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摘要 

 
 

當人們在工作中或是在駕駛的環境中，打瞌睡常常是造成意外事故最常見的

因素。而以眼睛的開閉狀態為基礎的瞌睡偵測系統，最重要的便是精確的眼睛偵

測。在本篇論文中，我們提出從一張人臉影像中偵測出眼睛位置的演算法。在昏

睡偵測或人臉辨識的系統中，當被偵測者有佩帶眼鏡或太陽眼鏡，除了太陽眼鏡

本身色度會影響眼睛的偵測，也常常會因為有反光在眼鏡鏡片上產生，而使得偵

測系統偵測失敗。所以如何消除太陽眼鏡帶來的干擾以及從這些鏡片上將反光正

確地去除或分離是相當重要的問題。在此，我們使用影像增強的技術以及將鏡片

上的反光去除或分離的方法，來改善這些情況的發生。如何將一張輸入的影像正

確分離成反光與非反光兩個部分是非常困難的問題，因為缺乏有關所見影像的額

外資訊的限制條件，分離的結果可能會有無數種組合發生。我們提供一種簡單的

演算法來執行這種分離。給定一張有反光的影像當作輸入，演算法會將此輸入分

解成兩張影像，而使得所分解出來的兩張影像，它們具有最少的角和邊緣的數量

總和；這個方法在從有反光的單張影像上做出正確的分離，是相當有效的。圖片

上有反光的眼鏡的區域也是類似上述的情況，所以我們將上述的原理應用在眼鏡

的反光去除。 
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ABSTRACT 
 
 

Drowsiness is often one of the most important factors causing accidents on 

various occasions such as work fields and vehicle driving. For drowsiness 

detection system based on the states of eyes, accurate eye detection is the most 

important. For a given face image, we present an algorithm to detect the eye 

location automatically. In drowsiness detection or face recognition systems, in 

addition to the effect caused by sunglasses, the detection also often fails from the 

reflections on the wearing glasses or sunglasses. Therefore, eliminating the 

interference caused by sunglasses, and removing or separating the reflections from 

the glasses are very important for drowsiness and face detections. In thesis, we 

utilize an image enhancement technique and an approach which can separate the 

reflections on the glasses to improve the problems above. How to decompose a 

single input image into reflection and non-reflection images correctly is very 

difficult because of the absence of additional knowledge or constraints about the 
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scene being viewed. There will be an infinite number of valid decompositions. We 

describe an algorithm that uses a simple implementation to perform the 

decomposition. Given a single image with reflection as input, the algorithm 

searches for a decomposition into two images that minimize the total amount of 

edges and corners of the two images. The approach is effective to obtain quite 

correct separations on reflection scenes using only a single image. In a similar 

manner, we apply our method to the reflection removal on glasses. 
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Chapter 1  

Introduction 
 

 

Eye detection plays an important role in various applications such as human or 

face recognition, eye gaze detection, drowsiness detection, and so on. In these 

applications, we particularly aim at drowsiness detection system in dealing with 

eyeglasses interference problem. Many traffic accidents happen due to a diminished 

driver’s vigilance level every year. Driver fatigue is a significant factor in these 

accidents. Drivers with a diminished alertness level suffer from a heavy slump in their 

abilities of dangers detection and vehicle control, and therefore serious dangers often 

occur. Statistics show that a primary cause for fatal traffic accidents is due to drivers 

with a diminished vigilance level. In the trucking industry, fatal truck accidents are 

often due to driver fatigue. This is a serious problem for driver safety. As a result, 

systems which can effectively monitor a driver’s level of vigilance and warn the 

drivers of the danger arise from drowsiness are essential for preventing traffic 

accidents. Systems for drowsiness detection based on the Long Duration Blink 

Frequency (LDBF) and the PERcentage of eyelid CLOSure (PERCLOS) are 

commonly used [1]–[4]. In these systems, accurate eye detection is quite important. 

We not only pay attention to eye detection but also further consider the condition that 

drivers wear glasses or sunglasses and utilize some techniques to eliminate the 

interference in eye detection. Moreover, reflections on glasses also interfere with eye 

detection significantly. We attempt to adopt some techniques to deal with this 

condition as well. 
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1.1  Motivation                                                          

 

Eye detection has been a topic of general research in computer vision for many 

applications such as face recognition and drowsiness detection in recent years. 

Drowsiness detection for a driver is one of the important subjects among these 

applications. For drowsiness detection based on eye features, accurate eye detection is 

significantly essential to the system. However, when a driver wears eyeglasses or 

sunglasses, the system often cannot detect the eye position accurately because the 

frame of glasses overlapped with eyes. Besides, the reflectance property of glasses 

differs significantly from that of human skin. Sometimes the reflection on the glasses 

is the brightest area on face region and even covers up the eyes. An unsuccessful 

drowsiness detection often follows an imperfect eye detection and then may lead to a 

traffic accident if the system was installed in a car. 

For more perfect eye detection, there are many conditions we have to consider. 

Sunglasses and reflections are critical interferences so that some methods must be 

developed to overcome these barriers. Sunglasses region must be enhanced so that the 

detection of eyes could be more accurate. When there are reflections on sunglasses, 

they must be removed to avoid interfering the detection as well. Consequently, 

researches for these purposes are quite essential subjects. 

 

 

1.2 Face Detection and Eye Detection Module 

 

Many methods or algorithms have been proposed for face detection in the recent 

years. Hjelmas [5] did a comprehensive survey on this subject, listing more than two 

hundred references. These approaches utilize techniques such as principal component 
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analysis, neural networks, machines learning, information theory, geometrical 

modeling, (deformable) template matching, Hough transform, motion extraction, and 

color analysis. One of the most popular face candidate extraction methods is to extract 

a skin-tone region in color images [6]–[9]. 

It is a important feature that human faces have a special color distribution that 

differs significantly from those of the background objects. Therefore, we use colors of 

input images as a feature [6] to identify the face region of a human. First we locate the 

face region, and then try to find the eye region such that eye features could be used for 

some applications, e.g. drowsiness detection. In [10]–[12], there is a brief explanation 

of the eyeball detection procedure.  

After locating the face region, preprocessing is first performed to binarize the 

facial image and then remove noises, which makes it possible for the image to be 

accepted easily by the image processor. 

The maximum width of the face is then detected so that the right and left 

boundaries of the face can be found. After the right and left boundaries of the face 

was determined, the vertical position of each eye is detected respectively within an 

area defined by the center line of the face width and lines running through the 

outermost points of the face. After that, the region within which each eye locates 

could be determined. 

 

 

1.3 Eye Detection with sunglasses 

 

When drivers wear sunglasses, the visibility of eyes often becomes weaker, and 

the detection for eyes often fails. Image enhancement techniques are needed to solve 

this problem. Many methods for image enhancement have been proposed. Among 
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some famous methods, a method named as retinex is popular and used for many 

image applications. We will introduce this image enhancement method and apply it to 

solve the interference caused by sunglasses. Eyes in the region processed by this way 

are enhanced and are more distinct. As a result, the detection for eyes will be more 

accurate. 

 

 

1.4 Reflection Separation  

 

Many methods have been developed to separate reflections. Wolff and Boult [13] 

and Nayar et al. [14] used a polarizing filter to identify pixels that had a specular 

reflection component. In [15] and [16], two photographs of the same scene were taken 

with a different polarizing filter. The filter attenuates the reflection in different 

amounts and it is possible to decompose the images by using ICA on the two input 

images. Generally, methods using polarizing filters are sufficiently accurate to 

separate reflection components; however, using such additional devices is impractical 

in some circumstances. Another method to decompose images by analyzing a movie 

sequence in which the reflection and the non-reflected images have different motions 

is mentioned [17]–[19]. Other methods using multiple images can be found in the 

literature [20], [21]. 

When the area of reflections on the sunglasses is smaller, we can view these 

reflections as noises, and consider some noise removal methods to eliminate them. 

