A Study of Incremental Mining and
Multidimensional Online Mining for Knowledge

Discoveryrn'Database

A Study of Incremental Mining and
Multidimensional Online Mining for Knowledge

Discovery in Database

Student: Ching-Yao Wang

Advisor: Dr. Shian-Shyong Tseng

A Thesis
Submitted to Department of Computer Science
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in

Computer Science
October 2005

Hsinchu, Taiwan, Republic of China

A Study of Incremental Mining and
Multidimensional Online Mining for Knowledge

Discovery in Database

Student: Ching-Yao Wang Advisor: Dr. Shian-Shyong Tseng

Department of Computer Science

National Chiao Tung University

Abstract

Mining useful information”and helpful knowledge from large databases has
evolved into an important research areain recent years. However, most of classic
mining approaches processed data in a batch way,.in which they must re-process the
entire updated database whenever the database is updated, and focused on finding
rules or patterns in a specified part of a database, in which they can not consider
problems at different aspects and provide on-line decision supports. This seems to be
inefficient and insufficient for knowledge discovery process in real-world applications.
As a result, in this dissertation, we will develop some novel incremental mining
algorithms respectively for maintaining association rules, sequential patterns and a
document classifier without re-processing the original database whenever the database
is updated. For providing ad-hoc, query-driven and online mining supports, we will
extend the concept of effectively utilizing patterns previously discovered in
incremental mining to support online mining under multidimensional considerations.

Specifically, we propose a structural repository to systematically store the previously

II

mined information from each inserted dataset, and then develop online mining
approaches to acquire user-interesting rules or patterns by integrating related mining
information in the repository. Consequently, we will attempt to apply incremental
mining and multidimensional online mining techniques on knowledge discovery
process in semiconductor manufacture for quickly identifying root-cause machinesets,
the major killer machine(s) that causes a low-yield situation in a regular

manufacturing procedure.

Keywords: association rule, sequential pattern, incremental mining, closed itemsets,

pre-large itemset, text classification, document representation, constraint-based

mining, defect detection, interestingness measurement.

III

447 346

v

Table of Contents

ADSIract (1IN ChINESE).....ccve e I
PN oIS A= (ot (T = o 1 g) RSP [
ACKNOWIEAGEMENT ... e Y]
Table Of CONTENES......ccieeceee e \Y
LISt Of FIQUIES....uiiiiecie ettt et et ne e enne s VIl
LiSt Of TADIES. ... s X
Chapter 1 INtrodUCLIONccuvoiieeceeseee e 1
L1 MOEIVALION ..ttt ettt st ettt e bt e s iteebee 1
1.2 CONEITDULION ...ttt ettt ettt ettt e b e s aeeeneens 8
1.3 Reader’s GUIAE.coouiiiiiiiiiiie e e 10
Chapter 2 Incremental Mining Algorithmsfor Association Rules
MAINTENANCE ...ttt b e sr b renn e 1
2.1 INtrOAUCTION ...ttt ettt et st 11
2.2 Related Work.......cooeeiuiine s R R e 14
2.3 Preliminary CONCEPLS. ... ateuu. ... e swsesio s essasseeensseeessseeessseeessseessseessssesssssessnsees 18
2.4 Closed Itemsets Maintenance ..o ik, b it 20
2.5 The Closed Itemsets Maintaining (CIM) Algorithm...........cccccocoevininnninn 24
2.6 The CIM Algorithm with Pre-lafge’Concept: CIM-P Algorithm................... 34
2.7 Experimental Results 00 et 39
2.8 CONCIUSION ...ttt ettt ettt e e s abeebee e 45
Chapter 3 Incremental Mining Algorithmsfor Sequential Patterns
MAINTENANCE ...ttt bbb nn e 47
3.1 INErOAUCHION. ..ttt et st 47
3.2 Related WOTK.oouiiiiiiieee e e 48
3.3 Preliminary CONCEPLS.....cccuvieeieieeeiieeeieeeeieeeeieeesieeesreeesaeeessaeeensseeeneseeenneens 54
3.4 Closed Sequences Maintenance..........c.eeevveeeuieeeieieeniiieeeieeesreeesveeesneeesnneens 56
3.5 The Closed Sequences Maintaining (CSM) Algorithmccccvvevvieenneen. 59
3.6 The CSM Algorithm with Pre-large Concept: CSM-P Algorithm................. 60
3.7 CONCIUSION ...ttt ettt ettt ettt e et eaes 63
Chapter 4 Incremental Mining Algorithmsfor Document Classifiers
MAINTENANCE ...ttt b e nn e 64
4.1 INErOAUCTION ...ttt ettt ettt e 64
4.2 Related WOTK.......oooiiiiiiiieie et 66
4.3 Domain-space Weighting Scheme for Document Classification................... 69

4.4 Classifier Construction Based on Domain-space Document Representation 70

4.5 Document Labeling by the Constructed Classifier..........cccceeeveeerieeeenveennee. 80

4.6 Experimental RESUILSccoeeviiiiiiiieiieceeeeeee e 81
4.7 CONCIUSIONSenieeieeiie ettt ettt ettt b et esabeebee e 88
Chapter 5 From Incremental Mining to Multidimensional Online Mining
for KNOWIEAQE DISCOVENYocviiiicie ettt ene s 89
5.1 INEEOAUCHION ...ttt st 89
5.2 Related WOTK......ooouiiiiiiiie e 91
5.3 Knowledge War€hOusSec.ceevuiiiiiiieiiieeieecieeeee et e 93
5.4 Online Knowledge Discovery System (OKDS)cccoeevviieeviiiiniieeiee e, 96
Chapter 6 Multidimensional Online Mining Algorithmsfor Generation of
ASSOCIALION RUIES.........ooiiiiiieee s 99
6.1 INTrOAUCTION. ...ttt 99
6.2 Related WOTK......cocuiiiiiiii e 100
6.3 Multidimensional Pattern Relation (MPR)ccooeiiiiiiiiieee 101

6.4 Three-Phased Online Association Rule Mining (TOARM) based on MPR 103
6.5 Negative-Border Online Mining (NOM) based on Extended MPR (EMPR)

.. 110
6.6 LNOM: Algorithm Design and lmplementation...........c.cccoeceeveeniiniennnnn. 118
6.7 Experimental Results ...l i e 131
6.8 CONCIUSION ... ot et et ettt et e bt e et e b e sateeaee e 142
Chapter 7 Using Association Rule Mining Techniques on Knowledge
Discovery Processin Semiconduetor Manufacture.........cccoccveveevecieenen. 144
7.1 INEEOAUCTION ..ttt ettt e eas 144
7.2 Related WOTK......coouiiiiiiiie e 145
7.3 Root-cause Machineset Identification Problem...........cccceoiiiiiniiinnnns 147
7.4 Root-cause Machine Identifier (RMI) Approach.........cccccoveeviieerieeerreennnee. 148
7.5 The Concepts of Progressive RMI (PRMI) and Multidimensional RMI
(MRMI) .ttt ettt ettt et e et b e et esse e e enee e 158
7.6 Experimental RESUILSccooecviiiiiieiiieeiie e e 159
77T CONCIUSION ...ttt ettt e et e st eaee e 163
Chapter 8 Summary and FUtUre WorK.........ccccooeeceeiieiicvecseeceee e 165
REFEIBNCE. ... 168

VI

List of Figures

Figure 1-1: The performance and storage trade-off for batch mining, incremental

mining and multidimensional online MININGccceeevvieriiieiieriiieieeie e 3
Figure 2-1: Four cases of candidate 1temsSetsccecvueeeiieeeiiieeiiieeie e 16
Figure 2-2: Four cases of joint closed 1temSets.ceeeueerieriiierieniiierieeeesie e 22
Figure 2-3: The CIM algorithimcccooviiiiiiiiiiiieieeieee e 25
Figure 2-4: A closed maintenance tree (CMT)cccvevieriiienieeiiieniecieecee e 27
Figure 2-5: The CO_generation SUDTOULINE..........c.cceevueeeiieeesieeeiieeeieeeeieeeeveeesevee e 29
Figure 2-6: An example of branch-wise processing strategy in the CO_generation

SUDTOULINE. ...ttt ettt et ettt e bttt et satenbe et 30
Figure 2-7: An example of updating process in the CO_generation subroutine.......... 30
Figure 2-8: The CP_generation SUDTOULINGc.cceevueeeiieeeiieeeiieeeieeesieeesveeesevee e 33
Figure 2-9: An example of CP_generation SUbroutine.............cccceceevveveevienecnenneennne. 34
Figure 2-10: The concept of pre-large closed 1teMSEtsceevveeriierciienieniienieeiens 35
Figure 2-11: The CIM-P algorithino il i it 39

Figure 2-12: Execution times for the FUP, Pre-large and CIM algorithms respectively

ON the FIVE dAtASELS....cueiiiiiiii e ki it i saedusidsiaane e fatn et eeeteenteesaeeebeesateenseesneeenseesaeeenne 42
Figure 2-13: The amounts of pre-stored mining information for the FUP, Pre-large and
CIM algorithms respectively on the five datasets.........cceceeeevieriieiciiinieeiiesie e, 43

Figure 2-14: The influence of the size of increment on the execution time for the FUP,

Pre-large and CIM alOTithmscoccuiiieiiiiiiiieiie e 44
Figure 2-15: Execution times for the CIM and CIM-P algorithms on BMS-POS 45
Figure 3-1: Four cases of candidate SEqUENCES...........ceecveevuierieeriieniieiieeie e sre e 53
Figure 3-2: Four cases of joint closed SEqUENCES..........ceevieriieriieriieniieeieeniee e 57
Figure 3-3: The CSM al@Orithimcccooeiiieiiiiiiieceece e 60
Figure 3-4: The CSM-P algorithmccccoeiiiiiiiiiiiniiiiiccececeeceeee 63
Figure 4-1: An example of the support vector machine approach..........cccceceevvenennee. 68
Figure 4-2: The classifier construction algorithm.............ccccoeeieiviiieniiiiniieeieeee 72
Figure 4-3: The operation of the classifier construction algorithmcccceeeee. 72
Figure 4-4: The training algorithmcc.cocoiiiiiiiiiiiiiniiceee e 74
Figure 4-5: The discrimination algorithm............cccoecueeiiieiiiiiienieeieeeeee e 76
Figure 4-6: The tuning algorithm............c.ccccieviiiiiiiniiieiieeceee e 79

Figure 4-7: The document labeling algorithmcccoooiiiiiiiiiiiiiniieeee, 80

Figure 4-8: Micro-averaging F; value vs. number of tuning documents for

REULETS-2I5T78(10) eveeeiiieeeiieeeiee ettt ettt e e e tte e tee e tee e s e e e sbeeesnseeesseesnseeennaeeens 85
Figure 4-9: Micro-averaging F; values vs. number of tuning documents at ¢ =1, ¢ =15
and @ =25 for Reuters-21578(90)ccueeeiiiiieiiieieeeeeeeete et 86
Figure 4-10: Micro-averaging F values vs. number of tuning documents at ¢ =1, ¢
=15 and @ =25 for Reuters-21578(115) .eovouiiiriiieiie et 87
Figure 4-11: Computation times spent by the batch-based classifier and the
incremental-based classifier for reuters-21578(10)cccvvieiiiiieeiiiieeiie e, 87
Figure 5-1: An example of the star schema of a knowledge warehouse...................... 95
Figure 5-2: The OKDS archit@Cture..........ccuveeiuiieiiiieeciieeciie et 96
Figure 6-1: The TOARM algorithm.........ccccooiriiiiiiiiniiniiieeiccececeeeeeeee 109
Figure 6-2: The graph model of candidate itemsets for Tuple 4 in Table 6-4............ 121
Figure 6-3: The STCC algorithmi..........cccveviiiiiieiiieiieciiceeeee e 122
Figure 6-4: The directed minimum spanning tree found from Figure 6-2................. 123

Figure 6-5: The lattice to represent the candidate itemsets illustrated in Example 6-6

.. 124
Figure 6-6: The hash table derived from the candidate itemsets illustrated in Example

00 e B et S e ettt ettt st 126
Figure 6-7: The updated lattice after processing all matched tuples............c........... 129

Figure 6-8: The algorithm of the LNOM approach with a direct hashing function...131
Figure 6-9: Execution times for the TOARM, Apriori, Partition and FUP algorithms
ON Groups 1, 2, 3 aNd 5.ceviieiiiiieieeeee ettt 134
Figure 6-10: The influence of the number of negative itemsets on execution time for
GTOUPS 110 6.ttt st e 137
Figure 6-11: Execution times of the NOM algorithm respectively with and without a
direct hashing function on Groups 1 10 4.......ccoeevieviiiiieiieeiieeeeee e 139
Figure 6-12: Execution times spent by the NOM and LNOM algorithms on Groups 1

10T TSRS 140
Figure 6-13: Execution times for the TOARM, Apriori, Partition and FUP algorithms
OTL GTOUP 7 ettt ettt ettt e et e et e e st e e st e e e aseeeaseeensaeeensaeesnsaeesasaeesnseeennseesnnseenns 141
Figure 6-14: Execution times spent by the NOM and LNOM algorithms on Groups 7
.. 142
Figure 7-1: A general manufacturing proCesscoceevveecveenieeniienieeniienreerieesneenens 147

VIII

Figure 7-2: The flowchart of the RMI approach...........ccoooveviiieniieiiiiniiiieieeiee, 150
Figure 7-3: Execution times for Case 2, Case 3 and Case 7 with the minimum defect

coverage et fTom 0.3 10 0.6......cooviiiiiiiieiiieeciee e e 162

IX

List of Tables

Table 2-1: A transactional database............ccceviereiriiriiniiieiieeeeeeee e 26
Table 2-2: The newly inserted tranSactions............cccveeereereeerieerieeiiienreereeseeeneeseeeenns 30
Table 2-3: Characteristics of the experimental datasets...........cccccveeevveeeiiieecieeeiieens 39
Table 2-4: Mining information for the five datasetscccceeveeriiiniiniienicceee 40
Table 2-5: The distribution of frequent itemsets for the five datasetsc.ccccceeeeee 40
Table 3-1: The sequence database..........c..coveeeuieriieiiieeieeiieee et 51
Table 3-2: All frequent sequences generated for the sequences in Table 3-1 51

Table 3-3: Two new transactions sorted according to Sequence id and Trans_time...51
Table 3-4: The two newly merged SEQUENCESccueeruireiierieeiieniieeiieere e eie e 51

Table 3-5. The candidate 1-sequences with their support counts for newly merged

SEQUETICES ..vvvveeeenuerreeeeurereesaseeeeeeasssaeeesasseeeseasseeesaanssaeessnnssseesanssseesssnssseesssnssseesanssseeeenn 52
Table 4-1: An example of a feature-domain weighting table..........c..cccccecveniiicniinnn. 70
Table 4-2: The statistic information:of features i “DM” Categoryc.ceecveeveenennne 75
Table 4-3: The feature weights il DM CAtEZOL....veveeeereerreeereenrieereerreeareesieeneneenns 75
Table 4-4: An example of the tuning algorithm..........co.....ccoooieiiiiiieee e 79
Table 4-5: Micro- and macro-averaging £ values shown in [21]......ccccoceevinincnnens 82
Table 4-6: Micro- and macro-averaging £ values‘at ¢ =1, ¢ =15 and ¢ =25 83

Table 4-7: Micro-and macro-averaging F; values at various o for Reuters-21578(10)

Table 4-8: Micro-averaging F; values at various o and ¢ for Reuters-21578(90)....... 84
Table 4-9: Macro-averaging F'; values at various ¢ and ¢ for Reuters-21578(90)84
Table 4-10: Micro-averaging F; values at various J and ¢ for Reuters-21578(115)...84
Table 4-11: Macro-averaging F; values at various ¢ and ¢ for Reuters-21578(115)...85
Table 4-12: Numbers of remaining categories at Various @ccceeevveeeeveeenveeenveennnns 85
Table 5-1: Differences between the operational database and the data warehouse92

Table 5-2: Differences between the knowledge warehouse and the data warehouse ..94

