBC and EC of the P-frame with optimal 

threshold values to adaptively select a suitable subsample ratio and then uses this 

selected subsample ratio to execute inter-frame coding for the P-frame and then the 

current P-frame goes to Step 5. In order to guarantee the visual quality is good enough 

and can achieve the target accuracy. The priority of the compare order is to compare 

with 16:16 optimal threshold first, the second is to compare 16:8 optimal threshold, 

the third is to compare 16:4 optimal threshold and the rest use the 16:2 subsample 

ratio to encode it. The optimal thresholds are in the Table 3.1 and Table 3.2. 

Step 5: Determining the current frame whether a last frame or not 

If the current frame is the last frame, the procedure goes to Step 6; otherwise, the 

procedure sets i=i+1 and the next frame goes to Step 3. 

Step 6: Ending 

If all frames in the current video sequence are encoded, the proposed algorithm is 

finished. This video is end and all frames in the video sequence have been coded 

using the proposed algorithm in the H.264/MPEG-4 AVC [4]. 
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Fig.3.1 The flowchart of the proposed algorithm 

 

3.2 Define Two Indices ZMBC in Temporal Domain and EC in 

Spatial Domain 

 

We define the two indices which are ZMBC (zero motion block count) and EC 

(edge count). The ZMBC can reflect the video sequence spectrum in temporal domain 

and the EC can reflect that in spatial domain. In the encode system, we get the ZMBC 

and EC values before encoding, because we have to decide the subsample ratio before 

encoding. We use the higher subsample ratio for the larger ZMBC. Because of the 
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larger ZMBC means the frame has a small temporal variation with the reference 

frame. So, we choose the higher subsample ratio for it to be encoded, and we will not 

cause the error propagation problem but save the time of motion estimation 

simultaneously. On the other hand, we use the lower subsample ratio for the smaller 

ZMBC. The mechanism about how to choose the subsample ratio according to EC 

index is like the ZMBC index. We use the higher subsample ratio for the smaller EC. 

Because the smaller EC means the frame has a small spatial variation. So, we choose 

the higher subsample ratio for it to be encoded, and we will not cause the aliasing 

problem but save the time of motion estimation simultaneously. On the other hand, we 

use the lower subsample ratio for the larger EC to prevent the aliasing problem in the 

spatial domain. 

The ZMBC is the difference between current frame and reference frame. In the 

beginning, we divide a frame into several blocks. And every block is size of 16×16 

called macro-block (MB). Every current macro-block (CMB) is subtracted by the 

reference macro-block (RMB) which is at the same position in the reference frame to 

get ZMBC and we only calculate that at the position (0, 0). The basic operation to get 

the ZMBC is the sum of absolute difference (SAD). In our experience, we choose the 

threshold is 800 called ThZMBC. When a MB get the SAD is smaller than ThZMBC, it is 

very likely to be a stationary MB so we define it is a zero motion block (ZMB). And 

we calculate how many ZMB in a frame, we can get the ZMBC. The lower bound of 

ZMBC in a frame is zero, but upper bound is the same number of MB in a frame. For 

example, in CIF (352×288) resolution the ZMBC upper bound is 396 and D1 

(720×480) is 1350. 

The other index in the spatial domain is EC which is sum of all edge pixels in a 

frame. Before calculating the EC, we must to extract the edge first. We want to detect 

where is edge and where is not, so we apply a popular gradient filter called as high 
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(

pass filter (HPF) Eq.3.1 to do the edge extraction. HPF can let the higher frequency 

band pass and filter out the lower frequency band. After the procedure of edge 

extraction, we can get gradient pixel values in a frame. And use the Eq.3.2 to calculate 

the ThEC. Then the algorithm uses the ThEC value as a condition to pick the edge pixels 

produced by Eq.3.3. Finally we sum all the edge pixels in a frame to get the EC value. 
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  (Eq.3.3) 

 

 After we get the two indices ZNBC and EC, we will analyze the relation between 

quality degradation and the two indices at next section. 

 

3.3 Analyze Visual Quality Degradation with Spatiotemporal 

Condition 

 

In H.264/MPEG-4 AVC [4] encoder with JM9.2 [23] software, there is a 
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function named rate control. If we turn on this function, we can set a fixed target 

bit-rate and the encoder system will vary the Qp to fit the target bit-rate. It is a good 

approach for many portable devices and storage mechanisms. But the varied Qp 

would cause the frame quality vary together. In another word, the frame quality can 

not express itself content behavior accurate under the rate control enable. In order to 

solve this problem, we disable the rate control function, and scan the Qp from 2 to 42. 

At each Qp, we can get its own quality degradation and encoded bit-rate in a frame. 

Then we can use these two data to draw the RD curve (rate-distortion curve) in 

Fig.3.2, every frame has its own RD curve. We must to do curve fitting to get the 

quality at a constant bit-rate for these four subsample ratios. But, from the observation 

of these sample data, they are not distributed linearly, it like a logarithm scale 

distribution. So, we use logarithm scale to do the curve fitting with that like Fig3.3. In 

our simulation, we keep a constant bit-rate 128k bits/sec, and then we calculate the 

quality degradation difference between full search and other subsample ratios using 

the Eq.3.4. However, we get the quality degradation curve in a video sequence like 

Fig.3.5 and Fig.3.8. 

