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漸進式探勘與多維度即時探勘之研究 

學 生: 王慶堯 指導教授: 曾憲雄 
 

國立交通大學　資訊工程系 

摘要 

近年來，利用資料探勘技術從大型資料庫和資料倉儲中發掘出隱含且有用的

知識變得愈來愈重要。然而，大部分傳統的資料探勘方法都是採用批次處理的方

式，當面對資料庫中資料新增時，就必須耗時地對整個資料庫重新進行處理，以

更新之前所獲得的知識；此外，這些方法通常對資料一視同仁地處理，鮮少考慮

資料所生成之相關背景資訊，乃至所獲取的知識無法滿足使用者特定的需求、提

供線上決策支援。因此在本篇論文中，我們將發展一些新穎的漸進式演算法，分

別對關聯法則、循序樣式和文件分類器進行知識更新，減少每當資料新增時，必

須對整個資料庫重新進行處理的龐大成本；此外，為了讓資料探勘能夠即時地提

供線上決策支援，我們進而將漸進式演算法加以延伸，並將資料所生成之相關背

景資訊納入考量，利用所發展之結構化儲存體，系統化地儲存之前所獲得的知識

和其相關的背景資訊，以滿足使用者特定的知識查詢和多維度即時探勘的需求；

最後，我們企圖將所發展的漸進式探勘與多維度即時探勘的技術應用到半導體製

程，幫助偵測並發掘出造成良率偏低的瑕疵機器。 

 

關鍵詞: 關聯法則、循序樣式、漸進式探勘、封閉項目及、準大項目集、文件分

類、文件表示、限制式探勘、瑕疵偵測、重要性測量法。 
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National Chiao Tung University 

 

Abstract 

Mining useful information and helpful knowledge from large databases has 

evolved into an important research area in recent years. However, most of classic 

mining approaches processed data in a batch way, in which they must re-process the 

entire updated database whenever the database is updated, and focused on finding 

rules or patterns in a specified part of a database, in which they can not consider 

problems at different aspects and provide on-line decision supports. This seems to be 

inefficient and insufficient for knowledge discovery process in real-world applications. 

As a result, in this dissertation, we will develop some novel incremental mining 

algorithms respectively for maintaining association rules, sequential patterns and a 

document classifier without re-processing the original database whenever the database 

is updated. For providing ad-hoc, query-driven and online mining supports, we will 

extend the concept of effectively utilizing patterns previously discovered in 

incremental mining to support online mining under multidimensional considerations. 

Specifically, we propose a structural repository to systematically store the previously 
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mined information from each inserted dataset, and then develop online mining 

approaches to acquire user-interesting rules or patterns by integrating related mining 

information in the repository. Consequently, we will attempt to apply incremental 

mining and multidimensional online mining techniques on knowledge discovery 

process in semiconductor manufacture for quickly identifying root-cause machinesets, 

the major killer machine(s) that causes a low-yield situation in a regular 

manufacturing procedure. 

 

Keywords: association rule, sequential pattern, incremental mining, closed itemsets, 

pre-large itemset, text classification, document representation, constraint-based 

mining, defect detection, interestingness measurement. 
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Chapter 1 

Introduction 
 

 

 

1.1 Motivation 

Data mining technology has become increasingly important in the field of large 

databases and data warehouses. This technology helps discover non-trivial, implicit, 

previously unknown and potentially useful knowledge, thus being able to aid 

managers in making good decision [4][18][38]. Years of effort in data mining have 

produced a variety of efficient techniques. Depending on the type of databases 

processed, these mining approaches may be classified as working on transaction 

databases, temporal databases, relational databases, and multimedia databases. On the 

other hand, depending on the classes of knowledge derived, the mining approaches 

may be classified as finding association rules, sequential patterns, classifiers 

(classification models), etc. 

(1) Association rules: Recently, mining association rules from transaction 

databases has been one of the most interesting and popular research topics in data 

mining. An association rule indicates a relationship among items such that the 

occurrence of certain items in a transaction would imply the occurrence of some other 

items in the same transaction. For example, an association rule for a supermarket may 

be “people often buy beer and diapers together in the same transaction”. The 

discovery of interesting association rules can help decision-making processes in many 

potential applications, such as manufacturing defect detection, catalog design, store 

layout, cross-marketing, etc. 
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(2) Sequential patterns: Mining sequential patterns attempts to find customer 

purchase sequences in temporal transaction databases (sequence database), and to 

predict whether there is a high probability that when customers buy some products, 

they will buy some other products in later transactions. For example, a sequential 

pattern for a video shop may be “a customer buys a television in one transaction; 

he/she then buys a video recorder in a later transaction within a month”. As a result, 

sequential patterns are also treated as inter-transaction association rules. The 

discovery of interesting sequential patterns can not only model customer behaviors, 

but also predict weather, identify symptoms in medicine, diagnose alarms in intrusion 

detection, etc. 

(3) Classifiers (classification models): Classification is the process of mining a 

classifier from a set of pre-defined training data that can describe and distinguish data 

classes or concepts, such that the found classifier can assign a class or concept to a 

new un-defined data. In general, classification (mining a classifier) involves three 

major tasks: data representation, which represents data in machine-readable structures, 

classifier construction, which constructs a classifier from a set of training data, and 

classifier evaluation, which evaluates classifier accuracy with a set of testing data and 

in terms of various evaluation functions. Classification has been popularly applied on 

document classification/management, insurance risk analysis, credit approval, medical 

diagnosis, etc. 

In our view of points on the evolution of knowledge discovery in database, the 

first part of this dissertation will indicate the challenges from batch mining evolving 

into incremental mining and propose our solutions especially for the three 

above-mentioned classes of knowledge; then the second part of this dissertation will 

indicate the importance from incremental mining evolving into our proposed 
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multidimensional online mining and propose our methodologies especially for online 

generation of association rules. Figure 1-1 shows the performance and storage 

trade-off for batch mining, incremental mining and multidimensional online mining. 

Finally, the third part of this dissertation will indicate the issues of knowledge 

discovery in semiconductor manufacture and attempt to integrate incremental mining 

and multidimensional online mining techniques dealing with them. 

 

 

 

 

 

 

 

 

Figure 1-1: The performance and storage trade-off for batch mining, incremental 

mining and multidimensional online mining 

 

 Most of classic mining approaches process data in a batch way and must 

re-process the entire updated database whenever the database is updated, since the 

mined rules or patterns may become invalid or new implicitly valid rules or patterns 

may appear in the resulting updated database. As a result, two drawbacks may occur 

in maintaining database knowledge: 

(a) Nearly the same computation time as that spent in mining the original 

database is needed. It is time-consuming and unpractical when the original database is 

large. 

Batch miningBatch mining

Incremental miningIncremental mining

Performance

Data 
maintenance

Online decision 
support

Multidimensional Multidimensional 
online miningonline mining

Storage cost
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(b) Information previously mined from the original database, such as frequent 

itemsets and association rules, provides no help in the maintenance process. 

 In the first part of this dissertation, we will propose some novel incremental 

mining algorithms respectively for maintaining association rules, sequential patterns 

and a document classifier without re-processing the original database whenever the 

database is updated. The proposed algorithms continue using the common idea of 

previous incremental mining algorithms that the previously mined information should 

be utilized as much as possible. Furthermore, we utilize the concepts of pre-large 

patterns and closed patterns to improve the performance of developed algorithms for 

maintaining association rules and sequential patterns. 

(a) Using the pre-large patterns to enlarge the amount of pre-stored mined 

information can reduce the cost of re-processing the original database at the expense 

of storage spaces, because they acts as a buffer to avoid the movements of patterns 

directly from valid to invalid and vice-versa when the database maintained. 

(b) Using the closed patterns instead of the pre-stored mined information can 

reduce the comparison cost and redundant rules generated, because they can 

determine all the pre-stored mined patterns and their exact support without loss of any 

information but are orders of magnitude smaller than all pre-stored patterns. 

Consequently, based on the two concepts, the CIM (Closed Itemsets Maintenance) 

and CIM-P (CIM with Pre-large concept) algorithms are developed to efficiently 

maintain association rules and the CSM (Closed Sequences Maintenance) and CSM-P 

(CSM with Pre-large concept) algorithms are developed to efficiently maintain 

sequential patterns. 

As for the developed algorithm for maintaining a document classifier, in 

document representation, we propose a domain-space document representation to 
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represent documents in finite sets of domains. This representation is more compact 

and representative than classical term-space document representation. Based on the 

domain-space document representation, in classifier construction, we design a 

feature-domain weighting table to structurally retain the weights between features and 

all involved domains for later maintenances. Consequently, the domain-space 

weighting scheme algorithm is developed to resolve the document representation and 

categories adaptation problems. 

Although incremental mining algorithms are rather efficient and useful for static 

models such as mining all the data accumulated thus far and mining only a recently 

collected portion of data in uncomplicated applications, they usually provide little 

support for user guidance and focus (e.g., limiting the computation to what interests 

the user) and user interaction (e.g., dynamically changing the parameters or 

constraints). This may neither flexibly obtain rules or patterns from their interesting 

portions of data, nor diversely consider problems at different aspects to provide 

on-line decision supports for users. 

In the second part of this dissertation, we will extend the concept of effectively 

utilizing previously discovered patterns in incremental mining to support 

multidimensional online mining. The concept of knowledge warehouse, which is 

similar to the construction of a data warehouse for OLAP except it is not used to store 

data but mined patterns, and the architecture of Online Knowledge Discovery System 

(OKDS), which automatically and systematically mines patterns from data gathered in 

different contexts and forwards mined patterns into the knowledge warehouse, are 

proposed to help decision-makers diversely consider problems at different aspects and 

provide online mining supports. 

For efficiently manipulating the mining information in the knowledge warehouse, 
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we focus on the knowledge class of association rules and design corresponding 

aggregation and generalization approaches to provide online mining supports on 

association rules. We first propose the multidimensional pattern relation (MPR) as a  

knowledge warehouse to structurally and systematically store context information, 

such as region, time and branch, and mining information, such as the set of previously 

mined frequent itemsets with their supports, for each inserted block of data (each 

increment of data). Based on the proposed MPR, we then develop an aggregation and 

generalization approach called Three-phased Online Association Rule Mining 

(TOARM) to support online generation of association rules under multidimensional 

considerations. By the TOARM approach, users can therefore acquire interesting 

and/or focused association rules or frequent itemsets by only integrating related 

mining information in the MPR rather than mining the underlying data. In addition, 

we further apply the concept of negative border to extend the mining information in 

the MPR, and develop a Negative-Border Online Mining (NOM) approach based on 

the extended MPR (EMPR) to improve the performance of TOARM especially for 

heterogeneous blocks of data. 

However, from the experimental results, we can find that the NOM approach 

may take much computation time than the TOARM approach, especially when the 

numbers of itemsets kept in EMPR and candidate itemsets to be considered are large. 

For overcoming this problem, we thus try to use appropriate data structures to 

improve the performance of the NOM approach. The lattice data structure is utilized 

to organize and maintain all candidate itemsets such that the candidate itemsets with 

the same proper subsets can be considered at the same time. The derived lattice-based 

NOM (LNOM) approach will require only one scan of the itemsets stored in EMPR, 

thus saving much computation time. In addition, a hashing technique is used to further 
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improve the performance of the NOM approach since many itemsets stored in EMPR 

may be useless for calculating the counts of candidates. At last, experimental results 

show the effect of the improved NOM approaches. 

In the third part of this dissertation, we will attempt to apply the proposed 

incremental mining and multidimensional online mining techniques on knowledge 

discovery process in semiconductor manufacture. For a semiconductor manufacturing 

company, one of the most essential issues is to quickly identify root-cause 

machinesets, and to meet high-yield target expectations by remedying these abnormal 

machines. Therefore, we first define the root-cause machineset identification problem, 

and propose the Root-cause Machine Identifier (RMI) approach using a batch-based 

association rule mining algorithm to obtain candidate root-cause machinesets from a 

shipment of wafer in process (WIP) data. After that, we propose the progressive RMI 

(PRMI) concept, which applies incremental mining techniques to progressively 

process previously mined candidate root-cause machinesets, and the multidimensional 

RMI (MRMI) concept, which designs a knowledge warehouse to structurally and 

systematically store the context information about a shipment and the mining 

information about mined candidate root-cause machinesets from each shipment for 

supporting decision-makers diversely considering problems at different aspects. 

In this dissertation, we attempt to make data mining techniques more robust and 

practical for real-world applications. Experiments respectively for sparse, dense, 

synthetic and real datasets are made, with results showing the effectiveness and 

practicality of the proposed approaches. 
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1.2 Contribution 

 In the first part of this dissertation, the major contributions are as follows: 

 The concepts of pre-large patterns and closed patterns have been utilized to 

improve the performance of developed algorithms for maintaining association 

rules and sequential patterns. 

 Two novel incremental mining algorithms called Closed Itemsets Maintenance 

(CIM) and CIM with Pre-large concept (CIM-P) have been developed to 

efficiently maintain association rules. 

 Two novel incremental mining algorithms called Closed Sequences Maintenance 

(CSM) and CSM with Pre-large concept (CSM-P) have been developed to 

efficiently maintain sequential patterns. 

 The domain-space weighting scheme has been developed to represent documents 

in domain-space and incrementally construct a classifier to resolve the document 

representation and categories adaptation problems. 

 

In the second part of this dissertation, the major contributions are as follows: 

 The concept of knowledge warehouse and the architecture of Online Knowledge 

Discovery System (OKDS) have been proposed to help decision-makers 

diversely consider problems at different aspects and provide online mining 

services. 

 For the knowledge class of association rules, the multidimensional pattern 

relation (MPR) has been designed as a knowledge warehouse to structurally and 

systematically store the context and mining information. 

 The Three-phased Online Association Rule Mining (TOARM) approach, which 

is an aggregation and generalization approach corresponding to the proposed 



 9

MPR, has been developed to support online generation of association rules under 

multidimensional considerations. 

 The concept of negative border has been used to extend the mining information 

in the MPR, and then the Negative-Border Online Mining (NOM) approach 

based on the extended MPR (EMPR) has been developed to improve the 

performance of TOARM especially for heterogeneous blocks of data. 

 The lattice-based NOM (LNOM) approach and the hashing technique have been 

developed to improve the NOM approach. 

 

In the third part of this dissertation, the major contributions are as follows: 

 Identifying root-cause machinesets, the most likely sources of defective products, 

in the manufacturing processes has been defined as the root-cause machineset 

identification problem of analyzing correlations between combinations of 

machines. 

 The Root-cause Machine Identifier (RMI) approach, which uses a batch-based 

association rule mining algorithm, has been developed to provide an efficient and 

effective solution for the root-cause machineset identification problem. 

 The concepts of progressive RMI (PRMI), which applies incremental mining 

techniques to progressively process previously mined candidate root-cause 

machinesets, and multidimensional RMI (MRMI), which applies 

multidimensional online mining techniques to support online generation of 

candidate root-cause machinesets under multidimensional consideration, have 

been proposed. 
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1.3 Reader’s Guide 

The remainder of this dissertation is organized as follows. In the first part of this 

dissertation, we will propose some novel incremental mining algorithms respectively 

for maintaining association rules, sequential patterns and a document classifier. The 

proposed incremental mining algorithms for association rules maintenance are 

described in Chapter 2; the proposed incremental mining algorithms for sequential 

patterns maintenance are described in Chapter 3; and the proposed incremental 

mining algorithm for a document classifier maintenance is described in Chapter 4. In 

the second part of this dissertation, we will extend the concept of effectively utilizing 

previously discovered patterns in incremental mining to support multidimensional 

online mining. The concept of knowledge warehouse and the architecture of Online 

Knowledge Discovery System (OKDS) are proposed in Chapter 5. The proposed 

aggregation and generalization approaches, TOARM, NOM and LNOM, based on the 

two forms of knowledge warehouse, MPR and EMPR, are described in Chapter 6. In 

the third part of this dissertation, we attempt to apply the association rule mining 

techniques, including classical batch-based, incremental and multidimensional online 

mining algorithms on knowledge discovery process in semiconductor manufacture. 

The Root-cause Machine Identifier (RMI) approach and the two concepts of 

progressive RMI (PRMI) and multidimensional RMI (MRMI) are proposed in 

Chapter 7. Conclusions and future work are given in Chapter 8. 
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Chapter 2 

Incremental Mining Algorithms for Association 

Rules Maintenance 
 

 

 

2.1 Introduction 

Data mining technology has become increasingly important in the field of large 

databases and data warehouses. This technology helps discover non-trivial, implicit, 

previously unknown and potentially useful knowledge, thus being able to aid 

managers in making good decision [4][18][38]. Among various types of databases and 

mined knowledge, mining association rules [3][5] from transaction databases is the 

most interesting and popular. In general, the process of mining association rules can 

roughly be decomposed into two tasks: finding frequent itemsets satisfying the 

user-specified minimum support threshold from a given database and generating 

interesting association rules satisfying the user-specified minimum confidence 

threshold from found frequent itemsets. Since the first task is very time-consuming 

when compared to the second one, the major challenges in mining association rules 

thus focus on how to reduce the search space and decrease the computation time in 

the first task. Some famous mining approaches, such as Apriori [5], DIC [16], DHP 

[67], Partition [78], Sampling [61] and FP-Growth [40][95], have been proposed. 

In real-world applications, a database grows over time such that existing 

association rules may become invalid or new implicitly valid association rules may 

appear. Recently, some researchers [8][20][21][27][43][44][77] have developed 
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incremental mining algorithms to maintain association rules without reprocessing the 

entire updated database. The common idea of these researches lies in that, the 

previously mining information such as mined frequent itemsets are stored in advance; 

when new transactions are inserted, (a) a large portion of candidate itemsets can be 

decided using the pre-stored mined frequent itemsets; (b) only a small portion of 

candidate itemsets obtained from the new transactions without sufficient information 

needs to be reprocessed against the original database. Task (a) is responsible for 

updating previously mined frequent itemsets (known association rules), and Task (b) 

is responsible for finding new frequent itemsets (unknown association rules). Much 

computation time can thus be saved in this way. 

However, for a dense database such as census data and DNA sequences or a low 

minimum support threshold, the computation cost of Task (a) will be getting 

tremendous due to a huge amount of previously mined frequent itemsets. For example, 

a frequent 30-itemset (a frequent itemset consisting of 30 items) implies the presence 

of 230-2 additional frequent itemsets as well. The performance of classically 

incremental mining algorithms will degrade dramatically. On the other hand, one scan 

of original database is required for dealing with Task (b) by most incremental mining 

algorithms. When the original database is massive, this will result in excessive I/O 

cost. As a result, in this study, we attempt to utilize the concepts of closed itemsets 

and pre-large itemsets to overcome the two challenges, respectively. 

 In a dense database, many itemsets usually appear together, and we can 

consider them together. The concept of closed itemsets [68], which is denoted as the 

itemsets having no proper superset with the same support, can be treated as a lossless 

compression for all itemsets in the database. It can also reduce redundant rules 

generated [104]. Therefore, using the set of frequent closed itemsets instead of the set 
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of frequent itemsets from the original database as the pre-stored mining information 

can increase both efficiency and effectiveness of an incremental mining algorithm. 

The set of frequent closed itemsets can easily determine all the frequent itemsets and 

their exact supports, and its order of magnitude is smaller than the set of all frequent 

itemsets for dense databases. 

In general, the number of newly inserted transactions is much smaller than the 

number of records in the original database. Only the candidate itemsets whose 

supports are slightly less than the minimum support threshold in the original database 

are possible to be frequent after database maintenances. The concept of pre-large 

itemsets [43] is denoted as the set of itemsets having support between a lower support 

threshold, which is smaller than the given minimum support threshold, and an upper 

support threshold, which is equal to the given minimum support threshold. Therefore, 

using the pre-large closed itemsets to enlarge the amount of pre-stored frequent closed 

itemsets can reduce the cost of reprocessing the entire database at the expense of 

storage spaces. This is because they act as a buffer to avoid the movement of a closed 

itemset directly from infrequent to frequent and vice-versa during the incremental 

mining process. 

Although using the concept of closed itemsets can effectively reduce the number 

of itemsets considered, some closed itemsets for the updated database called joint 

closed itemsets, which was not closed itemsets in both the original database and the 

newly inserted transactions before, cannot be determined by above-mentioned Tasks 

(a) and (b) of a classically incremental mining algorithm such that some valid 

association rules may be lost. We thus propose a novel incremental mining algorithm 

called Closed Itemsets Maintaining (CIM) to extend Tasks (a) and (b) that can 

sufficiently and efficiently find all up-to-date association rules for the updated 
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database. Task (a) of the CIM algorithm is responsible for extracting the joint closed 

itemsets which was absorbed (closed) by the pre-stored frequent closed itemsets in 

the original database before, and updating them and all the pre-stored frequent closed 

itemsets against the newly inserted transactions. Task (b) of the CIM algorithm is 

responsible for generating the candidate itemsets for the updated database which has 

not been determined in Task (a), and rescanning them against the original database. 

Furthermore, based on the concept of pre-large itemsets, we propose the CIM-P (CIM 

with Pre-large concept) algorithm to reduce the cost of Task (b) in the CIM algorithm. 

Also, we design the bucketing strategy to improve the utility of buffer in the CIM-P 

algorithm. The consumption of buffer can be rigidly calculated using the maximum 

value of buckets. 

 

2.2 Related Work 

2.2.1 Closed itemsets mining approaches 

The major challenge in mining association rules is to reduce the search space and 

decrease the computation time required for mining frequent itemsets. The Apriori 

algorithm [5], which is the most well-known, utilizes a level-wise candidate 

generation approach to reduce its search space such that only frequent itemsets found 

in the previous level are treated as seeds for generating candidate itemsets in the 

current level. Many later algorithms [16][53][61][67][78][95] were based on this 

property and attempted to further reduce candidate itemsets and I/O costs. However, 

this Apriori property can not work well for dense databases or a low minimum support 

threshold. This is because most generated candidate itemsets are also frequent 

itemsets such that the number of frequent itemsets will grow up explosively; the 

performance of an Apriori-like algorithm thus degrades dramatically. 
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Some researchers have then developed closed itemsets mining algorithms to 

reduce the number of itemsets generated. Examples include A-close [68], CLOSET 

[69], CLOSET+ [86] and CHARM [104]. The A-close algorithm is an Apriori-like 

algorithm using a breadth-first search manner to find frequent closed itemsets directly. 

However, breadth-first searches may encounter difficulties since there could be many 

candidates generated and need to scan the database many times. The CLOSET 

algorithm, an extension of the FP-growth algorithm, uses a depth-first search 

(recursive divide-and-conquer) manner and a database-projection approach to mine 

long patterns from the FP-tree (frequent pattern tree) structure representing all 

transactions of database. However, the CLOSET algorithm may suffer from a sparse 

database or a low minimum support threshold. An enhancement of the CLOSET 

algorithm, the CLOEST+ algorithm, thus combines various known search manners 

and closure-testing strategies to improve the performance of CLOSET. The CHARM 

algorithm uses a dual itemsets-tidset search tree and the Diffset technique to 

enumerate closed itemsets from a vertical-layout database. 

 

2.2.2 Incremental mining approaches 

Conventional batch-mining algorithms do not utilize previously mined patterns 

for later maintenance, and may require considerable computation time to reprocess the 

entire updated database to get all up-to-date association rules. Some researchers have 

developed incremental mining algorithms to maintain association rules without 

reprocessing the entire database whenever the database is updated. Examples include 

the FUP-based algorithms [20][21], an adaptive algorithm [77], an incremental 

mining algorithm based on the concept of pre-large itemsets [43], and an incremental 

updating technique based on the concept of negative border [27][85]. The common 
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idea of these researches lies in that, the previously mining information such as mined 

frequent itemsets are stored in advance; when new transactions are inserted, a large 

portion of candidate itemsets can be decided by using the pre-stored frequent itemsets; 

only a small portion of candidate itemsets obtained from the new transactions needs to 

be reprocessed against the original database. Much computation time can thus be 

saved in this way. The correctness of this idea is simply illustrated as follows. 

Considering an original database and the newly inserted transactions, there are 

four cases of candidate itemsets shown in Figure 2-1 may arise: 

 Case 1: A candidate itemset is frequent in both the original database and the 

newly inserted transactions; 

 Case 2: A candidate itemset is frequent in the original database but 

infrequent in the newly inserted transactions; 

 Case 3: A candidate itemset is infrequent in the original database but 

frequent in the newly inserted transactions; 

 Case 4: A candidate itemset is infrequent in both the original database and 

the newly inserted transactions. 

 

 

 

 

 

 

 

 

Figure 2-1: Four cases of candidate itemsets 
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Among the cases, since candidate itemsets in Case 1 are frequent in both the 

original database and the new transactions, they are still frequent after the weighted 

average of the supports; similarly, candidate itemsets in Case 4 are still infrequent 

after the new transactions are inserted. Cases 1 and 4 will not affect the final 

association rules; Case 2 may remove existing association rules; and Case 3 may 

generate new association rules. 

Cheung and his co-workers proposed an incremental mining algorithm, called 

FUP (Fast UPdate algorithm) [20][21], to efficiently cope with these four cases by 

pre-storing the previously mined frequent itemsets from the original database. It 

handles Cases 1, 2 and 4 by updating the pre-stored frequent itemsets against the 

newly inserted transactions, and reprocesses only the itemsets without sufficient 

information in Case 3 against the original database if necessary. 

The performance of the FUP algorithm will get degraded if a lot of candidate 

itemsets from the newly inserted transactions belong to Case 3. Thomas et al. [85] and 

Feldman et al. [27] thus utilized the concept of negative border [67] to enlarge the 

amount of pre-stored mining information in the FUP algorithm for improving the 

maintenance performance. A negative border of frequent itemsets can be easily 

formed by excluding the set of frequent itemsets from the set of candidate itemsets 

generated level by level. In other words, the negative border consists of the itemsets 

which are candidates but do not have enough supports. The processing time for Case 

3 in the FUP algorithm can be reduced by additionally keeping the negative border of 

frequent itemsets. Similarly, Hong et al. [43] proposed the concept of pre-large 

itemsets to enlarge the amount of pre-stored mining information for improving the 

maintenance performance. The proposed algorithm does not need to reprocess the 
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original database until a number of new transactions have been inserted. 

 

2.3 Preliminary Concepts 

Let I = {i1, i2, …, im} be a set of m items. A subset X of I consisting of k items is 

called a k-itemset. Let D be a transactional database consisting of a set of transactions, 

where each transaction T consisting of a set of items of I is associated with an 

identifier called TID, and |D| denotes the number of transactions in D. A transaction T 

is said to contain X if and only if X ⊆  T. The support of an itemset X, X.sup, in D is 

denoted as the percentage of transactions in D which contain X; the support count of X, 

X.count, in D is denoted as the number of transactions in D which contain X, X.count 

= X.sup * |D|. For the itemsets in D, X is called a closed itemset if there does not exist 

an itemset Y which closes (absorbs) X, where an itemset Y is said to close (absorb) X 

iff X ⊆  Y and X.sup = Y.sup (X.count = Y.count). CI denotes the set of all closed 

itemsets in D. Furthermore, if there is no superset of X existing in D, X is also called a 

maximal itemset. 

An association rule is an implication of the form X ⇒ Y, where X and Y are 

subset of I, and X∩Y = φ. The support of a rule X ⇒ Y, (X∪ Y).sup, in D is denoted as 

the percentage of transactions in D which contain X∪ Y, and the confidence of X⇒Y 

is computed by (X∪ Y).sup/X.sup. Given the user-specified minimum support 

threshold, minsup, and minimum confidence threshold, minconf, the problem of 

mining association rules is to find out all association rules in D that have support and 

confidence larger than minsup and minconf, respectively. With respect to the minsup, 

the set of frequent itemset, FI, includes all the itemsets whose support is larger than 

minsup; the set of infrequent itemset, NI, includes all the itemsets whose support is 

less than minsup; the set of frequent closed itemset, FCI, includes all the closed 
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itemsets whose support is larger than minsup, FCI = {x|x ∈  CI, x.sup ≥ minsup}; and 

the set of infrequent closed itemset, NCI, includes all the closed itemsets whose 

support is less than minsup, NCI = {x| x ∈  CI – FCI}. Note that FCI includes no 

itemset which has a superset with the same support, and thus FCI ⊆  FI. The problem 

of mining association rules can be reduced to the problem of finding FI or FCI in D. 

Let d be an increment of new transactions which is inserted into the original 

database D, |d| be the number of transactions in d, D+ be the updated database which 

denotes D ∪  d, and |D+| be the number of transactions in D ∪  d. Therefore, FID, FId 

and CI D+ denote the FI obtained from D, d and D+ with respect to the same minsup, 

respectively, and FCI, NI, NFCI or CI obtained from D, d and D+ can have similar 

meanings. The problem of maintaining association rules is to find FID+ or FCID+. Let 

the set of original frequent itemsets, O, be defined as O = {x|x ∈  FID}, and the set of 

potential frequent itemsets, P, be defined as P = {x|x ∈  FId − FID}. By definition, an 

itemset X ∈  FID+ must belong to O ∪  P, and thus the problem of maintaining 

association rules is equivalent to processing O ∪  P. Similarly, let the set of closed 

original frequent itemsets, CO, be defined as CO = {x|x ∈  FID and x ∈  CID+}, and the 

set of closed potential frequent itemsets, CP, be defined as CP = {x|x ∈  FId − FID and 

x ∈  CID+}. The problem of maintaining association rules is also equivalent to 

processing CO ∪  CP. The set of joint closed itemsets, JCI, which is defined as JCI = 

{x|x = y ∩ z, y ∈  CID, z ∈  CId}, is proposed in this study and can be divided into four 

parts based on FCID, FCId, NCID and NCId: 

 FFJCI = {x|x = y ∩ z, y ∈  FCID, z ∈  FCId}; 

 FNJCI = {x|x = y ∩ z, y ∈  FCID, z ∈  NCId}; 

 NFJCI = {x|x = y ∩ z, y ∈  NCID, z ∈  FCId}; 
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 NNJCI = {x|x = y ∩ z, y ∈  NCID, z ∈  NCId}. 