Table 6-1: An MPR with minimum support = 5%......ccccceevevieeiiienieniieieereecee e 102
Table 6-2: Matched tuples in Example 6-2cccooeviieeiiieniiieeiecceeccee e 105
Table 6-3: An EMPR with minimum support = 5%c.ccccceevireeneniiniencnienecene 112
Table 6-4: The matched tuples in Example 6-6ccccoevvieviiiiiinieniieieeieeeeen 112
Table 6-5: Parameters considered when generating datasets............ccccoevveecveennnennnnn. 132

X

Table 6-6: The six groups of synthetic datasetscccceeeeerieeiieniienieniieieeieenen, 133

Table 6-7: Mining information for the SiX Zroupsccceceeevieriierienieeriecre e 133
Table 6-8: The numbers of candidate itemsets for Group 5........cccceevevveevcveercieeennnn. 135
Table 6-9: The numbers of candidate itemsets for Group 2.........cccceceerverernenicnnene 135
Table 6-10: Mining information for the seventh groupccccceevveviiienienciienieenen. 141

Table 7-1: A manufacturing process relation for six products in a five-stage

MANUFACtUIING PTOCEAULEcccviieeiiieeiieeeiieeeiee et e et e sve e e eesta e e saeeesaeeesnseeennsee s 148
Table 7-2: An example of the machine-oriented preprocessing procedure................ 151
Table 7-3: An example of the stage-oriented preprocessing procedure..................... 152

Table 7-4: Defect coverage and defective product information for each 1-machineset
TN TADIE 7-3 ettt st ettt s 153
Table 7-5: Defect coverage and defective product information for each candidate
I-machineset ObtAINEdcceevueriiriiiiiieeee e 154
Table 7-6: Defect coverage and defective product information for each 2-machinesets
o031 1S) 11T O SRS 154
Table 7-7: Defect coverage and defectivesproduct information for each candidate
2-machineset ObtAINEGd 5, ssssesessesmess silanenuiii damheeseenrenseenueneeneenseesesseenseseenne 154

Table 7-8: Defect coverage and defective’product information for each candidate

machinesets ObtaiNedcoeoee it T e 155
Table 7-9: Calculated continuities for each candidate machineset in Table 7-§........ 157
Table 7-10: @ for each candidate machinesets in Table 7-8...........ccccceeeviieeiieeennenn. 157
Table 7-11: Relevant information for the nine real datasetsccccceevveevveeennenn. 159
Table 7-12: Accuracy results of the RMI approach for the nine datasets................... 160

Table 7-13: Accuracy results of the RMI approach on the nine datasets for

interestingness measurements confidence, @and @ccccceeveiieiiieeniieeniieeniens 163

XI

Chapter 1

| ntroduction

1.1 Motivation

Data mining technology has become increasingly important in the field of large
databases and data warehouses. This technology helps discover non-trivial, implicit,
previously unknown and potentially useful knowledge, thus being able to aid
managers in making good decision [4][18][38]. Years of effort in data mining have
produced a variety of efficient techniques. Depending on the type of databases
processed, these mining approaches may -be classified as working on transaction
databases, temporal databases, relational‘databases, and multimedia databases. On the
other hand, depending on the classes of knowledge derived, the mining approaches
may be classified as finding association rules, sequential patterns, classifiers
(classification models), etc.

(1) Association rules: Recently, mining association rules from transaction
databases has been one of the most interesting and popular research topics in data
mining. An association rule indicates a relationship among items such that the
occurrence of certain items in a transaction would imply the occurrence of some other
items in the same transaction. For example, an association rule for a supermarket may
be “people often buy beer and diapers together in the same transaction”. The
discovery of interesting association rules can help decision-making processes in many
potential applications, such as manufacturing defect detection, catalog design, store

layout, cross-marketing, etc.

(2) Sequential patterns. Mining sequential patterns attempts to find customer
purchase sequences in temporal transaction databases (sequence database), and to
predict whether there is a high probability that when customers buy some products,
they will buy some other products in later transactions. For example, a sequential
pattern for a video shop may be “a customer buys a television in one transaction;
he/she then buys a video recorder in a later transaction within a month”. As a result,
sequential patterns are also treated as inter-transaction association rules. The
discovery of interesting sequential patterns can not only model customer behaviors,
but also predict weather, identify symptoms in medicine, diagnose alarms in intrusion
detection, etc.

(3) Classifiers (classification models): Classification is the process of mining a
classifier from a set of pre-defined training data that can describe and distinguish data
classes or concepts, such that the found classifier can assign a class or concept to a
new un-defined data. In general, classification (mining a classifier) involves three
major tasks: data representation, which tepresents data in machine-readable structures,
classifier construction, which constructs a classifier from a set of training data, and
classifier evaluation, which evaluates classifier accuracy with a set of testing data and
in terms of various evaluation functions. Classification has been popularly applied on
document classification/management, insurance risk analysis, credit approval, medical
diagnosis, etc.

In our view of points on the evolution of knowledge discovery in database, the
first part of this dissertation will indicate the challenges from batch mining evolving
into incremental mining and propose our solutions especially for the three
above-mentioned classes of knowledge; then the second part of this dissertation will

indicate the importance from incremental mining evolving into our proposed

multidimensional online mining and propose our methodologies especially for online
generation of association rules. Figure 1-1 shows the performance and storage
trade-off for batch mining, incremental mining and multidimensional online mining.
Finally, the third part of this dissertation will indicate the issues of knowledge
discovery in semiconductor manufacture and attempt to integrate incremental mining

and multidimensional online mining techniques dealing with them.

Performance
_ .. Multidimensional

Online decision online mining
support

Data Incremental mining

maintenanc,

Batch mining

Storage cost

Figure 1-1: The performance and storage trade-off for batch mining, incremental

mining and multidimensional online mining

Most of classic mining approaches process data in a batch way and must
re-process the entire updated database whenever the database is updated, since the
mined rules or patterns may become invalid or new implicitly valid rules or patterns
may appear in the resulting updated database. As a result, two drawbacks may occur
in maintaining database knowledge:

(a) Nearly the same computation time as that spent in mining the original
database is needed. It is time-consuming and unpractical when the original database is

large.

(b) Information previously mined from the original database, such as frequent
itemsets and association rules, provides no help in the maintenance process.

In the first part of this dissertation, we will propose some novel incremental
mining algorithms respectively for maintaining association rules, sequential patterns
and a document classifier without re-processing the original database whenever the
database is updated. The proposed algorithms continue using the common idea of
previous incremental mining algorithms that the previously mined information should
be utilized as much as possible. Furthermore, we utilize the concepts of pre-large
patterns and closed patterns to improve the performance of developed algorithms for
maintaining association rules and sequential patterns.

(a) Using the pre-large patterns to enlarge the amount of pre-stored mined
information can reduce the cost of re-processing the original database at the expense
of storage spaces, because they-acts as a buffer to avoid the movements of patterns
directly from valid to invalid and vice-versa-when the database maintained.

(b) Using the closed patterns instead.of the pre-stored mined information can
reduce the comparison cost and redundant rules generated, because they can
determine all the pre-stored mined patterns and their exact support without loss of any
information but are orders of magnitude smaller than all pre-stored patterns.

Consequently, based on the two concepts, the CIM (Closed Itemsets Maintenance)
and CIM-P (CIM with Pre-large concept) algorithms are developed to efficiently
maintain association rules and the CSM (Closed Sequences Maintenance) and CSM-P
(CSM with Pre-large concept) algorithms are developed to efficiently maintain
sequential patterns.

As for the developed algorithm for maintaining a document classifier, in

document representation, we propose a domain-space document representation to

represent documents in finite sets of domains. This representation is more compact
and representative than classical term-space document representation. Based on the
domain-space document representation, in classifier construction, we design a
feature-domain weighting table to structurally retain the weights between features and
all involved domains for later maintenances. Consequently, the domain-space
weighting scheme algorithm is developed to resolve the document representation and
categories adaptation problems.

Although incremental mining algorithms are rather efficient and useful for static
models such as mining all the data accumulated thus far and mining only a recently
collected portion of data in uncomplicated applications, they usually provide little
support for user guidance and focus (e.g., limiting the computation to what interests
the user) and user interaction .(e.g., dynamically changing the parameters or
constraints). This may neither flexibly obtain rules or patterns from their interesting
portions of data, nor diversely. consideryproblems’ at different aspects to provide
on-line decision supports for users.

In the second part of this dissertation, we will extend the concept of effectively
utilizing previously discovered patterns in incremental mining to support
multidimensional online mining. The concept of knowledge warehouse, which is
similar to the construction of a data warehouse for OLAP except it is not used to store
data but mined patterns, and the architecture of Online Knowledge Discovery System
(OKDS), which automatically and systematically mines patterns from data gathered in
different contexts and forwards mined patterns into the knowledge warehouse, are
proposed to help decision-makers diversely consider problems at different aspects and
provide online mining supports.

For efficiently manipulating the mining information in the knowledge warehouse,

we focus on the knowledge class of association rules and design corresponding
aggregation and generalization approaches to provide online mining supports on
association rules. We first propose the multidimensional pattern relation (MPR) as a
knowledge warehouse to structurally and systematically store context information,
such as region, time and branch, and mining information, such as the set of previously
mined frequent itemsets with their supports, for each inserted block of data (each
increment of data). Based on the proposed MPR, we then develop an aggregation and
generalization approach called Three-phased Online Association Rule Mining
(TOARM) to support online generation of association rules under multidimensional
considerations. By the TOARM approach, users can therefore acquire interesting
and/or focused association rules or frequent itemsets by only integrating related
mining information in the MPR rather than miing the underlying data. In addition,
we further apply the concept of negative border to extend the mining information in
the MPR, and develop a Negative-Border Ontine Mining (NOM) approach based on
the extended MPR (EMPR) to improve.the performance of TOARM especially for
heterogeneous blocks of data.

However, from the experimental results, we can find that the NOM approach
may take much computation time than the TOARM approach, especially when the
numbers of itemsets kept in EMPR and candidate itemsets to be considered are large.
For overcoming this problem, we thus try to use appropriate data structures to
improve the performance of the NOM approach. The /attice data structure is utilized
to organize and maintain all candidate itemsets such that the candidate itemsets with
the same proper subsets can be considered at the same time. The derived lattice-based
NOM (LNOM) approach will require only one scan of the itemsets stored in EMPR,

thus saving much computation time. In addition, a hashing technique is used to further

improve the performance of the NOM approach since many itemsets stored in EMPR
may be useless for calculating the counts of candidates. At last, experimental results
show the effect of the improved NOM approaches.

In the third part of this dissertation, we will attempt to apply the proposed
incremental mining and multidimensional online mining techniques on knowledge
discovery process in semiconductor manufacture. For a semiconductor manufacturing
company, one of the most essential issues is to quickly identify root-cause
machinesets, and to meet high-yield target expectations by remedying these abnormal
machines. Therefore, we first define the root-cause machineset identification problem,
and propose the Root-cause Machine Identifier (RMI) approach using a batch-based
association rule mining algorithm to obtain candidate root-cause machinesets from a
shipment of wafer in process (WIP) data. After that, we propose the progressive RMI
(PRMI) concept, which applies .incremental mining techniques to progressively
process previously mined candidate foot-eause-machinesets, and the multidimensional
RMI (MRMI) concept, which designs-a.knowledge warehouse to structurally and
systematically store the context information about a shipment and the mining
information about mined candidate root-cause machinesets from each shipment for
supporting decision-makers diversely considering problems at different aspects.

In this dissertation, we attempt to make data mining techniques more robust and
practical for real-world applications. Experiments respectively for sparse, dense,
synthetic and real datasets are made, with results showing the effectiveness and

practicality of the proposed approaches.

1.2 Contribution

In the first part of this dissertation, the major contributions are as follows:

® The concepts of pre-large patterns and closed patterns have been utilized to
improve the performance of developed algorithms for maintaining association
rules and sequential patterns.

® Two novel incremental mining algorithms called Closed Itemsets Maintenance
(CIM) and CIM with Pre-large concept (CIM-P) have been developed to
efficiently maintain association rules.

® Two novel incremental mining algorithms called Closed Sequences Maintenance
(CSM) and CSM with Pre-large concept (CSM-P) have been developed to
efficiently maintain sequential patterns.

® The domain-space weighting'scheme has been.developed to represent documents
in domain-space and incrementally construct a classifier to resolve the document

representation and categories adaptation problems.

In the second part of this dissertation, the major contributions are as follows:

® The concept of knowledge warehouse and the architecture of Online Knowledge
Discovery System (OKDS) have been proposed to help decision-makers
diversely consider problems at different aspects and provide online mining
services.

® For the knowledge class of association rules, the multidimensional pattern
relation (MPR) has been designed as a knowledge warehouse to structurally and
systematically store the context and mining information.

® The Three-phased Online Association Rule Mining (TOARM) approach, which

is an aggregation and generalization approach corresponding to the proposed

MPR, has been developed to support online generation of association rules under
multidimensional considerations.

The concept of negative border has been used to extend the mining information
in the MPR, and then the Negative-Border Online Mining (NOM) approach
based on the extended MPR (EMPR) has been developed to improve the
performance of TOARM especially for heterogeneous blocks of data.

The lattice-based NOM (LNOM) approach and the hashing technique have been

developed to improve the NOM approach.

In the third part of this dissertation, the major contributions are as follows:
Identifying root-cause machinesets, the most likely sources of defective products,
in the manufacturing processes has been defined as the root-cause machineset
identification problem of analyzing correlations between combinations of
machines.

The Root-cause Machine Identifier(RMI)-approach, which uses a batch-based
association rule mining algorithm, has been developed to provide an efficient and
effective solution for the root-cause machineset identification problem.

The concepts of progressive RMI (PRMI), which applies incremental mining
techniques to progressively process previously mined candidate root-cause
machinesets, and multidimensional RMI (MRMI), which applies
multidimensional online mining techniques to support online generation of
candidate root-cause machinesets under multidimensional consideration, have

been proposed.

1.3 Reader’s Guide

The remainder of this dissertation is organized as follows. In the first part of this
dissertation, we will propose some novel incremental mining algorithms respectively
for maintaining association rules, sequential patterns and a document classifier. The
proposed incremental mining algorithms for association rules maintenance are
described in Chapter 2; the proposed incremental mining algorithms for sequential
patterns maintenance are described in Chapter 3; and the proposed incremental
mining algorithm for a document classifier maintenance is described in Chapter 4. In
the second part of this dissertation, we will extend the concept of effectively utilizing
previously discovered patterns in incremental mining to support multidimensional
online mining. The concept of knowledge warehouse and the architecture of Online
Knowledge Discovery System (QKDS) are. proposed in Chapter 5. The proposed
aggregation and generalization approaches, FOARM;NOM and LNOM, based on the
two forms of knowledge warehouse,,MPR and EMPR, are described in Chapter 6. In
the third part of this dissertation, we attémpt to apply the association rule mining
techniques, including classical batch-based, incremental and multidimensional online
mining algorithms on knowledge discovery process in semiconductor manufacture.
The Root-cause Machine Identifier (RMI) approach and the two concepts of
progressive. RMI (PRMI) and multidimensional RMI (MRMI) are proposed in

Chapter 7. Conclusions and future work are given in Chapter 8.

10

Chapter 2
|ncremental Mining Algorithmsfor Association

Rules M aintenance

2.1 Introduction

Data mining technology has become increasingly important in the field of large
databases and data warehouses. This technology helps discover non-trivial, implicit,
previously unknown and potentially useful knowledge, thus being able to aid
managers in making good decision:[4][18][38]. Among various types of databases and
mined knowledge, mining association rules.[3][5] ftom transaction databases is the
most interesting and popular. In generalytheprocess of mining association rules can
roughly be decomposed into two ‘tasks:finding frequent itemsets satisfying the
user-specified minimum support threshold from a given database and generating
interesting association rules satisfying the user-specified minimum confidence
threshold from found frequent itemsets. Since the first task is very time-consuming
when compared to the second one, the major challenges in mining association rules
thus focus on how to reduce the search space and decrease the computation time in
the first task. Some famous mining approaches, such as Apriori [5], DIC [16], DHP
[67], Partition [78], Sampling [61] and FP-Growth [40][95], have been proposed.