 

ith frame i FSME SSRQ PSNRY PSNRY  = −  (Eq.3.4) 

 

We take the video sequences “Table” and “Foreman” for examples. To 

particularly analyze the results of visual quality degradation with different subsample 

ratios for a video, the video sequences “Table” and “Foreman” are simulated in 

H.264/MPEG-4 AVC [4] coder with JM9.2 [23]. Here, we defined one group of 

picture (GOP) is fifteen frames, video sequence type is IPPP…, frame rate is 30 

frames/sec and the bit rate is 128k bits/sec. Subsample ratios are 16:8, 16:4 and 16:2 
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respectively and can be generated from Eq.2.3, We analyze the “Table” video 

sequence first. Fig.3.5 shows quality degradation results versus these subsample ratios. 

Fig.3.6 shows the ZMBC value of every frame in the “Table” video sequence, and 

Fig.3.7 shows the EC value. From Fig.3.6 , there exists the strong temporal variance 

between the 20th frame to the 105th frame, hence, the higher subsample ratios result in 

more obviously higher quality degradation. Furthermore, the 132nd frame has the 

maximum quality degradation because of scene change (Fig.3.4). To deal with that 

problem, we also can use the temporal index; the ZMBC is extremely small at this 

time. Base on our observation, in most CIF clips when scene change occur, the 

ZMBC is smaller than 10. Fig.3.2 (a) and (b) are the ZMBC of “Table” clip and the 

ZMBC of “Foreman” clip. We define it, when ZMBC is smaller than 10, the scene 

change must happen. In D1 clips, “Football” sequence is a very fast motion clip and 

its motion is not regular (Fig.3.3). The “Football” motion is sometimes fast and 

sometimes slow, so the ZMBC value in “Football” is changed seriously. So we 

consider the phenomenon is also a kind of scene change. The D1 (720×480) 

resolution is larger than CIF (352×288), it has 1350 MBs. So we choose the scene 

change threshold as 100 for all D1 clips. According that, we apply low subsample 

ratio for this frame to be encoded. From Fig.3.7, there we can detect the spatial 

variance increasing gradually the 60th frame and the 105th frame, and the higher 

subsample ratios also degrade higher and higher. About the “Foreman” tested 

sequence from Fig.3.8 , there exists the strong temporal variance between the 170th 

frame to the 195th frame and the 225th frame to the 255th frame in the Fig.3.9, hence, 

the higher subsample ratios result in more obviously higher quality degradation. From 

Fig.3.10, there exists the strong spatial variance between the 240th to the 300th frame. 

Hence, the higher subsample ratios result in higher quality degradation. So, we will 

choose the low subsample ratio to encode these frames. 
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Above-mentioned, we simulate for observation in the relation between the 

quality degradation and spatiotemporal condition. In order to simulate the adaptive 

algorithm, we must have some thresholds for according to. In the next section, a 

threshold decision for variable subsample ratios will be presented. 

 
(a)            (b) 

Fig.3.2 (a) The ZMBC of “Table” (CIF) clip (b) The ZMBC of “Foreman” (CIF) clip 

 

 
Fig.3.3 The ZMBC of “Football” (D1) clip 
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Fig.3.4 The RD curve of four subsample ratios at the 132th frame in “Table” 

sequence 

 

 

Fig.3.5 Logarithm scale curve fitting of the four RD curve 
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(a) (b) 

Fig.3.6 The scene change occurrence (a) the 131st frame of “Table” sequence (b) the 

132nd frame of “Table” sequence 

 

 

Fig.3.7 The diagram of ΔQ with 16:8, 16:4 and 16:2 subsample ratios for 

“Table” sequence with rate control disable 
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Fig.3.8 The ZMBC of the “Table” sequence 

 

 

Fig.3.9 The EC of the “Table” sequence 
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Fig.3.10 The diagram of ΔQ with 16:8, 16:4 and 16:2 subsample ratios for 

“Foreman” sequence with rate control disable 

 

 

Fig.3.11 The ZMBC of the “Froeman” sequence 
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Fig.3.12 The EC of the “Foreman” sequence 

 

3.4 Threshold Decision for Variable Subsample Ratios 

 

To support a suitable subsample ratio to each P-frame of a video sequence, an 

adaptive subsample ratio threshold decision is necessary. Therefore, we use 16:2, 16:4 

and 16:8 subsample ratios respectively to statistical distribution of ZMBC versus EC 

for the ten CIF video sequences. We do the statistical distribution don’t include the 

“Stefan” sequences data because its EC values are too large. If we include “Stefan” 

data, it would cause large variation to influence our analysis. We first set the quality 

degradation threshold is 0.3 dB. We choose the nearest and not exceed the threshold 

subsample ratio for the frame. Furthermore, we want to achieve the target of saving 

the motion estimation time. We not only satisfy above two criterions but also choose 

the highest subsample ratio for the frame. By the way, if all subsample ratios are all 

exceeding the threshold, we choose the 16:16 subsample ratio for the frame. D1 also 

use the same way. For example, in Fig.3.8 the 40th frame is applied to 16:4 subsample 
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ratio and the 190th frame is applied to 16:16. 