 

2.4 Closed Itemsets Maintenance 

 Considering an original database D and the newly inserted transactions d, there 

are four cases of candidate itemsets for the updated database D+ have been discussed 

in Section 2. With pre-storing previously mined frequent itemsets FID, a typically 

incremental mining process can efficiently cope with these four cases by two steps: (a) 

updating O against d and (b) reprocessing P against D. Following this idea, we can 

use two similar steps: (a) updating CO against d and (b) reprocessing CP against D 

to find out FCID+ dealing with the problem of maintaining association rules. However, 

directly obtaining CO = {x|x ∈  FID and x ∈  CID+} and CP = {x|x ∈  FId − FID and x ∈  

CID+} is impractical because CID+ is unknown before processing D+. In the following, 

we attempt to utilize the pre-stored known information FCID from D and the 

information FCId obtained from d to approach CO and CP. 

Lemma 2-1: If x ∈  CID ∪  CId, then x ∈  CID+. 

Proof: We prove the lemma by contradiction. If x ∉  CID+, there must exist a 

proper superset y of x such that y.supD+ = x.supD+, i.e., y.supD*|D| + y.supd*|d| = 

x.supD*|D| + x.supd*|d|. Thus y.supD = x.supD and y.supd = x.supd, contradicting the 

claim that x ∈  CID ∪  CId. Thus, x ∈  CID+.  

Let FCId-D denote FCId – FCID. According to Lemma 2-1, we have FCID ⊆  CID 

⊆  CID+ and FCId-D ⊆  CId ⊆  CID+. FCID and FCId-D are both closed itemsets in D+. If 

an incremental mining algorithm can utilize FCID and FCId to obtain CO and CP, the 

problem of maintaining association rules in a dense database can be efficiently coped 

with. We first discuss the differences between FCID and CO and between FCId-D and 

CP. For example, given D = {ABCE, CD, BCE}, d = {ABCDE, CDE} and minsup = 
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0.6, FID = {B, C, E, BC, BE, CE, BCE}, FId = {C, D, E, CD, CE, DE, CDE}, FCID = 

{C, BCE} and FCId = {CDE}. By definitions, FCId-D = {CDE}, CO = {C, CE, BCE} 

and CP = {CD, CDE}. As shown in this example, there exist some closed itemsets in 

CID+ but not in CID or CId, such that FCID and FCId-D may be not equivalent to CO 

and CP. The following lemmas are used to derive the set of joint closed itemsets (JCI) 

which are closed itemsets for D+ but can not be determined by FCID and FCId-D. 

Lemma 2-2: If x ∈  JCI, then x ∈  CID+. 

Proof: If x ∈  JCI, x must be one of following two cases. 

Case 1: If x ∈  CID ∪  CId, then x ∈  CID+ according to Lemma 2-1; 

Case 2: If x ∉  CID ∪  CId, there exist y ∈  CID and z ∈  CId such that x ⊂  y, x ⊂  z, 

and x is closed by both y and z. We prove this case by contradiction. If x ∉  CID+, there 

must exist a proper superset x’ of x such that x’.supD+ = x.supD+, i.e., x’.supD*|D| + 

x’.supd*|d| = x.supD*|D| + x.supd*|d| = y.supD*|D| + z.supd*|d|. Thus x’ ⊂  y, x’ ⊂  z 

(because x’.supD = y.supD and x’.supd = z.supd) and x’ = y ∩ z, contradicting the claim 

that x ∈  JCI. Thus, x ∈  CID+.  

Lemma 2-3: If x ∈  CID+, then x ∈  CID ∪  CId ∪  JCI. 

Proof: If x ∈  CID+ and x ∉  CID ∪  CId, x must be closed in both D and d. Assume 

y is the itemset that closes x in D and z is the itemset that closes x in d. Then x.supD+ * 

|D+| = y.supD * |D| + z.supd * |d|. If y ⊆  z, x is belonging to Case 1 of Lemma 2-2, 

contradicting the claim that x ∉  CID; if z ⊆  y, x is also belonging to Case 1 of Lemma 

2-2, contradicting the claim that x ∉  CId. Thus y ⊆/  z and z ⊆/  y. According to Case 

2 of Lemma 2-2, there must exist x’ = y ∩ z and x’ ∈  CID+. If x ⊂  x’, x is closed by x’ 

(because x’.supD+ = x.supD+), contradicting the claim that x ∈  CID+. Thus, x = x’ and x 

∈  JCI.  
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Theorem 2-1: CID+ = CID ∪  CId ∪  JCI. 

Proof: According to Lemmas 2-1 and 2-2, we have (CID ∪  CId ∪  JCI) ⊆  CID+. 

On the other hand, according to Lemma 2-3, we have CID+ ⊆  (CID ∪  CId ∪  JCI). 

Thus, CID+ = CID ∪  CId ∪  JCI.  

Considering an original database and the newly inserted transactions, JCI can be 

divided into four parts based on FCID, FCId, NCID and NCId as shown in Figure 2-2: 

 

 

 

 

 

 

 

Figure 2-2: Four cases of joint closed itemsets 
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infrequent in the newly inserted transactions; 

 The case of NFJCI: A closed itemset is infrequent in the original database 

but frequent in the newly inserted transactions; 

 The case of NNJCI: A closed itemset is infrequent in both the original 

database and the newly inserted transactions. 
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closed itemsets in NNJCI will still be infrequent in the updated database. FFJCI and 

NNJCI will not affect the final association rules. FNJCI may remove existing 

association rules, and NFJCI may add new association rules. 

According to Theorem 2-1, the following theorems are derived to obtain CO and 

CP by FCID, FCId, FFJCI, FNJCI and NFJCI. 

Theorem 2-2: CO = {x|x ∈  FCID ∪  FFJCI ∪  FNJCI}. 

Proof: By definition, CO collects the closed itemsets for D+ which is generated 

from FID. According to Theorem 2-1, CO = {x|x ∈  FID and x ∈  CID+} = {x|x ∈  FID 

and x ∈  CID ∪  CId ∪  JCI } = {x|x ∈  FCID ∪  FFJCI ∪  FNJCI}.  

Theorem 2-3: CP = {x|x ∈  (FCId − FFJCI) ∪  NFJCI}. 

Proof: By definition, CP collects the closed itemsets for D+ which is generated 

from FId−FID. As known in Theorem 2-2, FCId ∪  FFJCI ∪  NFJCI is the set of closed 

itemsets for D+ which is generated from FId. Thus CP = {x|x ∈  FId − FID and x ∈  

CID+} = {(FCId ∪  FFJCI ∪  NFJCI) − (FCID ∪  FFJCI ∪  FNJCI)) = {x|x ∈  FCId ∪  

FFJCI ∪  NFJCI – FFJCI} = {x|x ∈  (FCId − FFJCI) ∪  NFJCI}.  

In contrast to the definitions of CO and CP, Theorems 2-2 and 2-3 provide a 

convenient way to obtain CO and CP. For CO, FFJCI and FNJCI can be obtained by 

processing the pre-stored mining information FCID against d. For CP, however, 

since NFJCI has to be generated from NCID, which is usually unknown in a typically 

incremental mining process, the cost is too expensive to be acceptable. As a result, 

given a function cover(FFJCI, FId) denoting the itemsets in FId which are covered 

by FFJCI, the following theorem is derived to obtain CP. 

Theorem 2-4: CP = {x|x ∈  FId – cover(FFJCI, FId), x ∈  CID+}. 

Proof: By definition, the FFJCI covers the itemsets which are included both in 

FId and FID. Thus CP = {x|x ∈  FId − FID and x ∈  CID+} = {x|x ∈  FId – cover(FFJCI, 
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FId), x ∈  CID+}.  

Corollary 2-1: CP ⊆  {FId – cover(FFJCI, FId)}  

Since FFJCI has been obtained in CO generation, we only need to find FId and 

remove the itemsets in FId which have been determined in FFJCI as candidates for 

CP. It seems to be a better way to generate the itemsets of FCID+ which are not 

included in the CO. 

 

2.5 The Closed Itemsets Maintaining (CIM) Algorithm 

We develop a novel incremental mining algorithm mainly consisting of 

CO_generation and CP_generation subroutines, called Closed Itemsets Maintaining 

(CIM), to efficiently find FCID+. Also, an in-memory data structure called Closed 

Maintenance Tree (CMT) is proposed in the CIM algorithm to facilitate the processes 

of CO_generation and CP_generation subroutines. The CIM algorithm first updates 

the itemsets in the CMT against d to obtain CO by the CO_generation subroutine. 

Then, by the CP_generation subroutine, it generates candidate itemsets for the 

itemsets of FCID+ which have not been determined in the CO_generation subroutine. 

Finally, by reprocessing these obtained candidate itemsets against D and checking 

their closure property, the CIM algorithm can find FCID+ from the CMT. Details of 

the CMT data structure, the CO_generation and CP_generation subroutines are 

described in Section 2.5.1 to Section 2.5.3. 

 

The CIM algorithm(CMT, D, d, minsup) 
Parameters: 
 CMT: A closed maintenance tree; 
 D: An original database; 
 d: A set of newly inserted transactions; 
 minsup: A minimum support threshold. 
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Begin 
 Set FFJCISet = φ; /* FFJCISet is a set used to store the 

itemsets of FFJCI. */ 
 Set Cand = φ; /* Cand is a set used to store candidate 

itemsets for FCID+. */ 
CO_generation subroutine(CMT, d, minsup, FFJCISet, Cand); 

 Set F1dD+ = φ; /* F1dD+ is a set used to store the frequent 
1-itemsets in both d and D+. */ 

 Set mincountD+ = minsup * (|D| + |d|); 
 Obtain_frequent_items(CMT, mincountD+, F1dD+); 
 /* Obtain F1dD+ from CMT. */ 
 CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1dD+, CMT.root); 
 Reprocess_Cand(CMT, Cand, D); /* Reprocess obtained candidate k-itemsets 

(k ≥ 2) in CMT against D. */ 
 Check_Closure_Cand(CMT, Cand); /* Check closure property for all candidates 

itemsets in CMT. */ 
 Remove_NCI(CMT, mincountD+); /* Remove the closed itemsets in CMT 

whose support counts are less than 
mincountD+. */ 

 Output_FCI(CMT); /* Output FCID+ for D+.*/ 
End. 

Figure 2-3: The CIM algorithm 

 

Theorem 2-5: The CIM algorithm can correctly obtain FCID+. 

Proof: As mentioned above, an incremental mining algorithm can use two steps: 

updating CO against d and reprocessing CP against D to find out FCID+ dealing with 

the problem of maintaining association rules. According to Theorem 2-2 and 

Corollary 2-1, since the CIM algorithm can maintain CO and candidate itemsets for 

CP in the CMT by the CO_generation and CP_generation subroutines, the CIM 

algorithm can correctly obtain FCID+ from the CMT.  

 

2.5.1 The Closed Maintenance Tree (CMT) 
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A Closed Maintenance Tree (CMT) which is a tree structure like a prefix tree [1] 

is constructed as follows. For each itemset x, a corresponding node vx is built in the 

CMT. Each node maintains its corresponding itemset with support count, denoted as 

(itemset, support count). For each pair of nodes vx and vy corresponding to itemsets x 

and y, there is a directed edge from vx to vy if x is a parent of y. x is said to be a parent 

of y if y can be obtained by adding a new item to x, and inversely, y is said to be a 

child of x. Therefore, an itemset has only one parent and more than one child in the 

constructed CMT. Note that, the itemsets in a CMT are usually maintained in lexical 

order, and for saving the storage space, each node maintains only the suffix of an 

itemset which is regarding the itemset in its parent node. There are three types of 

nodes in a CMT: 

 Closed nodes: the nodes represent the itemsets in FCID; 

 Prefix-unclosed nodes: the nodes represent the common prefixes of closed 

nodes; 

 Infrequent nodes: the nodes represent infrequent 1-itemsets in D. 

Among them, in particular, prefix-unclosed nodes are used to improve the 

searching performance of CMT, and infrequent nodes are used to reduce useless item 

combinations in the CP_generation subroutine. 

 

Table 2-1: A transactional database 

TID Items 
100 A, C, D 
200 B, C, E 
300 A, B, C, E 
400 B, E 

 

Example 2-1: Given a transactional database as shown in Table 2-1, Figure 2-4 

shows an example of CMT based on minsup = 0.5. The prefix-unclosed node (B, 3) 
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and the closed node (CE, 2) stand for the closed itemset (BCE, 2); (B, 3) and (E, 3) 

stand for the closed itemset (BE, 3). The CMT maintains only one infrequent node (D, 

1).  

 

 

 

 

 

 

Figure 2-4: A closed maintenance tree (CMT) 

 

2.5.2 The CO_generation Subroutine of the CIM Algorithm 

The CO_generation subroutine is responsible for processing FCID against d to 

find FFJCI and FNJCI, thus obtaining CO. In that, finding FNJCI is the most 

concerned because most itemsets in NId are irrelative and useless. In order to reduce 

useless item combinations of NId, the CO_generation subroutine adopts the 

branch-wise processing strategy to process a given CMT against d as follows. The 

CO_generation subroutine operates from the most left branch to the most right branch 

in the CMT. If a branch consists of only one item x maintained in an infrequent node 

vx, the CO_generation subroutine updates x’s support count against d, and keeps x in a 

set used to store candidate itemsets for FCID+ if x’s support count is not less than 

minsup*|D+|. Detailed usage of this candidate set will be described in Section 5.3. 

Otherwise, for each of the other branches, which consists of closed nodes, the 

CO_generation subroutine uses the items belonging to the branch, i.e., the items of 

the maximal itemset in the branch, as seeds to mine the closed itemsets in d by a 
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root
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closed itemsets mining approach (such as the CHARM algorithm). Moreover, a 

checking mechanism is used to reduce duplicate item combinations which have been 

considered by a processed branch. Since the CO_generation subroutine considers 

only the items in a branch at a time, useless item combinations belonging to NId can 

be effectively reduced. The performance of CO_generation subroutine is greatly 

improved. After all branches have been processed, the CO_generation subroutine then 

updates found itemsets against CMT to obtain CO. Assume y is an itemset in the 

CMT, z is one of the found itemsets in d, and x = y ∩ z. The CO_generation 

subroutine can find FFJCI and FNJCI by updating x with support count calculated by 

y’s support count + z’s support count. The updated CMT thus contains the entire CO. 

 

CO_generation subroutine(CMT, d, minsup, FFJCISet, Cand) 
Parameters: 

CMT: The closed maintenance tree; 
d: The newly inserted transactions; 
minsup: The minimum support threshold; 
FFJCISet: The set used to store the itemsets of FFJCI; 
Cand: The set used to store candidate itemsets for FCID+. 

Begin 
 Set T = φ;  /* T is a set used to store the mining results 

by the branch-wise processing strategy. */ 
 for each item ai only appears d, do /* Insert each new item ai in CMT. */ 

insert ai with ai.count = 0 into CMT; 
for each branch bi ∈  CMT, do 

if bi consists of only one infrequent item x, then 
update x.count against d; /* x.count denotes x’s support count. */ 
if x.count ≥ minsup*|D+|, then 

insert x with x.count into Cand; 
else if bi ≠ null and bi is not contained by a processed branch bj, then 

 Closed_itemset_mining(bi, d, T); /* Execute a closed itemsets mining 
algorithm and store mining results into T. */ 

 y = CMT.get_first_CI(); /* Fetch the first closed itemset by lexical 
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order in CMT. */ 
 z = T.get_first_CI(); /* Fetch the first closed itemset by lexical 

order in T. */ 
while y ≠ null and z ≠ null, do 

if y = z, then 
y.count = y.count + z.count; 
if z.count ≥ minsup*|d|, then 

insert y with y.count into FFJCISet; 
 y = CMT.get_next_CI(y); /* Fetch the next closed itemset by lexical 

order in CMT. */ 
 z = T.get_next_CI(z); /* Fetch the next closed itemset by lexical 

order in T. */ 
else if y ∩ z = y, then 

y.count = y.count + z.count; 
if z.count ≥ minsup*|d|, then 

insert y with y.count into FFJCISet; 
y = CMT.get_next_CI(y); 

else if y ∩ z = z then 
if z.count ≥ minsup*|d|, then 

insert z with (y.count + z.count) into FFJCISet; 
z.count = y.count + z.count; 
insert z with z.count into CMT; 
z = T.get_next_CI(z); 

 else if y ∩ z = x and x ≠ null then /* x ⊂  y and x ⊂  z. */ 
if CMT.exist(x) = false, then 

x.count = y.count + z.count; 
insert x with x.count into CMT; 
if z.count ≥ minsup*|d|, then 

insert x with x.count into FFJCISet; 
y = CMT.get_next_CI(y); 

  else if (y.count + z.count) > x.count, then 
x.count = y.count + z.count; 
if z.count ≥ minsup*|d|, then 

insert x with x.count into FFJCISet; 
y = CMT.get_next_CI(y); 

End. 
Figure 2-5: The CO_generation subroutine 
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Theorem 2-6: The algorithm of CO_generation subroutine can correctly obtain 

CO. 

Proof: For a branch of the given CMT, by using the items of the branch as seeds 

to process d, the CO_generation subroutine can find the closed itemsets in d which 

are subsets of one of the frequent closed itemsets in the branch. After all branches 

have been processed, it is easily seen that these found closed itemsets in d can be used 

to obtain the entire FFJCI ∪  FNJCI by updating them against the frequent closed 

itemsets in the CMT. The updated CMT thus contains the entire FCID ∪  FFJCI ∪  

FNJCI.  

 

Table 2-2: The newly inserted transactions 

TID Items 
500 B, C, D 
600 C, D 

 

 

 

 

 

Figure 2-6: An example of branch-wise processing strategy in the CO_generation 

subroutine 

 

 

 

 

 

Figure 2-7: An example of updating process in the CO_generation subroutine 

(D, 1)(B, 3)

(CE, 2)

(AC, 2)

root

(C, 3)

(E, 3)

C, D600

B, C, D500

ItemsTID

C, D600

B, C, D500

ItemsTID

Closed itemsets mining with
branch-wise processing strategy

C

BE

(BC, 1), (C, 2)BCE

(C, 2)AC

Mining resultsBranch

C

BE

(BC, 1), (C, 2)BCE

(C, 2)AC

Mining resultsBranch

(D, 3)(B, 4)

(C, 3)

(AC, 2)

root

(C, 5)

(E, 3)

(E, 2)

(D, 3)(B, 3)

(CE, 2)

(AC, 2)

root

(C, 3)

(E, 3)

Updating process

(BC, 1), (C, 2)BCE

(C, 2)AC

Mining resultsBranch

(BC, 1), (C, 2)BCE

(C, 2)AC

Mining resultsBranch



 31

 

Example 2-2: When new transactions shown in Table 2-2 have been inserted 

into Table 2-1, the CO_generation subroutine first considers the most left branch of 

{AC} in Figure 2-4 and uses {A} and {C} as seeds to mine the closed itemsets in d. 

Then, the branches with maximal itemsets {BCE}, {BE}, {C} and {D} are processed 

in turn. Mining results are shown in Figure 2-6, where the branches with {BE} and {C} 

can be ignored because related item combinations have been processed by the branch 

with {BCE}. After all branches have been processed, the CO_generation subroutine 

then updates mining results against CMT. The updated CMT is shown in Figure 2-7, 

where the itemsets {B}, {C} and {BC} are belonging to FFJCI, and the itemset {D} 

is a candidate itemset for FCID+.  

 

2.5.3 The CP_generation Subroutine of the CIM Algorithm 

According to Corollary 1, the CP_generation subroutine can find FId and then 

remove the itemsets in FId which have been covered by FFJCI as candidates for CP 

(i.e. {FId – cover(FFJCI, FId)}), but this indirect way may require an excessive 

computation cost for a large size of FId and generate many candidate itemsets 

irrelative to FCID+. As a result, the CP_generation subroutine adopts a more effective 

and efficient candidate generation dealing with candidate generation. Let F1dD+ 

denote the frequent 1-itemsets in both d and D+, and Cand1 denote the 1-itemsets 

which are infrequent in D but frequent in D+. They can be easily obtained from the 

updated CMT after the CO_generation subroutine. The CP_generation subroutine 

attempts to combine the found itemsets of FFJCI and Cand1 with ones of F1dD+, to 

directly generate k-itemsets (k ≥ 2) as candidates for FCID+ as follows. The 

CP_generation subroutine uses a depth-first and left-to-right search manner in the 
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CMT to generate the other candidates. When meeting an itemset x of FFJCI in the 

CMT, the CP_generation subroutine combines x with one of F1dD+ to form a new 

itemset x’. If x’ is not covered by FFJCI (i.e. x’ is not a subset of an itemset in FFJCI) 

and frequent in d, x’ is a new candidate itemset and a corresponding node vx’ is built 

in the CMT. On the other hand, when meeting an itemset y of Cand1 or of new 

candidates generated before, the CP_generation subroutine does a similar 

combination-and-test to generate a new candidate itemset y’ and build a 

corresponding node vy’ in the CMT. These two FFJCI–based and Cand–based 

candidate generations continue until no new candidate itemsets are generated. 

 

CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1dD+, x) 
Parameters: 

CMT: The closed maintenance tree; 
d: The newly inserted transactions; 
minsup: The minimum support threshold; 
FFJCISet: The set used to store the itemsets of FFJCI; 
Cand: The set used to store candidate itemsets for FCID+; 
F1dD+: The set used to store frequent 1-itemsets in both d and D+; 
x: A variable. 

Begin 
if x = CMT.root, then 

for each child ci of x, do 
CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1dD+, ci); 

else if x ⊆  FFJCISet or x ⊆  Cand, then 
for each zi ∈  F1dD+ and the lexical order of zi is after that of the first item of x, do 

 x’ = combine(x, zi);  /* Attempt to generate new candidate 
itemsets for FCID+. */ 

if x’ ≠ null, then 
if cover(FFJCISet, x’) ≠ null, then continue; 

/* If x’ is covered by FFJCISet. */ 
update x’.count against d; 
if x’.count ≥ minsup*|d|, then 

insert x’ with x’.count into CMT and Cand; 



 33

for each child ci of x, do 
CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1dD+, ci); 

End. 
Figure 2-8: The CP_generation subroutine 

 

Theorem 2-7: The algorithm of CP_generation subroutine can correctly 

generate candidate itemsets for the itemsets of FCID+ which have not been determined 

in the CO_generation subroutine. 

Proof: It is obvious that only the itemsets of FId which are enumerated from 

F1dD+ are possible to be contained in FCID+. The number of itemsets of {FId – 

cover(FFJCI, FId)} can be further reduced regarding FCID+. Since the entire F1dD+ 

can be obtained by collecting the 1-itemsets covered by FFJCI and the itemsets of 

Cand1, the CP_generation subroutine can directly, without loss of information, 

generate the candidate itemsets for the itemsets of FCID+ which have not been 

determined in the CO_generation subroutine by combining FFJCI with F1dD+ and 

Cand with F1dD+, respectively. Among them, the FFJCI–based candidate generation 

can avoid the item combinations which have been covered by the found itemsets of 

FFJCI.  
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Figure 2-9: An example of CP_generation subroutine 

 

Example 2-3: Continue from Example 2-2. After the CO_generation subroutine, 

FFJCI = {B, BC, C}, Cand1 = {D} and F1dD+ = {B, C, D}. As shown in Figure 2-9, 

the CP_generation subroutine mainly generates candidate itemsets as follows. It first 

combines {B} of FFJCI with one of F1dD+ to form valid candidate itemsets. This will 

generate the candidate itemset {BD}. Then {BC} and {C} of FFJCI are processed as 

well to generate the candidate itemsets {BCD} and {CD}, respectively.  

 

2.6 The CIM Algorithm with Pre-large Concept: CIM-P Algorithm 

Although the CIM algorithm focuses on the newly inserted transactions d and 

thus saves much processing time in maintaining association rules, it has to reprocess 

the original database D to handle the candidate itemsets generated by the 

CP_generation subroutine. This situation may occur frequently, especially when d is 

heterogeneous with D. For example, suppose {A}, {B} and {AB} are the entire CO 

and {C}, {D} and {CD} are the candidate itemsets. The final results can not be 

determined without reprocessing {C}, {D} and {CD} against D. If the candidate 

itemsets could be decided without reprocessing D at each time, the maintenance time 

could be further reduced. 

In general, the number of records in d is much smaller than the number of 

records in D. Only the closed itemsets whose supports are slightly less than minsup in 

D are possible to be frequent for D+ after database maintenances. The concept of 

pre-large closed itemsets is denoted as the set of closed itemsets having support 

between a lower support threshold, which is smaller than minsup, and an upper 
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support threshold, which is equal to minsup. Pre-large closed itemsets are not truly 

frequent at present but more possible to be frequent in the future when database is 

updated. Therefore, using the pre-large closed itemsets to enlarge the amount of CO 

can reduce the cost of reprocessing D at the expense of storage spaces. They act as a 

buffer to avoid the movement of a closed itemset directly from infrequent to frequent 

and vice-versa during the incremental mining process. An infrequent closed itemset at 

most becomes pre-frequent (pre-large) and cannot become frequent. Based on this 

concept, the enhancement of CIM algorithm, CIM-P (CIM with Pre-large concept), 

does not require reprocessing D until the accumulative amount of new transactions 

exceeds the safety bound the buffer can afford, which depends on database size. As 

the database grows larger, the number of new transactions allowed also grows larger, 

and the CIM-P algorithm becomes increasingly efficient. 

Figure 2-10 shows the concept of pre-large closed itemsets, where Sl denotes the 

lower support and Su denotes the upper support. An infrequent closed itemset at most 

becomes pre-frequent (pre-large) and cannot become frequent after a small d is 

inserted into a large D. 

 

 

 

 

Figure 2-10: The concept of pre-large closed itemsets 

 

Given the user-specified Sl and Su, the safety bound of buffer can be derived by 

the following theorem. 
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frequent in D+ after database maintenances [43].  

The 
u

lu

S
DSS

−
−

1
)(

 can be used as the safety bound of buffer to determine the 

suitable time of reprocessing D. However, only considering whether the accumulative 

amount of new transactions exceeds 
u

lu

S
DSS

−
−

1
)(

 seems too loose. For example, 

assume the safety bound 
u

lu

S
DSS

−
−

1
)(

 = 10 and the accumulative amount of new 

transactions t = 0 at first. When an increment d, in which all the transactions are 

distinct 1-itemsets and |d| = 11, has been inserted into D, then t = 11 larger than 

u

lu

S
DSS

−
−

1
)(

 = 10 and the CIM-P algorithm has to reprocess D to handle found 

candidate itemsets. However, these distinct closed itemsets consume only one of 

buffer, and the effort of reprocessing D is worthless. 

Furthermore, we propose the bucketing strategy to improve the utility of buffer. 

The purpose of bucketing strategy is using some buckets to record the actual 

contributions of d for the major candidate itemsets (the itemsets with higher supports). 

The consumption of buffer can be rigidly calculated with the maximum value of 

buckets. In general, the number of candidate itemsets are much more than the number 

of buckets, and the bucketing strategy operates as follows. If only one bucket exists, 

the bucket is accumulated with the maximum support count of the candidate itemsets. 

Otherwise, according to the number of buckets k, k candidate itemsets with the 

highest support counts are selected to accumulate their corresponding bucket values: 

(a) For each selected itemset matching an itemset previously stored in the 

buckets, the bucketing strategy accumulates the target bucket using the support 

count of the selected itemset; 

(b) For the remaining selected itemsets, the bucketing strategy then finds two 
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having the largest and smallest support counts to accumulate the unprocessed 

bucket having the smallest value and all the remaining unprocessed buckets, 

respectively. 

Example 2-4: Assume there are three buckets b1, b2 and b3, the original database 

D is with |D| = 100, Sl is 30%, Su is 50%, and two sets of candidate itemsets, {(AB, 

15), (CD, 12), (CDE, 11), (BD, 10)} and {(BCD, 11), (AB, 10), (AD, 10)}, are 

respectively obtained from two increments d1 with |d1| = 20 and d2 with |d2| = 20. By 

Theorem 2-8, the safety bound is 40
5.01

100*)3.05.0( =
−

− . After d1 has been inserted 

into D, b1 = (AB, 15), b2 = (CD, 12) and b3 = (CDE, 11). Since the maximum value of 

buckets is 15 less than 40, the CIM-P algorithm does not need to reprocess D and the 

safety bound becomes 48
5.01

120*)3.05.0( =
−

−  for the updated database D+. After d2 

has been inserted into D+, the bucketing strategy first accumulates b1 = (AB, 15) using 

the support count of (AB, 10) and thus b1 = (AB, 25), and then accumulates b2 = (CD, 

12) and b3 = (CDE, 11) respectively using the support count of (AD, 10) and (BCD, 

11) and thus b2 = (AD, 22) and b3 = (BCD, 22). Since the maximum value of buckets 

is 25 less than 48, the CIM-P algorithm still does not need to reprocess D+.  