In real-world applications, a database grows over time such that existing
association rules may become invalid or new implicitly valid association rules may

appear. Recently, some researchers [8][20][21][27][43][44][77] have developed

11

incremental mining algorithms to maintain association rules without reprocessing the
entire updated database. The common idea of these researches lies in that, the
previously mining information such as mined frequent itemsets are stored in advance;
when new transactions are inserted, (a) a large portion of candidate itemsets can be
decided using the pre-stored mined frequent itemsets; (b) only a small portion of
candidate itemsets obtained from the new transactions without sufficient information
needs to be reprocessed against the original database. Task (a) is responsible for
updating previously mined frequent itemsets (known association rules), and Task (b)
is responsible for finding new frequent itemsets (unknown association rules). Much
computation time can thus be saved in this way.

However, for a dense database such as census data and DNA sequences or a low
minimum support threshold, the*computation ‘cost of Task (a) will be getting
tremendous due to a huge amount of previously mined frequent itemsets. For example,
a frequent 30-itemset (a frequent itemset-eonsisting of 30 items) implies the presence
of 2°°-2 additional frequent itemsets..as-well. The performance of classically
incremental mining algorithms will degrade dramatically. On the other hand, one scan
of original database is required for dealing with Task (b) by most incremental mining
algorithms. When the original database is massive, this will result in excessive 1/O
cost. As a result, in this study, we attempt to utilize the concepts of closed itemsets
and pre-large itemsets to overcome the two challenges, respectively.

In a dense database, many itemsets usually appear together, and we can
consider them together. The concept of closed itemsets [68], which is denoted as the
itemsets having no proper superset with the same support, can be treated as a lossless
compression for all itemsets in the database. It can also reduce redundant rules

generated [104]. Therefore, using the set of frequent closed itemsets instead of the set

12

of frequent itemsets from the original database as the pre-stored mining information
can increase both efficiency and effectiveness of an incremental mining algorithm.
The set of frequent closed itemsets can easily determine all the frequent itemsets and
their exact supports, and its order of magnitude is smaller than the set of all frequent
itemsets for dense databases.

In general, the number of newly inserted transactions is much smaller than the
number of records in the original database. Only the candidate itemsets whose
supports are slightly less than the minimum support threshold in the original database
are possible to be frequent after database maintenances. The concept of pre-large
itemsets [43] is denoted as the set of itemsets having support between a lower support
threshold, which is smaller than the given minimum support threshold, and an upper
support threshold, which is equal to the given minimum support threshold. Therefore,
using the pre-large closed itemsets.to enlarge the amount of pre-stored frequent closed
itemsets can reduce the cost of reprocessing-the entire database at the expense of
storage spaces. This is because they actas.a buffer to avoid the movement of a closed
itemset directly from infrequent to frequent and vice-versa during the incremental
mining process.

Although using the concept of closed itemsets can effectively reduce the number
of itemsets considered, some closed itemsets for the updated database called joint
closed itemsets, which was not closed itemsets in both the original database and the
newly inserted transactions before, cannot be determined by above-mentioned Tasks
(a) and (b) of a classically incremental mining algorithm such that some valid
association rules may be lost. We thus propose a novel incremental mining algorithm
called Closed Itemsets Maintaining (CIM) to extend Tasks (a) and (b) that can

sufficiently and efficiently find all up-to-date association rules for the updated

13

database. Task (a) of the CIM algorithm is responsible for extracting the joint closed
itemsets which was absorbed (closed) by the pre-stored frequent closed itemsets in
the original database before, and updating them and all the pre-stored frequent closed
itemsets against the newly inserted transactions. Task (b) of the CIM algorithm is
responsible for generating the candidate itemsets for the updated database which has
not been determined in Task (a), and rescanning them against the original database.
Furthermore, based on the concept of pre-large itemsets, we propose the CIM-P (CIM
with Pre-large concept) algorithm to reduce the cost of Task (b) in the CIM algorithm.
Also, we design the bucketing strategy to improve the utility of buffer in the CIM-P
algorithm. The consumption of buffer can be rigidly calculated using the maximum

value of buckets.

2.2 Related Work

2.2.1 Closed itemsets mining.approaches

The major challenge in mining association rules is to reduce the search space and
decrease the computation time required for mining frequent itemsets. The Apriori
algorithm [5], which is the most well-known, utilizes a level-wise candidate
generation approach to reduce its search space such that only frequent itemsets found
in the previous level are treated as seeds for generating candidate itemsets in the
current level. Many later algorithms [16][53][61][67][78][95] were based on this
property and attempted to further reduce candidate itemsets and I/O costs. However,
this Apriori property can not work well for dense databases or a low minimum support
threshold. This is because most generated candidate itemsets are also frequent
itemsets such that the number of frequent itemsets will grow up explosively; the

performance of an Apriori-like algorithm thus degrades dramatically.

14

Some researchers have then developed closed itemsets mining algorithms to
reduce the number of itemsets generated. Examples include A-close [68], CLOSET
[69], CLOSET+ [86] and CHARM [104]. The A-close algorithm is an Apriori-like
algorithm using a breadth-first search manner to find frequent closed itemsets directly.
However, breadth-first searches may encounter difficulties since there could be many
candidates generated and need to scan the database many times. The CLOSET
algorithm, an extension of the FP-growth algorithm, uses a depth-first search
(recursive divide-and-conquer) manner and a database-projection approach to mine
long patterns from the FP-tree (frequent pattern tree) structure representing all
transactions of database. However, the CLOSET algorithm may suffer from a sparse
database or a low minimum support threshold. An enhancement of the CLOSET
algorithm, the CLOEST+ algorithm, thus combines various known search manners
and closure-testing strategies to-improve the performance of CLOSET. The CHARM
algorithm uses a dual itemsets-tidset-searehy tree and the Diffset technique to

enumerate closed itemsets from a vertical-layout database.

2.2.2 Incremental mining approaches

Conventional batch-mining algorithms do not utilize previously mined patterns
for later maintenance, and may require considerable computation time to reprocess the
entire updated database to get all up-to-date association rules. Some researchers have
developed incremental mining algorithms to maintain association rules without
reprocessing the entire database whenever the database is updated. Examples include
the FUP-based algorithms [20][21], an adaptive algorithm [77], an incremental
mining algorithm based on the concept of pre-large itemsets [43], and an incremental

updating technique based on the concept of negative border [27][85]. The common

15

idea of these researches lies in that, the previously mining information such as mined
frequent itemsets are stored in advance; when new transactions are inserted, a large
portion of candidate itemsets can be decided by using the pre-stored frequent itemsets;
only a small portion of candidate itemsets obtained from the new transactions needs to
be reprocessed against the original database. Much computation time can thus be
saved in this way. The correctness of this idea is simply illustrated as follows.
Considering an original database and the newly inserted transactions, there are
four cases of candidate itemsets shown in Figure 2-1 may arise:
® (Case 1: A candidate itemset is frequent in both the original database and the
newly inserted transactions;
® (Case 2: A candidate itemset is frequent in the original database but
infrequent in the newly inserted transactions;
® (Case 3: A candidate itemset 1s infrequent in the original database but
frequent in the newly nserted transaetions;
® Case 4: A candidate itemset is-infrequent in both the original database and

the newly inserted transactions.

New

transactions

AN
r N

Frequent Infrequent
itemsets itemsets

Frequent
oquent | Casel Case 2

database Infrequent| Case 3 Case 4

itemsets

Original

Figure 2-1: Four cases of candidate itemsets

16

Among the cases, since candidate itemsets in Case 1 are frequent in both the
original database and the new transactions, they are still frequent after the weighted
average of the supports; similarly, candidate itemsets in Case 4 are still infrequent
after the new transactions are inserted. Cases 1 and 4 will not affect the final
association rules; Case 2 may remove existing association rules; and Case 3 may
generate new association rules.

Cheung and his co-workers proposed an incremental mining algorithm, called
FUP (Fast UPdate algorithm) [20][21], to efficiently cope with these four cases by
pre-storing the previously mined frequent itemsets from the original database. It
handles Cases 1, 2 and 4 by updating the pre-stored frequent itemsets against the
newly inserted transactions, and.reprocesses only the itemsets without sufficient
information in Case 3 against the original database if necessary.

The performance of the FUP algorithmywill get degraded if a lot of candidate
itemsets from the newly inserted transactions belong to Case 3. Thomas et al. [85] and
Feldman et al. [27] thus utilized the concept of negative border [67] to enlarge the
amount of pre-stored mining information in the FUP algorithm for improving the
maintenance performance. A negative border of frequent itemsets can be easily
formed by excluding the set of frequent itemsets from the set of candidate itemsets
generated level by level. In other words, the negative border consists of the itemsets
which are candidates but do not have enough supports. The processing time for Case
3 in the FUP algorithm can be reduced by additionally keeping the negative border of
frequent itemsets. Similarly, Hong et al. [43] proposed the concept of pre-large
itemsets to enlarge the amount of pre-stored mining information for improving the

maintenance performance. The proposed algorithm does not need to reprocess the

17

original database until a number of new transactions have been inserted.

2.3 Preliminary Concepts

Let I = {ij, i3, ..., in} be a set of m items. A subset X of / consisting of k items is
called a k-itemset. Let D be a transactional database consisting of a set of transactions,
where each transaction 7 consisting of a set of items of / is associated with an
identifier called 71D, and |D| denotes the number of transactions in D. A transaction T’
is said to contain X if and only if X [0 7. The support of an itemset X, X.sup, in D is
denoted as the percentage of transactions in D which contain X; the support count of X,
X.count, in D is denoted as the number of transactions in D which contain X, X.count
= X.sup * |D|. For the itemsets in D, X is called a closed itemset if there does not exist
an itemset Y which closes (absorbs) X, where-an itemset Y is said to close (absorb) X
iff X U Y and Xsup = Y.sup (X.count = Y.count). CI denotes the set of all closed
itemsets in D. Furthermore, if there is no superset of X existing in D, X is also called a
maximal itemset.

An association rule is an implication of the form X = Y, where X and Y are
subset of 7, and XnY = @ The support of a rule X = Y, (XUY).sup, in D is denoted as
the percentage of transactions in D which contain X[JY, and the confidence of X= Y
is computed by (XOY).sup/X.sup. Given the user-specified minimum support
threshold, minsup, and minimum confidence threshold, minconf, the problem of
mining association rules is to find out all association rules in D that have support and
confidence larger than minsup and minconf, respectively. With respect to the minsup,
the set of frequent itemset, F1, includes all the itemsets whose support is larger than
minsup; the set of infrequent itemset, NI, includes all the itemsets whose support is
less than minsup; the set of frequent closed itemset, FCI, includes all the closed

18

itemsets whose support is larger than minsup, FCI = {x|x U CI, x.sup = minsup}; and
the set of infrequent closed itemset, NCI, includes all the closed itemsets whose
support is less than minsup, NCI = {x| x U CI — FCI}. Note that F'CI includes no
itemset which has a superset with the same support, and thus FCI [J FI. The problem
of mining association rules can be reduced to the problem of finding 7 or FCI in D.

Let d be an increment of new transactions which is inserted into the original
database D, |d| be the number of transactions in d, D" be the updated database which
denotes D O d, and |D"| be the number of transactions in D O d. Therefore, FIp, Fl,
and CI p+ denote the FI obtained from D, d and D" with respect to the same minsup,
respectively, and FCI, NI, NFCI or CI obtained from D, d and D" can have similar
meanings. The problem of maintaining association rules is to find F/p+ or FCIp+. Let
the set of original frequent itemsets, O, berdefined'as O = {x|x [J FIp}, and the set of
potential frequent itemsets, P, be defined as P = {x|x [] FI; — Filp}. By definition, an
itemset X [Fip: must belong.to O" 1 P, and thus the problem of maintaining
association rules is equivalent to processing O [1 P. Similarly, let the set of closed
original frequent itemsets, CO, be defined as CO = {x|x [FIp and x [J CIp+}, and the
set of closed potential frequent itemsets, CP, be defined as CP = {x|x U FI; — FIp and
x U CIp+}. The problem of maintaining association rules is also equivalent to
processing CO [CP. The set of joint closed itemsets, JCI, which is defined as JCI=
{xx=y n z,yOClIp, zU Cl}, is proposed in this study and can be divided into four
parts based on FClIp, FCIl;, NCIp and NCl;:

® FFJCI={xlx=y n z,yOFClp,zUFCl};

® [FNJCI={xlx=yn z,yOFCIp,zUNCI;};

® NFJCI= {xjx=y n z,y ONCIp, z O FCI,};

19

® NNJCI={x|x=y n zyUNCIp,zUNCI;}.

2.4 Closed Itemsets M aintenance

Considering an original database D and the newly inserted transactions d, there
are four cases of candidate itemsets for the updated database D™ have been discussed
in Section 2. With pre-storing previously mined frequent itemsets FIp, a typically
incremental mining process can efficiently cope with these four cases by two steps: (a)
updating O against d and (b) reprocessing P against D. Following this idea, we can
use two similar steps: (a) updating CO against d and (b) reprocessing CP against D
to find out F'Clp: dealing with the problem of maintaining association rules. However,
directly obtaining CO = {x|x Ul FiIp and x [CIp+} and CP = {x|x U FI; — FIp and x U]
Clp.} is impractical because CIp#is unknown-befote processing D”. In the following,
we attempt to utilize the pre-stored known information FCIp from D and the
information F'CI, obtained from'd to approach-CO.and CP.

Lemma 2-1: If x U CIp O Cl,, then x [1°Cl ..

Proof: We prove the lemma by contradiction. If x [Clp,, there must exist a
proper superset y of x such that y.supp: = x.supp+, i.e., y.supp®|D| + y.sups*|d| =
x.supp®|D| + x.supy*|d|. Thus y.supp= x.supp and y.sup; = x.sup,, contradicting the
claim that x 0 CIp O CI,. Thus, x O Clp-. |

Let FCl,p denote FCI; — FCIp. According to Lemma 2-1, we have FCIp U Clp
0 Clp+ and FCI,p O CI; O Clp+. FCIp and FCI,p are both closed itemsets in D" If
an incremental mining algorithm can utilize F'CIp and FCI; to obtain CO and CP, the
problem of maintaining association rules in a dense database can be efficiently coped
with. We first discuss the differences between FCIp and CO and between FCl,p and
CP. For example, given D = {ABCE, CD, BCE}, d = {ABCDE, CDE} and minsup =

20

0.6, FIp = {B, C, E, BC, BE, CE, BCE}, FI,= {C, D, E, CD, CE, DE, CDE}, FCIp =
{C, BCE} and FCl; = {CDE}. By definitions, FCl,p= {CDE}, CO = {C, CE, BCE}
and CP = {CD, CDE}. As shown in this example, there exist some closed itemsets in
Clp+ but not in CIp or Cl,, such that FCIp and FCI;p may be not equivalent to CO
and CP. The following lemmas are used to derive the set of joint closed itemsets (JCI)
which are closed itemsets for D+ but can not be determined by FCIp and FCl,.p.

Lemma 2-2: If x 1 JCI, then x O Clp-.

Proof: 1f x 1 JCI, x must be one of following two cases.

Case 1: If x U CIp U Cl,, then x [ClIp+ according to Lemma 2-1;

Case 2: If x U CIp U Cl, there exist y 1l CIp and z [J CI; such that x U y, x U z,
and x is closed by both y and z. We prove this case by contradiction. If x U Clp, there
must exist a proper superset x” of x suchithat'x’.supp+ = x.supp+, 1.e., x’.supp™|D| +
X’ .supg*|d| = x.supp®|D| + x.supg*|d| = y.supp* D| + z.supy*|d|. Thus x” Oy, x" 0Oz
(because x’.supp= y.supp and x’ sup, = z.sup,) and x’ =y n z, contradicting the claim
that x 0 JCI. Thus, x O CIp-. [|

Lemma 2-3: If x O Clp+, then x O CIp O CI, O JCI.

