
國立交通大學
資訊科學與工程研究所

博士論文

漸進式探勘與多維度即時探勘之研究

A Study of Incremental Mining and

Multidimensional Online Mining for Knowledge

Discovery in Database

 研 究 生: 王慶堯

 指導教授: 曾憲雄 博士

中華民國九十四年十月

漸進式探勘與多維度即時探勘之研究

A Study of Incremental Mining and

Multidimensional Online Mining for Knowledge

Discovery in Database

研 究 生: 王慶堯 Student: Ching-Yao Wang

指導教授: 曾憲雄 Advisor: Dr. Shian-Shyong Tseng

國 立 交 通 大 學

資 訊 工 程 系

博 士 論 文

A Thesis
Submitted to Department of Computer Science

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Computer Science

October 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年十月

 I

漸進式探勘與多維度即時探勘之研究

學 生: 王慶堯 指導教授: 曾憲雄

國立交通大學　資訊工程系

摘要

近年來，利用資料探勘技術從大型資料庫和資料倉儲中發掘出隱含且有用的

知識變得愈來愈重要。然而，大部分傳統的資料探勘方法都是採用批次處理的方

式，當面對資料庫中資料新增時，就必須耗時地對整個資料庫重新進行處理，以

更新之前所獲得的知識；此外，這些方法通常對資料一視同仁地處理，鮮少考慮

資料所生成之相關背景資訊，乃至所獲取的知識無法滿足使用者特定的需求、提

供線上決策支援。因此在本篇論文中，我們將發展一些新穎的漸進式演算法，分

別對關聯法則、循序樣式和文件分類器進行知識更新，減少每當資料新增時，必

須對整個資料庫重新進行處理的龐大成本；此外，為了讓資料探勘能夠即時地提

供線上決策支援，我們進而將漸進式演算法加以延伸，並將資料所生成之相關背

景資訊納入考量，利用所發展之結構化儲存體，系統化地儲存之前所獲得的知識

和其相關的背景資訊，以滿足使用者特定的知識查詢和多維度即時探勘的需求；

最後，我們企圖將所發展的漸進式探勘與多維度即時探勘的技術應用到半導體製

程，幫助偵測並發掘出造成良率偏低的瑕疵機器。

關鍵詞: 關聯法則、循序樣式、漸進式探勘、封閉項目及、準大項目集、文件分

類、文件表示、限制式探勘、瑕疵偵測、重要性測量法。

 II

A Study of Incremental Mining and

Multidimensional Online Mining for Knowledge

Discovery in Database

Student: Ching-Yao Wang Advisor: Dr. Shian-Shyong Tseng

Department of Computer Science

National Chiao Tung University

Abstract

Mining useful information and helpful knowledge from large databases has

evolved into an important research area in recent years. However, most of classic

mining approaches processed data in a batch way, in which they must re-process the

entire updated database whenever the database is updated, and focused on finding

rules or patterns in a specified part of a database, in which they can not consider

problems at different aspects and provide on-line decision supports. This seems to be

inefficient and insufficient for knowledge discovery process in real-world applications.

As a result, in this dissertation, we will develop some novel incremental mining

algorithms respectively for maintaining association rules, sequential patterns and a

document classifier without re-processing the original database whenever the database

is updated. For providing ad-hoc, query-driven and online mining supports, we will

extend the concept of effectively utilizing patterns previously discovered in

incremental mining to support online mining under multidimensional considerations.

Specifically, we propose a structural repository to systematically store the previously

 III

mined information from each inserted dataset, and then develop online mining

approaches to acquire user-interesting rules or patterns by integrating related mining

information in the repository. Consequently, we will attempt to apply incremental

mining and multidimensional online mining techniques on knowledge discovery

process in semiconductor manufacture for quickly identifying root-cause machinesets,

the major killer machine(s) that causes a low-yield situation in a regular

manufacturing procedure.

Keywords: association rule, sequential pattern, incremental mining, closed itemsets,

pre-large itemset, text classification, document representation, constraint-based

mining, defect detection, interestingness measurement.

 IV

誌謝

還記得五年前，帶著忐忑不安的心情踏入交大校園，愁著博士班

入學考試及不可預知的未來。午夜夢迴、慕然回首，資格考前的挑燈

苦讀、研究方向的反覆思索、論文的枕日修訂、口試前的緊繃情緒，

一切仍歷歷在目、彷彿昨日。

今日，看著自己畢業海報的張貼，內心五味雜陳，與其說是喜悅，

不如說是感動。這一人生經歷，一步步踏過之足跡，實實在在。其中，

最感謝的是在這茫茫學習與研究大海中，指引我方向的明燈，我的恩

師 曾憲雄博士。他不僅在研究領域上培養我獨立思考、自我突破與
批判能力，更透過產學界的合作，培養我領導、掌控與解決問題的能

力，開闊我的人生視野。其次，感謝從碩士班以來，一直協助我在研

究領域上撐舵揚帆的 洪宗貝博士，他那鉅細靡遺的研究精神，幫助
我更精準地掌握研究的方向、更清楚地表達研究的內容和成果，建立

我應有的研究態度。

在博士論文口試其間，感謝 李素瑛博士和 胡毓志博士從一開始
論文計畫書、校內口試到校外口試，給予的鼓勵和指導，啟發我能從

其他觀點去檢閱自己研究上的盲點和不足；感謝校內口試時 孫春在
博士提供在研究方法與內容闡述上的建議，讓我深刻體會過程比成果

更為重要；感謝校外口試時清華大學 陳良弼博士與 蘇豐文博士以及
高雄大學 洪宗貝博士，給予的精闢見解與建議，才能讓本篇論文更
加完整。

這五年多的求學生涯，每一屆從四面八方來到實驗室的研究伙

伴，感謝你們在我研究歲月中所留下的美好回憶，447 實驗室、346
會議室、籃球場、羽球場、……，這份誠摯的同袍情誼，我將永感於
心。

對於家人的支持以及鼓勵我的女友麗煌，這一份感謝，非筆墨所

能形容。在我面對課業與研究壓力時、當我生活不如意時、當我快樂

歡笑時，當我需要一份關愛時、⋯⋯，你們總是陪伴在我身邊，無怨

無悔，為我打氣加油，給我安慰給我愛，謝謝你們。

僅將本篇論文的完成，獻給每一位給予我幫助及支持我的人。

 V

Table of Contents

Abstract (In Chinese)...I
Abstract (In English) ... II
Acknowledgement ...IV
Table of Contents.. V
List of Figures.. VII
List of Tables... X
Chapter 1 Introduction... 1

1.1 Motivation..1
1.2 Contribution ...8
1.3 Reader’s Guide...10

Chapter 2 Incremental Mining Algorithms for Association Rules
Maintenance .. 11

2.1 Introduction..11
2.2 Related Work..14
2.3 Preliminary Concepts...18
2.4 Closed Itemsets Maintenance ..20
2.5 The Closed Itemsets Maintaining (CIM) Algorithm......................................24
2.6 The CIM Algorithm with Pre-large Concept: CIM-P Algorithm...................34
2.7 Experimental Results ...39
2.8 Conclusion ...45

Chapter 3 Incremental Mining Algorithms for Sequential Patterns
Maintenance .. 47

3.1 Introduction..47
3.2 Related Work..48
3.3 Preliminary Concepts...54
3.4 Closed Sequences Maintenance...56
3.5 The Closed Sequences Maintaining (CSM) Algorithm59
3.6 The CSM Algorithm with Pre-large Concept: CSM-P Algorithm60
3.7 Conclusion ...63

Chapter 4 Incremental Mining Algorithms for Document Classifiers
Maintenance .. 64

4.1 Introduction..64
4.2 Related Work..66
4.3 Domain-space Weighting Scheme for Document Classification...................69
4.4 Classifier Construction Based on Domain-space Document Representation 70

 VI

4.5 Document Labeling by the Constructed Classifier ..80
4.6 Experimental Results ...81
4.7 Conclusions..88

Chapter 5 From Incremental Mining to Multidimensional Online Mining
for Knowledge Discovery.. 89

5.1 Introduction..89
5.2 Related Work..91
5.3 Knowledge Warehouse ..93
5.4 Online Knowledge Discovery System (OKDS) ..96

Chapter 6 Multidimensional Online Mining Algorithms for Generation of
Association Rules... 99

6.1 Introduction..99
6.2 Related Work..100
6.3 Multidimensional Pattern Relation (MPR) ..101
6.4 Three-Phased Online Association Rule Mining (TOARM) based on MPR 103
6.5 Negative-Border Online Mining (NOM) based on Extended MPR (EMPR)
..110
6.6 LNOM: Algorithm Design and Implementation..118
6.7 Experimental Results ...131
6.8 Conclusion ...142

Chapter 7 Using Association Rule Mining Techniques on Knowledge
Discovery Process in Semiconductor Manufacture 144

7.1 Introduction..144
7.2 Related Work..145
7.3 Root-cause Machineset Identification Problem...147
7.4 Root-cause Machine Identifier (RMI) Approach...148
7.5 The Concepts of Progressive RMI (PRMI) and Multidimensional RMI
(MRMI)..158
7.6 Experimental Results ...159
7.7 Conclusion ...163

Chapter 8 Summary and Future Work... 165
Reference.. 168

 VII

List of Figures

Figure 1-1: The performance and storage trade-off for batch mining, incremental

mining and multidimensional online mining ...3

Figure 2-1: Four cases of candidate itemsets...16

Figure 2-2: Four cases of joint closed itemsets..22

Figure 2-3: The CIM algorithm ...25

Figure 2-4: A closed maintenance tree (CMT) ..27

Figure 2-5: The CO_generation subroutine...29

Figure 2-6: An example of branch-wise processing strategy in the CO_generation

subroutine...30

Figure 2-7: An example of updating process in the CO_generation subroutine30

Figure 2-8: The CP_generation subroutine ...33

Figure 2-9: An example of CP_generation subroutine..34

Figure 2-10: The concept of pre-large closed itemsets ..35

Figure 2-11: The CIM-P algorithm ..39

Figure 2-12: Execution times for the FUP, Pre-large and CIM algorithms respectively

on the five datasets...42

Figure 2-13: The amounts of pre-stored mining information for the FUP, Pre-large and

CIM algorithms respectively on the five datasets..43

Figure 2-14: The influence of the size of increment on the execution time for the FUP,

Pre-large and CIM algorithms ...44

Figure 2-15: Execution times for the CIM and CIM-P algorithms on BMS-POS45

Figure 3-1: Four cases of candidate sequences..53

Figure 3-2: Four cases of joint closed sequences...57

Figure 3-3: The CSM algorithm ..60

Figure 3-4: The CSM-P algorithm ...63

Figure 4-1: An example of the support vector machine approach68

Figure 4-2: The classifier construction algorithm..72

Figure 4-3: The operation of the classifier construction algorithm72

Figure 4-4: The training algorithm ..74

Figure 4-5: The discrimination algorithm..76

Figure 4-6: The tuning algorithm...79

 VIII

Figure 4-7: The document labeling algorithm ...80

Figure 4-8: Micro-averaging F1 value vs. number of tuning documents for

Reuters-21578(10) ...85

Figure 4-9: Micro-averaging F1 values vs. number of tuning documents at φ =1, φ =15

and φ =25 for Reuters-21578(90) ..86

Figure 4-10: Micro-averaging F1 values vs. number of tuning documents at φ =1, φ

=15 and φ =25 for Reuters-21578(115) ...87

Figure 4-11: Computation times spent by the batch-based classifier and the

incremental-based classifier for reuters-21578(10) ...87

Figure 5-1: An example of the star schema of a knowledge warehouse......................95

Figure 5-2: The OKDS architecture...96

Figure 6-1: The TOARM algorithm...109

Figure 6-2: The graph model of candidate itemsets for Tuple 4 in Table 6-4............121

Figure 6-3: The STCC algorithm...122

Figure 6-4: The directed minimum spanning tree found from Figure 6-2.................123

Figure 6-5: The lattice to represent the candidate itemsets illustrated in Example 6-6

..124

Figure 6-6: The hash table derived from the candidate itemsets illustrated in Example

6-6 ..126

Figure 6-7: The updated lattice after processing all matched tuples..........................129

Figure 6-8: The algorithm of the LNOM approach with a direct hashing function...131

Figure 6-9: Execution times for the TOARM, Apriori, Partition and FUP algorithms

on Groups 1, 2, 3 and 5 ..134

Figure 6-10: The influence of the number of negative itemsets on execution time for

Groups 1 to 6..137

Figure 6-11: Execution times of the NOM algorithm respectively with and without a

direct hashing function on Groups 1 to 4...139

Figure 6-12: Execution times spent by the NOM and LNOM algorithms on Groups 1

to 4 ...140

Figure 6-13: Execution times for the TOARM, Apriori, Partition and FUP algorithms

on Group 7 ...141

Figure 6-14: Execution times spent by the NOM and LNOM algorithms on Groups 7

..142

Figure 7-1: A general manufacturing process ..147

 IX

Figure 7-2: The flowchart of the RMI approach..150

Figure 7-3: Execution times for Case 2, Case 3 and Case 7 with the minimum defect

coverage set from 0.3 to 0.6...162

 X

List of Tables

Table 2-1: A transactional database..26

Table 2-2: The newly inserted transactions..30

Table 2-3: Characteristics of the experimental datasets...39

Table 2-4: Mining information for the five datasets ..40

Table 2-5: The distribution of frequent itemsets for the five datasets40

Table 3-1: The sequence database..51

Table 3-2: All frequent sequences generated for the sequences in Table 3-151

Table 3-3: Two new transactions sorted according to Sequence_id and Trans_time ...51

Table 3-4: The two newly merged sequences ..51

Table 3-5. The candidate 1-sequences with their support counts for newly merged

sequences ...52

Table 4-1: An example of a feature-domain weighting table.......................................70

Table 4-2: The statistic information of features in “DM” Category75

Table 4-3: The feature weights in “DM” Category ..75

Table 4-4: An example of the tuning algorithm ...79

Table 4-5: Micro- and macro-averaging F1 values shown in [21]82

Table 4-6: Micro- and macro-averaging F1 values at φ =1, φ =15 and φ =2583

Table 4-7: Micro-and macro-averaging F1 values at various δ for Reuters-21578(10)

..84

Table 4-8: Micro-averaging F1 values at various δ and φ for Reuters-21578(90)84

Table 4-9: Macro-averaging F1 values at various δ and φ for Reuters-21578(90)84

Table 4-10: Micro-averaging F1 values at various δ and φ for Reuters-21578(115) ...84

Table 4-11: Macro-averaging F1 values at various δ and φ for Reuters-21578(115)...85

Table 4-12: Numbers of remaining categories at various φ ...85

Table 5-1: Differences between the operational database and the data warehouse92

Table 5-2: Differences between the knowledge warehouse and the data warehouse ..94

Table 6-1: An MPR with minimum support = 5%...102

Table 6-2: Matched tuples in Example 6-2 ..105

Table 6-3: An EMPR with minimum support = 5% ..112

Table 6-4: The matched tuples in Example 6-6 ...112

Table 6-5: Parameters considered when generating datasets132

 XI

Table 6-6: The six groups of synthetic datasets ...133

Table 6-7: Mining information for the six groups ...133

Table 6-8: The numbers of candidate itemsets for Group 5.......................................135

Table 6-9: The numbers of candidate itemsets for Group 2.......................................135

Table 6-10: Mining information for the seventh group ...141

Table 7-1: A manufacturing process relation for six products in a five-stage

manufacturing procedure ...148

Table 7-2: An example of the machine-oriented preprocessing procedure................151

Table 7-3: An example of the stage-oriented preprocessing procedure152

Table 7-4: Defect coverage and defective product information for each 1-machineset

in Table 7-3 ..153

Table 7-5: Defect coverage and defective product information for each candidate

1-machineset obtained ...154

Table 7-6: Defect coverage and defective product information for each 2-machinesets

generated ..154

Table 7-7: Defect coverage and defective product information for each candidate

2-machineset obtained ...154

Table 7-8: Defect coverage and defective product information for each candidate

machinesets obtained ...155

Table 7-9: Calculated continuities for each candidate machineset in Table 7-8157

Table 7-10: φ’ for each candidate machinesets in Table 7-8157

Table 7-11: Relevant information for the nine real datasets159

Table 7-12: Accuracy results of the RMI approach for the nine datasets160

Table 7-13: Accuracy results of the RMI approach on the nine datasets for

interestingness measurements confidence, φ and φ’ ..163

 1

Chapter 1

Introduction

1.1 Motivation

Data mining technology has become increasingly important in the field of large

databases and data warehouses. This technology helps discover non-trivial, implicit,

previously unknown and potentially useful knowledge, thus being able to aid

managers in making good decision [4][18][38]. Years of effort in data mining have

produced a variety of efficient techniques. Depending on the type of databases

processed, these mining approaches may be classified as working on transaction

databases, temporal databases, relational databases, and multimedia databases. On the

other hand, depending on the classes of knowledge derived, the mining approaches

may be classified as finding association rules, sequential patterns, classifiers

(classification models), etc.

(1) Association rules: Recently, mining association rules from transaction

databases has been one of the most interesting and popular research topics in data

mining. An association rule indicates a relationship among items such that the

occurrence of certain items in a transaction would imply the occurrence of some other

items in the same transaction. For example, an association rule for a supermarket may

be “people often buy beer and diapers together in the same transaction”. The

discovery of interesting association rules can help decision-making processes in many

potential applications, such as manufacturing defect detection, catalog design, store

layout, cross-marketing, etc.

 2

(2) Sequential patterns: Mining sequential patterns attempts to find customer

purchase sequences in temporal transaction databases (sequence database), and to

predict whether there is a high probability that when customers buy some products,

they will buy some other products in later transactions. For example, a sequential

pattern for a video shop may be “a customer buys a television in one transaction;

he/she then buys a video recorder in a later transaction within a month”. As a result,

sequential patterns are also treated as inter-transaction association rules. The

discovery of interesting sequential patterns can not only model customer behaviors,

but also predict weather, identify symptoms in medicine, diagnose alarms in intrusion

detection, etc.

(3) Classifiers (classification models): Classification is the process of mining a

classifier from a set of pre-defined training data that can describe and distinguish data

classes or concepts, such that the found classifier can assign a class or concept to a

new un-defined data. In general, classification (mining a classifier) involves three

major tasks: data representation, which represents data in machine-readable structures,

classifier construction, which constructs a classifier from a set of training data, and

classifier evaluation, which evaluates classifier accuracy with a set of testing data and

in terms of various evaluation functions. Classification has been popularly applied on

document classification/management, insurance risk analysis, credit approval, medical

diagnosis, etc.

In our view of points on the evolution of knowledge discovery in database, the

first part of this dissertation will indicate the challenges from batch mining evolving

into incremental mining and propose our solutions especially for the three

above-mentioned classes of knowledge; then the second part of this dissertation will

indicate the importance from incremental mining evolving into our proposed

 3

multidimensional online mining and propose our methodologies especially for online

generation of association rules. Figure 1-1 shows the performance and storage

trade-off for batch mining, incremental mining and multidimensional online mining.

Finally, the third part of this dissertation will indicate the issues of knowledge

discovery in semiconductor manufacture and attempt to integrate incremental mining

and multidimensional online mining techniques dealing with them.

Figure 1-1: The performance and storage trade-off for batch mining, incremental

mining and multidimensional online mining

 Most of classic mining approaches process data in a batch way and must

re-process the entire updated database whenever the database is updated, since the

mined rules or patterns may become invalid or new implicitly valid rules or patterns

may appear in the resulting updated database. As a result, two drawbacks may occur

in maintaining database knowledge:

(a) Nearly the same computation time as that spent in mining the original

database is needed. It is time-consuming and unpractical when the original database is

large.

Batch miningBatch mining

Incremental miningIncremental mining

Performance

Data
maintenance

Online decision
support

Multidimensional Multidimensional
online miningonline mining

Storage cost

 4

(b) Information previously mined from the original database, such as frequent

itemsets and association rules, provides no help in the maintenance process.

 In the first part of this dissertation, we will propose some novel incremental

mining algorithms respectively for maintaining association rules, sequential patterns

and a document classifier without re-processing the original database whenever the

database is updated. The proposed algorithms continue using the common idea of

previous incremental mining algorithms that the previously mined information should

be utilized as much as possible. Furthermore, we utilize the concepts of pre-large

patterns and closed patterns to improve the performance of developed algorithms for

maintaining association rules and sequential patterns.

(a) Using the pre-large patterns to enlarge the amount of pre-stored mined

information can reduce the cost of re-processing the original database at the expense

of storage spaces, because they acts as a buffer to avoid the movements of patterns

directly from valid to invalid and vice-versa when the database maintained.

(b) Using the closed patterns instead of the pre-stored mined information can

reduce the comparison cost and redundant rules generated, because they can

determine all the pre-stored mined patterns and their exact support without loss of any

information but are orders of magnitude smaller than all pre-stored patterns.

Consequently, based on the two concepts, the CIM (Closed Itemsets Maintenance)

and CIM-P (CIM with Pre-large concept) algorithms are developed to efficiently

maintain association rules and the CSM (Closed Sequences Maintenance) and CSM-P

(CSM with Pre-large concept) algorithms are developed to efficiently maintain

sequential patterns.

As for the developed algorithm for maintaining a document classifier, in

document representation, we propose a domain-space document representation to

 5

represent documents in finite sets of domains. This representation is more compact

and representative than classical term-space document representation. Based on the

domain-space document representation, in classifier construction, we design a

feature-domain weighting table to structurally retain the weights between features and

all involved domains for later maintenances. Consequently, the domain-space

weighting scheme algorithm is developed to resolve the document representation and

categories adaptation problems.

Although incremental mining algorithms are rather efficient and useful for static

models such as mining all the data accumulated thus far and mining only a recently

collected portion of data in uncomplicated applications, they usually provide little

support for user guidance and focus (e.g., limiting the computation to what interests

the user) and user interaction (e.g., dynamically changing the parameters or

constraints). This may neither flexibly obtain rules or patterns from their interesting

portions of data, nor diversely consider problems at different aspects to provide

on-line decision supports for users.

In the second part of this dissertation, we will extend the concept of effectively

utilizing previously discovered patterns in incremental mining to support

multidimensional online mining. The concept of knowledge warehouse, which is

similar to the construction of a data warehouse for OLAP except it is not used to store

data but mined patterns, and the architecture of Online Knowledge Discovery System

(OKDS), which automatically and systematically mines patterns from data gathered in

different contexts and forwards mined patterns into the knowledge warehouse, are

proposed to help decision-makers diversely consider problems at different aspects and

provide online mining supports.

For efficiently manipulating the mining information in the knowledge warehouse,

 6

we focus on the knowledge class of association rules and design corresponding

aggregation and generalization approaches to provide online mining supports on

association rules. We first propose the multidimensional pattern relation (MPR) as a

knowledge warehouse to structurally and systematically store context information,

such as region, time and branch, and mining information, such as the set of previously

mined frequent itemsets with their supports, for each inserted block of data (each

increment of data). Based on the proposed MPR, we then develop an aggregation and

generalization approach called Three-phased Online Association Rule Mining

(TOARM) to support online generation of association rules under multidimensional

considerations. By the TOARM approach, users can therefore acquire interesting

and/or focused association rules or frequent itemsets by only integrating related

mining information in the MPR rather than mining the underlying data. In addition,

we further apply the concept of negative border to extend the mining information in

the MPR, and develop a Negative-Border Online Mining (NOM) approach based on

the extended MPR (EMPR) to improve the performance of TOARM especially for

heterogeneous blocks of data.

However, from the experimental results, we can find that the NOM approach

may take much computation time than the TOARM approach, especially when the

numbers of itemsets kept in EMPR and candidate itemsets to be considered are large.

For overcoming this problem, we thus try to use appropriate data structures to

improve the performance of the NOM approach. The lattice data structure is utilized

to organize and maintain all candidate itemsets such that the candidate itemsets with

the same proper subsets can be considered at the same time. The derived lattice-based

NOM (LNOM) approach will require only one scan of the itemsets stored in EMPR,

thus saving much computation time. In addition, a hashing technique is used to further

 7

improve the performance of the NOM approach since many itemsets stored in EMPR

may be useless for calculating the counts of candidates. At last, experimental results

show the effect of the improved NOM approaches.

In the third part of this dissertation, we will attempt to apply the proposed

incremental mining and multidimensional online mining techniques on knowledge

discovery process in semiconductor manufacture. For a semiconductor manufacturing

company, one of the most essential issues is to quickly identify root-cause

machinesets, and to meet high-yield target expectations by remedying these abnormal

machines. Therefore, we first define the root-cause machineset identification problem,

and propose the Root-cause Machine Identifier (RMI) approach using a batch-based

association rule mining algorithm to obtain candidate root-cause machinesets from a

shipment of wafer in process (WIP) data. After that, we propose the progressive RMI

(PRMI) concept, which applies incremental mining techniques to progressively

process previously mined candidate root-cause machinesets, and the multidimensional

RMI (MRMI) concept, which designs a knowledge warehouse to structurally and

systematically store the context information about a shipment and the mining

information about mined candidate root-cause machinesets from each shipment for

supporting decision-makers diversely considering problems at different aspects.

In this dissertation, we attempt to make data mining techniques more robust and

practical for real-world applications. Experiments respectively for sparse, dense,

synthetic and real datasets are made, with results showing the effectiveness and

practicality of the proposed approaches.

 8

1.2 Contribution

 In the first part of this dissertation, the major contributions are as follows:

 The concepts of pre-large patterns and closed patterns have been utilized to

improve the performance of developed algorithms for maintaining association

rules and sequential patterns.

 Two novel incremental mining algorithms called Closed Itemsets Maintenance

(CIM) and CIM with Pre-large concept (CIM-P) have been developed to

efficiently maintain association rules.

 Two novel incremental mining algorithms called Closed Sequences Maintenance

(CSM) and CSM with Pre-large concept (CSM-P) have been developed to

efficiently maintain sequential patterns.

 The domain-space weighting scheme has been developed to represent documents

in domain-space and incrementally construct a classifier to resolve the document

representation and categories adaptation problems.

In the second part of this dissertation, the major contributions are as follows:

 The concept of knowledge warehouse and the architecture of Online Knowledge

Discovery System (OKDS) have been proposed to help decision-makers

diversely consider problems at different aspects and provide online mining

services.

 For the knowledge class of association rules, the multidimensional pattern

relation (MPR) has been designed as a knowledge warehouse to structurally and

systematically store the context and mining information.

 The Three-phased Online Association Rule Mining (TOARM) approach, which

is an aggregation and generalization approach corresponding to the proposed

 9

MPR, has been developed to support online generation of association rules under

multidimensional considerations.

 The concept of negative border has been used to extend the mining information

in the MPR, and then the Negative-Border Online Mining (NOM) approach

based on the extended MPR (EMPR) has been developed to improve the

performance of TOARM especially for heterogeneous blocks of data.

 The lattice-based NOM (LNOM) approach and the hashing technique have been

developed to improve the NOM approach.

In the third part of this dissertation, the major contributions are as follows:

 Identifying root-cause machinesets, the most likely sources of defective products,

in the manufacturing processes has been defined as the root-cause machineset

identification problem of analyzing correlations between combinations of

machines.

 The Root-cause Machine Identifier (RMI) approach, which uses a batch-based

association rule mining algorithm, has been developed to provide an efficient and

effective solution for the root-cause machineset identification problem.

 The concepts of progressive RMI (PRMI), which applies incremental mining

techniques to progressively process previously mined candidate root-cause

machinesets, and multidimensional RMI (MRMI), which applies

multidimensional online mining techniques to support online generation of

candidate root-cause machinesets under multidimensional consideration, have

been proposed.

 10

1.3 Reader’s Guide

The remainder of this dissertation is organized as follows. In the first part of this

dissertation, we will propose some novel incremental mining algorithms respectively

for maintaining association rules, sequential patterns and a document classifier. The

proposed incremental mining algorithms for association rules maintenance are

described in Chapter 2; the proposed incremental mining algorithms for sequential

patterns maintenance are described in Chapter 3; and the proposed incremental

mining algorithm for a document classifier maintenance is described in Chapter 4. In

the second part of this dissertation, we will extend the concept of effectively utilizing

previously discovered patterns in incremental mining to support multidimensional

online mining. The concept of knowledge warehouse and the architecture of Online

Knowledge Discovery System (OKDS) are proposed in Chapter 5. The proposed

aggregation and generalization approaches, TOARM, NOM and LNOM, based on the

two forms of knowledge warehouse, MPR and EMPR, are described in Chapter 6. In

the third part of this dissertation, we attempt to apply the association rule mining

techniques, including classical batch-based, incremental and multidimensional online

mining algorithms on knowledge discovery process in semiconductor manufacture.

The Root-cause Machine Identifier (RMI) approach and the two concepts of

progressive RMI (PRMI) and multidimensional RMI (MRMI) are proposed in

Chapter 7. Conclusions and future work are given in Chapter 8.

 11

Chapter 2

Incremental Mining Algorithms for Association

Rules Maintenance

2.1 Introduction

Data mining technology has become increasingly important in the field of large

databases and data warehouses. This technology helps discover non-trivial, implicit,

previously unknown and potentially useful knowledge, thus being able to aid

managers in making good decision [4][18][38]. Among various types of databases and

mined knowledge, mining association rules [3][5] from transaction databases is the

most interesting and popular. In general, the process of mining association rules can

roughly be decomposed into two tasks: finding frequent itemsets satisfying the

user-specified minimum support threshold from a given database and generating

interesting association rules satisfying the user-specified minimum confidence

threshold from found frequent itemsets. Since the first task is very time-consuming

when compared to the second one, the major challenges in mining association rules

thus focus on how to reduce the search space and decrease the computation time in

the first task. Some famous mining approaches, such as Apriori [5], DIC [16], DHP

[67], Partition [78], Sampling [61] and FP-Growth [40][95], have been proposed.

In real-world applications, a database grows over time such that existing

association rules may become invalid or new implicitly valid association rules may

appear. Recently, some researchers [8][20][21][27][43][44][77] have developed

 12

incremental mining algorithms to maintain association rules without reprocessing the

entire updated database. The common idea of these researches lies in that, the

previously mining information such as mined frequent itemsets are stored in advance;

when new transactions are inserted, (a) a large portion of candidate itemsets can be

decided using the pre-stored mined frequent itemsets; (b) only a small portion of

candidate itemsets obtained from the new transactions without sufficient information

needs to be reprocessed against the original database. Task (a) is responsible for

updating previously mined frequent itemsets (known association rules), and Task (b)

is responsible for finding new frequent itemsets (unknown association rules). Much

computation time can thus be saved in this way.

However, for a dense database such as census data and DNA sequences or a low

minimum support threshold, the computation cost of Task (a) will be getting

tremendous due to a huge amount of previously mined frequent itemsets. For example,

a frequent 30-itemset (a frequent itemset consisting of 30 items) implies the presence

of 230-2 additional frequent itemsets as well. The performance of classically

incremental mining algorithms will degrade dramatically. On the other hand, one scan

of original database is required for dealing with Task (b) by most incremental mining

algorithms. When the original database is massive, this will result in excessive I/O

cost. As a result, in this study, we attempt to utilize the concepts of closed itemsets

and pre-large itemsets to overcome the two challenges, respectively.

 In a dense database, many itemsets usually appear together, and we can

consider them together. The concept of closed itemsets [68], which is denoted as the

itemsets having no proper superset with the same support, can be treated as a lossless

compression for all itemsets in the database. It can also reduce redundant rules

generated [104]. Therefore, using the set of frequent closed itemsets instead of the set

 13

of frequent itemsets from the original database as the pre-stored mining information

can increase both efficiency and effectiveness of an incremental mining algorithm.

The set of frequent closed itemsets can easily determine all the frequent itemsets and

their exact supports, and its order of magnitude is smaller than the set of all frequent

itemsets for dense databases.

In general, the number of newly inserted transactions is much smaller than the

number of records in the original database. Only the candidate itemsets whose

supports are slightly less than the minimum support threshold in the original database

are possible to be frequent after database maintenances. The concept of pre-large

itemsets [43] is denoted as the set of itemsets having support between a lower support

threshold, which is smaller than the given minimum support threshold, and an upper

support threshold, which is equal to the given minimum support threshold. Therefore,

using the pre-large closed itemsets to enlarge the amount of pre-stored frequent closed

itemsets can reduce the cost of reprocessing the entire database at the expense of

storage spaces. This is because they act as a buffer to avoid the movement of a closed

itemset directly from infrequent to frequent and vice-versa during the incremental

mining process.

Although using the concept of closed itemsets can effectively reduce the number

of itemsets considered, some closed itemsets for the updated database called joint

closed itemsets, which was not closed itemsets in both the original database and the

newly inserted transactions before, cannot be determined by above-mentioned Tasks

(a) and (b) of a classically incremental mining algorithm such that some valid

association rules may be lost. We thus propose a novel incremental mining algorithm

called Closed Itemsets Maintaining (CIM) to extend Tasks (a) and (b) that can

sufficiently and efficiently find all up-to-date association rules for the updated

 14

database. Task (a) of the CIM algorithm is responsible for extracting the joint closed

itemsets which was absorbed (closed) by the pre-stored frequent closed itemsets in

the original database before, and updating them and all the pre-stored frequent closed

itemsets against the newly inserted transactions. Task (b) of the CIM algorithm is

responsible for generating the candidate itemsets for the updated database which has

not been determined in Task (a), and rescanning them against the original database.

Furthermore, based on the concept of pre-large itemsets, we propose the CIM-P (CIM

with Pre-large concept) algorithm to reduce the cost of Task (b) in the CIM algorithm.

Also, we design the bucketing strategy to improve the utility of buffer in the CIM-P

algorithm. The consumption of buffer can be rigidly calculated using the maximum

value of buckets.

2.2 Related Work

2.2.1 Closed itemsets mining approaches

The major challenge in mining association rules is to reduce the search space and

decrease the computation time required for mining frequent itemsets. The Apriori

algorithm [5], which is the most well-known, utilizes a level-wise candidate

generation approach to reduce its search space such that only frequent itemsets found

in the previous level are treated as seeds for generating candidate itemsets in the

current level. Many later algorithms [16][53][61][67][78][95] were based on this

property and attempted to further reduce candidate itemsets and I/O costs. However,

this Apriori property can not work well for dense databases or a low minimum support

threshold. This is because most generated candidate itemsets are also frequent

itemsets such that the number of frequent itemsets will grow up explosively; the

performance of an Apriori-like algorithm thus degrades dramatically.

 15

Some researchers have then developed closed itemsets mining algorithms to

reduce the number of itemsets generated. Examples include A-close [68], CLOSET

[69], CLOSET+ [86] and CHARM [104]. The A-close algorithm is an Apriori-like

algorithm using a breadth-first search manner to find frequent closed itemsets directly.