There are many smoothing methods used to eliminate noises from images. An image 

smoothing method using bilateral filters have been proposed in [22]. This smoothing 

method is helpful to eliminate the small reflections on sunglasses. 

If the areas of reflections on glasses or sunglasses are bigger, the noise removal 
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methods do not avail against eliminating them. Therefore, there are some other 

approaches should be considered to address these conditions. To overcome these 

conditions, many methods have been proposed as above. We are more interested in 

those ones based on image processing techniques. A user assisted separation of 

reflections from a single image method was proposed by Levin and Weiss [23]. 

Nevertheless, decomposing an input image from a single image automatically may be 

more attractive and effective to a drowsiness detection system. Therefore, a method 

proposed in [24] may be useful to separate reflections for a real time drowsiness 

detection system. We will introduce this method and adopt it to deal with images with 

reflections. In this method, a concept of viewing scenes through transparent glass is 

mentioned, and an algorithm that uses a simple form of prior knowledge is used to 

perform the separation of reflections from images. 

 

 

1.5 Thesis Outline 

 

The functions of eyeball detection comprise the first half segment of this thesis. 

We adopt some techniques to deal with the interference caused by sunglasses as well. 

In the second half, some reflection removal and separation techniques are adopted to 

eliminate the reflections on sunglasses. 

The contents of this thesis are organized as follows. In Chapter 2, the face 

location detection will firstly be described, and then the eye position detection follows. 

Then the detection will be extended to drivers wearing sunglasses. An image 

enhancement method will be introduced and then applied to the sunglasses region to 

enhance the visibility of eyes. In Chapter 3, reflection separation methods are referred 

and adopted to deal with the reflections with bigger areas. In Chapter 4, we do some 
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simulations and show our experimental results of the methods utilized in this paper. 

Some discussions about the experimental results are given as well. In the end, we 

make some conclusions and discuss future works for advances in Chapter 5. 
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Chapter 2 

Face and Eye Detection  
 

 

2.1  Introduction 

 

For drowsiness detection, it is necessary to preprocess the captured image 

sequences for a subject. The preprocessing operation includes face detection and eye 

detection. Eye area detection will be useful to estimate the degree of eye openness. 

Consequently, an accurate detection for face and eyes is very essential for drowsiness 

detection system. Here we adopt a method proposed by Chai et al. [6]. This method 

involves a fast, reliable, and effective algorithm that utilizes the spatial distribution 

characteristics of human skin color. Based on the special spatial distribution of the 

detected skin-color pixels, the algorithm employs a set of regularization processes to 

reinforce regions of skin-color pixels that are more likely to belong to the facial 

regions and eliminate those that are not. 

 

 

2.2  Face Segmentation Algorithm 

 

The algorithm in [6] is an unsupervised segmentation algorithm, and hence no 

manual adjustment of any design parameter is needed in order to suit any particular 

input image. This algorithm is very robust and effective to detect sundry human faces. 

The only principal prerequisite is that the person’s face must be present in the given 

image, since we are locating the face rather than detecting whether there is a face. The 
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algorithm we use for face segmentation consists of four stages, as outlined in figure 

2.1. The face segmentation algorithm is within the frame composed of dotted lines. 

 

 

Input Image: An Image Including A Face

Color 
Segmentation

Density 
Regularization

Geometric 
Correction 

Contour 
Extraction 

Output Image: Segmented Facial Region
 

Fig. 2.1.  Outline of face-segmentation algorithm. 

 

 

A. Color Segmentation 

 

In this stage, it is important to choose an appropriate color space for modeling 

human skin color. Application and effectiveness for face segmentation are two factors 

we have to consider. Here we use the YCbCr color space. The reason is as follows. 

First, an effective use of the chrominance information for modeling human skin color 
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can be achieved in this color space. Second, this format is typically used in video 

coding, and therefore the use of the same color space for segmentation will avoid the 

extra computation required in conversion. 

The first stage of the algorithm is to classify the pixels of the input image to skin 

region and non-skin region. We first convert the RGB color space of input image into 

the YCbCr color space according to the transformation given in Eq. (2.1), and then 

refer to a skin-color reference map in YCbCr color space for this task. We denote  

rCR  and 
bCR  as the ranges of  and  values respectively that correspond to 

skin color. The ranges have tested are 

rC bC

[ ]133, 173
rCR =  and [ ]77, 127

bCR =  for this 

paper. With the skin-color reference map, we can get the color segmentation result 

AO  as             

        ( ) ( ) ( )1, if , ,
,

0, otherwise                                  
r br C b

A

C x y R C x y R
O x y

⎧
C⎡ ⎤⎡ ⎤∈ ∈⎪ ⎣ ⎦ ⎣ ⎦= ⎨

⎪⎩

∩
      (2.1) 

where x = 0, … , M and y = 0, … , N. A pair (x, y) represents the coordinate of a pixel 

in the input image. M, N are the height and width of the input image respectively. Fig. 

2.3 shows an example to illustrate the classification of the original image given in  

Fig. 2.2. 

    The result of color segmentation is the detection of pixels in a facial region and 

may also include other areas where the chrominance values coincide with those of the 

skin color coincidentally. As seen in Fig. 2.2, the chrominance values of some part of 

hair in the upper right of the image are consistent with skin color, and therefore those 

pixels are classified to the skin region falsely. Hence the successive operating stages 

of the algorithm are used to remove these non-facial areas as described below. 
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Fig. 2.2.  Original image. 

 

 

 

 

  
Fig. 2.3.  Image after color segmentation by skin-color map in stage A. 
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B. Density Regularization 

 

This stage considers the bitmap produced by the preceding stage to contain the 

facial region that is corrupted by noise. The noise may be small holes on the facial 

region due to undetected facial features such as eyes, mouth, and even glasses. It may 
also appear as objects with skin-color appearance in the background scene. This 

stage performs simple morphological operations such as dilation to fill in any small 

hole in the facial region and erosion to remove any small object in the background 

scene. To distinguish facial region form non-facial region, we first need to identify 

regions of the bitmap that have higher probability of being the facial region. For this 

task, a density map is calculated as follows.  

( ) (
3 3

0 0
, 4 ,  A

i j
D x y O x i j

= =
)4y= + +∑∑                  (2.2) 

It first partitions the output bitmap of stage A OA(x, y) into non-overlapping 

groups of 4×4 pixels, then counts the number of skin-color pixels within each group 

and assigns this value to the corresponding point of the density map. 

According to the density value, we classify each pixel into one of three clusters, 

namely, zero (D = 0), intermediate (0 < D < 16), and full (D = 16). Fig. 2.4 shows the 

density map of the output bitmap of stage A shown in Fig. 2.3 with three density 

classifications. The point of zero density is shown in white, intermediate density in 

yellow, and full density in black. A group of points with white color will likely 

represent a non-facial region, while a group of black points will signify a cluster of 

skin-color pixels and a high probability of belonging to a facial region. Points with 

intermediate density values and therefore shown in yellow will probably indicate the 

presence of noise. 
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After the density map is derived, we can then begin the process that we termed as 

density regularization. This includes the three steps as below. 

1) Discard all points at the edge of the density map, i.e., set D(0, y) = D(M/4–1, y) = 

D(x, 0) = D(x, N/4–1) for all x = 0, 1, …, M/4–1 and y = 0, 1, …, N/4–1. 

2) Erode any full-density point (i.e., set to zero) if it is surrounded by less than five 

other full-density points within its local 3×3 neighborhood. 

3) Dilate any point with either zero or intermediate density (i.e., set to 16) if there 

are more than two full-density points within its local 3×3 neighborhood. 

 

Processed by density regularization, the density map is converted to the output 

bitmap of stage B as  

 ( ) ( )1, if , 16
,

0,  otherwiseB
D x y

O x y
⎧ =

= ⎨
⎩

                (2.3) 

for all x = 0, 1, …, M/4–1 and y = 0, 1, …, N/4–1. The result of the bitmap in Fig. 2.3 

processed after stage B is shown in Fig. 2.5. 