The utility of buffer would be better if we have more buckets, but the cost of 

storage space and accumulating buckets would be increased. This is a trade off in this 

strategy. In the CIM-P algorithm, according to the user-specified lower support and 

upper support thresholds, the large and pre-large closed itemsets with their support 

counts in preceding runs are stored in the CMT for later use in maintenance. When 

new transactions are inserted, the proposed algorithm first executes the 

CO_generation subroutine to find FFJCI and FNJCI and the CP_generation 

subroutine to generate the candidate itemsets which has not been determined in the 
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CO_generation subroutine. Then, the proposed algorithm utilizes the bucketing 

strategy to calculate the accumulative consumption of buffer and decide the suitable 

time of reprocessing D. If the accumulative consumption is within the safety bound of 

buffer, no action is needed. Otherwise, the original database has to be reprocessed to 

guarantee information lossless. The detail of the proposed CIM-P algorithm is shown 

as follows. 

 

The CIM-P algorithm(CMT, D, d, Sl, Su, k) 
Parameters: 

CMT: A closed maintenance tree based on Sl; 
D: An original database; 
d: A set of newly inserted transactions; 
Sl: A lower support threshold; 
Su: An upper support threshold; 
k: the number of buckets. 

Begin 

 Set SF = 
u

lu

S
DSS

−
−

1
)(

; /* SF is the safety bound of buffer*/ 

 Set FFJCISet = φ; /* FFJCISet is a set used to store the 
itemsets of FFJCI. */ 

 Set Cand = φ; /* Cand is a set used to store candidate 
itemsets for FCID+. */ 

  Set_Bucket(BucketSet, 0, φ) /* Initialize the buckets in BucketSet, where 
BucketSet is a set used to store the most 
frequent k candidate itemsets. */ 

CO_generation subroutine(CMT, d, Su, FFJCISet, Cand); 
 Set F1dD+ = φ; /* F1dD+ is a set used to store frequent 

1-itemsets in both d and D+. */ 
 Set UcountD+ = Su * (|D| + |d|); 
 Set LcountD+ = Sl * (|D| + |d|); 
 Obtain_frequent_items(CMT, UcountD+, F1dD+); 
 /* Obtain F1dD+ from CMT. */ 
 CP_generation subroutine(CMT, d, Su, FFJCISet, Cand, F1dD+, CMT.root); 

if Bucket_Strategy(CMT, BucketSet, Su) > SF, then 
 /* Check whether the consumption of buffer 
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is larger than the safety bound of buffer. */ 
 Reconstruct(CMT, D, d, Sl); /* Reconstruct CMT for D+ based on Sl */ 
 else Remove_NCI(CMT, LcountD+); /* Remove the closed itemsets in CMT 

whose support counts are less than 
mincountD+. */ 

 Output_FCI(CMT); /* Output the frequent closed itemsets for 
D+. */ 

End. 
Figure 2-11: The CIM-P algorithm 

 

2.7 Experimental Results 

The experiments were conducted in C++ on a workstation with dual XEON 

2.8GHz processors and 2048MB main memory, running the RedHat 9.0 operating 

system. For performance comparison, two classically incremental mining algorithms, 

FUP and Pre-large, in addition to our proposed CIM and CIM-P algorithms, were run 

on several synthetic and real-world dataset benchmarks which have been used in the 

previous performance studies [86][104][106]. The FUP and Pre-large algorithms were 

implemented based on the Apriori algorithm, while the CIM and CIM-P algorithms 

were implemented based on the CHARM algorithm. Table 2-3 shows the 

characteristics of the synthetic and real datasets. 

 

Table 2-3: Characteristics of the experimental datasets 

Dataset 
No. of 

transactions
(D) 

Avg. of 
transaction 
length (T) 

Max. of 
transaction 

length 
No. of Items

(I) 
T10I4D100K 100,000 10 29 1000 
T40I10D100K 100,000 40 77 1000 
connect 67,557 43 43 130 
pumsb* 49,046 50 63 7117 
BMS-POS 515,597 6.5 164 1657 

 

Two synthetic datasets, called T10I4D100K and T40I10D100K, were generated 
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by a generator similar to that used in [8]. The generator first generated L maximal 

potentially frequent itemsets, each with an average of I items. The items in the 

potentially frequent itemsets were randomly chosen from the total N items according 

to their actual sizes. The generator then generated D transactions, each with an 

average of T items. The items in a transaction were generated according to the L 

maximal potentially frequent itemsets in a probabilistic way. For example, the 

T10I4D100K dataset consists of 100,000 transactions averaging 10 items and 

generated according to 2000 maximal potentially frequent itemsets with an average 

size of 4 from a total of 1000 items. 

 

Table 2-4: Mining information for the five datasets 

Dataset Minsup No. of frequent 
itemsets 

No. of frequent 
closed itemsets

length of the 
maximum itemset 

T10I4D100K 0.093% 29,237 25,642 12 
T40I10D100K 1.2% 19,412 18,117 11 
connect 94% 4,223 1,223 9 
pumsb* 42% 12,579 1,833 12 
BMS-POS 0.65% 2497 2473 6 

 

Table 2-5: The distribution of frequent itemsets for the five datasets 

Datasets 1 2 3 4 5 6 7 8 9 10 11 12
T10I4D100K (0.093%) 806 9539 7491 5797 3407 1525 515 132 23 2 0 0
T40I10D100K (1.2%) 721 8336 1448 1638 1792 2192 2048 1159 66 11 1 0
connect (94%) 17 119 435 927 1202 952 446 113 12 0 0 0
pumsb* (42%) 45 268 856 1837 2729 2887 2193 1188 448 111 16 1
BMS-POS (0.65%) 189 739 975 508 85 1 0 0 0 0 0 0

Length of frequent itemsets

 
 

Three real datasets, called connect, pumsb* and BMS-POS were used to evaluate 

the practicality of an algorithm in the real-world applications. The connect dataset 

contains game state information; the pumsb* dataset contains census data; and the 

BMS-POS dataset contains several years of point-of-sale data from a large electronics 
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retailer, where each transaction in this dataset is a customer purchase transaction 

consisting of all the product categories purchased at one time. The BMS-POS dataset 

was also used in the KDDCUP 2000 competition. 

 Table 2-4 shows the mining information for the five datasets, including the 

number of frequent itemsets, the number of frequent closed itemsets and the length of 

the maximum itemset. For example, given the minsup = 0.093% on T10I4D100K, the 

number of frequent itemsets was 29,237, the number of frequent closed itemsets was 

25,642 and the length of the maximum itemset was 10. Table 2-5 shows the detailed 

distribution of frequent itemsets for these datasets. Among them, connect, pumsb* and 

T40I10D100K can be treated as dense datasets because they still generated many long 

frequent itemsets even for very high minsups, whereas T10I4D100K and BMS-POS 

can be treated as sparse datasets because they still generated many short frequent 

itemsets even for very low minsups. For the dense datasets, we can find the number of 

frequent itemsets considered by a classically incremental mining algorithm was much 

larger than the number of frequent closed itemsets considered by the CIM algorithm. 

 First, for each dataset, we randomly selected 1,000 records as a new increment 

and collected the remaining records as the original database. Figures 2-12(a) to 2-12(e) 

shows the execution times for the FUP, Pre-large and CIM algorithms respectively on 

the five datasets along with various minsups in the mining requests, where the lower 

support threshold in the Pre-large algorithm is fixed to the initial minsup, e.g., for 

connect, the lower support threshold of Pre-large algorithm is fixed to 95%. Moreover, 

the corresponding comparisons of the amounts of pre-stored mining information 

considered by the three algorithms respectively on the five datasets are shown in 

Figures 2-13(a) to 2-13(e). We can find that the performance highly depended on the 

amount of pre-stored mining information. 



 42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-12: Execution times for the FUP, Pre-large and CIM algorithms respectively 

on the five datasets 

 

Among the experimental results, for the dense datasets connect, pumsb* and 

T40I10D100K, it can be easily seen that the CIM algorithm had several orders of 

magnitude better than the FUP and Pre-large algorithms for low minsups and it also 

had better performance than the two algorithms for high minsups. The FUP and 
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Pre-large algorithms performed only for very high minsups due to a huge amount of 

the previously mined frequent and pre-large itemsets, where the Pre-large algorithm 

had better performance than the FUP algorithm since the former, whose derived safety 

bound can afford the size of increment, can avoid a high cost of reprocessing original 

database at the expense of a low cost of processing pre-stored pre-large itemsets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-13: The amounts of pre-stored mining information for the FUP, Pre-large and 
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CIM algorithms respectively on the five datasets 

 

On the other hand, for the sparse datasets T10I4D100K and BMS-POS, the CIM 

algorithm still had better performance than the FUP and Pre-large algorithms. 

However, since the amount of pre-stored mining information (the number of frequent 

closed itemsets) considered by the CIM algorithm was just slightly smaller than that 

(the number of frequent itemsets) considered by the FUP and Pre-large algorithms as 

shown in Figures 2-13(a) and 2-13(e), the CIM algorithm did not has a significant 

outperformance. As for the FUP and Pre-large algorithms, the former sometimes got 

better than the latter, because the derived safety bound can not afford the size of 

increment and a cost of processing pre-stored pre-large itemsets was required in 

addition by the latter. 

 

 

 

 

 

 

Figure 2-14: The influence of the size of increment on the execution time for the FUP, 

Pre-large and CIM algorithms 

 

 In general, incremental mining algorithms perform well when the size of newly 

inserted transactions is relatively smaller than the size of an original database because 
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mining information. Figures 2-14(a) and 2-14(b) show the influence of the size of 

increment on the execution time for the FUP, Pre-large and CIM algorithms 

respectively on the datasets T10I4D100K and pumst*. It is clear that the execution 

times required by the CIM algorithm for different sizes of increment were small, and 

seemed to grow slowly and linearly with the sizes of increment. 
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Figure 2-15: Execution times for the CIM and CIM-P algorithms on BMS-POS 

 

 Next, we compare the CIM-P algorithm with the CIM algorithm. Figures 2-15 

shows the execution times for the CIM-P and CIM algorithms on the BMS-POS 

dataset along with various minsups in the mining requests, where the lower support 

threshold of CIM-P algorithm is fixed to the initial minsup 0.68% and the number of 

buckets in CIM-P is set to 2. It can be seen that the execution times by the CIM-P 

algorithm were less than those by the CIM algorithm for the minsup set to a value 

above 0.68%. 

 

2.8 Conclusion 
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 In real-world applications, a database grows over time such that existing 

association rules may become invalid or new implicitly valid association rules may 

appear. Designing an incremental mining algorithm capable of updating existing 

association rules and discovering new association rules without reprocessing the 

entire updated database is a nontrivial work. Although researchers have developed 

some significant incremental mining algorithms to carry out this work, for dense 

databases or a low minimum support threshold, the performance of these approaches 

will degrade dramatically due to a huge amount of pre-stored mining information. On 

the other hand, one scan of original database to discover new association rules is 

required for most incremental mining algorithms. When the original database is 

massive, this will result in excessive I/O cost. In this study, we have thus utilized the 

concepts of closed itemsets and pre-large itemsets dealing with the two challenges and 

then designed two novel incremental mining algorithms, Closed Itemsets Maintenance 

(CIM) and CIM with Pre-large concept (CIM-P). Experiments respectively for sparse, 

dense, synthetic and real datasets are made, with results showing the effectiveness and 

practicality of the proposed approaches. 
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Chapter 3 

Incremental Mining Algorithms for Sequential 

Patterns Maintenance 
 

 

 

3.1 Introduction 

Mining sequential patterns in sequence databases (temporal transaction 

databases), first proposed by Agrawal et al. in 1995 [6], is relatively useful since it can 

help model customer behaviors. The process of mining sequential patterns operates 

almost same as the process of mining association rules, except the former concerns 

relationships among itemsets in sequences whereas the latter concerns relationships 

among itemsets in transactions. Therefore, some studies extended the Apriori property 

[5] such that none of super-sequences of an infrequent sequence can be frequent, and 

proposed efficient algorithms based on the candidates-generation-and-test process for 

mining sequential patterns and other time-related frequent patterns. However, these 

Apriori-like sequential pattern mining algorithms, such as AprioriAll [6] and GSP 

[81], may suffer from the inherent drawback that a huge set of candidate sequences 

could be generated in a large and/or long sequence database. According to this 

observation, all recent studies have attempted to develop more efficient algorithms to 

reduce the expensive cost of candidate generation and test, such as FreeSpan [39], 

PrefixSpan [70], SPADE [103], SPAM [9], DISC-all [22], etc. 

Studies on maintaining sequential patterns are relatively rare compared to those 

on maintaining association rules. Lin and Lee proposed the FASTUP algorithm [55] to 
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maintain sequential patterns by extending the FUP algorithm [20]; Hong et al. 

proposed an incremental mining algorithm based on the concept of pre-large 

sequences [44]. As the challenges mentioned in Chapter 2, these approaches will not 

work well on dense and massive database maintenances: 

(a) For a dense database or a low minimum support threshold, the computation 

cost of updating previously mined sequential patterns will be getting tremendous due 

to a huge amount of previously mined frequent sequences; 

(b) For a massive database, most incremental mining algorithms need one scan of 

original database dealing with finding new sequential patterns, and this will result in 

excessive I/O cost. 

As a result, we attempt to utilize the concepts of closed sequences [99] and 

pre-large sequences [44] that are respectively extended from closed itemsets and 

pre-large itemsets to improve the performance of maintaining sequential patterns. 

Maintaining sequential patterns is much harder than maintaining association rules, 

since it must consider both itemsets and sequences. It is nontrivial to develop more 

efficient, scalable and practical mining algorithms for maintaining sequential patterns. 

In this chapter, we thus propose a novel incremental mining algorithm called Closed 

Sequences Maintaining (CSM) capable of sufficiently and efficiently finding all 

up-to-date sequential patterns for the updated database. Moreover, based on the 

concept of pre-large sequences, we propose the CSM-P, CSM with Pre-large concept, 

algorithm to improve the CSM algorithm. 

 

3.2 Related Work 

3.2.1 Mining Sequential Patterns and Closed Sequential Patterns 

Mining sequential patterns is a significant research direction of data mining. It 
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attempts to find customer behavior models and to assist managers in making correct 

and effective decisions. Among the mining sequential pattern algorithms, the first 

proposed AprioriAll algorithm [6] (similar to the Apriori algorithm) utilized a 

level-wise candidate generation approach that only frequent sequences (the sequence 

satisfying the user-specified minimum support) found in the previous level are treated 

as seeds for generating candidate sequences in the current level to reduce the search 

space. Since this candidates-generation-and-test process is simple and useful, many 

later studies [12][36][62][66][81] were based on this algorithm for further improving 

and refining, and deployed it in real-world applications. However, AprioriAll-based 

algorithms may suffer from the following inherent costs [70]: 

 A huge set of candidate sequences for a large sequence database; 

 Multiple database scans in mining; 

 A combinatorial explosive number of candidate sequences for a dense 

sequence database. 

Some recent studies have thus developed more efficient algorithms dealing with 

the three challenges. Examples include SPADE [103], PrefixSpan [70], SPAM [9]. 

Since AprioriAll-based algorithms using breadth-first search manner may generate 

many candidate sequences not appear in the database, all the three algorithms adopt 

depth-first search manner (i.e., recursive divide-and-conquer) to process the sequence 

database (SPADE also has breadth-first search option). The SPADE algorithm uses a 

simple join operation to enumerate frequent sequences from a vertical-layout database. 

The support of a sequence can be easily calculated by joining the vertical lists of its 

sub-sequences. The PrefixSpan algorithm uses a database-projection approach to 

reduce the efforts of candidate sequence generation. The sequence database is 

recursively projected into a set of smaller projected databases according to the 
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currently found frequent sequences, and then frequent sequences are grown in each 

projected database by exploring only local frequent fragments. Not only the support 

calculation but also the candidate sequence generation are highly improved. The 

SPAM algorithm uses the bitmap index to represent the sequence database in vertical 

such that the support calculation and candidate sequence generation operates similar 

to the SPADE algorithm. 

 These algorithms have provided pretty good solutions for the first two challenges. 

For the third one, however, they still need to be improved for a rather dense sequence 

database. In [99], Yan et al. proposed the concept of closed sequences, which is 

extended from the concept of closed itemsets, dealing with these challenges, 

especially for the third one. 

 

3.2.2 Incremental Mining for Sequential Patterns 

Maintaining sequential patterns is much harder than maintaining association rules 

since the former must consider both itemsets and sequences. In the following, we will 

introduce the concepts of maintaining sequential patterns when new transactions or 

sequences are inserted into the original sequence database, and briefly review related 

incremental mining algorithms. 

When new transactions are inserted into a sequence database, they can be divided 

into two classes [44]: 

Class 1: The new transactions with the same sequence identifiers as the sequences 

in the database; 

Class 2: The new transactions with new sequence identifiers. 

The newly inserted transactions are first transformed into sequences, and those 

belonging to Class 1 are merged with the corresponding sequences in the database and 
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those belonging to Class 2 are inserted into the database as new sequences. 

Example 3-1: Assume that the sequence database includes eight sequences as 

shown in Table 3-1 and the frequent sequences found from these sequences are shown 

in Table 3-2 with the minimum support set to 50%. 

 

Table 3-1: The sequence database 

Sequence_id Sequence 
1 <(A)(B)> 
2 <(C, D)(A)(E, F, G)> 
3 <(A, H, G)> 
4 <(A)(E, G)(B)> 
5 <(B)(C)> 
6 <(A)(B, C) 
7 <(A)(B, C, D)> 
8 <(E, G)> 

 

Table 3-2: All frequent sequences found from the sequences in Table 3-1 

Frequent sequences 
1-sequence Support count 2-sequence Support count 

<(A)> 6 <(A)(B)> 4 
<(B)> 5   
<(C)> 4   
<(G)> 4   

 

When two new transactions shown in Table 3-3 are inserted into the sequence 

database, they are first transformed into the sequences and then merged with the 

corresponding sequences in Table 3-1. The results are shown in Table 3-4.  

 

Table 3-3: Two new transactions sorted according to Sequence_id and Trans_time 

Sequence_id Trans_time Trans_content
5 1998/02/01 E, G 
9 1998/02/05 E, F, G 

 

Table 3-4: The two newly merged sequences 
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Sequence_id Sequence 
5 <(B)(C)(E, G)> 
9 <(E, F, G)> 

 

The candidate sequences for the newly merged sequences in the database are 

then generated and counted. Note that, for the candidate sequences which have 

appeared in the original sequence database, their support count are only increased 

against the new sequences in the database. For example, the candidate 1-sequences for 

the newly merged sequences in Table 3-4 are shown in Table 3-5, where the support 

counts of <(B)> and <(C)> are not increased at all. 

 

Table 3-5. The candidate 1-sequences with their support counts for newly merged 

sequences 

Candidate 1-sequences Support count
<(B)> 0 
<(C)> 0 
<(E)> 2 
<(F)> 1 
<(G)> 2 

 

Considering the original sequence database and the newly merged sequences, 

there are four cases of candidate sequences shown in Figure 3-1 may arise:  
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Figure 3-1: Four cases of candidate sequences 

 

 Case 1: A candidate sequence is frequent in both the original sequence 

database and the newly merged sequences; 

 Case 2: A candidate sequence is frequent in the original sequence database 

but infrequent in the newly merged sequences; 

 Case 3: A candidate sequence is infrequent in the original sequence 

database but frequent in the newly merged sequences; 

 Case 4: A candidate sequence is infrequent in both the original sequence 

database and the newly merged sequences. 

Among the cases, since candidate sequences in Case 1 are frequent in both the 

original sequence database and the newly merged sequences, they are still frequent 

after the weighted average of the supports; similarly, candidate sequences in Case 4 

are still infrequent after the new sequences are inserted. Cases 1 and 4 will not affect 

the final sequential patterns; Case 2 may remove existing sequential patterns; and 

Case 3 may generate new sequential patterns. 

Lin and Lee proposed the FASTUP algorithm [55], which is an extension of the 

FUP algorithm proposed Cheung et al. [20], to efficiently cope with these four cases 

by pre-storing the previously mined frequent sequences from the original sequence 

database. The FASTUP can handle Cases 1, 2 and 4 by updating the pre-stored 

frequent sequences against the newly merged sequences, and reprocesses only the 

sequences without sufficient information in Case 3 against the original sequence 

database if necessary. 

However, the performance of FASTUP algorithm will get degraded if a lot of 

candidate sequences from the newly merged sequences belong to Case 3. Hong et al. 
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[44] proposed the concept of pre-large sequences to enlarge the amount of pre-stored 

mining information in the FASTUP algorithm for further improving the maintenance 

performance. The concept of pre-large sequences is denoted as the set of sequences 

having support between a lower support threshold, which is smaller than the 

minimum support, and an upper support threshold, which is equal to the minimum 

support. Pre-large sequences are not truly frequent at present but more possible to be 

frequent in the future when database is updated. Therefore, using the pre-large 

sequences to enlarge the amount of pre-stored mining information can reduce the cost 

of reprocessing the original sequence database at the expense of storage spaces. 

 

3.3 Preliminary Concepts 

Let I = {i1, i2, …, im} be a set of m items. An itemset is a subset of I and a 

k-itemset denotes an itemset consisting of k items. A sequence is an ordered list of 

itemsets and an l-sequence can be represented as X = <x1, x2, …, xl>, where xi is an 

itemset and called an element of X. For a sequence, an item can occur at most once in 

an element, but can occur more than once in different elements. We call a sequence Y 

= <y1, y2, …, yq> contains another sequence X = <x1, x2, …, xp> iff there exist indexes 

j1, j2, …, jp and 1 ≤ j1 ≤ j2 ≤ …, jp ≤ q such that x1 ⊆  yj1, x1 ⊆  yj2, …, xp ⊆  yjp; Y is also 

called a supersequence of X and inversely X is called a subsequence of Y. Let D be a 

sequence database consisting of a set of sequences, where each sequence consisting of 

a set of elements is associated with a sequence identifier, and |D| denotes the number 

of sequences in D. The support of a sequence X, X.sup, in D is denoted as the 

percentage of sequences in D which contain X, and the support count of X, X.count, in 

D is denoted as the number of sequences in D which contain X, X.count = X.sup * |D|. 

For the sequences in D, X is called a closed sequence if there does not exist another 
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sequence Y which closes (absorbs) X, where a sequence Y is said to close (absorb) X 

iff Y contains X and Y.sup = X.sup (Y.count = X.count). CS denotes the set of all 

closed sequences in D. Furthermore, if there is no supersequence of X existing in D, X 

is also called a maximal sequence. 

Given the user-specified minimum support threshold, minsup, the problem of 

mining sequential patterns is to find out all sequences in D that have support larger 

than minsup. With respect to the minsup, the set of frequent sequence, FS, includes 

all the sequences whose support is larger than minsup; the set of infrequent sequence, 

NS, includes all the sequences whose support is less than minsup; the set of frequent 

closed sequence, FCS, includes all the closed sequences whose support is larger than 

minsup, FCS = {x|x ∈  CS, x.sup ≥ minsup}; and the set of infrequent closed sequence, 

NCS, includes all the closed sequences whose support is less than minsup, NCS = {x| x 

∈  CS – FCS}. Note that FCS includes no sequence which has a supersequence with 

the same support, thus FCS ⊆  FS. The problem of mining sequential patterns can be 

reduced to the problem of finding FCS in D. 

Let d be a set of newly merged sequences, |d| be the number of sequences in d, d’ 

be a set of sequences in d with the same sequence identifiers as the sequences in an 

original sequence database D, |d’| be the number of sequences in d’, D+ be the 

updated database and |D+| be the number of sequences in the updated database. 

Therefore, FSD, FSd and FSD+ denote the FS obtained from D, d and D+ with respect 

to the same minsup, respectively, and NS, CS, FCS or NCS obtained from D, d and D+ 

can have similar meanings. The problem of maintaining sequential patterns is to find 

FSD+ or FCSD+. Let the set of original frequent sequences, OS, be defined as OS = 

{x|x ∈  FSD}, and the set of potential frequent sequences, PS, be defined as PS = {x|x 

∈  FSd − FSD}. By definition, a sequence X ∈  FSD+ must belong to OS ∪  PS, and thus 
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the problem of maintaining sequential patterns is equivalent to processing OS ∪  PS. 

Similarly, let the set of closed original frequent sequences, COS, be defined as COS 

= {x|x ∈  FSD and x ∈  CSD+}, and the set of closed potential frequent sequences, CPS, 

be defined as CPS = {x|x ∈  FSd − FSD and x ∈  CSD+}. The problem of maintaining 

sequential patterns is also equivalent to processing COS ∪  CPS. The set of joint 

closed sequences, JCS, which is defined as JCS = {x|x = y ∧  z, y ∈  CSD, z ∈  CSd} is 

proposed in this study, where ∧  denotes the intersection of two sequences. We call a 

sequence X = <x1, x2, …, xr> is the intersection of two sequences Y = <y1, y2, …, yp> 

and Z = <z1, z2, …, zq> iff there exist indexes j1, j2, …, jr and 1 ≤ j1 ≤ j2 ≤ …, jr ≤ p and 

1 ≤ j1 ≤ j2 ≤ …, jr ≤ q such that x1 ⊆  yj1, x1 ⊆  yj2, …, xr ⊆  yjr and x1 ⊆  zj1, x1 ⊆  zj2, …, 

zr ⊆  zjr. The JCS can be divided into four parts based on FCSD, FCSd, NCSD and 

NCSd:  

 FFJCS = {x|x = y ∧  z, y ∈  FCSD, z ∈  FCSd}; 

 FNJCS = {x|x = y ∧  z, y ∈  FCSD, z ∈  NCSd}; 

 NFJCS = {x|x = y ∧  z, y ∈  NCSD, z ∈  FCSd}; 

 NNJCS = {x|x = y ∧  z, y ∈  NCSD, z ∈  NCSd}. 

 

3.4 Closed Sequences Maintenance 

 Considering an original sequence database D and the set of newly merged 

sequences d, there are four cases of candidate sequences for the updated database D+ 

have been discussed in Section 2. With pre-storing previously mined frequent 

sequences FSD, a typically incremental mining process can efficiently cope with these 

four cases by two steps: (a) updating OS against d and (b) reprocessing PS against D. 

Following this idea, we can use two similar steps: (a) updating COS against d and (b) 
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reprocessing CPS against D to find out FCSD+ dealing with the problem of 

maintaining sequential patterns. Since directly obtaining COS = {x|x ∈  FSD and x ∈  

CSD+} and CPS = {x|x ∈  FSd − FSD and x ∈  CSD+} is impractical, we attempt to 

utilize the pre-stored known information FCSD from D and the information FCSd 

obtained from d to approach COS and CPS. The following lemmas and theorems can 

be easily derived and proven by referring to corresponding lemmas and theorems 

mentioned in Chapter 2, so we omit the details here. 

Lemma 3-1: If x ∈  CSD ∪  CSd, then x ∈  CSD+.  

Lemmas 3-2 and 3-3 are used to derive the set of joint closed sequences (JCS) 

which are closed sequences for D+ but can not be determined by FCSD and FCSd-D. 

Lemma 3-2: If x ∈  JCS, then x ∈  CSD+.  

Lemma 3-3: If x ∈  CSD+, then x ∈  CSD ∪  CSd ∪  JCS.  

Theorem 3-1: CSD+ = CSD ∪  CSd ∪  JCS.  

Considering an original sequence database and the newly merged sequences, JCS 

can be divided into four parts based on FCSD, FCSd, NCSD and NCSd as shown in 

Figure 3-2: 

 

 

 

 

 

 

 

 

Figure 3-2: Four cases of joint closed sequences 
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 The case of FFJCS: A closed sequence is frequent in both the original 

sequence database and the newly merged sequences; 

 The case of FNJCS: A closed sequence is frequent in the original sequence 

database but infrequent in the newly merged sequences; 

 The case of NFJCS: A closed sequence is infrequent in the original 

sequence database but frequent in the newly merged sequences; 

 The case of NNJCS: A closed sequence is infrequent in both the original 

sequence database and the newly merged sequences. 

According to Theorem 3-1, the following theorems are derived to obtain COS 

and CPS by FCSD, FCSd, FFJCS, FNJCS and NFJCS. 

Theorem 3-2: COS = {x|x ∈  FCSD ∪  FFJCS ∪  FNJCS}.  

Theorem 3-3: CPS = {x|x ∈  (FCSd − FFJCS) ∪  NFJCS}.  

Theorems 3-2 and 3-3 provide a convenient way to obtain COS and CPS. For 

COS, FFJCS and FNJCS can be obtained by processing the pre-stored mining 

information FCSD against d. For CPS, however, since NFJCS has to be generated 

from NCSD, which is usually unknown in a typically incremental mining process, the 

cost is too expensive to be acceptable. As a result, given a function cover(FFJCS, 

FSd) denoting the sequences in FSd which are covered by FFJCS, the following 

theorem is derived to obtain CPS. 

Theorem 3-4: CPS = {x|x ∈  FSd – cover(FFJCS, FSd), x ∈  CSD+}.  

Corollary 1: CPS ⊆  {FSd – cover(FFJCS, FSd)}  

Since FFJCS has been obtained in COS generation, we only need to find FSd and 

remove the sequences in FSd which have been determined in FFJCS as candidates for 

CPS. It seems to be a better way to generate the sequences of FCSD+ which are not 
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included in the COS. 

 

3.5 The Closed Sequences Maintaining (CSM) Algorithm 

We develop a novel incremental mining algorithm mainly consisting of 

COS_generation and CPS_generation subroutines, called Closed Sequences 

Maintaining (CSM), to efficiently find FCSD+. The proposed CSM algorithm also 

utilizes the CMT (Closed Maintenance Tree) data structure mentioned in Section 

2.5.1 to facilitate the processes of COS_generation and CPS_generation subroutines. 

However, the CMT of the CSM algorithm is not mainly for closed itemset but mainly 

for closed sequence, such that the closed nodes and infrequent nodes represent the 

sequences in FCSD+ and the infrequent 1-sequences in D, respectively. 