Proof: If x U Clp+ and x U CIp U Cl,, x must be closed in both D and d. Assume
v is the itemset that closes x in D and z is the itemset that closes x in d. Then x.supp+ *
\D"| = y.supp * |D| + z.supg * |d|. If y O z, x is belonging to Case 1 of Lemma 2-2,
contradicting the claim that x [J Clp; if z [y, x is also belonging to Case 1 of Lemma

2-2, contradicting the claim that x [J CI;. Thusy [f] zandz [l y. According to Case

2 of Lemma 2-2, there must exist x’=y n z and x’ [J Clp;. If x 1 x’, x is closed by x’
(because x’.supp+ = x.supp+), contradicting the claim that x [CIp,. Thus, x = x’ and x

U JCI [

21

Theorem 2-1: CIp = CIp 0 CI,0 JCI.
Proof: According to Lemmas 2-1 and 2-2, we have (CIp U CI,U00 JCI) U Clp:.
On the other hand, according to Lemma 2-3, we have Clp: U (CIpU CI; U JCI).

Thus, CIp+ = CIp 1 CI, 0 JCI. [
Considering an original database and the newly inserted transactions, JCI can be

divided into four parts based on F'CIp, FCl,; NCIp and NCI,; as shown in Figure 2-2:

FCI, NCI,
£Cl, | FEJCI FNJCI

database NCl, | NEJCI NNJCI

Original

Figure 2-2: Four 'cases of joint closed itemsets

® The case of FFJCI: A closed itemset is frequent in both the original
database and the newly inserted transactions;

® The case of FNJCI: A closed itemset is frequent in the original database but
infrequent in the newly inserted transactions;

® The case of NFJCI: A closed itemset is infrequent in the original database
but frequent in the newly inserted transactions;

® The case of NNJCI: A closed itemset is infrequent in both the original
database and the newly inserted transactions.

Since the closed itemsets in FFJCI are frequent in both the original database and

the new transactions, they will still be frequent in the updated database. Similarly, the

22

closed itemsets in NNJCI will still be infrequent in the updated database. FFJCI and
NNJCI will not affect the final association rules. FNJCI may remove existing
association rules, and NFJCI may add new association rules.

According to Theorem 2-1, the following theorems are derived to obtain CO and
CP by FClIp, FCl,, FFJCI, FNJCI and NFJCI.

Theorem 2-2: CO = {x|x O FCIp O FFJCI O FNJCI}.

Proof: By definition, CO collects the closed itemsets for D* which is generated
from FIp. According to Theorem 2-1, CO = {x|x U FIp and x U Clp+} = {xjx U Flp
andx U0 CIp U C1; 0 JCI } = {x|x U FCIp O FFJCI O FNJCI}. |

Theorem 2-3: CP = {x|x U (FCIl; — FFJCI) OO NFJCI}.

Proof: By definition, CP collects the closed itemsets for D" which is generated
from FI,~FIp. As known in Theotem 2-25#Cl;.[1 FFJCI O NFJCI is the set of closed
itemsets for D" which is generated from F1;. Thus CP = {x|x U Fl; — FIp and x
Clp:} = {(FCl; O FFJCI O NFJCI) = (FCIp O EFJCI O FNJCI)) = {x|x O FCI; O
FFJCI OO NFJCI - FFJCI} = {x|x O (FCl; — FFJCI) O NFJCI}. [

In contrast to the definitions of CO and CP, Theorems 2-2 and 2-3 provide a

convenient way to obtain CO and CP. For CO, FFJCI and FNJCI can be obtained by
processing the pre-stored mining information FCIp against d. For CP, however,
since NFJCI has to be generated from NCIp, which is usually unknown in a typically
incremental mining process, the cost is too expensive to be acceptable. As a result,
given a function cover(FFJCI, Fl;) denoting the itemsets in F1; which are covered
by FFJCI, the following theorem is derived to obtain CP.

Theorem 2-4: CP = {x|x U Fl;— cover(FFJCI, Fl;), x O Clp+}.

Proof: By definition, the FFJCI covers the itemsets which are included both in
Fl;and FIp. Thus CP = {x|x U Fl; — Flp and x J Clp+} = {x|x O FI; — cover(FFJCI,

23

Fly), x O Clp+}. [
Corollary 2-1: CP U {Fl;— cover(FFJCI, Fl;)} [
Since FFJCI has been obtained in CO generation, we only need to find F7; and

remove the itemsets in F/; which have been determined in FFJCI as candidates for

CP. It seems to be a better way to generate the itemsets of FCIp, which are not

included in the CO.

2.5 The Closed Itemsets Maintaining (CIM) Algorithm

We develop a novel incremental mining algorithm mainly consisting of
CO_generation and CP_generation subroutines, called Closed Itemsets Maintaining
(CIM), to efficiently find FCIp:. Also, an in-memory data structure called Closed
Maintenance Tree (CMT) is propesed insthe:CIM algorithm to facilitate the processes
of CO _generation and CP_generation subroutines. The CIM algorithm first updates
the itemsets in the CMT against d to obtain-CO by the CO generation subroutine.
Then, by the CP_generation subroutine, it generates candidate itemsets for the
itemsets of F'CIp. which have not been determined in the CO_generation subroutine.
Finally, by reprocessing these obtained candidate itemsets against D and checking
their closure property, the CIM algorithm can find FCIp: from the CMT. Details of
the CMT data structure, the CO generation and CP_generation subroutines are

described in Section 2.5.1 to Section 2.5.3.

The CIM algorithm(CMT, D, d, minsup)
Parameters:

CMT: A closed maintenance tree;

D: An original database;

d: A set of newly inserted transactions;

minsup: A minimum support threshold.

24

Begin

Set FFJCISet = @ /* FFJCISet 1s a set used to store the
itemsets of FFJCI. */
Set Cand = @ /* Cand is a set used to store candidate

itemsets for FClp. */

CO_generation subroutine(CMT, d, minsup, FFJCISet, Cand);

Set Flap: = @ /* Fl,p+ 1s a set used to store the frequent
1-itemsets in both d and D" */

Set mincountp+ = minsup * (|D| + |d|);

Obtain_frequent_items(CMT, mincountp, Flap+);

/* Obtain F1,p+ from CMT. */

CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1,4p+, CMT.root);

Reprocess Cand(CMT, Cand, D); /* Reprocess obtained candidate k-itemsets
(k=2) in CMT against D. */

Check Closure Cand(CMT, Cand); /* Check closure property for all candidates
itemsets in CMT. */

Remove NCI(CMT, mincountp.); /* Remove the closed itemsets in CMT
whese support counts are less than
mincountpy.*/

Output FCI(CMT); [* Output FCIp. for D™ .*/

End.

Figure 2-3: The CIM algorithm

Theorem 2-5: The CIM algorithm can correctly obtain FCIp+.
Proof: As mentioned above, an incremental mining algorithm can use two steps:
updating CO against d and reprocessing CP against D to find out FCIp, dealing with
the problem of maintaining association rules. According to Theorem 2-2 and
Corollary 2-1, since the CIM algorithm can maintain CO and candidate itemsets for
CP in the CMT by the CO generation and CP_generation subroutines, the CIM

algorithm can correctly obtain F'Clp+ from the CMT. [

2.5.1 The Closed Maintenance Tree (CMT)

25

A Closed Maintenance Tree (CMT) which is a tree structure like a prefix tree [1]
is constructed as follows. For each itemset x, a corresponding node v, is built in the
CMT. Each node maintains its corresponding itemset with support count, denoted as
(itemset, support count). For each pair of nodes v, and v, corresponding to itemsets x
and y, there is a directed edge from v, to v, if x is a parent of y. x is said to be a parent
of y if y can be obtained by adding a new item to x, and inversely, y is said to be a
child of x. Therefore, an itemset has only one parent and more than one child in the
constructed CMT. Note that, the itemsets in a CMT are usually maintained in lexical
order, and for saving the storage space, each node maintains only the suffix of an
itemset which is regarding the itemset in its parent node. There are three types of
nodes in a CMT:

® (losed nodes: the nodes.represent the itemsets in FClp;

® Prefix-unclosed nodes: the nodes represent the common prefixes of closed

nodes;

® [nfrequent nodes: the nodes represent infrequent 1-itemsets in D.

Among them, in particular, prefix-unclosed nodes are used to improve the
searching performance of CMT, and infrequent nodes are used to reduce useless item

combinations in the CP_generation subroutine.

Table 2-1: A transactional database

TID Items
100 (4,C, D

200 |B,C,E

300 |A,B,C,E

400 B, E

Example 2-1: Given a transactional database as shown in Table 2-1, Figure 2-4
shows an example of CMT based on minsup = 0.5. The prefix-unclosed node (B, 3)

26

and the closed node (CE, 2) stand for the closed itemset (BCE, 2); (B, 3) and (E, 3)
stand for the closed itemset (BE, 3). The CMT maintains only one infrequent node (D,

1). |

root

@ : Prefix-unclosed node
O : Closed node
3 ¢ Infrequent node

Figure 2-4: A closed maintenance tree (CMT)

2.5.2 The CO _generation Subroutine of the CIM Algorithm

The CO_generation subroutine is responsible for processing FCIp against d to
find FFJCI and FNJCI, thus “obtaining7€Omin ‘that, finding FNJCI is the most
concerned because most itemsets in ‘Nl jare irrelative and useless. In order to reduce
useless item combinations of NI the CO generation subroutine adopts the
branch-wise processing strategy to process a given CMT against d as follows. The
CO generation subroutine operates from the most left branch to the most right branch
in the CMT. If a branch consists of only one item x maintained in an infrequent node
vy, the CO_generation subroutine updates x’s support count against d, and keeps x in a
set used to store candidate itemsets for FClp: if x’s support count is not less than
minsup*|D"|. Detailed usage of this candidate set will be described in Section 5.3.
Otherwise, for each of the other branches, which consists of closed nodes, the
CO_generation subroutine uses the items belonging to the branch, i.e., the items of

the maximal itemset in the branch, as seeds to mine the closed itemsets in d by a

27

closed itemsets mining approach (such as the CHARM algorithm). Moreover, a
checking mechanism is used to reduce duplicate item combinations which have been
considered by a processed branch. Since the CO generation subroutine considers
only the items in a branch at a time, useless item combinations belonging to NI, can
be effectively reduced. The performance of CO generation subroutine is greatly
improved. After all branches have been processed, the CO_generation subroutine then
updates found itemsets against CMT to obtain CO. Assume y is an itemset in the
CMT, z is one of the found itemsets in d, and x = y n z. The CO generation
subroutine can find FFJCI and FNJCI by updating x with support count calculated by

y’s support count + z’s support count. The updated CMT thus contains the entire CO.

CO generation subroutine(CMT;d, minsup, FFJCISet, Cand)
Parameters:
CMT: The closed maintenance tree;
d: The newly inserted transactions;
minsup: The minimum support threshold;
FFJCISet: The set used to store the itemsets of FFJCI,
Cand: The set used to store candidate itemsets for FClp..
Begin
SetT'=¢q /* T'is a set used to store the mining results
by the branch-wise processing strategy. */
for each item a; only appears d, do /* Insert each new item a; in CMT. */
insert a; with a;.count = 0 into CMT;
for each branch b; 0 CMT, do
if b; consists of only one infrequent item x, then
update x.count against d; /* x.count denotes x’s support count. */
if x.count = minsup*|D"|, then
insert x with x.count into Cand,
elseif b; # null and b; is not contained by a processed branch b;, then
Closed_itemset mining(b;, d, T); /* Execute a closed itemsets mining
algorithm and store mining results into 7. */
y=CMT.get first CI(); /* Fetch the first closed itemset by lexical

28

order in CMT. */
z=T.get first CI(); /* Fetch the first closed itemset by lexical
order in 7. */
while y # null and z # null, do
if y=z, then
y.count = y.count + z.count,
if z.count = minsup *|d|, then
insert y with y.count into FFJCISet;

y=CMT.get next CI(y); /* Fetch the next closed itemset by lexical
order in CMT. */
z=T.get next Cl(z); /* Fetch the next closed itemset by lexical

order in 7. */
elseif y n z=y, then
y.count = y.count + z.count,
if z.count = minsup *|d|, then
insert y with y.count into FFJCISet;
y=CMT.get next CI(y);
elseif y n z=zthen
if z.count = minsup *|d|, then
insert z with (y.count + z.count) into FFJCISet,
z.count = y.count + z.count;
insert z with z.count into CMT;
z=T.get next Cl(z);
elseifynz=xandx#nullthen /*xUOyandx Oz */
if CMT.exist(x) = false, then
x.count = y.count + z.count,
insert x with x.count into CMT;
if z.count = minsup *|d|, then
insert x with x.count into FFJCISet;
y=CMT.get next CI(y);
elseif (y.count + z.count) > x.count, then
x.count = y.count + z.count,
if z.count = minsup *|d|, then
insert x with x.count into FFJCISet;
y=CMT.get next CI(y);
End.

Figure 2-5: The CO_generation subroutine

29

Theorem 2-6: The algorithm of CO generation subroutine can correctly obtain
Co.

Proof: For a branch of the given CMT, by using the items of the branch as seeds
to process d, the CO_generation subroutine can find the closed itemsets in d which
are subsets of one of the frequent closed itemsets in the branch. After all branches
have been processed, it is easily seen that these found closed itemsets in d can be used
to obtain the entire FFJCI [J FNJCI by updating them against the frequent closed
itemsets in the CMT. The updated CMT thus contains the entire FCIp [FFJCI [J

FNJCI. u

Table 2-2: The newly inserted transactions

TID Items
500 (B, C,.D
600 "|C, D

root

Closed.itemsets mining with
branch-wise processing strategy

AC C,2)
> BCE | 30,102

Branch Mining results

TID Items BE
500 | B,C,D c
600 |cC D

Figure 2-6: An example of branch-wise processing strategy in the CO_generation

subroutine

root root

Updating process

Branch Mining results
AC (C,2)
BCE (BC, 1), (C, 2)

Figure 2-7: An example of updating process in the CO_generation subroutine

30

Example 2-2: When new transactions shown in Table 2-2 have been inserted
into Table 2-1, the CO_generation subroutine first considers the most left branch of
{AC} in Figure 2-4 and uses {4} and {C} as seeds to mine the closed itemsets in d.
Then, the branches with maximal itemsets {BCE}, {BE}, {C} and {D} are processed
in turn. Mining results are shown in Figure 2-6, where the branches with {BE} and {C}
can be ignored because related item combinations have been processed by the branch
with {BCE}. After all branches have been processed, the CO_generation subroutine
then updates mining results against CMT. The updated CMT is shown in Figure 2-7,
where the itemsets {B}, {C} and {BC} are belonging to FFJCI, and the itemset {D}

1s a candidate itemset for FClp-. [|

2.5.3The CP_generation Subroeutine of the CIM Algorithm

According to Corollary 1,the CPggeneration subroutine can find FiI; and then
remove the itemsets in F/; which have been covered by FFJCI as candidates for CP
(i.e. {Fl; — cover(FFJCI, Fl;)}), but this indirect way may require an excessive
computation cost for a large size of FI; and generate many candidate itemsets
irrelative to FCIp+. As a result, the CP_generation subroutine adopts a more effective
and efficient candidate generation dealing with candidate generation. Let Flp+
denote the frequent 1-itemsets in both ¢ and D, and Candl denote the 1-itemsets
which are infrequent in D but frequent in D". They can be easily obtained from the
updated CMT after the CO generation subroutine. The CP_generation subroutine
attempts to combine the found itemsets of FFJCI and Candl with ones of Fl,p+, to
directly generate k-itemsets (kK = 2) as candidates for FCIp. as follows. The

CP_generation subroutine uses a depth-first and left-to-right search manner in the

31

CMT to generate the other candidates. When meeting an itemset x of FFJCI in the
CMT, the CP_generation subroutine combines x with one of Flp+ to form a new
itemset x’. If x” is not covered by FFJCI (i.e. x’ is not a subset of an itemset in FFJCI)
and frequent in d, x’ is a new candidate itemset and a corresponding node v, is built
in the CMT. On the other hand, when meeting an itemset y of Candl or of new
candidates generated before, the CP_generation subroutine does a similar
combination-and-test to generate a new candidate itemset)’ and build a
corresponding node v, in the CMT. These two FFJCI-based and Cand-based

candidate generations continue until no new candidate itemsets are generated.

CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F1,p., x)
Parameters.
CMT: The closed maintenance tree;
d: The newly inserted transactions;
minsup: The minimum support thresholds;
FFJCISet: The set used to store.the itemsets of FFICI;
Cand: The set used to store candidate itemsets for FClp-;
F1,p+: The set used to store frequent 1-itemsets in both d and D":
x: A variable.
Begin
if x=CMT.root, then
for each child ¢; of x, do
CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, Flp+, ¢;);
eseif x O FFJCISet or x O Cand, then
for each z; O F1,p+ and the lexical order of z; is after that of the first item of x, do
x’ = combine(x, z;); /* Attempt to generate new candidate
itemsets for FClp. */
if x’# null, then
if cover(FFJCISet, x”) # null, then continue,
/* If x* 1s covered by FFJCISet. */
update x ".count against dj
if x".count = minsup*|d|, then
insert x” with x’.count into CMT and Cand,

32

for each child ¢; of x, do
CP_generation subroutine(CMT, d, minsup, FFJCISet, Cand, F14p+, ¢));
End.

Figure 2-8: The CP_generation subroutine

Theorem 2-7: The algorithm of CP generation subroutine can correctly
generate candidate itemsets for the itemsets of FCIp: which have not been determined
in the CO_generation subroutine.

Proof: 1t is obvious that only the itemsets of F/; which are enumerated from
Fl1,p+ are possible to be contained in FCIlp:. The number of itemsets of {FI; —
cover(FFJCI, Fl;)} can be further reduced regarding FCIp. Since the entire Flp+
can be obtained by collecting the 1-itemsets covered by FFJCI and the itemsets of
Candl, the CP_generation subreutine can dir€etly, without loss of information,
generate the candidate itemsets for the itemsets of FClp: which have not been
determined in the CO generation subroutine-by combining FFJCI with Fl,p: and
Cand with F1l,p+, respectively. Among them; the FF.JCI-based candidate generation
can avoid the item combinations which have been covered by the found itemsets of

FFJCI. .

root root

Candidate
generation

Processed | Node | New generated
order candidates
1 AC
2 B BD
3 BC | BCD
4 BD
5 BE
6 BCD
7 BCE
8 C | CD
9 CD
10 D

33

Figure 2-9: An example of CP_generation subroutine

Example 2-3: Continue from Example 2-2. After the CO generation subroutine,
FFJCI = {B, BC, C}, Candl = {D} and Fl,p+ = {B, C, D}. As shown in Figure 2-9,
the CP_generation subroutine mainly generates candidate itemsets as follows. It first
combines {B} of FFJCI with one of F1,p+ to form valid candidate itemsets. This will
generate the candidate itemset {BD}. Then {BC} and {C} of FFJCI are processed as

well to generate the candidate itemsets {BCD} and {CD}, respectively. |

2.6 The CIM Algorithm with Pre-large Concept: CIM-PAlgorithm

Although the CIM algorithmy focuses.on.the®newly inserted transactions d and
thus saves much processing time i maintaining association rules, it has to reprocess
the original database D to -handle "the"candidate itemsets generated by the
CP_generation subroutine. This situation'may ‘occur frequently, especially when d is
heterogeneous with D. For example, suppose {4}, {B} and {AB} are the entire CO
and {C}, {D} and {CD} are the candidate itemsets. The final results can not be
determined without reprocessing {C}, {D} and {CD} against D. If the candidate
itemsets could be decided without reprocessing D at each time, the maintenance time
could be further reduced.

In general, the number of records in d is much smaller than the number of
records in D. Only the closed itemsets whose supports are slightly less than minsup in
D are possible to be frequent for D" after database maintenances. The concept of
pre-large closed itemsets is denoted as the set of closed itemsets having support

between a lower support threshold, which is smaller than minsup, and an upper

34

support threshold, which is equal to minsup. Pre-large closed itemsets are not truly
frequent at present but more possible to be frequent in the future when database is
updated. Therefore, using the pre-large closed itemsets to enlarge the amount of CO
can reduce the cost of reprocessing D at the expense of storage spaces. They act as a
buffer to avoid the movement of a closed itemset directly from infrequent to frequent
and vice-versa during the incremental mining process. An infrequent closed itemset at
most becomes pre-frequent (pre-large) and cannot become frequent. Based on this
concept, the enhancement of CIM algorithm, CIM-P (CIM with Pre-large concept),
does not require reprocessing D until the accumulative amount of new transactions
exceeds the safety bound the buffer can afford, which depends on database size. As
the database grows larger, the number of new transactions allowed also grows larger,
and the CIM-P algorithm becomes.increasingly efficient.

Figure 2-10 shows the coneept. of pre-large closed itemsets, where S; denotes the
lower support and S, denotes the upper suppeorts An infrequent closed itemset at most
becomes pre-frequent (pre-large) and-cannot become frequent after a small d is

inserted into a large D.

Area of pre-frequent CI
Area ofNCI ° /I/o o Area ofFCI ‘

o o © support
U mmmp)

Figure 2-10: The concept of pre-large closed itemsets

Given the user-specified S; and S, the safety bound of buffer can be derived by
the following theorem.

(Su - S/)|D|

Theorem 2-8: If |d| < , then a candidate itemset will not become

u

frequent in D" after database maintenances [43]. [

(Su=S1)|D|
1 - Su

The can be used as the safety bound of buffer to determine the

suitable time of reprocessing D. However, only considering whether the accumulative

(Su - Sl)|D|

amount of new transactions exceeds seems too loose. For example,

u

(S = Sn|D|

assume the safety bound = 10 and the accumulative amount of new

transactions ¢ = 0 at first. When an increment d, in which all the transactions are

distinct 1-itemsets and |d| = 11, has been inserted into D, then # = 11 larger than

(S =Sn)|D|
1 - Su

= 10 and the CIM-P algorithm has to reprocess D to handle found
candidate itemsets. However, thesetdistinet ¢losed itemsets consume only one of
buffer, and the effort of reprocessing D is worthless.

Furthermore, we propose the bucketing strategy-to improve the utility of buffer.
The purpose of bucketing stratégy. is using-Some buckets to record the actual
contributions of d for the major candidate itemsets (the itemsets with higher supports).
The consumption of buffer can be rigidly calculated with the maximum value of
buckets. In general, the number of candidate itemsets are much more than the number
of buckets, and the bucketing strategy operates as follows. If only one bucket exists,
the bucket is accumulated with the maximum support count of the candidate itemsets.
Otherwise, according to the number of buckets &, £ candidate itemsets with the
highest support counts are selected to accumulate their corresponding bucket values:

(a) For each selected itemset matching an itemset previously stored in the

buckets, the bucketing strategy accumulates the target bucket using the support

count of the selected itemset;

(b) For the remaining selected itemsets, the bucketing strategy then finds two

36

having the largest and smallest support counts to accumulate the unprocessed

bucket having the smallest value and all the remaining unprocessed buckets,

respectively.

Example 2-4: Assume there are three buckets by, b, and b3, the original database
D is with |D| = 100, S; is 30%, S, is 50%, and two sets of candidate itemsets, {(45,
15), (CD, 12), (CDE, 11), (BD, 10)} and {(BCD, 11), (4B, 10), (4D, 10)}, are
respectively obtained from two increments d; with |d;| = 20 and d, with |d»| = 20. By

(0.5-0.3)*100
1-0.5

Theorem 2-8, the safety bound is =40. After d; has been inserted

into D, by = (4B, 15), b, = (CD, 12) and b3 = (CDE, 11). Since the maximum value of
buckets is 15 less than 40, the CIM-P algorithm does not need to reprocess D and the

(0.5-0.3)*120

Y =48 for.the updated database D". After d,

safety bound becomes

has been inserted into D", the bucketing strategy first-accumulates b, = (4B, 15) using
the support count of (4B, 10) and thus A; = (4B, 25); and then accumulates b, = (CD,
12) and b3 = (CDE, 11) respectively using the support count of (4D, 10) and (BCD,
11) and thus b, = (4D, 22) and b3 = (BCD, 22). Since the maximum value of buckets
is 25 less than 48, the CIM-P algorithm still does not need to reprocess D" [
The utility of buffer would be better if we have more buckets, but the cost of
storage space and accumulating buckets would be increased. This is a trade off in this
strategy. In the CIM-P algorithm, according to the user-specified lower support and
upper support thresholds, the large and pre-large closed itemsets with their support
counts in preceding runs are stored in the CMT for later use in maintenance. When
new transactions are inserted, the proposed algorithm first executes the
CO generation subroutine to find FFJCI and FNJCI and the CP_generation

subroutine to generate the candidate itemsets which has not been determined in the

37

CO_generation subroutine. Then, the proposed algorithm utilizes the bucketing
strategy to calculate the accumulative consumption of buffer and decide the suitable
time of reprocessing D. If the accumulative consumption is within the safety bound of
buffer, no action is needed. Otherwise, the original database has to be reprocessed to
guarantee information lossless. The detail of the proposed CIM-P algorithm is shown

as follows.

The CIM-P algorithm(CMT, D, d, S}, S, k)
Parameters:

CMT: A closed maintenance tree based on S;

D: An original database;

d: A set of newly inserted transactions;

Si: A lower support threshold;

Su: An upper support threshold;

k: the number of buckets.

Begin
Su - S D

Set SF = (1—;)|| ; /%8s the safety bound of buffer*/

Set FFJCISet = @ 1% FFJCISet 1s a set used to store the
itemsets of FFJCI. */

Set Cand = @ /* Cand is a set used to store candidate
itemsets for FClp. */

Set Bucket(BucketSet, 0, @) /* Initialize the buckets in BucketSet, where

BucketSet is a set used to store the most
frequent k candidate itemsets. */
CO_generation subroutine(CMT, d, S,,, FFJCISet, Cand);
Set Flup: = @ /* Flgp+ 1s a set used to store frequent
l-itemsets in both d and D" */
Set Ucountp+ = S, * (ID] + |d|);
Set Lcountp+ = S; * (|D| + |d));
Obtain_frequent_items(CMT, Ucountp., Flap+);
/* Obtain F1,p. from CMT. */
CP_generation subroutine(CMT, d, S,, FFJCISet, Cand, F1,p+, CMT.root);
if Bucket Strategy(CMT, BucketSet, S,) > SF, then
[* Check whether the consumption of buffer

38

is larger than the safety bound of buffer. */
/* Reconstruct CMT for D" based on S; */

/* Remove the closed itemsets in CMT

Reconstruct(CMT, D, d, S));
else Remove NCI(CMT, Lcountp.);
whose support counts are less than
mincountp+. */
Output FCI(CMT); /* Output the frequent closed itemsets for
D" #
End.

Figure 2-11: The CIM-P algorithm

2.7 Experimental Results

The experiments were conducted in C++ on a workstation with dual XEON
2.8GHz processors and 2048MB main memory, running the RedHat 9.0 operating
system. For performance comparison, twosclassically incremental mining algorithms,
FUP and Pre-large, in addition to our proposed CIM and CIM-P algorithms, were run
on several synthetic and real-world dataset benchmarks which have been used in the
previous performance studies [86][104][106]. The FUP and Pre-large algorithms were
implemented based on the Apriori algorithm, while the CIM and CIM-P algorithms
were implemented based on the CHARM algorithm. Table 2-3 shows the

characteristics of the synthetic and real datasets.

Table 2-3: Characteristics of the experimental datasets

No. of Avg. of Max. of
Dataset transactions | transaction |transaction |No. of Items
(D) length (T) length)]

T1014D100K 100,000 10 29 1000
T40110D100K 100,000 40 77 1000
connect 67,557 43 43 130

umsb* 49,046 50 63 7117
BMS-POS 515,597 6.5 164 1657

Two synthetic datasets, called 7710/4D100K and T40110D100K, were generated

39

by a generator similar to that used in [8]. The generator first generated L maximal
potentially frequent itemsets, each with an average of / items. The items in the
potentially frequent itemsets were randomly chosen from the total N items according
to their actual sizes. The generator then generated D transactions, each with an
average of 7T items. The items in a transaction were generated according to the L
maximal potentially frequent itemsets in a probabilistic way. For example, the
T1014D100K dataset consists of 100,000 transactions averaging 10 items and
generated according to 2000 maximal potentially frequent itemsets with an average

size of 4 from a total of 1000 items.

Table 2-4: Mining information for the five datasets

Dataset Minsup No: ?f frequent | No. of j."requent lei.zgth oj'" the
itemsets closed itemsets |maximum itemset
T1014D100K 0.093% 29,237 25,642 12
T40110D100K 1.2% 19,412 18,117 11
connect 94% 4,223 1,223 9
umsb* 42% 12,579 1,833 12
BMS-POS 0.65% 2497 2473 6

Table 2-5: The distribution of frequent itemsets for the five datasets

Length of frequent itemsets
Datasets 1 2 3 4 5 6 7 8 9 10| 11] 12
T1014D100K (0.093%) 806| 9539 7491| 5797| 3407 1525| 515 132| 23 2| 0] O
T40110D100K (1.2%) 721| 8336| 1448 1638| 1792| 2192(2048]| 1159 66| 11 0
connect (94%) 17 119 435] 927 1202 952| 446 113| 12 O] O] O
[pumsb™ (42%) 45] 268 856| 1837| 2729 2887|2193| 1188| 448(111] 16| 1
BMS-POS (0.65%) 189 739 975 508 85 | 0 0ol of o] 0] 0

Three real datasets, called connect, pumsb* and BMS-POS were used to evaluate
the practicality of an algorithm in the real-world applications. The connect dataset
contains game state information; the pumsb* dataset contains census data; and the

BMS-POS dataset contains several years of point-of-sale data from a large electronics

40

retailer, where each transaction in this dataset is a customer purchase transaction
consisting of all the product categories purchased at one time. The BMS-POS dataset
was also used in the KDDCUP 2000 competition.

Table 2-4 shows the mining information for the five datasets, including the
number of frequent itemsets, the number of frequent closed itemsets and the length of
the maximum itemset. For example, given the minsup = 0.093% on T10[4D100K, the
number of frequent itemsets was 29,237, the number of frequent closed itemsets was
25,642 and the length of the maximum itemset was 10. Table 2-5 shows the detailed
distribution of frequent itemsets for these datasets. Among them, connect, pumsb* and
T40110D100K can be treated as dense datasets because they still generated many long
frequent itemsets even for very high minsups, whereas T10[4D100K and BMS-POS
can be treated as sparse datasets:because they still generated many short frequent
itemsets even for very low minsups. For the dense.datasets, we can find the number of
frequent itemsets considered by=-a classically-tneremental mining algorithm was much
larger than the number of frequent closed.itemsets considered by the CIM algorithm.

First, for each dataset, we randomly selected 1,000 records as a new increment
and collected the remaining records as the original database. Figures 2-12(a) to 2-12(e)
shows the execution times for the FUP, Pre-large and CIM algorithms respectively on
the five datasets along with various minsups in the mining requests, where the lower
support threshold in the Pre-large algorithm is fixed to the initial minsup, e.g., for
connect, the lower support threshold of Pre-large algorithm is fixed to 95%. Moreover,
the corresponding comparisons of the amounts of pre-stored mining information
considered by the three algorithms respectively on the five datasets are shown in
Figures 2-13(a) to 2-13(e). We can find that the performance highly depended on the

amount of pre-stored mining information.

41

T1014D100K T40110D100K
—E— FUP —&— Pre-large(0.093%) —&— CIM —8— FUP —#— Pre-large(1.2%) —&— CIM

Time (sec.)

0.093 0.094 0.095 0.096 0.097 0.098 12 14 16 18 2 22
Query Support (%) Query Support (%)
(a) (b)
pumsb* connect
—B— FUP —&— Pre-large(42%) —&— CIM —8— FUP —&— Pre-large(95%) —&— CIM

10000

1000

Time (sec.)
5

Query Support (%)

Query Support (%)

(©)

(d)

LU
i
—B8— FUP —&— Pre-large(0.68%) —a&— CIM

Time (sec.)