 

 

 

 

Fig. 2.4.  Density map of Fig. 2.3 after classified to three classes. 
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Fig. 2.5.  Result of Fig. 2.3 produced by stage B. 

 

 

C. Geometric Correction 

 

After stage B, there may be still some fragmented areas in the output bitmap. In 

order to eliminate or mend these areas, we adopt some methods of geometric 

correction. In this stage, we performed a horizontal and vertical scanning process to 

identify the presence of any odd structure in the preceding bitmap obtained from stage 

B, OB(x, y), and subsequently removed it. This is to ensure that we can obtain a 

correct geometric shape of the facial region. First, we use a technique similar to that 

introduced in stage B to further remove any more noise. A pixel in OB(x,y) with a 

value of one will remain as a detected facial pixel if there are more than three other 

pixels with the same value in its local 3×3 neighborhood. Simultaneously, a pixel in 

OB(x,y) with a value of zero will be reconverted to a value of one (i.e., as a potential 

pixel of the facial region) if it is surrounded by more than five pixels with a value of 

one in its local 3×3 neighborhood.  

A bitmap of well-detected facial region should look continuous, and therefore 

any short run of pixels with the value different from the detected facial region should 

unlikely belong to this region. As a result, next to the process above, we then begin 

the horizontal scanning process on the filtered bitmap. We search for any short 

continuous run of pixels which are assigned with the value of one. Any group of less 
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than four horizontally connected pixels with the value of one will be eliminated and 

assigned to zero. A similar process is then performed in the vertical direction. After 

all processes in this stage, the output bitmap should contain the facial region with 

minimal or even no noise, as shown in Fig. 2.6. 

 

 

 
Fig. 2.6.  Output of the bitmap produced by stage C. 

 

 

D. Contour Extraction 

 

In this stage, we convert the output bitmap of stage C back to the original 

dimension of the extracted face region from stage A. To achieve the increase in 

spatial resolution, we utilize the edge information that is already made available by 

the color segmentation in stage A. Therefore, all the boundary points in the previous 

bitmap will be mapped into the corresponding group of 4×4 pixels with the value of 

each pixel as defined in the output bitmap of stage A. The output of this final stage of 

the algorithm is shown in Fig. 2.7. 
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Fig. 2.7.  Image produced by stage D. 

 
 
 
 

2.3  Eye Position Detection 

 

After the face region of a input image is located, we then try to extract the eye 

position such that we could measure eye features for applications such as drowsiness 

detection and so on. Many methods have been proposed to find the eye position such 

as using a circle-frequency filter to find a candidate “between-eyes” in [25] proposed 

by Kawato et al. For the general purpose to every user without database, we adopt a 

simple method to implement the detection for eye position. 

In order to determine the eye position, the maximum width of the face on the 

input image must be estimated first. Then based on the fact that the eyeball is about 

one-fourth of the facial width, we can easily obtain the lateral eye position on the face. 

The details of the process are summarized in Fig. 2.8. We consider the gray scale of 

an input image and then draw two vertical lines, or more if necessary, around 

one-fourth of the facial width. As shown in Fig. 2.8(a), one line aX  does not cross 
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the bulb of the eye and another line bX  does. Fig. 2.8(b) depicts the changes in the 

gray scale values along line aX  of Fig. 2.8(a). Likewise, the changes in the gray 

scale values along line bX  are shown in Fig. 2.8(c).  

Observing Fig. 2.8(a), along these two lines we can find that there are two darker 

candidates which are expected to have lower gray-level values. As the gray-level 

value falls to the local minimum, it may correspond to the position where the eyebrow 

or eyeball possibly locates. Since the eyebrow corresponds to a lower gray value, 

from Figs. 2.8(b) and 2.8(c), we can infer that the valleys  and 1A 1B  are the 

positions of eyebrow crossed by the two lines aX  and bX  respectively. It is also 

known that the eyeballs are most likely the darkest in the gray scale. It is clear that the 

line aX  does not include the pupil of the eye, but the line bX  does. Consequently, 

we can expect that the gray scale values corresponding to 2B  (the second valley) in 

Fig. 2.8(c) is smaller than those corresponding to  in Fig. 2.8(b). 2A

As a result, we can extract the point 2B  along line bX  by selecting the 

minimum gray scale values corresponding to Y axis and the minimum values must be 

smaller than a threshold which is about 30. Moreover, since the position of the 

eyebrow is about one-fourth of the facial width, we can easily search the line bX . 

Then we can find the eye position corresponding to the detected valley point 2B  of a 

suitable scanning line bX . 
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Fig. 2.8.  Gray-level value variations along lines in (a). (b) Along aX . (c) Along 

. bX

 

2.4  Sunglasses Image Enhancement  

 

The presence of sunglasses will weaken the visibility of eyes, and therefore the 

performance of extracting eye position will drop off. The sunglasses may overlap with 

the eyes such that we could not separate the eyes from the detected eye regions easily. 

Sunglasses with deeper color will cause more severe interference to eye detection. For 

accurate eye detection, it is important and essential to solve this problem by using 

some methods. Using an infrared camera to catch the input images may be a possible 

way. But methods based on image processing techniques are more attractive to us. 

Consequently, in this thesis, we apply image processing techniques to eliminate the 

Gray

Gray 

Value 

B2B1

Position of bX
     (c) 

 18



bad effect caused by sunglasses in eye detection. 

 

 

2.4.1  Retinex Image Enhancement Technique 

 

In this section, the purpose is to enhance the sunglasses region such that the eye 

region could be better extracted. Many image enhancement methods have been 

proposed. Typical methods to this end are gamma correction and gain/offset 

application, histogram equalization and manual histogram adjustment methods,  

homomorphic filtering method, and retinex image enhancement method. These 

methods have their different characteristics. Of these methods the retinex one is the 

most popular and most widely used because of its simplicity in use and its powerful 

ability to enhance images. 

The retinex theory was first devised by Land [26]. It is sometimes also known as 

the Land Effect. Land's retinex theory of lightness and color constancy was one of the 

first computational models of an important form of perceptual constancy. Color 

constancy is the well known tendency for an object to always appear to have the same 

color, no matter what the viewing conditions are. In other words, a bright green post 

box appears green by daylight, by moonlight, and even under dingy street lights. 

According to Land, we decide the color of something by comparing its ability to 

reflect short, medium and long wavelengths with that of adjoining objects. Land 

considered that the eye and the brain (the retina and cortex) form a single optical 

system, which he called the retinex. 

The retinex image enhancement algorithm is an automatic image enhancement 

method that enhances a digital image in terms of dynamic range compression, color 

independence from the spectral distribution of the scene illuminant, and 
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color/lightness rendition. The digital images enhanced by the retinex image 

enhancement algorithm are much closer to the scene perceived by the human visual 

system, under all kinds and levels of lighting variations, than those enhanced by most 

other methods. A comparison of retinex with other image enhancement techniques can 

be found in [27]. 

Jobson et al. [28] defined a Single-Scale Retinex (SSR), which is an 

implementation of center/surround retinex. But depending on the special scale, it can 

either provide dynamic range compression (small scale) or tonal rendition (large 

scale), but not both simultaneously. Superposition of weighted different scale SSR is 

obvious a choice to balance these two effects. This is named Multi-Scale Retinex 

(MSR) [29]. The Multi-Scale Retinex (MSR) is a generalization of the Single-Scale 

Retinex. For color images, if the content is out of “gray world,” which means the 

spatial averages of three color bands are far from equal, the output will be forced to be 

gray by MSR. This problem could be solved by introducing weight factor for different 

channels in Multi-Scale Retinex with Color Restoration (MSRCR) [30]. MSRCR 

combines the retinex dynamic range compression and color constancy with a color 

restoration that provides excellent color rendition.  

After MSRCR, generally the outputs will be out of the range of display. Auto 

gain/offset can be used to shift and compressed the histogram of MSRCR outputs to 

the display domain. 

In this thesis, we will implement SSR, MSR, and MSRCR with gain/offset. We 

adjust the gain/offset parameters to adjust most of the pixels values to display domain 

and clap small part of the values to improve the contrast. 