The CSM algorithm first updates the sequences in the CMT against d to obtain 

COS by the COS_generation subroutine. Then, by the CPS_generation subroutine, it 

generates candidate sequences for the sequences of FCSD+ which have not been 

determined in the COS_generation subroutine. Finally, by reprocessing these obtained 

candidate sequences against D and checking their closure property, the CSM 

algorithm can find FCSD+ from the CMT. 

The COS_generation and CPS_generation subroutines operates similar to the 

CO_generation and CP_generation subroutines in the CIM algorithm mentioned in 

Chapter 2. The COS_generation subroutine is responsible for processing FCSD 

against d to find FFJCS and FNJCS, thus obtaining COS, while CPS_generation 

subroutine is responsible for generating candidate sequences for FCSD+ which have 

not been determined in the COS_generation subroutine. 

 

The CSM algorithm(CMT, D, d, d’, minsup) 
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Parameters: 
 CMT: A closed maintenance tree; 
 D: An original sequence database; 
 d: A set of newly merged sequences; 
 d’: A set of sequences in d with the same sequence identifiers as the sequences in D; 
 minsup: A minimum support threshold. 
Begin 
 Set FFJCSSet = φ; /* FFJCSSet is a set used to store the 

sequences of FFJCS. */ 
 Set Cand = φ; /* Cand is a set used to store candidate 

sequences for FCSD+. */ 
COS_generation subroutine(CMT, d, d’, minsup, FFJCSSet, Cand); 

 Set F1dD+ = φ; /* F1dD+ is a set used to store the frequent 
1-sequences in both d and D+. */ 

 Set mincountD+ = minsup * (|D| + |d| − |d’|); 
 Obtain_frequent_items(CMT, mincountD+, F1dD+); 
 /* Obtain F1dD+ from CMT. */ 
 CPS_generation subroutine(CMT, d, d’, minsup, FFJCSSet, Cand, F1dD+, 

CMT.root); 
 Reprocess_Cand(CMT, Cand, D); /* Reprocess obtained candidate k-sequences 

(k ≥ 2) in CMT against D. */ 
 Check_Closure_Cand(CMT, Cand); /* Check closure property for all candidates 

sequences in CMT. */ 
 Remove_NCS(CMT, mincountD+); /* Remove the closed sequences in CMT 

whose support counts are less than 
mincountD+. */ 

 Output_FCS(CMT); /* Output FCSD+ for D+.*/ 
End. 

Figure 3-3: The CSM algorithm 

 

3.6 The CSM Algorithm with Pre-large Concept: CSM-P Algorithm 

Although the CSM algorithm focuses on the newly merged sequences d and thus 

saves much processing time in maintaining sequential patterns, it has to reprocess the 

original sequence database D to handle the candidate itemsets generated by the 

CPS_generation subroutine. This situation may occur frequently, especially when d is 
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heterogeneous with D. In general, the number of records in d is much smaller than the 

number of records in D. Only the closed sequences whose supports are slightly less 

than minsup in D are possible to be frequent for D+ after database maintenances. We 

can apply the concept of pre-large sequences [44] to improve the proposed CSM 

algorithm. Based on this concept, the enhancement of CSM algorithm, CSM-P (CSM 

with Pre-large concept), does not require reprocessing D until the accumulative 

amount of newly merged sequences exceeds the safety bound the buffer can afford, 

which depends on database size. As the database grows larger, the number of newly 

merged sequences allowed also grows larger, and the CSM-P algorithm becomes 

increasingly efficient. 

Given the user-specified Sl and Su, |d’| denotes the number of the sequences in d 

with the same sequence identifiers as the sequences in D. The safety bound of buffer 

can be derived by the following theorem. 

Theorem 3-5: If |d| ≤ 
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 can be used as the safety bound of buffer to determine 

the suitable time of reprocessing D.  

Furthermore, we can also utilize the bucketing strategy mentioned in Chapter 2 

to improve the utility of buffer. The purpose of bucketing strategy is using some 

buckets to record the actual contributions of d for the major candidate sequences (the 

sequences with higher supports). The consumption of buffer can be rigidly calculated 

with the maximum value of buckets. 

In the CSM-P algorithm, according to the user-specified lower support and upper 

support thresholds, the frequent and pre-large closed sequences with their support 
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counts in preceding runs are stored in the CMT for later use in maintenance. When 

newly merged sequences are inserted, the proposed algorithm first executes the 

COS_generation subroutine to find FFJCS and FNJCS and the CPS_generation 

subroutine to generate the candidate frequent closed sequences for D+ which has not 

been determined in the COS_generation subroutine. Then, the proposed algorithm 

utilizes the bucketing strategy to calculate the accumulative consumption of buffer 

and decide the suitable time of reprocessing D. If the accumulative consumption is 

within the safety bound of buffer, no action is needed. Otherwise, the original 

sequence database D has to be reprocessed to guarantee information lossless. The 

detail of the proposed CSM-P algorithm is shown as follows. 

 

The CSM-P algorithm(CMT, D, d, d’, Sl, Su, k) 
Parameters: 

CMT: A closed maintenance tree based on Sl; 
D: An original database; 
d: A set of newly inserted sequences; 
d’: A set of sequences in d with the same sequence identifiers as the sequences in D; 
Sl: A lower support threshold; 
Su: An upper support threshold; 
k: the number of buckets. 

Begin 

 Set SF = (
u
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); /* SF is the safety bound of buffer*/ 

 Set FFJCSSet = φ; /* FFJCSSet is a set used to store the 
sequences of FFJCS. */ 

 Set Cand = φ; /* Cand is a set used to store candidate 
sequences for FCSD+. */ 

  Set_Bucket(BucketSet, 0, φ) /* Initialize the buckets in BucketSet, where 
BucketSet is a set used to store the most 
frequent k candidate itemsets. */ 

COS_generation subroutine(CMT, d, d’, Su, FFJCSSet, Cand1); 
 Set F1dD+ = φ; /* F1dD+ is a set used to store frequent 
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1-sequences in both d and D+. */ 
 Set UcountD+ = Su * (|D| + |d| − |d’|); 
 Set LcountD+ = Sl * (|D| + |d| − |d’|); 
 Obtain_frequent_items(CMT, UcountD+, F1dD+); 
 /* Obtain F1dD+ from CMT. */ 
 CPS_generation subroutine(CMT, d, d’, Su, FFJCSSet, Cand1, F1dD+, CMT.root); 

if Bucket_Strategy(CMT, BucketSet, Su) > SF, then 
 /* Check whether the consumption of buffer 

is larger than the safety bound of buffer. */ 
 Reconstruct(CMT, D, d, d’, Sl); /* Reconstruct CMT based on Sl */ 
 else, 
 Remove_NCS(CMT, LcountD+); /* Remove the sequences in CMT whose 

support counts are less than mincountD+. */ 
 Output_FCS(CMT); /* Output the frequent closed sequences for 

D+. */ 
End. 

Figure 3-4: The CSM-P algorithm 

 

3.7 Conclusion 

 Maintaining sequential patterns is much harder than maintaining association 

rules, since it must consider both itemsets and sequences. It is nontrivial and useful to 

develop efficient mining algorithms for maintaining sequential patterns. As a result, in 

this study, we attempt to utilize the concepts of closed sequences and pre-large 

sequences to improve the performance of maintaining sequential patterns. The closed 

sequences can losslessly determine all the pre-stored mined sequences and their exact 

support, but is orders of magnitude small. The pre-large sequences act as a buffer to 

avoid the movements of sequence directly from valid to invalid and vice-versa during 

the incremental mining process. Based on the two concepts, two novel incremental 

mining algorithms, CSM and CSM-P, are thus developed to efficiently maintain 

sequential patterns, especially for a dense sequence database. 
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Chapter 4 

Incremental Mining Algorithms for Document 

Classifiers Maintenance 
 

 

 

4.1 Introduction 

As digital documents evolve and become increasingly available, automatic 

document classification (a.k.a. document categorization) of managing and discovering 

useful information in documents is becoming more and more important for users. 

Automatic document classification refers to the activity of automatically constructing 

a classifier to assign category labels suggested by pre-defined training documents to 

undefined documents. In general, automatic document classification involves three 

major tasks [79]: document representation, which represents documents in 

machine-readable structures, classifier construction, which constructs a classifier 

from pre-defined training documents, and classifier evaluation, which evaluates 

classifier accuracy in terms of various evaluation functions. 

Previous studies of document representation have often represented documents 

in finite sets of terms such as keywords and phrases, so-called term-space document 

representation. A document can be represented as <w1, w2, w3, …, wt>, where wi 

represents the weight between the i-th keyword and the document. However, this 

simple representation may result in highly correlated, redundant and less 

representative dimensions, such that the efficiency and effectiveness are decreased 

[31][34]. 
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As for classifier construction, most of previously proposed batch approaches 

such as C4.5 [73], SVM [46][47] and Naïve Bayesian [57] have to reconstruct the 

classifier when new documents or new categories are added. Therefore, considerable 

computation time is required to get the updated classifier. In real world, data may 

evolve over time, so a batch-based classifier construction approach is obviously 

impractical [59]. 

In this study, we propose a domain-space weighting scheme to resolve the above 

problems in document representation and classifier construction. The proposed 

scheme utilizes a more compact and meaningful document representation called 

domain-space document representation to represent documents in finite sets of 

domains. Based on the domain-space document representation, it utilizes three phases, 

Training Phase, Discrimination Phase and Tuning Phase, to construct a classifier and 

adapt the classifier along with evolving data. 

In the Training Phase, the proposed scheme incrementally extracts and weights 

features from each individual category in the training documents and integrates the 

resulting weights into the feature-domain weighting table, which retain the weights 

between features and all involved categories. In the Discrimination Phase, it reduces 

the weights of features in the feature-domain weighting table that have lower 

discriminating powers. The weight between a document and each category is easily 

calculated by summarizing related feature weights in the feature-domain weighting 

table, and the classifier is thus constructed according to this table. Finally, in the 

Tuning Phase, the scheme utilizes feedback information from tuning documents to 

reduce the number of false positives for the constructed classifier. 

We tested the constructed classifier on the standard benchmark Reuters-21578 

text collection [58] based on the “ModApte” split version in terms of micro- and 
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macro-averaging F1 evaluation functions. Our experiments consisted of four aspects: 

(1) the classification accuracy of our classifier compared to those shown in [23]; (2) 

the influence of the training document threshold φ and the discrimination threshold δ 

on classification accuracy; (3) the influence of the number of tuning documents on 

classification accuracy; and (4) the time performance of our classifier compared to a 

batch-based mining approach. The experimental results show that the classification 

accuracy of our classifier got better with an appropriate discrimination threshold and 

sufficient training documents, and the classifier was strengthened by the Tuning 

Phase. 

 

4.2 Related Work 

Previous studies of three major tasks (document representation, classifier 

construction and classifier evaluation) in automatic document classification are briefly 

reviewed below. 

 

4.2.1 Document Representation 

Document representation refers to representing documents in machine-readable 

structures such that classifiers can be constructed efficiently and effectively. The most 

common approach is the vector space model (VSM), which represents documents as 

sets of features. The VSM usually considers two factors: (1) how to extract 

representative features from documents, and (2) how to determine weights for 

document features. Term-space document representation utilizing finite sets of 

keywords or phrases occurring in documents as representative features and 

determining feature weights using the standard tfidf weighting function is the most 

popular form of VSM. A document can be therefore represented as <w1, w2, w3, …, 
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wt>, where wi represents the weight between the i-th keyword and the document. 

However, this simple representation may result in highly correlated, redundant and 

less representative dimensions in a document vector, such that the efficiency and 

effectiveness of a classifier are decreased [31][34]. 

The technique of dimension reduction has been used to resolve this problem in 

recent decades. Among the approaches, (1) feature selection which selects terms from 

the old ones contributing the classification most by evaluation functions such as 

chi-square, information gain and mutual information [25][96][102], and (2) feature 

extraction which regenerates more representative terms from the old ones 

[10][24][29][49][94] are the two well-known categories. 

 

4.2.2 Classifier Construction 

 Rocchio approach 

Given a set of training documents, the Rocchio approach [56][76] attempts to 

learn a set of features used to represent each individual category from positive 

training documents (members of the category) and negative training documents (not 

members of the category). Then an undefined document x is assigned to the category 

w when the inner product result of w and x is more than a user-specified threshold. 

 Support Vector Machine (SVM) approach 

Given a set of training documents, the support vector machine approach (SVM) 

[46][47] finds the best decision hyper-plane separating two categories within the 

maximum margin of each category. Figure 4-1 shows an example of a 2-dimensional 

case. The decision hyper-plane, determined by only a few training documents, called 

the support vectors, finds the maximum distance between different categories. Then 

an undefined document is assigned to the closest category. 
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Figure 4-1: An example of the support vector machine approach 

 

 K-nearest neighbor (k-NN) approach 

The K-nearest neighbor (k-NN) [31][100] is an instance-based or lazy learning 

approach that treats each training document as a case and stores it in a case base. This 

is rather different from most classifier construction approaches, which need to 

construct models in advance. When classifying an undefined document d, the k-NN 

first finds k nearest neighbors of d from the retained cases in the case base and 

calculates the similarity scores between this document and categories of its k 

neighbors. Then d is assigned to the most similar category according to the similarity 

scores. 

 

4.2.3 Classifier Evaluation 

Evaluating classifier classification accuracy, the ability to make correct 

classification decisions, is an important task. Precision (π) and Recall (ρ) used in the 

field of information retrieval are well-known evaluation functions. However, 

considering only the precision or the recall of a classifier may sometimes be 

insufficient and misleading. The evaluation function Fβ, which considers them 

simultaneously, has recently been proposed. Fβ is defined as follows: 
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where, β, which ranges from 0 to ∞, denotes the importance of precision (π) and the 

importance of recall (ρ). When β = 0, Fβ is identical to π. By contrast, when β = ∞, Fβ 

is identical to ρ. β = 1, which gives equal importance to π and ρ for Fβ, is used most 

frequently. 

These evaluation functions are usually combined with macro-averaging or 

micro-averaging to evaluate the average classification accuracy across multiple 

categories [100][101]. Micro-averaging performance scores give equal weight to each 

document classification decision, i.e., a per-document average, while macro-averaging 

performance scores give equal weight to each category without considering its 

frequency, i.e., a per-category average. 

 

4.3 Domain-space Weighting Scheme for Document Classification 

The proposed domain-space weighting scheme utilizes a document 

representation called domain-space document representation to represent documents 

in finite sets of domains. In this representation, each category involved in the training 

documents is treated as a meaningful domain. To simplify our discussion, we assume 

the training documents involve c categories in the rest of this study. A document can 

be therefore represented as <w1, w2, w3, …, wc>, where wi represents the weight 

between this document and the i-th category. Since the number of dimensions in 

domain-space is much less than that in term-space and many irrelevant and redundant 

dimensions can be effectively eliminated, the domain-space document representation 

is more compact and representative. The larger the weight assigned to a document 

vector entry, the more relevant the entry is. Thus, the entry with the maximum weight 
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is chosen as the category label for an undefined document. 

In order to determine the document vector, a feature-domain weighting table is 

proposed to retain the weights between features and all involved categories. Since a 

document is made up of a set of keywords and a keyword can be treated as a 

representative feature, a document vector can be calculated by summarizing all related 

feature vectors in the feature-domain weighting table. A document classifier can be 

thus constructed according to this table. 

Example 4-1: Assume Table 4-1 is a feature-domain weighting table containing 

three categories and eight keywords. The document vector <w1, w2, w3> for an 

undefined document d with two keywords, ‘Mining‘ and ‘Clustering‘, can be simply 

calculated using: <(0.2992+0.3282)/2, (0+0)/2, (0.7008+ 0.6718)/2> = <0.3137, 0, 

0.6863>. Thus, d can be simply assigned to the “DM” Category.  

 

Table 4-1: An example of a feature-domain weighting table 

     Domain
Feature AI DB DM 

Database 0.0521 0.2387 0.2344
Primary 0 1 0 
Relation 0.138 0.9852 0 
View 0 1 0 
Data 0.0605 0.1587 0.1592
Mining 0.2992 0 0.7008
Clustering 0.3282 0 0.6718
Rule 0 0 1 

 

4.4 Classifier Construction Based on Domain-space Document 

Representation 

Classifier construction in the domain-space weighting scheme is carried out in 

three phases: Training Phase, Discrimination Phase and Tuning Phase, to construct a 
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classifier. In the Training Phase, the scheme incrementally extracts and weights 

features from each category involved in the training documents, and then integrates 

the results into a feature-domain weighting table. After that, in the Discrimination 

Phase, it reduces the weights for the features in the feature-domain weighting table 

which have lower discriminating powers. A document classifier is thus constructed. In 

the Tuning Phase, the scheme utilizes feedback information from the tuning 

documents (the other pre-defined documents) to reduce the number of false positives 

yielded by the constructed classifier. 

The proposed classifier construction algorithm is shown in Figure 4-2. It contains 

three subroutines corresponding to the Training, Discrimination and Tuning Phases. 

Let Tin be a given feature-domain weighting table. When a new category of 

documents D is added, the classifier construction algorithm first uses the training 

algorithm to extract and weight the features from D (Step 1) and then integrate the 

results into Tin (Step 2). The integration contains inserting the domain D and the 

feature only from D into Tin and then updating all feature weights in Tin. Assume Tup is 

denoted as the updated feature-domain weighting table. Next, it uses the 

discrimination algorithm to reduce the weights of features whose discriminating 

powers are less than the user-specified threshold δ. A classifier Cup is therefore 

constructed according to Tup (Step 3). The tuning algorithm can be used to strengthen 

the constructed classifier Cup via the set of tuning documents D’ (Step 4), where ζ is 

the user-specified tuning parameter. 

 

Classifier Construction Algorithm: 
Input: 

T in: A given feature-domain weighting table. 
D: A newly added category of documents. 
D’: A set of tuning documents. 
δ: A discrimination threshold. 
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ζ: A tuning parameter. 
Output: 

Tup: The updated feature-domain weighting table. 
Cup : The constructed classifier for Tup. 

Begin 
(1) TD ←Training(D); //TD is a table used to retain the weights for the features in D 
(2) Tup ←Tin∪ TD ; 
(3) Cup ←Discrimination(Tup, δ); 
(4) If D’ ≠ φ, Cup ←Tuning(Cup, D’, ζ); 
(5) Return Cup and Tup. 

End 
Figure 4-2: The classifier construction algorithm 
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Figure 4-3: The operation of the classifier construction algorithm 

 

Example 4-2: Figure 4-3 illustrates the operation of the classifier construction 

algorithm when a new category called “DM” is added. Assume T2 is the 
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feature-domain weighting table which has been constructed with the “OS” Category 

and the “DB” Category. When the “DM” Category is added, the training algorithm 

extracts and weights features from the “DM” Category and stores the results in table 

TD. After integrating TD into T2, the feature-domain weighting table is updated to T3. 

The discrimination algorithm then reduces the weights of features in T3 which have 

lower discriminating powers. The classifier C3 is thus constructed. The tuning 

algorithm can use other given tuning documents to strengthen the classifier. The 

classifier C3 can be used to classify an undefined document.   

 

4.4.1 Training Phase 

The purpose of the Training Phase is to extract representative features from 

documents in a given category. In this study, the features are keywords that occur 

more than once in at least one document in the given category, and they are extracted 

by a pre-processing procedure that removes stop words, punctuation and digits, 

converts all letters into lowercase, and stems using Porter’s stemmer. A feature is 

more representative for a category if it appears in more documents and has higher 

frequency in each document. The following formula is designed to calculate the 

weight wk of the feature fk for a given category: 
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where tfjk denotes the frequency of fk in document dj. 

The proposed training algorithm is shown in Figure 4-4. When a new category of 

documents D is added, the training algorithm extracts features from D (Step 1), and 

then calculates their feature weights by considering the frequency and coverage of 

each feature against the documents in D using Formula 4-2 (Step 2). After obtaining 
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and calculating feature weights, the training algorithm normalizes them in the range 

[0, 1] (Step 3.1), and adds them to table TD (Step 3.2), which is used to retain the 

feature weights for D. Consequently, the training algorithm returns the weighting 

table TD (Step 4). 

 

Training Algorithm: 
Input: 

D : A newly added category of documents. 
Output: 

TD : A table used to retain the feature weights for D. 
Begin 

(1) F←{ fk | fk is a feature in D }; 
(2) For each fk ∈  F, do 

(2.1) For each dj ∈  D, count the frequency tfjk of fk in dj; 
(2.2) Calculate the weight wk of fk using: 
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(3.2) TD ←TD ∪  wk ; 
(4) Return TD. 

End 
Figure 4-4: The training algorithm 

 

Example 4-3: Assume the features, ‘Mining’, ‘Database’, ‘Clustering’, ‘Rule’ 

and ‘Data’, have been extracted from the three documents d1, d2, d3 in the given 

“DM” Category. Table 4-2 shows the statistical information for these features. These 

five feature weights for the “DM” Category according to Formula 4-2 are shown in 

Table 4-3. Among them, the feature weight of ‘Mining’ is calculated as follows: 
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jk

jk
jkk tf

tf
tfT ,725.78)log( we have 



 75

917.17
725
165*725.78* ===

∑∑
∑

k j
jk

j
jk

kk tf

tf
Tw . 

After being normalized, the feature weight of ‘Mining’ is set to 1.  

 

Table 4-2: The statistic information of features in “DM” Category 

  Information 
Feature d1 d2 d3 ∑

j
jktf Tk wk 

Mining 55 55 55 165 78.725 17.917 
Database 50 50 50 150 71.568 14.807 
Clustering 40 50 50 140 66.479 12.837 
Rule 60 40 40 140 64.604 12.475 
Data 40 40 50 130 61.700 11.063 

 

Table 4-3: The feature weights in “DM” Category 

TD
Feature TD 

Mining 1 
Database 0.8264
Clustering 0.7165
Rule 0.6963
Data 0.6175

 

4.4.2 Discrimination Phase 

The purpose of the Discrimination Phase is to reduce the weights for features 

having lower discriminating powers. The discriminating power of a feature can be 

evaluated by calculating the gini index value [14][84] of its feature vector in the 

feature-domain weighting table. Assume a feature vector fvk in the feature-domain 

weighting table is represented as <w1, w2,…, wc> and ∑
=

=
c

j
jT ww

1
, where wj denotes 

the weight between the feature fk and the j-th category. The gini index value gk of the 

feature fk can be calculated using the following formula: 
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The lowest gini index value appears when w1 = w2 = … = wc = 1/c, whereas the 

highest gini index value appears when only one wj = 1 and the rest are 0. This idea is 

conceptually similar to the idf term in the tfidf function. A feature has higher 

discriminating power if it is included in fewer categories. 

 

Discrimination Algorithm: 
Input:  

T: The feature-domain weighting table. 
δ: A discrimination threshold. 

Output:  
C: The classifier. 

Begin 
(1) For each feature fk with feature vector fvk = <w1, w2,…, wc> in T, do 

ionnormalizat-   //One;  )1.1(

1
∑

=

= c

j
j

k
k

w

fv
fv  

(1.2) Calculate the gini index value gk of fk using: 

;
1

2∑
=

=
c

j
jk wg  

(1.3) If gk < δ, fvk = fvk * gk; 
(2) C ←T; 
(3) Return C. 

End 
Figure 4-5: The discrimination algorithm 

 

The proposed discrimination algorithm is shown in Figure 4-5. According to 

Formula 4-3, the discrimination algorithm first normalizes each feature vector in the 

feature-domain weighting table T such that ||fv||1 = 1 (Step 1.1), and then calculates its 

corresponding gini index value (Step 1.2). If the feature’s gini index value is less than 

the user-specified discrimination threshold δ, i.e., the feature’s discriminating power 

does not satisfy the minimum requirement, the discrimination algorithm reduces the 

feature weights in T by multiplying the feature vector with its gini index value (Step 
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1.3). A classifier C can be therefore constructed (Step 2), since the weight between a 

document and each category can be easily calculated by summarizing its related 

feature vectors in T. Consequently, the training algorithm returns the classifier C (Step 

3). 

Example 4-4: Assume the discrimination threshold δ is set to 0.5. As in Figure 

4-3, the discrimination algorithm will adjust the feature-domain weighting table T3 to 

produce the classifier C3. For example, the feature vector of ‘Data’, <0.235, 0.6157, 

0.6175>, in T3 is adjusted as follows. One-normalization of ‘Data’ is <0.235/1.4682, 

0.6157/1.4682, 0.6175/1.4682 > = <0.16, 0.4194, 0.4206>, and the gini index value of 

‘Data’ is 0.162+0.41942+0.42062 = 0.3784; since 0.3784 < 0.5, the original feature 

vector is reduced to <0.16, 0.4194, 0.4206> * 0.3784 = <0.0605, 0.1587, 0.1592>.  

 

4.4.3 Tuning Phase 

The purpose of the Tuning Phase is to utilize feedback information from tuning 

documents (other pre-defined documents) to reduce the number of false positives 

yielded by the constructed classifier. Conceptually, it operates like the Perceptron 

learning algorithm [64] in neural network. Given a tuning document, the Tuning 

Phase first compares its pre-defined category label with the category label suggested 

by the constructed classifier. If they are consistent, it means that the classifier can 

correctly decide on this tuning document using the corresponding feature vectors in 

the feature-domain weighting table; the weight between each corresponding feature 

and the category suggested by the classifier is then emphasized, such that the 

classifier has strong weights. Otherwise, it means that the classifier may make 

incorrect decisions using the feature-domain weighting table. The weight between 

each corresponding feature and the category suggested by the classifier should be 
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reduced and the weight between each corresponding feature and the pre-defined 

category of the tuning document should be emphasized, such that the classifier has 

appropriate weights. 

The proposed tuning algorithm, shown in Figure 4-6, first extracts features from 

each given tuning document (Step 1.1), and then obtains the category label suggested 

by the constructed classifier C (Step 1.2). The document labeling algorithm, described 

in next section, is used to carry out the suggestion procedure. If the category label 

suggested by C is consistent with the pre-defined category label of a tuning document, 

the tuning algorithm emphasizes the weight between each corresponding feature and 

the suggested category by ζ percent of the feature weight in the tuning document 

(Step 1.4), where ζ is the user-specified tuning parameter. Otherwise, the tuning 

algorithm reduces the weight between each corresponding feature and the suggested 

category by ζ percent of the feature weight in the tuning document and emphasizes 

the weight between each corresponding feature and the pre-defined category of a 

tuning document by ζ percent of the feature weight in the tuning document (Step 1.5). 

Consequently, the tuning algorithm returns the updated classifier C (Step 2). 

 

Tuning Algorithm: 
Input:  

C: The classifier. 
D’: A set of tuning documents. 
ζ: A tuning parameter. 

Output:  
C: The updated classifier. 

Begin 
(1) For each d∈ D’, do 

(1.1) F←{ fk | fk is a feature in d }; 
(1.2) l ←Document labeling(d, C); 
(1.3) ld = the pre-defined category label of d; 
(1.4) If l = ld, do 

(1.4.1) For each fk ∈  F, do wkl = wkl + dl * ζ;  
// wkl is the weight between fk and l in C 
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// dl is the l-th entry of d’s document vector 
(1.5) If l ≠ ld, do 

(1.5.1) For each fk ∈  F, do wkl = wkl − dl * ζ and wkld = wkld + dl*ζ 
(2) Return the updated classifier C. 

End 
Figure 4-6: The tuning algorithm 

 

Example 4-5: Assume the tuning parameter ζ is set to 0.01 and a given tuning 

document d with two keywords, ‘Data’ and ‘Database’, belongs to “DM” Category. 

According to the constructed classifier C3 in Figure 4-3, the document vector of d is 

thus <(0.0605+0.0521)/2, (0.1587+0.2387)/2, (0.1592+0.2344)/2> = <0.0563, 0.1987, 

0.1968>, and the classifier then assigns the category label “DB” to d. Obviously, the 

constructed classifier C3 made an incorrect decision using the feature-domain 

weighting table. Thus, the tuning algorithm reduces the weight between feature ‘Data’ 

and “DB” Category to 0.1587-0.1987*0.01=0.1567 and emphasizes the weight 

between feature ‘Data’ and “DM” Category to 0.1592+0.1968*0.01=0.1612. On the 

other hand, the weight between feature ‘Database’ and “DB” Category is reduced to 

0.2387-0.1987*0.01=0.2367 and the weight between feature ‘Database’ and “DM” 

Category is emphasized to 0.2344+0.1968*0.01=0.2364. The updated C3 is shown in 

Table 4-4.  

 

Table 4-4: An example of the tuning algorithm 

      Domain
Feature AI DB DM 

Database 0.0521 0.2367(1) 0.2364(3) 
Primary 0 1 0 
Relation 0.138 0.9852 0 
View 0 1 0 
Data 0.0605 0.1567(2) 0.1612(4) 
Mining 0.2992 0 0.7008 
Clustering 0.3282 0 0.6718 
Rule 0 0 1 
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(1) 0.2387 – 0.1987*0.01 = 0.2367 
(2) 0.1587 – 0.1987*0.01 = 0.1567 
(3) 0.2344 + 0.1968*0.01 = 0.2364 
(4) 0.1592 + 0.1968*0.01 = 0.1612 

 

4.5 Document Labeling by the Constructed Classifier 

According to the constructed classifier, a document vector is easily calculated by 

summarizing related feature vectors in the feature-domain weighting table. The larger 

the weight assigned to a document vector entry is the more relevant the entry is. Thus, 

the classifier can assign a category label to an undefined document on the basis of its 

entry weights. 

Given an undefined document d, the document labeling algorithm, shown in 

Figure 4-7, first uses the constructed classifier C to obtain the document vector Vd by 

summarizing the feature vectors of features occurred in d from feature-domain 

weighting table (Step 2 and Step 3). The document labeling algorithm then assigns a 

category label to d according to the entry with the maximum weight in Vd (Step 4). 