0.68 0.69 07 071 0.72 0.73
Query Support (%)

©
Figure 2-12: Execution times for the FUP, Pre-large and CIM algorithms respectively

on the five datasets

Among the experimental results, for the dense datasets connect, pumsb* and
T40110D100K, it can be easily seen that the CIM algorithm had several orders of
magnitude better than the FUP and Pre-large algorithms for low minsups and it also

had better performance than the two algorithms for high minsups. The FUP and

42

Pre-large algorithms performed only for very high minsups due to a huge amount of

the previously mined frequent and pre-large itemsets, where the Pre-large algorithm

had better performance than the FUP algorithm since the former, whose derived safety

bound can afford the size of increment, can avoid a high cost of reprocessing original

database at the expense of a low cost of processing pre-stored pre-large itemsets.

T40I10D100K

‘-ru.v @ Pre-large(1.2%) B CIM ‘

il

[0

1

[

.

25000

20000
15000
10000

5000

sjssway 40 ‘oN

22

18

16

14

12

Query Support (%)

(b)

connect

‘IFUP @ Pre-large(95%) 01 CIM ‘

-... A - o % 3 f=3 ‘0 =3
... .- of

|

99

|
K

750
500
250

S1aSWa[Jo ‘oN

Query Support (%)

T10I4D100K

‘.FUP @ Pre-large(0.093%) £ CIM ‘

35000

30000

25000
20000
15000
10000

5000

sjsswayl 40 ‘oN

0.098

0.097

0.096

0.095

0.094

0.093

Query Support (%)

(a)

pumsb*

‘IFUP @ Pre-large(42%) 0 CIM ‘ -

SI195WaN| JO

S

N

Query Support (%)

)

d

(

(©)

BMS-POS
‘.FUP @ Pre-large(0.68%) £ CIM ‘

2500

2 g
3 3
R B

2250
2000
1750
1500
1250
1000

250

Sjaswall Jo 'ON

Query Support (%)

(e)

Figure 2-13: The amounts of pre-stored mining information for the FUP, Pre-large and
43

CIM algorithms respectively on the five datasets

On the other hand, for the sparse datasets 7/0/4D100K and BMS-POS, the CIM
algorithm still had better performance than the FUP and Pre-large algorithms.
However, since the amount of pre-stored mining information (the number of frequent
closed itemsets) considered by the CIM algorithm was just slightly smaller than that
(the number of frequent itemsets) considered by the FUP and Pre-large algorithms as
shown in Figures 2-13(a) and 2-13(e), the CIM algorithm did not has a significant
outperformance. As for the FUP and Pre-large algorithms, the former sometimes got
better than the latter, because the derived safety bound can not afford the size of

increment and a cost of processing pre-stored pre-large itemsets was required in

addition by the latter.
T1014D100K pumsb*
‘+FUP —a— Pre-large(0.093%) +CIM‘ ‘+FUP —&— Pre-large(44%) +C[M‘

70 1000
60 f
~50 100 F
15 A
S0t
[<5)
10
ol . /
0 ——————a———————— & 0 100 2000 5000

10 100 500 1000 2000 5000 0.1
No. of records No. of records

Time (sec.)

, @ , , ®
Figure 2-14: The intluence of the size of increment on the execution time for the FUP,

Pre-large and CIM algorithms

In general, incremental mining algorithms perform well when the size of newly
inserted transactions is relatively smaller than the size of an original database because
the cost of generating candidate itemsets from only new transactions is usually low

and a large proportion of the candidate itemsets can be determined from previously

44

mining information. Figures 2-14(a) and 2-14(b) show the influence of the size of
increment on the execution time for the FUP, Pre-large and CIM algorithms
respectively on the datasets 770I4D100K and pumst®. It is clear that the execution
times required by the CIM algorithm for different sizes of increment were small, and

seemed to grow slowly and linearly with the sizes of increment.

BMS-POS

|—A— e —a—cnepossy) |

35

30 F

25

20

15 |

Time (sec.)

10 |

A

o>

A
= r=y

0.68 0.69 0.7 071 0.72 0.73

Query.Support (%)

Figure 2-15: Execution times for the CIM and CIM-P algorithms on BMS-POS

Next, we compare the CIM-P algorithm with the CIM algorithm. Figures 2-15
shows the execution times for the CIM-P and CIM algorithms on the BMS-POS
dataset along with various minsups in the mining requests, where the lower support
threshold of CIM-P algorithm is fixed to the initial minsup 0.68% and the number of
buckets in CIM-P is set to 2. It can be seen that the execution times by the CIM-P
algorithm were less than those by the CIM algorithm for the minsup set to a value

above 0.68%.

2.8 Conclusion

45

In real-world applications, a database grows over time such that existing
association rules may become invalid or new implicitly valid association rules may
appear. Designing an incremental mining algorithm capable of updating existing
association rules and discovering new association rules without reprocessing the
entire updated database is a nontrivial work. Although researchers have developed
some significant incremental mining algorithms to carry out this work, for dense
databases or a low minimum support threshold, the performance of these approaches
will degrade dramatically due to a huge amount of pre-stored mining information. On
the other hand, one scan of original database to discover new association rules is
required for most incremental mining algorithms. When the original database is
massive, this will result in excessive I/O cost. In this study, we have thus utilized the
concepts of closed itemsets and pre=large itemsets'dealing with the two challenges and
then designed two novel incremental mining algotithms, Closed Itemsets Maintenance
(CIM) and CIM with Pre-large concept (CIM-P). Experiments respectively for sparse,
dense, synthetic and real datasets areé. made,-with results showing the effectiveness and

practicality of the proposed approaches.

46

Chapter 3
|ncremental Mining Algorithmsfor Sequential

Patter ns M aintenance

3.1 Introduction

Mining sequential patterns in sequence databases (temporal transaction
databases), first proposed by Agrawal et al. in 1995 [6], is relatively useful since it can
help model customer behaviors. The process of mining sequential patterns operates
almost same as the process of mining association- rules, except the former concerns
relationships among itemsets ift sequences whereas the latter concerns relationships
among itemsets in transactions. Therefore;some studies extended the Apriori property
[5] such that none of super-sequences of an-infrequent sequence can be frequent, and
proposed efficient algorithms based on the candidates-generation-and-test process for
mining sequential patterns and other time-related frequent patterns. However, these
Apriori-like sequential pattern mining algorithms, such as AprioriAll [6] and GSP
[81], may suffer from the inherent drawback that a huge set of candidate sequences
could be generated in a large and/or long sequence database. According to this
observation, all recent studies have attempted to develop more efficient algorithms to
reduce the expensive cost of candidate generation and test, such as FreeSpan [39],
PrefixSpan [70], SPADE [103], SPAM [9], DISC-all [22], etc.

Studies on maintaining sequential patterns are relatively rare compared to those

on maintaining association rules. Lin and Lee proposed the FASTUP algorithm [55] to

47

maintain sequential patterns by extending the FUP algorithm [20]; Hong et al.
proposed an incremental mining algorithm based on the concept of pre-large
sequences [44]. As the challenges mentioned in Chapter 2, these approaches will not
work well on dense and massive database maintenances:

(a) For a dense database or a low minimum support threshold, the computation
cost of updating previously mined sequential patterns will be getting tremendous due
to a huge amount of previously mined frequent sequences;

(b) For a massive database, most incremental mining algorithms need one scan of
original database dealing with finding new sequential patterns, and this will result in
excessive 1/O cost.

As a result, we attempt to utilize the concepts of closed sequences [99] and
pre-large sequences [44] that are'respectively extended from closed itemsets and
pre-large itemsets to improve *the performance of maintaining sequential patterns.
Maintaining sequential patterns. is much-harder than maintaining association rules,
since it must consider both itemsets and-sequences. It is nontrivial to develop more
efficient, scalable and practical mining algorithms for maintaining sequential patterns.
In this chapter, we thus propose a novel incremental mining algorithm called Closed
Sequences Maintaining (CSM) capable of sufficiently and efficiently finding all
up-to-date sequential patterns for the updated database. Moreover, based on the
concept of pre-large sequences, we propose the CSM-P, CSM with Pre-large concept,

algorithm to improve the CSM algorithm.

3.2 Related Work

3.2.1 Mining Sequential Patternsand Closed Sequential Patterns

Mining sequential patterns is a significant research direction of data mining. It

48

attempts to find customer behavior models and to assist managers in making correct
and effective decisions. Among the mining sequential pattern algorithms, the first
proposed AprioriAll algorithm [6] (similar to the Apriori algorithm) utilized a
level-wise candidate generation approach that only frequent sequences (the sequence
satisfying the user-specified minimum support) found in the previous level are treated
as seeds for generating candidate sequences in the current level to reduce the search
space. Since this candidates-generation-and-test process is simple and useful, many
later studies [12][36][62][66][81] were based on this algorithm for further improving
and refining, and deployed it in real-world applications. However, AprioriAll-based
algorithms may suffer from the following inherent costs [70]:

® A huge set of candidate sequences for a large sequence database;

® Multiple database scans in mining;

® A combinatorial explosive number. of. candidate sequences for a dense

sequence database.

Some recent studies have thus‘developed more efficient algorithms dealing with
the three challenges. Examples include SPADE [103], PrefixSpan [70], SPAM [9].
Since AprioriAll-based algorithms using breadth-first search manner may generate
many candidate sequences not appear in the database, all the three algorithms adopt
depth-first search manner (i.e., recursive divide-and-conquer) to process the sequence
database (SPADE also has breadth-first search option). The SPADE algorithm uses a
simple join operation to enumerate frequent sequences from a vertical-layout database.
The support of a sequence can be easily calculated by joining the vertical lists of its
sub-sequences. The PrefixSpan algorithm uses a database-projection approach to
reduce the efforts of candidate sequence generation. The sequence database is

recursively projected into a set of smaller projected databases according to the

49

currently found frequent sequences, and then frequent sequences are grown in each
projected database by exploring only local frequent fragments. Not only the support
calculation but also the candidate sequence generation are highly improved. The
SPAM algorithm uses the bitmap index to represent the sequence database in vertical
such that the support calculation and candidate sequence generation operates similar
to the SPADE algorithm.

These algorithms have provided pretty good solutions for the first two challenges.
For the third one, however, they still need to be improved for a rather dense sequence
database. In [99], Yan et al. proposed the concept of closed sequences, which is
extended from the concept of closed itemsets, dealing with these challenges,

especially for the third one.

3.2.2 Incremental Mining for Sequential-Patterns

Maintaining sequential patterns is‘muchrharder than maintaining association rules
since the former must consider both 1temsets and sequences. In the following, we will
introduce the concepts of maintaining sequential patterns when new transactions or
sequences are inserted into the original sequence database, and briefly review related
incremental mining algorithms.

When new transactions are inserted into a sequence database, they can be divided
into two classes [44]:

Class 1: The new transactions with the same sequence identifiers as the sequences

in the database;
Class 2: The new transactions with new sequence identifiers.
The newly inserted transactions are first transformed into sequences, and those

belonging to Class 1 are merged with the corresponding sequences in the database and

50

those belonging to Class 2 are inserted into the database as new sequences.
Example 3-1: Assume that the sequence database includes eight sequences as
shown in Table 3-1 and the frequent sequences found from these sequences are shown

in Table 3-2 with the minimum support set to 50%.

Table 3-1: The sequence database

Sequence id Sequence
1 <(4)(B)>
<(C, D)(A)E, F, G)>
<4, H, G)>
<(A)(E, G)(B)>
<(B)(C)>
<(4)(B, C)
<(4)(B, C, D)>
<(E, G)>

0NN [W(N

Table 3-2: All frequent sequences found from the sequences in Table 3-1

Frequent sequences
1-sequence | Support count | 2-sequence | Support count
<(4)> 6 <(A4)(B)> 4
<(B)> 5
<> 4
<G> 4

When two new transactions shown in Table 3-3 are inserted into the sequence
database, they are first transformed into the sequences and then merged with the

corresponding sequences in Table 3-1. The results are shown in Table 3-4. [

Table 3-3: Two new transactions sorted according to Sequence_id and Trans_time

Sequence id | Trans time | Trans content
5 1998/02/01 E, G
9 1998/02/05 E.F,G

Table 3-4: The two newly merged sequences

51

Sequence id Sequence
5 <B)O)E, G)>
9 <(E,F, G)>

The candidate sequences for the newly merged sequences in the database are
then generated and counted. Note that, for the candidate sequences which have
appeared in the original sequence database, their support count are only increased
against the new sequences in the database. For example, the candidate 1-sequences for
the newly merged sequences in Table 3-4 are shown in Table 3-5, where the support

counts of <(B)> and <(C)> are not increased at all.

Table 3-5. The candidate 1-sequences with their support counts for newly merged

sequences
Candidate 1-sequences | Support count
(B> 0
(0> 0
<(E)> 2
<(F)> 1
<(G)> 2

Considering the original sequence database and the newly merged sequences,

there are four cases of candidate sequences shown in Figure 3-1 may arise:

Newly mergea

sequences

AN
4 A

Frequent Infrequent
sequences sequences

F. t
segeuqebiflecrés Casel Case?

I ‘
Infrequent] Case 3 Case 4

Original

sequence
database

52

Figure 3-1: Four cases of candidate sequences

® (Case 1: A candidate sequence is frequent in both the original sequence

database and the newly merged sequences;

® (Case 2: A candidate sequence is frequent in the original sequence database

but infrequent in the newly merged sequences;

® C(Case 3: A candidate sequence is infrequent in the original sequence

database but frequent in the newly merged sequences;

® C(Case 4: A candidate sequence is infrequent in both the original sequence

database and the newly merged sequences.

Among the cases, since candidate sequences in Case 1 are frequent in both the
original sequence database and the newly merged sequences, they are still frequent
after the weighted average of the supports; similarly, candidate sequences in Case 4
are still infrequent after the new sequenees-aresinserted. Cases 1 and 4 will not affect
the final sequential patterns; Case2 may.remove existing sequential patterns; and
Case 3 may generate new sequential patterns.

Lin and Lee proposed the FASTUP algorithm [55], which is an extension of the
FUP algorithm proposed Cheung et al. [20], to efficiently cope with these four cases
by pre-storing the previously mined frequent sequences from the original sequence
database. The FASTUP can handle Cases 1, 2 and 4 by updating the pre-stored
frequent sequences against the newly merged sequences, and reprocesses only the
sequences without sufficient information in Case 3 against the original sequence
database if necessary.

However, the performance of FASTUP algorithm will get degraded if a lot of

candidate sequences from the newly merged sequences belong to Case 3. Hong et al.

53

[44] proposed the concept of pre-large sequences to enlarge the amount of pre-stored
mining information in the FASTUP algorithm for further improving the maintenance
performance. The concept of pre-large sequences is denoted as the set of sequences
having support between a lower support threshold, which is smaller than the
minimum support, and an upper support threshold, which is equal to the minimum
support. Pre-large sequences are not truly frequent at present but more possible to be
frequent in the future when database is updated. Therefore, using the pre-large
sequences to enlarge the amount of pre-stored mining information can reduce the cost

of reprocessing the original sequence database at the expense of storage spaces.

3.3 Preliminary Concepts

Let I = {i}, i2, ..., in} be a’set of m. items."An itemset is a subset of / and a
k-itemset denotes an itemset consisting of &k items. A sequence is an ordered list of
itemsets and an /-sequence can be represented as X = <xi, x, ..., x>, where x; is an
itemset and called an element of X. For a/séquence, an item can occur at most once in
an element, but can occur more than once in different elements. We call a sequence Y
= <Y1, 2, ..., ¥¢ contains another sequence X = <xi, xy, ..., x,> iff there exist indexes
J1sj2s e jpand 1 <j1<jr < ..., j, < gsuchthatx; Oy, xi Oyp, ..., x, Oy Yis also
called a supersequence of X and inversely X is called a subsequence of Y. Let D be a
sequence database consisting of a set of sequences, where each sequence consisting of
a set of elements is associated with a sequence identifier, and |D| denotes the number
of sequences in D. The support of a sequence X, X.sup, in D is denoted as the
percentage of sequences in D which contain X, and the support count of X, X.count, in
D is denoted as the number of sequences in D which contain X, X.count = X.sup * |D)|.