The retinex is a member of the class of center surround functions where each 

output value of the function is determined by the corresponding input value (center) 

and its neighborhood (surround). For the retinex the center is defined as each pixel 
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value and the surround is a Gaussian function. The mathematical form of the 

Single-Scale Retinex (SSR) is given by 

( ) ( ) ( ) ( ), log , log , ,i i iR x y I x y F x y I x y⎡ ⎤= − ∗⎣ ⎦             (2.4) 

Where ( ,i )I x y  is image distribution in the i-th color band, R is the output of the 

SSR process, and ﹡represents the convolution operator. ( ),F x y  is the normalized 

surround function defined as 

( ) ( )2 2 2,  expF x y k x y σ⎡ ⎤= − +⎣ ⎦                    (2.5) 

where k is a normalization factor given as  

( )1 ,
x y

k F
⎛ ⎞

= ⎜
⎝ ⎠
∑∑ x y ⎟ .                       (2.6) 

Fig. 2.9 shows an original medical image and processed image by SSR with different 

scales of surround. The narrow and medium surround cases are self-explanatory. The 

wide surround case deserves some discussion because it looks a better output image. 

However, the lack of dynamic range obscures the features that were visible to the 

observer, hence it may fail the test. 

    As shown in Fig.2.9, the selection of scale is related with visual angle in the 

direct observation. Because of the tradeoff between dynamic range compression and 

color rendition, we have to choose a good scale σ in the formula of F(x,y) in SSR. 

However, for different images, adaptable scales are often different. If we do not want 

to sacrifice either dynamic range compression or color rendition, Multi-Scale Retinex, 
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which is a combination of weighted different scales of SSR, is a good solution. It is 

defined by    

( ) ( ) ( ) ( )( )
1

, log , log , ,    1,  2, ...,
K

i k i k i
k

R x y W I x y F x y I x y i N
=

⎡ ⎤= − ∗ =⎣ ⎦∑     (2.7) 

where i represents the i-th spectral band, N is the number of spectral bands—N = 1 for 

grayscale images and N = 3 for typical color images. In the latter case, . 

R(x,y) is the output of the MSR process, W

i R, G, B∈

k are the weights associated with Fk, K is 

the number of surround functions, or scales. Fk represents the k-th surround function 

and is defined as:  

( ) ( )2 2 2,  expkF x y k x y kσ⎡ ⎤= − +⎣ ⎦                  (2.8) 

where kσ  are the scales that control the extent of the surround function and the 

amount of spatial detail that is retained. Fig. 2.10 is the MSR result of previous 

medical examples. The MSR processed image uses features from all the three scales 

to provide simultaneous dynamic range and tonal rendition. It has significant dynamic 

range compression in the boundary between the lighted parts and dark parts, and 

reasonable color rendition in the whole image scale.  

Actually, the suitable number of scales needed by the MSR is application 

dependent. However, experiments showed that three scales respectively representing 

narrow, medium, and wide surrounds are often enough for most of the images. The 

weights can be selected equal or adjusted to weight more on dynamic range 

compression or color rendition.  

Fig. 2.11 shows another color example processed by SSR with different surround 

scales and then by MSR. Similar to Fig. 2.9, none of the individual scale attains the 
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goal that we are trying to achieve. The narrow surround acts as a high-pass filter, 

capturing more fine details in the image but at a severe loss of tonal information. The 

wide surround captures more fine tonal information but at the loss of dynamic range. 

The medium surround captures gets a balance between dynamic range and tonal 

information. The MSR is the average of the three renditions and has the characters 

close to the medium surround scale result. 

 

      
(a)                        (b) 

      
(c)                        (d) 

Fig. 2.9.  SSR with different scales. (a) Original image. (b) SSR with narrow 

surround scale 15. (c) SSR with medium surround scale 80. (d) SSR with wide 

surround scale 250. 
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Fig. 2.10.  Result of MSR with scales = 15, 80, and 250. 

 

 

Observing Fig. 2.11, we can find that the color rendition of the results of SSR 

and MSR have a certain degree of deviation from the original image. They look close 

to gray images. Actually, bad performance for color images is the weakness of SSR 

and MSR. MSR is good for gray images. But it could be a problem for the color 

images because it does not consider the relative intensity of color bands. This can be 

seen from formula of MSR, whose output is the relative reflectances in the special 

domain. Considering the images “out of gray world”, whose average intensity for 

three color band are far from equal, the output of MSR for the three channels will be 

more close, which make it looks more gray. The solution to this problem is to utilize 

weights for three color channels respectively depending on the relative intensity of the 

three channels in the original images. A color restoration factor is computed as the 

following form: 

 

( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

N

n
nii yxIyxIyxC

1
,,  log , αβ                (2.9) 
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where  is the color restoration coefficient in the i-th spectral band, N is the 

number of spectral bands,  is the i-th spectral band in the input image, 

( yxCi , )

iI β  is gain 

constant, and α  controls the strength of non-linearity. Analog to the spatial 

operation of the retinex which utilizes a log operator, the internal form of the color 

restoration process and the retinex process is essentially the same. Combining     

Eq. (2.9) with Eq. (2.7), the MSRCR is given by  

( ) ( ) ( ) ( ) ( )( )
1

, , log , log , ,    1,  2, ...,
K

i i k i k i
k

R x y C x y W I x y F x y I x y i N
=

⎡ ⎤= − ∗⎣ ⎦∑ =  (2.10) 

An integral scheme of MSRCR is given in Fig. 2.12. In order to observe the effect of 

MSRCR for color images, we apply MSRCR on an input image the same as shown in 

Fig. 2.11(a), the result is shown in Fig. 2.13. Comparing Fig. 2.13 with Fig. 2.11, we 

can easily find the result of MSRCR has better color rendition close to the original 

image than SSR or MSR. 

When there are reflections on glasses or sunglasses, some influences on the 

detection for eyes will be caused. More serious reflections will cause more terrible 

interference whether the sunglasses region is processed by image enhancement 

techniques or not. As a serious reflection overlaps the eyes fortuitously, the accuracy 

of eye detection will drop off critically. Solving this problem is quite essential for an 

eye detection system. In Chapter 3, we will further discuss these conditions and 

attempt to utilize some methods to overcome them. 
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(a)                                (b) 
 

      

(c) (d) 
 

 

  (e) 

Fig. 2.11.  (a) Original image. (b) Narrow surround (scale = 15). (c) Medium 

surround (scale = 80). (d) Wide surround (scale = 250). (e) MSR output with scales = 

15, 80, and 250.  
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Fig. 2.12.  Integral scheme of MSRCR. 

 

 

 

 

      

             (a)                                 (b) 

Fig. 2.13.  (a) Original image. (b) MSRCR output with scales = 15, 80, and 250. 
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2.4.2  Histogram Equalization Enhancement Technique 

 

In order to analyze the performance of the retinex image enhancement 

techniques, we compare the retinex result with another image enhancement technique: 

histogram equalization technique. Histogram equalization technique is based on the 

idea of remapping the histogram of the image to a histogram that has a near-uniform 

probability density function. This will result in reassigning dark regions to brighter 

values and bright regions to darker values. Consequently, the histogram equalization 

technique deeply depends on the distribution of gray scale of input images. The 

probability of occurrence of gray level  in an image is defined by kr

( )     0,1,..., 1k
r k

np r k
n

L= = −                    (2.11) 

where n is the total number of pixels in the image,  is the number of pixels that 

have gray level , and L is the total number of possible gray levels in the image. The 

transformation function of Histogram equalization is given as  

kn

kr

( ) ( )
0 0

    0,1,..., 1.
k k

j
k k r j

j j

n
s T r p r k L

n= =

= = = = −∑ ∑            (2.12) 

A processed image is obtained by mapping each pixel with gray level  in the input 

image into a corresponding pixel with gray level  in the output image.  