 

Document Labeling Algorithm: 
Input:  

d: An undefined document. 
C: The classifier constructed by the classifier construction algorithm. 

Output:  
l: The category label for d. 

Begin 
(1) Vd ←0; //Vd is the document vector of d and |Vd| equals the number of categories 
(2) For each feature fk in d, do 

(2.1) Extract the feature vector fvk from C; 
(2.2) Vd = Vd + fvk; 

(3) ;
)(count k

d
d f

V
V = //count(fk) is the number of features in d 

(4) Return the category label l of the maximum weight in Vd. 
End 

Figure 4-7: The document labeling algorithm 

 



 81

4.6 Experimental Results 

Our experiments were conducted in Java on a personal computer with a Pentium 

1.7GHz processor and 512MB of main memory running Windows 2000, and using the 

Reuters-21578 benchmark text collection standard (REUTERS-21578, Distribution 

1.0) experimental dataset [58] based on the “ModApte” split version. This dataset 

consists of 118 categories in 12,902 documents, of which 9,603 are for training and 

3,299 are for testing. The following groups of categories were used to evaluate 

classification accuracy: 

(1) the 10 categories with the largest number of training documents 

(Reuters-21578(10)); 

(2) the 90 categories, each of which contains at least one training document and 

one test document (Reuters-21578(90)); 

(3) the 115 categories, each of which contains at least one training document 

(Reuters-21578(115)). 

 

We tested our classifier on four aspects of micro- and macro-averaging F1 

evaluation functions (shown in Formula 4-1): 

(1) the classification accuracy of our classifier construction algorithm compared 

to the algorithms shown in [23]; 

(2) the influence of the training document threshold φ and the discrimination 

threshold δ on classification accuracy; 

(3) the influence of the number of tuning documents on classification accuracy; 

(4) the time performance of our classifier construction algorithm compared to a 

batch-based mining algorithm. 
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In [23], Debole and Sebastiani utilized six supervised term weighting functions, 

chi-square, information gain, and gain ratio, globally and locally, e.g., χ2(g), IG(g), 

GR(g), χ2(l), IG(l), and GR(l), in the Rocchio, k-NN, and SVM classifier construction 

algorithms to compare their average classification accuracy on the Reuters-21578(10), 

Reuters-21578(90), and Reuters-21578(115) datasets. The comparison results are 

shown in Table 4-5. 

 

Table 4-5: Micro- and macro-averaging F1 values shown in [23] 

 χ2 (g) IG(g) GR(g) χ2 (l) IG(l) GR(l) 
Reuters-21578(10) 0.852 0.843 0.857 0.810 0.816 0.816 
Reuters-21578(90) 0.795 0.750 0.803 0.758 0.767 0.767 Micro F1 
Reuters-21578(115) 0.793 0.747 0.800 0.756 0.765 0.765 
Reuters-21578(10) 0.725 0.707 0.739 0.674 0.684 0.684 
Reuters-21578(90) 0.542 0.377 0.589 0.527 0.559 0.559 Macro F1 
Reuters-21578(115) 0.596 0.458 0.629 0.581 0.608 0.608 

 

We set the discrimination threshold δ in our classifier construction algorithm to 

0.5 for the Reuters-21578(10) dataset, and to 0.04 for the Reubters-21578(90) and 

Reuters-21578(115) datasets; the number of tuning documents was set to 0. Table 4-6 

shows the classification accuracy of our classifier at various training document 

thresholds φ. The φ was to determine the availability of categories in the training 

documents for our training algorithm. Thus, if the number of training documents in a 

category was less than the specified φ, the category was omitted from the training 

algorithm. For example, only 39 categories in Reuters-21578(90) satisfying φ = 25 

were used in the training algorithm. 

Tables 4-5 and 4-6 show the classification accuracy of our classifier construction 

algorithm was always better than those in [23] on Reuters-21578(10), whereas the 

results on Reuters-21578(90) and Reuters-21578(115) were worse when φ was less 

than 15. We may therefore conclude that the classification accuracy of the classifier 
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constructed by the domain-space weighting scheme will be getting better with 

sufficient training documents. 

 

Table 4-6: Micro- and macro-averaging F1 values at φ =1, φ =15 and φ =25 

  φ=1 φ =15 φ=25 
Reuters-21578(10) 0.903 0.903 0.903 
Reuters-21578(90) 0.751 0.784 0.815 Micro F1 
Reuters-21578(115) 0.737 0.784 0.815 
Reuters-21578(10) 0.824 0.824 0.824 
Reuters-21578(90) 0.490 0.569 0.660 Macro F1 
Reuters-21578(115) 0.616 0.569 0.660 

 

Details of training document threshold φ and discrimination threshold δ affected 

classification accuracy on Reuters-21578(10), Reuters-21578(90), and 

Reuters-21578(115) are shown in Tables 4-7 to 4-11. Since each category in 

Reuters-21578(10) contains more than 50 training documents, the influence of φ is 

ignored in Table 4-7. As mentioned before, the scale of δ is determined according to 

the number of categories. Thus, the scale range of δ in Table 4-7 is [1/10, 1], and the 

scale ranges of δ in Tables 4-8, 4-9 and in Tables 4-10, 4-11 are [1/90, 1] and [1/115, 

1], respectively. 

In Tables 4-7 to 4-11, we can see that the influence of δ is not evident even on 

Reuters-21578(10), perhaps because the one-normalization of the discrimination 

algorithm has achieved the purpose of discrimination such that setting δ has less 

influence on the classification accuracy. By contrast, setting φ had a decisive 

influence on classification accuracy: the larger the number of training document 

included, the better classification accuracy will be. Table 4-12 shows the number of 

remaining categories at various φ on Reuters-21578(10), Reuters-21578(90), and 

Reuters-21578(115). When φ was 15 or greater, the training algorithm considered the 

same numbers of categories on Reuters-21578(90) and Reuters-21578(115). 
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Table 4-7: Micro-and macro-averaging F1 values at various δ for Reuters-21578(10) 

δ Micro F1 Macro F1 
0.9 0.902511370 0.814721475 
0.8 0.901324896 0.813716994 
0.7 0.903302353 0.820149529 
0.6 0.903302353 0.819969831 
0.5 0.902906862 0.823657403 
0.4 0.898951948 0.815825122 
0.3 0.901324896 0.817534791 
0.2 0.895788017 0.804622957 
0.1 0.898160965 0.806951786 

 

Table 4-8: Micro-averaging F1 values at various δ and φ for Reuters-21578(90) 

      φ 

δ 1 5 15 25 35 45 

0.1 0.74739 0.75360 0.78372 0.81300 0.82566 0.84547 
0.08 0.74827 0.75389 0.78403 0.81269 0.82631 0.84447 
0.06 0.75033 0.75478 0.78464 0.81458 0.82695 0.84681 
0.04 0.75063 0.75300 0.78433 0.81521 0.82824 0.84681 
0.02 0.74974 0.75271 0.78555 0.81553 0.8289 0.84681 
0.01 0.74974 0.75330 0.78555 0.81584 0.8289 0.84681 

 

Table 4-9: Macro-averaging F1 values at various δ and φ for Reuters-21578(90) 

      φ 

δ 1 5 15 25 35 45 

0.1 0.46830 0.52281 0.56963 0.66335 0.67258 0.71811 
0.08 0.48881 0.54619 0.57344 0.65812 0.67529 0.71390 
0.06 0.48748 0.53001 0.57152 0.66360 0.67395 0.71542 
0.04 0.48997 0.52214 0.56868 0.65998 0.67747 0.71738 
0.02 0.48467 0.51960 0.57205 0.66281 0.67783 0.71738 
0.01 0.48922 0.52176 0.57205 0.66312 0.67783 0.71738 

 

Table 4-10: Micro-averaging F1 values at various δ and φ for Reuters-21578(115) 

      φ 

δ 1 5 15 25 35 45 

0.1 0.73593 0.74885 0.78372 0.81300 0.82566 0.71811 
0.08 0.73505 0.74915 0.78403 0.81269 0.82631 0.71390 
0.06 0.73711 0.7506 0.78464 0.81458 0.82695 0.71542 
0.04 0.73681 0.74944 0.78433 0.81521 0.82824 0.71738 
0.02 0.73652 0.74855 0.78555 0.81553 0.8289 0.71738 
0.01 0.73711 0.74915 0.78555 0.81553 0.8289 0.71738 
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Table 4-11: Macro-averaging F1 values at various δ and φ for Reuters-21578(115) 

      φ 

δ 1 5 15 25 35 45 

0.1 0.62378 0.53231 0.56963 0.66335 0.67258 0.71811 
0.08 0.60384 0.55127 0.57344 0.65812 0.67529 0.71390 
0.06 0.60474 0.53598 0.57152 0.66360 0.67395 0.71542 
0.04 0.61597 0.53130 0.56868 0.65998 0.67747 0.71738 
0.02 0.61526 0.53057 0.55990 0.66312 0.67783 0.71738 
0.01 0.61526 0.52903 0.57205 0.66281 0.67783 0.71738 

 

Table 4-12: Numbers of remaining categories at various φ 

 φ =1 φ =5 φ =15 φ =25 φ =35 φ =45 
Reuters-21578(10) 10 10 10 10 10 10 
Reuters-21578(90) 90 69 51 39 34 27 
Reuters-21578(115) 115 70 51 39 34 27 
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Figure 4-8: Micro-averaging F1 value vs. number of tuning documents for 

Reuters-21578(10) 

 

The influence of tuning document number on classification accuracy for 

Reuters-21578(10), Reuters-21578(90), and Reuters-21578(115) is shown in Figures 

4-8, 4-9 and 4-10, respectively. Since the tuning documents in our experiments were 

selected from the test documents, the original test document dataset was divided into 
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tuning and test sets. Experimental results showed that setting the tuning parameter ζ 

to 0.000005 yielded a stably increasing trend. Too low the ζ value may lead to a 

tuning adjustment so tiny that the tuning effect is insignificant, and too large the ζ 

value may lead to an unstable and oscillatory tuning adjustment with unpredictable 

tuning effects. Figures 4-8 to 4-10 show that the classification accuracy of the 

constructed classifier improved as the number of tuning documents was increased and 

tended toward convergence when the number exceeded 700. 
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Figure 4-9: Micro-averaging F1 values vs. number of tuning documents at φ =1, φ =15 

and φ =25 for Reuters-21578(90) 
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Figure 4-10: Micro-averaging F1 values vs. number of tuning documents at φ =1, φ 

=15 and φ =25 for Reuters-21578(115) 

 

We evaluated the efficiency of our classifier construction algorithm in 

comparison with a batch-based classifier construction approach, excluding the tuning 

algorithm. The computation time of our classifier construction algorithm contains 

three major portions when a new category is added in the i-th run: (1) time to extract 

and weight features from a given category, denoted as ti1; (2) time to integrate the 

training results into the feature-domain weighting table, denoted as ti2; and (3) time to 

reduce the weights of features in the feature-domain weighting table having lower 

discriminating powers, denoted as ti3. Since ti1 > ti2 >> ti3, total computation time can 

be simplified to O(ti1+ti2) in the i-th run. However, when our classifier construction 

algorithm mimicked a batch-based approach, and needed to re-process all previous 

categories to reconstruct its classifier for each run, the total computation time was 

O(∑ =
+i

j jj tt
1 21 )( ) for the i-th run. Figure 4-11 shows the computation times spent by 

our classifier construction algorithm respectively in batch and in incremental for 

Reuters-21578(10) with increasing numbers of considered categories. 
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Figure 4-11: Computation times spent by the batch-based classifier and the 
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incremental-based classifier for reuters-21578(10) 

 

It is easily seen that, the computation times for the batch-based classifier 

increased as the number of involved categories was increased, but the computation 

times for the incremental-based classifier remained almost the same as the number of 

involved categories was increased. Since previously discovering information is all 

retained in the feature-domain weighting table, the classification accuracy of the 

incremental-based classifier is the same as that of the batch-based classifier. 

 

4.7 Conclusions 

This study proposes a domain-space weighting scheme to represent documents in 

domain-space and incrementally construct a classifier to resolve the document 

representation and categories adaptation problems. The scheme consists of three 

major phases: Training Phase, Discrimination Phase and Tuning Phase. The training 

algorithm incrementally extracts and weights features from each individual category, 

and then integrates the results into a feature-domain weighting table. The 

discrimination algorithm reduces feature weights with lower discriminating powers. 

When these algorithms finish constructing the classifier, the tuning algorithm 

strengthens it using feedback information from tuning documents to reduce the 

number of false positives. Experiments with the Reuters-21578 benchmark show that 

with sufficient training documents, the classifier is rather effective and efficient. 
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Chapter 5 

From Incremental Mining to Multidimensional 

Online Mining for Knowledge Discovery 
 

 

 

5.1 Introduction 

Although incremental mining algorithms are rather efficient and useful for static 

models such as mining all the data accumulated thus far and mining only a recently 

collected portion of data in uncomplicated applications, they usually provide little 

support for user focus (e.g., limiting the computation to what interests the user) and 

user interaction (e.g., dynamically changing the parameters or constraints). This may 

produce thousands of rules that are irrelevant and uninteresting to users. On the other 

hand, decision-makers usually diversely consider problems at different aspects: they 

may need to analyze market demands, customer preferences, localities, and 

short-term/long-term trends; they may want to understand the change of discovered 

patterns or rules in different dimensions. This may neither flexibly obtain rules or 

patterns from their interesting portions of data, nor diversely consider problems at 

different aspects to provide online decision supports for users. 

Some examples about that a decision-maker usually requires online mining 

supports of association rules are shown below. 

Scenario 1: A decision-maker may have known which product combinations 

sold in last August were popular, and wants to know which product combinations sold 

in last September were also popular. 
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Scenario 2: A decision-maker may have known that people often buy beer and 

diapers together from a transaction database, and want to further know under what 

contexts (e.g., place, month, or branch) this pattern is significant or, oppositely, under 

what contexts this pattern becomes insignificant. 

Scenario 3: A decision-maker may want to know how the mined patterns this 

year differ from those last year, such as what new patterns appear and what old 

patterns disappear. 

Scenario 4: A marketing analyst may want to analyze the data collected from the 

branches in Los Angeles and San Francisco in all the first quarters in the last five 

years. 

Scenario 5: A marketing analyst may want to know what patterns are significant 

in the recent month when the minimum support increases from 5% to 10%. 

The examples above all require more context information to describe the 

problem domain. A mining algorithm that can handle relevant context information in 

mining requests will thus help decision-makers consider various aspects of problems 

in diverse ways.  

Constraint-based and multidimensional mining techniques [11][15][35][37] 

[48][51][52][65][72] which allow users to specify constraints as a guidance have thus 

been developed to identify and extract interesting and focused knowledge from a data 

warehouse or a database. Users can continually express his focus and change not only 

the parameters but also the constraints in the mining process. For example, Kamber et 

al. [48] proposed a famous approach that allowed users to specify the predicates that 

appear in antecedent and consequent parts of association rules. However, putting all 

data gathered in different contexts (such as different branches, different time intervals 

and different regions) together for centralized mining seems to be time-consuming 
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and infeasible for online mining support because of the size of data. Users may need 

to wait for a long period of time for the mining results. 

Different from the techniques of constraint-based and multidimensional mining, 

we attempt to extend the concept of effectively utilizing previously discovered patterns 

in incremental mining to support multidimensional online mining. We first 

systematically mines rules or patterns from data gathered in different contexts 

according to the pre-defined parameter setting, and forwards the rules or patterns with 

the corresponding context information to a structural repository called knowledge 

warehouse for centralized post-mining and refining. Then, we can efficiently acquire 

user-interesting and/or user-focused association rules or patterns by integrating related 

mining information from the knowledge warehouse, and greatly reduce the cost of 

mining the underlying data at each time. 

Consequently, a systematic, automatic, integrated, and on-demand architecture, 

called Online Knowledge Discovery System (OKDS), can be developed to help 

managers and decision-makers diversely consider problems at different aspects and 

provide online mining supports. The OKDS mainly consists of five major components, 

knowledge client, knowledge warehouse, knowledge organizer, mining agent, and 

underlying storage facility. Through the mining agents systematically and 

continuously mine potentially useful patterns from each underlying storage facilities, 

the knowledge organizer structurally stores these mined patterns into the knowledge 

warehouse, and thus users can utilize aggregation and generalization functions in the 

knowledge client for online patterns generation. 

 

5.2 Related Work 

Data warehouse is an integrated, subject-oriented, and nonvolatile data 
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repository containing historical and aggregated data from operational and legacy 

systems for supporting decision-making processes [17][45][97]. Comparing to routine 

works of On-Line Transaction Processing (OLTP) in the operational databases, the 

purpose of data warehouse is to help analysts On-Line Analytical Processing (OLAP). 

Therefore, to facilitate complex analyses and achieve high query throughput is the 

most important consideration in the data warehouse. Table 5-1 lists the major 

differences between the operational database and the data warehouse [17][45]. Thus, 

data warehouses are usually maintained separately from the organization’s operational 

databases. 

 

Table 5-1: Differences between the operational database and the data warehouse 

Aspects Operational database Data Warehouse 
User  Data entry clerk 

 System designer 
 System administrator 

 Decision maker 
 Knowledge worker 
 Executives 

Function  Daily operations 
 OLTP 

 Decision support 
 OLAP 

DB Design  Application oriented  Subject oriented 
Data  Current 

 Up-to-date atomic 
 Relational(normalized) 
 Isolated 

 Historical 
 Summarized 
 Multidimensional 
 Integrated 

Usage  Repetitive routine  Ad hoc 
Access  Read/write 

 Simple transaction 
 Read mostly 
 Complex query 

System Requirements  Transaction throughput
 Data consistency 

 Query throughput 
 Data accuracy 

 

Developing a data warehouse often extracts user-interesting information from 

each source (operational database) in advance, then merging the relevant information, 

and consequently installing into a structurally centralized repository for later analysis. 

The data warehouse often adopts a multidimensional data model to prepare the data 

for analytical processing under multidimensional consideration. The star schema 
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consisting of a fact table and a set of dimension tables is the most used form in the 

multidimensional data model. The fact table contains user-interesting measure 

attributes, which are the objects for analysis, and key attributes (identifiable attributes) 

to each of the related dimension tables. The dimension table contains additional 

attributes to further describe each of key attributes in the fact table. The 

multidimensional data model provides users a clear and multidimensional view of 

data. Data can be easily accessed by manipulating the dimensions. 

 

5.3 Knowledge Warehouse 

 For providing efficient online mining, the knowledge warehouse is initiated from 

the concept of effectively utilizing previously discovered patterns in incremental 

mining. As we know, for not wasting the previously mined patterns and improving 

rule maintenance performance, incremental mining algorithms always keep the mined 

patterns into the storage for later use. For providing multidimensional consideration, 

the knowledge warehouse is further referred to the multidimensional data model of 

data warehouse capable of supporting ad-hoc queries and decision making by 

aggregation functions and OLAP operations. 

As the data under decision-support consideration does not evolve in an arbitrary 

way (e.g., the data in the data warehouse may be inserted or deleted in a block during 

an interval of a month [32]), the knowledge warehouse is thus proposed to structurally 

and systematically store the context information and mining information for each 

inserted dataset. The context information is used to represent the contexts of each 

individual block of data which are gathered together from a specific business 

viewpoint, such as region, time and branch. The mining information is used to record 

the available information mined from each individual block of data by a batch mining 
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algorithm, such as the number of data, the number of mined patterns, and the set of 

previously mined patterns with related information. Conceptually, the knowledge 

warehouse is similar to the data warehouse for OLAP. Both of them systematically 

preprocess the underlying data in advance, integrate related information, and store the 

results in a centralized structural repository for later use and analysis. However, the 

data warehouse is mainly used to store mined patterns at knowledge level but not data 

at information level. Table 5-2 lists the major differences between the knowledge 

warehouse and the data warehouse. 

 

Table 5-2: Differences between the knowledge warehouse and the data warehouse 

Aspects Data Warehouse Knowledge Warehouse 
Function  OLAP  Online mining 
Data  Historical 

 Summarized 
 Multidimensional 
 Integrated 

 Mined 
 Multidimensional 

Access  Read mostly 
 Complex query 

 Read only 
 Mining query 

System Requirements  Query throughput 
 Data accuracy 

 Mining throughput 
 Knowledge usability 

 

 The star schema can still be a concise and organized structure to model the 

knowledge warehouse. The context information and mining information can be 

represented by dimensions and measures, respectively. Example 5-1 shows a star 

schema of the knowledge warehouse used to provide online generation of association 

rules for product sales in a bicycle manufacturer. However, unlike the summarized 

information on measure attributes in the data warehouse, the mining information in 

the knowledge warehouse, such as the mined patterns, may not be directly aggregated 

to satisfy users’ mining requests. Thus, the major challenge of the knowledge 

warehouse is how to efficiently aggregate, generalize and manipulate the mining 
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information. In the next chapter, we will design corresponding aggregation and 

generalization approaches to provide online mining supports on association rules. 

Example 5-1: Figure 5-1 is a star schema of the knowledge warehouse for a 

bicycle manufacturer. It consists of three dimensions, Time, Branch and Minsup, and 

three measures, No_Trans, No_Patterns and Pattern_Set. Of the three dimensions, 

Time and Branch are nonnumeric dimension similar to that in a typical data 

warehouse, and Minsup is a numeric dimension indicating the minimum supports for 

the measures, No_Patterns and Pattern_Set. Of the three measures, No_Trans is a 

numeric measure that can be calculated similar to that in a typical data warehouse, 

and No_Patterns is also a numeric measure and decided by Pattern_Set, and 

Pattern_Set is a set measure that represents a collection of frequent itemsets with their 

supports under the corresponding time and branches and satisfying a minimum 

support in Minsup dimension. 

 

 

 

 

 

 

 

 

 
 
 

Figure 5-1: An example of the star schema of a knowledge warehouse 
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5.4 Online Knowledge Discovery System (OKDS) 

 Based on the proposed knowledge warehouse, a systematic, automatic, integrated, 

and on-demand architecture, called Online Knowledge Discovery System (OKDS), 

can be developed to provide managers and decision-makers multidimensional online 

mining supports. The OKDS, as shown in Figure 5-2, mainly consists of five major 

components, knowledge client, knowledge warehouse, knowledge organizer, mining 

agent, and underlying storage facility. 

 

Knowledge Warehouse

Mining 
Agent 1

Mining 
Agent 2

Mining 
Agent n

Knowledge Organizer

Knowledge 
Client 2

Knowledge 
Client 1

Knowledge 
Client m

Underlying 
Storage Facility 1

Underlying 
Storage Facility 2

Underlying 
Storage Facility n

 

Figure 5-2: The OKDS architecture 

 

Whenever a new block of data is inserted into a underlying storage facility, the 

corresponding mining agent will systematically and continuously mine potentially 

useful patterns from the block of data as the mining information; then the knowledge 
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organizer will structurally store the mining information associated with related 

context information in the knowledge warehouse; and thus users can utilize 

aggregation and generalization functions in the knowledge client for online generation 

of patterns. On the other hand, when an old block of data is deleted from a underlying 

storage facility, its corresponding context and mining information will be removed 

from the knowledge warehouse by the knowledge organizer. 

 Underlying storage facility: A underlying storage facility is served as materials 

supplier in OKDS to provide underling, purpose-oriented and pre-processed data. 

Therefore, it can be a data warehouse, a preprocessed database or a cleaned file. 

 Mining agent: Agents often play autonomous, adaptive and intelligent roles in a 

distributed system. For example, for an intelligent travel service system, a 

traveling agent follows the user setting or the user profile to collect interesting 

traveling paths and hotel coupons; a scheduling agent follows the user program, 

weather prediction and news to provide proper periods for traveling; and a 

coordinator agent is responsible for coordinate the traveling and scheduling 

agents capable of obtaining proper traveling packages and suitable schedules for 

users. Thus, a mining agent mainly follows the user setting to periodically detect 

the data changes in a underlying storage facility, automatically mining potential 

patterns from a underlying storage facility and reporting the results to the 

knowledge organizer. The knowledge organizer is served as the coordinator 

agent of mining agents. 

 Knowledge organizer: The knowledge organizer is responsible for periodically 

maintaining the patterns in the knowledge warehouse. Its works include 

collecting the discovered patterns from each mining agent, merging or 

summarizing these ones as the mining information, and then storing them 
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associated with corresponding context information into the knowledge 

warehouse. For improving the performance of fulfilling user requests, the 

knowledge organizer is also responsible for constructing and maintaining the 

materialized views of knowledge warehouse. 

 Knowledge client: A knowledge client is an interface used for receiving user’s 

mining requests, transferring a mining request to an operating procedure for the 

knowledge warehouse, and reporting mining results to users. For convenient to 

understand and evaluate the mining results, it is also responsible for providing 

visualization services. 
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Chapter 6 

Multidimensional Online Mining Algorithms for 

Generation of Association Rules 
 

 

 

6.1 Introduction 

Previous works on mining association rules can be classified into batch mining 

[5][16][40][53][61][67][78][95] and incremental mining approaches [8][20][21] 

[27][43][77][85] according to their processing procedures. Most focus on finding 

association rules in specified parts of databases that satisfy the user-specified 

minimum support and minimum confidence [11][15][37][52][65]. Some contexts 

(circumstances) such as region, time, and branch are usually ignored in mining 

requests, and thus they usually can not flexibly obtain association rules from portions 

of data, diversely consider problems and provide on-line decision supports for users. 

To provide ad-hoc, query-driven and online mining support for generation of 

association rules, we first propose a relation called the Multidimensional Pattern 

Relation (MPR) as a form of knowledge warehouse to structurally and systematically 

store context and mining information for later analysis [90][92]. We then develop an 

online mining approach called Three-phase Online Association Rule Mining 

(TOARM) based on this proposed MPR to support online generation of association 

rules under multidimensional considerations. The TOARM approach consists of three 

phases, candidate itemset generation, candidate itemset reduction, and association 

rule generation, during which final sets of patterns satisfying various mining requests 
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are found. The candidate itemset generation phase selects tuples that satisfy the 

context constraints in mining requests and generates candidate itemsets from the 

matching tuples. The candidate itemset reduction phase then calculates upper-bound 

supports for the candidate itemsets and uses two pruning strategies to reduce the 

number of candidates. Finally, the association rule generation phase finds final 

frequent itemsets and derives association rules from them. 

 

6.2 Related Work 

Recently, researchers have developed online mining algorithms to obtain 

required sets of association rules without re-processing the entire database whenever 

user-specified thresholds are changed. Examples are the OLAP-style algorithm 

proposed by Aggarwal and Yu [1] and the Carma algorithm proposed by Hider [41]. 

The OLAP-style algorithm is quite similar to a typical incremental mining algorithm 

that utilizes previously mined patterns to save on I/O and computation. It first stores 

primary itemsets based on a low minimum support criterion in a latticed data structure, 

and then responds to users’ queries with higher minimum support criteria by 

processing the lattice. It thus preprocesses the data just once, but can efficiently 

handle multiple user queries. The Carma algorithm attempts to provide intermediate 

results as feedback to users while databases or minimum support thresholds are being 

changed. Users are thus able to dynamically adjust thresholds according to 

intermediate results. The Carma algorithm uses two runs. During the first run, it 

constructs a lattice composed of all potential frequent itemsets from the transactions. 

Each itemset in the lattice uses a lower bound and an upper bound to record its 

possible support range. When a mining request is input, itemsets in the lattice whose 

support ranges cover or are larger than the new minimum support threshold are output 
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to the second run. During the second run, the Carma algorithm finds the precise 

support for each itemset from the first run to determine whether it is truly large. 

Interestingly, many large organizations have multiple databases distributed at 

different branches. Traditional data mining algorithms may put all data from different 

databases in a common repository for centralized analysis. This kind of mining causes 

some problems. The collected data may be too huge to be coped with, and some 

useful rules or patterns regarding local databases may be lost. As a result, 

multi-database mining has recently been recognized as an important research topic 

and some studies [50][98][105] on mining association rules over multi-databases have 

been proposed. These approaches mine rules or patterns at different databases and 

then gather the mined results. 

These online mining and multi-database mining approaches do not, however, 

maintain a repository to systematically and structurally store the mining information 

and related context information for later flexible analysis. 

 
6.3 Multidimensional Pattern Relation (MPR) 

In this section, we formally define the Multidimensional Pattern Relation (MPR) 

for storing context information and mining information for later analysis. First, a 

relation schema R, denoted by R(A1, A2, …, An), is made up of a relation name R and a 

list of attributes A1, A2, …, An. Each attribute Ai is associated with a set of attribute 

values, called the domain of Ai and denoted by dom(Ai). A relation r of the relation 

schema R(A1, A2, …, An) is a set of tuples {t1, t2, …, tm}. Each tuple ti is an ordered list 

of n values <vi1, vi2, …, vin>, where each value vij is an element of dom(Aj). 

A Multidimensional Pattern Relation Schema (MPRS) is a special relation 

schema for storing mining information. An MPRS consists of three types of attributes: 
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identification (ID), context, and content. There is only one identification attribute for 

an MPRS. It is used to uniquely label tuples. Context attributes describe the contexts 

(circumstances) of an individual data block, gathered together from a specific 

business viewpoint. Examples of context attributes are region, time, and branch. 

Content attributes describe available mining information discovered from each 

individual data block by a batch mining algorithm. Examples of content attributes are 

number of transactions, number of mined patterns, and the set of previously mined 

frequent itemsets with supports. 

The set of all patterns, with supports, previously mined from an individual data 

block is called a pattern set (ps) in this study. Assume the minimum support is s and l 

frequent itemsets are discovered in a data block. A pattern set can be represented as ps 

= {(xi, si) | si ≥ s and 1≤ i ≤ l}, where xi is a frequent itemset and si is its support. The 

pattern set is thus an essential content attribute of an inserted block of data. 