However, breadth-first searches may encounter difficulties since there could be many

candidates generated and need to scan the database many times. The CLOSET

algorithm, an extension of the FP-growth algorithm, uses a depth-first search

(recursive divide-and-conquer) manner and a database-projection approach to mine

long patterns from the FP-tree (frequent pattern tree) structure representing all

transactions of database. However, the CLOSET algorithm may suffer from a sparse

database or a low minimum support threshold. An enhancement of the CLOSET

algorithm, the CLOEST+ algorithm, thus combines various known search manners

and closure-testing strategies to improve the performance of CLOSET. The CHARM

algorithm uses a dual itemsets-tidset search tree and the Diffset technique to

enumerate closed itemsets from a vertical-layout database.

2.2.2 Incremental mining approaches

Conventional batch-mining algorithms do not utilize previously mined patterns

for later maintenance, and may require considerable computation time to reprocess the

entire updated database to get all up-to-date association rules. Some researchers have

developed incremental mining algorithms to maintain association rules without

reprocessing the entire database whenever the database is updated. Examples include

the FUP-based algorithms [20][21], an adaptive algorithm [77], an incremental

mining algorithm based on the concept of pre-large itemsets [43], and an incremental

updating technique based on the concept of negative border [27][85]. The common

 16

idea of these researches lies in that, the previously mining information such as mined

frequent itemsets are stored in advance; when new transactions are inserted, a large

portion of candidate itemsets can be decided by using the pre-stored frequent itemsets;

only a small portion of candidate itemsets obtained from the new transactions needs to

be reprocessed against the original database. Much computation time can thus be

saved in this way. The correctness of this idea is simply illustrated as follows.

Considering an original database and the newly inserted transactions, there are

four cases of candidate itemsets shown in Figure 2-1 may arise:

 Case 1: A candidate itemset is frequent in both the original database and the

newly inserted transactions;

 Case 2: A candidate itemset is frequent in the original database but

infrequent in the newly inserted transactions;

 Case 3: A candidate itemset is infrequent in the original database but

frequent in the newly inserted transactions;

 Case 4: A candidate itemset is infrequent in both the original database and

the newly inserted transactions.

Figure 2-1: Four cases of candidate itemsets









4 3
2 1

CaseCase
CaseCaseFrequent

itemsets

Frequent
itemsets

Original
database

New
transactions

Infrequent
itemsets

Infrequent
itemsets

 17

Among the cases, since candidate itemsets in Case 1 are frequent in both the

original database and the new transactions, they are still frequent after the weighted

average of the supports; similarly, candidate itemsets in Case 4 are still infrequent

after the new transactions are inserted. Cases 1 and 4 will not affect the final

association rules; Case 2 may remove existing association rules; and Case 3 may

generate new association rules.

Cheung and his co-workers proposed an incremental mining algorithm, called

FUP (Fast UPdate algorithm) [20][21], to efficiently cope with these four cases by

pre-storing the previously mined frequent itemsets from the original database. It

handles Cases 1, 2 and 4 by updating the pre-stored frequent itemsets against the

newly inserted transactions, and reprocesses only the itemsets without sufficient

information in Case 3 against the original database if necessary.

The performance of the FUP algorithm will get degraded if a lot of candidate

itemsets from the newly inserted transactions belong to Case 3. Thomas et al. [85] and

Feldman et al. [27] thus utilized the concept of negative border [67] to enlarge the

amount of pre-stored mining information in the FUP algorithm for improving the

maintenance performance. A negative border of frequent itemsets can be easily

formed by excluding the set of frequent itemsets from the set of candidate itemsets

generated level by level. In other words, the negative border consists of the itemsets

which are candidates but do not have enough supports. The processing time for Case

3 in the FUP algorithm can be reduced by additionally keeping the negative border of

frequent itemsets. Similarly, Hong et al. [43] proposed the concept of pre-large

itemsets to enlarge the amount of pre-stored mining information for improving the

maintenance performance. The proposed algorithm does not need to reprocess the

 18

original database until a number of new transactions have been inserted.

2.3 Preliminary Concepts

Let I = {i1, i2, …, im} be a set of m items. A subset X of I consisting of k items is

called a k-itemset. Let D be a transactional database consisting of a set of transactions,

where each transaction T consisting of a set of items of I is associated with an

identifier called TID, and |D| denotes the number of transactions in D. A transaction T

is said to contain X if and only if X ⊆ T. The support of an itemset X, X.sup, in D is

denoted as the percentage of transactions in D which contain X; the support count of X,

X.count, in D is denoted as the number of transactions in D which contain X, X.count

= X.sup * |D|. For the itemsets in D, X is called a closed itemset if there does not exist

an itemset Y which closes (absorbs) X, where an itemset Y is said to close (absorb) X

iff X ⊆ Y and X.sup = Y.sup (X.count = Y.count). CI denotes the set of all closed

itemsets in D. Furthermore, if there is no superset of X existing in D, X is also called a

maximal itemset.

An association rule is an implication of the form X ⇒ Y, where X and Y are

subset of I, and X∩Y = φ. The support of a rule X ⇒ Y, (X∪ Y).sup, in D is denoted as

the percentage of transactions in D which contain X∪ Y, and the confidence of X⇒Y

is computed by (X∪ Y).sup/X.sup. Given the user-specified minimum support

threshold, minsup, and minimum confidence threshold, minconf, the problem of

mining association rules is to find out all association rules in D that have support and

confidence larger than minsup and minconf, respectively. With respect to the minsup,

the set of frequent itemset, FI, includes all the itemsets whose support is larger than

minsup; the set of infrequent itemset, NI, includes all the itemsets whose support is

less than minsup; the set of frequent closed itemset, FCI, includes all the closed

 19

itemsets whose support is larger than minsup, FCI = {x|x ∈ CI, x.sup ≥ minsup}; and

the set of infrequent closed itemset, NCI, includes all the closed itemsets whose

support is less than minsup, NCI = {x| x ∈ CI – FCI}. Note that FCI includes no

itemset which has a superset with the same support, and thus FCI ⊆ FI. The problem

of mining association rules can be reduced to the problem of finding FI or FCI in D.

Let d be an increment of new transactions which is inserted into the original

database D, |d| be the number of transactions in d, D+ be the updated database which

denotes D ∪ d, and |D+| be the number of transactions in D ∪ d. Therefore, FID, FId

and CI D+ denote the FI obtained from D, d and D+ with respect to the same minsup,

respectively, and FCI, NI, NFCI or CI obtained from D, d and D+ can have similar

meanings. The problem of maintaining association rules is to find FID+ or FCID+. Let

the set of original frequent itemsets, O, be defined as O = {x|x ∈ FID}, and the set of

potential frequent itemsets, P, be defined as P = {x|x ∈ FId − FID}. By definition, an

itemset X ∈ FID+ must belong to O ∪ P, and thus the problem of maintaining

association rules is equivalent to processing O ∪ P. Similarly, let the set of closed

original frequent itemsets, CO, be defined as CO = {x|x ∈ FID and x ∈ CID+}, and the

set of closed potential frequent itemsets, CP, be defined as CP = {x|x ∈ FId − FID and

x ∈ CID+}. The problem of maintaining association rules is also equivalent to

processing CO ∪ CP. The set of joint closed itemsets, JCI, which is defined as JCI =

{x|x = y ∩ z, y ∈ CID, z ∈ CId}, is proposed in this study and can be divided into four

parts based on FCID, FCId, NCID and NCId:

 FFJCI = {x|x = y ∩ z, y ∈ FCID, z ∈ FCId};

 FNJCI = {x|x = y ∩ z, y ∈ FCID, z ∈ NCId};

 NFJCI = {x|x = y ∩ z, y ∈ NCID, z ∈ FCId};

 20

 NNJCI = {x|x = y ∩ z, y ∈ NCID, z ∈ NCId}.

2.4 Closed Itemsets Maintenance

 Considering an original database D and the newly inserted transactions d, there

are four cases of candidate itemsets for the updated database D+ have been discussed

in Section 2. With pre-storing previously mined frequent itemsets FID, a typically

incremental mining process can efficiently cope with these four cases by two steps: (a)

updating O against d and (b) reprocessing P against D. Following this idea, we can

use two similar steps: (a) updating CO against d and (b) reprocessing CP against D

to find out FCID+ dealing with the problem of maintaining association rules. However,

directly obtaining CO = {x|x ∈ FID and x ∈ CID+} and CP = {x|x ∈ FId − FID and x ∈

CID+} is impractical because CID+ is unknown before processing D+. In the following,

we attempt to utilize the pre-stored known information FCID from D and the

information FCId obtained from d to approach CO and CP.

Lemma 2-1: If x ∈ CID ∪ CId, then x ∈ CID+.

Proof: We prove the lemma by contradiction. If x ∉ CID+, there must exist a

proper superset y of x such that y.supD+ = x.supD+, i.e., y.supD*|D| + y.supd*|d| =

x.supD*|D| + x.supd*|d|. Thus y.supD = x.supD and y.supd = x.supd, contradicting the

claim that x ∈ CID ∪ CId. Thus, x ∈ CID+.

Let FCId-D denote FCId – FCID. According to Lemma 2-1, we have FCID ⊆ CID

⊆ CID+ and FCId-D ⊆ CId ⊆ CID+. FCID and FCId-D are both closed itemsets in D+. If

an incremental mining algorithm can utilize FCID and FCId to obtain CO and CP, the

problem of maintaining association rules in a dense database can be efficiently coped

with. We first discuss the differences between FCID and CO and between FCId-D and

CP. For example, given D = {ABCE, CD, BCE}, d = {ABCDE, CDE} and minsup =

 21

0.6, FID = {B, C, E, BC, BE, CE, BCE}, FId = {C, D, E, CD, CE, DE, CDE}, FCID =

{C, BCE} and FCId = {CDE}. By definitions, FCId-D = {CDE}, CO = {C, CE, BCE}

and CP = {CD, CDE}. As shown in this example, there exist some closed itemsets in

CID+ but not in CID or CId, such that FCID and FCId-D may be not equivalent to CO

and CP. The following lemmas are used to derive the set of joint closed itemsets (JCI)

which are closed itemsets for D+ but can not be determined by FCID and FCId-D.

Lemma 2-2: If x ∈ JCI, then x ∈ CID+.

Proof: If x ∈ JCI, x must be one of following two cases.

Case 1: If x ∈ CID ∪ CId, then x ∈ CID+ according to Lemma 2-1;

Case 2: If x ∉ CID ∪ CId, there exist y ∈ CID and z ∈ CId such that x ⊂ y, x ⊂ z,

and x is closed by both y and z. We prove this case by contradiction. If x ∉ CID+, there

must exist a proper superset x’ of x such that x’.supD+ = x.supD+, i.e., x’.supD*|D| +

x’.supd*|d| = x.supD*|D| + x.supd*|d| = y.supD*|D| + z.supd*|d|. Thus x’ ⊂ y, x’ ⊂ z

(because x’.supD = y.supD and x’.supd = z.supd) and x’ = y ∩ z, contradicting the claim

that x ∈ JCI. Thus, x ∈ CID+.

Lemma 2-3: If x ∈ CID+, then x ∈ CID ∪ CId ∪ JCI.

Proof: If x ∈ CID+ and x ∉ CID ∪ CId, x must be closed in both D and d. Assume

y is the itemset that closes x in D and z is the itemset that closes x in d. Then x.supD+ *

|D+| = y.supD * |D| + z.supd * |d|. If y ⊆ z, x is belonging to Case 1 of Lemma 2-2,

contradicting the claim that x ∉ CID; if z ⊆ y, x is also belonging to Case 1 of Lemma

2-2, contradicting the claim that x ∉ CId. Thus y ⊆/ z and z ⊆/ y. According to Case

2 of Lemma 2-2, there must exist x’ = y ∩ z and x’ ∈ CID+. If x ⊂ x’, x is closed by x’

(because x’.supD+ = x.supD+), contradicting the claim that x ∈ CID+. Thus, x = x’ and x

∈ JCI.

 22

Theorem 2-1: CID+ = CID ∪ CId ∪ JCI.

Proof: According to Lemmas 2-1 and 2-2, we have (CID ∪ CId ∪ JCI) ⊆ CID+.

On the other hand, according to Lemma 2-3, we have CID+ ⊆ (CID ∪ CId ∪ JCI).

Thus, CID+ = CID ∪ CId ∪ JCI.

Considering an original database and the newly inserted transactions, JCI can be

divided into four parts based on FCID, FCId, NCID and NCId as shown in Figure 2-2:

Figure 2-2: Four cases of joint closed itemsets

 The case of FFJCI: A closed itemset is frequent in both the original

database and the newly inserted transactions;

 The case of FNJCI: A closed itemset is frequent in the original database but

infrequent in the newly inserted transactions;

 The case of NFJCI: A closed itemset is infrequent in the original database

but frequent in the newly inserted transactions;

 The case of NNJCI: A closed itemset is infrequent in both the original

database and the newly inserted transactions.

Since the closed itemsets in FFJCI are frequent in both the original database and

the new transactions, they will still be frequent in the updated database. Similarly, the









NNJCINFJCI
FNJCIFFJCI

FCId

Original
database

New
transactions

NCId

FCID

NCID

 23

closed itemsets in NNJCI will still be infrequent in the updated database. FFJCI and

NNJCI will not affect the final association rules. FNJCI may remove existing

association rules, and NFJCI may add new association rules.

According to Theorem 2-1, the following theorems are derived to obtain CO and

CP by FCID, FCId, FFJCI, FNJCI and NFJCI.

Theorem 2-2: CO = {x|x ∈ FCID ∪ FFJCI ∪ FNJCI}.

Proof: By definition, CO collects the closed itemsets for D+ which is generated

from FID. According to Theorem 2-1, CO = {x|x ∈ FID and x ∈ CID+} = {x|x ∈ FID

and x ∈ CID ∪ CId ∪ JCI } = {x|x ∈ FCID ∪ FFJCI ∪ FNJCI}.

Theorem 2-3: CP = {x|x ∈ (FCId − FFJCI) ∪ NFJCI}.

Proof: By definition, CP collects the closed itemsets for D+ which is generated

from FId−FID. As known in Theorem 2-2, FCId ∪ FFJCI ∪ NFJCI is the set of closed

itemsets for D+ which is generated from FId. Thus CP = {x|x ∈ FId − FID and x ∈

CID+} = {(FCId ∪ FFJCI ∪ NFJCI) − (FCID ∪ FFJCI ∪ FNJCI)) = {x|x ∈ FCId ∪

FFJCI ∪ NFJCI – FFJCI} = {x|x ∈ (FCId − FFJCI) ∪ NFJCI}.

In contrast to the definitions of CO and CP, Theorems 2-2 and 2-3 provide a

convenient way to obtain CO and CP. For CO, FFJCI and FNJCI can be obtained by

processing the pre-stored mining information FCID against d. For CP, however,

since NFJCI has to be generated from NCID, which is usually unknown in a typically

incremental mining process, the cost is too expensive to be acceptable. As a result,

given a function cover(FFJCI, FId) denoting the itemsets in FId which are covered

by FFJCI, the following theorem is derived to obtain CP.

Theorem 2-4: CP = {x|x ∈ FId – cover(FFJCI, FId), x ∈ CID+}.

Proof: By definition, the FFJCI covers the itemsets which are included both in

FId and FID. Thus CP = {x|x ∈ FId − FID and x ∈ CID+} = {x|x ∈ FId – cover(FFJCI,

 24

FId), x ∈ CID+}.

Corollary 2-1: CP ⊆ {FId – cover(FFJCI, FId)}

Since FFJCI has been obtained in CO generation, we only need to find FId and

remove the itemsets in FId which have been determined in FFJCI as candidates for

CP. It seems to be a better way to generate the itemsets of FCID+ which are not

included in the CO.

2.5 The Closed Itemsets Maintaining (CIM) Algorithm

We develop a novel incremental mining algorithm mainly consisting of

CO_generation and CP_generation subroutines, called Closed Itemsets Maintaining

(CIM), to efficiently find FCID+. Also, an in-memory data structure called Closed

Maintenance Tree (CMT) is proposed in the CIM algorithm to facilitate the processes

of CO_generation and CP_generation subroutines. The CIM algorithm first updates

the itemsets in the CMT against d to obtain CO by the CO_generation subroutine.

Then, by the CP_generation subroutine, it generates candidate itemsets for the

itemsets of FCID+ which have not been determined in the CO_generation subroutine.

Finally, by reprocessing these obtained candidate itemsets against D and checking

their closure property, the CIM algorithm can find FCID+ from the CMT. Details of

the CMT data structure, the CO_generation and CP_generation subroutines are

described in Section 2.5.1 to Section 2.5.3.

The CIM algorithm(CMT, D, d, minsup)
Parameters:
 CMT: A closed maintenance tree;
 D: An original database;
 d: A set of newly inserted transactions;
 minsup: A minimum support threshold.

 25

Begin
 Set FFJCISet = φ; /* FFJCISet is a set used to store the

itemsets of FFJCI. */
 Set Cand = φ; /* Cand is a set used to store candidate

itemsets for FCID+. */
CO_generation subroutine(CMT, d, minsup, FFJCISet, Cand);

 Set F1dD+ = φ; /* F1dD+ is a set used to store the frequent
1-itemsets in both d and D+. */

 Set mincountD+ = minsup * (|D| + |d|);
 Obtain_frequent_items(CMT, mincountD+, F1dD+);
 /* Obtain F1dD+ from CMT. */
 CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1dD+, CMT.root);
 Reprocess_Cand(CMT, Cand, D); /* Reprocess obtained candidate k-itemsets

(k ≥ 2) in CMT against D. */
 Check_Closure_Cand(CMT, Cand); /* Check closure property for all candidates

itemsets in CMT. */
 Remove_NCI(CMT, mincountD+); /* Remove the closed itemsets in CMT

whose support counts are less than
mincountD+. */

 Output_FCI(CMT); /* Output FCID+ for D+.*/
End.

Figure 2-3: The CIM algorithm

Theorem 2-5: The CIM algorithm can correctly obtain FCID+.

Proof: As mentioned above, an incremental mining algorithm can use two steps:

updating CO against d and reprocessing CP against D to find out FCID+ dealing with

the problem of maintaining association rules. According to Theorem 2-2 and

Corollary 2-1, since the CIM algorithm can maintain CO and candidate itemsets for

CP in the CMT by the CO_generation and CP_generation subroutines, the CIM

algorithm can correctly obtain FCID+ from the CMT.

2.5.1 The Closed Maintenance Tree (CMT)

 26

A Closed Maintenance Tree (CMT) which is a tree structure like a prefix tree [1]

is constructed as follows. For each itemset x, a corresponding node vx is built in the

CMT. Each node maintains its corresponding itemset with support count, denoted as

(itemset, support count). For each pair of nodes vx and vy corresponding to itemsets x

and y, there is a directed edge from vx to vy if x is a parent of y. x is said to be a parent

of y if y can be obtained by adding a new item to x, and inversely, y is said to be a

child of x. Therefore, an itemset has only one parent and more than one child in the

constructed CMT. Note that, the itemsets in a CMT are usually maintained in lexical

order, and for saving the storage space, each node maintains only the suffix of an

itemset which is regarding the itemset in its parent node. There are three types of

nodes in a CMT:

 Closed nodes: the nodes represent the itemsets in FCID;

 Prefix-unclosed nodes: the nodes represent the common prefixes of closed

nodes;

 Infrequent nodes: the nodes represent infrequent 1-itemsets in D.

Among them, in particular, prefix-unclosed nodes are used to improve the

searching performance of CMT, and infrequent nodes are used to reduce useless item

combinations in the CP_generation subroutine.

Table 2-1: A transactional database

TID Items
100 A, C, D
200 B, C, E
300 A, B, C, E
400 B, E

Example 2-1: Given a transactional database as shown in Table 2-1, Figure 2-4

shows an example of CMT based on minsup = 0.5. The prefix-unclosed node (B, 3)

 27

and the closed node (CE, 2) stand for the closed itemset (BCE, 2); (B, 3) and (E, 3)

stand for the closed itemset (BE, 3). The CMT maintains only one infrequent node (D,

1).

Figure 2-4: A closed maintenance tree (CMT)

2.5.2 The CO_generation Subroutine of the CIM Algorithm

The CO_generation subroutine is responsible for processing FCID against d to

find FFJCI and FNJCI, thus obtaining CO. In that, finding FNJCI is the most

concerned because most itemsets in NId are irrelative and useless. In order to reduce

useless item combinations of NId, the CO_generation subroutine adopts the

branch-wise processing strategy to process a given CMT against d as follows. The

CO_generation subroutine operates from the most left branch to the most right branch

in the CMT. If a branch consists of only one item x maintained in an infrequent node

vx, the CO_generation subroutine updates x’s support count against d, and keeps x in a

set used to store candidate itemsets for FCID+ if x’s support count is not less than

minsup*|D+|. Detailed usage of this candidate set will be described in Section 5.3.

Otherwise, for each of the other branches, which consists of closed nodes, the

CO_generation subroutine uses the items belonging to the branch, i.e., the items of

the maximal itemset in the branch, as seeds to mine the closed itemsets in d by a

(D, 1)(B, 3)

(CE, 2)

(AC, 2)

root

(C, 3)

(E, 3)

: Prefix-unclosed node
: Closed node
: Infrequent node

 28

closed itemsets mining approach (such as the CHARM algorithm). Moreover, a

checking mechanism is used to reduce duplicate item combinations which have been

considered by a processed branch. Since the CO_generation subroutine considers

only the items in a branch at a time, useless item combinations belonging to NId can

be effectively reduced. The performance of CO_generation subroutine is greatly

improved. After all branches have been processed, the CO_generation subroutine then

updates found itemsets against CMT to obtain CO. Assume y is an itemset in the

CMT, z is one of the found itemsets in d, and x = y ∩ z. The CO_generation

subroutine can find FFJCI and FNJCI by updating x with support count calculated by

y’s support count + z’s support count. The updated CMT thus contains the entire CO.

CO_generation subroutine(CMT, d, minsup, FFJCISet, Cand)
Parameters:

CMT: The closed maintenance tree;
d: The newly inserted transactions;
minsup: The minimum support threshold;
FFJCISet: The set used to store the itemsets of FFJCI;
Cand: The set used to store candidate itemsets for FCID+.

Begin
 Set T = φ; /* T is a set used to store the mining results

by the branch-wise processing strategy. */
 for each item ai only appears d, do /* Insert each new item ai in CMT. */

insert ai with ai.count = 0 into CMT;
for each branch bi ∈ CMT, do

if bi consists of only one infrequent item x, then
update x.count against d; /* x.count denotes x’s support count. */
if x.count ≥ minsup*|D+|, then

insert x with x.count into Cand;
else if bi ≠ null and bi is not contained by a processed branch bj, then

 Closed_itemset_mining(bi, d, T); /* Execute a closed itemsets mining
algorithm and store mining results into T. */

 y = CMT.get_first_CI(); /* Fetch the first closed itemset by lexical

 29

order in CMT. */
 z = T.get_first_CI(); /* Fetch the first closed itemset by lexical

order in T. */
while y ≠ null and z ≠ null, do

if y = z, then
y.count = y.count + z.count;
if z.count ≥ minsup*|d|, then

insert y with y.count into FFJCISet;
 y = CMT.get_next_CI(y); /* Fetch the next closed itemset by lexical

order in CMT. */
 z = T.get_next_CI(z); /* Fetch the next closed itemset by lexical

order in T. */
else if y ∩ z = y, then

y.count = y.count + z.count;
if z.count ≥ minsup*|d|, then

insert y with y.count into FFJCISet;
y = CMT.get_next_CI(y);

else if y ∩ z = z then
if z.count ≥ minsup*|d|, then

insert z with (y.count + z.count) into FFJCISet;
z.count = y.count + z.count;
insert z with z.count into CMT;
z = T.get_next_CI(z);

 else if y ∩ z = x and x ≠ null then /* x ⊂ y and x ⊂ z. */
if CMT.exist(x) = false, then

x.count = y.count + z.count;
insert x with x.count into CMT;
if z.count ≥ minsup*|d|, then

insert x with x.count into FFJCISet;
y = CMT.get_next_CI(y);

 else if (y.count + z.count) > x.count, then
x.count = y.count + z.count;
if z.count ≥ minsup*|d|, then

insert x with x.count into FFJCISet;
y = CMT.get_next_CI(y);

End.
Figure 2-5: The CO_generation subroutine

 30

Theorem 2-6: The algorithm of CO_generation subroutine can correctly obtain

CO.

Proof: For a branch of the given CMT, by using the items of the branch as seeds

to process d, the CO_generation subroutine can find the closed itemsets in d which

are subsets of one of the frequent closed itemsets in the branch. After all branches

have been processed, it is easily seen that these found closed itemsets in d can be used

to obtain the entire FFJCI ∪ FNJCI by updating them against the frequent closed

itemsets in the CMT. The updated CMT thus contains the entire FCID ∪ FFJCI ∪

FNJCI.

Table 2-2: The newly inserted transactions

TID Items
500 B, C, D
600 C, D

Figure 2-6: An example of branch-wise processing strategy in the CO_generation

subroutine

Figure 2-7: An example of updating process in the CO_generation subroutine

(D, 1)(B, 3)

(CE, 2)

(AC, 2)

root

(C, 3)

(E, 3)

C, D600

B, C, D500

ItemsTID

C, D600

B, C, D500

ItemsTID

Closed itemsets mining with
branch-wise processing strategy

C

BE

(BC, 1), (C, 2)BCE

(C, 2)AC

Mining resultsBranch

C

BE

(BC, 1), (C, 2)BCE

(C, 2)AC

Mining resultsBranch

(D, 3)(B, 4)

(C, 3)

(AC, 2)

root

(C, 5)

(E, 3)

(E, 2)

(D, 3)(B, 3)

(CE, 2)

(AC, 2)

root

(C, 3)

(E, 3)

Updating process

(BC, 1), (C, 2)BCE

(C, 2)AC

Mining resultsBranch

(BC, 1), (C, 2)BCE

(C, 2)AC

Mining resultsBranch

 31

Example 2-2: When new transactions shown in Table 2-2 have been inserted

into Table 2-1, the CO_generation subroutine first considers the most left branch of

{AC} in Figure 2-4 and uses {A} and {C} as seeds to mine the closed itemsets in d.

Then, the branches with maximal itemsets {BCE}, {BE}, {C} and {D} are processed

in turn. Mining results are shown in Figure 2-6, where the branches with {BE} and {C}

can be ignored because related item combinations have been processed by the branch

with {BCE}. After all branches have been processed, the CO_generation subroutine

then updates mining results against CMT. The updated CMT is shown in Figure 2-7,

where the itemsets {B}, {C} and {BC} are belonging to FFJCI, and the itemset {D}

is a candidate itemset for FCID+.

2.5.3 The CP_generation Subroutine of the CIM Algorithm

According to Corollary 1, the CP_generation subroutine can find FId and then

remove the itemsets in FId which have been covered by FFJCI as candidates for CP

(i.e. {FId – cover(FFJCI, FId)}), but this indirect way may require an excessive

computation cost for a large size of FId and generate many candidate itemsets

irrelative to FCID+. As a result, the CP_generation subroutine adopts a more effective

and efficient candidate generation dealing with candidate generation. Let F1dD+

denote the frequent 1-itemsets in both d and D+, and Cand1 denote the 1-itemsets

which are infrequent in D but frequent in D+. They can be easily obtained from the

updated CMT after the CO_generation subroutine. The CP_generation subroutine

attempts to combine the found itemsets of FFJCI and Cand1 with ones of F1dD+, to

directly generate k-itemsets (k ≥ 2) as candidates for FCID+ as follows. The

CP_generation subroutine uses a depth-first and left-to-right search manner in the

 32

CMT to generate the other candidates. When meeting an itemset x of FFJCI in the

CMT, the CP_generation subroutine combines x with one of F1dD+ to form a new

itemset x’. If x’ is not covered by FFJCI (i.e. x’ is not a subset of an itemset in FFJCI)

and frequent in d, x’ is a new candidate itemset and a corresponding node vx’ is built

in the CMT. On the other hand, when meeting an itemset y of Cand1 or of new

candidates generated before, the CP_generation subroutine does a similar

combination-and-test to generate a new candidate itemset y’ and build a

corresponding node vy’ in the CMT. These two FFJCI–based and Cand–based

candidate generations continue until no new candidate itemsets are generated.

CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1dD+, x)
Parameters:

CMT: The closed maintenance tree;
d: The newly inserted transactions;
minsup: The minimum support threshold;
FFJCISet: The set used to store the itemsets of FFJCI;
Cand: The set used to store candidate itemsets for FCID+;
F1dD+: The set used to store frequent 1-itemsets in both d and D+;
x: A variable.

Begin
if x = CMT.root, then

for each child ci of x, do
CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1dD+, ci);

else if x ⊆ FFJCISet or x ⊆ Cand, then
for each zi ∈ F1dD+ and the lexical order of zi is after that of the first item of x, do

 x’ = combine(x, zi); /* Attempt to generate new candidate
itemsets for FCID+. */

if x’ ≠ null, then
if cover(FFJCISet, x’) ≠ null, then continue;

/* If x’ is covered by FFJCISet. */
update x’.count against d;
if x’.count ≥ minsup*|d|, then

insert x’ with x’.count into CMT and Cand;

 33

for each child ci of x, do
CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1dD+, ci);

End.
Figure 2-8: The CP_generation subroutine

Theorem 2-7: The algorithm of CP_generation subroutine can correctly

generate candidate itemsets for the itemsets of FCID+ which have not been determined

in the CO_generation subroutine.

Proof: It is obvious that only the itemsets of FId which are enumerated from

F1dD+ are possible to be contained in FCID+. The number of itemsets of {FId –

cover(FFJCI, FId)} can be further reduced regarding FCID+. Since the entire F1dD+

can be obtained by collecting the 1-itemsets covered by FFJCI and the itemsets of

Cand1, the CP_generation subroutine can directly, without loss of information,

generate the candidate itemsets for the itemsets of FCID+ which have not been

determined in the CO_generation subroutine by combining FFJCI with F1dD+ and

Cand with F1dD+, respectively. Among them, the FFJCI–based candidate generation

can avoid the item combinations which have been covered by the found itemsets of

FFJCI.

(D, 3)(B, 4)

(C, 3)

(AC, 2)

root

(C, 5)

(E, 3)

(E, 2)

(D, 1)

(D, 1)

(D, 1)

(D, 3)(B, 4)

(C, 3)

(AC, 2)

root

(C, 5)

(E, 3)

(E, 2)

CD9

BCD6

10

8

7

5

4

3

2

1

Processed
order

D

CDC

BCE

BE

BD

BCDBC

BDB

AC

New generated
candidates

Node

CD9

BCD6

10

8

7

5

4

3

2

1

Processed
order

D

CDC

BCE

BE

BD

BCDBC

BDB

AC

New generated
candidates

Node

Candidate
generation

 34

Figure 2-9: An example of CP_generation subroutine

Example 2-3: Continue from Example 2-2. After the CO_generation subroutine,

FFJCI = {B, BC, C}, Cand1 = {D} and F1dD+ = {B, C, D}. As shown in Figure 2-9,

the CP_generation subroutine mainly generates candidate itemsets as follows. It first

combines {B} of FFJCI with one of F1dD+ to form valid candidate itemsets. This will

generate the candidate itemset {BD}. Then {BC} and {C} of FFJCI are processed as

well to generate the candidate itemsets {BCD} and {CD}, respectively.

2.6 The CIM Algorithm with Pre-large Concept: CIM-P Algorithm

Although the CIM algorithm focuses on the newly inserted transactions d and

thus saves much processing time in maintaining association rules, it has to reprocess

the original database D to handle the candidate itemsets generated by the

CP_generation subroutine. This situation may occur frequently, especially when d is

heterogeneous with D. For example, suppose {A}, {B} and {AB} are the entire CO

and {C}, {D} and {CD} are the candidate itemsets. The final results can not be

determined without reprocessing {C}, {D} and {CD} against D. If the candidate

itemsets could be decided without reprocessing D at each time, the maintenance time

could be further reduced.

In general, the number of records in d is much smaller than the number of

records in D. Only the closed itemsets whose supports are slightly less than minsup in

D are possible to be frequent for D+ after database maintenances. The concept of

pre-large closed itemsets is denoted as the set of closed itemsets having support

between a lower support threshold, which is smaller than minsup, and an upper

 35

support threshold, which is equal to minsup. Pre-large closed itemsets are not truly

frequent at present but more possible to be frequent in the future when database is

updated. Therefore, using the pre-large closed itemsets to enlarge the amount of CO

can reduce the cost of reprocessing D at the expense of storage spaces. They act as a

buffer to avoid the movement of a closed itemset directly from infrequent to frequent

and vice-versa during the incremental mining process. An infrequent closed itemset at

most becomes pre-frequent (pre-large) and cannot become frequent. Based on this

concept, the enhancement of CIM algorithm, CIM-P (CIM with Pre-large concept),

does not require reprocessing D until the accumulative amount of new transactions

exceeds the safety bound the buffer can afford, which depends on database size. As

the database grows larger, the number of new transactions allowed also grows larger,

and the CIM-P algorithm becomes increasingly efficient.

Figure 2-10 shows the concept of pre-large closed itemsets, where Sl denotes the

lower support and Su denotes the upper support. An infrequent closed itemset at most

becomes pre-frequent (pre-large) and cannot become frequent after a small d is

inserted into a large D.

Figure 2-10: The concept of pre-large closed itemsets

Given the user-specified Sl and Su, the safety bound of buffer can be derived by

the following theorem.

Theorem 2-8: If |d| ≤
u

lu

S
DSS

−
−

1
)(

, then a candidate itemset will not become

Su (= minsup)Sl

Area of NCI Area of FCI

Area of pre-frequent CI

support

 36

frequent in D+ after database maintenances [43].

The
u

lu

S
DSS

−
−

1
)(

 can be used as the safety bound of buffer to determine the

suitable time of reprocessing D. However, only considering whether the accumulative

amount of new transactions exceeds
u

lu

S
DSS

−
−

1
)(

 seems too loose. For example,

assume the safety bound
u

lu

S
DSS

−
−

1
)(

 = 10 and the accumulative amount of new

transactions t = 0 at first. When an increment d, in which all the transactions are

distinct 1-itemsets and |d| = 11, has been inserted into D, then t = 11 larger than

u

lu

S
DSS

−
−

1
)(

 = 10 and the CIM-P algorithm has to reprocess D to handle found

candidate itemsets. However, these distinct closed itemsets consume only one of

buffer, and the effort of reprocessing D is worthless.

Furthermore, we propose the bucketing strategy to improve the utility of buffer.

The purpose of bucketing strategy is using some buckets to record the actual

contributions of d for the major candidate itemsets (the itemsets with higher supports).

The consumption of buffer can be rigidly calculated with the maximum value of

buckets. In general, the number of candidate itemsets are much more than the number

of buckets, and the bucketing strategy operates as follows. If only one bucket exists,

the bucket is accumulated with the maximum support count of the candidate itemsets.