kr

ks

Histogram equalization works well for scenes that have unimodal or weakly 

bi-modal histograms, i.e., very dark, or very bright ones, but it is not effective to those 

images with strongly bi-modal histograms, i.e., images containing very dark and very 

bright regions simultaneously. Fig. 2.14(a) shows a bi-mode image, and Fig. 2.14(b) 

shows its histogram. The image includes large, dark areas, and hence its histogram is 
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characterized by a large concentration of pixels in the dark end of the gray scale. One 

might think that histogram equalization would be a good approach to enhance this 

image, so that details in the dark regions would become more visible. However, the 

result in Fig. 2.14(c) shows that histogram equalization in fact did not produce a 

particularly good result in this case. The reason for this can be seen by studying the 

histogram of the equalized image shown in Fig. 2.14(d). We can see that the intensity 

levels have been shifted to the upper one-half of the gray scale, thus giving the image 

a washed-out appearance. The cause of the shift is the large concentration of dark 

components at or near 0 in the original histogram. The cumulative transformation 

function obtained from this histogram is steeply increasing, and thus mapping the 

large concentration of pixels in the low end of the gray scale to the high end of the 

scale. It should be better to re-do histogram equalization once for a bi-modal image 

Fig. 2.14(c), the resulting image is shown in Fig. 2.15(c), compared with the MSRCR 

result shown in Fig. 2.15(d). Figs. 2.16–2.19 show four examples of eyes images 

processed by histogram equalization and MSRCR, respectively. As we can see, the 

MSRCR provided the better overall visual quality. By our experience, eye region 

enhancement by histogram equalization does not perform consistently, i.e., sometimes 

good and sometimes bad. However, the MSRCR technique performs constantly well. 

 

 

 

 

 

 

. 
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(a)                         (b) 

 

(c)                        (d) 

Fig. 2.14.  Illustration of histogram equalization. (a) Original image. (b) Histogram 

of (a). (c) Image processed by histogram equalization. (d) Histogram of (c). 
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(a) (b) 

 

        

(c)                       (d) 

Fig. 2.15.  A comparison of histogram equalization and the MSRCR. (a) Original 

image. (b) Histogram equalization result of (a). (c) Histogram equalization result of 

(b). (d) MSRCR result. 
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(a) 

 

                   
(b)                                  (c) 

Fig. 2.16.  A comparison of histogram equalization and the MSRCR. (a) Original 

image. (b) Histogram equalization result. (c) MSRCR result. 

 

 

 

 

(a) 

 

     

(b)                                  (c) 

Fig. 2.17.  A comparison of histogram equalization and the MSRCR. (a) Original 

image. (b) Histogram equalization result. (c) MSRCR result. 
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(a) 

 

     

(b)                                  (c) 

Fig. 2.18.  A comparison of histogram equalization and the MSRCR. (a) Original 

image. (b) Histogram equalization result. (c) MSRCR result. 

 

 

 

 

(a) 

 

     

(b)                                  (c) 

Fig. 2.19.  A comparison of histogram equalization and the MSRCR. (a) Original 

image. (b) Histogram equalization result. (c) MSRCR result. 
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Chapter 3 

Reflection Separation 
 
 

3.1  Image with Reflection 

 

When we view a scene through a transparent glass, the image is often similar to 

those shown in Fig. 3.1. Perceptually, we can view each one of these images as a 

superposition of two images: the foreground and the reflection. Hence each image 

could be decomposed into two transparent layers. We need a computer vision 

algorithm to find this decomposition. Mathematically, the problem can be modeled as 

follows. Given an image , we wish to find two layers,  and  such that: ( yxI , ) 1I 2I

( ) ( ) ( )yxIyxIyxI ,,, 21 +=                     (3.1) 

This problem is obviously difficult because there are two variables but only one 

equation. If we have no additional prior knowledge, there will be an infinite number 

of possible decompositions. In this chapter, we adopt an algorithm that can separate 

reflections from images using a single input image. The algorithm is based on a cost 

function: it favors decompositions which have a small number of edges and corners. 

 

         
Fig. 3.1.  Some examples for images with reflections. 
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3.2  Cost Function, Edge and Corner 

 

Consider a simple image which is the superposition of two squares in Fig. 3.2(a). 

We want to decompose the image into two layers. There will be an infinite number of 

possible decompositions. Figs. 3.2(b)–(e) show some possible decompositions 

including the perceptually “correct” decomposition (Fig. 3.2(e)). What rule is the 

“correct” decomposition based on? One reason is that it has the smallest total number 

of edges and corners among the decompositions shown in Fig. 3.2. The original image 

has ten corners: four corners from each square and two corners caused by the 

superposition of the two squares. When we decompose the image into two squares, 

the two corners caused by the superposition disappeared and there are just eight 

corners left. The decomposition shown in Figs. 3.2(b) and 3.2(d) increase the number 

of corners and edges. Clearly, we can also see that the decomposition shown in Fig. 

3.2(e) has smaller total number of edges and corners than the other decompositions in    

Fig. 3.2, and it looks an appropriate decomposition perceptually.  

How do we translate the preference for a small number of edges and corners into 

a cost function? We need operators used for edge and corner detectors; besides, we 

also need a mathematical form to give the cost of an image. Next we will describe 

how to define a cost function based on natural statistics of natural scenes. 

A remarkably robust property of natural images that has received much attention 

lately is the fact that when derivative filters are applied to natural images, the filter 

outputs tend to be sparse [31], [32]. Fig. 3.3 can illustrate this fact. We take two 

arbitrary examples of natural images and apply a horizontal derivative filter to them 

respectively. We can see that the histograms of their derivative filter outputs are 

peaked at zero and fall off much faster than a Gaussian. As a result, the derivative 

filter outputs are concentrated at zero and therefore are sparse. Similar histograms are 
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observed for vertical derivative filters and for the gradient magnitude: I∇ . 

 
 
 

 
(a) 

       
(b) 

       
(c) 

       
(d) 

       
(e) 

Fig. 3.2.  An input image and some decompositions. (a) The original input image. 

(b)–(d) Some possible decompositions. (e) The perceptually correct decomposition. 
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             (a)                                 (b) 
 

  
(c)                                  (d) 

Fig. 3.3.  Two natural images and their filter derivative output diagrams. (a), (c) 

Natural image. (b), (d) Histogram of derivative filter outputs. 
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Subsequently we convert each of the filter outputs of Fig. 3.3 into a log 

histogram type and show the results in Fig. 3.5. Observing Fig. 3.5, we can find that 

the distributions are similar to an exponential density with exponent less than 1. For 

comparison, we show the log probability for densities of the form  which 

is presented in [33]. We plot the corresponding log probabilities for 

( ) αxexp −=

1>α , 1=α  

and 1<α , respectively for . The results are shown in Fig. 3.4. Comparing Figs. 

3.5(b) and 3.5(d) with Fig. 3.4, it can be found that the natural statistics for derivative 

filters has the qualitative nature of a distribution  with 

0≥x

αxe− 1<α . Similar to 

derivative filters, the gradient magnitude also has the character. When we define a 

cost function, we will use this character of derivative filters and gradient magnitude 

operators. More descriptions about edge detector and gradient magnitude are in Sec. 

3.2.1. 

Now we consider the other operator, “corner detector.” In this paper we use a 

Harris-like operator c(x, y) as a corner detector. There are more detailed descriptions 

about Harris corner detector [34] in Sec. 3.2.1. Here we first treat the qualitative 

statistic of the operator. The output of the detector at a given location  is 

defined as:  

00 , yx

      ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2

0 0 2

, ,
, det ,  

, , ,
x x y

x y y

,I x y I x y I x y
c x y w x y

I x y I x y I x y
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑      (3.2) 

where  is a small Gaussian window around , and ,  are the 

derivatives of an image I. 