We take eleven CIF clips (Fig.3.11) and five D1 clips (Fig.3.12) to do the 

simulation for observation in the relation between the quality degradation and 

spatiotemporal condition. We can plot the EC-ZMBC sample space like Fig.3.13. 

Fig.3.14 to Fig.3.17 are the different four subsample ratio sample space with their 

eight circular thresholds. The center point of the circular threshold is the average 

value of all the data in the space (Eq.3.5) and the radius is positive proportion to the 

precision of the threshold decision. In the software, we first calculate all the distances 

between sample data and center point and sort all the distances up to down. According 

to thresholds and find the last point in the region. The distance of the last point from 

the center pint is the radius of the threshold. The X-axis radius is the EC value of the 

last point, and the Y-axis radius is the ZMBC of the last point. The circular threshold 

would include the percentage numbers of data according to the statistics. Table 3.1 

shows the threshold centers and radiuses in every subsample ratio for CIF sequences 

and Table 3.2 shows the threshold centers and radiuses in every subsample ratio for 

D1 sequences. Furthermore, it is well to use circle shape as the threshold, because 

every point on the threshold edge keep the same distance from the center and it is 

friendly to the software coding. 

In order to guarantee the visual quality is good enough and can achieve the target 

accuracy. The priority of the compare order is to compare with 16:16 optimal 

threshold first, the second is to compare 16:8 optimal threshold, the third is to 

compare 16:4 optimal threshold and the rest use the 16:2 subsample ratio to encode it. 

Furthermore, we draw the ranges covered by these four subsample ratios. In Fig.3.18, 

we can observe an interesting phenomenon that is the relation of subsample ratios and 

ZMBC is most closely than the relation of subsample ratios and EC. So, the circular 

thresholds would bend to ZMBC when subsample ratio lower and lower. 
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“Akiyo”    “Children”    “Dancer”     “Foreman”    “News” 

 

  “Silent”     “Table”    “Tempete”     “Waterfall”   “Weather” 

 

“Stefan” 

Fig.3.13 The eleven tested video sequences in CIF (352×288) resolution 

 

 
“Character”   “Coastguard”    “Football” 

 
“Mobile”          “Night”      

Fig.3.14 The five tested video sequences in D1 (720×480) resolution 
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Fig.3.15 EC-ZMBC sample space of ten CIF clips 
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Fig.3.16 Data and thresholds of subsample ratio 16:16 

 

 

Fig.3.17 Data and thresholds of subsample ratio 16:8 
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Fig.3.18 Data and thresholds of subsample ratio 16:4 

 

 
Fig.3.19 Data and thresholds of subsample ratio 16:2 
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Fig.3.20 The 80% threshold range for the four subsample ratios 

 

Table 3.1 
Threshold Setting of the adaptive subsample ratio threshold decision for CIF 

sequences 
The adaptive subsample ratio threshold decision of CIF sequences 

  95% 90% 85% 80% 75% 70% 65% 60%

Center point (3070.40,99.59) 

X-axis radius 4551.75 4549.88 4479.75 4432.88 4233.75 2315.59 2064.53 2002.50 Threshold of 16:16 

Y-axis radius 121.38 121.33 119.46 118.21 112.90 61.75  55.05  53.40 

Center point (5719.50,187.00) 

X-axis radius 4854.38 4427.63 4182.38 3958.50 3813.75 3536.70 3289.65 2905.61 Threshold of 16:8 

Y-axis radius 129.45 118.07 111.53 105.56 101.70 94.31  87.72  77.48 

Center point (5205.40,220.31) 

X-axis radius 8161.13 4311.38 3843.38 3639.79 3500.36 3387.49 3223.43 3077.55 Threshold of 16:4 

Y-axis radius 217.63 114.97 102.49 97.06 93.34 90.33  85.96  82.07 
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Table 3.2 
Threshold Setting of the adaptive subsample ratio threshold decision for D1 

sequences 
The adaptive subsample ratio threshold decision of D1 sequences 

  95% 90% 85% 80% 75% 70% 65% 60% 

Center point (11712 , 285.51) 

X-axis radius 10980.64 9984.48 9039.80 8086.76 7234.48 6525.20 5930.76 5195.96 Threshold of 16:16 

Y-axis radius 249.56 226.92 205.45 183.79 164.42 148.30  134.79  118.09 

Center point (31517 , 133.40) 

X-axis radius 21474.64 20619.28 19343.28 18857.08 18153.52 17105.00 16713.84 16162.96 Threshold of 16:8 