Otherwise, according to the number of buckets k, k candidate itemsets with the

highest support counts are selected to accumulate their corresponding bucket values:

(a) For each selected itemset matching an itemset previously stored in the

buckets, the bucketing strategy accumulates the target bucket using the support

count of the selected itemset;

(b) For the remaining selected itemsets, the bucketing strategy then finds two

 37

having the largest and smallest support counts to accumulate the unprocessed

bucket having the smallest value and all the remaining unprocessed buckets,

respectively.

Example 2-4: Assume there are three buckets b1, b2 and b3, the original database

D is with |D| = 100, Sl is 30%, Su is 50%, and two sets of candidate itemsets, {(AB,

15), (CD, 12), (CDE, 11), (BD, 10)} and {(BCD, 11), (AB, 10), (AD, 10)}, are

respectively obtained from two increments d1 with |d1| = 20 and d2 with |d2| = 20. By

Theorem 2-8, the safety bound is 40
5.01

100*)3.05.0(=
−

− . After d1 has been inserted

into D, b1 = (AB, 15), b2 = (CD, 12) and b3 = (CDE, 11). Since the maximum value of

buckets is 15 less than 40, the CIM-P algorithm does not need to reprocess D and the

safety bound becomes 48
5.01

120*)3.05.0(=
−

− for the updated database D+. After d2

has been inserted into D+, the bucketing strategy first accumulates b1 = (AB, 15) using

the support count of (AB, 10) and thus b1 = (AB, 25), and then accumulates b2 = (CD,

12) and b3 = (CDE, 11) respectively using the support count of (AD, 10) and (BCD,

11) and thus b2 = (AD, 22) and b3 = (BCD, 22). Since the maximum value of buckets

is 25 less than 48, the CIM-P algorithm still does not need to reprocess D+.

The utility of buffer would be better if we have more buckets, but the cost of

storage space and accumulating buckets would be increased. This is a trade off in this

strategy. In the CIM-P algorithm, according to the user-specified lower support and

upper support thresholds, the large and pre-large closed itemsets with their support

counts in preceding runs are stored in the CMT for later use in maintenance. When

new transactions are inserted, the proposed algorithm first executes the

CO_generation subroutine to find FFJCI and FNJCI and the CP_generation

subroutine to generate the candidate itemsets which has not been determined in the

 38

CO_generation subroutine. Then, the proposed algorithm utilizes the bucketing

strategy to calculate the accumulative consumption of buffer and decide the suitable

time of reprocessing D. If the accumulative consumption is within the safety bound of

buffer, no action is needed. Otherwise, the original database has to be reprocessed to

guarantee information lossless. The detail of the proposed CIM-P algorithm is shown

as follows.

The CIM-P algorithm(CMT, D, d, Sl, Su, k)
Parameters:

CMT: A closed maintenance tree based on Sl;
D: An original database;
d: A set of newly inserted transactions;
Sl: A lower support threshold;
Su: An upper support threshold;
k: the number of buckets.

Begin

 Set SF =
u

lu

S
DSS

−
−

1
)(

; /* SF is the safety bound of buffer*/

 Set FFJCISet = φ; /* FFJCISet is a set used to store the
itemsets of FFJCI. */

 Set Cand = φ; /* Cand is a set used to store candidate
itemsets for FCID+. */

 Set_Bucket(BucketSet, 0, φ) /* Initialize the buckets in BucketSet, where
BucketSet is a set used to store the most
frequent k candidate itemsets. */

CO_generation subroutine(CMT, d, Su, FFJCISet, Cand);
 Set F1dD+ = φ; /* F1dD+ is a set used to store frequent

1-itemsets in both d and D+. */
 Set UcountD+ = Su * (|D| + |d|);
 Set LcountD+ = Sl * (|D| + |d|);
 Obtain_frequent_items(CMT, UcountD+, F1dD+);
 /* Obtain F1dD+ from CMT. */
 CP_generation subroutine(CMT, d, Su, FFJCISet, Cand, F1dD+, CMT.root);

if Bucket_Strategy(CMT, BucketSet, Su) > SF, then
 /* Check whether the consumption of buffer

 39

is larger than the safety bound of buffer. */
 Reconstruct(CMT, D, d, Sl); /* Reconstruct CMT for D+ based on Sl */
 else Remove_NCI(CMT, LcountD+); /* Remove the closed itemsets in CMT

whose support counts are less than
mincountD+. */

 Output_FCI(CMT); /* Output the frequent closed itemsets for
D+. */

End.
Figure 2-11: The CIM-P algorithm

2.7 Experimental Results

The experiments were conducted in C++ on a workstation with dual XEON

2.8GHz processors and 2048MB main memory, running the RedHat 9.0 operating

system. For performance comparison, two classically incremental mining algorithms,

FUP and Pre-large, in addition to our proposed CIM and CIM-P algorithms, were run

on several synthetic and real-world dataset benchmarks which have been used in the

previous performance studies [86][104][106]. The FUP and Pre-large algorithms were

implemented based on the Apriori algorithm, while the CIM and CIM-P algorithms

were implemented based on the CHARM algorithm. Table 2-3 shows the

characteristics of the synthetic and real datasets.

Table 2-3: Characteristics of the experimental datasets

Dataset
No. of

transactions
(D)

Avg. of
transaction
length (T)

Max. of
transaction

length
No. of Items

(I)
T10I4D100K 100,000 10 29 1000
T40I10D100K 100,000 40 77 1000
connect 67,557 43 43 130
pumsb* 49,046 50 63 7117
BMS-POS 515,597 6.5 164 1657

Two synthetic datasets, called T10I4D100K and T40I10D100K, were generated

 40

by a generator similar to that used in [8]. The generator first generated L maximal

potentially frequent itemsets, each with an average of I items. The items in the

potentially frequent itemsets were randomly chosen from the total N items according

to their actual sizes. The generator then generated D transactions, each with an

average of T items. The items in a transaction were generated according to the L

maximal potentially frequent itemsets in a probabilistic way. For example, the

T10I4D100K dataset consists of 100,000 transactions averaging 10 items and

generated according to 2000 maximal potentially frequent itemsets with an average

size of 4 from a total of 1000 items.

Table 2-4: Mining information for the five datasets

Dataset Minsup No. of frequent
itemsets

No. of frequent
closed itemsets

length of the
maximum itemset

T10I4D100K 0.093% 29,237 25,642 12
T40I10D100K 1.2% 19,412 18,117 11
connect 94% 4,223 1,223 9
pumsb* 42% 12,579 1,833 12
BMS-POS 0.65% 2497 2473 6

Table 2-5: The distribution of frequent itemsets for the five datasets

Datasets 1 2 3 4 5 6 7 8 9 10 11 12
T10I4D100K (0.093%) 806 9539 7491 5797 3407 1525 515 132 23 2 0 0
T40I10D100K (1.2%) 721 8336 1448 1638 1792 2192 2048 1159 66 11 1 0
connect (94%) 17 119 435 927 1202 952 446 113 12 0 0 0
pumsb* (42%) 45 268 856 1837 2729 2887 2193 1188 448 111 16 1
BMS-POS (0.65%) 189 739 975 508 85 1 0 0 0 0 0 0

Length of frequent itemsets

Three real datasets, called connect, pumsb* and BMS-POS were used to evaluate

the practicality of an algorithm in the real-world applications. The connect dataset

contains game state information; the pumsb* dataset contains census data; and the

BMS-POS dataset contains several years of point-of-sale data from a large electronics

 41

retailer, where each transaction in this dataset is a customer purchase transaction

consisting of all the product categories purchased at one time. The BMS-POS dataset

was also used in the KDDCUP 2000 competition.

 Table 2-4 shows the mining information for the five datasets, including the

number of frequent itemsets, the number of frequent closed itemsets and the length of

the maximum itemset. For example, given the minsup = 0.093% on T10I4D100K, the

number of frequent itemsets was 29,237, the number of frequent closed itemsets was

25,642 and the length of the maximum itemset was 10. Table 2-5 shows the detailed

distribution of frequent itemsets for these datasets. Among them, connect, pumsb* and

T40I10D100K can be treated as dense datasets because they still generated many long

frequent itemsets even for very high minsups, whereas T10I4D100K and BMS-POS

can be treated as sparse datasets because they still generated many short frequent

itemsets even for very low minsups. For the dense datasets, we can find the number of

frequent itemsets considered by a classically incremental mining algorithm was much

larger than the number of frequent closed itemsets considered by the CIM algorithm.

 First, for each dataset, we randomly selected 1,000 records as a new increment

and collected the remaining records as the original database. Figures 2-12(a) to 2-12(e)

shows the execution times for the FUP, Pre-large and CIM algorithms respectively on

the five datasets along with various minsups in the mining requests, where the lower

support threshold in the Pre-large algorithm is fixed to the initial minsup, e.g., for

connect, the lower support threshold of Pre-large algorithm is fixed to 95%. Moreover,

the corresponding comparisons of the amounts of pre-stored mining information

considered by the three algorithms respectively on the five datasets are shown in

Figures 2-13(a) to 2-13(e). We can find that the performance highly depended on the

amount of pre-stored mining information.

 42

Figure 2-12: Execution times for the FUP, Pre-large and CIM algorithms respectively

on the five datasets

Among the experimental results, for the dense datasets connect, pumsb* and

T40I10D100K, it can be easily seen that the CIM algorithm had several orders of

magnitude better than the FUP and Pre-large algorithms for low minsups and it also

had better performance than the two algorithms for high minsups. The FUP and

pumsb*

0.01

0.1

1

10

100

1000

10000

35 36 37 38 39 40 41 42 43 44 45 46 47 48

Query Support (%)

T
im
e
(s
ec
.)

FUP Pre-large(42%) CIM

connect

0.01

0.1

1

10

100

1000

10000

85 86 87 88 89 9 91 92 93 94 95 96 97 98 99

Query Support (%)

T
im
e
(s
ec
.)

FUP Pre-large(95%) CIM

T10I4D100K

0

10

20

30

40

50

60

70

80

0.093 0.094 0.095 0.096 0.097 0.098

Query Support (%)

T
im
e
(s
ec
.)

FUP Pre-large(0.093%) CIM

T40I10D100K

0

100

200

300

400

500

600

700

800

900

1000

1.2 1.4 1.6 1.8 2 2.2

Query Support (%)

T
im
e
(s
ec
.)

FUP Pre-large(1.2%) CIM

(a) (b)

(c) (d)

BMS-POS

0

20

40

60

80

100

0.68 0.69 0.7 0.71 0.72 0.73

Query Support (%)

T
im
e
(s
ec
.)

FUP Pre-large(0.68%) CIM

(e)

 43

Pre-large algorithms performed only for very high minsups due to a huge amount of

the previously mined frequent and pre-large itemsets, where the Pre-large algorithm

had better performance than the FUP algorithm since the former, whose derived safety

bound can afford the size of increment, can avoid a high cost of reprocessing original

database at the expense of a low cost of processing pre-stored pre-large itemsets.

Figure 2-13: The amounts of pre-stored mining information for the FUP, Pre-large and

pumsb*

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

42 43 44 45 46 47 48

Query Support (%)

N
o.
 o
f
It
em
se
ts

FUP Pre-large(42%) CIM

connect

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

95 96 97 98 99

Query Support (%)

N
o.
 o
f
It
em
se
ts

FUP Pre-large(95%) CIM

T10I4D100K

0

5000

10000

15000

20000

25000

30000

35000

0.093 0.094 0.095 0.096 0.097 0.098

Query Support (%)

N
o.
 o
f
It
em
se
ts

FUP Pre-large(0.093%) CIM

T40I10D100K

0

5000

10000

15000

20000

25000

1.2 1.4 1.6 1.8 2 2.2

Query Support (%)

N
o.
 o
f
It
em
se
ts

FUP Pre-large(1.2%) CIM

(a) (b)

(c) (d)

BMS-POS

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0.68 0.69 0.7 0.71 0.72 0.73

Query Support (%)

N
o.
 o
f
It
em
se
ts

FUP Pre-large(0.68%) CIM

(e)

 44

CIM algorithms respectively on the five datasets

On the other hand, for the sparse datasets T10I4D100K and BMS-POS, the CIM

algorithm still had better performance than the FUP and Pre-large algorithms.

However, since the amount of pre-stored mining information (the number of frequent

closed itemsets) considered by the CIM algorithm was just slightly smaller than that

(the number of frequent itemsets) considered by the FUP and Pre-large algorithms as

shown in Figures 2-13(a) and 2-13(e), the CIM algorithm did not has a significant

outperformance. As for the FUP and Pre-large algorithms, the former sometimes got

better than the latter, because the derived safety bound can not afford the size of

increment and a cost of processing pre-stored pre-large itemsets was required in

addition by the latter.

Figure 2-14: The influence of the size of increment on the execution time for the FUP,

Pre-large and CIM algorithms

 In general, incremental mining algorithms perform well when the size of newly

inserted transactions is relatively smaller than the size of an original database because

the cost of generating candidate itemsets from only new transactions is usually low

and a large proportion of the candidate itemsets can be determined from previously

T10I4D100K

0

10

20

30

40

50

60

70

10 100 500 1000 2000 5000

No. of records

T
im
e
(s
ec
.)

FUP Pre-large(0.093%) CIM

pumsb*

0.1

1

10

100

1000

10 100 500 1000 2000 5000

No. of records

T
im
e
(s
ec
.)

FUP Pre-large(44%) CIM

(a) (b)

 45

mining information. Figures 2-14(a) and 2-14(b) show the influence of the size of

increment on the execution time for the FUP, Pre-large and CIM algorithms

respectively on the datasets T10I4D100K and pumst*. It is clear that the execution

times required by the CIM algorithm for different sizes of increment were small, and

seemed to grow slowly and linearly with the sizes of increment.

BMS-POS

0

5

10

15

20

25

30

35

0.68 0.69 0.7 0.71 0.72 0.73

Query Support (%)

T
im
e
(s
ec
.)

CIM CIM-P(0.68%)

Figure 2-15: Execution times for the CIM and CIM-P algorithms on BMS-POS

 Next, we compare the CIM-P algorithm with the CIM algorithm. Figures 2-15

shows the execution times for the CIM-P and CIM algorithms on the BMS-POS

dataset along with various minsups in the mining requests, where the lower support

threshold of CIM-P algorithm is fixed to the initial minsup 0.68% and the number of

buckets in CIM-P is set to 2. It can be seen that the execution times by the CIM-P

algorithm were less than those by the CIM algorithm for the minsup set to a value

above 0.68%.

2.8 Conclusion

 46

 In real-world applications, a database grows over time such that existing

association rules may become invalid or new implicitly valid association rules may

appear. Designing an incremental mining algorithm capable of updating existing

association rules and discovering new association rules without reprocessing the

entire updated database is a nontrivial work. Although researchers have developed

some significant incremental mining algorithms to carry out this work, for dense

databases or a low minimum support threshold, the performance of these approaches

will degrade dramatically due to a huge amount of pre-stored mining information. On

the other hand, one scan of original database to discover new association rules is

required for most incremental mining algorithms. When the original database is

massive, this will result in excessive I/O cost. In this study, we have thus utilized the

concepts of closed itemsets and pre-large itemsets dealing with the two challenges and

then designed two novel incremental mining algorithms, Closed Itemsets Maintenance

(CIM) and CIM with Pre-large concept (CIM-P). Experiments respectively for sparse,

dense, synthetic and real datasets are made, with results showing the effectiveness and

practicality of the proposed approaches.

 47

Chapter 3

Incremental Mining Algorithms for Sequential

Patterns Maintenance

3.1 Introduction

Mining sequential patterns in sequence databases (temporal transaction

databases), first proposed by Agrawal et al. in 1995 [6], is relatively useful since it can

help model customer behaviors. The process of mining sequential patterns operates

almost same as the process of mining association rules, except the former concerns

relationships among itemsets in sequences whereas the latter concerns relationships

among itemsets in transactions. Therefore, some studies extended the Apriori property

[5] such that none of super-sequences of an infrequent sequence can be frequent, and

proposed efficient algorithms based on the candidates-generation-and-test process for

mining sequential patterns and other time-related frequent patterns. However, these

Apriori-like sequential pattern mining algorithms, such as AprioriAll [6] and GSP

[81], may suffer from the inherent drawback that a huge set of candidate sequences

could be generated in a large and/or long sequence database. According to this

observation, all recent studies have attempted to develop more efficient algorithms to

reduce the expensive cost of candidate generation and test, such as FreeSpan [39],

PrefixSpan [70], SPADE [103], SPAM [9], DISC-all [22], etc.

Studies on maintaining sequential patterns are relatively rare compared to those

on maintaining association rules. Lin and Lee proposed the FASTUP algorithm [55] to

 48

maintain sequential patterns by extending the FUP algorithm [20]; Hong et al.

proposed an incremental mining algorithm based on the concept of pre-large

sequences [44]. As the challenges mentioned in Chapter 2, these approaches will not

work well on dense and massive database maintenances:

(a) For a dense database or a low minimum support threshold, the computation

cost of updating previously mined sequential patterns will be getting tremendous due

to a huge amount of previously mined frequent sequences;

(b) For a massive database, most incremental mining algorithms need one scan of

original database dealing with finding new sequential patterns, and this will result in

excessive I/O cost.

As a result, we attempt to utilize the concepts of closed sequences [99] and

pre-large sequences [44] that are respectively extended from closed itemsets and

pre-large itemsets to improve the performance of maintaining sequential patterns.

Maintaining sequential patterns is much harder than maintaining association rules,

since it must consider both itemsets and sequences. It is nontrivial to develop more

efficient, scalable and practical mining algorithms for maintaining sequential patterns.

In this chapter, we thus propose a novel incremental mining algorithm called Closed

Sequences Maintaining (CSM) capable of sufficiently and efficiently finding all

up-to-date sequential patterns for the updated database. Moreover, based on the

concept of pre-large sequences, we propose the CSM-P, CSM with Pre-large concept,

algorithm to improve the CSM algorithm.

3.2 Related Work

3.2.1 Mining Sequential Patterns and Closed Sequential Patterns

Mining sequential patterns is a significant research direction of data mining. It

 49

attempts to find customer behavior models and to assist managers in making correct

and effective decisions. Among the mining sequential pattern algorithms, the first

proposed AprioriAll algorithm [6] (similar to the Apriori algorithm) utilized a

level-wise candidate generation approach that only frequent sequences (the sequence

satisfying the user-specified minimum support) found in the previous level are treated

as seeds for generating candidate sequences in the current level to reduce the search

space. Since this candidates-generation-and-test process is simple and useful, many

later studies [12][36][62][66][81] were based on this algorithm for further improving

and refining, and deployed it in real-world applications. However, AprioriAll-based

algorithms may suffer from the following inherent costs [70]:

 A huge set of candidate sequences for a large sequence database;

 Multiple database scans in mining;

 A combinatorial explosive number of candidate sequences for a dense

sequence database.

Some recent studies have thus developed more efficient algorithms dealing with

the three challenges. Examples include SPADE [103], PrefixSpan [70], SPAM [9].

Since AprioriAll-based algorithms using breadth-first search manner may generate

many candidate sequences not appear in the database, all the three algorithms adopt

depth-first search manner (i.e., recursive divide-and-conquer) to process the sequence

database (SPADE also has breadth-first search option). The SPADE algorithm uses a

simple join operation to enumerate frequent sequences from a vertical-layout database.

The support of a sequence can be easily calculated by joining the vertical lists of its

sub-sequences. The PrefixSpan algorithm uses a database-projection approach to

reduce the efforts of candidate sequence generation. The sequence database is

recursively projected into a set of smaller projected databases according to the

 50

currently found frequent sequences, and then frequent sequences are grown in each

projected database by exploring only local frequent fragments. Not only the support

calculation but also the candidate sequence generation are highly improved. The

SPAM algorithm uses the bitmap index to represent the sequence database in vertical

such that the support calculation and candidate sequence generation operates similar

to the SPADE algorithm.

 These algorithms have provided pretty good solutions for the first two challenges.

For the third one, however, they still need to be improved for a rather dense sequence

database. In [99], Yan et al. proposed the concept of closed sequences, which is

extended from the concept of closed itemsets, dealing with these challenges,

especially for the third one.

3.2.2 Incremental Mining for Sequential Patterns

Maintaining sequential patterns is much harder than maintaining association rules

since the former must consider both itemsets and sequences. In the following, we will

introduce the concepts of maintaining sequential patterns when new transactions or

sequences are inserted into the original sequence database, and briefly review related

incremental mining algorithms.

When new transactions are inserted into a sequence database, they can be divided

into two classes [44]:

Class 1: The new transactions with the same sequence identifiers as the sequences

in the database;

Class 2: The new transactions with new sequence identifiers.

The newly inserted transactions are first transformed into sequences, and those

belonging to Class 1 are merged with the corresponding sequences in the database and

 51

those belonging to Class 2 are inserted into the database as new sequences.

Example 3-1: Assume that the sequence database includes eight sequences as

shown in Table 3-1 and the frequent sequences found from these sequences are shown

in Table 3-2 with the minimum support set to 50%.

Table 3-1: The sequence database

Sequence_id Sequence
1 <(A)(B)>
2 <(C, D)(A)(E, F, G)>
3 <(A, H, G)>
4 <(A)(E, G)(B)>
5 <(B)(C)>
6 <(A)(B, C)
7 <(A)(B, C, D)>
8 <(E, G)>

Table 3-2: All frequent sequences found from the sequences in Table 3-1

Frequent sequences
1-sequence Support count 2-sequence Support count

<(A)> 6 <(A)(B)> 4
<(B)> 5
<(C)> 4
<(G)> 4

When two new transactions shown in Table 3-3 are inserted into the sequence

database, they are first transformed into the sequences and then merged with the

corresponding sequences in Table 3-1. The results are shown in Table 3-4.

Table 3-3: Two new transactions sorted according to Sequence_id and Trans_time

Sequence_id Trans_time Trans_content
5 1998/02/01 E, G
9 1998/02/05 E, F, G

Table 3-4: The two newly merged sequences

 52

Sequence_id Sequence
5 <(B)(C)(E, G)>
9 <(E, F, G)>

The candidate sequences for the newly merged sequences in the database are

then generated and counted. Note that, for the candidate sequences which have

appeared in the original sequence database, their support count are only increased

against the new sequences in the database. For example, the candidate 1-sequences for

the newly merged sequences in Table 3-4 are shown in Table 3-5, where the support

counts of <(B)> and <(C)> are not increased at all.

Table 3-5. The candidate 1-sequences with their support counts for newly merged

sequences

Candidate 1-sequences Support count
<(B)> 0
<(C)> 0
<(E)> 2
<(F)> 1
<(G)> 2

Considering the original sequence database and the newly merged sequences,

there are four cases of candidate sequences shown in Figure 3-1 may arise:









4 3
2 1

CaseCase
CaseCaseFrequent

sequences

Frequent
sequences

Original
sequence
database

Newly merged
sequences

Infrequent
sequences

Infrequent
sequences

 53

Figure 3-1: Four cases of candidate sequences

 Case 1: A candidate sequence is frequent in both the original sequence

database and the newly merged sequences;

 Case 2: A candidate sequence is frequent in the original sequence database

but infrequent in the newly merged sequences;

 Case 3: A candidate sequence is infrequent in the original sequence

database but frequent in the newly merged sequences;

 Case 4: A candidate sequence is infrequent in both the original sequence

database and the newly merged sequences.

Among the cases, since candidate sequences in Case 1 are frequent in both the

original sequence database and the newly merged sequences, they are still frequent

after the weighted average of the supports; similarly, candidate sequences in Case 4

are still infrequent after the new sequences are inserted. Cases 1 and 4 will not affect

the final sequential patterns; Case 2 may remove existing sequential patterns; and

Case 3 may generate new sequential patterns.

Lin and Lee proposed the FASTUP algorithm [55], which is an extension of the

FUP algorithm proposed Cheung et al. [20], to efficiently cope with these four cases

by pre-storing the previously mined frequent sequences from the original sequence

database. The FASTUP can handle Cases 1, 2 and 4 by updating the pre-stored

frequent sequences against the newly merged sequences, and reprocesses only the

sequences without sufficient information in Case 3 against the original sequence

database if necessary.

However, the performance of FASTUP algorithm will get degraded if a lot of

candidate sequences from the newly merged sequences belong to Case 3. Hong et al.

 54

[44] proposed the concept of pre-large sequences to enlarge the amount of pre-stored

mining information in the FASTUP algorithm for further improving the maintenance

performance. The concept of pre-large sequences is denoted as the set of sequences

having support between a lower support threshold, which is smaller than the

minimum support, and an upper support threshold, which is equal to the minimum

support. Pre-large sequences are not truly frequent at present but more possible to be

frequent in the future when database is updated. Therefore, using the pre-large

sequences to enlarge the amount of pre-stored mining information can reduce the cost

of reprocessing the original sequence database at the expense of storage spaces.

3.3 Preliminary Concepts

Let I = {i1, i2, …, im} be a set of m items. An itemset is a subset of I and a

k-itemset denotes an itemset consisting of k items. A sequence is an ordered list of

itemsets and an l-sequence can be represented as X = <x1, x2, …, xl>, where xi is an

itemset and called an element of X. For a sequence, an item can occur at most once in

an element, but can occur more than once in different elements. We call a sequence Y

= <y1, y2, …, yq> contains another sequence X = <x1, x2, …, xp> iff there exist indexes

j1, j2, …, jp and 1 ≤ j1 ≤ j2 ≤ …, jp ≤ q such that x1 ⊆ yj1, x1 ⊆ yj2, …, xp ⊆ yjp; Y is also

called a supersequence of X and inversely X is called a subsequence of Y. Let D be a

sequence database consisting of a set of sequences, where each sequence consisting of

a set of elements is associated with a sequence identifier, and |D| denotes the number

of sequences in D. The support of a sequence X, X.sup, in D is denoted as the

percentage of sequences in D which contain X, and the support count of X, X.count, in

D is denoted as the number of sequences in D which contain X, X.count = X.sup * |D|.

For the sequences in D, X is called a closed sequence if there does not exist another

 55

sequence Y which closes (absorbs) X, where a sequence Y is said to close (absorb) X

iff Y contains X and Y.sup = X.sup (Y.count = X.count). CS denotes the set of all

closed sequences in D. Furthermore, if there is no supersequence of X existing in D, X

is also called a maximal sequence.

Given the user-specified minimum support threshold, minsup, the problem of

mining sequential patterns is to find out all sequences in D that have support larger

than minsup. With respect to the minsup, the set of frequent sequence, FS, includes

all the sequences whose support is larger than minsup; the set of infrequent sequence,

NS, includes all the sequences whose support is less than minsup; the set of frequent

closed sequence, FCS, includes all the closed sequences whose support is larger than

minsup, FCS = {x|x ∈ CS, x.sup ≥ minsup}; and the set of infrequent closed sequence,

NCS, includes all the closed sequences whose support is less than minsup, NCS = {x| x

∈ CS – FCS}. Note that FCS includes no sequence which has a supersequence with

the same support, thus FCS ⊆ FS. The problem of mining sequential patterns can be

reduced to the problem of finding FCS in D.

Let d be a set of newly merged sequences, |d| be the number of sequences in d, d’

be a set of sequences in d with the same sequence identifiers as the sequences in an

original sequence database D, |d’| be the number of sequences in d’, D+ be the

updated database and |D+| be the number of sequences in the updated database.

Therefore, FSD, FSd and FSD+ denote the FS obtained from D, d and D+ with respect

to the same minsup, respectively, and NS, CS, FCS or NCS obtained from D, d and D+

can have similar meanings. The problem of maintaining sequential patterns is to find

FSD+ or FCSD+. Let the set of original frequent sequences, OS, be defined as OS =

{x|x ∈ FSD}, and the set of potential frequent sequences, PS, be defined as PS = {x|x

∈ FSd − FSD}. By definition, a sequence X ∈ FSD+ must belong to OS ∪ PS, and thus

 56

the problem of maintaining sequential patterns is equivalent to processing OS ∪ PS.

Similarly, let the set of closed original frequent sequences, COS, be defined as COS

= {x|x ∈ FSD and x ∈ CSD+}, and the set of closed potential frequent sequences, CPS,

be defined as CPS = {x|x ∈ FSd − FSD and x ∈ CSD+}. The problem of maintaining

sequential patterns is also equivalent to processing COS ∪ CPS. The set of joint

closed sequences, JCS, which is defined as JCS = {x|x = y ∧ z, y ∈ CSD, z ∈ CSd} is

proposed in this study, where ∧ denotes the intersection of two sequences. We call a

sequence X = <x1, x2, …, xr> is the intersection of two sequences Y = <y1, y2, …, yp>

and Z = <z1, z2, …, zq> iff there exist indexes j1, j2, …, jr and 1 ≤ j1 ≤ j2 ≤ …, jr ≤ p and

1 ≤ j1 ≤ j2 ≤ …, jr ≤ q such that x1 ⊆ yj1, x1 ⊆ yj2, …, xr ⊆ yjr and x1 ⊆ zj1, x1 ⊆ zj2, …,

zr ⊆ zjr. The JCS can be divided into four parts based on FCSD, FCSd, NCSD and

NCSd:

 FFJCS = {x|x = y ∧ z, y ∈ FCSD, z ∈ FCSd};

 FNJCS = {x|x = y ∧ z, y ∈ FCSD, z ∈ NCSd};

 NFJCS = {x|x = y ∧ z, y ∈ NCSD, z ∈ FCSd};

 NNJCS = {x|x = y ∧ z, y ∈ NCSD, z ∈ NCSd}.

3.4 Closed Sequences Maintenance

 Considering an original sequence database D and the set of newly merged

sequences d, there are four cases of candidate sequences for the updated database D+

have been discussed in Section 2. With pre-storing previously mined frequent

sequences FSD, a typically incremental mining process can efficiently cope with these

four cases by two steps: (a) updating OS against d and (b) reprocessing PS against D.

Following this idea, we can use two similar steps: (a) updating COS against d and (b)

 57

reprocessing CPS against D to find out FCSD+ dealing with the problem of

maintaining sequential patterns. Since directly obtaining COS = {x|x ∈ FSD and x ∈

CSD+} and CPS = {x|x ∈ FSd − FSD and x ∈ CSD+} is impractical, we attempt to

utilize the pre-stored known information FCSD from D and the information FCSd

obtained from d to approach COS and CPS. The following lemmas and theorems can

be easily derived and proven by referring to corresponding lemmas and theorems

mentioned in Chapter 2, so we omit the details here.

Lemma 3-1: If x ∈ CSD ∪ CSd, then x ∈ CSD+.

Lemmas 3-2 and 3-3 are used to derive the set of joint closed sequences (JCS)

which are closed sequences for D+ but can not be determined by FCSD and FCSd-D.

Lemma 3-2: If x ∈ JCS, then x ∈ CSD+.

Lemma 3-3: If x ∈ CSD+, then x ∈ CSD ∪ CSd ∪ JCS.

Theorem 3-1: CSD+ = CSD ∪ CSd ∪ JCS.

Considering an original sequence database and the newly merged sequences, JCS

can be divided into four parts based on FCSD, FCSd, NCSD and NCSd as shown in

Figure 3-2:

Figure 3-2: Four cases of joint closed sequences









NNJCSNFJCS
FNJCSFFJCS

FCSd NCSd

FCSD

NCSD

Newly merged
sequences

Original
sequence
database

 58

 The case of FFJCS: A closed sequence is frequent in both the original

sequence database and the newly merged sequences;

 The case of FNJCS: A closed sequence is frequent in the original sequence

database but infrequent in the newly merged sequences;

 The case of NFJCS: A closed sequence is infrequent in the original

sequence database but frequent in the newly merged sequences;

 The case of NNJCS: A closed sequence is infrequent in both the original

sequence database and the newly merged sequences.

According to Theorem 3-1, the following theorems are derived to obtain COS

and CPS by FCSD, FCSd, FFJCS, FNJCS and NFJCS.

Theorem 3-2: COS = {x|x ∈ FCSD ∪ FFJCS ∪ FNJCS}.

Theorem 3-3: CPS = {x|x ∈ (FCSd − FFJCS) ∪ NFJCS}.

Theorems 3-2 and 3-3 provide a convenient way to obtain COS and CPS. For

COS, FFJCS and FNJCS can be obtained by processing the pre-stored mining

information FCSD against d. For CPS, however, since NFJCS has to be generated

from NCSD, which is usually unknown in a typically incremental mining process, the

cost is too expensive to be acceptable. As a result, given a function cover(FFJCS,

FSd) denoting the sequences in FSd which are covered by FFJCS, the following

theorem is derived to obtain CPS.

Theorem 3-4: CPS = {x|x ∈ FSd – cover(FFJCS, FSd), x ∈ CSD+}.

Corollary 1: CPS ⊆ {FSd – cover(FFJCS, FSd)}

Since FFJCS has been obtained in COS generation, we only need to find FSd and

remove the sequences in FSd which have been determined in FFJCS as candidates for

CPS. It seems to be a better way to generate the sequences of FCSD+ which are not

 59

included in the COS.

3.5 The Closed Sequences Maintaining (CSM) Algorithm

We develop a novel incremental mining algorithm mainly consisting of

COS_generation and CPS_generation subroutines, called Closed Sequences

Maintaining (CSM), to efficiently find FCSD+. The proposed CSM algorithm also

utilizes the CMT (Closed Maintenance Tree) data structure mentioned in Section

2.5.1 to facilitate the processes of COS_generation and CPS_generation subroutines.

However, the CMT of the CSM algorithm is not mainly for closed itemset but mainly

for closed sequence, such that the closed nodes and infrequent nodes represent the

sequences in FCSD+ and the infrequent 1-sequences in D, respectively.

The CSM algorithm first updates the sequences in the CMT against d to obtain

COS by the COS_generation subroutine. Then, by the CPS_generation subroutine, it

generates candidate sequences for the sequences of FCSD+ which have not been

determined in the COS_generation subroutine. Finally, by reprocessing these obtained

candidate sequences against D and checking their closure property, the CSM

algorithm can find FCSD+ from the CMT.

The COS_generation and CPS_generation subroutines operates similar to the

CO_generation and CP_generation subroutines in the CIM algorithm mentioned in

Chapter 2. The COS_generation subroutine is responsible for processing FCSD

against d to find FFJCS and FNJCS, thus obtaining COS, while CPS_generation

subroutine is responsible for generating candidate sequences for FCSD+ which have

not been determined in the COS_generation subroutine.