( yxw , ) 00 , yx xI yI
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(a) 
 

 
(b) 

 

  
(c) 

Fig. 3.4.  The log probability for densities of the form ( ) αxexp −= . (a) 1>α  

( 2=α ). (b) 1=α . (c) 1<α  ( 25.0=α ). 
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(a)                                 (b) 

 

   

(c) (d) 

Fig. 3.5.  Two natural images and their filter derivative output diagrams. (a), (c) 

Natural images. (b), (d) Log histograms of derivative filter outputs. 
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Similarly, we show the histograms of this corner operator for the two natural 

images given in Fig. 3.3. The results are shown in Fig. 3.6. They are also sparse. 

Again, we convert each of the outputs of Fig. 3.6 into a log histogram type in Fig. 3.7. 

Likewise, we compare Fig. 3.7 with Fig. 3.4 and then find the same character as 

derivative filters and gradient magnitude operators. The corner detector also has the 

qualitative statistic of a distribution  with 
αxe− 1<α . 

    By applying the gradient magnitude and corner detectors described above on a 

number of images, it can be found that the histograms shown in Fig. 3.3, Fig. 3.5,  

Fig. 3.6, and Fig. 3.7 are typical. For both gradients and corner detectors the exponent 

was less than 1 and the exponent for the corner detector was smaller than that of the 

gradients. Typical exponents are 0.7 for the derivative filter and 0.25 for the corner 

detector [33]. 

The qualitative statistics observed in natural images motivated the type of the 

cost function. The histograms of these operators can be fit with a generalized 

Gaussian distribution ( ) .xp x e
α−∝  By using the negative log probability of these 

operators on natural images, the cost function for a single layer is defined as:  

                      ( ) ( ) (
,

cos , , ;
x y

t I I x y c x y I
α )βη= ∇ +∑             (3.3) 

with 7.0=α , 25.0=β  which are obtained from the qualitative statistic of the 

histograms of the operators (gradient and corner operators) in natural images, and 

15=η  which is determined by the ratio of the scaling parameters in the corner and 

gradient distributions [33]. The cost for a two layer decomposition is the sum of the 

costs for the two decomposed layers:  

( ) ( ) ( )1 2 1 2cos ,  cos cost I I t I t I= +               (3.4) 
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        (a)                                   (b) 

 

  
(c) (d) 

Fig. 3.6.  Two natural images and their corner detector output diagrams. (a), (c) 

Natural images. (b), (d) Histograms of corner detector outputs. 
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        (a)                                   (b) 

 

  
(c)                                  (d) 

Fig. 3.7.  Two natural images and their corner detector output diagrams. (a), (c) 

Natural images. (b), (d) Log histograms of corner detector outputs. 
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    Now we give an example to test the accuracy of the cost function. We apply the 

cost function to the image and some possible decompositions of it shown in Fig. 3.2. 

The cost values of them are evaluated and shown in Fig. 3.8. Clearly, we can find that 

the perceptually correct decomposition in Fig. 3.8(e) indeed has smaller cost than the 

other decompositions in Fig. 3.8. Of course, these decompositions are just a small 

amount out of an infinite number of possible decompositions. In Chapter 4, we will 

show some examples of one dimensional decompositions. 

 

3.2.1  Edge Detector and Corner Detector 

 

For the cost function defined above, the derivative and corner operators are 

essentials. Image edges have already been defined as local variations of image 

intensity. Therefore, local image differentiation techniques can produce edge detector 

operators. The gradient of an image at location (x, y) is defined as  

  ( )
T

,  f ff x y
x y

⎡ ⎤∂ ∂
∇ = ⎢ ⎥∂ ∂⎣ ⎦

                        (3.5) 

where the partial derivatives f x∂ ∂  and f y∂ ∂  can be used to detect the 

perpendicular and horizontal edges respectively in an image. Its magnitude is given as 

( )
22

, f ff x y
x y

⎛ ⎞∂ ∂⎛ ⎞∇ = + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
                    (3.6) 

which can be used as an edge detector. Fig. 3.9 shows two common gradient operator 

masks, the left masks are f y∂ ∂ , the right ones are f x∂ ∂ . Fig. 3.10(b) shows a 

result of a simple image by convolving it with the Prewitt masks and then using    

Eq. (3.6) to determine the gradient magnitude. 
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           (a) cost = 5693.8 

 

       
                 cost( I1 ) = 4207.9  (b)  cost( I2 ) = 3204.8 
 

       
cost( I1 ) = 5693.8  (c)  cost( I2 ) = 0 

 

       
                 cost( I1 ) = 3059.9  (d)  cost( I2 ) = 5786.4 
 

       
cost( I1 ) = 2380.1  (e)  cost( I2 ) = 2762.7 

Fig. 3.8.  Cost values for an input image and some decompositions. (a) Cost = 

5693.8. (b) Cost = 4207.9 + 3204.8 = 7412.7. (c) Cost = 5693.8 + 0 = 5693.8. (d) Cost 

= 3059.9 + 5786.4 = 8846.3. (e) Cost = 2380.1 + 2762.7 = 5142.8. 
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Fig. 3.9.  Sobel and Prewitt edge detector masks. 

 

 

Now we discuss the other operator— corner detector. One of the first 

approaches to find corners was to segment the image into regions, extracting the 

boundaries as a chain code, and then identify corners as points where boundary 

direction changes rapidly. This approach has been largely abandoned as it relies on the 

previous segmentation step, which is a complex task itself, and is also 

computationally expensive. 

Harris and Stephens [34] presented a corner detector which is widely used today. 

The Harris corner detector first computes a corner response function. Corners are 

detected by finding the local maxima in the corner response function. The program 

returns the corners in the decreasing order of their corner response function value. A 

Harris matrix is defined as 

2

2
A=

x x y

x y y

I I I

I I I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

                        (3.7) 
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where  is the smoothing by a 2D Gaussian function. Harris corner detector 

procedures are: 

1)  For each pixel find corresponding A. 

2)  For each A find two eigenvalues maxλ  and minλ . 

3)  Sort all minλ , discard pixels with small minλ . 

4)  Discard pixels with large max minλ λ− . 

5)  The remaining pixels are corner points. 

However, a more efficient approach is presented by using a corner responses function 

which is defined as: 

( ) ( )2det  trace(A)R A k= −                      (3.8) 

where . This function avoids the explicit eigenvalue decomposition of A, and 

therefore is computationally faster. The output R is a constant for each pixel, and 

pixels with large R are picked as corners. Fig. 3.10(c) shows the result of an image 

processed by the corner responses function. The corner points are detected and 

marked with red “+” symbols. 

0.04k ≈

 

3.2.2  Preprocess and Anisotropic Diffusion 

 

    The decomposition of an image is based on the cost value of its two decomposed 

layers. However, in real images, the textures are more complicated and sometimes 

there may be noise existing. Consequently, when we detect edges by edge magnitude 

and corners with a Harris detector, it may give responses in many seemingly flat 

regions of the image. With these wrong responses, the output of the cost function 

likely has a deviation, hence the decomposition may fail. To solve this problem, we 
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make preprocess before apply cost function to calculate the cost value of the two 

decomposed layers. We first apply a nonlinear smoothing respectively to each layer 

and then apply Eq. (3.3) to the smoothed layers. The reason for this preprocess is that 

we want our edge and corner operators to return zero in regions that are nearly 

uniform, and hence the deviation of cost value will be decreased. Here we use a 

method named as anisotropic diffusion [35] to do the smoothing.  

    One of the most prevalent uses of image processing is for smoothing or 

denoising images. Denoising of images is often done with a low-pass filter, which 

reduces noise, but also blurs sharp features and details, such as edges. Anisotropic 

diffusion is a method for smoothing complex, noisy surfaces, while preserving sharp, 

geometric features. An anisotropic diffusion equation is defined as 

( )( ) ( ), , , ,tI div c x y t I c x y t I c I= ∇ = ∆ +∇ ⋅∇               (3.9) 

where  represents the divergence operator, div ∇  and ∆  respectively represents 

the gradient and Laplacian operator with respect to the space variables, and  

is conduction coefficient at different locations and times. It reduces to the isotropic 

heat diffusion equation 

( ), ,c x y t

tI c I= ∆  if ( ), ,c x y t  is a constant. A diffusion in which the 

conduction coefficient is chosen locally as a function of the magnitude of the gradient 

of the brightness function, i.e.,  

( ) ( )( ), , , ,c x y t g I x y t= ∇                    (3.10) 

will not only preserve, but also sharpen the brightness edges if the function  is 

chosen properly. 