Y-axis radius 488.06 468.62 439.62 428.57 412.58 388.75  379.86  367.34 

Center point (35275 , 100.80) 

X-axis radius 27423.88 23480.16 16224.12 13332.00 11940.28 11187.00 9889.44 9202.16 Threshold of 16:4 

Y-axis radius 623.27 533.64 368.73 303.00 271.37 254.25  224.76  209.14 
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Chapter 4 Experimental Result 
 

In our simulation, the proposed algorithm is simulated in H.264/MPEG-4 AVC 

[4] with software model JM9.2 [23]. The distortion measure is sum of absolute 

difference (SAD) which is computed for a 16-by-16 macro-block. We use eleven 

famous CIF video sequences and five D1 video sequences [24] to be tested and the 

simulation environment in JM9.2 is shown as in Table 4.1. From Table 4.1, the file 

format of these video sequences is CIF (352×288 pixels) and the search range is ±16 

in both horizontal and vertical directions for a 16-16 macro-block. The bit-rate control 

is turned on to maintain a fixed bit rate of 128k bits/s under displaying 30 frames / s. 

In D1 (720×480 pixels), search range is ±64. The bit-rate control is turned on to 

maintain a fixed bit rate of 512k bits/s under the same displaying 30 frames / s. In 

Chapter 3, we proposed an adaptive subsample ratio decision to pick the suitable 

subsample ratio and the adaptive subsample ratio threshold decision support eight 

different threshold statistics between 16:16, 16:8, 16:4 and 16:2, which are shown as 

in Table 3.1 for CIF sequences and Table 3.2 for D1 sequences. To choose the 

optimal threshold values from Table 3.1 and Table 3.2, we simulate these tested video 

sequences using these subsample ratio decisions respectively in the same simulation 

condition and then analysis to decide the optimal threshold values from these 

decisions based on two factors: average quality degradation (ΔPSNRY) and average 

subsample ratio. The PSNRY is defined as Eq.4.1 where the frame size is N × M, 

 and  denote the Y components of original frame and reconstructed 

frame at (x; y). The ΔPSNRY is defined as Eq.4.2 and it means the difference of 

PSNRY which is calculated by a chosen algorithm and PSNRY calculated by using 

full-search block-matching algorithm (FSBM). 

( yxI , ( yxI ,ˆ



 53

( ) ( ) ( )( ),ˆ,1
255log10

2

2

10

YY yxIyxIMN

PSNRY
−⎟

⎠
⎞⎜

⎝
⎛

×

×=
∑∑

(Eq.4.1) 

chosen algorithm FSMEPSNRY PSNRY PSNRY= −        (Eq.4.2) 

The average subsample ratio is also defined as Eq.4.3 and it averagely estimates 

what subsample ratio can be used to execute the motion estimation for a video 

sequence. 
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Table 4.1 
Tested video sequences and simulation conditions 

Video 

Sequence 

Number 

of Frames 
Format 

Frame Rate 

(frames/s)

Bit Rate 

(bits/s)

Initial 

QP 

Search 

Range 

GOP 

Unit 

Video 

Type 

foreman 300 

table 300 

children 300 

news 300 

akiyo 300 

silent 300 

weather 300 

tempete 260 

waterfall 260 

dancer 250 

stefan 300 

CIF    

(352×288)
128k ±16 

coastguard 300 

mobile 300 

character 260 

football 260 

night 230 

D1    

(720×480)

30 

512k 

34 

±64 

15 

frames 

IPPP…

IPPP…
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To demonstrate the proposed algorithm can adaptively select the suitable 

subsample ratio to each frame in the tested video sequence, we analysis the average 

quality degradation of each frame using Eq.4.2 for the video sequences “Table” and 

“Foreman” , the results are shown in Fig.4.1 and Fig.4.2. This case is similar to 

Fig.3.5 and Fig.3.8. But Fig.4.1 and Fig.4.2 simulate in the rate control enabled and 

add the distribution of the proposed algorithm. 

From Fig.4.1, there exists the stronger temporal variation between the 30th frame 

and the 70th frame, the proposed algorithm can adaptively support the lower 

subsample ratio to efficiently reduce the ΔQ. And then, there occurs scene change 

between the 131st and the 132nd frame, the proposed algorithm detect the phenomenon 

before encoding the 132nd frame, so it will apply the full search to the ME for this 

frame. Besides, the proposed algorithm can adaptively support the higher subsample 

ratio to save the motion estimation time without affecting the ΔQ between the 110th 

frame and the 120th frame because of the weaker temporal variation. From Fig.4.2, 

there exists the stronger temporal variations between the 1st frame to the 45th frame 

and the 180th frame to the 195th frame , the proposed algorithm can adaptively support 

the lower subsample ratio to efficiently reduce the ΔQ. Besides, the proposed 

algorithm can adaptively support the higher subsample ratio to save the motion 

estimation time without affecting the ΔQ between the 240th frame and the 300th frame 

because of the weaker temporal variation. 
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Fig.4.1 The quality degradation of the proposed algorithm and generic subsample 

ratio for the CIF tested video sequence “Table” 