The CSM algorithm(CMT, D, d, d’, minsup)

 60

Parameters:
 CMT: A closed maintenance tree;
 D: An original sequence database;
 d: A set of newly merged sequences;
 d’: A set of sequences in d with the same sequence identifiers as the sequences in D;
 minsup: A minimum support threshold.
Begin
 Set FFJCSSet = φ; /* FFJCSSet is a set used to store the

sequences of FFJCS. */
 Set Cand = φ; /* Cand is a set used to store candidate

sequences for FCSD+. */
COS_generation subroutine(CMT, d, d’, minsup, FFJCSSet, Cand);

 Set F1dD+ = φ; /* F1dD+ is a set used to store the frequent
1-sequences in both d and D+. */

 Set mincountD+ = minsup * (|D| + |d| − |d’|);
 Obtain_frequent_items(CMT, mincountD+, F1dD+);
 /* Obtain F1dD+ from CMT. */
 CPS_generation subroutine(CMT, d, d’, minsup, FFJCSSet, Cand, F1dD+,

CMT.root);
 Reprocess_Cand(CMT, Cand, D); /* Reprocess obtained candidate k-sequences

(k ≥ 2) in CMT against D. */
 Check_Closure_Cand(CMT, Cand); /* Check closure property for all candidates

sequences in CMT. */
 Remove_NCS(CMT, mincountD+); /* Remove the closed sequences in CMT

whose support counts are less than
mincountD+. */

 Output_FCS(CMT); /* Output FCSD+ for D+.*/
End.

Figure 3-3: The CSM algorithm

3.6 The CSM Algorithm with Pre-large Concept: CSM-P Algorithm

Although the CSM algorithm focuses on the newly merged sequences d and thus

saves much processing time in maintaining sequential patterns, it has to reprocess the

original sequence database D to handle the candidate itemsets generated by the

CPS_generation subroutine. This situation may occur frequently, especially when d is

 61

heterogeneous with D. In general, the number of records in d is much smaller than the

number of records in D. Only the closed sequences whose supports are slightly less

than minsup in D are possible to be frequent for D+ after database maintenances. We

can apply the concept of pre-large sequences [44] to improve the proposed CSM

algorithm. Based on this concept, the enhancement of CSM algorithm, CSM-P (CSM

with Pre-large concept), does not require reprocessing D until the accumulative

amount of newly merged sequences exceeds the safety bound the buffer can afford,

which depends on database size. As the database grows larger, the number of newly

merged sequences allowed also grows larger, and the CSM-P algorithm becomes

increasingly efficient.

Given the user-specified Sl and Su, |d’| denotes the number of the sequences in d

with the same sequence identifiers as the sequences in D. The safety bound of buffer

can be derived by the following theorem.

Theorem 3-5: If |d| ≤
u

u

u

lu

S
Sd

S
DSS

−
−

−
−

1
'

1
)(

, then a sequence in CPS will not

become frequent in D+ after database maintenances [44]

 The
u

u

u

lu

S
Sd

S
DSS

−
−

−
−

1
'

1
)(

 can be used as the safety bound of buffer to determine

the suitable time of reprocessing D.

Furthermore, we can also utilize the bucketing strategy mentioned in Chapter 2

to improve the utility of buffer. The purpose of bucketing strategy is using some

buckets to record the actual contributions of d for the major candidate sequences (the

sequences with higher supports). The consumption of buffer can be rigidly calculated

with the maximum value of buckets.

In the CSM-P algorithm, according to the user-specified lower support and upper

support thresholds, the frequent and pre-large closed sequences with their support

 62

counts in preceding runs are stored in the CMT for later use in maintenance. When

newly merged sequences are inserted, the proposed algorithm first executes the

COS_generation subroutine to find FFJCS and FNJCS and the CPS_generation

subroutine to generate the candidate frequent closed sequences for D+ which has not

been determined in the COS_generation subroutine. Then, the proposed algorithm

utilizes the bucketing strategy to calculate the accumulative consumption of buffer

and decide the suitable time of reprocessing D. If the accumulative consumption is

within the safety bound of buffer, no action is needed. Otherwise, the original

sequence database D has to be reprocessed to guarantee information lossless. The

detail of the proposed CSM-P algorithm is shown as follows.

The CSM-P algorithm(CMT, D, d, d’, Sl, Su, k)
Parameters:

CMT: A closed maintenance tree based on Sl;
D: An original database;
d: A set of newly inserted sequences;
d’: A set of sequences in d with the same sequence identifiers as the sequences in D;
Sl: A lower support threshold;
Su: An upper support threshold;
k: the number of buckets.

Begin

 Set SF = (
u

u

u

lu

S
Sd

S
DSS

−
−

−
−

1
'

1
)(

); /* SF is the safety bound of buffer*/

 Set FFJCSSet = φ; /* FFJCSSet is a set used to store the
sequences of FFJCS. */

 Set Cand = φ; /* Cand is a set used to store candidate
sequences for FCSD+. */

 Set_Bucket(BucketSet, 0, φ) /* Initialize the buckets in BucketSet, where
BucketSet is a set used to store the most
frequent k candidate itemsets. */

COS_generation subroutine(CMT, d, d’, Su, FFJCSSet, Cand1);
 Set F1dD+ = φ; /* F1dD+ is a set used to store frequent

 63

1-sequences in both d and D+. */
 Set UcountD+ = Su * (|D| + |d| − |d’|);
 Set LcountD+ = Sl * (|D| + |d| − |d’|);
 Obtain_frequent_items(CMT, UcountD+, F1dD+);
 /* Obtain F1dD+ from CMT. */
 CPS_generation subroutine(CMT, d, d’, Su, FFJCSSet, Cand1, F1dD+, CMT.root);

if Bucket_Strategy(CMT, BucketSet, Su) > SF, then
 /* Check whether the consumption of buffer

is larger than the safety bound of buffer. */
 Reconstruct(CMT, D, d, d’, Sl); /* Reconstruct CMT based on Sl */
 else,
 Remove_NCS(CMT, LcountD+); /* Remove the sequences in CMT whose

support counts are less than mincountD+. */
 Output_FCS(CMT); /* Output the frequent closed sequences for

D+. */
End.

Figure 3-4: The CSM-P algorithm

3.7 Conclusion

 Maintaining sequential patterns is much harder than maintaining association

rules, since it must consider both itemsets and sequences. It is nontrivial and useful to

develop efficient mining algorithms for maintaining sequential patterns. As a result, in

this study, we attempt to utilize the concepts of closed sequences and pre-large

sequences to improve the performance of maintaining sequential patterns. The closed

sequences can losslessly determine all the pre-stored mined sequences and their exact

support, but is orders of magnitude small. The pre-large sequences act as a buffer to

avoid the movements of sequence directly from valid to invalid and vice-versa during

the incremental mining process. Based on the two concepts, two novel incremental

mining algorithms, CSM and CSM-P, are thus developed to efficiently maintain

sequential patterns, especially for a dense sequence database.

 64

Chapter 4

Incremental Mining Algorithms for Document

Classifiers Maintenance

4.1 Introduction

As digital documents evolve and become increasingly available, automatic

document classification (a.k.a. document categorization) of managing and discovering

useful information in documents is becoming more and more important for users.

Automatic document classification refers to the activity of automatically constructing

a classifier to assign category labels suggested by pre-defined training documents to

undefined documents. In general, automatic document classification involves three

major tasks [79]: document representation, which represents documents in

machine-readable structures, classifier construction, which constructs a classifier

from pre-defined training documents, and classifier evaluation, which evaluates

classifier accuracy in terms of various evaluation functions.

Previous studies of document representation have often represented documents

in finite sets of terms such as keywords and phrases, so-called term-space document

representation. A document can be represented as <w1, w2, w3, …, wt>, where wi

represents the weight between the i-th keyword and the document. However, this

simple representation may result in highly correlated, redundant and less

representative dimensions, such that the efficiency and effectiveness are decreased

[31][34].

 65

As for classifier construction, most of previously proposed batch approaches

such as C4.5 [73], SVM [46][47] and Naïve Bayesian [57] have to reconstruct the

classifier when new documents or new categories are added. Therefore, considerable

computation time is required to get the updated classifier. In real world, data may

evolve over time, so a batch-based classifier construction approach is obviously

impractical [59].

In this study, we propose a domain-space weighting scheme to resolve the above

problems in document representation and classifier construction. The proposed

scheme utilizes a more compact and meaningful document representation called

domain-space document representation to represent documents in finite sets of

domains. Based on the domain-space document representation, it utilizes three phases,

Training Phase, Discrimination Phase and Tuning Phase, to construct a classifier and

adapt the classifier along with evolving data.

In the Training Phase, the proposed scheme incrementally extracts and weights

features from each individual category in the training documents and integrates the

resulting weights into the feature-domain weighting table, which retain the weights

between features and all involved categories. In the Discrimination Phase, it reduces

the weights of features in the feature-domain weighting table that have lower

discriminating powers. The weight between a document and each category is easily

calculated by summarizing related feature weights in the feature-domain weighting

table, and the classifier is thus constructed according to this table. Finally, in the

Tuning Phase, the scheme utilizes feedback information from tuning documents to

reduce the number of false positives for the constructed classifier.

We tested the constructed classifier on the standard benchmark Reuters-21578

text collection [58] based on the “ModApte” split version in terms of micro- and

 66

macro-averaging F1 evaluation functions. Our experiments consisted of four aspects:

(1) the classification accuracy of our classifier compared to those shown in [23]; (2)

the influence of the training document threshold φ and the discrimination threshold δ

on classification accuracy; (3) the influence of the number of tuning documents on

classification accuracy; and (4) the time performance of our classifier compared to a

batch-based mining approach. The experimental results show that the classification

accuracy of our classifier got better with an appropriate discrimination threshold and

sufficient training documents, and the classifier was strengthened by the Tuning

Phase.

4.2 Related Work

Previous studies of three major tasks (document representation, classifier

construction and classifier evaluation) in automatic document classification are briefly

reviewed below.

4.2.1 Document Representation

Document representation refers to representing documents in machine-readable

structures such that classifiers can be constructed efficiently and effectively. The most

common approach is the vector space model (VSM), which represents documents as

sets of features. The VSM usually considers two factors: (1) how to extract

representative features from documents, and (2) how to determine weights for

document features. Term-space document representation utilizing finite sets of

keywords or phrases occurring in documents as representative features and

determining feature weights using the standard tfidf weighting function is the most

popular form of VSM. A document can be therefore represented as <w1, w2, w3, …,

 67

wt>, where wi represents the weight between the i-th keyword and the document.

However, this simple representation may result in highly correlated, redundant and

less representative dimensions in a document vector, such that the efficiency and

effectiveness of a classifier are decreased [31][34].

The technique of dimension reduction has been used to resolve this problem in

recent decades. Among the approaches, (1) feature selection which selects terms from

the old ones contributing the classification most by evaluation functions such as

chi-square, information gain and mutual information [25][96][102], and (2) feature

extraction which regenerates more representative terms from the old ones

[10][24][29][49][94] are the two well-known categories.

4.2.2 Classifier Construction

 Rocchio approach

Given a set of training documents, the Rocchio approach [56][76] attempts to

learn a set of features used to represent each individual category from positive

training documents (members of the category) and negative training documents (not

members of the category). Then an undefined document x is assigned to the category

w when the inner product result of w and x is more than a user-specified threshold.

 Support Vector Machine (SVM) approach

Given a set of training documents, the support vector machine approach (SVM)

[46][47] finds the best decision hyper-plane separating two categories within the

maximum margin of each category. Figure 4-1 shows an example of a 2-dimensional

case. The decision hyper-plane, determined by only a few training documents, called

the support vectors, finds the maximum distance between different categories. Then

an undefined document is assigned to the closest category.

 68

Figure 4-1: An example of the support vector machine approach

 K-nearest neighbor (k-NN) approach

The K-nearest neighbor (k-NN) [31][100] is an instance-based or lazy learning

approach that treats each training document as a case and stores it in a case base. This

is rather different from most classifier construction approaches, which need to

construct models in advance. When classifying an undefined document d, the k-NN

first finds k nearest neighbors of d from the retained cases in the case base and

calculates the similarity scores between this document and categories of its k

neighbors. Then d is assigned to the most similar category according to the similarity

scores.

4.2.3 Classifier Evaluation

Evaluating classifier classification accuracy, the ability to make correct

classification decisions, is an important task. Precision (π) and Recall (ρ) used in the

field of information retrieval are well-known evaluation functions. However,

considering only the precision or the recall of a classifier may sometimes be

insufficient and misleading. The evaluation function Fβ, which considers them

simultaneously, has recently been proposed. Fβ is defined as follows:

 69

,**)1(
2

2

ρπβ
ρπβ

β +
+=F (4-1)

where, β, which ranges from 0 to ∞, denotes the importance of precision (π) and the

importance of recall (ρ). When β = 0, Fβ is identical to π. By contrast, when β = ∞, Fβ

is identical to ρ. β = 1, which gives equal importance to π and ρ for Fβ, is used most

frequently.

These evaluation functions are usually combined with macro-averaging or

micro-averaging to evaluate the average classification accuracy across multiple

categories [100][101]. Micro-averaging performance scores give equal weight to each

document classification decision, i.e., a per-document average, while macro-averaging

performance scores give equal weight to each category without considering its

frequency, i.e., a per-category average.

4.3 Domain-space Weighting Scheme for Document Classification

The proposed domain-space weighting scheme utilizes a document

representation called domain-space document representation to represent documents

in finite sets of domains. In this representation, each category involved in the training

documents is treated as a meaningful domain. To simplify our discussion, we assume

the training documents involve c categories in the rest of this study. A document can

be therefore represented as <w1, w2, w3, …, wc>, where wi represents the weight

between this document and the i-th category. Since the number of dimensions in

domain-space is much less than that in term-space and many irrelevant and redundant

dimensions can be effectively eliminated, the domain-space document representation

is more compact and representative. The larger the weight assigned to a document

vector entry, the more relevant the entry is. Thus, the entry with the maximum weight

 70

is chosen as the category label for an undefined document.

In order to determine the document vector, a feature-domain weighting table is

proposed to retain the weights between features and all involved categories. Since a

document is made up of a set of keywords and a keyword can be treated as a

representative feature, a document vector can be calculated by summarizing all related

feature vectors in the feature-domain weighting table. A document classifier can be

thus constructed according to this table.

Example 4-1: Assume Table 4-1 is a feature-domain weighting table containing

three categories and eight keywords. The document vector <w1, w2, w3> for an

undefined document d with two keywords, ‘Mining‘ and ‘Clustering‘, can be simply

calculated using: <(0.2992+0.3282)/2, (0+0)/2, (0.7008+ 0.6718)/2> = <0.3137, 0,

0.6863>. Thus, d can be simply assigned to the “DM” Category.

Table 4-1: An example of a feature-domain weighting table

 Domain
Feature AI DB DM

Database 0.0521 0.2387 0.2344
Primary 0 1 0
Relation 0.138 0.9852 0
View 0 1 0
Data 0.0605 0.1587 0.1592
Mining 0.2992 0 0.7008
Clustering 0.3282 0 0.6718
Rule 0 0 1

4.4 Classifier Construction Based on Domain-space Document

Representation

Classifier construction in the domain-space weighting scheme is carried out in

three phases: Training Phase, Discrimination Phase and Tuning Phase, to construct a

 71

classifier. In the Training Phase, the scheme incrementally extracts and weights

features from each category involved in the training documents, and then integrates

the results into a feature-domain weighting table. After that, in the Discrimination

Phase, it reduces the weights for the features in the feature-domain weighting table

which have lower discriminating powers. A document classifier is thus constructed. In

the Tuning Phase, the scheme utilizes feedback information from the tuning

documents (the other pre-defined documents) to reduce the number of false positives

yielded by the constructed classifier.

The proposed classifier construction algorithm is shown in Figure 4-2. It contains

three subroutines corresponding to the Training, Discrimination and Tuning Phases.

Let Tin be a given feature-domain weighting table. When a new category of

documents D is added, the classifier construction algorithm first uses the training

algorithm to extract and weight the features from D (Step 1) and then integrate the

results into Tin (Step 2). The integration contains inserting the domain D and the

feature only from D into Tin and then updating all feature weights in Tin. Assume Tup is

denoted as the updated feature-domain weighting table. Next, it uses the

discrimination algorithm to reduce the weights of features whose discriminating

powers are less than the user-specified threshold δ. A classifier Cup is therefore

constructed according to Tup (Step 3). The tuning algorithm can be used to strengthen

the constructed classifier Cup via the set of tuning documents D’ (Step 4), where ζ is

the user-specified tuning parameter.

Classifier Construction Algorithm:
Input:

T in: A given feature-domain weighting table.
D: A newly added category of documents.
D’: A set of tuning documents.
δ: A discrimination threshold.

 72

ζ: A tuning parameter.
Output:

Tup: The updated feature-domain weighting table.
Cup : The constructed classifier for Tup.

Begin
(1) TD ←Training(D); //TD is a table used to retain the weights for the features in D
(2) Tup ←Tin∪ TD ;
(3) Cup ←Discrimination(Tup, δ);
(4) If D’ ≠ φ, Cup ←Tuning(Cup, D’, ζ);
(5) Return Cup and Tup.

End
Figure 4-2: The classifier construction algorithm

Training

Category label

T2

T3

TD
 weight
 feature

TD

Mining 1
Database 0.8264
Clustering 0.7165
Rule 0.6963
Data 0.6175

 domain
 feature

“AI” “DB” “DM”

Database 0.22 1 0.8264
Primary 0 0.8264 0
Relation 0.01 0.7165 0
View 0 0.707 0
Data 0.235 0.6157 0.6175
Mining 0 1
Clustering 0.35 0 0.7165
Rule 0 0 0.6963

0.427

Discriminating

 domain
 feature “AI” “DB” “DM”

Database 0.0521 0.2387 0.2344
Primary 0 1 0
Relation 0.138 0.9862 0
View 0 1 0
Data 0.0605 0.1587 0.1592
Mining 0.2992 0 0.7008

Clustering 0.3282 0 0.6718
Rule 0 0 1

Tuning

C3

Labeling

 domain

 feature
“AI” “DB”

Database 0.22 1
Primary 0 0.8264
Relation 0.01 0.7165
View 0 0.707
Data 0.235 0.6157
Mining 0.427 0
Clustering 0.35 0

Integrating

Figure 4-3: The operation of the classifier construction algorithm

Example 4-2: Figure 4-3 illustrates the operation of the classifier construction

algorithm when a new category called “DM” is added. Assume T2 is the

 73

feature-domain weighting table which has been constructed with the “OS” Category

and the “DB” Category. When the “DM” Category is added, the training algorithm

extracts and weights features from the “DM” Category and stores the results in table

TD. After integrating TD into T2, the feature-domain weighting table is updated to T3.

The discrimination algorithm then reduces the weights of features in T3 which have

lower discriminating powers. The classifier C3 is thus constructed. The tuning

algorithm can use other given tuning documents to strengthen the classifier. The

classifier C3 can be used to classify an undefined document.

4.4.1 Training Phase

The purpose of the Training Phase is to extract representative features from

documents in a given category. In this study, the features are keywords that occur

more than once in at least one document in the given category, and they are extracted

by a pre-processing procedure that removes stop words, punctuation and digits,

converts all letters into lowercase, and stems using Porter’s stemmer. A feature is

more representative for a category if it appears in more documents and has higher

frequency in each document. The following formula is designed to calculate the

weight wk of the feature fk for a given category:

∑ ∑∑∑
∑

∗−==
j

j
jk

jk
jkk

k j
jk

j
jk

kk tf
tf

tfT
tf

tf
Tw),log(where,* (4-2)

where tfjk denotes the frequency of fk in document dj.

The proposed training algorithm is shown in Figure 4-4. When a new category of

documents D is added, the training algorithm extracts features from D (Step 1), and

then calculates their feature weights by considering the frequency and coverage of

each feature against the documents in D using Formula 4-2 (Step 2). After obtaining

 74

and calculating feature weights, the training algorithm normalizes them in the range

[0, 1] (Step 3.1), and adds them to table TD (Step 3.2), which is used to retain the

feature weights for D. Consequently, the training algorithm returns the weighting

table TD (Step 4).

Training Algorithm:
Input:

D : A newly added category of documents.
Output:

TD : A table used to retain the feature weights for D.
Begin

(1) F←{ fk | fk is a feature in D };
(2) For each fk ∈ F, do

(2.1) For each dj ∈ D, count the frequency tfjk of fk in dj;
(2.2) Calculate the weight wk of fk using:

∑ ∑∑∑

∑
∗−==

j
j

jk

jk
jkk

k j
jk

j
jk

kk tf
tf

tfT
tf

tf
Tw);log(where,*

(3) For each fk ∈ F, do

;
},...,,max{

)1.3(
21 k

k
k www

ww =

(3.2) TD ←TD ∪ wk ;
(4) Return TD.

End
Figure 4-4: The training algorithm

Example 4-3: Assume the features, ‘Mining’, ‘Database’, ‘Clustering’, ‘Rule’

and ‘Data’, have been extracted from the three documents d1, d2, d3 in the given

“DM” Category. Table 4-2 shows the statistical information for these features. These

five feature weights for the “DM” Category according to Formula 4-2 are shown in

Table 4-3. Among them, the feature weight of ‘Mining’ is calculated as follows:

Since ∑∑∑ ==
k j

jk
j

jk tftf and 725 ,165 ∑ ∑
=∗−=

j
j

jk

jk
jkk tf

tf
tfT ,725.78)log(we have

 75

917.17
725
165*725.78* ===

∑∑
∑

k j
jk

j
jk

kk tf

tf
Tw .

After being normalized, the feature weight of ‘Mining’ is set to 1.

Table 4-2: The statistic information of features in “DM” Category

 Information
Feature d1 d2 d3 ∑

j
jktf Tk wk

Mining 55 55 55 165 78.725 17.917
Database 50 50 50 150 71.568 14.807
Clustering 40 50 50 140 66.479 12.837
Rule 60 40 40 140 64.604 12.475
Data 40 40 50 130 61.700 11.063

Table 4-3: The feature weights in “DM” Category

TD
Feature TD

Mining 1
Database 0.8264
Clustering 0.7165
Rule 0.6963
Data 0.6175

4.4.2 Discrimination Phase

The purpose of the Discrimination Phase is to reduce the weights for features

having lower discriminating powers. The discriminating power of a feature can be

evaluated by calculating the gini index value [14][84] of its feature vector in the

feature-domain weighting table. Assume a feature vector fvk in the feature-domain

weighting table is represented as <w1, w2,…, wc> and ∑
=

=
c

j
jT ww

1
, where wj denotes

the weight between the feature fk and the j-th category. The gini index value gk of the

feature fk can be calculated using the following formula:

 76

∑
=









=

c

j T

j
k w

w
g

1

2

. (4-3)

The lowest gini index value appears when w1 = w2 = … = wc = 1/c, whereas the

highest gini index value appears when only one wj = 1 and the rest are 0. This idea is

conceptually similar to the idf term in the tfidf function. A feature has higher

discriminating power if it is included in fewer categories.

Discrimination Algorithm:
Input:

T: The feature-domain weighting table.
δ: A discrimination threshold.

Output:
C: The classifier.

Begin
(1) For each feature fk with feature vector fvk = <w1, w2,…, wc> in T, do

ionnormalizat- //One;)1.1(

1
∑

=

= c

j
j

k
k

w

fv
fv

(1.2) Calculate the gini index value gk of fk using:

;
1

2∑
=

=
c

j
jk wg

(1.3) If gk < δ, fvk = fvk * gk;
(2) C ←T;
(3) Return C.

End
Figure 4-5: The discrimination algorithm

The proposed discrimination algorithm is shown in Figure 4-5. According to

Formula 4-3, the discrimination algorithm first normalizes each feature vector in the

feature-domain weighting table T such that ||fv||1 = 1 (Step 1.1), and then calculates its

corresponding gini index value (Step 1.2). If the feature’s gini index value is less than

the user-specified discrimination threshold δ, i.e., the feature’s discriminating power

does not satisfy the minimum requirement, the discrimination algorithm reduces the

feature weights in T by multiplying the feature vector with its gini index value (Step

 77

1.3). A classifier C can be therefore constructed (Step 2), since the weight between a

document and each category can be easily calculated by summarizing its related

feature vectors in T. Consequently, the training algorithm returns the classifier C (Step

3).

Example 4-4: Assume the discrimination threshold δ is set to 0.5. As in Figure

4-3, the discrimination algorithm will adjust the feature-domain weighting table T3 to

produce the classifier C3. For example, the feature vector of ‘Data’, <0.235, 0.6157,

0.6175>, in T3 is adjusted as follows. One-normalization of ‘Data’ is <0.235/1.4682,

0.6157/1.4682, 0.6175/1.4682 > = <0.16, 0.4194, 0.4206>, and the gini index value of

‘Data’ is 0.162+0.41942+0.42062 = 0.3784; since 0.3784 < 0.5, the original feature

vector is reduced to <0.16, 0.4194, 0.4206> * 0.3784 = <0.0605, 0.1587, 0.1592>.

4.4.3 Tuning Phase

The purpose of the Tuning Phase is to utilize feedback information from tuning

documents (other pre-defined documents) to reduce the number of false positives

yielded by the constructed classifier. Conceptually, it operates like the Perceptron

learning algorithm [64] in neural network. Given a tuning document, the Tuning

Phase first compares its pre-defined category label with the category label suggested

by the constructed classifier. If they are consistent, it means that the classifier can

correctly decide on this tuning document using the corresponding feature vectors in

the feature-domain weighting table; the weight between each corresponding feature

and the category suggested by the classifier is then emphasized, such that the

classifier has strong weights. Otherwise, it means that the classifier may make

incorrect decisions using the feature-domain weighting table. The weight between

each corresponding feature and the category suggested by the classifier should be

 78

reduced and the weight between each corresponding feature and the pre-defined

category of the tuning document should be emphasized, such that the classifier has

appropriate weights.

The proposed tuning algorithm, shown in Figure 4-6, first extracts features from

each given tuning document (Step 1.1), and then obtains the category label suggested

by the constructed classifier C (Step 1.2). The document labeling algorithm, described

in next section, is used to carry out the suggestion procedure. If the category label

suggested by C is consistent with the pre-defined category label of a tuning document,

the tuning algorithm emphasizes the weight between each corresponding feature and

the suggested category by ζ percent of the feature weight in the tuning document

(Step 1.4), where ζ is the user-specified tuning parameter. Otherwise, the tuning

algorithm reduces the weight between each corresponding feature and the suggested

category by ζ percent of the feature weight in the tuning document and emphasizes

the weight between each corresponding feature and the pre-defined category of a

tuning document by ζ percent of the feature weight in the tuning document (Step 1.5).

Consequently, the tuning algorithm returns the updated classifier C (Step 2).

Tuning Algorithm:
Input:

C: The classifier.
D’: A set of tuning documents.
ζ: A tuning parameter.

Output:
C: The updated classifier.

Begin
(1) For each d∈ D’, do

(1.1) F←{ fk | fk is a feature in d };
(1.2) l ←Document labeling(d, C);
(1.3) ld = the pre-defined category label of d;
(1.4) If l = ld, do

(1.4.1) For each fk ∈ F, do wkl = wkl + dl * ζ;
// wkl is the weight between fk and l in C

 79

// dl is the l-th entry of d’s document vector
(1.5) If l ≠ ld, do

(1.5.1) For each fk ∈ F, do wkl = wkl − dl * ζ and wkld = wkld + dl*ζ
(2) Return the updated classifier C.

End
Figure 4-6: The tuning algorithm

Example 4-5: Assume the tuning parameter ζ is set to 0.01 and a given tuning

document d with two keywords, ‘Data’ and ‘Database’, belongs to “DM” Category.

According to the constructed classifier C3 in Figure 4-3, the document vector of d is

thus <(0.0605+0.0521)/2, (0.1587+0.2387)/2, (0.1592+0.2344)/2> = <0.0563, 0.1987,

0.1968>, and the classifier then assigns the category label “DB” to d. Obviously, the

constructed classifier C3 made an incorrect decision using the feature-domain

weighting table. Thus, the tuning algorithm reduces the weight between feature ‘Data’

and “DB” Category to 0.1587-0.1987*0.01=0.1567 and emphasizes the weight

between feature ‘Data’ and “DM” Category to 0.1592+0.1968*0.01=0.1612. On the

other hand, the weight between feature ‘Database’ and “DB” Category is reduced to

0.2387-0.1987*0.01=0.2367 and the weight between feature ‘Database’ and “DM”

Category is emphasized to 0.2344+0.1968*0.01=0.2364. The updated C3 is shown in

Table 4-4.

Table 4-4: An example of the tuning algorithm

 Domain
Feature AI DB DM

Database 0.0521 0.2367(1) 0.2364(3)
Primary 0 1 0
Relation 0.138 0.9852 0
View 0 1 0
Data 0.0605 0.1567(2) 0.1612(4)
Mining 0.2992 0 0.7008
Clustering 0.3282 0 0.6718
Rule 0 0 1

 80

(1) 0.2387 – 0.1987*0.01 = 0.2367
(2) 0.1587 – 0.1987*0.01 = 0.1567
(3) 0.2344 + 0.1968*0.01 = 0.2364
(4) 0.1592 + 0.1968*0.01 = 0.1612

4.5 Document Labeling by the Constructed Classifier

According to the constructed classifier, a document vector is easily calculated by

summarizing related feature vectors in the feature-domain weighting table. The larger

the weight assigned to a document vector entry is the more relevant the entry is. Thus,

the classifier can assign a category label to an undefined document on the basis of its

entry weights.

Given an undefined document d, the document labeling algorithm, shown in

Figure 4-7, first uses the constructed classifier C to obtain the document vector Vd by

summarizing the feature vectors of features occurred in d from feature-domain

weighting table (Step 2 and Step 3). The document labeling algorithm then assigns a

category label to d according to the entry with the maximum weight in Vd (Step 4).

Document Labeling Algorithm:
Input:

d: An undefined document.
C: The classifier constructed by the classifier construction algorithm.

Output:
l: The category label for d.

Begin
(1) Vd ←0; //Vd is the document vector of d and |Vd| equals the number of categories
(2) For each feature fk in d, do

(2.1) Extract the feature vector fvk from C;
(2.2) Vd = Vd + fvk;

(3) ;
)(count k

d
d f

V
V = //count(fk) is the number of features in d

(4) Return the category label l of the maximum weight in Vd.
End

Figure 4-7: The document labeling algorithm

 81

4.6 Experimental Results

Our experiments were conducted in Java on a personal computer with a Pentium

1.7GHz processor and 512MB of main memory running Windows 2000, and using the

Reuters-21578 benchmark text collection standard (REUTERS-21578, Distribution

1.0) experimental dataset [58] based on the “ModApte” split version. This dataset

consists of 118 categories in 12,902 documents, of which 9,603 are for training and

3,299 are for testing. The following groups of categories were used to evaluate

classification accuracy:

(1) the 10 categories with the largest number of training documents

(Reuters-21578(10));

(2) the 90 categories, each of which contains at least one training document and

one test document (Reuters-21578(90));

(3) the 115 categories, each of which contains at least one training document

(Reuters-21578(115)).

We tested our classifier on four aspects of micro- and macro-averaging F1

evaluation functions (shown in Formula 4-1):

(1) the classification accuracy of our classifier construction algorithm compared

to the algorithms shown in [23];

(2) the influence of the training document threshold φ and the discrimination

threshold δ on classification accuracy;

(3) the influence of the number of tuning documents on classification accuracy;

(4) the time performance of our classifier construction algorithm compared to a

batch-based mining algorithm.

 82

In [23], Debole and Sebastiani utilized six supervised term weighting functions,

chi-square, information gain, and gain ratio, globally and locally, e.g., χ2(g), IG(g),

GR(g), χ2(l), IG(l), and GR(l), in the Rocchio, k-NN, and SVM classifier construction

algorithms to compare their average classification accuracy on the Reuters-21578(10),

Reuters-21578(90), and Reuters-21578(115) datasets. The comparison results are

shown in Table 4-5.

Table 4-5: Micro- and macro-averaging F1 values shown in [23]

 χ2 (g) IG(g) GR(g) χ2 (l) IG(l) GR(l)
Reuters-21578(10) 0.852 0.843 0.857 0.810 0.816 0.816
Reuters-21578(90) 0.795 0.750 0.803 0.758 0.767 0.767 Micro F1
Reuters-21578(115) 0.793 0.747 0.800 0.756 0.765 0.765
Reuters-21578(10) 0.725 0.707 0.739 0.674 0.684 0.684
Reuters-21578(90) 0.542 0.377 0.589 0.527 0.559 0.559 Macro F1
Reuters-21578(115) 0.596 0.458 0.629 0.581 0.608 0.608

We set the discrimination threshold δ in our classifier construction algorithm to

0.5 for the Reuters-21578(10) dataset, and to 0.04 for the Reubters-21578(90) and

Reuters-21578(115) datasets; the number of tuning documents was set to 0. Table 4-6

shows the classification accuracy of our classifier at various training document

thresholds φ. The φ was to determine the availability of categories in the training

documents for our training algorithm. Thus, if the number of training documents in a

category was less than the specified φ, the category was omitted from the training

algorithm. For example, only 39 categories in Reuters-21578(90) satisfying φ = 25

were used in the training algorithm.

Tables 4-5 and 4-6 show the classification accuracy of our classifier construction

algorithm was always better than those in [23] on Reuters-21578(10), whereas the

results on Reuters-21578(90) and Reuters-21578(115) were worse when φ was less

than 15. We may therefore conclude that the classification accuracy of the classifier

 83

constructed by the domain-space weighting scheme will be getting better with

sufficient training documents.

Table 4-6: Micro- and macro-averaging F1 values at φ =1, φ =15 and φ =25

 φ=1 φ =15 φ=25
Reuters-21578(10) 0.903 0.903 0.903
Reuters-21578(90) 0.751 0.784 0.815 Micro F1
Reuters-21578(115) 0.737 0.784 0.815
Reuters-21578(10) 0.824 0.824 0.824
Reuters-21578(90) 0.490 0.569 0.660 Macro F1
Reuters-21578(115) 0.616 0.569 0.660

Details of training document threshold φ and discrimination threshold δ affected

classification accuracy on Reuters-21578(10), Reuters-21578(90), and

Reuters-21578(115) are shown in Tables 4-7 to 4-11. Since each category in

Reuters-21578(10) contains more than 50 training documents, the influence of φ is

ignored in Table 4-7. As mentioned before, the scale of δ is determined according to

the number of categories. Thus, the scale range of δ in Table 4-7 is [1/10, 1], and the

scale ranges of δ in Tables 4-8, 4-9 and in Tables 4-10, 4-11 are [1/90, 1] and [1/115,

1], respectively.

In Tables 4-7 to 4-11, we can see that the influence of δ is not evident even on

Reuters-21578(10), perhaps because the one-normalization of the discrimination

algorithm has achieved the purpose of discrimination such that setting δ has less

influence on the classification accuracy. By contrast, setting φ had a decisive

influence on classification accuracy: the larger the number of training document

included, the better classification accuracy will be. Table 4-12 shows the number of

remaining categories at various φ on Reuters-21578(10), Reuters-21578(90), and

Reuters-21578(115). When φ was 15 or greater, the training algorithm considered the

same numbers of categories on Reuters-21578(90) and Reuters-21578(115).