An MPRS with n1 context attributes and n2 content attributes can be represented 

as MPRS(ID, 1CX , 2CX , …, 
1nCX , 1CN , 2CN , …, 

2nCN ), where ID is an 

identification attribute, CXi, 1 ≤ i ≤ n1, is a context attribute, and CNi, 1 ≤ i ≤ n2, is a 

content attribute. Assume the MPR to be an instance of a given MPRS that includes 

the tuples {t1, t2, …, tm}. Each tuple ti = ( iid , 1icx , 2icx , …, 
1incx , 1icn , 2icn , …, 

2incn ) in MPR indicates that for the block of data identified by the contexts 1icx , 

2icx , …, and 
1incx , the mined information contains 1icn , 2icn , …, and 

2incn . 

 

Table 6-1: An MPR with minimum support = 5% 

ID Region Branch Time No_Trans No_Patterns Pattern_Sets 
(Itemset, Support) 

1 CA San Francisco 2003/10 10000 7 
(A,10%),(B,11%),(C,9%),
(AB,8%),(AC,7%),(BC,6
%),(ABC,6%) 



 103

2 CA San Francisco 2003/11 15000 3 (A,5%),(B,7%),(C,5%) 
3 CA San Francisco 2003/12 12000 2 (A,5%),(C,9%) 
4 CA Los Angeles 2003/10 20000 3 (A,8%),(B,6%),(F,5%) 
5 CA Los Angeles 2003/11 25000 2 (A,5%),(C,6%) 

6 CA Los Angeles 2003/12 30000 4 (A,6%),(B,6%),(C,9%), 
(AB,6%) 

7 NY New York 2003/10 18000 3 (B,8%),(C,7%),(BC,6%) 
8 NY New York 2003/11 18500 2 (B,8%),(C,6%) 

9 NY New York 2003/12 19000 5 (A,5%),(B,9%),(C,8%), 
(D,6%),(BC,6%) 

 

Example 6-1: Table 6-1 shows an MPR with the initial minimum support set to 

5%. ID is the identification attribute, Region, Branch and Time are context attributes, 

and No_Trans, No_Patterns and Pattern_Sets are content attributes. The Pattern_Sets 

attribute records the sets of frequent itemsets mined from previous data blocks. For 

example, the tuple ID = 1 shows that seven frequent itemsets, {(A, 10%), (B, 11%), 

(C, 9%), (AB, 8%), (AC, 7%), (BC, 6%), and (ABC, 6%)}, were discovered from 

10000 transactions and in the contexts of Region = CA, Branch = San Francisco, and 

Time = 2003/10. The other tuples have similar meanings.  

 

6.4 Three-Phased Online Association Rule Mining (TOARM) based 

on MPR 

The goal of online mining is to find association rules satisfying the constraints in 

mining requests. The flexibility of mining requests can be increased by using the 

proposed MPR. An online mining approach called Three-phase Online Association 

Rule Mining (TOARM) is proposed to carry out mining tasks with an MPR. TOARM 

first selects tuples from the relation that satisfy the constraints in a mining request. It 

then integrates the mined information in these tuples and outputs them to users. 

Before describing the TOARM approach, we first formally define the problem to be 

solved and some related terminology. Some lemmas are also derived and proven. 

Assume MPR = {t1, t2, …, tm} is a multidimensional pattern relation based on an 
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initial minimum support s. Given a mining request q with the set of contexts cxq, the 

new minimum support sq (sq ≥ s), and the new minimum confidence confq, the 

TOARM approach will effectively and efficiently derive association rules satisfying sq, 

confq and cxq. Tuples with cxq in an MPR are called matched tuples (mt). Let ti denote 

the i-th tuple in an MPR, ti.trans the number of transactions in ti, ti.ps the pattern set in 

ti, and ti.sx the actual support of an itemset x in ti. Lemma 6-1 is easily derived as 

follows. 

Lemma 6-1: For each itemset x satisfying sq and cxq in a mining request q, there 

exists at least a matched tuple t, such that t.sx satisfies sq. 

Proof: We prove the lemma by contradiction. If ti.sx < sq for each matched tuple 

ti, then: 

∑∑
∈∈

∗<∗
mtt

qi
mtt

xii
ii

stranststtranst ... . (6-1) 

It implies that the itemset x does not satisfy sq, contradicting the claim that x 

satisfies sq. Thus, there must exist at least a matched tuple t with t.sx ≥ sq.  

According to Lemma 6-1, an itemset with support greater than or equal to sq in at 

least one matched tuple is a possible candidate. The following lemma about candidate 

itemsets can thus be derived. 

Lemma 6-2: Each itemset x satisfying sq and cxq in a mining request q must be 

among the candidate itemsets obtained by collecting the ones whose supports are 

greater than or equal to sq in at least one matched tuple.  

Example 6-2: For the MPR given in Table 6-1, assume that a mining request q 

calls for getting the patterns under the contexts cxq of Region = CA and Time = 

2003/11~2003/12 and satisfying the minimum support sq = 5.5%. The matched tuples 

are shown in Table 6-2. According to Lemma 6-2, the set of candidate itemsets is 

{{A}, {B}, {C}, {AB}}, which is the union of the itemsets appearing in the pattern 
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sets with supports greater than 5.5%.  

 

Table 6-2: Matched tuples in Example 6-2 

ID Region Branch Time No_Trans No_Patterns Pattern_Sets 
(Itemset, Support) 

2 CA San Francisco 2003/11 15000 3 (A,5%),(B,7%),(C,5%) 
3 CA San Francisco 2003/12 12000 2 (A,5%),(C,9%) 
5 CA Los Angeles 2003/11 25000 2 (A,5%),(C,6%) 
6 CA Los Angeles 2003/12 30000 4 (A,6%),(B,6%),(C,9%), 

(AB,6%) 
 

The following relation can be derived for a candidate itemset x and its proper 

subsets. 

Lemma 6-3: If x is a candidate itemset, then ∀ x’ ⊂  x, x’ is also a candidate 

itemset. 

Proof: If x’ ⊂  x, then ti.sx’ ≥ ti.sx for each tuple ti in an MPR. According to 

Lemma 6-2, if x is a candidate itemset, there must exist at least a matched tuple t with 

t.sx ≥ sq. Thus, t.sx’ ≥ t.sx ≥ sq for the tuple t. x’ is thus a candidate itemset.  

The appearing count appearing
xCount  of a candidate itemset x is defined as the 

count of x calculated from the matched tuples in which x appears. Thus: 

∑
∈∈

∗=
pstxmtt

xii
appearing
x

ii

sttranstCount
. & 

...  (6-2) 

The upper-bound count UB
xCount  of a candidate itemset x is defined as the 

upper bound count of x calculated from the matched tuples in which x does not appear. 

Thus: 

∑
∉∈

−∗=
pstmtt
i

UB
x

ii

stranstCount
. x& 

)1.( . (6-3) 

Let Match_Trans denote the number of transactions in the matched tuples. Thus: 

∑
∈

=
mtt

i
i

transtTransMatch ._ . (6-4) 
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The upper-bound support UB
xs  of a candidate itemset x is thus calculated as: 

UB
xs =

Trans_Match
CountCount UB

x
appearing
x + . (6-5) 

Lemma 6-4: If x is a candidate itemset and xs  is its actual support, then xs  ≤ 

UB
xs . 

Proof: 

sx = 
∑

∑

∈

∈

∗

mtt
i

mtt
xii

i

i

transt

sttranst

.

..
 

 = 
∑

∑∑

∈

∉∈∈∈

∗+∗

mtt
i

pstxmtt
xii

pstxmtt
xii

i

iiii

transt

sttranststtranst

.

....
. & . &  

≤ 
∑

∑∑

∈

∉∈∈∈

−∗+∗

mtt
i

pstxmtt
i

pstxmtt
xii

i

iiii

transt

stranststtranst

.

)1.(..
. & . &  

 = 
Trans_Match

CountCount UB
x

appearing
x +  

 = UB
xs . 

Thus xs  ≤ UB
xs .  

Example 6-3: Continuing Example 2, the upper-bound supports of the four 

candidate itemsets {A}, {B}, {C}, and {AB}, are calculated as follows: 

Trans_Match
CountCount

s
UB
A

appearing
AUB

A
+

=

0537.0=
+++

+++=
30000250001200015000

6%*  30000  5%*  25000  5%*  12000  5%*  15000 , 

Trans_Match
CountCount

s
UB
B

appearing
BUB

B
+

=  



 107

 0573.0=
+++

+++=
30000250001200015000

  1-5%*250001-5%*  12000  6%*300007%*  15000 � , 

Trans_Match
CountCount

s
UB
C

appearing
CUB

C

+
=  

0735.0
30000250001200015000

 9% * 30000  6% * 25000  9% * 12000  5% * 15000 =
+++

+++= � , and 

Trans_Match
CountCount

s
UB
AB

appearing
ABUB

AB

+
=  

 = .0536.0=
+++

+++
30000250001200015000

 1-5%*250001-5%*120001-5%*  150006%*30000 �  

  

Lemma 6-5: If x is a candidate itemset, then ∀ x’ ⊂  x, UB
xs '  ≥ UB

xs . 

Proof: If x’ ⊂  x, then ti.sx’ ≥ ti.sx for each tuple ti in an MPR. Therefore:

UB
xs '  = 

Trans_Match
CountCount UB

'x
appearing
'x +

 

= 
∑

∑∑

∈

∉∈∈∈

−∗+∗

mtt
i

pstxmtt
i

pstxmtt
xii

i

iiii
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.
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.' & .' & 
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∑
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∈
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i
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i
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xii
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xii

i
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= UB
xs .

Thus, UB
xs '  ≥ UB

xs .  

Lemma 6-6: If a candidate itemset x is contained in all matched tuples, then UB
xs  

= sx. 

Proof: If x is contained in all the matched tuples, then: 

UB
xs =

Trans_Match
CountCount UB

x
appearing
x + =

∑

∑

∈

∈

∗

mtt
i

mtt
xii

i

i

transt

sttranst

.

..
= sx.  

Example 6-4: Continuing Examples 2 and 3, according to Lemmas 6-4 and 6-5, 

candidate itemsets {A} and {AB} will be pruned since {AB} is a proper superset of {A} 

and the upper-bound support of {A} is less than sq (= 5.5%). According to Lemma 6-6, 

the candidate itemset {C} will be put into the set of final frequent itemsets since it 

appears in all matched tuples and its support is greater than 5.5%. Only the remaining 

candidate itemset {B} needs further processing.  

 

The TOARM approach for carrying out mining tasks with an MPR consists of 

three main phases, candidate itemset generation, candidate itemset reduction, and 

association rule generation. The candidate itemset generation phase selects tuples 

that satisfy the context constraints in mining requests and generates candidate itemsets 

from matched tuples. The candidate itemset reduction phase then calculates the 

upper-bound supports for the candidate itemsets and uses two pruning strategies to 

reduce the number of candidates. Finally, the association rule generation phase finds 

final frequent itemsets and derives association rules from them. The proposed 

three-phase online mining approach is described in Figure 6-1. 

The Three-phase Online Association Rule Mining (TOARM) approach: 
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INPUT: An MPR based on an initial minimum support s and a mining request q with 
a context set cxq, a minimum support sq (sq ≥ s)and a minimum confidence 
confq. 

OUTPUT: A set of association rules satisfying the mining request q. 
Phase 1: Candidate itemset generation: 
(a) Select tuples satisfying cxq from the MPR. 
(b) Gather the candidate itemsets appearing in the matched tuples. 
(c) Calculate appearing

xCount  and UB
xCount  for each candidate itemset x. 

Phase 2: Candidate itemset reduction: 

(a) Calculate the upper-bound support 
UB
xs  for each candidate itemset x using: 

UB
xs =

Trans_Match
CountCount UB

x
appearing
x + . 

(b) Discard candidate itemset x and its proper supersets if UB
xs  < sq. 

(c) Put x into the set of frequent itemsets if UB
xs =

Trans_Match
Countappearing

x  and UB
xs  ≥ sq. 

Phase 3: Association rule generation: 
(a) Check whether each remaining candidate itemset x is large by scanning the 

underlying blocks of data for the matched tuples in which x does not appear. 
(b) Generate association rules satisfying the minimum confidence confq from the set 

of frequent itemsets. 
Figure 6-1: The TOARM algorithm 

 

The TOARM approach considers only itemsets appearing in matched tuples and 

satisfying minimum support as candidates. It also uses two pruning strategies to 

reduce the number of candidate itemsets. It therefore only needs to re-process the 

remaining candidate itemsets against the underlying blocks of data for matched tuples 

in which they do not appear. For this reason, the cost of re-processing underlying 

blocks of data by the TOARM approach is less than that of typical batch mining or 

incremental mining approaches (experimental results presented below show this). 

Theorem 6-1: The TOARM approach can correctly obtain association rules in 

response to an on-line mining request q as long as its minimum support sq is greater 

than or equal to the initial minimum support s for getting the MPR. 

Proof: According to Lemma 6-2, all candidate itemsets for q are collected in 

Phase 1 of the TOARM approach. After that, the candidate itemsets whose 
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upper-bound supports are less than sq are pruned in Phase 2 (b) of the TOARM 

approach according to Lemmas 6-4 and 6-5. Also, the candidate itemsets which 

appear in all the matched tuples can know their actual supports according to Lemma 

6-6. If they satisfy sq, they are put into the set of final frequent itemsets in Phase 2 (c) 

of the TOARM approach. Finally, the actual supports of the remaining candidate 

itemsets can be found by Phase 3 (a) of the TOARM approach from the underlying 

blocks of data. The final frequent itemsets can then be determined. The association 

rules can thus be derived by Phase 3 (b) of the TOARM approach.   

 

6.5 Negative-Border Online Mining (NOM) based on Extended MPR 

(EMPR) 

Although the proposed TOARM approach based on a well-defined MPR can 

flexibly obtain association rules or patterns from portions of data, diversely consider 

problems at different aspects and provide on-line decision supports for users, it may 

get loose upper-bound supports of candidate itemsets for heterogeneous blocks of data 

and thus cause excessive I/O and computation costs to re-process them against the 

underlying database. As a result, we attempt to apply the concept of negative border 

[60] to calculate tighter upper-bound supports of candidate itemsets and then reduce 

the number of candidate itemsets to be considered [91][93]. The MPR is first 

extended for keeping the additional negative-border information. Based on the 

extended MPR (EMPR), we then develop an online mining approach called 

Negative-Border Online Mining (NOM) to efficiently and effectively utilize the 

information of negative itemset in the negative border. 

Definition 6-1: An Extended Multidimensional Pattern Relation Schema 

(EMPRS) with n1 context attributes and n2 content attributes can be represented as 
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EMPRS(ID, 1CX , 2CX , …, 
1nCX , 1CN , 2CN , …, 

2nCN ), where ID is an 

identification attribute, CXi, 1 ≤ i ≤ n1, is a context attribute, and CNi, 1 ≤ i ≤ n2, is a 

content attribute.  

Definition 6-2: An Extended Multidimensional Pattern Relation (EMPR) 

including tuples {t1, t2, …, tm} is an instance of the given EMPRS(ID, 1CX , 2CX , …, 

1nCX , 1CN , 2CN , …, 
2nCN ). A tuple ti = ( iid , 1icx , 2icx , …, 

1incx , 1icn , 

2icn , …, 
2incn ) in an EMPR indicates that for the block of data under the contexts of 

1icx , 2icx , …, 
1incx , the mining information contains 1icn , 2icn , …, 

2incn .  

The frequent pattern set and the negative pattern set are two essential content 

attributes which are defined as follows. 

Definition 6-3: A frequent pattern set (fps) for a block of data D is the set of all 

previously mined frequent itemsets with their supports for D. Assume the minimum 

support is s and the number of frequent itemsets discovered from D is l. A frequent 

pattern set can be represented as fps = {(xi, si) | si ≥ s and 1≤ i ≤ l}, where xi is a 

frequent itemset and si is its support.  

Definition 6-4: A negative pattern set (nps) for a block of data D is the set of all 

previously mined negative itemsets with their supports from NB (fps) for D.  

Below, an example is given to illustrate the above concepts. 

Example 6-5: Table 6-3 shows an EMPR with the initial minimum support set to 

5%. ID is an identification attribute, Region, Branch and Time are context attributes, 

and No_Trans, No_Patterns, Frequent_Pattern_Set and Negative_Pattern_Set are 

content attributes. The two attributes of Frequent_Pattern_Set and 

Negative_Pattern_Set respectively record the sets of mined frequent itemsets and 

negative itemsets from the corresponding data blocks. For example, the tuple with ID 
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= 1 shows that seven frequent itemsets {(A, 10%), (B, 11%), (C, 9%), (AB, 8%), (AC, 

7%), (BC, 6%), (ABC, 6%)} and one negative itemset (D, 2%) are discovered from 

10000 transactions under the contexts of Region = CA, Branch = San Francisco and 

Time = 2003/10. The other tuples have similar meanings.  

 

Table 6-3: An EMPR with minimum support = 5% 

ID Region Branch Time No_Trans No_Patterns Frequent_Pattern_Set
(Itemset, Support) 

Negative_Pattern_Set 
(Itemset, Support) 

1 CA San Francisco 2003/10 10000 8 (A,10%),(B,11%),(C,9%), 
(AB,8%),(AC,7%),(BC,6
%),(ABC,6%) 

(D,2%) 

2 CA San Francisco 2003/11 15000 7 (A,5%),(B,7%),(C,5%) (D,1%),(AB,2%),(AC,2%
),(BC,1%) 

3 CA San Francisco 2003/12 12000 5 (A,5%),(C,9%) (B,4%),(D,1%),(AC,4%)
4 CA Los Angeles 2003/10 20000 8 (A,8%),(B,6%),(F,5%) (C,2%),(D,3%),(AB,3%),

(AF,4%),(BF,3%) 
5 CA Los Angeles 2003/11 25000 5 (A,5%),(C,6%) (B,3%),(D,4%),(AC,3%)
6 CA Los Angeles 2003/12 30000 7 (A,6%),(B,6%),(C,9%), 

(AB,6%) 
(D,3%),(AC,4%),(BC,3%
) 

7 NY New York 2003/10 18000 5 (B,8%),(C,7%),(BC,6%) (A,2%),(D,2%) 
8 NY New York 2003/11 18500 5 (B,8%),(C,6%) (A,4%),(D,2%),(BC,3%)
9 NY New York 2003/12 19000 10 (A,5%),(B,9%),(C,8%), 

(D,6%),(BC,6%) 
(AB,4%),(AC,4%),(AD,2
%),(BD,4%)(CD,4%) 

 

Example 6-6: For the EMPR in Table 6-3, assume a mining request q wants to get 

the patterns with the contexts cxq of Region = CA and Time = 2003/10 and satisfying 

the minimum support sq = 5.5%. The matched tuples are shown in Table 6-4. 

According to Lemma 6-2, the set of candidate itemsets is {{A}, {B}, {C}, {AB}, 

{AC}, {BC}, {ABC}}, which is the union of the itemsets appearing in the frequent 

pattern sets and with their supports larger than 5.5%.  

 

Table 6-4: The matched tuples in Example 6-6 

ID Region Branch Time No_Trans No_Patterns Frequent_Pattern_Set
(Itemset, Support) 

Negative_Pattern_Set 
(Itemset, Support) 

1 CA San Francisco 2003/10 10000 8 (A,10%),(B,11%),(C,9%), 
(AB,8%),(AC,7%),(BC,6
%),(ABC,6%) 

(D,2%) 

4 CA Los Angeles 2003/10 20000 8 (A,8%),(B,6%),(F,5%) (C,2%),(D,3%),(AB,3%),
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(AF,4%),(BF,3%) 
 

Based on the EMPR, the appearing and upper-bound counts of a candidate 

itemset is re-defined as follows. 

Definition 6-5: The appearing count appearing
xCount  of a candidate itemset x is 

the sum of the counts of x appearing in the frequent pattern sets or negative pattern 

sets of matched tuples. Thus: 

∑
∪∈∈

∗=
npstfpstx  mtt

xii
appearing
x

iii

sttranstCount
..&

...  (6-6) 

  

Definition 6-6: The upper-bound count UB
xCount  of a candidate itemset x is the 

sum of the upper-bound counts of x not appearing in the frequent pattern sets and 

negative pattern sets of matched tuples. Thus: 

∑
∪∉∈ ⊂∀

−=
npstfpstx  mtt

xixxii
UB
x

iii

stmintranst stranstminCount
..&

''
)).(*.,1*.( . (6-7) 

  

Example 6-7: Continuing from Example 6-6, the upper-bound supports of the 

seven candidate itemsets {A}, {B}, {C}, {AB}, {AC}, {BC} and {ABC} are calculated 

as follows: 

TransMatch
CountCount

s
UB
A

appearing
AUB

A _
+

= ( ) 0867.00 =
+

++=
2000010000

8%*  20000  10%*  10000 , 

Trans_Match
CountCount

s
UB
B

appearing
BUB

B
+

= ( ) 0767.00 =
+

++=
2000010000

6%*  20000  11%*  10000 , 

Trans_Match
CountCount

s
UB
C

appearing
CUB

C

+
= ( ) 0433.00 =

+
++=

2000010000
 2%*  200009%*  10000 , 

TransMatch
CountCount

s
UB
AB

appearing
ABUB

AB _
+

= ( ) 0467.00 =
+

++=
2000010000

 3%*  200008%*  10000 , 
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TransMatch
CountCount

s
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Let UB
xs  denote the upper-bound support of a candidate itemset x in the EMPR 

and 
oldUB

xs  denote the upper-bound support of a candidate itemset x in the MPR. The 

following lemma can easily be derived to show UB
xs  is tighter than 

oldUB
xs . 

Lemma 6-7: If x is a candidate itemset, then UB
xs  ≤ 

oldUB
xs . 

Proof: 
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= 
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Thus, UB
xs  ≤ 

oldUB
xs .  

The following lemmas are important to the design of the proposed mining 

algorithm. 

Lemma 6-8: If x is a candidate itemset, then xs  ≤ UB
xs . 

Proof: For each x’ ⊂  x, ti.sx’ ≥ ti.sx for each tuple ti. There are two possible cases 

for x’. 

Case 1: If ∃ x’ ∈  ti.nps, then:
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 Case 2: If ∀ x’ ∉  ti.nps, then:
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Thus, xs  ≤ UB
xs .   

Lemma 6-9: If x is a candidate itemset, then ∀ x’ ⊂  x, UB
xs '  ≥ UB

xs . 

Proof: For each x’ ⊂  x, ti.sx’ ≥ ti.sx for each tuple ti. Therefore:
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Thus, UB
xs '  ≥ UB

xs .  

Lemma 6-10: If a candidate itemset x is contained in all the matched tuples, then 

UB
xs  = sx. 

Proof: If x is contained in all the matched tuples, then: 

UB
xs =

Trans_Match
CountCount UB
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i
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Example 6-8: Continuing from Examples 6-6 and 6-7, according to Lemmas 6-8 

and 6-9, the candidate itemsets {C}, {AB}, {AC}, {BC} and {ABC} will be pruned 

since their upper-bound supports are less than sq (= 5.5%). According to Lemma 6-10, 

the candidate itemsets {A} and {B} will be put into the set of final frequent itemsets 

since it appears in all the matched tuples and its support is larger than 5.5%. No 

remaining candidate itemsets needs to be further processed.  

 The NOM approach with an EMPR consists of three main phases, candidate 

itemset generation, candidate itemset reduction, and association rule generation, 

which are the same as the TOARM approach. The NOM approach can correctly 

obtain the association rules satisfying an on-line mining request as long as the new 

minimum support is larger than or equal to the initial minimum support for getting the 

EMPR. 
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6.6 LNOM: Algorithm Design and Implementation 

The NOM approach needs to calculate the appearing counts and the 

non-appearing upper-bound counts of the candidate itemsets derived from matched 

tuples. A straightforward way for finding these values is to process matched tuples 

one after one for each candidate itemset. Assume k is the number of matched tuples, m 

is the average number of itemsets in the k matched tuples, and n is the number of 

candidate itemsets generated from the k matched tuples. The computation cost will be 

O(knm) when the candidate itemsets are processed one by one. The computation cost 

will, however, become large along with the increase of the itemsets kept in EMPR and 

the candidate itemsets to be considered. In fact, in the NOM approach, many 

candidate itemsets with the same subsets can be processed at the same time. For 

example, in Tuple 4 of Example 6-6, the appearing count of the candidate itemset {C} 

and the upper-bound counts of the candidate itemsets {AC}, {BC} and {ABC} can be 

calculated at the same time because they have the same subset {C}. On the other hand, 

many itemsets kept in the matched tuples are useless for calculating the counts of 

candidates since they are not the subsets of candidates and can be omitted. For 

example, in Example 6-6, the itemsets {D}, {F}, {AF} and {BF} kept in the matched 

tuples are not the subsets of the candidate itemsets and can be omitted. We thus try to 

use appropriate data structures and design efficient algorithms to improve the 

performance of the NOM approach. 

At first, the problem of calculating the appearing and upper-bound counts of 

candidate itemsets in a matched tuple is conceptually modeled by a graph and 

converted into a directed-minimum-spanning-tree problem. The spanning-tree-count- 

calculating (STCC) algorithm is then proposed to find the directed minimum spanning 
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tree. The lattice data structure [2][41] is utilized to organize and maintain all 

candidate itemsets such that the candidate itemsets with the same proper subsets can 

be considered at the same time. Consequently, by the STCC algorithm, the proposed 

lattice-based NOM (LNOM) approach requires only one scan of the itemsets for each 

matched tuple in Phase 1. 

In addition, the hashing technique is used to filter out a part of itemsets kept in 

the matched tuples which are useless for calculating the counts of candidate. The 

NOM approach first hashes the set of candidate itemsets into a given hash table as 

soon as they are collected. Each bucket of the hash table consists of an integer to 

represent how many candidate itemsets have been hashed into this bucket. When an 

itemset of a matched tuple is selected, the NOM approach calculates its hash value 

and finds its corresponding bucket. If the value stored in the target bucket is equal to 0, 

the itemset must be useless since it is not a candidate itemset. It can thus be directly 

omitted. The computational time can thus be further reduced. 

 

6.6.1 The Proposed Lattice-based NOM (LNOM) Approach 

The problem of calculating the appearing and upper-bound counts of candidate 

itemsets in a matched tuple t can be conceptually modeled by a graph. Let G = (V, E) 

be a directed graph, where V is the set of vertices representing all candidate itemsets 

and E is the set of directed edges representing a-proper-subset-of relationships 

between pairs of candidate itemsets. For each edge (u, v) ∈  E, a weight w(u, v) 

specifies the possible upper-bound count of the candidate itemset v estimated from the 

candidate itemset u. Given a new vertex r representing the pseudo starting vertex, we 

make a new graph G’ = (V’, E’), where V’ = V ∪  {r}, E’ = E ∪  {(r, u): u ∈  V}. For 

each edge (r, u), if u appears in t, the appearing count of u is assigned as the weight 
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w(r, u). For the case that u does not appear in t, meaning it is collected from the other 

matched tuple(s), then w(r, u) = 0 if there exists one item contained in u but not 

contained in t and w(r, u) = t.trans*s−1 otherwise, where s is the initial minimum 

support for deriving EMPR. The following lemmas formally show the above 

concepts. 

Lemma 6-11: G’ is an acyclic and connected graph. 

Proof: It is obvious that the a-proper-subset-of relation on a set is transitive and 

anti-symmetric. G’ is thus acyclic. Next, we prove G’ is a connected graph by 

contradiction. If G’ is not a connected graph, there exists a vertex u which is not 

reachable from the pseudo starting vertex r. This contradicts the definition of G’. Thus, 

G’ is an acyclic and connected graph.   

Lemma 6-12: Let k be the number of items contained in a candidate itemset x. 

The vertex ux has 2k-1 incoming edges in G’. 

Proof: If x is a candidate k-itemset, it will appear in the frequent pattern set of at 

least a tuple. Since x is large in that tuple, all its proper subsets except φ are also large 

and appear in that tuple. There are 2k-2 proper subsets for x except φ. In addition, the 

incoming edge (r, ux) is used to link the two vertices r and ux. The vertex ux thus has 

2k-1 incoming edges in G’.  

Lemma 6-13: For a matched tuple t in EMPR, if there exists one item contained 

in a candidate itemset u but not contained in t, then the upper-bound count of u is 0. 

Proof: According to the concept of the negative border, all single items which 

are not large must be put into the negative 1-itemsets. Since all the large and negative 

itemsets for a block of data are stored in a corresponding tuple, if there exists one item 

contained in a candidate itemset but not contained in the tuple, this item does not 

appear in the corresponding block of data. The count of the item is thus 0 in this tuple, 
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causing the count of each itemset containing the item is also 0. This completes the 

proof.                                                               

Lemma 6-14: For a matched tuple t in EMPR, if a candidate itemset u does not 

appear in t, then the maximum possible upper-bound count of u is t.trans*s−1. 

Proof: Since u does not appear in t, it is not a frequent itemset. The support of u 

in t must thus be less than the minimum support s. Therefore, the count of u in t must 

be less than t.trans*s. The maximum possible upper-bound count of u is thus 

t.trans*s−1.  