 

 
Fig.4.2 The quality degradation of the proposed algorithm and generic subsample 

ratio for the CIF tested video sequence “Foreman” 

 

Table 4.2 and Table 4.3 show the simulation results of PSNRY and ΔPSNRY for 

CIF tested video sequences using this threshold decision method, and Table 4.5 and 

Table 4.6 show the simulation results of PSNRY and ΔPSNRY for D1 tested video 

sequence. Table 4.4 shows the simulation results of average subsample ratio and 
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overall average subsample ratio for CIF tested video sequences using this threshold 

decision method, and Table 4.7 shows the simulation results of average subsample 

ratio and overall average subsample ratio for D1 tested video sequences. From Table 

4.2 and Table 4.3, 95% and 90% statistics of threshold decision method can satisfy all 

tested video sequences under the average quality degradation of 0.5 dB. But they 

waste the motion estimation time to gain the better quality degradation under 0.5 dB. 

We need to save the motion estimation time efficiently. Among 80% and 75% 

statistics of threshold decision method, 75% statistics cause average quality 

degradation exceeding 0.5 dB for the sequence “Dancer”. The average quality 

degradation of the sequence “Dancer” is 0.73 dB. This quality degradation is not 

acceptable. For 80% statistics, there is only “Dancer” sequence exceeding 0.5 dB, but 

it is very closely to 0.5 dB for the quality degradation 0.51 dB. In Table 4.3 and Table 

4.6, we can find all quality degradation in CIF and D1 clips would under 0.5dB 

encoded by 85% threshold values. Therefore, in order to minimize the time 

consumption of motion estimation and maintain the average visual quality under 0.5 

dB, threshold values of 85% statistics are the optimal choice for adaptively selecting 

the suitable subsample ratio.  
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Table 4.2 
Analysis of quality using adaptive subsample ratio decision for CIF tested video 

sequences 
The adaptive subsample ratio threshold decision 

95% 90% 85% 80% 75% 70% 65% 60% 

video 

sequence 

(CIF) 

full 

search 

PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY

foreman 24.97  24.89  24.89 24.87 24.84 24.82 24.56 24.50  24.48 

table 24.78  24.48  24.47 24.47 24.47 24.45 24.36 24.36  24.36 

children 22.89  22.64  22.63 22.63 22.63 22.63 22.62 22.62  22.62 

news 35.71  35.43  35.37 35.37 35.37 35.37 35.37 35.37  35.37 

akiyo 36.46  36.03  35.97 35.97 35.97 35.97 35.97 35.97  35.97 

silent 29.82  29.63  29.63 29.63 29.63 29.63 29.63 29.62  29.62 

weather 23.04  22.81  22.81 22.81 22.81 22.81 22.81 22.81  22.81 

tempete 21.40  21.04  21.04 21.02 20.99 20.97 20.82 20.75  20.75 

waterfall 26.76  26.36  26.35 26.34 26.33 26.32 26.24 26.22  26.21 

dancer 27.91  27.63  27.54 27.46 27.40 27.18 26.43 26.26  26.18 

stefan 18.88  18.57  18.51 18.45 18.14 18.07 17.66 17.29  17.24 

 
Table 4.3 

Analysis of quality degradation using adaptive subsample ratio decision for CIF tested 
video sequences 

The adaptive subsample ratio threshold decision 

95% 90% 85% 80% 75% 70% 65% 60% 
video sequence 

(CIF) 
ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY

foreman -0.08  -0.08  -0.09 -0.13 -0.15 -0.40 -0.47  -0.49 

table -0.30  -0.30  -0.31 -0.31 -0.32 -0.42 -0.42  -0.42 

children -0.25  -0.26  -0.26 -0.26 -0.26 -0.26 -0.27  -0.27 

news -0.29  -0.34  -0.34 -0.34 -0.34 -0.34 -0.34  -0.34 

akiyo -0.43  -0.49  -0.49 -0.49 -0.49 -0.49 -0.49  -0.49 

silent -0.19  -0.19  -0.19 -0.19 -0.19 -0.20 -0.20  -0.20 

weather -0.23  -0.23  -0.23 -0.23 -0.23 -0.23 -0.23  -0.23 

tempete -0.36  -0.36  -0.39 -0.41 -0.43 -0.58 -0.65  -0.65 

waterfall -0.41  -0.41  -0.42 -0.43 -0.44 -0.53 -0.54  -0.56 

dancer -0.28  -0.37  -0.45 -0.51 -0.73 -1.48 -1.65  -1.73 

stefan -0.31  -0.37  -0.43 -0.74 -0.81 -1.22 -1.59  -1.64 
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Table 4.4 
The simulation results of average subsample ratio and overall average subsample ratio 

for CIF tested video sequences 
subsample ratio 

95% 90% 85% 80% 75% 70% 65% 60% video 

sequence 

(CIF) 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

foreman 16: 13.66 16: 13.46  16: 13.09 16: 12.84 16: 12.55 16: 8.72 16: 7.84  16: 6.94 