For the sequences in D, X is called a closed sequence if there does not exist another

54

sequence Y which closes (absorbs) X, where a sequence Y is said to close (absorb) X
iff Y contains X and Y.sup = X.sup (Y.count = X.count). CS denotes the set of all
closed sequences in D. Furthermore, if there is no supersequence of X existing in D, X
is also called a maximal sequence.

Given the user-specified minimum support threshold, minsup, the problem of
mining sequential patterns is to find out all sequences in D that have support larger
than minsup. With respect to the minsup, the set of frequent sequence, F'S, includes
all the sequences whose support is larger than minsup; the set of infrequent sequence,
NS, includes all the sequences whose support is less than minsup; the set of frequent
closed sequence, F'CS, includes all the closed sequences whose support is larger than
minsup, FCS = {x|x U CS, x.sup 2 minsup}; and the set of infrequent closed sequence,
NCS, includes all the closed sequenices whose support is less than minsup, NCS = {x| x
U CS — FCS}. Note that FCS includes no sequence which has a supersequence with
the same support, thus FCS [£S. The ptoblem of mining sequential patterns can be
reduced to the problem of finding FCSin D.

Let d be a set of newly merged sequences, |d| be the number of sequences in d, d’
be a set of sequences in d with the same sequence identifiers as the sequences in an
original sequence database D, |d’| be the number of sequences in d’, D be the
updated database and |D'| be the number of sequences in the updated database.
Therefore, FSp, FS; and FSp: denote the FS obtained from D, d and D with respect
to the same minsup, respectively, and NS, CS, FCS or NCS obtained from D, d and D"
can have similar meanings. The problem of maintaining sequential patterns is to find
FSpy or FCSp+. Let the set of original frequent sequences, OS, be defined as OS =

{x|x O FSp}, and the set of potential frequent sequences, PS, be defined as PS = {x|x

U FSq — FSp}. By definition, a sequence X [J FSp+ must belong to OS [J PS, and thus

55

the problem of maintaining sequential patterns is equivalent to processing OS [PS.
Similarly, let the set of closed original frequent sequences, COS, be defined as COS
= {x|x U FSp and x J CSp+}, and the set of closed potential frequent sequences, CPS,
be defined as CPS = {x|x [0 F'S; — F'Sp and x J CSp+}. The problem of maintaining
sequential patterns is also equivalent to processing COS [J CPS. The set of joint
closed sequences, JCS, which is defined as JCS= {xjx =y Uz, y O CSp, z 10 CS,4} is
proposed in this study, where [denotes the intersection of two sequences. We call a
sequence X = <xi, X2, ..., x> 1s the intersection of two sequences ¥ = <yy, y», ..., ¥,>
and Z = <z, 2o, ..., z,> iff there exist indexes ji, j2, ...,jrand 1 <j 1 <jp < ...,j.<pand
l<ji<j2<...,j-<gsuchthatx; Uy, xi Uyp, ..., x- Oy and x1 Oz, x; U zpp, ...,
z, U zj. The JCS can be divided intotfout!parts based on FCSp, FCS4, NCSp and
NCSy:

® [FJCS={xlx=y Uz UFCSp,zUFCSa}

® [FNJCS= {xlx=y Uz, y D ECSp, z UNCS;};

® NFJCS={xlx=y Uz yUONCSp,zUFCS;};

® NNJCS={x|x=yUz yUONCSp,zUNCS;}.

3.4 Closed Sequences M aintenance

Considering an original sequence database D and the set of newly merged
sequences d, there are four cases of candidate sequences for the updated database D"
have been discussed in Section 2. With pre-storing previously mined frequent
sequences FSp, a typically incremental mining process can efficiently cope with these
four cases by two steps: (a) updating OS against d and (b) reprocessing PS against D.

Following this idea, we can use two similar steps: (a) updating COS against d and (b)

56

reprocessing CPS against D to find out FCSp: dealing with the problem of
maintaining sequential patterns. Since directly obtaining COS = {x|x U FSp and x [
CSp+} and CPS = {x|x O FS; — FSp and x [0 CSp+} is impractical, we attempt to
utilize the pre-stored known information FCSp from D and the information FCS,
obtained from d to approach COS and CPS. The following lemmas and theorems can
be easily derived and proven by referring to corresponding lemmas and theorems
mentioned in Chapter 2, so we omit the details here.

Lemma 3-1: If x O CSp O CSy, then x U CSp-+. |

Lemmas 3-2 and 3-3 are used to derive the set of joint closed sequences (JCS)

which are closed sequences for D+ but can not be determined by FCSp and FCS,.p.

Lemma 3-2: If x 0 JCS, then x 0 CSp-. [|
Lemma 3-3: If x U CSp+, then x L1 ESpld.CSz L1 JCS. [|
Theorem 3-1: CSp+ = CSpl1 €S, 0 JCS. [|

Considering an original sequence-database and.the newly merged sequences, JCS
can be divided into four parts based on"FCSp, FCS,; NCSp and NCS,; as shown in

Figure 3-2:

Newly merged

sequences

FCS, NCS,
Original FCSy | FFJCS FNJCS

sequence NCS, | NFJCS NNJCS

database

Figure 3-2: Four cases of joint closed sequences

57

® The case of FFJCS: A closed sequence is frequent in both the original
sequence database and the newly merged sequences;
® The case of FNJCS: A closed sequence is frequent in the original sequence
database but infrequent in the newly merged sequences;
® The case of NFJCS: A closed sequence is infrequent in the original
sequence database but frequent in the newly merged sequences;
® The case of NNJCS: A closed sequence is infrequent in both the original
sequence database and the newly merged sequences.
According to Theorem 3-1, the following theorems are derived to obtain COS
and CPS by FCSp, FCS,, FFJCS, FNJCS and NFJCS.
Theorem 3-2: COS = {x|x U£CSp U FFJCS-L1 FNJCS}. |
Theorem 3-3: CPS = {x|x &} (FCS; — FFICS) I=NFJCS}. [
Theorems 3-2 and 3-3 provide a ¢onvenient way to obtain COS and CPS. For
COS, FFJCS and FNJCS can be“obtained by processing the pre-stored mining
information FCSp against d. For CPS, however, since NFJCS has to be generated
from NCS)p, which is usually unknown in a typically incremental mining process, the
cost is too expensive to be acceptable. As a result, given a function cover(FFJCS,
FS;) denoting the sequences in FS; which are covered by FFJCS, the following
theorem is derived to obtain CPS.
Theorem 3-4: CPS = {x|x O FS;— cover(FFJCS, FSy), x 0 CSp+}. [
Corollary 1. CPS U {FS,;— cover(FFJCS, FS)} [
Since FFJCS has been obtained in COS generation, we only need to find FS; and
remove the sequences in FS; which have been determined in FFJCS as candidates for

CPS. It seems to be a better way to generate the sequences of FCSp+ which are not

58

included in the COS.

3.5 The Closed Sequences Maintaining (CSM) Algorithm

We develop a novel incremental mining algorithm mainly consisting of
COS generation and CPS generation subroutines, called Closed Sequences
Maintaining (CSM), to efficiently find FCSp+. The proposed CSM algorithm also
utilizes the CMT (Closed Maintenance Tree) data structure mentioned in Section
2.5.1 to facilitate the processes of COS generation and CPS_generation subroutines.
However, the CMT of the CSM algorithm is not mainly for closed itemset but mainly
for closed sequence, such that the closed nodes and infrequent nodes represent the
sequences in FCSp+ and the infrequent 1-sequences in D, respectively.

The CSM algorithm first updates the sequences in the CMT against d to obtain
COS by the COS generation subroutine. Then, by the CPS generation subroutine, it
generates candidate sequences “for the sequences of FCSp: which have not been
determined in the COS generation subrouting. Finally, by reprocessing these obtained
candidate sequences against D and checking their closure property, the CSM
algorithm can find FCSp+ from the CMT.

The COS generation and CPS generation subroutines operates similar to the
CO_generation and CP_generation subroutines in the CIM algorithm mentioned in
Chapter 2. The COS generation subroutine is responsible for processing FCSp
against d to find FFJCS and FNJCS, thus obtaining COS, while CPS generation
subroutine is responsible for generating candidate sequences for FCSp+ which have

not been determined in the COS generation subroutine.

The CSM algorithm(CMT, D, d, d’, minsup)

59

Parameters:
CMT: A closed maintenance tree;
D: An original sequence database;

d: A set of newly merged sequences;

d’: A set of sequences in d with the same sequence identifiers as the sequences in D;

minsup: A minimum support threshold.
Begin
Set FFJCSSet = @

Set Cand = @

COS generation subroutine(CMT, d, d
Set Flip+ = 13

/* FFJCSSet is a set used to store the
sequences of FFJCS. */

/* Cand is a set used to store candidate
sequences for FCSp+. */

, minsup, FFJCSSet, Cand);

/* Fl,p+ 1s a set used to store the frequent
1-sequences in both d and D", */

Set mincountp+ = minsup * (|D| + |d| — |d’));

Obtain_frequent_items(CMT, mincountp, Flap+);

CPS_generation subroutine(CMT, d, d

Reprocess_Cand(CMT, Cand; D);

Check Closure Cand(CMT, Cand);

Remove NCS(CMT, mincountp);

Output FCS(CMT);
End.

/¥ Obtain F1,p+ from CMT. */

yminsup, FFJCSSet, Cand, Fl,p+,

CMTroot);
/% Reprocess obtained candidate k-sequences
(k=2) in CMT against D. */
/* Check closure property for all candidates
sequences in CMT. */
/* Remove the closed sequences in CMT
whose support counts are less than
mincountp+. */
/* Output FCSp+ for D" .*/

Figure 3-3: The CSM algorithm

3.6 The CSM Algorithm with Pre-large Concept: CSM-P Algorithm

Although the CSM algorithm focuses on the newly merged sequences d and thus

saves much processing time in maintaining sequential patterns, it has to reprocess the

original sequence database D to handle the candidate itemsets generated by the

CPS generation subroutine. This situation may occur frequently, especially when d is

60

heterogeneous with D. In general, the number of records in d is much smaller than the
number of records in D. Only the closed sequences whose supports are slightly less
than minsup in D are possible to be frequent for D" after database maintenances. We
can apply the concept of pre-large sequences [44] to improve the proposed CSM
algorithm. Based on this concept, the enhancement of CSM algorithm, CSM-P (CSM
with Pre-large concept), does not require reprocessing D until the accumulative
amount of newly merged sequences exceeds the safety bound the buffer can afford,
which depends on database size. As the database grows larger, the number of newly
merged sequences allowed also grows larger, and the CSM-P algorithm becomes
increasingly efficient.

Given the user-specified S; and S, |d’| denotes the number of the sequences in d
with the same sequence identifiers‘as the sequences in D. The safety bound of buffer

can be derived by the following-theorem.

(Su = S| Dfrrie S
I—Su I_Su

Theorem 3-5: If |d| < , then a sequence in CPS will not

become frequent in D" after database maintenances [44] [

(Su=S)|D| _|d|S.
I_Su I_Su

The can be used as the safety bound of buffer to determine

the suitable time of reprocessing D.

Furthermore, we can also utilize the bucketing strategy mentioned in Chapter 2
to improve the utility of buffer. The purpose of bucketing strategy is using some
buckets to record the actual contributions of d for the major candidate sequences (the
sequences with higher supports). The consumption of buffer can be rigidly calculated
with the maximum value of buckets.

In the CSM-P algorithm, according to the user-specified lower support and upper

support thresholds, the frequent and pre-large closed sequences with their support

61

counts in preceding runs are stored in the CMT for later use in maintenance. When
newly merged sequences are inserted, the proposed algorithm first executes the
COS generation subroutine to find FFJCS and FNJCS and the CPS generation
subroutine to generate the candidate frequent closed sequences for D* which has not
been determined in the COS generation subroutine. Then, the proposed algorithm
utilizes the bucketing strategy to calculate the accumulative consumption of buffer
and decide the suitable time of reprocessing D. If the accumulative consumption is
within the safety bound of buffer, no action is needed. Otherwise, the original
sequence database D has to be reprocessed to guarantee information lossless. The

detail of the proposed CSM-P algorithm is shown as follows.

The CSM-P algorithm(CMT, D, d; d’, S;,.S.,,, k)
Parameters.
CMT: A closed maintenance tree based on iSj;
D: An original database;
d: A set of newly inserted sequences;
d’: A set of sequences in d with the same sequence identifiers as the sequences in D;
Si: A lower support threshold;
Su: An upper support threshold;
k: the number of buckets.

Begin
Su—=SHD| |d'|Su
Set SF' = ((" ;)| | - 1 5); /* SF is the safety bound of buffer*/
Set FFJCSSet = @ /* FFJCSSet is a set used to store the
sequences of FFJCS. */
Set Cand = @ /* Cand is a set used to store candidate

sequences for FCSp+. */

Set Bucket(BucketSet, 0, @) /* Initialize the buckets in BucketSet, where
BucketSet is a set used to store the most
frequent k candidate itemsets. */

COS generation subroutine(CMT, d, d’, S,, FFJCSSet, Cand1);

Set Flap: = @ /* Flgp+ 1s a set used to store frequent

62

1-sequences in both d and D" */
Set Ucountp =S, * (|D| + |d| — |d’|);
Set Lcountpy = S; * (ID| + |d| — |d));
Obtain frequent items(CMT, Ucountp+, Flp+);
/* Obtain Fl,p+ from CMT. */
CPS generation subroutine(CMT, d, d’, S,,, FFJCSSet, Cand1, F1,p+, CMT.root);
If Bucket Strategy(CMT, BucketSet, S,)) > SF, then
/* Check whether the consumption of buffer
is larger than the safety bound of buffer. */
Reconstruct(CMT, D, d, d’, S)); /* Reconstruct CMT based on S; */
else,
Remove NCS(CMT, Lcountp+); /* Remove the sequences in CMT whose
support counts are less than mincountp.. */
Output FCS(CMT); /* Output the frequent closed sequences for
D" #
End.

Figure 3-4: The CSM-P algorithm

3.7 Conclusion

Maintaining sequential patterns. is much harder than maintaining association
rules, since it must consider both itemsets and sequences. It is nontrivial and useful to
develop efficient mining algorithms for maintaining sequential patterns. As a result, in
this study, we attempt to utilize the concepts of closed sequences and pre-large
sequences to improve the performance of maintaining sequential patterns. The closed
sequences can losslessly determine all the pre-stored mined sequences and their exact
support, but is orders of magnitude small. The pre-large sequences act as a buffer to
avoid the movements of sequence directly from valid to invalid and vice-versa during
the incremental mining process. Based on the two concepts, two novel incremental
mining algorithms, CSM and CSM-P, are thus developed to efficiently maintain

sequential patterns, especially for a dense sequence database.

63

Chapter 4
| ncremental Mining Algorithmsfor Document

Classifiers Maintenance

4.1 Introduction

As digital documents evolve and become increasingly available, automatic
document classification (a.k.a. document categorization) of managing and discovering
useful information in documents is becoming more and more important for users.
Automatic document classification refers to the activity of automatically constructing
a classifier to assign category labels suggested by pre-defined training documents to
undefined documents. In general, automatictdocument classification involves three
major tasks [79]: document representation, which represents documents in
machine-readable structures, classifier construction, which constructs a classifier
from pre-defined training documents, and classifier evaluation, which evaluates
classifier accuracy in terms of various evaluation functions.

Previous studies of document representation have often represented documents
in finite sets of terms such as keywords and phrases, so-called term-space document
representation. A document can be represented as <w;, wy, w3, ..., w>, where w;
represents the weight between the i-th keyword and the document. However, this
simple representation may result in highly correlated, redundant and less
representative dimensions, such that the efficiency and effectiveness are decreased

[31][34].

64

As for classifier construction, most of previously proposed batch approaches
such as C4.5 [73], SVM [46][47] and Naive Bayesian [57] have to reconstruct the
classifier when new documents or new categories are added. Therefore, considerable
computation time is required to get the updated classifier. In real world, data may
evolve over time, so a batch-based classifier construction approach is obviously
impractical [59].