Example 6-9: For the EMPR given in Table 6-3 and the mining request in 

Example 6-6, the graph model for Tuple 4 is generated as shown in Figure 6-2.  
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Figure 6-2: The graph model of candidate itemsets for Tuple 4 in Table 6-4 

 

For each vertex other than r in G’, the smallest weight on all its incoming edges 

is its tight upper bound count. The count-calculation problem can thus be easily 
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thought of as the directed-minimum-spanning-tree problem [30], which wishes to find 

a rooted directed spanning tree T = (V’, S’) from G’, such that S’ is a subset of E’ and 

∑
∈ Svu

vuw
),(

),(  is a minimum. The spanning-tree-count-calculating (STCC) algorithm 

shown in Figure 6-3 is thus proposed based on the above concept for efficiently 

finding the counts of all candidate itemsets in a tuple. The STCC algorithm first 

selects an itemset appearing in t and with the smallest support. It then estimates the 

upper-bound count of each itemset reachable from the selected one in the graph, and 

thus avoids recalculating the counts of these traversed vertices in the future. This 

requires only one scan of the itemsets in t if they have been sorted according to their 

supports. 

 

The spanning-tree-count-calculating (STCC) algorithm: 
INPUT: The graph of candidate itemsets G’ = (V’, E’) derived from the EMPR, and a 

matched tuple t in EMPR. 
OUTPUT: The minimum spanning tree of candidate itemsets T = (V’, S’). 
STEP 1: Set ProcessedSet = φ, where ProcessedSet is a set used to keep the vertices in 

G’ which have been traversed. 
STEP 2: Select an itemset x appearing in t and with the smallest support t.sx. 

STEP 3: If x ∈  V’ (i.e., x is a candidate itemset), set appearing
xCount  = t.trans * t.sx, 

ProcessedSet = ProcessedSet ∪  {x}, and do STEP 4; otherwise (i.e., x is not 
a candidate itemset), do nothing and go to STEP 5. 

STEP 4: For each y reachable from x and y ∉  ProcessedSet, set UB
yCount  = 

min(t.trans * s-1, t.trans * t.sx) and ProcessedSet = ProcessedSet ∪  {y}. 
STEP 5: Repeat STEPs 2 to 4 until all the itemsets appearing in t are processed. 
STEP 6: If |ProcessedSet| ≠ |V’| (i.e., some candidate itemsets do not appear in the 

underlying dataset of t), set UB
xCount  = 0 for each remaining itemset x ∈  V’. 

Figure 6-3: The STCC algorithm 
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Example 10: Continuing Example 3, the negative itemset {C} with 2% will be 

first selected by the proposed STCC algorithm to calculate the appearing count of 

itself and the upper-bound counts of {AC}, {BC} and {ABC}. Then, the itemsets {D} 

with 3%, {AB} with 3%, {B} with 6% and {A} with 8% are selected in turn. Among 

them, the support information of {D} is useless because it is not a candidate itemset. 

Figure 6-4 shows the directed minimum spanning tree found from Figure 6-2.  
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Figure 6-4: The directed minimum spanning tree found from Figure 6-2 

 

The STCC algorithm mentioned above can be efficiently implemented by the 

lattice data structure [2][41], which organizes all candidate itemsets in a systematic 

way. The lattice is constructed as follows. For each candidate itemset x, a 

corresponding vertex ux associated with a pair of values ( appearing
xCount , UB

xCount ) is 

built in the lattice. For any pair of vertices ux and uy corresponding to candidate 

itemsets x and y, there is a directed edge from ux to uy if x is a parent of y. An itemset 
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x is said to be a parent of an itemset y if y can be obtained by adding an item to x, and 

inversely, y is said to be a child of x. Therefore, a candidate itemset may have more 

than one parent and more than one child in the constructed lattice. 

Example 6-11: Consider the candidate itemsets illustrated in Example 6-6. The 

lattice to represent the candidate itemsets is illustrated in Figure 6-5, where the vertex 

labeled “Null” denotes the greatest lower bound of the lattice.  
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Figure 6-5: The lattice to represent the candidate itemsets illustrated in Example 6-6 

 

The lattice structure is used to efficiently find the appearing and upper-bound 

counts of candidate itemsets in each tuple and to accumulate these values when the 

tuples are processed one by one. By the connected edges in the lattice structure, the 

proposed lattice-based NOM approach (called LNOM) can not only restrict the 

number of candidate itemsets to be examined, but also easily consider candidate 

itemsets with the same proper subsets at the same time. The detailed LNOM 

algorithm will be described in Section 6.6.3. 
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6.6.2 Using the Hashing Technique to Reduce Computation Cost Further 

Many itemsets kept in matched tuples, especially negative itemsets, may be 

useless for calculating the counts of candidate itemsets. For example, the itemsets 

{D}, {F}, {AF} and {BF} kept in the matched tuples in Example 6-6 are not the 

subsets of the candidate itemsets and can be omitted. Negative itemsets are formed by 

excluding frequent itemsets from the candidates which are generated in a level-wise 

way [27][85]. In other words, a negative itemset is a candidate itemset without 

enough support. In general, the set of candidate itemsets generated level-wisely is 

usually much larger than the set of frequent itemsets found, especially in the early 

stage of candidate generation [5][67]. The number of negative itemsets useless for 

calculating the counts of candidate itemsets may thus be large. In this section, we 

shall utilize the hashing technique [67] to filter out a part of useless itemsets to be 

considered in Phase 1. Take the direct hashing function as an example to explain our 

idea. Let x = {a1, a2, …, an} denote an itemset consisting of n items (from a1 to an), 

order(ai) denote the serial number of the item ai among the entire set of items, and 

size(HT) denote the size of a given hash table HT. A direct hashing function for 

n-dimensional keys can be defined as follows: 

h(x) = (order(a1) * order(a2) * …* order(an)) mod size(HT). 

The hashing function is order-independent; that is, it can generate the same hash 

value for all permutations of items in an itemset. Each bucket of the hash table 

consists of only an integer to represent how many candidate itemsets have been 

hashed into this bucket. 0 denotes that no candidate itemsets have been hashed into 

this bucket. When initially obtaining the set of candidate itemsets, the NOM approach 

calculates their hash values, finds corresponding hash buckets, and for each candidate 
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add one to the value of its corresponding bucket. 

Example 6-12: For the candidate itemsets {A}, {B}, {C}, {AB}, {AC}, {BC} 

and {ABC} obtained in Example 6-6, the LNOM approach will hash them into a given 

hash table HT. Without loss of generality, assume order(A) = 1, order(B) = 2 and 

order(C) = 3. Also assume the size of the hash table is 7. The hash values of these 

candidate itemsets will first be calculated. Take the itemset {AB} as an example. Its 

hash value is (order(A) * order(B)) mod 7, which is 2. The value in Bucket 2 is then 

increased by one. The other candidate itemsets are hashed in a similar way. The 

resulting hash table is shown in Figure 6-6.  

 

0 1 2 2 0 0

{A} {B} {C}

0 1 2 3 4 5

{AB} {AC} {BC}
{ABC}

HT

Bucket number

Bucket value 2

6

Itemsets

 

Figure 6-6: The hash table derived from the candidate itemsets illustrated in Example 

6-6 

 

After a hash table is constructed from all the candidate itemsets, it can then be 

used to filter out a part of useless itemsets in a tuple. Tuples are processed one by one. 

When an itemset of a matched tuple is selected, the NOM approach calculates its hash 

value and finds its corresponding bucket. If the value stored in the target bucket is 

equal to 0, the itemset must be useless since it is not a candidate itemset. It can thus be 

directly omitted. Otherwise, the itemset may be, but not certainly, a candidate itemset. 

Rescanning the candidate itemsets is then necessary to determine whether it is a 

candidate. 



 127

Furthermore, the corresponding value in the bucket of the itemset which has 

been assured to be a candidate will be decreased by one. The next itemset of the same 

tuple is then checked according to the modified hash table, which can thus raise the 

probability for a useless itemset to be filtered out. After a tuple is processed, the hash 

table is restored to its original state, which is then used for another tuple. This is 

illustrated by the following example. 

Example 6-13: Continuing Example 6-12, after the hash table in Figure 6-6 has 

been constructed, it can be used to filter out some useless itemsets in matched tuples. 

For example, when Tuple 4 in Example 6-6 is checked, the itemset {C} with 2% 

support is first selected to process since it has the smallest support value among all the 

itemsets appearing in the tuple. The hash value of {C} is calculated as 3 and the value 

in Bucket 3 is 2, not 0. The itemset {C} is thus checked against the candidate itemsets 

and is found to be a candidate. It is then used to calculate the counts of the candidate 

{C} and its superset in the lattice. In this example, the counts of the candidates {C}, 

{AC}, {BC} and {ABC} are then calculated. As a result, the value in Bucket 3 is 

decreased by 2 due to {C} and {AC}. The value in Bucket 6 is decreased to 0 as well 

due to {BC} and {ABC}. Bucket 6 in the modified hash table can filter out the 

itemsets {F} and {AF} in Tuple 4 since the value in Bucket 6 has been zero. After 

that , the hash table will be restored to the original one in Figure 6-6 for processing 

another matched tuple.  

 

6.6.3 The LNOM Algorithm with a Direct Hashing Function 

In Phase 1, by one scan of a given EMPR, the LNOM approach first collects the 

itemsets in the matched tuples satisfying the query support as candidates, constructs a 

corresponding lattice for considering candidate itemsets with the same proper subsets 
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at the same time, and hashes them into a given hash table for filtering out a part of 

useless itemsets in matched tuples. The LNOM approach then processes matched 

tuples one by one, selects the itemsets in the order of ascending support values for 

each matched tuple, and checks whether they are useful for calculating the counts of 

candidates according to the values of their hash buckets. If the corresponding target 

bucket value is 0, the itemset is omitted. Otherwise, for each itemset x, the LNOM 

approach will assure whether x is a candidate by checking the set of candidate 

itemsets. If x is a candidate, the LNOM approach will cumulate the appearing
xCount  

and each UB
yCount  in the lattice, where y denotes an element in the proper superset of 

x (y is a descendant of x). This procedure is then repeated until all the matched tuples 

have been processed. After that, the LNOM approach can generate the candidate 

itemsets with appearing counts and upper-bound counts corresponding to the given 

mining request. 

Example 6-14: Consider the mining request in Example 6-6. The LNOM 

approach will construct the lattice shown in Figure 6-5 and the hash table shown in 

Figure 6-6. It then processes the first matched tuple, and filter out (D, 2%) using the 

hash table. The remaining itemsets (ABC, 6%), (BC, 6%), (AC, 7%), (AB, 8%), (C, 

9%), (A, 10%) and (B, 11%) are then processed in turn to update the counts of the 

corresponding itemsets in the lattice. After that, the LNOM approach processes the 

second matched tuple. Only the four itemsets (C, 2%), (AB, 3%), (B, 6%) and (A, 8%) 

needs to be processed after the hash-table checking. (C, 2%) is then first selected, and 

is used to update not only the appearing count of {C} but also the upper-bound counts 

of the itemsets in its proper superset ({AC}, {BC} and {ABC}). The updated lattice 

after processing all the matched tuples is shown in Figure 6-7.  
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Figure 6-7: The updated lattice after processing all matched tuples 

 

Next, Phase 2 proceeds to prune candidates in a level-wise way. Candidate 

1-itemsets are then first handled. If the upper-bound support of a candidate 1-itemset 

is less than the query support, it and the itemsets in its proper superset are removed 

from the lattice. If a candidate 1-itemset appears in all the matched tuples and its 

upper-bound support is larger than or equal to the query support, then it is put into the 

set of final frequent itemsets and removed from the lattice. This procedure is repeated 

level-wisely until all the candidate itemsets have been processed. After Phase 2, the 

remaining candidate itemsets in the lattice have enough upper-bound supports but do 

not appear in at least one matched tuple. The LNOM approach thus re-processes them 

against the underlying blocks of data for the matched tuples in which they do not 

appear to get their actual supports. After all the frequent itemsets are found, the 

association rules can then be easily generated from them. The detailed algorithm of 

the LNOM approach with a direct hashing function is stated in Figure 6-8. 
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The LNOM approach with a direct hashing function: 
INPUT: An EMPR based on an initial minimum support s, and a mining request q 

with a set of contexts cxq, a minimum support sq (sq ≥ s) and a minimum 
confidence confq. 

OUTPUT: A set of association rules satisfying the mining request q. 
Phase 1: Generation of candidate itemsets: 
STEP 1: Set C = φ and Match_Trans = 0, where C is a lattice used to maintain the set 

of candidate itemsets and Match_Trans is a variable used to keep the total 
number of transactions in the matched tuples which have been processed. 

STEP 2: Initialize two equal-sized hash tables HT1 and HT2 with all the bucket values 
being zero. 

STEP 3: For each tuple t in EMPR, do the following substeps: 
 STEP 3-1: If t satisfies cxq, put it into the matched set and do STEP 3-2; 

otherwise, repeat STEP 3 to process the next tuple. 
 STEP 3-2: For each itemset x ∈  t.fps, if x ∉  C and t.sx ≥ sq, set HT1[h(x)] = 

HT1[h(x)] + 1, insert x into C with appearing
xCount = 0 and UB

xCount  

= 0, and add edges to its parents and children, where HT1[h(x)] 
denotes the value stored in the bucket corresponding to the hash 
value h(x) of x in HT1. 

STEP 4: For each tuple t in the matched set, do the following substeps: 
 STEP 4-1: Set ProcessedSet = φ, where ProcessedSet is a set used to keep the 

itemsets in C which have been processed. 
 STEP 4-2: Restore the bucket values in HT2 to those in HT1 and set 

Match_Trans = Match_Trans + t.trans. 
 STEP 4-3: Select an itemset x with the smallest support t.sx from t. 

 STEP 4-4: If HT2[h(x)] ≠ 0 and x ∈  C, set appearing
xCount  = appearing

xCount  + 

t.trans * t.sx, HT2[h(x)] = HT2[h(x)] − 1, ProcessedSet = 
ProcessedSet ∪  {x}, and do STEP 4-5; otherwise, do nothing and 
go to STEP 4-6. 

 STEP 4-5: For each itemset y in the proper superset of x in C and y ∉  

ProcessedSet, set UB
yCount  = UB

yCount + min(t.trans * s − 1, 

t.trans * t.sx), HT2[h(y)] = HT2[h(y)] − 1, and ProcessedSet = 
ProcessedSet ∪  {y}. 

 STEP 4-6: Repeat STEPs 4-3 and 4-4 until all itemsets in t are processed. 
Phase 2: Reduction of candidate itemsets: 
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STEP 5: Set k = 1, where k is used to keep the number of items in a candidate itemset 
currently being processed. 

STEP 6: For each itemset x ∈  Ck, do the following substeps: 

 STEP 6-1: Calculate the upper-bound support UB
xs  by the formula: 

UB
xs =

Trans_Match
CountCount UB

x
appearing
x + . 

 STEP 6-2: If UB
xs < sq, set C = C − {y | y ∈  C and x ⊆  y}. 

 STEP 6-3: If UB
xs =

Trans_Match
Countappearing

x  and UB
xs  ≥ sq, then set L = L ∪  {x} and 

C = C − {x}. 
STEP 7: Set k = k + 1. 
STEP 8: Repeat STEPs 6 and 7 until all candidate itemsets are processed. 
Phase 3: Generation of association rules: 
STEP 9: For each x ∈  C, re-process each underlying block of data Di for tuple ti in 

which x does not appear to get appearing
xCount , and then calculate the actual 

support of x by the following formula: 

sx = TransMatch
CountCount appearing

x
appearing
x

_
+

. 

STEP 10: If sx < sq, then set C = C − {x}; otherwise, set L = L ∪  {x} and C = C − {x}. 
STEP 11: Derive the association rules satisfying confq from the set of frequent 
itemsets L. 

Figure 6-8: The algorithm of the LNOM approach with a direct hashing function 

 

6.7 Experimental Results 

The experiments were conducted in Java on a workstation with dual XEON 

2.8GHz processors and 2048MB main memory, running the RedHat 9.0 operating 

system. For performance comparison, two batch-based mining algorithms, Apriori and 

Partition, and one incremental mining algorithm, FUP, in addition to our proposed 

TOARM, NOM and LNOM algorithms, were run on several synthetic and a 

real-world datasets. 
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6.7.1 Experimental Results for Synthetic Datasets 

The synthetic datasets were generated by a generator similar to that used in [5]. 

The parameters used are listed in Table 6-5. The generator first generated L maximal 

potentially frequent itemsets, each with an average of I items. The items in the 

potentially frequent itemsets were randomly chosen from the total N items according 

to their actual sizes. The generator then generated D transactions, each with an 

average of T items. The items in a transaction were generated according to the L 

maximal potentially frequent itemsets in a probabilistic way. Details of the dataset 

generation process may be found in [5]. 

 

Table 6-5: Parameters considered when generating datasets 

Parameter Description 
D Number of transactions 
N Number of items 
L Number of maximal potentially frequent itemsets 
T Average size of items in a transaction 
I Average size of items in maximal potentially frequent 

itemsets 
 

Table 6-6 listed the six groups of synthetic datasets generated and used in our 

experiments, where datasets in the same group had the same D, T and I values, but 

different L or N values. Each dataset was treated as a block of data in the database. 

For example, Group 1 in Table 6-6 contained ten blocks of data, from T10I8D10KL1 

to T10I8D10KL10, each consisting of 10000 transactions averaging 10 items and 

generated according to 200 to 245 maximal potentially frequent itemsets with an 

average size of 8 from a total of 100 items. Let a group of heterogeneous datasets be 

defined as one in which the datasets have different items. Among the six groups, 

Groups 2, 4 and 6 may be considered heterogeneous because their varied N values 
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yield different items. These groups of synthetic datasets were used to show how the 

TOARM, NOM and LNOM algorithms dealt with heterogeneous blocks of data. 

 

Table 6-6: The six groups of synthetic datasets 

Group Size Datasets D T I L N 

1 10 T10I8D10KL1 to 
T10I8D10KL10 10000 10 8 200 to 245 100 

2 10 T10I8D10KN1 to 
T10I8D10KN10 10000 10 8  200 100 to 145 

3 10 T20I8D100KL1 to 
T20I8D100KL10 100000 20 8 400 to 490 200 

4 10 T20I8D100KN1 to
T20I8D100KN10 100000 20 8 400 200 to 290 

5 5 T10I8D500KL1 to 
T10I8D500KL5 500000 10 8 400 to 560 200 

6 5 T10I8D500KN1 to
T10I8D500KN5 500000 10 8 400 200 to 360 

 

The MPR and EMPR were first derived from each group of synthetic datasets. 

These are summarized in Table 6-7. 

 

Table 6-7: Mining information for the six groups 

Group 
Initial 

minimum 
support 

Average length of 
maximal frequent 

itemsets 

Average size of 
frequent 
itemsets 

Average size of 
negative itemsets 

1 2% 11 9006 10762 
2 2% 9 5093 11243 
3 2% 9 12127 55625 
4 2% 11 18534 49318 
5 2% 5 799 11899 
6 2% 8 869 14488 

 

First, the TOARM, Apriori, Partition and FUP algorithms were run on Groups 1, 

2, 3 and 5 along with various minimum supports in the mining requests, where the 

Partition algorithm partitioned the data sets according to group size (the number of 

datasets in a group) and the FUP algorithm treated each dataset in a group as a new 
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addition of transactions. Details of the TOARM algorithm compared with the other 

three algorithms are illustrated as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9: Execution times for the TOARM, Apriori, Partition and FUP algorithms 

on Groups 1, 2, 3 and 5 

 

(a) Comparison with the Apriori algorithm. Figures 6-9(a), 6(c) and 6(d) show 

that execution times for the TOARM algorithm on Groups 1, 3 and 5 were always 

much less than those of the Apriori algorithm. This is because the datasets in these 

three groups were homogeneous, meaning they used the same set of items in each 

group. In this situation, the number of candidate itemsets considered by the TOARM 

algorithm was much closer to the number of final frequent itemsets than those 

considered by the Apriori algorithm. The former thus had more compact candidate 
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sets than the latter. For example, Table 6-8 shows the number of candidate itemsets 

considered by the TOARM and the Apriori algorithms for Group 5 with minimum 

supports ranging from 2.2% to 4% in the mining requests. 

 

Table 6-8: The numbers of candidate itemsets for Group 5 

Approach \ Support 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

TOARM 959 690 550 442 372 308 269 241 220 199
Apriori 11636 10327 9165 8590 7722 7085 6603 6346 5898 5369

TOARM/Apriori 574 453 373 318 260 228 201 177 158 144

No. of Canddiate itemsets

No. of final Large itemsets

 

 

Table 6-9: The numbers of candidate itemsets for Group 2 

Approach \ Support 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

TOARM 20893 16003 11920 9016 7421 6541 5731 4984 3775 2816
Apriori 11615 10157 9158 8016 7372 6704 6070 5243 4593 4255

TOARM/Apriori 902 778 684 608 537 473 417 372 327 296

No. of Canddiate itemsets

No. of final Large itemsets

 

 

By contrast, the datasets in Group 2 were heterogeneous, meaning they used 

different sets of items. In this situation, the number of candidate itemsets considered 

by the TOARM algorithm was much larger than the number of final frequent itemsets 

considered by the Apriori algorithm since most of the candidate itemsets appeared in 

only one or a few tuples in the MPR. Table 6-9 shows the number of candidate 

itemsets considered by the TOARM and Apriori algorithms for Group 2 along with 

minimum supports ranging from 0.022 to 0.04 in the mining requests. Table 6-9 also 

shows that while the number of candidate itemsets for Group 2 considered by the 

TOARM algorithm was larger than that considered by the Apriori algorithm, the 

TOARM algorithm used two pruning strategies in Phase 2 and thus only had to 

re-process the remaining candidate itemsets against the underlying datasets in Phase 3. 
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The result was that the TOARM algorithm usually required less time than the Apriori 

algorithm. This is consistent with the results shown in Figure 6-9(b). 

(b) Comparison with the Partition algorithm. Although the number of candidate 

itemsets considered by the Partition algorithm in the second pass was equal to that 

considered by the TOARM algorithm, the Partition algorithm must generate a set of 

all potentially frequent itemsets from each partition during its first pass. The TOARM 

algorithm can, however, use the pattern sets in the MPR to achieve this purpose. 

Therefore, the execution times required by the TOARM algorithm on these four 

groups were always less than those required by the Partition algorithm. This is also 

consistent with the results shown in Figure 6-9. 

(c) Comparison with the FUP algorithm. The FUP algorithm can, in general, 

perform well when the size of newly inserted transactions is relatively smaller than 

the size of an original database because the cost of generating candidate itemsets from 

only new transactions is usually low and a large proportion of the candidate itemsets 

can be determined from previously mined frequent itemsets. However, the FUP 

algorithm treated the datasets in each of our application groups as increments and 

yielded even worse performance than the Apriori algorithm, especially on the 

heterogeneous datasets since it had to process all of them one by one. Figures 6-9(a), 

6-9(c) and 6-9(d) show that the execution times for the FUP algorithm on the three 

homogeneous groups were about twice those of the Apriori algorithm. On the second 

group, which was heterogeneous, the FUP algorithm required about four times the 

execution time required by the Apriori algorithm. 

Next, for showing the influence of the number of negative itemsets on execution 

time, the TOARM algorithm using no negative itemsets and the NOM using all 

negative itemsets were run on Groups 1 to 6. Figures 6-10(a) to 6-10(f) show the 
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execution times for the two algorithms on the six groups, where the query support is 

set to 2.4%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-10: The influence of the number of negative itemsets on execution time for 

Groups 1 to 6 
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EMPR such that the negative itemsets provided little help in calculating counts of 

candidates. The reduced execution time in Phase 3 was thus not significant when 

compared to that in Phase 1. This can be easily seen from Figures 6-10(a) and 6-10(c) 

that the execution time by TOARM was less than that by NOM. By contrast, for 

Groups 2 and 4, most candidate itemsets appeared in only one or few tuples in EMPR. 

The effect of negative itemsets on finding tight upper-bound supports thus become 

apparent. However, since the computation cost in Phase 1 was much larger than that 

in Phase 3, the execution time by TOARM was still less than that by NOM as shown 

in Figures 6-10(b) and 6-10(d). Even so, it can be observed from Figures 6-10(e) and 

6-10(f) that TOARM did not always outperform NOM for Groups 5 and 6, This 

phenomena is especially when the size of candidate itemsets is small and the size of 

underlying data is large. For Group 5, NOM could decide all the candidate itemsets in 

Phase 2 and thus no one in Phase 3 needed to be processed. For Group 6, the 

computation cost in Phase 3 was much higher than that in Phase 1 because the size of 

underlying data is large. 

The performance of the NOM algorithm with a direct hashing function was then 

evaluated. Let NOM(H) denote running the NOM algorithm with a direct hashing 

function The execution times on Groups 1 to 4 are shown in Figures 6-11(a) to 

6-11(d), where the query support is set to 2.4% and the size of the hash table is about 

10K. It can be easily seen that the computation time in Phase 1 of the NOM algorithm 

can be efficiently reduced by the hashing technique. 
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Figure 6-11: Execution times of the NOM algorithm respectively with and without a 

direct hashing function on Groups 1 to 4 

 

Next, experiments were made to show the effect of using the lattice data 

structure on the NOM algorithm. The execution time of the NOM algorithm was 

compared with that of the LNOM algorithm with and without a direct hashing 

function. The query support is set to 2.4% and the size of the hash table is about 10K. 

The results for Groups 1 to 4 are shown in Figures 6-12(a) to 6-12(d), where LNOM 

and LNOM(H) respectively denote running LNOM algorithm with and without a 

direct hashing function. It is easily seen that the execution time by the LNOM 

algorithm was always much less than that by the NOM algorithm. The reduced 

computation cost in Phase 1 of the LNOM(H) algorithm was not significant because 

the NOM approach with the lattice data structure could effectively restrict the number 
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of candidate itemsets to be examined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-12: Execution times spent by the NOM and LNOM algorithms on Groups 1 

to 4 

 

6.7.2 Experimental Results for Real Datasets 

In addition to the above synthetic datasets, a real one called the BMS-POS 

dataset [106] and used in the KDDCUP 2000 competition was run in our experiments. 

The BMS-POS dataset contains several years of point-of-sale data from a large 

electronics retailer. Each transaction in this dataset is a customer purchase transaction 

consisting of all the product categories purchased at one time. There are 515,597 

transactions in the dataset. The number of distinct items is 1,657, the maximal 

transaction size is 164, and the average transaction size is 6.5. This dataset was also 
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used in the KDDCUP 2000 competition. In our experiments, the seventh group of data 

consisted of ten equal-size data subsets partitioned from the BMS-POS dataset, and its 

corresponding MPR and EMPR were shown in Table 6-10. 

 

Table 6-10: Mining information for the seventh group 

Group 
Initial 

minimum 
support 

Average length of 
maximal frequent 

itemsets 

Average size of 
frequent 
itemsets 

Average size of 
negative itemsets 

7 0.1% 11 9006 10762 
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Figure 6-13: Execution times for the TOARM, Apriori, Partition and FUP algorithms 

on Group 7 

 

The execution time for the TOARM, Apriori, Partition and FUP algorithms on 

Group 7 is shown in Figure 6-13. The TOARM algorithm had the best performance 

among the four algorithms. Then the execution time spent by the NOM and the 

LNOM algorithms for Group 7 along with query supports ranging from 0.2% to 1.1% 

in mining requests is shown in Figure 6-14. The experimental results were consistent 

with the above discussion. The LNOM algorithm had much better performance than 
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the NOM algorithm, especially when the number of candidate itemsets is large due to 

a low query support. 
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Figure 6-14: Execution times spent by the TOARM, NOM and LNOM algorithms on 

Groups 7 

 

6.8 Conclusion 

By structurally and systematically storing context and mining information in the 

MPR, our proposed TOARM approach can easily and efficiently derives association 

rules that satisfy diverse user-concerned constraints. After that, the concept of 

negative border has been used to enlarge the mining information in the MPR to help 

get tight upper-bound supports of candidate itemsets and thus reduce the number of 

candidate itemsets to be considered. Based on the EMPR (extended MPR), a 

corresponding online mining approach called Negative-Border Online Mining (NOM) 

has been then proposed to efficiently and effectively utilize the information of 

negative itemset in the negative border. Consequently, for further improving the 

performance of NOM approach, the lattice data structure has been utilized to organize 
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and maintain all candidate itemsets such that the candidate itemsets with the same 

proper subsets can be considered at the same time. The derived lattice-based NOM 

(LNOM) approach will require only one scan of the itemsets stored in EMPR, thus 

saving much computation time. In addition, a hashing technique has been used to 

further improve the performance of the NOM approach since many itemsets stored in 

EMPR may be useless for calculating the counts of candidates. Experiments for both 

homogeneous and heterogeneous datasets are made, with results showing the 

effectiveness of the proposed approaches. 
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Chapter 7 

Using Association Rule Mining Techniques on 

Knowledge Discovery Process in Semiconductor 

Manufacture 
 

 

 

7.1 Introduction 

In recent years, manufacturing processes have become more and more complex, 

and meeting high-yield target expectations and quickly identifying root-cause 

machinesets, the major killer machine(s) that causes a low-yield situation in a regular 

manufacturing procedure, also become essential issues. Although process control and 

statistical analysis techniques can be applied to establish a solid base for well-tuned 

manufacturing processes, identification of root-cause machineset is still hard and 

costly due to the existence of multiple coefficients among variants, nonlinear 

interactions, and the intermittent nature of the problem. For example, CIM/MES/EDA 

systems in most semiconductor manufacturing companies help users analyze collected 

manufacturing data in order to discover the root-cause machineset when the low-yield 

situation occurs; however, too many indexes and diagrams generated by the statistical 

methods in CIM/MES/EDA systems, such as K-W test, covariance analysis, 

regression analysis, etc., are usually not easy for engineers to assimilate and judge. On 

the other hand, lots of time is required to solve the false-alarm issue. 