table 16: 6.15  16: 4.61  16: 4.54 16: 4.54 16: 4.31 16: 3.03 16: 2.88  16: 2.83 

children 16: 5.69  16: 4.71  16: 4.24 16: 3.91 16: 3.79 16: 3.56 16: 3.30  16: 2.97 

news 16: 4.00  16: 2.00  16: 2.00 16: 2.00 16: 2.00 16: 2.00 16: 2.00  16: 2.00 

akiyo 16: 4.00  16: 2.00  16: 2.00 16: 2.00 16: 2.00 16: 2.00 16: 2.00  16: 2.00 

silent 16: 5.61  16: 4.26  16: 3.81 16: 3.56 16: 3.32 16: 3.01 16: 2.73  16: 2.58 

weather 16: 2.13  16: 2.00  16: 2.00 16: 2.00 16: 2.00 16: 2.00 16: 2.00  16: 2.00 

tempete 16: 8.68  16: 7.40  16: 6.80 16: 6.44 16: 5.88 16: 4.21 16: 3.82  16: 3.32 

waterfall 16: 9.36  16: 9.05  16: 8.62 16: 8.45 16: 8.19 16: 6.50 16: 6.23  16: 5.68 

dancer 16: 13.13 16: 12.69  16: 11.84 16: 11.25 16: 9.93 16: 5.29 16: 4.52  16: 4.17 

stefan 16: 11.46 16: 10.74  16: 10.13 16: 9.50 16: 8.61 16: 4.19 16: 3.58  16: 2.97 

overall 

average 

subsample 

ratio 

16: 7.62  16: 6.63  16: 6.28 16: 6.04 16: 5.69 16: 4.05 16: 3.72  16: 3.41 

 
Table 4.5 

Analysis of quality using adaptive subsample ratio decision for D1 tested video 
sequences 

The adaptive subsample ratio threshold decision 

95% 90% 85% 80% 75% 70% 65% 60% 
video 

sequence (D1) 

full 

search 

PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY

coastguard 24.47 24.43  24.39 24.39 24.37 24.31 24.28  24.27  24.27 

mobile 17.89 17.68  17.68 17.64 17.61 17.61 17.61  17.59  17.59 

character 21.92 21.83  21.76 21.70 21.48 21.33 21.17  21.16  21.05 

football 28.22 28.20  28.03 27.80 27.61 27.40 27.31  27.12  27.05 

night 25.89 25.89  25.89 25.89 25.89 25.89 25.89  25.85  25.79 
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Table 4.6 
Analysis of quality degradation using adaptive subsample ratio decision for D1 tested 

video sequences 
The adaptive subsample ratio threshold decision 

95% 90% 85% 80% 75% 70% 65% 60% 
video sequence 

(D1) 
ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY

coastguard -0.04  -0.08  -0.08 -0.10 -0.16 -0.19 -0.20  -0.20 

mobile -0.21  -0.21  -0.25 -0.28 -0.28 -0.28 -0.30  -0.31 

character -0.09  -0.16  -0.22 -0.44 -0.59 -0.75 -0.76  -0.87 

football -0.02  -0.19  -0.42 -0.61 -0.82 -0.91 -1.10  -1.17 

night 0.00  0.00  0.00 0.00 0.00 0.00 -0.04  -0.10 

 
 

Table 4.7 

The simulation results of average subsample ratio and overall average subsample ratio 

for D1 tested video sequences 

subsample ratio 

95% 90% 85% 80% 75% 70% 65% 60% video 

sequence 

(D1) 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

average 

subsample 

ratio 

coastguard 16: 14.74 16: 14.35  16: 13.22 16: 11.89 16: 10.35 16: 8.69 16: 7.88  16: 6.30 

mobile 16: 10.32 16: 9.57  16: 8.91 16: 8.36 16: 8.03 16: 7.79 16: 7.67  16: 7.44 

character 16: 10.11 16: 8.35  16: 7.63 16: 6.43 16: 5.99 16: 4.37 16: 3.78  16: 3.69 

football 16: 15.18 16: 14.68  16: 13.70 16: 12.32 16: 10.02 16: 7.72 16: 6.85  16: 6.50 

night 16: 16.00 16: 16.00  16: 15.96 16: 15.90 16: 15.70 16: 15.11 16: 14.18  16: 12.33 

overall 

average 

subsample 

ratio 

16: 13.27 16: 12.59  16: 11.88 16: 10.98 16: 10.02 16: 8.74 16: 8.07  16: 7.25 
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After choosing the optimal threshold values between 16:16, 16:8, 16:4 and 16:2, 

we compare the proposed algorithm using the optimal threshold value with generic 

subsample ratio algorithms. The PSNRY and ΔPSNRY of the proposed algorithm and 

generic subsample ratio algorithm are shown in Table 4.8, Table 4.9 for CIF 

sequences and Table 4.10, Table 4.11 for D1 sequences. Fig.4.3 and Fiig.4.4 are 

similar with Fig.2.11 and Fig.2.12 respectively. Fig.4.3 and Fig.4.4 add the location of 