( )g i
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(a) 

         

               (b)                         (c) 

Fig. 3.10.  Image processed by edge detector and corner detector. (a) Input image. (b) 

Edge detected result. (c) Harris corner detected result. 

 

 

For implementation, Eq. (3.9) can be discretized on a square lattice, with 

brightness values associated to the vertices, and conduction coefficients to the arcs 

such as shown in Fig. 3.11. A 4-nearest-neighbors discretization of the Laplacian 

operator can be used: 

[ ]1
, , ,

tt t
i j i j N N S S E E W W i j

I I c I c I c I c Iλ+ = + ⋅∇ + ⋅∇ + ⋅∇ + ⋅∇        (3.11) 

where 0 0.25λ≤ ≤  for the numerical scheme to be stable, N, S, E, W are the 

subscripts respectively for North, South, East, and West. The superscript and 

subscripts on the square bracket are applied to all the terms it encloses, and the 

symbol  here indicates nearest-neighbor differences defined as: ∇
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, 1,N i j i j i j,I I I−∇ ≡ −  

, 1,S i j i j i j,I I I+∇ ≡ −  

, , 1E i j i j i j,I I I+∇ ≡ −  

, , 1W i j i j i j,I I I−∇ ≡ −                       (3.12) 

    The conduction coefficients are updated at every iteration as a function of the 

brightness gradient (3.10). The value of the gradient can be computed on different 

neighborhood structures achieving different compromises between accuracy and 

locality. The simplest choice is approximating the norm of the gradient at each arc 

location with the absolute value of its projection along the direction of the arc: 

( ), ,i j

t t
N Nc g I= ∇ i j  

( ), ,i j

t t
S Sc g I= ∇ i j  

( ), ,i j

t t
E Ec g I= ∇ i j  

( ), ,i j

t
W Wc g I= ∇ t

i j                        (3.13) 

where t is the number of iteration. Functions used for ( )g i  are not specific but 

chosen by the users. Nevertheless, different functions which are chosen properly 

sometimes give perceptually similar results. Here we use the function below: 

( ) ( 2I Kg I e − ∇∇ = )                   (3.14) 

Fig. 3.12 shows the result of an image processed by anisotropic diffusion compared 

with the linear smoothing result. Since anisotropic diffusion transforms the nearly 
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uniform regions into uniform ones and reduces noise while preserving edges, it 

greatly reduces the number of spurious “edges” and “corners” found by the gradient 

and Harris operators. 

N

W E

S

, , 1i jW i jI I −=

,i jNc

,i jEc

,i jSc

,i jWc

,i jI

, 1,i jN i jI I −=

, 1,i jS i jI I +=

, , 1i jE i jI I +=

 

Fig. 3.11.  The structure of the discrete computational scheme for simulating the 

diffusion equation. The brightness values ,i jI  are associated with the nodes of a 

lattice, the conduction coefficients c to the arcs. 

 

 

           

           (a)                    (b)                   (c) 

Fig. 3.12.  Comparison between linear smoothing and anisotropic diffusion.       

(a) Original image. (b) Linear smoothing result. (c) Anisotropic diffusion result. 
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3.3  Discretization Using A Natural Images Database 

 

Since there will be huge number of decompositions for an image, we have to find 

the minimum cost among all the possible decompositions. This problem is extremely 

difficult because of the huge space for the decompositions. We first consider a one 

dimensional subspace, a one dimensional family of decompositions for an image and 

their cost values will be calculated. The results are presented in Chapter 4. 

Subsequently, we attempt to find out more decompositions than one dimension. We 

use an approach whereby the problem is first discretized using a database of natural 

images. Instead of optimizing over the infinite space of possible decompositions, we 

discretize the problem by dividing the image into small 7×7 patches, and then search 

the suitable decomposition for each patch. The notion of using a patch representation 

was motivated by the success of this approach in a number of recent vision 

applications [36], [37] and some feature matching methods.  

For each patch, its decomposition is obtained by searching a database of natural 

images for pairs of patches that approximately sum to the input patch, as some 

examples in Fig. 3.13. The database of patches are simply all patches contained in 

some images chosen for decomposing an image. The more features similar to the 

input image the database has, the more accurate the decomposition will be. For a 

patch p, we need to find a pair of patches ( )1 2,p p  such that 1 2p p p≈ + . For a 

database built with a  image, a naive way of performing this search for 

each patch is to search all about  possible pairs of patches, but this will be 

incredibly slow. To speed up the search, we make use of a filter bank which is a 

collection of directional filters at different locations, orientations and phases [38]. The 

oriented filter bank used in this work is based on rotated copies of a Gaussian 

640 480×

510 10× 5
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derivative and its Hilbert transform. Let ( ) ( ) ( )
1 2

"
1 ,f x y G y G xσ σ=  and (2 , )f x y  is 

the Hilbert transform of (1 , )f x y  along the y axis, i.e., 

( )
2 2 2

1 2 2 2

1, exp expd y xf x y
dy C σ λ σ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎜ ⎟ ⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠

2 ⎟⎟               (3.15) 

( ) ( )( )2 , 1 ,f x y Hilbert f x y=                          (3.16) 

where σ is the scale, λ  is the aspect ratio of the filter, and C is a normalization 

constant. Why is this useful from a computational point of view? The vector of filter 

outputs ( 0 0,  i )I f x y∗  characterizes the image patch centered at ( )0 0,  x y  by a set of 

values at a point. This is similar to characterizing an analytic function by its 

derivatives at a point. The collection of response images iI f∗  is referred as the 

hypercolumn transform of the image. The hypercolumn transform provides a 

convenient method for contour and texture analysis and a good local descriptor of 

image patches. 

    To find patches 1 2p p p≈ + , we first search the database for the patches 1p  

which minimize 1i i if p f p∗ − ∗∑  where if  is a collection of 12 directional filters 

which consist of two phases (even and odd), one scales, and six orientations in the 

upper left of the filter bank depicted in Fig. 3.14. After 1p  is found for a patch, 2p  

could subsequently be chosen by performing a second search for 1p p− . The search 

now requires only  operations rather than ( 52 10O × ) ( )5 510 10O ×  and hence saves 

a lot of time. 
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                      (a)          (b)         (c) 

Fig. 3.13.  Some examples for local patches decomposition. (a) Input patches. (b), (c) 

A possible pair of patches of decomposition for (a). 
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Fig. 3.14.  A filter bank consisting of two phases (even and odd), three scales, and 

six orientations (equally spaced from 0 to π). 
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Chapter 4 

Simulation and Results 
 
 

We first show the results of face detection, MSRCR image enhancement 

technique, and eye detection algorithm. First, we capture frontal face images of 

people by a CCD camera, and then we will apply these algorithms to these images. In 

Sec. 4.1, the algorithm will be tested of people wearing sunglasses. We will give the 

results step-by-step of these algorithms. In Sec. 4.2, we will first show some results of 

one dimensional decompositions to verify the accuracy of the cost function for 

separation. Subsequently, results of decomposing some images with reflection into 

two layers by discretization, which makes use of patches and a collection of 

directional filters, will be shown. 

 
 
4.1  Experiment Results of Eye Detection with Sunglasses 

 

We take face images of two students in our laboratory to test the face detection 

and eye extraction with sunglasses images. The size of input images is 640×480 and 

the simulation is implemented on a Pentium IV 3.0GHz personal computer. These two 

examples are shown in Figs. 4.1–4.2. In each example, (a) is the original face image, 

and (b) is the face extraction result. Sub-image (c) is the region including the eyes and 

sunglasses areas, and (d) is enhanced image using MSRCR for the sunglasses region. 