In the third part of this dissertation, we attempt to integrate incremental mining 

and multidimensional online mining techniques on knowledge discovery process in 
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semiconductor manufacture. We first define the root-cause machineset identification 

problem of analyzing correlations between combinations of machines and the 

defective products, and then propose the Root-cause Machine Identifier (RMI) 

approach [19] using a batch-based association rule mining algorithm to obtain 

candidate root-cause machinesets from a shipment of wafer in process (WIP) data to 

experts for further determination. After that, we propose the progressive RMI (PRMI) 

concept, which applies incremental mining techniques to progressively process 

previously mined candidate root-cause machinesets, and the multidimensional RMI 

(MRMI) concept, which applies multidimensional online mining techniques to 

diversely consider mined candidate root-cause machinesets from each shipment for 

supporting online decision services. 

 

7.2 Related Work 

As mentioned above, The process of mining association rules can be roughly 

divided into two tasks [5]: finding frequent itemsets and generating association rules, 

where the first task is used to discover statistically significant patterns while the 

second task is used to obtain interesting rules. Since the first task is very 

time-consuming compared to the second one, the major challenges in mining 

association rules thus focus on how to reduce the search space and decrease the 

computation time required for the first task.. Some famous mining algorithms, such as 

Apriori [5], DIC [16], DHP [67], Partition [78], Sampling [61] and FP-Growth 

[40][95], were proposed to achieve this purpose. Among them, the Apriori algorithm, 

which is the most well-known, utilizes a level-wise candidate generation approach to 

reduce its search space such that only the frequent itemsets found in the previous level 

are treated as seeds for generating the candidate itemsets in the current level. This 
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Apriori property can greatly reduce the number of itemsets considered in a mining 

process. Many later algorithms were based on this property and attempted to further 

reduce candidate itemsets and I/O costs. Comprehensive overviews can be found in 

[18][38]. 

Although a level-wise candidate generation algorithm can efficiently discover 

significant patterns, many of them may be not interesting to users. Thus, designing a 

useful interestingness measurement is becoming an important issue [15][18][38][82]. 

Confidence, the most typical interestingness measurement for association rule mining, 

measures the conditional probability of events associated with a particular rule. For 

example, an association rule A→B with confidence c% means that c% of all 

transactions containing A also contain B. However, the confidence measurement may 

be misleading or insufficient for many real-world applications. For example, given a 

minimum confidence of 60%, the association rule milk→cigarette with confidence 

66% is then discovered in a supermarket. However, it is misleading since the 

probability of purchasing cigarette is 70%, which is even larger than 66%. In fact, 

milk and cigarette associate negatively since purchasing milk actually decreases the 

desirability of purchasing cigarettes. Thus, many researches [15][16][28][42][71][80] 

[82] have proposed other effective interestingness measurements. 

In [71], Piatetsky-Shaprio proposed a domain-independent interestingness 

measurement to evaluate the interestingness of discovered rule A→B: 

( )( )NBNABA

NBABA

/1/1

/&

−−

−
=φ , 

where, N denotes the total number of tuples in the database, |A| denotes the number of 

tuples that contain the antecedent A, |B| denotes the number of tuples that contain the 

consequent B, and |A&B| denotes the number of tuples that contain both A and B. The 
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range of this interestingness measurement is between –0.25 and 0.25. 

 

7.3 Root-cause Machineset Identification Problem 
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Figure 7-1: A general manufacturing process 

 

Figure 7-1 shows a general manufacturing process requiring a multistage 

production procedure. Each stage may have more than one machine performing the 

same task. Thus, products may pass through different machines in a specific stage. 

Assume a shipment consists of k identical products {p1, p2, …, pk}. Each product must 

pass through l stages <s1, s2, …, sl> in sequence to be finished, and there are n 

manufacturing machines {M1, M2, …, Mn} in this l-stage shipment. Note that a 

machine with multiple functions may appear in more than one stage in the process. 

The manufacturing process relation, r = {t1, t2,…, tk}, based on the relation schema 

R(PID, S1, S2, …, Sl, D), can be used to record the processing information from each 

stage and the test result for each product, pi, 1 ≤ i ≤ k. Among the attributes in R, PID 

is an identification attribute used to uniquely label the products, Si is a context 
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attribute associated with a pair <manufacturing machine, timestamp> used to indicate 

that the manufacturing machine is used in the i-th stage at the timestamp for each 

product, and D is a class attribute used to state whether a product is defective or not. 

Example 7-1: Table 7-1 shows a manufacturing process relation used to record 

five-stage (l=5) and seven-machine (n=7) processing information for a shipment 

consisting of six products (k=6). The first tuple shows that product p1 passed through 

stage 1 on <M1, 1>, stage 2 on <M5, 3>, stage 3 on <M3, 10>, stage 4 on <M4, 12>, 

and stage 5 on <M5, 14>, and its test result shows a defect (D=1). The other tuples 

have similar meanings.  

 

Table 7-1: A manufacturing process relation for six products in a five-stage 

manufacturing procedure 

PID S1 S2 S3 S4 S5 D 
1 M1, 1 M5, 3 M3, 10 M4, 12 M5, 14 1 
2 M2, 5 M1, 8 M1, 12 M2, 15 M1, 17 0 
3 M3, 2 M3, 7 M5, 13 M4, 17 M3, 20 0 
4 M3, 4 M1, 6 M4, 14 M4, 18 M5, 19 1 
5 M4, 7 M2, 11 M4, 15 M2, 20 M5, 23 1 
6 M3, 9 M3, 8 M6, 12 M4, 16 M7, 20 0 

 

Our goal is to identify the root-cause machineset for a given manufacturing 

process relation. In recent years, many approaches have been proposed to solve 

similar problems. Examples are such as V. Raghavan applied decision tree to discover 

the root cause of yield loss in integrated circuits [74], M. Gardner and J. Bieker 

combined self-organizing neural networks and rule induction to identify the critical 

poor yield factors from normally collected wafer manufacturing data [33], F. Mieno et 

al. applied a regression tree analysis to failure analysis in LSI manufacturing [63]. 

 

7.4 Root-cause Machine Identifier (RMI) Approach 
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We attempt to apply the technique of association rule mining to solve the 

root-cause machineset identification problem. According to the general operation of 

mining association rules, there are three major scenarios need to be discussed: 

(1) Data preprocessing scenario: Since the technique of association rule mining 

is usually performed on transactional data (its target of mining is not predetermined), 

it is important to transform the data in the manufacturing process relation into the 

materials and retain the appropriate relationships between machines and products that 

facilitate mining. 

(2) Mining procedure scenario: A product may pass through hundreds of stages 

(machines) to be finished. The evaluation of all combinations of machines is 

relatively enormous and impractical. Therefore, the pruning strategy is required to 

remove the candidates with inadequate evidences to be the root cause such that the 

search space and the computation time can be reduced.  

(3) Visualization scenario: Among the generated candidates, a suitable 

interestingness measurement is then needed to identify the root-cause machineset. 

To overcome the above three scenarios, the Root-cause Machine Identifier (RMI) 

approach shown in Figure 7-2 consisting of three phases, data preprocessing phase, 

candidate generation phase and interestingness ranking phase, is proposed. The data 

preprocessing phase focuses on transforming the raw data in a given manufacturing 

process relation into transactional data. The candidate generation phase focuses on 

generating candidate machinesets from the transactional data, and the interestingness 

measurement phase focuses on identifying the root-cause machineset from the 

obtained candidate machinesets. 
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Figure 7-2: The flowchart of the RMI approach 

 

By the user-selected preprocessing procedure in the data preprocessing phase, the 

RMI approach first gets materials transformed from the data in the manufacturing 

process relation. Then given a user-specified minimum defect coverage, a threshold 

used to remove the machinesets without enough evidences to be the root cause, the 

RMI approach generates all candidate machinesets by the candidate generation phase. 

Finally, by the interestingness ranking phase, the RMI approach ranks the candidate 

machinesets based upon a user-specified interestingness measurement and provides 

the result to experts for further determination. 

 

7.4.1 The Data Preprocessing Phase of RMI Approach 



 151

The data preprocessing phase first selects the defective tuples from a given 

manufacturing process relation. Two data preprocessing procedures, machine-oriented 

and stage-oriented preprocessing procedures, have been proposed to handle different 

manufacturing defect hypotheses. The machine-oriented preprocessing procedure 

concentrates on the machines a product passes through, regardless of the 

manufacturing stage. Thus, although a machine may be used in more than one stage in 

a tuple because of its multi-functionality, this preprocessing procedure treats it as only 

a single appearance. 

Example 7-2: For the manufacturing process relation shown in Table 7-1, the 

machine-oriented preprocessing procedure transforms the defect tuples 1, 4 and 5 as 

shown in Table 7-2. The tuple TID1 = {M1, M2, M4, M5} means that the product p1 

passed through four machines, M1, M3, M4 and M5. The other tuples have similar 

meanings.  

 

Table 7-2: An example of the machine-oriented preprocessing procedure 

TID Items 
1 M1, M3, M4, M5 
4 M1, M3, M4, M5 
5 M2, M4, M5 

 

The machine-oriented preprocessing procedure transforms the processing 

information in the manufacturing process relation into intuitive transactional data and 

assumes a machine’s functions are correlated. That is, if one function is faulty, the 

other may also be. By contrast, the stage-oriented preprocessing procedure assumes 

that a machine’s functions are not correlated. If one function is faulty, the other ones 

may still operate normally. Therefore, this preprocessing procedure treats machines in 

different stages as distinct individuals. 
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Example 7-3: For the manufacturing process relation shown in Table 7-1, the 

stage-oriented preprocessing procedure transforms the defect tuples 1, 4 and 5 as 

shown in Table 7-3. The machine m11 indicating M1 is used at stage 1 is different from 

the machine m12 indicating M1 is used at stage 2. The tuple TID1 = {m11, m52, m33, m44, 

m55} means that the product p1 passed through stage 1 on M1, stage 2 on M5, stage 3 

on M3, stage 4 on M4, and stage 5 on M5. The other tuples have similar meanings.  

 

Table 7-3: An example of the stage-oriented preprocessing procedure 

TID Items 
1 m11, m52, m33, m44, m55 
4 m31, m12, m43, m44, m55 
5 m41, m22, m43, m24, m55 

 

7.4.2 The Candidate Generation Phase of RMI Approach 

A level-wise processing procedure like finding frequent itemsets in association 

rules mining is used to generate possible sets of machines called candidate 

machinesets. The defect coverage of a machineset is defined as the percentage of all 

defective products passing through the target machineset. Therefore given the 

user-specified minimum defect coverage, in the first iteration, the proposed candidate 

generation phase calculates the defect coverage for each individual machine, and then 

retains the 1-machinesets that satisfy the minimum defect coverage as candidates. In 

the second iteration, the proposed phase generates machinesets consisting of two 

machines by joining the candidate 1-machinesets from the first iteration, and retains 

the 2-machinesets that satisfy the minimum defect coverage as candidates. In each 

subsequent iteration, candidate machinesets found in the preceding iteration are used 

as seeds in the current iteration, and the process continues until no new candidate 

machinesets can be generated. 
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Since this level-wise processing procedure is based on the Apriori property, each 

proper subset of a candidate machineset must be a candidate. In other words, if a 

machineset does not satisfy the user-specified minimum defect coverage, then none of 

its proper supersets will be. This can greatly reduce the number of candidate 

machinesets to be considered. Moreover, to improve the computation performance, 

the candidate generation phase retains defective product information for each 

candidate machineset in the current level so that each machineset’s defect coverage 

information in the next level can be efficiently calculated by utilizing the retained 

information rather than re-processing the original database. 

Example 7-4: Table 7-4 shows the defect coverage for each 1-machineset in 

Table 7-3. The first tuple shows that only the defective product p1 passed through the 

machineset m11. Thus, the defect coverage of m11 is 1/3 = 33%.  

 

Table 7-4: Defect coverage and defective product information for each 1-machineset 

in Table 7-3 

Machineset Involved Defective Products Defect Coverage 
m11 p1 33% 
m31 p4 33% 
m41 p5 33% 
m52 p1 33% 
m12 p4 33% 
m22 p5 33% 
m33 p1 33% 
m43 p4, p5 66% 
m44 p1, p4 66% 
m24 p5 33% 
m55 p1, p4, p5 100% 

 

Example 7-5: Continuing from Example 7-4 and assuming the user-specified 

minimum defect coverage is 50%, Table 7-5 shows candidate 1-machinesets of Table 

7-4.  
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Table 7-5: Defect coverage and defective product information for each candidate 

1-machineset obtained 

Machineset Involved Defective Products Defect Coverage 
m43 p4, p5 66% 
m44 p1, p4 66% 
m55 p1, p4, p5 100% 

 

Next, 2-machinesets {m43, m44}, {m43, m55} and {m44, m55} are then generated by 

joining the candidate 1-machinesets in Table 7-5. The defect coverage for {m43, m44} 

is 33% and its defective product information is {p4} by performing the intersection of 

the set of defective products of m43 and m44. Complete results are shown in Table 7-6. 

 

Table 7-6: Defect coverage and defective product information for each 2-machinesets 

generated 

Machineset Involved Defective Products Defect Coverage 
m43, m44 p4 33% 
m43, m55 p4, p5 66% 
m44, m55 p1, p4 66% 

 

As we can see, the machineset {m43, m44} is removed since its defect coverage is 

less than 50%, the specified minimum defect coverage. The resulting candidate 

2-machinesets are shown in Table 7-7. 

 

Table 7-7: Defect coverage and defective product information for each candidate 

2-machineset obtained 

Machineset Involved Defective Products Defect Coverage 
m43, m55 p4, p5 66% 
m44, m55 p1, p4 66% 

 

Next, the only 3-machineset {m43, m44, m55} generated by joining the candidate 
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2-machinesets in Table 7-7. However, since {m43, m44} is not included in the set of 

candidate 2-machinesets, it is removed according to above-mentioned Apriori 

property. All candidate machinesets generated are shown in Table 7-8.  

 

Table 7-8: Defect coverage and defective product information for each candidate 

machinesets obtained 

Machineset Involved Defective Products Defect Coverage 
m43 p4, p5 66% 
m44 p1, p4 66% 
m55 p1, p4, p5 100% 

m43, m55 p4, p5 66% 
m44, m55 p1, p4 66% 

 

7.4.3 The Interestingness Ranking Phase of RMI Approach 

Although a candidate machineset having high defect coverage is statistically 

significant, it may not have a high possibility of being the root cause. For example, 

the defect coverage of m43 is the same as that of m44 in Table 7-8, but intuitively, m43 

is more probable than m44 since all products passing through it are defective. In this 

section, an interestingness ranking phase using an interestingness measurement to 

evaluate correlations between candidate machinesets and defective products is 

proposed for finding the root-cause machineset. Below, in additional to two typical 

interestingness measurements confidence and φ, an novel interestingness 

measurement called continuity-based interestingness measurement is proposed to 

extend φ. 

Confidence, the most well-known interestingness measurement for association 

rule mining, calculates the conditional probability that a candidate machineset causes 

defective products (machineset→defect). That is, it calculates the percentage of all 

products passing through a candidate machineset that are defective. φ, a 
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domain-independent interestingness measurement proposed by Piatetsky-Shaprio in 

[71] evaluates the discovered rule A→B as follows: 

( )( )NBNABA

NBABA
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−
=φ . (7-1) 

This equation indicates the degree to which “when antecedent A appears, 

consequent B also appears”. If A is regarded as a certain candidate machineset and B 

is regarded as a defective product, then the equation calculates the degree of 

correlation between the candidate machineset and the defect. 

However, the manufacturing process characteristics, such as the observation that 

the root-cause machineset often produces defective products continuously, are not 

considered in the two above-mentioned interestingness measurements. Thus, we 

propose continuity function to measure the continuity between the defective products 

for a candidate machineset. High continuity may indicate a higher probability of being 

the root cause. We can easily extend the interestingness measurement φ to φ’, called 

continuity-based interestingness measurement, as follows: 

φ’ = φ ∗  continuity. (7-2) 

The continuity function calculates the reciprocal of the average distance between 

pairs of neighboring defective products in the product sequence as follows: 
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where X = (x1, x2, …) denotes a defective product sequence contained in the product 

sequence P = (p1, p2, …) which is a sequence of products passing through a candidate 

machineset (i.e. X is a subsequence of P), |X| denotes the number of defective 
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products, α(xi) denotes the order of the defective product xi in P (e.g., if α(xi) = j, xi is 

the j-th product in P), and d(α(xi),α(xi+1)) is the distance of α(xi) and α(xi+1), which 

can easily be calculated by α(xi+1)−α(xi). 

Example 7-6: Table 7-9 shows the product sequence, defective product sequence, 

and calculated continuity value for each candidate machineset in Table 7-8. Among 

them, the continuity value of m44 is 
)12/())(),(((

1

41 −ppd αα
 = 0.5 according to its 

product sequence (p1, p3, p4) and defective product sequence (p1, p4).  

 

Table 7-9: Calculated continuities for each candidate machineset in Table 7-8 

Machineset Product Sequence Defective Product Sequence Continuity 
m43 (p4, p5) (p4, p5) 1 
m44 (p1, p3, p4) (p1, p4) 0.5 
m55 (p1, p4, p5) (p1, p4, p5) 1 

m43, m55 (p4, p5) (p4, p5) 1 
m44, m55 (p1, p4) (p1, p4) 1 

 

According to the user-specified interestingness measurement, the set of candidate 

machinesets with their interestingness values are ranked in descending order. 

Example 7-7: Continuing from Example 7-6, Table 7-10 shows the φ’ for each 

candidate machineset. Since m55 has highest interestingness value, the machine M5 is 

most likely the root-cause machineset.  

 

Table 7-10: φ’ for each candidate machinesets in Table 7-8 

Machineset φ Continuity φ’ 
m43 0.67 1 0.67 
m44 0.167 0.5 0.0835
m55 1 1 1 

m43, m55 0.67 1 0.67 
m44, m55 0.67 1 0.67 
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7.5 The Concepts of Progressive RMI (PRMI) and Multidimensional 

RMI (MRMI) 

Although the proposed RMI approach can find candidate root-cause machinesets 

from a shipment to experts for further determination, it is difficult for a expert to find 

the actual root-cause machineset which is not apparent in the pool of candidate 

root-cause machinesets. For a complex manufacturing process such as the 

semiconductor manufacture, some root-cause machinesets is hard to be investigated 

and discovered in a short-term analysis due to their intermittent nature and gradually 

wearing. As a result, progressively monitoring previously mined candidate root-cause 

machinesets is a nontrivial work. In order to provide obtained evidences from 

processed shipments of data for later use, we can design a progressive RMI (PRMI) 

using incremental mining techniques to progressively process previously mined 

candidate root-cause machinesets and consider the influence of subsequent shipments 

on the possibility of being the root cause for each progressive candidate. Obviously, 

for achieving long-term analysis, the original defect coverage and interestingness 

measurement calculations need to be re-designed. Some efforts and works in temporal 

association rules mining [7][54][66][75][83], especially in [7][54], are related to 

PRMI and can be further referred to. 

A large dedicated semiconductor company, such as TSMC (Taiwan 

Semiconductor Manufacturing Corporation Ltd), usually consists of many wafer fabs 

around the world and provides varied fabrication processes. Decision-makers usually 

may need to analyze yield situations, especially for a low-yield situation, in a 

shipment, fabrication, production line, wafer size or even fab location. They may also 

want to understand the change of yield in different dimensions. We can design a 

knowledge warehouse to structurally and systematically store the context information, 



 159

such as fab location, wafer size, fabrication, product line, manufacturing time, etc., 

and the mining information, such as the number of lots, candidate root-cause 

machinesets, etc., of each shipment for supporting decision-makers diversely 

considering problems at different aspects. 

 

7.6 Experimental Results 

The RMI approach was implemented in Java on a Pentium-IV 2.4G processor 

desktop with 512MB RAM, and nine real datasets with the known root-cause 

machineset provided by the Taiwan Semiconductor Manufacturing Corporation 

(TSMC) were used to evaluate its accuracy. As shown in Table 7-11, 368 and 2727 

machines needed to be considered in machine-oriented and stage-oriented 

preprocessing procedures respectively for Case 1 having 153 products and each 

passing through 658 stages. 

 

Table 7-11: Relevant information for the nine real datasets 

Dataset Data size 
(Products*Stages)

Number of machines in 
machine-oriented 

preprocessing procedure

Number of machines in 
stage-oriented 

preprocessing procedure
Case 1 153*658 368 2727 
Case 2 145*867 497 4509 
Case 3 141*837 499 4434 
Case 4 116*624 416 2500 
Case 5 305*733 424 3094 
Case 6 53*587 411 2414 
Case 7 484*709 455 3381 
Case 8 106*632 419 2618 
Case 9 77*1109 450 3367 

 

With the minimum defect coverages ranging from 0.3 to 0.5 and the 

interestingness measurement φ’, the ranks of the actual root-cause machinesets among 

the generated candidate machinesets are shown in Table 7-12. For example, the rank 
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of the actual root-cause machineset for Case 1 was the 4th using machine-oriented 

preprocessing procedure with the minimum defect coverage = 0.3. Note that “X” 

means the actual root-cause machineset can not be found by the proposed RMI 

approach. 

 

Table 7-12: Accuracy results of the RMI approach for the nine datasets 

Machine-oriented  
preprocessing procedure 

Stage-oriented 
preprocessing procedure 

Min. defect
coverage 

= 0.3 

Min. defect 
coverage 

= 0.4 

Min. defect
coverage 

= 0.5 

Min. defect
coverage 

= 0.3 

Min. defect 
coverage 

= 0.4 

 Min. defect
coverage 

= 0.5 

Dataset 

Rank Rank Rank Rank Rank Rank 
Case 1 4 4 4 22 12 6
Case 2 1 1 1 1 1 1
Case 3 1 1 1 1 1 1
Case 4 1 1 1 1 1 1
Case 5 1 1 1 1 1 1
Case 6 106 93 78 145 90 58
Case 7 6 5 5 2 1 1
Case 8 51 47 40 43 23 X
Case 9 74 50 44 10 X X
 

As stated previously, the machine-oriented preprocessing procedure assumes all 

functions of a machine are co-affected whereas the stage-oriented preprocessing 

procedure assumes each function of a machine is independent. Table 7-12 shows that 

the RMI approach seems to have higher accuracy with the stage-oriented 

preprocessing procedure than with the machine-oriented preprocessing procedure in 

this semiconductor manufacturing experiment, if appropriate minimum defect 

coverages were set. By consulting with the product engineers for all above cases, the 

explanations of the experimental results are concluded as follows: 

(a) For Cases 2, 3, 4 and 5, the actual root-cause machinesets were all ranked in 

the first place both with the machine-oriented and the stage-oriented preprocessing 

procedures. The major reasons are: (a) for Cases 2 or 3, the actual root-cause 
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machineset was a single-function machine. Therefore, it had the same interestingness 

value both with the stage-oriented and machine-oriented preprocessing procedures; (b) 

for Cases 4 or 5, most functions of the actual root-cause machineset had high 

interestingness values and were ranked in the top ten with the stage-oriented 

preprocessing procedure. Therefore, on the whole, the actual root-cause machineset 

with the machine-oriented preprocessing procedure still had a not-bad rank. 

(b) For Cases 6, 7, 8, or 9, many normal products passed through the actual 

root-cause machineset without passing through the faulty function. Therefore the 

actual root-cause machineset had higher rank with the stage-oriented preprocessing 

procedure than with the machine-oriented preprocessing procedure, if an appropriate 

minimum defect coverage was set. 

(c) For Case 1, the actual root-cause machineset had the same interestingness 

value in the machine-oriented and stage-oriented preprocessing procedures because it 

is a single-function machine (as in Cases 2 and 3). However, since most of the other 

candidate machinesets had lower interestingness values with the machine-oriented 

preprocessing procedure, the actual root-cause machineset with this preprocessing 

procedure had higher rank than with the stage-oriented preprocessing procedure. This 

was a special case in our experiments. 

The actual root-cause machineset in most cases was ranked in the top ten with an 

appropriate minimum defect coverage, except in Case 6, which had only 53 products 

so the actual root-cause machineset was not more significant than the others. 

Intuitively, setting a higher minimum defect coverage will prune more machinesets 

from consideration during the candidate generation phase, and thus decrease the 

execution time. As shown in Table 7-12 and Figure 7-3, the higher minimum defect 

coverage is, the higher performance that RMI approach can be. However, the RMI 
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approach may prune the actual root-cause machinesets out once the minimum defect 

coverage is set too high. How to set appropriate minimum defect coverage is thus 

becoming a critical issue for future investigation. 
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Figure 7-3: Execution times for Case 2, Case 3 and Case 7 with the minimum defect 

coverage set from 0.3 to 0.6 

 

In order to demonstrate the accuracy of φ’ compared to other known 

interestingness measures, Table 7-13 shows the rank of the actual root-cause 

machineset among all candidate machinesets generated by the RMI approach when 

associated with three interestingness measures, confidence, φ and φ’. The result shows 

that our proposed interestingness measurement φ’ does not always outperform φ or 

confidence since the properties of all given testing case are different, and that 

continuity can highlight cases 1, 7 and 9 with strong continuity defect signal. 
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Table 7-13: Accuracy results of the RMI approach on the nine datasets for 

interestingness measurements confidence, φ and φ’ 

Machine-oriented 
preprocessing procedure 

(Min. defect coverage = 0.3) 

Stage-oriented 
preprocessing procedure 

(Min. defect coverage = 0.3) 
Confidence φ φ’ Confidence φ φ’ 

Dataset 

Rank Rank Rank Rank Rank Rank 
Case 1 8 4 4 41 17 22
Case 2 1 1 1 1 1 1
Case 3 1 1 1 1 1 1
Case 4 1 1 1 1 1 1
Case 5 1 1 1 3 1 1
Case 6 163 94 106 168 128 145
Case 7 9 8 6 1 4 2
Case 8 25 32 51 2 2 43
Case 9 114 57 74 46 22 10
 

7.7 Conclusion 

Identification of the root-cause machineset in manufacturing can not only reduce 

manufacturing costs, but also improve manufactory performance. However, 

conventional methodologies for identifying root causes are restricted and dependent 

on experience and expertise. In this study, we have defined the root-cause machineset 

identification problem and proposed RMI approach to solve the problem efficiently 

and effectively. Two different data preparation procedures have proposed to transform 

the raw data into the desired format based on different manufacturing defect 

hypotheses. Also, an novel interestingness measurement considering the 

manufacturing continuity has proposed for the interestingness measurement phase in 

RMI approach. Currently, the proposed RMI approach has been considered as one of 

standard component in semiconductor manufacturing defect detection solution using 

data mining techniques of SAS® Taiwan Cooperation in order to help FAB users 

discover root causes. The experimental results show that about 80% cases can be 

ranked at the top ten and 20% cases are still remained unsolvable. In the future, we 
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will continue our research to refine interestingness measurements of RMI approach, 

and develop automatic/semi-automatic mechanisms to solve the low-yield situations. 



 165

Chapter 8 

Summary and Future Work 
 

 

 

 Designing incremental mining algorithms that can effectively and efficiently 

utilize the previously mined information to reduce costs of knowledge maintenances 

is rather important and useful. In the first part of this dissertation, we have utilized the 

concepts of pre-large patterns and closed patterns to develop more efficient and 

practical approaches for maintaining association rules and sequential patterns 

especially in dense databases, and utilized the domain-space weighting scheme to 

develop a more accurate and adaptive document classifier. 

For providing ad-hoc, query-driven and online mining supports, in the second 

part of this dissertation, the concept of knowledge warehouse and the architecture of 

Online Knowledge Discovery System (OKDS) have been proposed. By structurally 

and systematically storing context and mining information in the MPR, a form of 

knowledge warehouse, our proposed TOARM approach can easily and efficiently 

derive association rules that satisfy diverse, user-concerned constraints. In addition, 

the concept of negative border has been further applied in the MPR to form the 

EMPR, and based on the EMPR, the NOM and LNOM approaches have been 

developed to improve the performance of TOARM especially for heterogeneous 

blocks of data. 

Consequently, in the third part of this dissertation, we attempt to apply 

incremental mining and multidimensional online mining techniques on knowledge 

discovery process in semiconductor manufacture. For a semiconductor manufacturing 
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company, the knowledge capable of quickly identifying root-cause machinesets is 

rather important. We have proposed the RMI approach using a batch-based 

association rule mining algorithm to provide an efficient and effective solution for the 

root-cause machineset identification problem. After that, the concepts of PRMI, which 

applies incremental mining techniques to progressively process previously mined 

candidate root-cause machinesets, and MRMI, which applies multidimensional online 

mining techniques to support multidimensional online generation of candidate 

root-cause machinesets, have been proposed to improve the accuracy and flexibility of 

RMI approach. 

 Some interesting issues may be studied in the future. In addition to record 

insertion, record deletion [87][89] and record modification [88] are also commonly 

seen in real-world applications. Processing record deletion and record modification 

are, however, different from processing record insertion. Design effective 

maintenance algorithms for association rules and sequential patterns as records are 

deleted or modified are thus nontrivial works. As for the proposed concept of 

multidimensional online mining, we can adopt other techniques to further improve the 

performance of the proposed methodology. For example, we can construct an iceberg 

cube [13][26] or use materialized views [17][97] for the proposed MPR or EMPR to 

provide more efficient online association rule generation and more powerful mining 

services. Moreover, we can also attempt to apply the multidimensional online mining 

concept to online decision support for other classes of knowledge, such as sequential 

patterns, classifications, clusters, etc. In the third part of this dissertation, although we 

expect the two concepts of progressively processing previously mined patterns and  

structurally and systematically storing mined patterns can respectively improve the 

accuracy of discovered knowledge and support decision-makers diversely considering 
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problems at different aspects, it is necessary to substantiate, test and deploy them in 

real-world cases in semiconductor manufacture. 
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