the proposed algorithm with the optimal threshold value. We can easily observe the 

relation between the generic subsample ratio algorithm and the proposed algorithm 

with the optimal threshold value. For Fig.4.3, the maximum quality degradation of 

these tested sequences is 2 dB. It happens in “Dancer” sequence using the 16:2 

generic subsample ratio. For Fig.4.4, the maximum quality degradation of these tested 

sequences is 2.83 dB. It happens in “Football” sequence using the 16:2 generic 

subsample ratio. For Fig.4.4, the proposed algorithm adaptively maintains ΔPSNRY 

the threshold of about 0.74 dB for “Football” sequence, the large quality degradation 

is because “Football” sequence is a temporal variation tested sequence and subsample 

algorithm is sensitive on temporal variation. However, the quality degradation is large 

but it reduced more computational time than fixed subsample ratio algorithm. From 

Fig.4.3, the proposed algorithm can adaptively maintain ΔPSNRY under the threshold 

of about 0.5 dB and has higher subsample ratio to substantially save the motion 

estimation time than the generic subsample ratio algorithm under the same ΔPSNRY 

for tested video sequences. There are three tested video sequences “News”, ”Akiyo” 

and ”Weather”, are using the 16:2 subsample ratio to be encoded, their quality 

degradations also under 0.5 dB because their video contents are very statically. The 

optimal threshold value can make the quality degradation of all video sequence to 

keep under 0.5 dB. That will save the maximum time of motion estimation. 
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Table 4.8 
The PSNRY of the proposed algorithm and generic subsample ratio algorithm for CIF 

tested video sequences 

16:16 

subsample 

ratio 

16:14 

subsample 

ratio 

16:12 

subsample 

ratio 

16:10 

subsample 

ratio 

16:8 

subsample 

ratio 

16:6 

subsample 

ratio 

 16:4 

subsample 

ratio 

16:2 

subsample 

ratio 

proposed 

algorithm 

method (85%)

video 

sequence 

(CIF) 

PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY 

foreman 24.97  24.80  24.63 24.43 24.27 24.14 24.08 24.05  24.87  

table 24.78  24.68  24.61 24.53 24.38 24.26 24.25 24.24  24.47  

children 22.89  22.81  22.76 22.70 22.66 22.63 22.60 22.59  22.63  

news 35.71  35.68  35.61 35.57 35.52 35.46 35.43 35.37  35.37  

akiyo 36.46  36.42  36.32 36.30 36.28 36.19 36.03 35.97  35.97  

silent 29.82  29.76  29.69 29.66 29.64 29.64 29.63 29.62  29.63  

weather 23.04  22.99  22.95 22.90 22.88 22.82 22.81 22.81  22.81  

tempete 21.40  21.27  21.14 20.98 20.85 20.78 20.76 20.75  21.02  

waterfall 26.76  26.63  26.50 26.32 26.22 26.21 26.20 26.19  26.34  

dancer 27.91  27.71  27.52 27.26 26.94 26.49 25.95 25.90  27.46  

stefan 18.88  18.74  18.56 18.30 18.13 17.86 17.49 17.29  18.45  

 
Table 4.9 

The ΔPSNRY of the proposed algorithm and generic subsample ratio algorithm for 
CIF tested video sequences 

16:14 

subsample 

ratio 

16:12 

subsample 

ratio 

16:10 

subsample 

ratio 

16:8 

subsample 

ratio 

16:6 

subsample 

ratio 

16:4 

subsample 

ratio 

16:2 

subsample 

ratio 

proposed 

algorithm 

method (85%)

video 

sequence 

(CIF) 
ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY 

foreman -0.17  -0.34  -0.53 -0.70 -0.83 -0.88 -0.91  -0.09  

table -0.10  -0.17  -0.25 -0.40 -0.52 -0.53 -0.54  -0.31  

children -0.07  -0.13  -0.19 -0.23 -0.26 -0.29 -0.30  -0.26  

news -0.03  -0.10  -0.14 -0.19 -0.25 -0.29 -0.34  -0.34  

akiyo -0.04  -0.14  -0.16 -0.18 -0.27 -0.43 -0.49  -0.49  

silent -0.06  -0.13  -0.16 -0.18 -0.19 -0.19 -0.20  -0.19  

weather -0.05  -0.09  -0.13 -0.16 -0.22 -0.23 -0.23  -0.23  

tempete -0.13  -0.27  -0.42 -0.55 -0.62 -0.65 -0.65  -0.39  

waterfall -0.13  -0.26  -0.44 -0.54 -0.55 -0.56 -0.57  -0.42  

dancer -0.19  -0.39  -0.65 -0.97 -1.42 -1.96 -2.00  -0.45  

stefan -0.14  -0.32  -0.58 -0.75 -1.02 -1.39 -1.59  -0.43  
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Table 4.10 