 84

Table 4-7: Micro-and macro-averaging F1 values at various δ for Reuters-21578(10)

δ Micro F1 Macro F1
0.9 0.902511370 0.814721475
0.8 0.901324896 0.813716994
0.7 0.903302353 0.820149529
0.6 0.903302353 0.819969831
0.5 0.902906862 0.823657403
0.4 0.898951948 0.815825122
0.3 0.901324896 0.817534791
0.2 0.895788017 0.804622957
0.1 0.898160965 0.806951786

Table 4-8: Micro-averaging F1 values at various δ and φ for Reuters-21578(90)

 φ

δ 1 5 15 25 35 45

0.1 0.74739 0.75360 0.78372 0.81300 0.82566 0.84547
0.08 0.74827 0.75389 0.78403 0.81269 0.82631 0.84447
0.06 0.75033 0.75478 0.78464 0.81458 0.82695 0.84681
0.04 0.75063 0.75300 0.78433 0.81521 0.82824 0.84681
0.02 0.74974 0.75271 0.78555 0.81553 0.8289 0.84681
0.01 0.74974 0.75330 0.78555 0.81584 0.8289 0.84681

Table 4-9: Macro-averaging F1 values at various δ and φ for Reuters-21578(90)

 φ

δ 1 5 15 25 35 45

0.1 0.46830 0.52281 0.56963 0.66335 0.67258 0.71811
0.08 0.48881 0.54619 0.57344 0.65812 0.67529 0.71390
0.06 0.48748 0.53001 0.57152 0.66360 0.67395 0.71542
0.04 0.48997 0.52214 0.56868 0.65998 0.67747 0.71738
0.02 0.48467 0.51960 0.57205 0.66281 0.67783 0.71738
0.01 0.48922 0.52176 0.57205 0.66312 0.67783 0.71738

Table 4-10: Micro-averaging F1 values at various δ and φ for Reuters-21578(115)

 φ

δ 1 5 15 25 35 45

0.1 0.73593 0.74885 0.78372 0.81300 0.82566 0.71811
0.08 0.73505 0.74915 0.78403 0.81269 0.82631 0.71390
0.06 0.73711 0.7506 0.78464 0.81458 0.82695 0.71542
0.04 0.73681 0.74944 0.78433 0.81521 0.82824 0.71738
0.02 0.73652 0.74855 0.78555 0.81553 0.8289 0.71738
0.01 0.73711 0.74915 0.78555 0.81553 0.8289 0.71738

 85

Table 4-11: Macro-averaging F1 values at various δ and φ for Reuters-21578(115)

 φ

δ 1 5 15 25 35 45

0.1 0.62378 0.53231 0.56963 0.66335 0.67258 0.71811
0.08 0.60384 0.55127 0.57344 0.65812 0.67529 0.71390
0.06 0.60474 0.53598 0.57152 0.66360 0.67395 0.71542
0.04 0.61597 0.53130 0.56868 0.65998 0.67747 0.71738
0.02 0.61526 0.53057 0.55990 0.66312 0.67783 0.71738
0.01 0.61526 0.52903 0.57205 0.66281 0.67783 0.71738

Table 4-12: Numbers of remaining categories at various φ

 φ =1 φ =5 φ =15 φ =25 φ =35 φ =45
Reuters-21578(10) 10 10 10 10 10 10
Reuters-21578(90) 90 69 51 39 34 27
Reuters-21578(115) 115 70 51 39 34 27

Reuters-21578(10)

0.85

0.9

0.95

0 100 200 300 400 500 600 700 800 900 1000
Tuning documents

M
ic

ro
-a

ve
ra

gi
ng

 F
1

Figure 4-8: Micro-averaging F1 value vs. number of tuning documents for

Reuters-21578(10)

The influence of tuning document number on classification accuracy for

Reuters-21578(10), Reuters-21578(90), and Reuters-21578(115) is shown in Figures

4-8, 4-9 and 4-10, respectively. Since the tuning documents in our experiments were

selected from the test documents, the original test document dataset was divided into

 86

tuning and test sets. Experimental results showed that setting the tuning parameter ζ

to 0.000005 yielded a stably increasing trend. Too low the ζ value may lead to a

tuning adjustment so tiny that the tuning effect is insignificant, and too large the ζ

value may lead to an unstable and oscillatory tuning adjustment with unpredictable

tuning effects. Figures 4-8 to 4-10 show that the classification accuracy of the

constructed classifier improved as the number of tuning documents was increased and

tended toward convergence when the number exceeded 700.

Reuters-21578(90)

0.7

0.75

0.8

0.85

0 100 200 300 400 500 600 700 800 900 1000
Tuning documents

M
ic

ro
-a

ve
ra

gi
ng

 F
1

φ=1
φ=15
φ=25

Figure 4-9: Micro-averaging F1 values vs. number of tuning documents at φ =1, φ =15

and φ =25 for Reuters-21578(90)

Reuters-21578(115)

0.7

0.75

0.8

0.85

0 100 200 300 400 500 600 700 800 900 1000
Tuning documents

M
ic

ro
-a

ve
ra

gi
ng

 F
1

φ=1
φ=15
φ=25

 87

Figure 4-10: Micro-averaging F1 values vs. number of tuning documents at φ =1, φ

=15 and φ =25 for Reuters-21578(115)

We evaluated the efficiency of our classifier construction algorithm in

comparison with a batch-based classifier construction approach, excluding the tuning

algorithm. The computation time of our classifier construction algorithm contains

three major portions when a new category is added in the i-th run: (1) time to extract

and weight features from a given category, denoted as ti1; (2) time to integrate the

training results into the feature-domain weighting table, denoted as ti2; and (3) time to

reduce the weights of features in the feature-domain weighting table having lower

discriminating powers, denoted as ti3. Since ti1 > ti2 >> ti3, total computation time can

be simplified to O(ti1+ti2) in the i-th run. However, when our classifier construction

algorithm mimicked a batch-based approach, and needed to re-process all previous

categories to reconstruct its classifier for each run, the total computation time was

O(∑ =
+i

j jj tt
1 21)() for the i-th run. Figure 4-11 shows the computation times spent by

our classifier construction algorithm respectively in batch and in incremental for

Reuters-21578(10) with increasing numbers of considered categories.

0

200000

400000

600000

800000

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Categories

Ti
m

e
(m

s)

Batch-based Incremental-based

Figure 4-11: Computation times spent by the batch-based classifier and the

 88

incremental-based classifier for reuters-21578(10)

It is easily seen that, the computation times for the batch-based classifier

increased as the number of involved categories was increased, but the computation

times for the incremental-based classifier remained almost the same as the number of

involved categories was increased. Since previously discovering information is all

retained in the feature-domain weighting table, the classification accuracy of the

incremental-based classifier is the same as that of the batch-based classifier.

4.7 Conclusions

This study proposes a domain-space weighting scheme to represent documents in

domain-space and incrementally construct a classifier to resolve the document

representation and categories adaptation problems. The scheme consists of three

major phases: Training Phase, Discrimination Phase and Tuning Phase. The training

algorithm incrementally extracts and weights features from each individual category,

and then integrates the results into a feature-domain weighting table. The

discrimination algorithm reduces feature weights with lower discriminating powers.

When these algorithms finish constructing the classifier, the tuning algorithm

strengthens it using feedback information from tuning documents to reduce the

number of false positives. Experiments with the Reuters-21578 benchmark show that

with sufficient training documents, the classifier is rather effective and efficient.

 89

Chapter 5

From Incremental Mining to Multidimensional

Online Mining for Knowledge Discovery

5.1 Introduction

Although incremental mining algorithms are rather efficient and useful for static

models such as mining all the data accumulated thus far and mining only a recently

collected portion of data in uncomplicated applications, they usually provide little

support for user focus (e.g., limiting the computation to what interests the user) and

user interaction (e.g., dynamically changing the parameters or constraints). This may

produce thousands of rules that are irrelevant and uninteresting to users. On the other

hand, decision-makers usually diversely consider problems at different aspects: they

may need to analyze market demands, customer preferences, localities, and

short-term/long-term trends; they may want to understand the change of discovered

patterns or rules in different dimensions. This may neither flexibly obtain rules or

patterns from their interesting portions of data, nor diversely consider problems at

different aspects to provide online decision supports for users.

Some examples about that a decision-maker usually requires online mining

supports of association rules are shown below.

Scenario 1: A decision-maker may have known which product combinations

sold in last August were popular, and wants to know which product combinations sold

in last September were also popular.

 90

Scenario 2: A decision-maker may have known that people often buy beer and

diapers together from a transaction database, and want to further know under what

contexts (e.g., place, month, or branch) this pattern is significant or, oppositely, under

what contexts this pattern becomes insignificant.

Scenario 3: A decision-maker may want to know how the mined patterns this

year differ from those last year, such as what new patterns appear and what old

patterns disappear.

Scenario 4: A marketing analyst may want to analyze the data collected from the

branches in Los Angeles and San Francisco in all the first quarters in the last five

years.

Scenario 5: A marketing analyst may want to know what patterns are significant

in the recent month when the minimum support increases from 5% to 10%.

The examples above all require more context information to describe the

problem domain. A mining algorithm that can handle relevant context information in

mining requests will thus help decision-makers consider various aspects of problems

in diverse ways.

Constraint-based and multidimensional mining techniques [11][15][35][37]

[48][51][52][65][72] which allow users to specify constraints as a guidance have thus

been developed to identify and extract interesting and focused knowledge from a data

warehouse or a database. Users can continually express his focus and change not only

the parameters but also the constraints in the mining process. For example, Kamber et

al. [48] proposed a famous approach that allowed users to specify the predicates that

appear in antecedent and consequent parts of association rules. However, putting all

data gathered in different contexts (such as different branches, different time intervals

and different regions) together for centralized mining seems to be time-consuming

 91

and infeasible for online mining support because of the size of data. Users may need

to wait for a long period of time for the mining results.

Different from the techniques of constraint-based and multidimensional mining,

we attempt to extend the concept of effectively utilizing previously discovered patterns

in incremental mining to support multidimensional online mining. We first

systematically mines rules or patterns from data gathered in different contexts

according to the pre-defined parameter setting, and forwards the rules or patterns with

the corresponding context information to a structural repository called knowledge

warehouse for centralized post-mining and refining. Then, we can efficiently acquire

user-interesting and/or user-focused association rules or patterns by integrating related

mining information from the knowledge warehouse, and greatly reduce the cost of

mining the underlying data at each time.

Consequently, a systematic, automatic, integrated, and on-demand architecture,

called Online Knowledge Discovery System (OKDS), can be developed to help

managers and decision-makers diversely consider problems at different aspects and

provide online mining supports. The OKDS mainly consists of five major components,

knowledge client, knowledge warehouse, knowledge organizer, mining agent, and

underlying storage facility. Through the mining agents systematically and

continuously mine potentially useful patterns from each underlying storage facilities,

the knowledge organizer structurally stores these mined patterns into the knowledge

warehouse, and thus users can utilize aggregation and generalization functions in the

knowledge client for online patterns generation.

5.2 Related Work

Data warehouse is an integrated, subject-oriented, and nonvolatile data

 92

repository containing historical and aggregated data from operational and legacy

systems for supporting decision-making processes [17][45][97]. Comparing to routine

works of On-Line Transaction Processing (OLTP) in the operational databases, the

purpose of data warehouse is to help analysts On-Line Analytical Processing (OLAP).

Therefore, to facilitate complex analyses and achieve high query throughput is the

most important consideration in the data warehouse. Table 5-1 lists the major

differences between the operational database and the data warehouse [17][45]. Thus,

data warehouses are usually maintained separately from the organization’s operational

databases.

Table 5-1: Differences between the operational database and the data warehouse

Aspects Operational database Data Warehouse
User Data entry clerk

 System designer
 System administrator

 Decision maker
 Knowledge worker
 Executives

Function Daily operations
 OLTP

 Decision support
 OLAP

DB Design Application oriented Subject oriented
Data Current

 Up-to-date atomic
 Relational(normalized)
 Isolated

 Historical
 Summarized
 Multidimensional
 Integrated

Usage Repetitive routine Ad hoc
Access Read/write

 Simple transaction
 Read mostly
 Complex query

System Requirements Transaction throughput
 Data consistency

 Query throughput
 Data accuracy

Developing a data warehouse often extracts user-interesting information from

each source (operational database) in advance, then merging the relevant information,

and consequently installing into a structurally centralized repository for later analysis.

The data warehouse often adopts a multidimensional data model to prepare the data

for analytical processing under multidimensional consideration. The star schema

 93

consisting of a fact table and a set of dimension tables is the most used form in the

multidimensional data model. The fact table contains user-interesting measure

attributes, which are the objects for analysis, and key attributes (identifiable attributes)

to each of the related dimension tables. The dimension table contains additional

attributes to further describe each of key attributes in the fact table. The

multidimensional data model provides users a clear and multidimensional view of

data. Data can be easily accessed by manipulating the dimensions.

5.3 Knowledge Warehouse

 For providing efficient online mining, the knowledge warehouse is initiated from

the concept of effectively utilizing previously discovered patterns in incremental

mining. As we know, for not wasting the previously mined patterns and improving

rule maintenance performance, incremental mining algorithms always keep the mined

patterns into the storage for later use. For providing multidimensional consideration,

the knowledge warehouse is further referred to the multidimensional data model of

data warehouse capable of supporting ad-hoc queries and decision making by

aggregation functions and OLAP operations.

As the data under decision-support consideration does not evolve in an arbitrary

way (e.g., the data in the data warehouse may be inserted or deleted in a block during

an interval of a month [32]), the knowledge warehouse is thus proposed to structurally

and systematically store the context information and mining information for each

inserted dataset. The context information is used to represent the contexts of each

individual block of data which are gathered together from a specific business

viewpoint, such as region, time and branch. The mining information is used to record

the available information mined from each individual block of data by a batch mining

 94

algorithm, such as the number of data, the number of mined patterns, and the set of

previously mined patterns with related information. Conceptually, the knowledge

warehouse is similar to the data warehouse for OLAP. Both of them systematically

preprocess the underlying data in advance, integrate related information, and store the

results in a centralized structural repository for later use and analysis. However, the

data warehouse is mainly used to store mined patterns at knowledge level but not data

at information level. Table 5-2 lists the major differences between the knowledge

warehouse and the data warehouse.

Table 5-2: Differences between the knowledge warehouse and the data warehouse

Aspects Data Warehouse Knowledge Warehouse
Function OLAP Online mining
Data Historical

 Summarized
 Multidimensional
 Integrated

 Mined
 Multidimensional

Access Read mostly
 Complex query

 Read only
 Mining query

System Requirements Query throughput
 Data accuracy

 Mining throughput
 Knowledge usability

 The star schema can still be a concise and organized structure to model the

knowledge warehouse. The context information and mining information can be

represented by dimensions and measures, respectively. Example 5-1 shows a star

schema of the knowledge warehouse used to provide online generation of association

rules for product sales in a bicycle manufacturer. However, unlike the summarized

information on measure attributes in the data warehouse, the mining information in

the knowledge warehouse, such as the mined patterns, may not be directly aggregated

to satisfy users’ mining requests. Thus, the major challenge of the knowledge

warehouse is how to efficiently aggregate, generalize and manipulate the mining

 95

information. In the next chapter, we will design corresponding aggregation and

generalization approaches to provide online mining supports on association rules.

Example 5-1: Figure 5-1 is a star schema of the knowledge warehouse for a

bicycle manufacturer. It consists of three dimensions, Time, Branch and Minsup, and

three measures, No_Trans, No_Patterns and Pattern_Set. Of the three dimensions,

Time and Branch are nonnumeric dimension similar to that in a typical data

warehouse, and Minsup is a numeric dimension indicating the minimum supports for

the measures, No_Patterns and Pattern_Set. Of the three measures, No_Trans is a

numeric measure that can be calculated similar to that in a typical data warehouse,

and No_Patterns is also a numeric measure and decided by Pattern_Set, and

Pattern_Set is a set measure that represents a collection of frequent itemsets with their

supports under the corresponding time and branches and satisfying a minimum

support in Minsup dimension.

Figure 5-1: An example of the star schema of a knowledge warehouse

time_key

minsup_key
branch_key

No_Patterns
No_Trans

time_key
day

month

minsup_key
minsup_value

branch_key
branch_name

region
country

Time
dimension table

sales
fact table

Branch
dimension table

Minsup
dimension table

Pattern_Set

year

 96

5.4 Online Knowledge Discovery System (OKDS)

 Based on the proposed knowledge warehouse, a systematic, automatic, integrated,

and on-demand architecture, called Online Knowledge Discovery System (OKDS),

can be developed to provide managers and decision-makers multidimensional online

mining supports. The OKDS, as shown in Figure 5-2, mainly consists of five major

components, knowledge client, knowledge warehouse, knowledge organizer, mining

agent, and underlying storage facility.

Knowledge Warehouse

Mining
Agent 1

Mining
Agent 2

Mining
Agent n

Knowledge Organizer

Knowledge
Client 2

Knowledge
Client 1

Knowledge
Client m

Underlying
Storage Facility 1

Underlying
Storage Facility 2

Underlying
Storage Facility n

Figure 5-2: The OKDS architecture

Whenever a new block of data is inserted into a underlying storage facility, the

corresponding mining agent will systematically and continuously mine potentially

useful patterns from the block of data as the mining information; then the knowledge

 97

organizer will structurally store the mining information associated with related

context information in the knowledge warehouse; and thus users can utilize

aggregation and generalization functions in the knowledge client for online generation

of patterns. On the other hand, when an old block of data is deleted from a underlying

storage facility, its corresponding context and mining information will be removed

from the knowledge warehouse by the knowledge organizer.

 Underlying storage facility: A underlying storage facility is served as materials

supplier in OKDS to provide underling, purpose-oriented and pre-processed data.

Therefore, it can be a data warehouse, a preprocessed database or a cleaned file.

 Mining agent: Agents often play autonomous, adaptive and intelligent roles in a

distributed system. For example, for an intelligent travel service system, a

traveling agent follows the user setting or the user profile to collect interesting

traveling paths and hotel coupons; a scheduling agent follows the user program,

weather prediction and news to provide proper periods for traveling; and a

coordinator agent is responsible for coordinate the traveling and scheduling

agents capable of obtaining proper traveling packages and suitable schedules for

users. Thus, a mining agent mainly follows the user setting to periodically detect

the data changes in a underlying storage facility, automatically mining potential

patterns from a underlying storage facility and reporting the results to the

knowledge organizer. The knowledge organizer is served as the coordinator

agent of mining agents.

 Knowledge organizer: The knowledge organizer is responsible for periodically

maintaining the patterns in the knowledge warehouse. Its works include

collecting the discovered patterns from each mining agent, merging or

summarizing these ones as the mining information, and then storing them

 98

associated with corresponding context information into the knowledge

warehouse. For improving the performance of fulfilling user requests, the

knowledge organizer is also responsible for constructing and maintaining the

materialized views of knowledge warehouse.

 Knowledge client: A knowledge client is an interface used for receiving user’s

mining requests, transferring a mining request to an operating procedure for the

knowledge warehouse, and reporting mining results to users. For convenient to

understand and evaluate the mining results, it is also responsible for providing

visualization services.

 99

Chapter 6

Multidimensional Online Mining Algorithms for

Generation of Association Rules

6.1 Introduction

Previous works on mining association rules can be classified into batch mining

[5][16][40][53][61][67][78][95] and incremental mining approaches [8][20][21]

[27][43][77][85] according to their processing procedures. Most focus on finding

association rules in specified parts of databases that satisfy the user-specified

minimum support and minimum confidence [11][15][37][52][65]. Some contexts

(circumstances) such as region, time, and branch are usually ignored in mining

requests, and thus they usually can not flexibly obtain association rules from portions

of data, diversely consider problems and provide on-line decision supports for users.

To provide ad-hoc, query-driven and online mining support for generation of

association rules, we first propose a relation called the Multidimensional Pattern

Relation (MPR) as a form of knowledge warehouse to structurally and systematically

store context and mining information for later analysis [90][92]. We then develop an

online mining approach called Three-phase Online Association Rule Mining

(TOARM) based on this proposed MPR to support online generation of association

rules under multidimensional considerations. The TOARM approach consists of three

phases, candidate itemset generation, candidate itemset reduction, and association

rule generation, during which final sets of patterns satisfying various mining requests

 100

are found. The candidate itemset generation phase selects tuples that satisfy the

context constraints in mining requests and generates candidate itemsets from the

matching tuples. The candidate itemset reduction phase then calculates upper-bound

supports for the candidate itemsets and uses two pruning strategies to reduce the

number of candidates. Finally, the association rule generation phase finds final

frequent itemsets and derives association rules from them.

6.2 Related Work

Recently, researchers have developed online mining algorithms to obtain

required sets of association rules without re-processing the entire database whenever

user-specified thresholds are changed. Examples are the OLAP-style algorithm

proposed by Aggarwal and Yu [1] and the Carma algorithm proposed by Hider [41].

The OLAP-style algorithm is quite similar to a typical incremental mining algorithm

that utilizes previously mined patterns to save on I/O and computation. It first stores

primary itemsets based on a low minimum support criterion in a latticed data structure,

and then responds to users’ queries with higher minimum support criteria by

processing the lattice. It thus preprocesses the data just once, but can efficiently

handle multiple user queries. The Carma algorithm attempts to provide intermediate

results as feedback to users while databases or minimum support thresholds are being

changed. Users are thus able to dynamically adjust thresholds according to

intermediate results. The Carma algorithm uses two runs. During the first run, it

constructs a lattice composed of all potential frequent itemsets from the transactions.

Each itemset in the lattice uses a lower bound and an upper bound to record its

possible support range. When a mining request is input, itemsets in the lattice whose

support ranges cover or are larger than the new minimum support threshold are output

 101

to the second run. During the second run, the Carma algorithm finds the precise

support for each itemset from the first run to determine whether it is truly large.

Interestingly, many large organizations have multiple databases distributed at

different branches. Traditional data mining algorithms may put all data from different

databases in a common repository for centralized analysis. This kind of mining causes

some problems. The collected data may be too huge to be coped with, and some

useful rules or patterns regarding local databases may be lost. As a result,

multi-database mining has recently been recognized as an important research topic

and some studies [50][98][105] on mining association rules over multi-databases have

been proposed. These approaches mine rules or patterns at different databases and

then gather the mined results.

These online mining and multi-database mining approaches do not, however,

maintain a repository to systematically and structurally store the mining information

and related context information for later flexible analysis.

6.3 Multidimensional Pattern Relation (MPR)

In this section, we formally define the Multidimensional Pattern Relation (MPR)

for storing context information and mining information for later analysis. First, a

relation schema R, denoted by R(A1, A2, …, An), is made up of a relation name R and a

list of attributes A1, A2, …, An. Each attribute Ai is associated with a set of attribute

values, called the domain of Ai and denoted by dom(Ai). A relation r of the relation

schema R(A1, A2, …, An) is a set of tuples {t1, t2, …, tm}. Each tuple ti is an ordered list

of n values <vi1, vi2, …, vin>, where each value vij is an element of dom(Aj).

A Multidimensional Pattern Relation Schema (MPRS) is a special relation

schema for storing mining information. An MPRS consists of three types of attributes:

 102

identification (ID), context, and content. There is only one identification attribute for

an MPRS. It is used to uniquely label tuples. Context attributes describe the contexts

(circumstances) of an individual data block, gathered together from a specific

business viewpoint. Examples of context attributes are region, time, and branch.

Content attributes describe available mining information discovered from each

individual data block by a batch mining algorithm. Examples of content attributes are

number of transactions, number of mined patterns, and the set of previously mined

frequent itemsets with supports.

The set of all patterns, with supports, previously mined from an individual data

block is called a pattern set (ps) in this study. Assume the minimum support is s and l

frequent itemsets are discovered in a data block. A pattern set can be represented as ps

= {(xi, si) | si ≥ s and 1≤ i ≤ l}, where xi is a frequent itemset and si is its support. The

pattern set is thus an essential content attribute of an inserted block of data.

An MPRS with n1 context attributes and n2 content attributes can be represented

as MPRS(ID, 1CX , 2CX , …,
1nCX , 1CN , 2CN , …,

2nCN), where ID is an

identification attribute, CXi, 1 ≤ i ≤ n1, is a context attribute, and CNi, 1 ≤ i ≤ n2, is a

content attribute. Assume the MPR to be an instance of a given MPRS that includes

the tuples {t1, t2, …, tm}. Each tuple ti = (iid , 1icx , 2icx , …,
1incx , 1icn , 2icn , …,

2incn) in MPR indicates that for the block of data identified by the contexts 1icx ,

2icx , …, and
1incx , the mined information contains 1icn , 2icn , …, and

2incn .

Table 6-1: An MPR with minimum support = 5%

ID Region Branch Time No_Trans No_Patterns Pattern_Sets
(Itemset, Support)

1 CA San Francisco 2003/10 10000 7
(A,10%),(B,11%),(C,9%),
(AB,8%),(AC,7%),(BC,6
%),(ABC,6%)

 103

2 CA San Francisco 2003/11 15000 3 (A,5%),(B,7%),(C,5%)
3 CA San Francisco 2003/12 12000 2 (A,5%),(C,9%)
4 CA Los Angeles 2003/10 20000 3 (A,8%),(B,6%),(F,5%)
5 CA Los Angeles 2003/11 25000 2 (A,5%),(C,6%)

6 CA Los Angeles 2003/12 30000 4 (A,6%),(B,6%),(C,9%),
(AB,6%)

7 NY New York 2003/10 18000 3 (B,8%),(C,7%),(BC,6%)
8 NY New York 2003/11 18500 2 (B,8%),(C,6%)

9 NY New York 2003/12 19000 5 (A,5%),(B,9%),(C,8%),
(D,6%),(BC,6%)

Example 6-1: Table 6-1 shows an MPR with the initial minimum support set to

5%. ID is the identification attribute, Region, Branch and Time are context attributes,

and No_Trans, No_Patterns and Pattern_Sets are content attributes. The Pattern_Sets

attribute records the sets of frequent itemsets mined from previous data blocks. For

example, the tuple ID = 1 shows that seven frequent itemsets, {(A, 10%), (B, 11%),

(C, 9%), (AB, 8%), (AC, 7%), (BC, 6%), and (ABC, 6%)}, were discovered from

10000 transactions and in the contexts of Region = CA, Branch = San Francisco, and

Time = 2003/10. The other tuples have similar meanings.

6.4 Three-Phased Online Association Rule Mining (TOARM) based

on MPR

The goal of online mining is to find association rules satisfying the constraints in

mining requests. The flexibility of mining requests can be increased by using the

proposed MPR. An online mining approach called Three-phase Online Association

Rule Mining (TOARM) is proposed to carry out mining tasks with an MPR. TOARM

first selects tuples from the relation that satisfy the constraints in a mining request. It

then integrates the mined information in these tuples and outputs them to users.

Before describing the TOARM approach, we first formally define the problem to be

solved and some related terminology. Some lemmas are also derived and proven.

Assume MPR = {t1, t2, …, tm} is a multidimensional pattern relation based on an

 104

initial minimum support s. Given a mining request q with the set of contexts cxq, the

new minimum support sq (sq ≥ s), and the new minimum confidence confq, the

TOARM approach will effectively and efficiently derive association rules satisfying sq,

confq and cxq. Tuples with cxq in an MPR are called matched tuples (mt). Let ti denote

the i-th tuple in an MPR, ti.trans the number of transactions in ti, ti.ps the pattern set in

ti, and ti.sx the actual support of an itemset x in ti. Lemma 6-1 is easily derived as

follows.

Lemma 6-1: For each itemset x satisfying sq and cxq in a mining request q, there

exists at least a matched tuple t, such that t.sx satisfies sq.

Proof: We prove the lemma by contradiction. If ti.sx < sq for each matched tuple

ti, then:

∑∑
∈∈

∗<∗
mtt

qi
mtt

xii
ii

stranststtranst (6-1)

It implies that the itemset x does not satisfy sq, contradicting the claim that x

satisfies sq. Thus, there must exist at least a matched tuple t with t.sx ≥ sq.

According to Lemma 6-1, an itemset with support greater than or equal to sq in at

least one matched tuple is a possible candidate. The following lemma about candidate

itemsets can thus be derived.

Lemma 6-2: Each itemset x satisfying sq and cxq in a mining request q must be

among the candidate itemsets obtained by collecting the ones whose supports are

greater than or equal to sq in at least one matched tuple.

Example 6-2: For the MPR given in Table 6-1, assume that a mining request q

calls for getting the patterns under the contexts cxq of Region = CA and Time =

2003/11~2003/12 and satisfying the minimum support sq = 5.5%. The matched tuples

are shown in Table 6-2. According to Lemma 6-2, the set of candidate itemsets is

{{A}, {B}, {C}, {AB}}, which is the union of the itemsets appearing in the pattern

 105

sets with supports greater than 5.5%.

Table 6-2: Matched tuples in Example 6-2

ID Region Branch Time No_Trans No_Patterns Pattern_Sets
(Itemset, Support)

2 CA San Francisco 2003/11 15000 3 (A,5%),(B,7%),(C,5%)
3 CA San Francisco 2003/12 12000 2 (A,5%),(C,9%)
5 CA Los Angeles 2003/11 25000 2 (A,5%),(C,6%)
6 CA Los Angeles 2003/12 30000 4 (A,6%),(B,6%),(C,9%),

(AB,6%)

The following relation can be derived for a candidate itemset x and its proper

subsets.

Lemma 6-3: If x is a candidate itemset, then ∀ x’ ⊂ x, x’ is also a candidate

itemset.

Proof: If x’ ⊂ x, then ti.sx’ ≥ ti.sx for each tuple ti in an MPR. According to

Lemma 6-2, if x is a candidate itemset, there must exist at least a matched tuple t with

t.sx ≥ sq. Thus, t.sx’ ≥ t.sx ≥ sq for the tuple t. x’ is thus a candidate itemset.

The appearing count appearing
xCount of a candidate itemset x is defined as the

count of x calculated from the matched tuples in which x appears. Thus:

∑
∈∈

∗=
pstxmtt

xii
appearing
x

ii

sttranstCount
. &

... (6-2)

The upper-bound count UB
xCount of a candidate itemset x is defined as the

upper bound count of x calculated from the matched tuples in which x does not appear.

Thus:

∑
∉∈

−∗=
pstmtt
i

UB
x

ii

stranstCount
. x&

)1.(. (6-3)

Let Match_Trans denote the number of transactions in the matched tuples. Thus:

∑
∈

=
mtt

i
i

transtTransMatch ._ . (6-4)

 106

The upper-bound support UB
xs of a candidate itemset x is thus calculated as:

UB
xs =

Trans_Match
CountCount UB

x
appearing
x + . (6-5)

Lemma 6-4: If x is a candidate itemset and xs is its actual support, then xs ≤

UB
xs .

Proof:

sx =
∑

∑

∈

∈

∗

mtt
i

mtt
xii

i

i

transt

sttranst

.

..

 =
∑

∑∑

∈

∉∈∈∈

∗+∗

mtt
i

pstxmtt
xii

pstxmtt
xii

i

iiii

transt

sttranststtranst

.

....
. & . &

≤
∑

∑∑

∈

∉∈∈∈

−∗+∗

mtt
i

pstxmtt
i

pstxmtt
xii

i

iiii

transt

stranststtranst

.

)1.(..
. & . &

 =
Trans_Match

CountCount UB
x

appearing
x +

 = UB
xs .

Thus xs ≤ UB
xs .

Example 6-3: Continuing Example 2, the upper-bound supports of the four

candidate itemsets {A}, {B}, {C}, and {AB}, are calculated as follows:

Trans_Match
CountCount

s
UB
A

appearing
AUB

A
+

=

0537.0=
+++

+++=
30000250001200015000

6%* 30000 5%* 25000 5%* 12000 5%* 15000 ,

Trans_Match
CountCount

s
UB
B

appearing
BUB

B
+

=

 107

 0573.0=
+++

+++=
30000250001200015000

 1-5%*250001-5%* 12000 6%*300007%* 15000 � ,

Trans_Match
CountCount

s
UB
C

appearing
CUB

C

+
=

0735.0
30000250001200015000

 9% * 30000 6% * 25000 9% * 12000 5% * 15000 =
+++

+++= � , and

Trans_Match
CountCount

s
UB
AB

appearing
ABUB

AB

+
=

 = .0536.0=
+++

+++
30000250001200015000

 1-5%*250001-5%*120001-5%* 150006%*30000 �

Lemma 6-5: If x is a candidate itemset, then ∀ x’ ⊂ x, UB
xs ' ≥ UB

xs .

Proof: If x’ ⊂ x, then ti.sx’ ≥ ti.sx for each tuple ti in an MPR. Therefore:

UB
xs ' =

Trans_Match
CountCount UB

'x
appearing
'x +

=
∑

∑∑

∈

∉∈∈∈

−∗+∗

mtt
i

pstxmtt
i

pstxmtt
xii

i

iiii

transt

stranststtranst

.

)1.(..
.' & .' &

'

=
∑

∑∑∑

∈

∉∈∉∈∈∈∈∈

−∗+∗+∗

mtt
i

pstxmtt
i

pstxpstxmtt
xii

pstxpstxmtt
xii

i

iiiiiiii

transt

stranststtranststtranst

.

)1.(....
.' & . &.' &

'
. &.' &

'

≥
∑

∑∑∑

∈

∉∈∉∈∈∈∈∈

−∗+−∗+∗

mtt
i

pstxmtt
i

pstxpstxmtt
i

pstxpstxmtt
xii

i

iiiiiiii

transt

stranststranststtranst

.

)1.()1.(..
.' & . &.' & . &.' &

=
∑

∑∑

∈

∉∈∈∈

−∗+∗

mtt
i

pstxmtt
i

pstxmtt
xii

i

iiii

transt

stranststtranst

.

)1.(..
. & . &

=
Trans_Match

CountCount UB
x

appearing
x +

 108

= UB
xs .

Thus, UB
xs ' ≥ UB

xs .

Lemma 6-6: If a candidate itemset x is contained in all matched tuples, then UB
xs

= sx.

Proof: If x is contained in all the matched tuples, then:

UB
xs =

Trans_Match
CountCount UB

x
appearing
x + =

∑

∑

∈

∈

∗

mtt
i

mtt
xii

i

i

transt

sttranst

.

..
= sx.

Example 6-4: Continuing Examples 2 and 3, according to Lemmas 6-4 and 6-5,

candidate itemsets {A} and {AB} will be pruned since {AB} is a proper superset of {A}

and the upper-bound support of {A} is less than sq (= 5.5%). According to Lemma 6-6,

the candidate itemset {C} will be put into the set of final frequent itemsets since it

appears in all matched tuples and its support is greater than 5.5%. Only the remaining

candidate itemset {B} needs further processing.