Final output for eye extraction result is shown in (e). Note that generally the output 

after MSRCR processing will be out of the display domain. It needs to be shifted and 

compressed to the display domain. 
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               (a)                                (b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4.1.  Images of Example 1 for face detection and eye location. (a) Input image. 

(b) Face extraction result. (c) Region including eyes and sunglasses. (d) The 

sunglasses image enhanced using MSRCR. (e) The eye extracted from (d). 
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(a) (b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4.2.  Images of Example 2 for face detection and eye location. (a) Input image. 

(b) Face extraction result. (c) Region including eyes and sunglasses. (d) The 

sunglasses image enhanced using MSRCR. (e) The eye extracted from (d). 
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4.2 Experiment Results of Reflection Separation 
 
 
4.2.1 One Dimensional Reflection Separation 
 

In this section, we first consider a one dimensional family of solutions for an 

input image with reflection. Figs. 4.3–4.5 show the results of one dimensional 

function of three examples. For each example, (a) is the input image for test, and we 

defined the image of a single layer as ( ),s x y  in (b). We considered decompositions 

of the form ( )1 ,I r s x y= ⋅ , 2 1I I I= −  with respect to different values of r and then 

evaluated the cost for each decomposition as shown in (c). The x-axis is the values of 

r, and the y-axis is the corresponding cost. The decomposition result for the r with a 

minimum cost is shown in (d). Observing these results, we can find that indeed the 

minimum in this one dimensional subspace of solution is obtained at the perceptually 

correct decomposition. 

 

4.2.2 Reflection Separation by Discretization 

 

Subsequently, we applied five examples to test the decompositions by using 

discretization. We controlled the contrast of the reflection and made it vary with 

different tints for the test. Figs. 4.6–4.10 showed these five experiment results which 

were processed by the discretization method described in Sec. 3.3. To illustrate by 

using Example 1 of Fig. 4.6, for example, (a) is the input image consisting of the 

foreground image multiplied by 0.8 and the reflection image multiplied by 0.2; (d) is 

the input image consisting of the foreground image multiplied by 0.85 and the 

reflection image multiplied by 0.15, (b) and (c) are the separated layer images which 

include the foreground layer and the reflection layer of (a), respectively; (e) and (f) 
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are the separated layer images which include the foreground layer and the reflection 

layer of (d), respectively. The reflection layer images were multiplied by a 

corresponding normalization scale to be seen clearly. Figs. 4.7–4.9 follow similar 

notion of Fig. 4.6. Fig. 4.10(a) is the input image consisting of the foreground image 

multiplied by 0.8 and the reflection image multiplied by 0.2, 4.10(b) and 4.10(c) are 

the separated layer images which include the foreground layer and the reflection layer, 

respectively. In these examples, it can approximately be seen that the decomposition 

results are more accurate for images with paler reflections than those with deeper 

reflections. 
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            (a)                          (b) 

 

(c) 

          

(d) 

Fig. 4.3.  Example 1 for testing a one dimensional subspace of decompositions. (a) 

Original image I. (b) A single layer ( ),s x y . (c) Diagram of r and corresponding cost. 

(d) The decomposition at the value of r with a minimum cost. 
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            (a)                          (b) 

 

(c) 

          
(d) 

Fig. 4.4.  Example 2 for testing a one dimensional subspace of decompositions. (a) 

Original image I. (b) A single layer ( ),s x y . (c) Diagram of r and corresponding cost. 

(d) The decomposition at the value of r with a minimum cost. 
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              (a)                     (b) 

 

(c) 

          

(d) 

Fig. 4.5.  Example 3 for testing a one dimensional subspace of decompositions. (a) 

Original image I. (b) A single layer ( ),s x y . (c) Diagram of r and corresponding cost. 

(d) The decomposition at the value of r with a minimum cost. 
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            (a)                    (b)                   (c) 

 

       
(d)                    (e)                   (f) 

Fig. 4.6.  Example 1 of separation results of images with reflections using 

discretization. (a) The input image consisting of the foreground image multiplied by 

0.8 and the reflection image multiplied by 0.2. (b) Separated foreground layer image 

of (a). (c) Separated reflection layer image of (a). (d) The input image consisting of 

the foreground image multiplied by 0.85 and the reflection image multiplied by 0.15. 

(e) Separated foreground layer image of (d). (f) Separated reflection layer image of 

(d). 
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          (a)                     (b)                     (c) 

 

       
          (d)                     (e)                     (f) 

Fig. 4.7.  Example 2 of separation results of images with reflections using 

discretization. (a) The input image consisting of the foreground image multiplied by 

0.8 and the reflection image multiplied by 0.2. (b) Separated foreground layer image 

of (a). (c) Separated reflection layer image of (a). (d) The input image consisting of 

the foreground image multiplied by 0.85 and the reflection image multiplied by 0.15. 

(e) Separated foreground layer image of (d). (f) Separated reflection layer image of 

(d). 
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          (a)                      (b)                    (c) 

 

       
          (d)                      (e)                    (f) 

Fig. 4.8.  Example 3 of separation results of images with reflections using 

discretization. (a) The input image consisting of the foreground image multiplied by 

0.8 and the reflection image multiplied by 0.2. (b) Separated foreground layer image 

of (a). (c) Separated reflection layer image of (a). (d) The input image consisting of 

the foreground image multiplied by 0.85 and the reflection image multiplied by 0.15. 

(e) Separated foreground layer image of (d). (f) Separated reflection layer image of 

(d). 
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            (a)                   (b)                   (c) 

 

     

            (d)                   (e)                   (f) 

Fig. 4.9.  Example 4 of separation results of images with reflections using 

discretization. (a) The input image consisting of the foreground image multiplied by 

0.8 and the reflection image multiplied by 0.2. (b) Separated foreground layer image 

of (a). (c) Separated reflection layer image of (a). (d) The input image consisting of 

the foreground image multiplied by 0.85 and the reflection image multiplied by 0.15. 

(e) Separated foreground layer image of (d). (f) Separated reflection layer image of 

(d). 
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(a)                  (b)                   (c) 

Fig. 4.10.  Example 5 of separation result of a simple image with reflection using 

discretization. (a) The input image consisting of the foreground image multiplied by 

0.8 and the reflection image multiplied by 0.2. (b) Separated foreground layer image. 

(c) Separated reflection layer image. 
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Chapter 5  

Conclusion 
 
 

This thesis first presents a method for eye detection, which is also applicable to 

wearing glasses or sunglasses cases. The eye detection module consists of three stages, 

face detection, sunglasses region enhancement, and eyeball extraction. These tasks are 

achieved by image processing techniques such as image segmentation, image 

enhancement, and edge detection. Experimental results showed that the color space 

chosen in this thesis is quite effective in face region detection, and the image 

enhancement technique, MSRCR, deals with the sunglasses cases well. Secondly a 

method for separating reflections was introduced and adopted to attempt to overcome 

the interference caused by reflections of glasses or sunglasses. The method find the 

perceptually correct separation by searching the decomposition with the smallest cost 

value, i.e., with the least number of edges and corners. It works effectively for a one 

dimensional separation. A discretization implemented by making use of patches can 

achieve more possible decompositions for an image with reflection, and then a filter 

bank is helpful to find the more correct decomposition. For paler reflections, this 

method is somewhat sufficient.  

Our current approach for separating reflections is only a first step towards 

separating arbitrary reflection images from a single image. This algorithm often fails 

to separate reflections correctly for real images when image textures are more 

complex. One reason is that the suitable patches for the decomposition of a patch may 

not be picked by the algorithm, or perhaps they do not exist. For future work, we will 

try to consider the deeper reflections and more complex images cases. Some 

modifications for discretization and patches search are required so that the failure in 
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dealing with complex reflections and images may decrease. The contrast of images 

needs to be further considered as well. For discretization, a further consideration for 

patches with overlaps may be helpful. For patches search, we may search ten or more 

candidate decompositions for each patch, and then utilize some optimization 

techniques such as belief propagation, loopy belief propagation, and graph cuts to find 

the optimal decomposition. 
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