The PSNRY of the proposed algorithm and generic subsample ratio algorithm for D1 
tested video sequences 

generic 

16:16 

subsample 

ratio 

generic 

16:14 

subsample 

ratio 

generic 

16:12 

subsample 

ratio 

generic 

16:10 

subsample 

ratio 

generic 

16:8 

subsample 

ratio 

generic 

16:6 

subsample 

ratio 

generic 

16:4 

subsample 

ratio 

generic 

16:2 

subsample 

ratio 

proposed 

algorithm 

method 

(85%)

video 

sequence 

(D1) 

PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY PSNRY

coastguard 24.47  24.40  24.35 24.33 24.31 24.25 24.25  24.24  24.39 

mobile 17.89  17.82  17.73 17.65 17.58 17.54 17.53  17.53  17.64 

character 21.92  21.71  21.52 21.33 21.17 20.96 20.74  20.66  21.70 

football 28.22  27.70  27.20 26.68 26.21 25.70 25.47  25.69  27.80 

night 25.89  25.65  25.42 25.24 25.08 24.91 24.78  24.77  25.89 

 
Table 4.11 

The ΔPSNRY of the proposed algorithm and generic subsample ratio algorithm for D1 
tested video sequences 

generic 

16:14 

subsample 

ratio 

generic 

16:12 

subsample 

ratio 

generic 

16:10 

subsample 

ratio 

generic 

16:8 

subsample 

ratio 

generic 

16:6 

subsample 

ratio 

generic 

16:4 

subsample 

ratio 

generic 

16:2 

subsample 

ratio 

proposed 

algorithm 

method 

(85%) 

video 

sequence 

(D1) 

ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY ΔPSNRY

coastguard -0.07  -0.12  -0.15 -0.17 -0.22 -0.22 -0.23  -0.08 

mobile -0.08  -0.16  -0.24 -0.31 -0.35 -0.36 -0.36  -0.25 

character -0.20  -0.40  -0.58 -0.75 -0.96 -1.18 -1.26  -0.22 

football -0.52  -1.02  -1.54 -2.01 -2.52 -2.75 -2.83  -0.42 

night -0.24  -0.47  -0.65 -0.81 -0.98 -1.11 -1.12  0.00  
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Fig.4.3 The results ΔPSNRY of CIF tested video sequences and the proposed 

algorithm results location 

 

 
Fig.4.4 The results ΔPSNRY of D1 tested video sequences and the proposed 

algorithm results location 
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The subsample algorithm, also called the pixel decimation algorithm. In general, 

it classified into two categories. One is fixed patterns [11] ~ [15], and the other is 

adaptive patterns [16] [17]. For the subsample algorithm using fixed patterns [11] ~ 

[15], they have to choose the only subsample pattern. In our Experimental Result, it is 

obvious that the only fixed subsample pattern is not suitable for every video sequence.  

Although the subsample algorithm using the fixed pattern to make sure the 

consumption of motion estimation time is low, they can not keep the quality 

degradation of all video sequence under 0.5 dB. If we want to keep the quality 

degradation of all video sequence under 0.5 dB using the fixed pattern, we have to 

choose the subsample ratio of 16:12. Because the worse case is the “Dancer” video 

sequence shown in Fig.4.3. In order to make the quality degradation of “Dancer” 

under 0.5 dB, we choose the 16:12 fixed subsample ratio. But it is waste the motion 

estimation time to using the 16:12 fixed subsample ratio in other video sequences 

which have static contents. Therefore, we have to using the adaptive subsample ratios 

in all video sequences. In our proposed algorithm with the optimal threshold value, it 

is achieved the best tradeoff between the quality degradation and the motion 

estimation time. It can keep the quality degradation under 0.5 dB, and save the 

maximum motion estimation time at the same time.  
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Chapter 5 Conclusion 
 

We believe that the subsample ratios should be varying with the video content, so 

we choose the adaptive subsample ratios. In this thesis, an adaptive motion estimation 

algorithm with variable subsample ratios has been presented. This proposed algorithm 

can adaptively select the compatible subsample ratio for each frame. The proposed 

algorithm is first to analyze the spatial variation degree in the current frame and the 

temporal variation between the current frame and the reference frame ,and then 

adaptively selects the suitable subsample ratio to the current frame according to 

analysis result. This proposed algorithm has been successful implemented in H.264 

with software model JM9.2 [23]. An adaptive subsample ratio threshold decision is 

used to set the compatible threshold values and get the optimal result. The static 

science is adopted in the adaptive subsample ratio threshold decision. Experimental 

results has shown that the proposed algorithm can not only adaptively select the 

suitable subsample ratio to various video sequences but also maintain ΔPSNRY of 

0.5dB at most to save about 60.75% time for CIF sequences and 32.13% for D1 

sequences of motion estimation in a fixed bit rate control on average.  

Furthermore, the algorithm can also easily combine with other fast algorithms 

which reduce the computational complexity of FSBM and improve fast algorithms to 

reduce more computational time. Hence the proposed algorithm is suitable for 

real-time implementation of high quality and power-saving video applications in the 

future. 
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