The TOARM approach for carrying out mining tasks with an MPR consists of

three main phases, candidate itemset generation, candidate itemset reduction, and

association rule generation. The candidate itemset generation phase selects tuples

that satisfy the context constraints in mining requests and generates candidate itemsets

from matched tuples. The candidate itemset reduction phase then calculates the

upper-bound supports for the candidate itemsets and uses two pruning strategies to

reduce the number of candidates. Finally, the association rule generation phase finds

final frequent itemsets and derives association rules from them. The proposed

three-phase online mining approach is described in Figure 6-1.

The Three-phase Online Association Rule Mining (TOARM) approach:

 109

INPUT: An MPR based on an initial minimum support s and a mining request q with
a context set cxq, a minimum support sq (sq ≥ s)and a minimum confidence
confq.

OUTPUT: A set of association rules satisfying the mining request q.
Phase 1: Candidate itemset generation:
(a) Select tuples satisfying cxq from the MPR.
(b) Gather the candidate itemsets appearing in the matched tuples.
(c) Calculate appearing

xCount and UB
xCount for each candidate itemset x.

Phase 2: Candidate itemset reduction:

(a) Calculate the upper-bound support
UB
xs for each candidate itemset x using:

UB
xs =

Trans_Match
CountCount UB

x
appearing
x + .

(b) Discard candidate itemset x and its proper supersets if UB
xs < sq.

(c) Put x into the set of frequent itemsets if UB
xs =

Trans_Match
Countappearing

x and UB
xs ≥ sq.

Phase 3: Association rule generation:
(a) Check whether each remaining candidate itemset x is large by scanning the

underlying blocks of data for the matched tuples in which x does not appear.
(b) Generate association rules satisfying the minimum confidence confq from the set

of frequent itemsets.
Figure 6-1: The TOARM algorithm

The TOARM approach considers only itemsets appearing in matched tuples and

satisfying minimum support as candidates. It also uses two pruning strategies to

reduce the number of candidate itemsets. It therefore only needs to re-process the

remaining candidate itemsets against the underlying blocks of data for matched tuples

in which they do not appear. For this reason, the cost of re-processing underlying

blocks of data by the TOARM approach is less than that of typical batch mining or

incremental mining approaches (experimental results presented below show this).

Theorem 6-1: The TOARM approach can correctly obtain association rules in

response to an on-line mining request q as long as its minimum support sq is greater

than or equal to the initial minimum support s for getting the MPR.

Proof: According to Lemma 6-2, all candidate itemsets for q are collected in

Phase 1 of the TOARM approach. After that, the candidate itemsets whose

 110

upper-bound supports are less than sq are pruned in Phase 2 (b) of the TOARM

approach according to Lemmas 6-4 and 6-5. Also, the candidate itemsets which

appear in all the matched tuples can know their actual supports according to Lemma

6-6. If they satisfy sq, they are put into the set of final frequent itemsets in Phase 2 (c)

of the TOARM approach. Finally, the actual supports of the remaining candidate

itemsets can be found by Phase 3 (a) of the TOARM approach from the underlying

blocks of data. The final frequent itemsets can then be determined. The association

rules can thus be derived by Phase 3 (b) of the TOARM approach.

6.5 Negative-Border Online Mining (NOM) based on Extended MPR

(EMPR)

Although the proposed TOARM approach based on a well-defined MPR can

flexibly obtain association rules or patterns from portions of data, diversely consider

problems at different aspects and provide on-line decision supports for users, it may

get loose upper-bound supports of candidate itemsets for heterogeneous blocks of data

and thus cause excessive I/O and computation costs to re-process them against the

underlying database. As a result, we attempt to apply the concept of negative border

[60] to calculate tighter upper-bound supports of candidate itemsets and then reduce

the number of candidate itemsets to be considered [91][93]. The MPR is first

extended for keeping the additional negative-border information. Based on the

extended MPR (EMPR), we then develop an online mining approach called

Negative-Border Online Mining (NOM) to efficiently and effectively utilize the

information of negative itemset in the negative border.

Definition 6-1: An Extended Multidimensional Pattern Relation Schema

(EMPRS) with n1 context attributes and n2 content attributes can be represented as

 111

EMPRS(ID, 1CX , 2CX , …,
1nCX , 1CN , 2CN , …,

2nCN), where ID is an

identification attribute, CXi, 1 ≤ i ≤ n1, is a context attribute, and CNi, 1 ≤ i ≤ n2, is a

content attribute.

Definition 6-2: An Extended Multidimensional Pattern Relation (EMPR)

including tuples {t1, t2, …, tm} is an instance of the given EMPRS(ID, 1CX , 2CX , …,

1nCX , 1CN , 2CN , …,
2nCN). A tuple ti = (iid , 1icx , 2icx , …,

1incx , 1icn ,

2icn , …,
2incn) in an EMPR indicates that for the block of data under the contexts of

1icx , 2icx , …,
1incx , the mining information contains 1icn , 2icn , …,

2incn .

The frequent pattern set and the negative pattern set are two essential content

attributes which are defined as follows.

Definition 6-3: A frequent pattern set (fps) for a block of data D is the set of all

previously mined frequent itemsets with their supports for D. Assume the minimum

support is s and the number of frequent itemsets discovered from D is l. A frequent

pattern set can be represented as fps = {(xi, si) | si ≥ s and 1≤ i ≤ l}, where xi is a

frequent itemset and si is its support.

Definition 6-4: A negative pattern set (nps) for a block of data D is the set of all

previously mined negative itemsets with their supports from NB (fps) for D.

Below, an example is given to illustrate the above concepts.

Example 6-5: Table 6-3 shows an EMPR with the initial minimum support set to

5%. ID is an identification attribute, Region, Branch and Time are context attributes,

and No_Trans, No_Patterns, Frequent_Pattern_Set and Negative_Pattern_Set are

content attributes. The two attributes of Frequent_Pattern_Set and

Negative_Pattern_Set respectively record the sets of mined frequent itemsets and

negative itemsets from the corresponding data blocks. For example, the tuple with ID

 112

= 1 shows that seven frequent itemsets {(A, 10%), (B, 11%), (C, 9%), (AB, 8%), (AC,

7%), (BC, 6%), (ABC, 6%)} and one negative itemset (D, 2%) are discovered from

10000 transactions under the contexts of Region = CA, Branch = San Francisco and

Time = 2003/10. The other tuples have similar meanings.

Table 6-3: An EMPR with minimum support = 5%

ID Region Branch Time No_Trans No_Patterns Frequent_Pattern_Set
(Itemset, Support)

Negative_Pattern_Set
(Itemset, Support)

1 CA San Francisco 2003/10 10000 8 (A,10%),(B,11%),(C,9%),
(AB,8%),(AC,7%),(BC,6
%),(ABC,6%)

(D,2%)

2 CA San Francisco 2003/11 15000 7 (A,5%),(B,7%),(C,5%) (D,1%),(AB,2%),(AC,2%
),(BC,1%)

3 CA San Francisco 2003/12 12000 5 (A,5%),(C,9%) (B,4%),(D,1%),(AC,4%)
4 CA Los Angeles 2003/10 20000 8 (A,8%),(B,6%),(F,5%) (C,2%),(D,3%),(AB,3%),

(AF,4%),(BF,3%)
5 CA Los Angeles 2003/11 25000 5 (A,5%),(C,6%) (B,3%),(D,4%),(AC,3%)
6 CA Los Angeles 2003/12 30000 7 (A,6%),(B,6%),(C,9%),

(AB,6%)
(D,3%),(AC,4%),(BC,3%
)

7 NY New York 2003/10 18000 5 (B,8%),(C,7%),(BC,6%) (A,2%),(D,2%)
8 NY New York 2003/11 18500 5 (B,8%),(C,6%) (A,4%),(D,2%),(BC,3%)
9 NY New York 2003/12 19000 10 (A,5%),(B,9%),(C,8%),

(D,6%),(BC,6%)
(AB,4%),(AC,4%),(AD,2
%),(BD,4%)(CD,4%)

Example 6-6: For the EMPR in Table 6-3, assume a mining request q wants to get

the patterns with the contexts cxq of Region = CA and Time = 2003/10 and satisfying

the minimum support sq = 5.5%. The matched tuples are shown in Table 6-4.

According to Lemma 6-2, the set of candidate itemsets is {{A}, {B}, {C}, {AB},

{AC}, {BC}, {ABC}}, which is the union of the itemsets appearing in the frequent

pattern sets and with their supports larger than 5.5%.

Table 6-4: The matched tuples in Example 6-6

ID Region Branch Time No_Trans No_Patterns Frequent_Pattern_Set
(Itemset, Support)

Negative_Pattern_Set
(Itemset, Support)

1 CA San Francisco 2003/10 10000 8 (A,10%),(B,11%),(C,9%),
(AB,8%),(AC,7%),(BC,6
%),(ABC,6%)

(D,2%)

4 CA Los Angeles 2003/10 20000 8 (A,8%),(B,6%),(F,5%) (C,2%),(D,3%),(AB,3%),

 113

(AF,4%),(BF,3%)

Based on the EMPR, the appearing and upper-bound counts of a candidate

itemset is re-defined as follows.

Definition 6-5: The appearing count appearing
xCount of a candidate itemset x is

the sum of the counts of x appearing in the frequent pattern sets or negative pattern

sets of matched tuples. Thus:

∑
∪∈∈

∗=
npstfpstx mtt

xii
appearing
x

iii

sttranstCount
..&

... (6-6)

Definition 6-6: The upper-bound count UB
xCount of a candidate itemset x is the

sum of the upper-bound counts of x not appearing in the frequent pattern sets and

negative pattern sets of matched tuples. Thus:

∑
∪∉∈ ⊂∀

−=
npstfpstx mtt

xixxii
UB
x

iii

stmintranst stranstminCount
..&

''
)).(*.,1*.(. (6-7)

Example 6-7: Continuing from Example 6-6, the upper-bound supports of the

seven candidate itemsets {A}, {B}, {C}, {AB}, {AC}, {BC} and {ABC} are calculated

as follows:

TransMatch
CountCount

s
UB
A

appearing
AUB

A _
+

= () 0867.00 =
+

++=
2000010000

8%* 20000 10%* 10000 ,

Trans_Match
CountCount

s
UB
B

appearing
BUB

B
+

= () 0767.00 =
+

++=
2000010000

6%* 20000 11%* 10000 ,

Trans_Match
CountCount

s
UB
C

appearing
CUB

C

+
= () 0433.00 =

+
++=

2000010000
 2%* 200009%* 10000 ,

TransMatch
CountCount

s
UB
AB

appearing
ABUB

AB _
+

= () 0467.00 =
+

++=
2000010000

 3%* 200008%* 10000 ,

 114

TransMatch
CountCount

s
UB
AC

appearing
ACUB

AC _
+

= () () 0367.0=
+
+=

2000010000
2%* 20000 7%* 10000 ,

TransMatch
CountCount

s
UB
BC

appearing
BCUB

BC _
+

= () () 0333.0=
+
+=

2000010000
2%* 20000 6%* 10000 , and

TransMatch
CountCount

s
UB
ABC

appearing
ABCUB

ABC _
+

= () () 0333.0=
+
+=

2000010000
2%* 20000 6%* 10000 .

Let UB
xs denote the upper-bound support of a candidate itemset x in the EMPR

and
oldUB

xs denote the upper-bound support of a candidate itemset x in the MPR. The

following lemma can easily be derived to show UB
xs is tighter than

oldUB
xs .

Lemma 6-7: If x is a candidate itemset, then UB
xs ≤

oldUB
xs .

Proof:

∑
∪∈∈

∗=
npstfpstx mtt

xii
appearing
x

iii

sttranstCount
..&

..

 = ∑∑
∈∈∈∈

∗+∗
npstx mtt

xii
fpstx mtt

xii
iiii

sttranststtranst
.&.&

....

 ≤ ∑∑
∈∈∈∈

−∗+∗
npstx mtt
i

fpstx mtt
xii

iiii

stranststtranst
.&.&

)1.(.. ;

UB
xCount = ∑

∪∉∈ ⊂∀
−

npstfpstx mtt
xixxii

iii

stmintranst stranstmin
..&

''
)).(*.,1*.(

≤ ∑
∪∉∈

−∗
npstfpstx mtt

i
iii

stranst
..&

)1.(;

UB
xs =

TransMatch
CountCount UB

x
appearing
x

_
+

≤
TransMatch

stranststranststtranst
npstfpstx mtt

i
npstx mtt
i

fpstx mtt
xii

iiiiiii

_

)1.()1.(..
..&.&.&

∑∑∑
∪∉∈∈∈∈∈

−∗+−∗+∗

 115

=
TransMatch

stranststtranst
pstx mtt
i

pstx mtt
xii

iiii

_

)1.(..
.&.&

∑∑
∉∈∈∈

−∗+∗

=
oldUB

xs .

Thus, UB
xs ≤

oldUB
xs .

The following lemmas are important to the design of the proposed mining

algorithm.

Lemma 6-8: If x is a candidate itemset, then xs ≤ UB
xs .

Proof: For each x’ ⊂ x, ti.sx’ ≥ ti.sx for each tuple ti. There are two possible cases

for x’.

Case 1: If ∃ x’ ∈ ti.nps, then:

sx =
∑

∑

∈

∈

∗

mtt
i

mtt
xii

i

i

transt

sttranst

.

..

=
∑

∑∑

∈

∪∉∈∪∈∈

∗+∗

mtt
i

npstfpstx mtt
xii

npstfpstx mtt
xii

i

iiiiii

transt

sttranststtranst

.

....
..&..&

≤
∑

∑

∈

∪∉∈ ⊂∀
+

mtt
i

npstfpstx mtt
xixxi

appearing
x

i

iii

transt

stmintranst Count

.

).(*.
..&

''

=
∑

∑

∈

∪∉∈ ⊂∀
−+

mtt
i

npstfpstx mtt
xixxii

appearing
x

i

iii

transt

stmintranst stranstminCount

.

)).(*.,1*.(
..&

''

=
TransMatch

CountCount UB
x

appearing
x

_
+

= UB
xs .

 Case 2: If ∀ x’ ∉ ti.nps, then:

 116

sx =
∑

∑

∈

∈

∗

mtt
i

mtt
xii

i

i

transt

sttranst

.

..

=
∑

∑∑

∈

∪∉∈∪∈∈

∗+∗

mtt
i

npstfpstx mtt
xii

npstfpstx mtt
xii

i

iiiiii

transt

sttranststtranst

.

....
..&..&

≤
∑

∑

∈

∪∉∈

−+

mtt
i

npstfpstx mtt
i

appearing
x

i

iii

transt

stranstCount

.

)1*.(
..&

=
∑

∑

∈

∪∉∈ ⊂∀
−+

mtt
i

npstfpstx mtt
xixxii

appearing
x

i

iii

transt

stmintranst stranstminCount

.

)).(*.,1*.(
..&

''

=
TransMatch

CountCount UB
x

appearing
x

_
+

= UB
xs .

Thus, xs ≤ UB
xs .

Lemma 6-9: If x is a candidate itemset, then ∀ x’ ⊂ x, UB
xs ' ≥ UB

xs .

Proof: For each x’ ⊂ x, ti.sx’ ≥ ti.sx for each tuple ti. Therefore:

appearing
xCount '

= ∑
∪∈∈

∗
npstfpstx mtt

xii
iii

sttranst
..'&

'..

= ∑∑
∪∉∪∈∈∪∈∪∈∈

∗+∗
npstfpstx npstfpstx mtt

xii
npstfpstx npstfpstx mtt

xii
iiiiiiiiii

sttranststtranst
..&..'&

'
..&..'&

'

≥ ∑
∪∉∪∈∈ ⊂∀

∗−+
npstfpstx npstfpstx mtt

xixxii
appearing
x

iiiii

stmintranststranstminCount
..&..'&

''''
)).(.,1*.(;

UB
x

Count
'

= ∑
∪∉∈ ⊂∀

∗−
npstfpstx mtt

xixxii
iii

stmintranststranstmin
..'&

'''''
)..,1*.(

 117

≥)..,1*.(
..&

''∑
∪∉∈ ⊂∀

∗−
npstfpstx mtt

xixxii
iii

stmintranststranstmin ;

UB
xs ' =

TransMatch
CountCount UB

x
appearing
x

_
'' +

≥
TransMatch

CountCount UB
x

appearing
x

_
+

= UB
xs .

Thus, UB
xs ' ≥ UB

xs .

Lemma 6-10: If a candidate itemset x is contained in all the matched tuples, then

UB
xs = sx.

Proof: If x is contained in all the matched tuples, then:

UB
xs =

Trans_Match
CountCount UB

x
appearing
x + =

∑

∑

∈

∈

∗

mtt
i

mtt
xii

i

i

transt

sttranst

.

..
= sx.

Example 6-8: Continuing from Examples 6-6 and 6-7, according to Lemmas 6-8

and 6-9, the candidate itemsets {C}, {AB}, {AC}, {BC} and {ABC} will be pruned

since their upper-bound supports are less than sq (= 5.5%). According to Lemma 6-10,

the candidate itemsets {A} and {B} will be put into the set of final frequent itemsets

since it appears in all the matched tuples and its support is larger than 5.5%. No

remaining candidate itemsets needs to be further processed.

 The NOM approach with an EMPR consists of three main phases, candidate

itemset generation, candidate itemset reduction, and association rule generation,

which are the same as the TOARM approach. The NOM approach can correctly

obtain the association rules satisfying an on-line mining request as long as the new

minimum support is larger than or equal to the initial minimum support for getting the

EMPR.

 118

6.6 LNOM: Algorithm Design and Implementation

The NOM approach needs to calculate the appearing counts and the

non-appearing upper-bound counts of the candidate itemsets derived from matched

tuples. A straightforward way for finding these values is to process matched tuples

one after one for each candidate itemset. Assume k is the number of matched tuples, m

is the average number of itemsets in the k matched tuples, and n is the number of

candidate itemsets generated from the k matched tuples. The computation cost will be

O(knm) when the candidate itemsets are processed one by one. The computation cost

will, however, become large along with the increase of the itemsets kept in EMPR and

the candidate itemsets to be considered. In fact, in the NOM approach, many

candidate itemsets with the same subsets can be processed at the same time. For

example, in Tuple 4 of Example 6-6, the appearing count of the candidate itemset {C}

and the upper-bound counts of the candidate itemsets {AC}, {BC} and {ABC} can be

calculated at the same time because they have the same subset {C}. On the other hand,

many itemsets kept in the matched tuples are useless for calculating the counts of

candidates since they are not the subsets of candidates and can be omitted. For

example, in Example 6-6, the itemsets {D}, {F}, {AF} and {BF} kept in the matched

tuples are not the subsets of the candidate itemsets and can be omitted. We thus try to

use appropriate data structures and design efficient algorithms to improve the

performance of the NOM approach.

At first, the problem of calculating the appearing and upper-bound counts of

candidate itemsets in a matched tuple is conceptually modeled by a graph and

converted into a directed-minimum-spanning-tree problem. The spanning-tree-count-

calculating (STCC) algorithm is then proposed to find the directed minimum spanning

 119

tree. The lattice data structure [2][41] is utilized to organize and maintain all

candidate itemsets such that the candidate itemsets with the same proper subsets can

be considered at the same time. Consequently, by the STCC algorithm, the proposed

lattice-based NOM (LNOM) approach requires only one scan of the itemsets for each

matched tuple in Phase 1.

In addition, the hashing technique is used to filter out a part of itemsets kept in

the matched tuples which are useless for calculating the counts of candidate. The

NOM approach first hashes the set of candidate itemsets into a given hash table as

soon as they are collected. Each bucket of the hash table consists of an integer to

represent how many candidate itemsets have been hashed into this bucket. When an

itemset of a matched tuple is selected, the NOM approach calculates its hash value

and finds its corresponding bucket. If the value stored in the target bucket is equal to 0,

the itemset must be useless since it is not a candidate itemset. It can thus be directly

omitted. The computational time can thus be further reduced.

6.6.1 The Proposed Lattice-based NOM (LNOM) Approach

The problem of calculating the appearing and upper-bound counts of candidate

itemsets in a matched tuple t can be conceptually modeled by a graph. Let G = (V, E)

be a directed graph, where V is the set of vertices representing all candidate itemsets

and E is the set of directed edges representing a-proper-subset-of relationships

between pairs of candidate itemsets. For each edge (u, v) ∈ E, a weight w(u, v)

specifies the possible upper-bound count of the candidate itemset v estimated from the

candidate itemset u. Given a new vertex r representing the pseudo starting vertex, we

make a new graph G’ = (V’, E’), where V’ = V ∪ {r}, E’ = E ∪ {(r, u): u ∈ V}. For

each edge (r, u), if u appears in t, the appearing count of u is assigned as the weight

 120

w(r, u). For the case that u does not appear in t, meaning it is collected from the other

matched tuple(s), then w(r, u) = 0 if there exists one item contained in u but not

contained in t and w(r, u) = t.trans*s−1 otherwise, where s is the initial minimum

support for deriving EMPR. The following lemmas formally show the above

concepts.

Lemma 6-11: G’ is an acyclic and connected graph.

Proof: It is obvious that the a-proper-subset-of relation on a set is transitive and

anti-symmetric. G’ is thus acyclic. Next, we prove G’ is a connected graph by

contradiction. If G’ is not a connected graph, there exists a vertex u which is not

reachable from the pseudo starting vertex r. This contradicts the definition of G’. Thus,

G’ is an acyclic and connected graph.

Lemma 6-12: Let k be the number of items contained in a candidate itemset x.

The vertex ux has 2k-1 incoming edges in G’.

Proof: If x is a candidate k-itemset, it will appear in the frequent pattern set of at

least a tuple. Since x is large in that tuple, all its proper subsets except φ are also large

and appear in that tuple. There are 2k-2 proper subsets for x except φ. In addition, the

incoming edge (r, ux) is used to link the two vertices r and ux. The vertex ux thus has

2k-1 incoming edges in G’.

Lemma 6-13: For a matched tuple t in EMPR, if there exists one item contained

in a candidate itemset u but not contained in t, then the upper-bound count of u is 0.

Proof: According to the concept of the negative border, all single items which

are not large must be put into the negative 1-itemsets. Since all the large and negative

itemsets for a block of data are stored in a corresponding tuple, if there exists one item

contained in a candidate itemset but not contained in the tuple, this item does not

appear in the corresponding block of data. The count of the item is thus 0 in this tuple,

 121

causing the count of each itemset containing the item is also 0. This completes the

proof.

Lemma 6-14: For a matched tuple t in EMPR, if a candidate itemset u does not

appear in t, then the maximum possible upper-bound count of u is t.trans*s−1.

Proof: Since u does not appear in t, it is not a frequent itemset. The support of u

in t must thus be less than the minimum support s. Therefore, the count of u in t must

be less than t.trans*s. The maximum possible upper-bound count of u is thus

t.trans*s−1.

Example 6-9: For the EMPR given in Table 6-3 and the mining request in

Example 6-6, the graph model for Tuple 4 is generated as shown in Figure 6-2.

A B C

AB AC BC

ABC

t.trans*8%

t.trans*3%

r

t.trans*5%-1

t.trans*8%

t.trans*8%

t.trans*3%

t.trans*6%
t.trans*2%

t.trans*2%

t.trans*2%

t.trans*2%

t.trans*8%

t.trans*6%

t.trans*6%

t.trans*6%

t.trans*5%-1
t.trans*5%-1

t.trans*5%-1

t.trans*5%-1

Figure 6-2: The graph model of candidate itemsets for Tuple 4 in Table 6-4

For each vertex other than r in G’, the smallest weight on all its incoming edges

is its tight upper bound count. The count-calculation problem can thus be easily

 122

thought of as the directed-minimum-spanning-tree problem [30], which wishes to find

a rooted directed spanning tree T = (V’, S’) from G’, such that S’ is a subset of E’ and

∑
∈ Svu

vuw
),(

),(is a minimum. The spanning-tree-count-calculating (STCC) algorithm

shown in Figure 6-3 is thus proposed based on the above concept for efficiently

finding the counts of all candidate itemsets in a tuple. The STCC algorithm first

selects an itemset appearing in t and with the smallest support. It then estimates the

upper-bound count of each itemset reachable from the selected one in the graph, and

thus avoids recalculating the counts of these traversed vertices in the future. This

requires only one scan of the itemsets in t if they have been sorted according to their

supports.

The spanning-tree-count-calculating (STCC) algorithm:
INPUT: The graph of candidate itemsets G’ = (V’, E’) derived from the EMPR, and a

matched tuple t in EMPR.
OUTPUT: The minimum spanning tree of candidate itemsets T = (V’, S’).
STEP 1: Set ProcessedSet = φ, where ProcessedSet is a set used to keep the vertices in

G’ which have been traversed.
STEP 2: Select an itemset x appearing in t and with the smallest support t.sx.

STEP 3: If x ∈ V’ (i.e., x is a candidate itemset), set appearing
xCount = t.trans * t.sx,

ProcessedSet = ProcessedSet ∪ {x}, and do STEP 4; otherwise (i.e., x is not
a candidate itemset), do nothing and go to STEP 5.

STEP 4: For each y reachable from x and y ∉ ProcessedSet, set UB
yCount =

min(t.trans * s-1, t.trans * t.sx) and ProcessedSet = ProcessedSet ∪ {y}.
STEP 5: Repeat STEPs 2 to 4 until all the itemsets appearing in t are processed.
STEP 6: If |ProcessedSet| ≠ |V’| (i.e., some candidate itemsets do not appear in the

underlying dataset of t), set UB
xCount = 0 for each remaining itemset x ∈ V’.

Figure 6-3: The STCC algorithm

 123

Example 10: Continuing Example 3, the negative itemset {C} with 2% will be

first selected by the proposed STCC algorithm to calculate the appearing count of

itself and the upper-bound counts of {AC}, {BC} and {ABC}. Then, the itemsets {D}

with 3%, {AB} with 3%, {B} with 6% and {A} with 8% are selected in turn. Among

them, the support information of {D} is useless because it is not a candidate itemset.

Figure 6-4 shows the directed minimum spanning tree found from Figure 6-2.

A B C

AB AC BC

ABC

t.trans*8%

t.trans*3%

r

t.trans*5%-1

t.trans*8%

t.trans*8%

t.trans*3%

t.trans*6%
t.trans*2%

t.trans*2%

t.trans*2%

t.trans*2%

t.trans*8%

t.trans*6%

t.trans*6%

t.trans*6%

t.trans*5%-1
t.trans*5%-1

t.trans*5%-1

t.trans*5%-1

Figure 6-4: The directed minimum spanning tree found from Figure 6-2

The STCC algorithm mentioned above can be efficiently implemented by the

lattice data structure [2][41], which organizes all candidate itemsets in a systematic

way. The lattice is constructed as follows. For each candidate itemset x, a

corresponding vertex ux associated with a pair of values (appearing
xCount , UB

xCount) is

built in the lattice. For any pair of vertices ux and uy corresponding to candidate

itemsets x and y, there is a directed edge from ux to uy if x is a parent of y. An itemset

 124

x is said to be a parent of an itemset y if y can be obtained by adding an item to x, and

inversely, y is said to be a child of x. Therefore, a candidate itemset may have more

than one parent and more than one child in the constructed lattice.

Example 6-11: Consider the candidate itemsets illustrated in Example 6-6. The

lattice to represent the candidate itemsets is illustrated in Figure 6-5, where the vertex

labeled “Null” denotes the greatest lower bound of the lattice.

A B C

AB

Null

)0

,0(

=

=
UB
A

appearing
A

Count

Count

)0

,0(

=

=
UB
AB

appearing
AB

Count

Count

)0

,0(

=

=
UB
B

appearing
B

Count

Count

)0

,0(

=

=
UB
C

appearing
C

Count

Count

AC)0

,0(

=

=
UB
AC

appearing
AC

Count

Count
BC)0

,0(

=

=
UB
BC

appearing
BC

Count

Count

ABC)0

,0(

=

=
UB
ABC

appearing
ABC

Count

Count

Figure 6-5: The lattice to represent the candidate itemsets illustrated in Example 6-6

The lattice structure is used to efficiently find the appearing and upper-bound

counts of candidate itemsets in each tuple and to accumulate these values when the

tuples are processed one by one. By the connected edges in the lattice structure, the

proposed lattice-based NOM approach (called LNOM) can not only restrict the

number of candidate itemsets to be examined, but also easily consider candidate

itemsets with the same proper subsets at the same time. The detailed LNOM

algorithm will be described in Section 6.6.3.

 125

6.6.2 Using the Hashing Technique to Reduce Computation Cost Further

Many itemsets kept in matched tuples, especially negative itemsets, may be

useless for calculating the counts of candidate itemsets. For example, the itemsets

{D}, {F}, {AF} and {BF} kept in the matched tuples in Example 6-6 are not the

subsets of the candidate itemsets and can be omitted. Negative itemsets are formed by

excluding frequent itemsets from the candidates which are generated in a level-wise

way [27][85]. In other words, a negative itemset is a candidate itemset without

enough support. In general, the set of candidate itemsets generated level-wisely is

usually much larger than the set of frequent itemsets found, especially in the early

stage of candidate generation [5][67]. The number of negative itemsets useless for

calculating the counts of candidate itemsets may thus be large. In this section, we

shall utilize the hashing technique [67] to filter out a part of useless itemsets to be

considered in Phase 1. Take the direct hashing function as an example to explain our

idea. Let x = {a1, a2, …, an} denote an itemset consisting of n items (from a1 to an),

order(ai) denote the serial number of the item ai among the entire set of items, and

size(HT) denote the size of a given hash table HT. A direct hashing function for

n-dimensional keys can be defined as follows:

h(x) = (order(a1) * order(a2) * …* order(an)) mod size(HT).

The hashing function is order-independent; that is, it can generate the same hash

value for all permutations of items in an itemset. Each bucket of the hash table

consists of only an integer to represent how many candidate itemsets have been

hashed into this bucket. 0 denotes that no candidate itemsets have been hashed into

this bucket. When initially obtaining the set of candidate itemsets, the NOM approach

calculates their hash values, finds corresponding hash buckets, and for each candidate

 126

add one to the value of its corresponding bucket.

Example 6-12: For the candidate itemsets {A}, {B}, {C}, {AB}, {AC}, {BC}

and {ABC} obtained in Example 6-6, the LNOM approach will hash them into a given

hash table HT. Without loss of generality, assume order(A) = 1, order(B) = 2 and

order(C) = 3. Also assume the size of the hash table is 7. The hash values of these

candidate itemsets will first be calculated. Take the itemset {AB} as an example. Its

hash value is (order(A) * order(B)) mod 7, which is 2. The value in Bucket 2 is then

increased by one. The other candidate itemsets are hashed in a similar way. The

resulting hash table is shown in Figure 6-6.

0 1 2 2 0 0

{A} {B} {C}

0 1 2 3 4 5

{AB} {AC} {BC}
{ABC}

HT

Bucket number

Bucket value 2

6

Itemsets

Figure 6-6: The hash table derived from the candidate itemsets illustrated in Example

6-6

After a hash table is constructed from all the candidate itemsets, it can then be

used to filter out a part of useless itemsets in a tuple. Tuples are processed one by one.

When an itemset of a matched tuple is selected, the NOM approach calculates its hash

value and finds its corresponding bucket. If the value stored in the target bucket is

equal to 0, the itemset must be useless since it is not a candidate itemset. It can thus be

directly omitted. Otherwise, the itemset may be, but not certainly, a candidate itemset.

Rescanning the candidate itemsets is then necessary to determine whether it is a

candidate.

 127

Furthermore, the corresponding value in the bucket of the itemset which has

been assured to be a candidate will be decreased by one. The next itemset of the same

tuple is then checked according to the modified hash table, which can thus raise the

probability for a useless itemset to be filtered out. After a tuple is processed, the hash

table is restored to its original state, which is then used for another tuple. This is

illustrated by the following example.

Example 6-13: Continuing Example 6-12, after the hash table in Figure 6-6 has

been constructed, it can be used to filter out some useless itemsets in matched tuples.

For example, when Tuple 4 in Example 6-6 is checked, the itemset {C} with 2%

support is first selected to process since it has the smallest support value among all the

itemsets appearing in the tuple. The hash value of {C} is calculated as 3 and the value

in Bucket 3 is 2, not 0. The itemset {C} is thus checked against the candidate itemsets

and is found to be a candidate. It is then used to calculate the counts of the candidate

{C} and its superset in the lattice. In this example, the counts of the candidates {C},

{AC}, {BC} and {ABC} are then calculated. As a result, the value in Bucket 3 is

decreased by 2 due to {C} and {AC}. The value in Bucket 6 is decreased to 0 as well

due to {BC} and {ABC}. Bucket 6 in the modified hash table can filter out the

itemsets {F} and {AF} in Tuple 4 since the value in Bucket 6 has been zero. After

that , the hash table will be restored to the original one in Figure 6-6 for processing

another matched tuple.

6.6.3 The LNOM Algorithm with a Direct Hashing Function

In Phase 1, by one scan of a given EMPR, the LNOM approach first collects the

itemsets in the matched tuples satisfying the query support as candidates, constructs a

corresponding lattice for considering candidate itemsets with the same proper subsets

 128

at the same time, and hashes them into a given hash table for filtering out a part of

useless itemsets in matched tuples. The LNOM approach then processes matched

tuples one by one, selects the itemsets in the order of ascending support values for

each matched tuple, and checks whether they are useful for calculating the counts of

candidates according to the values of their hash buckets. If the corresponding target

bucket value is 0, the itemset is omitted. Otherwise, for each itemset x, the LNOM

approach will assure whether x is a candidate by checking the set of candidate

itemsets. If x is a candidate, the LNOM approach will cumulate the appearing
xCount

and each UB
yCount in the lattice, where y denotes an element in the proper superset of

x (y is a descendant of x). This procedure is then repeated until all the matched tuples

have been processed. After that, the LNOM approach can generate the candidate

itemsets with appearing counts and upper-bound counts corresponding to the given

mining request.

Example 6-14: Consider the mining request in Example 6-6. The LNOM

approach will construct the lattice shown in Figure 6-5 and the hash table shown in

Figure 6-6. It then processes the first matched tuple, and filter out (D, 2%) using the

hash table. The remaining itemsets (ABC, 6%), (BC, 6%), (AC, 7%), (AB, 8%), (C,

9%), (A, 10%) and (B, 11%) are then processed in turn to update the counts of the

corresponding itemsets in the lattice. After that, the LNOM approach processes the

second matched tuple. Only the four itemsets (C, 2%), (AB, 3%), (B, 6%) and (A, 8%)

needs to be processed after the hash-table checking. (C, 2%) is then first selected, and

is used to update not only the appearing count of {C} but also the upper-bound counts

of the itemsets in its proper superset ({AC}, {BC} and {ABC}). The updated lattice

after processing all the matched tuples is shown in Figure 6-7.

 129

A B C

AB

Null

)0

,2600(

=

=
UB
A

appearing
A

Count

Count

)0

,1400(

=

=
UB
AB

appearing
AB

Count

Count

)0

,2300(

=

=
UB
B

appearing
B

Count

Count

)0

,1300(

=

=
UB
C

appearing
C

Count

Count

AC
)400

,700(

=

=
UB
AC

appearing
AC

Count

Count
BC

)400

,600(

=

=
UB
BC

appearing
BC

Count

Count

ABC
)400

,600(

=

=
UB
ABC

appearing
ABC

Count

Count

Figure 6-7: The updated lattice after processing all matched tuples

Next, Phase 2 proceeds to prune candidates in a level-wise way. Candidate

1-itemsets are then first handled. If the upper-bound support of a candidate 1-itemset

is less than the query support, it and the itemsets in its proper superset are removed

from the lattice. If a candidate 1-itemset appears in all the matched tuples and its

upper-bound support is larger than or equal to the query support, then it is put into the

set of final frequent itemsets and removed from the lattice. This procedure is repeated

level-wisely until all the candidate itemsets have been processed. After Phase 2, the

remaining candidate itemsets in the lattice have enough upper-bound supports but do

not appear in at least one matched tuple. The LNOM approach thus re-processes them

against the underlying blocks of data for the matched tuples in which they do not

appear to get their actual supports. After all the frequent itemsets are found, the

association rules can then be easily generated from them. The detailed algorithm of

the LNOM approach with a direct hashing function is stated in Figure 6-8.

 130

The LNOM approach with a direct hashing function:
INPUT: An EMPR based on an initial minimum support s, and a mining request q

with a set of contexts cxq, a minimum support sq (sq ≥ s) and a minimum
confidence confq.

OUTPUT: A set of association rules satisfying the mining request q.
Phase 1: Generation of candidate itemsets:
STEP 1: Set C = φ and Match_Trans = 0, where C is a lattice used to maintain the set

of candidate itemsets and Match_Trans is a variable used to keep the total
number of transactions in the matched tuples which have been processed.

STEP 2: Initialize two equal-sized hash tables HT1 and HT2 with all the bucket values
being zero.

STEP 3: For each tuple t in EMPR, do the following substeps:
 STEP 3-1: If t satisfies cxq, put it into the matched set and do STEP 3-2;

otherwise, repeat STEP 3 to process the next tuple.
 STEP 3-2: For each itemset x ∈ t.fps, if x ∉ C and t.sx ≥ sq, set HT1[h(x)] =

HT1[h(x)] + 1, insert x into C with appearing
xCount = 0 and UB

xCount

= 0, and add edges to its parents and children, where HT1[h(x)]
denotes the value stored in the bucket corresponding to the hash
value h(x) of x in HT1.

STEP 4: For each tuple t in the matched set, do the following substeps:
 STEP 4-1: Set ProcessedSet = φ, where ProcessedSet is a set used to keep the

itemsets in C which have been processed.
 STEP 4-2: Restore the bucket values in HT2 to those in HT1 and set

Match_Trans = Match_Trans + t.trans.
 STEP 4-3: Select an itemset x with the smallest support t.sx from t.

 STEP 4-4: If HT2[h(x)] ≠ 0 and x ∈ C, set appearing
xCount = appearing

xCount +

t.trans * t.sx, HT2[h(x)] = HT2[h(x)] − 1, ProcessedSet =
ProcessedSet ∪ {x}, and do STEP 4-5; otherwise, do nothing and
go to STEP 4-6.

 STEP 4-5: For each itemset y in the proper superset of x in C and y ∉

ProcessedSet, set UB
yCount = UB

yCount + min(t.trans * s − 1,

t.trans * t.sx), HT2[h(y)] = HT2[h(y)] − 1, and ProcessedSet =
ProcessedSet ∪ {y}.

 STEP 4-6: Repeat STEPs 4-3 and 4-4 until all itemsets in t are processed.
Phase 2: Reduction of candidate itemsets:

 131

STEP 5: Set k = 1, where k is used to keep the number of items in a candidate itemset
currently being processed.

STEP 6: For each itemset x ∈ Ck, do the following substeps:

 STEP 6-1: Calculate the upper-bound support UB
xs by the formula:

UB
xs =

Trans_Match
CountCount UB

x
appearing
x + .

 STEP 6-2: If UB
xs < sq, set C = C − {y | y ∈ C and x ⊆ y}.

 STEP 6-3: If UB
xs =

Trans_Match
Countappearing

x and UB
xs ≥ sq, then set L = L ∪ {x} and

C = C − {x}.
STEP 7: Set k = k + 1.
STEP 8: Repeat STEPs 6 and 7 until all candidate itemsets are processed.
Phase 3: Generation of association rules:
STEP 9: For each x ∈ C, re-process each underlying block of data Di for tuple ti in

which x does not appear to get appearing
xCount , and then calculate the actual

support of x by the following formula:

sx = TransMatch
CountCount appearing

x
appearing
x

_
+

.

STEP 10: If sx < sq, then set C = C − {x}; otherwise, set L = L ∪ {x} and C = C − {x}.
STEP 11: Derive the association rules satisfying confq from the set of frequent
itemsets L.

Figure 6-8: The algorithm of the LNOM approach with a direct hashing function

6.7 Experimental Results

The experiments were conducted in Java on a workstation with dual XEON

2.8GHz processors and 2048MB main memory, running the RedHat 9.0 operating

system. For performance comparison, two batch-based mining algorithms, Apriori and

Partition, and one incremental mining algorithm, FUP, in addition to our proposed

TOARM, NOM and LNOM algorithms, were run on several synthetic and a

real-world datasets.

 132

6.7.1 Experimental Results for Synthetic Datasets

The synthetic datasets were generated by a generator similar to that used in [5].

The parameters used are listed in Table 6-5. The generator first generated L maximal

potentially frequent itemsets, each with an average of I items. The items in the

potentially frequent itemsets were randomly chosen from the total N items according

to their actual sizes. The generator then generated D transactions, each with an

average of T items. The items in a transaction were generated according to the L

maximal potentially frequent itemsets in a probabilistic way. Details of the dataset

generation process may be found in [5].

Table 6-5: Parameters considered when generating datasets

Parameter Description
D Number of transactions
N Number of items
L Number of maximal potentially frequent itemsets
T Average size of items in a transaction
I Average size of items in maximal potentially frequent

itemsets

Table 6-6 listed the six groups of synthetic datasets generated and used in our

experiments, where datasets in the same group had the same D, T and I values, but

different L or N values. Each dataset was treated as a block of data in the database.

For example, Group 1 in Table 6-6 contained ten blocks of data, from T10I8D10KL1

to T10I8D10KL10, each consisting of 10000 transactions averaging 10 items and

generated according to 200 to 245 maximal potentially frequent itemsets with an

average size of 8 from a total of 100 items. Let a group of heterogeneous datasets be

defined as one in which the datasets have different items. Among the six groups,

Groups 2, 4 and 6 may be considered heterogeneous because their varied N values

 133

yield different items. These groups of synthetic datasets were used to show how the

TOARM, NOM and LNOM algorithms dealt with heterogeneous blocks of data.

Table 6-6: The six groups of synthetic datasets

Group Size Datasets D T I L N

1 10 T10I8D10KL1 to
T10I8D10KL10 10000 10 8 200 to 245 100

2 10 T10I8D10KN1 to
T10I8D10KN10 10000 10 8 200 100 to 145

3 10 T20I8D100KL1 to
T20I8D100KL10 100000 20 8 400 to 490 200

4 10 T20I8D100KN1 to
T20I8D100KN10 100000 20 8 400 200 to 290

5 5 T10I8D500KL1 to
T10I8D500KL5 500000 10 8 400 to 560 200

6 5 T10I8D500KN1 to
T10I8D500KN5 500000 10 8 400 200 to 360

The MPR and EMPR were first derived from each group of synthetic datasets.

These are summarized in Table 6-7.

Table 6-7: Mining information for the six groups

Group
Initial

minimum
support

Average length of
maximal frequent

itemsets

Average size of
frequent
itemsets

Average size of
negative itemsets

1 2% 11 9006 10762
2 2% 9 5093 11243
3 2% 9 12127 55625
4 2% 11 18534 49318
5 2% 5 799 11899
6 2% 8 869 14488

First, the TOARM, Apriori, Partition and FUP algorithms were run on Groups 1,

2, 3 and 5 along with various minimum supports in the mining requests, where the

Partition algorithm partitioned the data sets according to group size (the number of

datasets in a group) and the FUP algorithm treated each dataset in a group as a new

 134

addition of transactions. Details of the TOARM algorithm compared with the other

three algorithms are illustrated as follows.

Figure 6-9: Execution times for the TOARM, Apriori, Partition and FUP algorithms

on Groups 1, 2, 3 and 5

(a) Comparison with the Apriori algorithm. Figures 6-9(a), 6(c) and 6(d) show

that execution times for the TOARM algorithm on Groups 1, 3 and 5 were always

much less than those of the Apriori algorithm. This is because the datasets in these

three groups were homogeneous, meaning they used the same set of items in each

group. In this situation, the number of candidate itemsets considered by the TOARM

algorithm was much closer to the number of final frequent itemsets than those

considered by the Apriori algorithm. The former thus had more compact candidate

(a) (b)

Group 1

0

50

100

150

200

250

300

350

400

450

500

0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

Query Support

T
im
e
(s
ec
.)

Apriori Partition FUP TOARM

Group 2

0

50

100

150

200

250

300

0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

Query Support

T
im
e
(s
ec
.)

Apriori Partition FUP TOARM

(c) (d)

Group 3

1

10

100

1000

10000

100000

0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

Query Support

T
im
e
(s
ec
.)

Apriori Partition FUP TOARM

Group 5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

Query Support

T
im
e
(s
ec
.)

Apriori Partition FUP TOARM

 135

sets than the latter. For example, Table 6-8 shows the number of candidate itemsets

considered by the TOARM and the Apriori algorithms for Group 5 with minimum

supports ranging from 2.2% to 4% in the mining requests.

Table 6-8: The numbers of candidate itemsets for Group 5

Approach \ Support 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

TOARM 959 690 550 442 372 308 269 241 220 199
Apriori 11636 10327 9165 8590 7722 7085 6603 6346 5898 5369

TOARM/Apriori 574 453 373 318 260 228 201 177 158 144

No. of Canddiate itemsets

No. of final Large itemsets

Table 6-9: The numbers of candidate itemsets for Group 2

Approach \ Support 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

TOARM 20893 16003 11920 9016 7421 6541 5731 4984 3775 2816
Apriori 11615 10157 9158 8016 7372 6704 6070 5243 4593 4255

TOARM/Apriori 902 778 684 608 537 473 417 372 327 296

No. of Canddiate itemsets

No. of final Large itemsets

By contrast, the datasets in Group 2 were heterogeneous, meaning they used

different sets of items. In this situation, the number of candidate itemsets considered

by the TOARM algorithm was much larger than the number of final frequent itemsets

considered by the Apriori algorithm since most of the candidate itemsets appeared in

only one or a few tuples in the MPR. Table 6-9 shows the number of candidate

itemsets considered by the TOARM and Apriori algorithms for Group 2 along with

minimum supports ranging from 0.022 to 0.04 in the mining requests. Table 6-9 also

shows that while the number of candidate itemsets for Group 2 considered by the

TOARM algorithm was larger than that considered by the Apriori algorithm, the

TOARM algorithm used two pruning strategies in Phase 2 and thus only had to

re-process the remaining candidate itemsets against the underlying datasets in Phase 3.

 136

The result was that the TOARM algorithm usually required less time than the Apriori

algorithm. This is consistent with the results shown in Figure 6-9(b).

(b) Comparison with the Partition algorithm. Although the number of candidate

itemsets considered by the Partition algorithm in the second pass was equal to that

considered by the TOARM algorithm, the Partition algorithm must generate a set of

all potentially frequent itemsets from each partition during its first pass. The TOARM

algorithm can, however, use the pattern sets in the MPR to achieve this purpose.

Therefore, the execution times required by the TOARM algorithm on these four

groups were always less than those required by the Partition algorithm. This is also

consistent with the results shown in Figure 6-9.

(c) Comparison with the FUP algorithm. The FUP algorithm can, in general,

perform well when the size of newly inserted transactions is relatively smaller than

the size of an original database because the cost of generating candidate itemsets from

only new transactions is usually low and a large proportion of the candidate itemsets

can be determined from previously mined frequent itemsets. However, the FUP

algorithm treated the datasets in each of our application groups as increments and

yielded even worse performance than the Apriori algorithm, especially on the

heterogeneous datasets since it had to process all of them one by one. Figures 6-9(a),

6-9(c) and 6-9(d) show that the execution times for the FUP algorithm on the three

homogeneous groups were about twice those of the Apriori algorithm. On the second

group, which was heterogeneous, the FUP algorithm required about four times the

execution time required by the Apriori algorithm.

Next, for showing the influence of the number of negative itemsets on execution

time, the TOARM algorithm using no negative itemsets and the NOM using all

negative itemsets were run on Groups 1 to 6. Figures 6-10(a) to 6-10(f) show the

 137

execution times for the two algorithms on the six groups, where the query support is

set to 2.4%.

Figure 6-10: The influence of the number of negative itemsets on execution time for

Groups 1 to 6

For Groups 1 and 3, most candidate itemsets appeared in nearly all tuples in

(a) (b)

Group 1 (Query support = 0.024)

0

5

10

15

20

25

30

35

40

45

TOARM NOM

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

Group 2 (Query support = 0.024)

0

20

40

60

80

100

120

TOARM NOM

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

(d) (c)

Group 3 (Query support = 0.024)

0

10

20

30

40

50

60

70

80

90

TOARM NOM

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

Group 4 (Query support = 0.024)

0
100
200
300
400
500
600
700
800
900

1000

TOARM NOM

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

(e) (f)

Group 5 (Query support = 0.024)

0
5

10
15
20
25
30
35
40
45
50

TOARM NOM

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

Group 6 (Query support = 0.024)

0

20

40

60

80

100

120

TOARM NOM

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

 138

EMPR such that the negative itemsets provided little help in calculating counts of

candidates. The reduced execution time in Phase 3 was thus not significant when

compared to that in Phase 1. This can be easily seen from Figures 6-10(a) and 6-10(c)

that the execution time by TOARM was less than that by NOM. By contrast, for

Groups 2 and 4, most candidate itemsets appeared in only one or few tuples in EMPR.

The effect of negative itemsets on finding tight upper-bound supports thus become

apparent. However, since the computation cost in Phase 1 was much larger than that

in Phase 3, the execution time by TOARM was still less than that by NOM as shown

in Figures 6-10(b) and 6-10(d). Even so, it can be observed from Figures 6-10(e) and

6-10(f) that TOARM did not always outperform NOM for Groups 5 and 6, This

phenomena is especially when the size of candidate itemsets is small and the size of

underlying data is large. For Group 5, NOM could decide all the candidate itemsets in

Phase 2 and thus no one in Phase 3 needed to be processed. For Group 6, the

computation cost in Phase 3 was much higher than that in Phase 1 because the size of

underlying data is large.

The performance of the NOM algorithm with a direct hashing function was then

evaluated. Let NOM(H) denote running the NOM algorithm with a direct hashing

function The execution times on Groups 1 to 4 are shown in Figures 6-11(a) to

6-11(d), where the query support is set to 2.4% and the size of the hash table is about

10K. It can be easily seen that the computation time in Phase 1 of the NOM algorithm

can be efficiently reduced by the hashing technique.

 139

Figure 6-11: Execution times of the NOM algorithm respectively with and without a

direct hashing function on Groups 1 to 4

Next, experiments were made to show the effect of using the lattice data

structure on the NOM algorithm. The execution time of the NOM algorithm was

compared with that of the LNOM algorithm with and without a direct hashing

function. The query support is set to 2.4% and the size of the hash table is about 10K.

The results for Groups 1 to 4 are shown in Figures 6-12(a) to 6-12(d), where LNOM

and LNOM(H) respectively denote running LNOM algorithm with and without a

direct hashing function. It is easily seen that the execution time by the LNOM

algorithm was always much less than that by the NOM algorithm. The reduced

computation cost in Phase 1 of the LNOM(H) algorithm was not significant because

the NOM approach with the lattice data structure could effectively restrict the number

(a) (b)

Group 1 (Query support = 0.024)

0

5

10

15

20

25

30

35

40

45

TOARM NOM NOM(H)

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

Group 2 (Query support = 0.024)

0

20

40

60

80

100

120

TOARM NOM NOM(H)

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

(d) (c)

Group 3 (Query support = 0.024)

0

10

20

30

40

50

60

70

80

90

TOARM NOM NOM(H)

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

Group 4 (Query support = 0.024)

0
100
200
300
400
500
600
700
800
900

1000

TOARM NOM NOM(H)

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

 140

of candidate itemsets to be examined.

Figure 6-12: Execution times spent by the NOM and LNOM algorithms on Groups 1

to 4

6.7.2 Experimental Results for Real Datasets

In addition to the above synthetic datasets, a real one called the BMS-POS

dataset [106] and used in the KDDCUP 2000 competition was run in our experiments.

The BMS-POS dataset contains several years of point-of-sale data from a large

electronics retailer. Each transaction in this dataset is a customer purchase transaction

consisting of all the product categories purchased at one time. There are 515,597

transactions in the dataset. The number of distinct items is 1,657, the maximal

transaction size is 164, and the average transaction size is 6.5. This dataset was also

(b) (a)

Group 1 (Query support = 0.024)

0

5

10

15

20

25

30

35

40

45

TOARM NOM NOM(H) LNOM LNOM(H)

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

Group 2 (Query support = 0.024)

0

20

40

60

80

100

120

TOARM NOM NOM(H) LNOM LNOM(H)

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

(d) (c)

Group 3 (Query support = 0.024)

0

10

20

30

40

50

60

70

80

90

TOARM NOM NOM(H) LNOM LNOM(H)

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

Group 4 (Query support = 0.024)

0
100
200
300
400
500
600
700
800
900

1000

TOARM NOM NOM(H) LNOM LNOM(H)

Ti
m

e(
se

c.
)

Phase 1 Phase 2 Phase 3

 141

used in the KDDCUP 2000 competition. In our experiments, the seventh group of data

consisted of ten equal-size data subsets partitioned from the BMS-POS dataset, and its

corresponding MPR and EMPR were shown in Table 6-10.

Table 6-10: Mining information for the seventh group

Group
Initial

minimum
support

Average length of
maximal frequent

itemsets

Average size of
frequent
itemsets

Average size of
negative itemsets

7 0.1% 11 9006 10762

Group 7

0

100

200

300

400

500

600

700

800

900

1000

0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02

Query Support

T
im
e
(s
ec
.)

Apriori Partition FUP TOARM

Figure 6-13: Execution times for the TOARM, Apriori, Partition and FUP algorithms

on Group 7

The execution time for the TOARM, Apriori, Partition and FUP algorithms on

Group 7 is shown in Figure 6-13. The TOARM algorithm had the best performance

among the four algorithms. Then the execution time spent by the NOM and the

LNOM algorithms for Group 7 along with query supports ranging from 0.2% to 1.1%

in mining requests is shown in Figure 6-14. The experimental results were consistent

with the above discussion. The LNOM algorithm had much better performance than

 142

the NOM algorithm, especially when the number of candidate itemsets is large due to

a low query support.

Group 7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011

Query Support

T
im
e
(s
ec
.)

TOARM NOM NOM(H) LNOM(H)

Figure 6-14: Execution times spent by the TOARM, NOM and LNOM algorithms on

Groups 7

6.8 Conclusion

By structurally and systematically storing context and mining information in the

MPR, our proposed TOARM approach can easily and efficiently derives association

rules that satisfy diverse user-concerned constraints. After that, the concept of

negative border has been used to enlarge the mining information in the MPR to help

get tight upper-bound supports of candidate itemsets and thus reduce the number of

candidate itemsets to be considered. Based on the EMPR (extended MPR), a

corresponding online mining approach called Negative-Border Online Mining (NOM)

has been then proposed to efficiently and effectively utilize the information of

negative itemset in the negative border. Consequently, for further improving the

performance of NOM approach, the lattice data structure has been utilized to organize

 143

and maintain all candidate itemsets such that the candidate itemsets with the same

proper subsets can be considered at the same time. The derived lattice-based NOM

(LNOM) approach will require only one scan of the itemsets stored in EMPR, thus

saving much computation time. In addition, a hashing technique has been used to

further improve the performance of the NOM approach since many itemsets stored in

EMPR may be useless for calculating the counts of candidates. Experiments for both

homogeneous and heterogeneous datasets are made, with results showing the

effectiveness of the proposed approaches.

 144

Chapter 7

Using Association Rule Mining Techniques on

Knowledge Discovery Process in Semiconductor

Manufacture

7.1 Introduction

In recent years, manufacturing processes have become more and more complex,

and meeting high-yield target expectations and quickly identifying root-cause

machinesets, the major killer machine(s) that causes a low-yield situation in a regular

manufacturing procedure, also become essential issues. Although process control and

statistical analysis techniques can be applied to establish a solid base for well-tuned

manufacturing processes, identification of root-cause machineset is still hard and

costly due to the existence of multiple coefficients among variants, nonlinear

interactions, and the intermittent nature of the problem. For example, CIM/MES/EDA

systems in most semiconductor manufacturing companies help users analyze collected

manufacturing data in order to discover the root-cause machineset when the low-yield

situation occurs; however, too many indexes and diagrams generated by the statistical

methods in CIM/MES/EDA systems, such as K-W test, covariance analysis,

regression analysis, etc., are usually not easy for engineers to assimilate and judge. On

the other hand, lots of time is required to solve the false-alarm issue.

In the third part of this dissertation, we attempt to integrate incremental mining

and multidimensional online mining techniques on knowledge discovery process in

 145

semiconductor manufacture. We first define the root-cause machineset identification

problem of analyzing correlations between combinations of machines and the

defective products, and then propose the Root-cause Machine Identifier (RMI)

approach [19] using a batch-based association rule mining algorithm to obtain

candidate root-cause machinesets from a shipment of wafer in process (WIP) data to

experts for further determination. After that, we propose the progressive RMI (PRMI)

concept, which applies incremental mining techniques to progressively process

previously mined candidate root-cause machinesets, and the multidimensional RMI

(MRMI) concept, which applies multidimensional online mining techniques to

diversely consider mined candidate root-cause machinesets from each shipment for

supporting online decision services.

7.2 Related Work

As mentioned above, The process of mining association rules can be roughly

divided into two tasks [5]: finding frequent itemsets and generating association rules,

where the first task is used to discover statistically significant patterns while the

second task is used to obtain interesting rules. Since the first task is very

time-consuming compared to the second one, the major challenges in mining

association rules thus focus on how to reduce the search space and decrease the

computation time required for the first task.. Some famous mining algorithms, such as

Apriori [5], DIC [16], DHP [67], Partition [78], Sampling [61] and FP-Growth

[40][95], were proposed to achieve this purpose. Among them, the Apriori algorithm,

which is the most well-known, utilizes a level-wise candidate generation approach to

reduce its search space such that only the frequent itemsets found in the previous level

are treated as seeds for generating the candidate itemsets in the current level. This

 146

Apriori property can greatly reduce the number of itemsets considered in a mining

process. Many later algorithms were based on this property and attempted to further

reduce candidate itemsets and I/O costs. Comprehensive overviews can be found in

[18][38].

Although a level-wise candidate generation algorithm can efficiently discover

significant patterns, many of them may be not interesting to users. Thus, designing a

useful interestingness measurement is becoming an important issue [15][18][38][82].

Confidence, the most typical interestingness measurement for association rule mining,

measures the conditional probability of events associated with a particular rule. For

example, an association rule A→B with confidence c% means that c% of all

transactions containing A also contain B. However, the confidence measurement may

be misleading or insufficient for many real-world applications. For example, given a

minimum confidence of 60%, the association rule milk→cigarette with confidence

66% is then discovered in a supermarket. However, it is misleading since the

probability of purchasing cigarette is 70%, which is even larger than 66%. In fact,

milk and cigarette associate negatively since purchasing milk actually decreases the

desirability of purchasing cigarettes. Thus, many researches [15][16][28][42][71][80]

[82] have proposed other effective interestingness measurements.

In [71], Piatetsky-Shaprio proposed a domain-independent interestingness

measurement to evaluate the interestingness of discovered rule A→B:

()()NBNABA

NBABA

/1/1

/&

−−

−
=φ ,

where, N denotes the total number of tuples in the database, |A| denotes the number of

tuples that contain the antecedent A, |B| denotes the number of tuples that contain the

consequent B, and |A&B| denotes the number of tuples that contain both A and B. The

 147

range of this interestingness measurement is between –0.25 and 0.25.

7.3 Root-cause Machineset Identification Problem

latigid

Bay Networks

IBM

HITACHI

Bay Networks

Com3

IBM

Machine M1

Machine M2

Machine M3

Machine M2

Machine M4

Machine M5

Machine M3

Machine M5

Machine M6

Machine M2

Machine Mn-1

Machine Mn

⋯⋯⋯⋯

:
:

:
: :

:
:
:

Stage s1 Stage s2 Stage s3 Stage sl

Materials

Products
Bay Networks

latigid

p1

:

p2
p3

pk

IBM

Com3

HEWLETT
PACKARD

Figure 7-1: A general manufacturing process

Figure 7-1 shows a general manufacturing process requiring a multistage

production procedure. Each stage may have more than one machine performing the

same task. Thus, products may pass through different machines in a specific stage.

Assume a shipment consists of k identical products {p1, p2, …, pk}. Each product must

pass through l stages <s1, s2, …, sl> in sequence to be finished, and there are n

manufacturing machines {M1, M2, …, Mn} in this l-stage shipment. Note that a

machine with multiple functions may appear in more than one stage in the process.

The manufacturing process relation, r = {t1, t2,…, tk}, based on the relation schema

R(PID, S1, S2, …, Sl, D), can be used to record the processing information from each

stage and the test result for each product, pi, 1 ≤ i ≤ k. Among the attributes in R, PID

is an identification attribute used to uniquely label the products, Si is a context

 148

attribute associated with a pair <manufacturing machine, timestamp> used to indicate

that the manufacturing machine is used in the i-th stage at the timestamp for each

product, and D is a class attribute used to state whether a product is defective or not.

Example 7-1: Table 7-1 shows a manufacturing process relation used to record

five-stage (l=5) and seven-machine (n=7) processing information for a shipment

consisting of six products (k=6). The first tuple shows that product p1 passed through

stage 1 on <M1, 1>, stage 2 on <M5, 3>, stage 3 on <M3, 10>, stage 4 on <M4, 12>,

and stage 5 on <M5, 14>, and its test result shows a defect (D=1). The other tuples

have similar meanings.

Table 7-1: A manufacturing process relation for six products in a five-stage

manufacturing procedure

PID S1 S2 S3 S4 S5 D
1 M1, 1 M5, 3 M3, 10 M4, 12 M5, 14 1
2 M2, 5 M1, 8 M1, 12 M2, 15 M1, 17 0
3 M3, 2 M3, 7 M5, 13 M4, 17 M3, 20 0
4 M3, 4 M1, 6 M4, 14 M4, 18 M5, 19 1
5 M4, 7 M2, 11 M4, 15 M2, 20 M5, 23 1
6 M3, 9 M3, 8 M6, 12 M4, 16 M7, 20 0

Our goal is to identify the root-cause machineset for a given manufacturing

process relation. In recent years, many approaches have been proposed to solve

similar problems. Examples are such as V. Raghavan applied decision tree to discover

the root cause of yield loss in integrated circuits [74], M. Gardner and J. Bieker

combined self-organizing neural networks and rule induction to identify the critical

poor yield factors from normally collected wafer manufacturing data [33], F. Mieno et

al. applied a regression tree analysis to failure analysis in LSI manufacturing [63].

7.4 Root-cause Machine Identifier (RMI) Approach

 149

We attempt to apply the technique of association rule mining to solve the

root-cause machineset identification problem. According to the general operation of

mining association rules, there are three major scenarios need to be discussed:

(1) Data preprocessing scenario: Since the technique of association rule mining

is usually performed on transactional data (its target of mining is not predetermined),

it is important to transform the data in the manufacturing process relation into the

materials and retain the appropriate relationships between machines and products that

facilitate mining.

(2) Mining procedure scenario: A product may pass through hundreds of stages

(machines) to be finished. The evaluation of all combinations of machines is

relatively enormous and impractical. Therefore, the pruning strategy is required to

remove the candidates with inadequate evidences to be the root cause such that the

search space and the computation time can be reduced.

(3) Visualization scenario: Among the generated candidates, a suitable

interestingness measurement is then needed to identify the root-cause machineset.

To overcome the above three scenarios, the Root-cause Machine Identifier (RMI)

approach shown in Figure 7-2 consisting of three phases, data preprocessing phase,

candidate generation phase and interestingness ranking phase, is proposed. The data

preprocessing phase focuses on transforming the raw data in a given manufacturing

process relation into transactional data. The candidate generation phase focuses on

generating candidate machinesets from the transactional data, and the interestingness

measurement phase focuses on identifying the root-cause machineset from the

obtained candidate machinesets.

 150

Manufacturing
Process
Relation

Machine-oriented
Data Preprocessing

Candidate
Generation

Interestingness
Measurement &

Ranking

The minimum defect
coverage

Possible
Root-cause
Mahinesets

List

Interestingness Ranking Phase

Stage-Oriented
Data Preprocessing

Candidate Generation Phase

Data Preprocessing Phase

The user-specified
interestingness
measurement

Figure 7-2: The flowchart of the RMI approach

By the user-selected preprocessing procedure in the data preprocessing phase, the

RMI approach first gets materials transformed from the data in the manufacturing

process relation. Then given a user-specified minimum defect coverage, a threshold

used to remove the machinesets without enough evidences to be the root cause, the

RMI approach generates all candidate machinesets by the candidate generation phase.

Finally, by the interestingness ranking phase, the RMI approach ranks the candidate

machinesets based upon a user-specified interestingness measurement and provides

the result to experts for further determination.

7.4.1 The Data Preprocessing Phase of RMI Approach

 151

The data preprocessing phase first selects the defective tuples from a given

manufacturing process relation. Two data preprocessing procedures, machine-oriented

and stage-oriented preprocessing procedures, have been proposed to handle different

manufacturing defect hypotheses. The machine-oriented preprocessing procedure

concentrates on the machines a product passes through, regardless of the

manufacturing stage. Thus, although a machine may be used in more than one stage in

a tuple because of its multi-functionality, this preprocessing procedure treats it as only

a single appearance.

Example 7-2: For the manufacturing process relation shown in Table 7-1, the

machine-oriented preprocessing procedure transforms the defect tuples 1, 4 and 5 as

shown in Table 7-2. The tuple TID1 = {M1, M2, M4, M5} means that the product p1

passed through four machines, M1, M3, M4 and M5. The other tuples have similar

meanings.

Table 7-2: An example of the machine-oriented preprocessing procedure

TID Items
1 M1, M3, M4, M5
4 M1, M3, M4, M5
5 M2, M4, M5

The machine-oriented preprocessing procedure transforms the processing

information in the manufacturing process relation into intuitive transactional data and

assumes a machine’s functions are correlated. That is, if one function is faulty, the

other may also be. By contrast, the stage-oriented preprocessing procedure assumes

that a machine’s functions are not correlated. If one function is faulty, the other ones

may still operate normally. Therefore, this preprocessing procedure treats machines in

different stages as distinct individuals.

 152

Example 7-3: For the manufacturing process relation shown in Table 7-1, the

stage-oriented preprocessing procedure transforms the defect tuples 1, 4 and 5 as

shown in Table 7-3. The machine m11 indicating M1 is used at stage 1 is different from

the machine m12 indicating M1 is used at stage 2. The tuple TID1 = {m11, m52, m33, m44,

m55} means that the product p1 passed through stage 1 on M1, stage 2 on M5, stage 3

on M3, stage 4 on M4, and stage 5 on M5. The other tuples have similar meanings.

Table 7-3: An example of the stage-oriented preprocessing procedure

TID Items
1 m11, m52, m33, m44, m55
4 m31, m12, m43, m44, m55
5 m41, m22, m43, m24, m55

7.4.2 The Candidate Generation Phase of RMI Approach

A level-wise processing procedure like finding frequent itemsets in association

rules mining is used to generate possible sets of machines called candidate

machinesets. The defect coverage of a machineset is defined as the percentage of all

defective products passing through the target machineset. Therefore given the

user-specified minimum defect coverage, in the first iteration, the proposed candidate

generation phase calculates the defect coverage for each individual machine, and then

retains the 1-machinesets that satisfy the minimum defect coverage as candidates. In

the second iteration, the proposed phase generates machinesets consisting of two

machines by joining the candidate 1-machinesets from the first iteration, and retains

the 2-machinesets that satisfy the minimum defect coverage as candidates. In each

subsequent iteration, candidate machinesets found in the preceding iteration are used

as seeds in the current iteration, and the process continues until no new candidate

machinesets can be generated.

 153

Since this level-wise processing procedure is based on the Apriori property, each

proper subset of a candidate machineset must be a candidate. In other words, if a

machineset does not satisfy the user-specified minimum defect coverage, then none of

its proper supersets will be. This can greatly reduce the number of candidate

machinesets to be considered. Moreover, to improve the computation performance,

the candidate generation phase retains defective product information for each

candidate machineset in the current level so that each machineset’s defect coverage

information in the next level can be efficiently calculated by utilizing the retained

information rather than re-processing the original database.

Example 7-4: Table 7-4 shows the defect coverage for each 1-machineset in

Table 7-3. The first tuple shows that only the defective product p1 passed through the

machineset m11. Thus, the defect coverage of m11 is 1/3 = 33%.

Table 7-4: Defect coverage and defective product information for each 1-machineset

in Table 7-3

Machineset Involved Defective Products Defect Coverage
m11 p1 33%
m31 p4 33%
m41 p5 33%
m52 p1 33%
m12 p4 33%
m22 p5 33%
m33 p1 33%
m43 p4, p5 66%
m44 p1, p4 66%
m24 p5 33%
m55 p1, p4, p5 100%

Example 7-5: Continuing from Example 7-4 and assuming the user-specified

minimum defect coverage is 50%, Table 7-5 shows candidate 1-machinesets of Table

7-4.

 154

Table 7-5: Defect coverage and defective product information for each candidate

1-machineset obtained

Machineset Involved Defective Products Defect Coverage
m43 p4, p5 66%
m44 p1, p4 66%
m55 p1, p4, p5 100%

Next, 2-machinesets {m43, m44}, {m43, m55} and {m44, m55} are then generated by

joining the candidate 1-machinesets in Table 7-5. The defect coverage for {m43, m44}

is 33% and its defective product information is {p4} by performing the intersection of

the set of defective products of m43 and m44. Complete results are shown in Table 7-6.

Table 7-6: Defect coverage and defective product information for each 2-machinesets

generated

Machineset Involved Defective Products Defect Coverage
m43, m44 p4 33%
m43, m55 p4, p5 66%
m44, m55 p1, p4 66%

As we can see, the machineset {m43, m44} is removed since its defect coverage is

less than 50%, the specified minimum defect coverage. The resulting candidate

2-machinesets are shown in Table 7-7.

Table 7-7: Defect coverage and defective product information for each candidate

2-machineset obtained

Machineset Involved Defective Products Defect Coverage
m43, m55 p4, p5 66%
m44, m55 p1, p4 66%

Next, the only 3-machineset {m43, m44, m55} generated by joining the candidate

 155

2-machinesets in Table 7-7. However, since {m43, m44} is not included in the set of

candidate 2-machinesets, it is removed according to above-mentioned Apriori

property. All candidate machinesets generated are shown in Table 7-8.

Table 7-8: Defect coverage and defective product information for each candidate

machinesets obtained

Machineset Involved Defective Products Defect Coverage
m43 p4, p5 66%
m44 p1, p4 66%
m55 p1, p4, p5 100%

m43, m55 p4, p5 66%
m44, m55 p1, p4 66%

7.4.3 The Interestingness Ranking Phase of RMI Approach

Although a candidate machineset having high defect coverage is statistically

significant, it may not have a high possibility of being the root cause. For example,

the defect coverage of m43 is the same as that of m44 in Table 7-8, but intuitively, m43

is more probable than m44 since all products passing through it are defective. In this

section, an interestingness ranking phase using an interestingness measurement to

evaluate correlations between candidate machinesets and defective products is

proposed for finding the root-cause machineset. Below, in additional to two typical

interestingness measurements confidence and φ, an novel interestingness

measurement called continuity-based interestingness measurement is proposed to

extend φ.

Confidence, the most well-known interestingness measurement for association

rule mining, calculates the conditional probability that a candidate machineset causes

defective products (machineset→defect). That is, it calculates the percentage of all

products passing through a candidate machineset that are defective. φ, a

 156

domain-independent interestingness measurement proposed by Piatetsky-Shaprio in

[71] evaluates the discovered rule A→B as follows:

()()NBNABA

NBABA

/1/1

/&

−−

−
=φ . (7-1)

This equation indicates the degree to which “when antecedent A appears,

consequent B also appears”. If A is regarded as a certain candidate machineset and B

is regarded as a defective product, then the equation calculates the degree of

correlation between the candidate machineset and the defect.

However, the manufacturing process characteristics, such as the observation that

the root-cause machineset often produces defective products continuously, are not

considered in the two above-mentioned interestingness measurements. Thus, we

propose continuity function to measure the continuity between the defective products

for a candidate machineset. High continuity may indicate a higher probability of being

the root cause. We can easily extend the interestingness measurement φ to φ’, called

continuity-based interestingness measurement, as follows:

φ’ = φ ∗ continuity. (7-2)

The continuity function calculates the reciprocal of the average distance between

pairs of neighboring defective products in the product sequence as follows:

()











>
−

=

≤=

∑
−=

=
+

1
1)(),(

1

1 0

1||

1
1

Xif
Xxxd

Continuity

XifContinuity

Xi

i
ii αα

, (7-3)

where X = (x1, x2, …) denotes a defective product sequence contained in the product

sequence P = (p1, p2, …) which is a sequence of products passing through a candidate

machineset (i.e. X is a subsequence of P), |X| denotes the number of defective

 157

products, α(xi) denotes the order of the defective product xi in P (e.g., if α(xi) = j, xi is

the j-th product in P), and d(α(xi),α(xi+1)) is the distance of α(xi) and α(xi+1), which

can easily be calculated by α(xi+1)−α(xi).

Example 7-6: Table 7-9 shows the product sequence, defective product sequence,

and calculated continuity value for each candidate machineset in Table 7-8. Among

them, the continuity value of m44 is
)12/())(),(((

1

41 −ppd αα
 = 0.5 according to its

product sequence (p1, p3, p4) and defective product sequence (p1, p4).

Table 7-9: Calculated continuities for each candidate machineset in Table 7-8

Machineset Product Sequence Defective Product Sequence Continuity
m43 (p4, p5) (p4, p5) 1
m44 (p1, p3, p4) (p1, p4) 0.5
m55 (p1, p4, p5) (p1, p4, p5) 1

m43, m55 (p4, p5) (p4, p5) 1
m44, m55 (p1, p4) (p1, p4) 1

According to the user-specified interestingness measurement, the set of candidate

machinesets with their interestingness values are ranked in descending order.

Example 7-7: Continuing from Example 7-6, Table 7-10 shows the φ’ for each

candidate machineset. Since m55 has highest interestingness value, the machine M5 is

most likely the root-cause machineset.

Table 7-10: φ’ for each candidate machinesets in Table 7-8

Machineset φ Continuity φ’
m43 0.67 1 0.67
m44 0.167 0.5 0.0835
m55 1 1 1

m43, m55 0.67 1 0.67
m44, m55 0.67 1 0.67

 158

7.5 The Concepts of Progressive RMI (PRMI) and Multidimensional

RMI (MRMI)

Although the proposed RMI approach can find candidate root-cause machinesets

from a shipment to experts for further determination, it is difficult for a expert to find

the actual root-cause machineset which is not apparent in the pool of candidate

root-cause machinesets. For a complex manufacturing process such as the

semiconductor manufacture, some root-cause machinesets is hard to be investigated

and discovered in a short-term analysis due to their intermittent nature and gradually

wearing. As a result, progressively monitoring previously mined candidate root-cause

machinesets is a nontrivial work. In order to provide obtained evidences from

processed shipments of data for later use, we can design a progressive RMI (PRMI)

using incremental mining techniques to progressively process previously mined

candidate root-cause machinesets and consider the influence of subsequent shipments

on the possibility of being the root cause for each progressive candidate. Obviously,

for achieving long-term analysis, the original defect coverage and interestingness

measurement calculations need to be re-designed. Some efforts and works in temporal

association rules mining [7][54][66][75][83], especially in [7][54], are related to

PRMI and can be further referred to.

A large dedicated semiconductor company, such as TSMC (Taiwan

Semiconductor Manufacturing Corporation Ltd), usually consists of many wafer fabs

around the world and provides varied fabrication processes. Decision-makers usually

may need to analyze yield situations, especially for a low-yield situation, in a

shipment, fabrication, production line, wafer size or even fab location. They may also

want to understand the change of yield in different dimensions. We can design a

knowledge warehouse to structurally and systematically store the context information,

 159

such as fab location, wafer size, fabrication, product line, manufacturing time, etc.,

and the mining information, such as the number of lots, candidate root-cause

machinesets, etc., of each shipment for supporting decision-makers diversely

considering problems at different aspects.

7.6 Experimental Results

The RMI approach was implemented in Java on a Pentium-IV 2.4G processor

desktop with 512MB RAM, and nine real datasets with the known root-cause

machineset provided by the Taiwan Semiconductor Manufacturing Corporation

(TSMC) were used to evaluate its accuracy. As shown in Table 7-11, 368 and 2727

machines needed to be considered in machine-oriented and stage-oriented

preprocessing procedures respectively for Case 1 having 153 products and each

passing through 658 stages.

Table 7-11: Relevant information for the nine real datasets

Dataset Data size
(Products*Stages)

Number of machines in
machine-oriented

preprocessing procedure

Number of machines in
stage-oriented

preprocessing procedure
Case 1 153*658 368 2727
Case 2 145*867 497 4509
Case 3 141*837 499 4434
Case 4 116*624 416 2500
Case 5 305*733 424 3094
Case 6 53*587 411 2414
Case 7 484*709 455 3381
Case 8 106*632 419 2618
Case 9 77*1109 450 3367

With the minimum defect coverages ranging from 0.3 to 0.5 and the

interestingness measurement φ’, the ranks of the actual root-cause machinesets among

the generated candidate machinesets are shown in Table 7-12. For example, the rank

 160

of the actual root-cause machineset for Case 1 was the 4th using machine-oriented

preprocessing procedure with the minimum defect coverage = 0.3. Note that “X”

means the actual root-cause machineset can not be found by the proposed RMI

approach.

Table 7-12: Accuracy results of the RMI approach for the nine datasets

Machine-oriented
preprocessing procedure

Stage-oriented
preprocessing procedure

Min. defect
coverage

= 0.3

Min. defect
coverage

= 0.4

Min. defect
coverage

= 0.5

Min. defect
coverage

= 0.3

Min. defect
coverage

= 0.4

 Min. defect
coverage

= 0.5

Dataset

Rank Rank Rank Rank Rank Rank
Case 1 4 4 4 22 12 6
Case 2 1 1 1 1 1 1
Case 3 1 1 1 1 1 1
Case 4 1 1 1 1 1 1
Case 5 1 1 1 1 1 1
Case 6 106 93 78 145 90 58
Case 7 6 5 5 2 1 1
Case 8 51 47 40 43 23 X
Case 9 74 50 44 10 X X

As stated previously, the machine-oriented preprocessing procedure assumes all

functions of a machine are co-affected whereas the stage-oriented preprocessing

procedure assumes each function of a machine is independent. Table 7-12 shows that

the RMI approach seems to have higher accuracy with the stage-oriented

preprocessing procedure than with the machine-oriented preprocessing procedure in

this semiconductor manufacturing experiment, if appropriate minimum defect

coverages were set. By consulting with the product engineers for all above cases, the

explanations of the experimental results are concluded as follows:

(a) For Cases 2, 3, 4 and 5, the actual root-cause machinesets were all ranked in

the first place both with the machine-oriented and the stage-oriented preprocessing

procedures. The major reasons are: (a) for Cases 2 or 3, the actual root-cause

 161

machineset was a single-function machine. Therefore, it had the same interestingness

value both with the stage-oriented and machine-oriented preprocessing procedures; (b)

for Cases 4 or 5, most functions of the actual root-cause machineset had high

interestingness values and were ranked in the top ten with the stage-oriented

preprocessing procedure. Therefore, on the whole, the actual root-cause machineset

with the machine-oriented preprocessing procedure still had a not-bad rank.

(b) For Cases 6, 7, 8, or 9, many normal products passed through the actual

root-cause machineset without passing through the faulty function. Therefore the

actual root-cause machineset had higher rank with the stage-oriented preprocessing

procedure than with the machine-oriented preprocessing procedure, if an appropriate

minimum defect coverage was set.

(c) For Case 1, the actual root-cause machineset had the same interestingness

value in the machine-oriented and stage-oriented preprocessing procedures because it

is a single-function machine (as in Cases 2 and 3). However, since most of the other

candidate machinesets had lower interestingness values with the machine-oriented

preprocessing procedure, the actual root-cause machineset with this preprocessing

procedure had higher rank than with the stage-oriented preprocessing procedure. This

was a special case in our experiments.

The actual root-cause machineset in most cases was ranked in the top ten with an

appropriate minimum defect coverage, except in Case 6, which had only 53 products

so the actual root-cause machineset was not more significant than the others.

Intuitively, setting a higher minimum defect coverage will prune more machinesets

from consideration during the candidate generation phase, and thus decrease the

execution time. As shown in Table 7-12 and Figure 7-3, the higher minimum defect

coverage is, the higher performance that RMI approach can be. However, the RMI

 162

approach may prune the actual root-cause machinesets out once the minimum defect

coverage is set too high. How to set appropriate minimum defect coverage is thus

becoming a critical issue for future investigation.

0

50

100

150

200

250

0.3 0.4 0.5 0.6

Minimun Coverage

E
xe
cu
ti
on
 T
im
e
(S
ec
)

CASE2

CASE3

CASE7

Figure 7-3: Execution times for Case 2, Case 3 and Case 7 with the minimum defect

coverage set from 0.3 to 0.6

In order to demonstrate the accuracy of φ’ compared to other known

interestingness measures, Table 7-13 shows the rank of the actual root-cause

machineset among all candidate machinesets generated by the RMI approach when

associated with three interestingness measures, confidence, φ and φ’. The result shows

that our proposed interestingness measurement φ’ does not always outperform φ or

confidence since the properties of all given testing case are different, and that

continuity can highlight cases 1, 7 and 9 with strong continuity defect signal.

 163

Table 7-13: Accuracy results of the RMI approach on the nine datasets for

interestingness measurements confidence, φ and φ’

Machine-oriented
preprocessing procedure

(Min. defect coverage = 0.3)

Stage-oriented
preprocessing procedure

(Min. defect coverage = 0.3)
Confidence φ φ’ Confidence φ φ’

Dataset

Rank Rank Rank Rank Rank Rank
Case 1 8 4 4 41 17 22
Case 2 1 1 1 1 1 1
Case 3 1 1 1 1 1 1
Case 4 1 1 1 1 1 1
Case 5 1 1 1 3 1 1
Case 6 163 94 106 168 128 145
Case 7 9 8 6 1 4 2
Case 8 25 32 51 2 2 43
Case 9 114 57 74 46 22 10

7.7 Conclusion

Identification of the root-cause machineset in manufacturing can not only reduce

manufacturing costs, but also improve manufactory performance. However,

conventional methodologies for identifying root causes are restricted and dependent

on experience and expertise. In this study, we have defined the root-cause machineset

identification problem and proposed RMI approach to solve the problem efficiently

and effectively. Two different data preparation procedures have proposed to transform

the raw data into the desired format based on different manufacturing defect

hypotheses. Also, an novel interestingness measurement considering the

manufacturing continuity has proposed for the interestingness measurement phase in

RMI approach. Currently, the proposed RMI approach has been considered as one of

standard component in semiconductor manufacturing defect detection solution using

data mining techniques of SAS® Taiwan Cooperation in order to help FAB users

discover root causes. The experimental results show that about 80% cases can be

ranked at the top ten and 20% cases are still remained unsolvable. In the future, we

 164

will continue our research to refine interestingness measurements of RMI approach,

and develop automatic/semi-automatic mechanisms to solve the low-yield situations.

 165

Chapter 8

Summary and Future Work

 Designing incremental mining algorithms that can effectively and efficiently

utilize the previously mined information to reduce costs of knowledge maintenances

is rather important and useful. In the first part of this dissertation, we have utilized the

concepts of pre-large patterns and closed patterns to develop more efficient and

practical approaches for maintaining association rules and sequential patterns

especially in dense databases, and utilized the domain-space weighting scheme to

develop a more accurate and adaptive document classifier.

For providing ad-hoc, query-driven and online mining supports, in the second

part of this dissertation, the concept of knowledge warehouse and the architecture of

Online Knowledge Discovery System (OKDS) have been proposed. By structurally

and systematically storing context and mining information in the MPR, a form of

knowledge warehouse, our proposed TOARM approach can easily and efficiently

derive association rules that satisfy diverse, user-concerned constraints. In addition,

the concept of negative border has been further applied in the MPR to form the

EMPR, and based on the EMPR, the NOM and LNOM approaches have been

developed to improve the performance of TOARM especially for heterogeneous

blocks of data.

Consequently, in the third part of this dissertation, we attempt to apply

incremental mining and multidimensional online mining techniques on knowledge

discovery process in semiconductor manufacture. For a semiconductor manufacturing

 166

company, the knowledge capable of quickly identifying root-cause machinesets is

rather important. We have proposed the RMI approach using a batch-based

association rule mining algorithm to provide an efficient and effective solution for the

root-cause machineset identification problem. After that, the concepts of PRMI, which

applies incremental mining techniques to progressively process previously mined

candidate root-cause machinesets, and MRMI, which applies multidimensional online

mining techniques to support multidimensional online generation of candidate

root-cause machinesets, have been proposed to improve the accuracy and flexibility of

RMI approach.

 Some interesting issues may be studied in the future. In addition to record

insertion, record deletion [87][89] and record modification [88] are also commonly

seen in real-world applications. Processing record deletion and record modification

are, however, different from processing record insertion. Design effective

maintenance algorithms for association rules and sequential patterns as records are

deleted or modified are thus nontrivial works. As for the proposed concept of

multidimensional online mining, we can adopt other techniques to further improve the

performance of the proposed methodology. For example, we can construct an iceberg

cube [13][26] or use materialized views [17][97] for the proposed MPR or EMPR to

provide more efficient online association rule generation and more powerful mining

services. Moreover, we can also attempt to apply the multidimensional online mining

concept to online decision support for other classes of knowledge, such as sequential

patterns, classifications, clusters, etc. In the third part of this dissertation, although we

expect the two concepts of progressively processing previously mined patterns and

structurally and systematically storing mined patterns can respectively improve the

accuracy of discovered knowledge and support decision-makers diversely considering

 167

problems at different aspects, it is necessary to substantiate, test and deploy them in

real-world cases in semiconductor manufacture.

 168

Reference
1. R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad. A tree projection algorithm for

generation of frequent item sets. Journal of Parallel and Distributed Computing,
Vol. 61, No. 3, pp. 350– 371, 2001.

2. C.C. Aggarwal, P.S. Yu, A new approach to online generation of association rules,
IEEE Transactions on Knowledge and Data Engineering, Vol. 13, No. 4, pp.
527-540, 2001.

3. R. Agrawal, T. Imielinksi, A. Swami, Mining association rules between sets of
items in large database, ACM SIGMOD Conference, pp. 207-216, Washington DC,
USA, 1993.

4. R. Agrawal, T. Imielinksi, A. Swami, Database mining: a performance perspective,
IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6, pp.
914-925, 1993.

5. R. Agrawal, R. Srikant, Fast algorithm for mining association rules, ACM VLDB
Conference, pp. 487-499, 1994.

6. R. Agrawal, R. Srikant, Mining sequential patterns, IEEE International
Conference on Data Engineering, pp. 3-14, 1995.

7. J.M. Ale, G. Rossi, An approach to discovering temporal association rules, ACM
SAC Conference, pp. 294-300, 2000.

8. W.G. Aref, M.G. Elfeky, A.K. Elmagarmid, Incremental, online, and merge mining
of partial periodic patterns in time-series databases, IEEE Transactions on
Knowledge and Data Engineering, Vol. 16, No. 3, pp. 332-342, 2004.

9. J. Ayres, J.E. Gehrke, T. Yiu, J. Flannick, Sequential pattern mining using bitmaps,
The International Conference on Knowledge Discovery and Data Mining, pp.
429-435, 2002.

10. L. Baker, A. McCallum, Distributional clustering of words for text classification,
ACM SIGIR Conference, pp. 93-103, 1998.

11. R.J. Bayardo, R. Agrawal, D. Gunopulos, Constraint-based rule mining in large,
dense databases, IEEE International Conference on Data Engineering, pp. 188-197,
1999.

12. C. Bettini, X.S. Wang, S. Jajodia, Mining temporal relationships with multiple
granularities in time sequences, IEEE Data Engineering Bulletin, Vol. 21, pp.
512-521, 1999.

13. K. Beyer, R. Ramakrishnan, Bottom-up computation of sparse and iceberg cubes,
ACM SIGMOD Conference, pp. 359-370, 1999.

14. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and regression
trees, Wadsworth, Belmont, CA. 1984.

 169

15. S. Brin, R. Motwani, C Silverstein, Beyond market baskets: generalizing
association rules to correlations, ACM SIGMOD Conference, pp. 265-276,
Tucson, Arizona, USA, 1997.

16. S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and
implication rules for market basket data, ACM SIGMOD Conference, pp. 255-264,
Tucson, Arizona, USA, 1997.

17. S. Chaudhuri, U. Dayal, An overview of data warehousing and OLAP technology,
ACM SIGMOD Record, Vol. 26, No 1, pp. 65-74, 1997.

18. M.S. Chen, J. Han, P.S. Yu, Data mining: an overview from database perspective,
IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp.
866-883, 1996.

19. W.C. Chen, S.S. Tseng, C.Y. Wang, A novel manufacturing defeat detection
method using association rule mining techniques, An International Journal: Expert
System with Application, Vol. 29, No. 4, pp. 807-815, 2005.

20. D.W. Cheung, J. Han, V.T. Ng, C.Y. Wong, Maintenance of discovered association
rules in large databases: an incremental updating approach, IEEE International
Conference on Data Engineering, pp. 106-114, 1996.

21. D.W. Cheung, S.D. Lee, B. Kao, A general incremental technique for maintaining
discovered association rules, The International Conference on Database Systems
for Advanced Applications, pp. 185-194, Melbourne, Australia, 1997.

22. D.Y. Chiu, Y.H. Wu, A.L.P Chen, An efficient algorithm for mining frequent
sequences by a new strategy without support counting, IEEE International
Conference on Data Engineering, pp. 375-386, 2004.

23. F. Debole, F. Sebastiani, Supervised term weighting for automated text
categorization, ACM SAC Conference, pp. 784-788, 2003.

24. S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Hashman, Indexing
by latent semantic indexing, Journal of the American Society for Information
Science, Vol. 41, No. 6, 1990.

25. S. Dumais, J. Platt, D. Heckerman, M. Sahami, Inductive learning algorithms and
representations for text categorization, ACM CIKM Conference, pp. 148-155,
1998.

26. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J.D. Ullman,
Computing iceberg queries efficiently, ACM VLDB Conference, pp. 299-310,
1998.

27. R. Feldman, Y. Aumann, A. Amir, H. Mannila, Efficient algorithms for
discovering frequent sets in incremental databases, ACM SIGMOD Workshop on
DMKD, pp. 59-66, USA, 1997.

28. A.A. Freitas, On rule interestingness measures, Knowledge-Based Systems, Vol.

 170

12, No. 5-6, pp. 309-315, 1999.
29. M. Fuketa, S. Lee, T. Tsuji, M. Okada, J. Aoe, A document classification method

by using field association words, An International Journal: Information Sciences,
Vol. 126, No. 1-4, pp. 57-70, 2002.

30. H.N. Gabow, Z. Galil, T. Spencer, R.E. Tarjan, Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs, Combinatorica, Vol. 6,
No. 2, pp. 109-122, 1986.

31. L. Galavotti, F. Sebastiani, M. Simi, Experiments on the use of feature selection
and negative evidence in automated text categorization. The European Conference
on Research and Advanced Technology for Digital Libraries, 2000.

32. V. Ganti, J. Gehrke, R. Ramakrishnan, DEMON: Mining and monitoring evolving
data, IEEE International Conference on Data Engineering, pp. 439-448, 2000.

33. M. Gardner, J. Bieker, Data mining solves tough semiconductor manufacturing
problems, The International Conference on Knowledge Discovery and Data
Mining, pp. 376-383, Boston, USA, 2000.

34. H. George, J. Ron, P. Karl, Irrelevant features and the subset selection problem,
The International Conference on Machine Learning, pp. 121-129, 1994.

35. G. Grahne, L.V.S. Lakshmanan, X. Wang, M.H. Xie, On dual mining: from
patterns to circumstances, and back, IEEE International Conference on Data
Engineering, pp. 195-204, 2001.

36. J. Han, G. Dong, Y. Yin, Efficient mining of partial periodic patterns in time series
database, IEEE International Conference on Data Engineering, pp. 106-115, 1999.

37. J. Han, L.V.S. Lakshmanan, R.T. Ng, Constraint-based, multidimensional data
mining, IEEE Computer Magazine, pp.2-6, 1999.

38. J. Han, M. Kamber, Data mining: concepts and techniques, Morgan Kaufmann,
2001.

39. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.C. Hsu, FreeSpan:
Frequent pattern-projected sequential pattern mining, The International
Conference on Knowledge Discovery and Data Mining, pp. 355-359, 2001.

40. J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation,
ACM SIGMOD Conference, pp. 1-12, 2000.

41. C. Hidber, Online association rule mining, ACM SIGMOD Conference, pp.
145-156, USA, 1999.

42. R.J. Hilderman, H.J. Hamilton, Heuristic measures of interestingness, The
European Conference on Principles of Data Mining and Knowledge Discovery, pp.
232-241, 1999.

43. T.P. Hong, C.Y. Wang, Y.H. Tao, A new incremental data mining algorithm using
pre-large itemsets, An International Journal: Intelligent Data Analysis, pp. 111-129,

 171

2001.
44. T.P. Hong, C.Y. Wang, S.S. Tseng, Incremental data mining for sequential patterns

using pre-large sequences, The International Multiconference on Systemics,
Cybernetics and Informatics, Vol. 14, pp. 543-548, 2001.

45. W.H. Immon, Building the data warehouse, Wiley Computer, 1996.
46. T. Joachims, Text categorization with support vector machines: Linearing with

many relevant features, The European Conference on Machine Learning, vol.
1938, pp. 137-142, 1998.

47. T. Joachims, Making large-scale SVM learning practical, Advances in Kernel
Methods-Support Vector Learning, pp. 169-184, MIT Press, 1999.

48. M. Kamber, J. Han, J.Y. Chiang, Metarule-guided mining of multi-dimensional
association rules using data cubes, The International Conference on Knowledge
Discovery and Data Mining, pp. 207-210, 1997.

49. G. Karypic, E.H. Han, Concept indexing: a fast dimensionality reduction
algorithm with applications to document retrieval and categorization, ACM CIKM
Conference, pp. 12-19, 2000.

50. H. Kona, S. Chakravarthy, Partitioned approach to association rule mining over
multiple databases, The International Conference on Data Warehousing and
Knowledge Discovery, pp. 320-330, 2004.

51. L.V.S. Lakshmanan, C.K.S. Leung, R.T. Ng, Efficient dynamic mining of
constrained frequent sets, ACM Transaction on Database Systems, Vol. 28, No. 4,
pp. 337-389, 2003.

52. L.V.S. Lakshmanan, R.T. Ng, J. Han, A. Pang, Optimization of constrained
frequent set queries with 2-variable constraints, ACM SIGMOD Conference, pp.
157-168, Philadelphia, Pennsylvania, USA, 1999.

53. B. Lan, B.C. Ooi, K.L. Tan, Efficient indexing structures for mining frequent
patterns, IEEE International Conference on Data Engineering, pp. 453-462, 2002.

54. C.H. Lee, M.S. Chen, C.R. Lin, Progressive partition miner: An efficient
algorithm for mining general temporal association rules, IEEE Transactions on
Knowledge and Data Engineering, Vol. 15, No. 4, pp. 1004-1017, 2003.

55. M.Y. Lin, S.Y. Lee, Incremental update on sequential patterns in large databases,
IEEE International Conference on Tools with Artificial Intelligence, pp. 24-31,
1998.

56. D.D. Lewis, R.E. Schapire, J.P. Callan, R. Papka, Training algorithms for linear
text classifiers, ACM SIGIR Conference, pp. 13-19, 1996.

57. D.D. Lewis, Naïve (bayes) at forty: The independence assumption in information
retrieval, The European Conference on Machine Learning, pp. 4-15, 1998.

58. D.D. Lewis, Reuters-21578 text categorization test collection distribution 1.0,

 172

http://www.research.att.com/~lewis/reuters21578.html, 1999.
59. R.L. Liu, and Y.L. Lu, Incremental context mining for adaptive document

classification, The International Conference on Knowledge Discovery and Data
Mining, pp. 599-604, 2002.

60. H. Mannila, H. Toivonen, On an algorithm for finding all interesting sentences,
The European Meeting on Cybernetics and Systems Research, pp. 973-978, 1996.

61. H. Mannila, H. Toivonen, A.I. Verkamo, Efficient algorithm for discovering
association rules, The AAAI Workshop on Knowledge Discovery in Databases, pp.
181-192, 1994.

62. H. Mannila, H. Toivonen, A.I. Verkamo, Discovery of frequent episodes in event
sequences, Data Mining and Knowledge Discovery, Vol. 1, pp. 259-289, 1997.

63. F. Mieno, T. Santo, Y. Shibuya, K. Odagiri, H. Tsuda, R. Take, Yield improvement
using data mining system, IEEE Semiconductor Manufacturing Conference, 1999.

64. M.L. Minsky, S.A. Papert, Perceptrons: An introduction to computational
geometry, MIT Press, 1969.

65. R.T. Ng, L.V.S. Lakshmanan, J. Han, A. Pang, Exploratory mining and pruning
optimizations of constrained associations Rules, ACM SIGMOD Conference, pp.
13-24, Seattle, Washington, USA, 1998.

66. B. Ozden, S. Ramaswamy, A. Siberschatz, Cyclic association rules, IEEE
International Conference on Data Engineering, pp. 412-421, 1998.

67. J.S. Park, M.S. Chen, P.S. Yu, Using a hash-based method with transaction
trimming for mining association rules, IEEE Transactions on Knowledge and Data
Engineering, Vol. 9, No. 5, pp. 812-825, 1997.

68. N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets
for association rules. The International Conference on Database Theory, pp.
398-416, 1999.

69. J. Pei, J. Han, R. Mao, CLOSET: An efficient algorithm for mining frequent
closed itemsets, ACM SIGMOD Workshop on DMKD, pp. 11-20, May 2000.

70. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pino, Q. Chen, U. Dayal, M.C. Hsu,
Mining sequential patterns by pattern-growth: The PrefixSpan approach, IEEE
Transactions on Knowledge and Data Engineering, Vol. 16, No. 10, pp. 1-17,
2004.

71. G. Piatestsky-Shaprio, Discovery, analysis and presentation of strong rules, G.
Piatetsky-Shapiro, W.J. Frawley (Eds.), Knowledge Discovery in Databases,
AAAI, pp. 229-247, 1991.

72. H. Pinto, J. Han, J. Pei, K. Wang, Multi-dimensional sequential pattern mining,
ACM CIKM Conference, pp. 81-88, 2001.

73. J.R. Quinlan, C4.5: Programs for machine learning. Moran Kaufmann, San Mateo,

 173

1993.
74. V. Raghavan, Application of decision trees for integrated circuit yield

improvement, IEEE/SEMI Advanced Semiconductor Manufacturing Conference
and Workshop, 2002.

75. S. Ramaswami, S. Mahajan, A. Silberschatz, On the discovery of interesting
patterns in association rules, ACM VLDB Conference, pp. 368-379, 1998.

76. J.J. Rocchio, Relevance feedback in information retrieval, The Smart Retrieval
System-Experiments in Automatic Document Processing, pp. 313-323,
Prentice-Hall, 1971.

77. N.L. Sarda, N.V. Srinivas, An adaptive algorithm for incremental mining of
association rules, IEEE International Workshop on Database and Expert Systems,
pp. 240-245, 1998.

78. A. Savasere, E. Omiecinski, S. Navathe, An efficient algorithm for mining
association rules in large databases, ACM VLDB Conference, pp. 432-444, 1995.

79. F. Sebastiani, Machine learning in automated text categorization. ACM
Computing Surveys, Vol. 34, No. 1, pp. 1-47, 2002.

80. A. Silberschatz, A. Tuzhilin, What makes patterns interesting in knowledge
discovery systems, IEEE Transactions on Knowledge and Data Engineering, Vol.
8, No. 6, pp. 970-974, 1996.

81. R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and
performance improvements, The International Conference on Extending Database
Technology, pp. 3-17, 1996.

82. P.N. Tan, V. Kumar, Interestingness measures for association patterns: a
perspective, The KDD Workshop on Postprocessing in Machine Learning and
Data Mining, Boston, MA, 2000.

83. A.U. Tansel, N.F. Ayan, Discovery of association rules in temporal databases, The
AAAI Workshop on Knowledge Discovery in Databases, 1998.

84. P.C. Taylor, B.W. Silverman, Block diagrams and splitting criteria for
classification trees, Statistics and Computing, Vol. 3, pp. 147–161, 1993.

85. S. Thomas, S. Bodagala, K. Alsabti, S. Ranka, An efficient algorithm for the
incremental update of association rules in large databases, The International
Conference on Knowledge Discovery and Data Mining, pp. 263-266, 1997.

86. J. Wang, J. Han, J. Pei, Closet+: Searching for the best strategies for mining
frequent closed itemsets, The International Conference on Knowledge Discovery
and Data Mining, pp. 236-245, 2003.

87. C.Y. Wang, T.P. Hong, S.S. Tseng, Maintenance of sequential patterns for record
deletion, IEEE ICDM Conference, pp. 536-541, 2001.

88. C.Y. Wang, T.P. Hong, S.S. Tseng, Maintenance of sequential patterns for record

 174

modification using pre-large sequences, IEEE ICDM Conference, pp. 693-696,
2002.

89. C.Y. Wang, T.P. Hong, S.S. Tseng, Maintenance of discovered sequential patterns
for record deletion, An International Journal: Intelligent Data Analysis, Vol. 6, No.
5, pp. 399-410, 2002.

90. C.Y. Wang, T.P. Hong, S.S. Tseng, Multidimensional on-line mining, IEEE ICDM
Foundation of Data Mining Workshop, pp. 196-202, 2003.

91. C.Y. Wang, S.S. Tseng, T.P. Hong, Y.S. Chu, Using extended multidimensional
pattern relation for multidimensional on-line mining, International Computer
Symposium, 2004.

92. C.Y. Wang, S.S. Tseng, T.P. Hong, Flexible online association rule mining based
on multidimensional pattern relations, to appear in An International Journal:
Information Sciences, 2005.

93. C.Y. Wang, S.S. Tseng, T.P. Hong, Y.S. Chu, Online generation of association
rules under multidimensional consideration based on negative-border, to appear in
Journal of Information Science and Engineering, 2005.

94. B.B. Wang, R.I. McKay, H.A. Abbass, M. Barlow, A comparative study for
domain ontology guided feature extraction, ACM ACSC Conference, pp. 69-78,
2003.

95. K. Wang, L. Tang, J. Han, J. Liu, Top down FP-Growth for association rule
mining, The Pacific-Asia Conference on Advances in Knowledge Discovery and
Data Mining, pp. 334-340, 2002.

96. W. Wibowo, H.E. Williams, Simple and accurate feature selection for hierarchical
categorization, ACM DocEng Conference, pp. 111-118, 2002.

97. J. Widom, Research problems in data warehousing, ACM CIKM Conference, pp.
25-30, 1995.

98. X. Wu, S. Zhang, Synthesizing high-frequency rules from different data sources,
IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 2, pp.
353-367, 2003.

99. X. Yan, J. Han, R. Afshar, CloSpan: Mining closed sequential patterns in large
database, SIAM International Conference on Data Mining, pp. 166-177, 2003.

100. Y. Yang, An evaluation of statistical approaches to MEDLINE indexing, The
International Conference on American Medical Informatics Association, pp.
358-362, 1996.

101. Y. Yang, An evaluation of statistical approaches to text categorization, Technical
Report: CMU-CS-97-127, Computer Science Department, Carnegie Mellon
University, 1997.

102. Y. Yang, J.O. Pedersen, A comparative study on feature selection in text

 175

categorization, The International Conference on Machine Learning, pp. 412-420,
1997.

103. M. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Machine
Learning, Vol. 40, pp. 31-60, 2001.

104. M. Zaki, C. Hsiao, CHARM: An efficient algorithm for closed itemset mining,
SIAM International Conference on Data Mining, pp. 457-473, 2002.

105. S. Zhang, X. Wu, C. Zhang, Multi-database mining, IEEE Computational
Intelligence Bulletin, Vol. 2, No. 1, pp. 5-13, 2003.

106. Z. Zheng, R. Kohavi, L. Mason, Real world performance of association rule
algorithms, The International Conference on Knowledge Discovery and Data
Mining, pp. 401-406, 2001.