In this study, we propose a domain-space weighting scheme to resolve the above
problems in document representation and classifier construction. The proposed
scheme utilizes a more compact and meaningful document representation called
domain-space document representation to represent documents in finite sets of
domains. Based on the domain-space document representation, it utilizes three phases,
Training Phase, Discrimination Phase and Tuning.Phase, to construct a classifier and
adapt the classifier along with evolving data.

In the Training Phase, the:proposed-seheme incrementally extracts and weights
features from each individual category-in.the training documents and integrates the
resulting weights into the feature-domain weighting table, which retain the weights
between features and all involved categories. In the Discrimination Phase, it reduces
the weights of features in the feature-domain weighting table that have lower
discriminating powers. The weight between a document and each category is easily
calculated by summarizing related feature weights in the feature-domain weighting
table, and the classifier is thus constructed according to this table. Finally, in the
Tuning Phase, the scheme utilizes feedback information from tuning documents to
reduce the number of false positives for the constructed classifier.

We tested the constructed classifier on the standard benchmark Reuters-21578

text collection [58] based on the “ModApte” split version in terms of micro- and

65

macro-averaging F; evaluation functions. Our experiments consisted of four aspects:
(1) the classification accuracy of our classifier compared to those shown in [23]; (2)
the influence of the training document threshold ¢ and the discrimination threshold 6
on classification accuracy; (3) the influence of the number of tuning documents on
classification accuracy; and (4) the time performance of our classifier compared to a
batch-based mining approach. The experimental results show that the classification
accuracy of our classifier got better with an appropriate discrimination threshold and
sufficient training documents, and the classifier was strengthened by the Tuning

Phase.

4.2 Related Work

Previous studies of three ;major .tasks. (document representation, classifier
construction and classifier evaluation) in automati¢c document classification are briefly

reviewed below.

4.2.1 Document Representation

Document representation refers to representing documents in machine-readable
structures such that classifiers can be constructed efficiently and effectively. The most
common approach is the vector space model (VSM), which represents documents as
sets of features. The VSM usually considers two factors: (1) how to extract
representative features from documents, and (2) how to determine weights for
document features. Term-space document representation utilizing finite sets of
keywords or phrases occurring in documents as representative features and
determining feature weights using the standard ¢fidf weighting function is the most

popular form of VSM. A document can be therefore represented as <w;, wj, ws, ...,

66

we>, where w; represents the weight between the i-th keyword and the document.
However, this simple representation may result in highly correlated, redundant and
less representative dimensions in a document vector, such that the efficiency and
effectiveness of a classifier are decreased [31][34].

The technique of dimension reduction has been used to resolve this problem in
recent decades. Among the approaches, (1) feature selection which selects terms from
the old ones contributing the classification most by evaluation functions such as
chi-square, information gain and mutual information [25][96][102], and (2) feature
extraction which regenerates more representative terms from the old ones

[10][24][29][49][94] are the two well-known categories.

4.2.2 Classifier Construction
® Rocchio approach

Given a set of training documentsjy theiRocchio approach [56][76] attempts to
learn a set of features used to representreach individual category from positive
training documents (members of the category) and negative training documents (not
members of the category). Then an undefined document x is assigned to the category
w when the inner product result of w and x is more than a user-specified threshold.
® Support Vector Machine (SVM) approach

Given a set of training documents, the support vector machine approach (SVM)
[46][47] finds the best decision hyper-plane separating two categories within the
maximum margin of each category. Figure 4-1 shows an example of a 2-dimensional
case. The decision hyper-plane, determined by only a few training documents, called
the support vectors, finds the maximum distance between different categories. Then

an undefined document is assigned to the closest category.

67

Figure 4-1: An example of the support vector machine approach

® K-nearest neighbor (k-NN) approach

The K-nearest neighbor (k-NN) [31][100] is an instance-based or lazy learning
approach that treats each training document as a case and stores it in a case base. This
is rather different from most classifier,construction approaches, which need to
construct models in advance. When, classifying an .undefined document d, the A-NN
first finds k& nearest neighbors- of ' d from- the retained cases in the case base and
calculates the similarity scores.between—this document and categories of its &
neighbors. Then d is assigned to the most similar category according to the similarity

SCOI€Ss.

4.2.3 Classifier Evaluation

Evaluating classifier classification accuracy, the ability to make correct
classification decisions, is an important task. Precision (x) and Recall (p) used in the
field of information retrieval are well-known evaluation functions. However,
considering only the precision or the recall of a classifier may sometimes be
insufficient and misleading. The evaluation function Fj, which considers them

simultaneously, has recently been proposed. Fj is defined as follows:

68

_(B+D)*rmtp
Fy= Gep (4-1)

where, f, which ranges from 0 to o, denotes the importance of precision (x) and the
importance of recall (p). When g = 0, Fj is identical to 7. By contrast, when f = o, Fy
is identical to p. f = 1, which gives equal importance to = and p for Fp, is used most
frequently.

These evaluation functions are usually combined with macro-averaging or
micro-averaging to evaluate the average classification accuracy across multiple
categories [100][101]. Micro-averaging performance scores give equal weight to each
document classification decision, i.e., a per-document average, while macro-averaging
performance scores give equal weight to each category without considering its

frequency, 1.e., a per-category average.

4.3 Domain-space Weighting Scheme for Document Classification

The proposed domain-space ! weighting scheme utilizes a document
representation called domain-space document representation to represent documents
in finite sets of domains. In this representation, each category involved in the training
documents is treated as a meaningful domain. To simplify our discussion, we assume
the training documents involve ¢ categories in the rest of this study. A document can
be therefore represented as <w;, w,, w;, ..., w>>, where w; represents the weight
between this document and the i-th category. Since the number of dimensions in
domain-space is much less than that in term-space and many irrelevant and redundant
dimensions can be effectively eliminated, the domain-space document representation
is more compact and representative. The larger the weight assigned to a document

vector entry, the more relevant the entry is. Thus, the entry with the maximum weight

69

is chosen as the category label for an undefined document.

In order to determine the document vector, a feature-domain weighting table is
proposed to retain the weights between features and all involved categories. Since a
document is made up of a set of keywords and a keyword can be treated as a
representative feature, a document vector can be calculated by summarizing all related
feature vectors in the feature-domain weighting table. A document classifier can be
thus constructed according to this table.

Example 4-1: Assume Table 4-1 is a feature-domain weighting table containing
three categories and eight keywords. The document vector <w;, w,, ws> for an
undefined document d with two keywords, ‘Mining® and ‘Clustering*, can be simply
calculated using: <(0.2992+0.3282)/2, (0+0)/2, (0.7008+ 0.6718)/2> = <0.3137, 0,

0.6863>. Thus, d can be simply assigned to the “DAM” Category. [

Table 4-1: An example of a-feature-domain weighting table

Domaint =47 p | bpm

Feature

Database 0.0521 | 0.2387 | 0.2344
Primary 0 1 0
Relation 0.138 | 0.9852 0
View 0 1 0
Data 0.0605 | 0.1587 | 0.1592
Mining 0.2992 0 0.7008
Clustering 0.3282 0 0.6718
Rule 0 0 1

4.4 Classifier Construction Based on Domain-space Document

Representation

Classifier construction in the domain-space weighting scheme is carried out in

three phases: Training Phase, Discrimination Phase and Tuning Phase, to construct a

70

classifier. In the Training Phase, the scheme incrementally extracts and weights
features from each category involved in the training documents, and then integrates
the results into a feature-domain weighting table. After that, in the Discrimination
Phase, it reduces the weights for the features in the feature-domain weighting table
which have lower discriminating powers. A document classifier is thus constructed. In
the Tuning Phase, the scheme utilizes feedback information from the tuning
documents (the other pre-defined documents) to reduce the number of false positives
yielded by the constructed classifier.

The proposed classifier construction algorithm is shown in Figure 4-2. It contains
three subroutines corresponding to the Training, Discrimination and Tuning Phases.
Let T, be a given feature-domain weighting table. When a new category of
documents D is added, the classifier construction algorithm first uses the training
algorithm to extract and weight the'features. from D (Step 1) and then integrate the
results into 7;, (Step 2). The mtegtationyeontains inserting the domain D and the
feature only from D into T, and then updating all feature weights in 7;,. Assume 7, is
denoted as the updated feature-domain weighting table. Next, it uses the
discrimination algorithm to reduce the weights of features whose discriminating
powers are less than the user-specified threshold J A classifier C,, is therefore
constructed according to 7, (Step 3). The tuning algorithm can be used to strengthen
the constructed classifier C,, via the set of tuning documents D’ (Step 4), where { is

the user-specified tuning parameter.

Classifier Construction Algorithm:

I nput:
T in: A given feature-domain weighting table.
D: A newly added category of documents.
D’: A set of tuning documents.
o: A discrimination threshold.

71

{ A tuning parameter.
Output:
T.»: The updated feature-domain weighting table.
C.p : The constructed classifier for 7,,,.
Begin
(1) Tp « Training(D); //Tp is a table used to retain the weights for the features in D
(2) Tup « TinDTD 5
(3) Cyp « Discrimination(T,, 0);
@ IED # @ Cyp — Tuning(Cyp, D', 0);
(5) Return C,, and 7.
End

Figure 4-2: The classifier construction algorithm

| Training
2

. T, | T |
domaint w A |« ppr | D |
feature | eight |

Database| 0.22 1 feature To
Primary | 0 08264 | | [~y 1 !
Relation | 0.01 0.7165 | Database | 08264 | |
\S:t\gl 5 235 &710577 | [Clustering | 07165 | |
D 0255 | 08l | | Rule 06963 | |
ining . | Data 0.6175 |

Clustering| 0.35 0

| Integrating :

T3 ‘ ' r —————————
domain| Al” « DB” |* DM™ 4 D * * * t- |
feature ’l Iscriminaiing |
Database| 0.22 1 0.8264 b o e g —————
Primary 0 0.8264 0
Relation 0.01 0.7165 0 \ 4
View 0 0.707 0 domainl .y 1w [e |« . | C
Data 0.235 0.6157 | 0.6175 feature Al b8 oM™ ’
Mining 0427 5 1 Database| 0.0521 | 02387 | 0.2344 F———-
: . Primary 0 1 0 . |
lusty . .71
Clustering| 035 0 | 07165 Relation | 0138 | 09862 | _0__|—» luning |
Rule 0 0 0.6963 -
View 0 1 0 ————

Data 0.0605 | 0.1587 | 0.1592

Mining | 0.2992 0 0.7008

Clustering | 0.3282 0 0.6718
Rule 0 0 1

A

0
I Labeltfg_ |

Category label

Figure 4-3: The operation of the classifier construction algorithm

Example 4-2: Figure 4-3 illustrates the operation of the classifier construction

algorithm when a new category called “DM” is added. Assume 7> is the

72

feature-domain weighting table which has been constructed with the “OS” Category
and the “DB” Category. When the “DM” Category is added, the training algorithm
extracts and weights features from the “DM” Category and stores the results in table
Tp. After integrating 7p into 7>, the feature-domain weighting table is updated to 75.
The discrimination algorithm then reduces the weights of features in 73 which have
lower discriminating powers. The classifier C; is thus constructed. The tuning
algorithm can use other given tuning documents to strengthen the classifier. The

classifier C; can be used to classify an undefined document. |

4.4.1 Training Phase

The purpose of the Training Phase is to extract representative features from
documents in a given category. In this study, the.features are keywords that occur
more than once in at least one document in the given:category, and they are extracted
by a pre-processing proceduré. that removesrstop: words, punctuation and digits,
converts all letters into lowercase, and-stems using Porter’s stemmer. A feature is
more representative for a category if it appears in more documents and has higher
frequency in each document. The following formula is designed to calculate the

weight wy of the feature f; for a given category:

th,k v,
w, = zz ,where T, ——th]k Dlog(zf), (4-2)

where ff;x denotes the frequency of f; in document d|.

The proposed training algorithm is shown in Figure 4-4. When a new category of
documents D is added, the training algorithm extracts features from D (Step 1), and
then calculates their feature weights by considering the frequency and coverage of
each feature against the documents in D using Formula 4-2 (Step 2). After obtaining

73

and calculating feature weights, the training algorithm normalizes them in the range
[0, 1] (Step 3.1), and adds them to table 7p (Step 3.2), which is used to retain the
feature weights for D. Consequently, the training algorithm returns the weighting

table 7 (Step 4).

Training Algorithm:
I nput:
D : A newly added category of documents.
Output:
Tp : A table used to retain the feature weights for D.
Begin
(1) F < { fi|fris a feature in D };
(2) For each f;, Ul F, do
(2.1) For each d; 1 D, count the frequency #f; of fi in dj;
(2.2) Calculate the weight wy, of f; using:
Z g tf
w, =T, *='—=——,where T3 ==Y tf, Uog(—"—
D 5 YTRSE (i T
ko j
(3) For each f; U F, do
G.Dw, = u ;
max {w,, W,,..., W,
(32) TD — TD O] Wi,
(4) Return 7).
End

)

Figure 4-4: The training algorithm

Example 4-3: Assume the features, ‘Mining’, ‘Database’, ‘Clustering’, ‘Rule’
and ‘Data’, have been extracted from the three documents d;, d,, d; in the given
“DM” Category. Table 4-2 shows the statistical information for these features. These
five feature weights for the “DM” Category according to Formula 4-2 are shown in

Table 4-3. Among them, the feature weight of ‘Mining’ is calculated as follows:

Since Y #f, =165, > 1f , =725and T, ==Y _tf,, Olog(U
J k J th

Jk

) =78.725,we have

J

74

21

- 165

w, =T, * = =78.725*——=17917.
R 725
ko
After being normalized, the feature weight of ‘Mining’ is set to 1. [

Table 4-2: The statistic information of features in “DM” Category

Featurefor mation d | a4 | a; ;0‘//(T .

Mining 55 [155([55] 165 | 78.725 | 17.917
Database 50 50 |50] 150 | 71.568 | 14.807
Clustering 40 [50 [50 | 140 | 66.479 | 12.837
Rule 60 |40 [40 | 140 | 64.604 | 12.475
Data 40140 | 50| 130 | 61.700 | 11.063

Table 4-3: The feature weights in “DM” Category

Tp
Feature I
Mining 1
Database 0.8264
Clustering 0.7165
Rule 0.6963
Data 0.6175

4.4.2 Discrimination Phase

The purpose of the Discrimination Phase is to reduce the weights for features
having lower discriminating powers. The discriminating power of a feature can be
evaluated by calculating the gini index value [14][84] of its feature vector in the

feature-domain weighting table. Assume a feature vector fv; in the feature-domain

C
weighting table is represented as <w;, wy,..., w> and w, = ij , where w; denotes
=

the weight between the feature f; and the j-th category. The gini index value g; of the

feature f; can be calculated using the following formula:

75

2, :i(wfj . (4-3)

=t \ Wr
The lowest gini index value appears when w; = w, = ... = w, = 1/c, whereas the
highest gini index value appears when only one w; = 1 and the rest are 0. This idea is
conceptually similar to the idf term in the tfidf function. A feature has higher

discriminating power if it is included in fewer categories.

Discrimination Algorithm:

Input:
T: The feature-domain weighting table.
o: A discrimination threshold.

Output:
C: The classifier.
Begin
(1) For each feature f; with feature veetor fup= <w;, wa,..., w>>in T, do
(L1 fy, = chk ; //One-normalizaton

2,
=
(1.2) Calculate the gini index value'g;of £ using:
S 2
g =W
J=1

(1.3) Ifgk < 5,ﬁ/k =ka * S
2)C-T,
(3) Return C.
End

Figure 4-5: The discrimination algorithm

The proposed discrimination algorithm is shown in Figure 4-5. According to
Formula 4-3, the discrimination algorithm first normalizes each feature vector in the
feature-domain weighting table 7 such that ||[fv||; = 1 (Step 1.1), and then calculates its
corresponding gini index value (Step 1.2). If the feature’s gini index value is less than
the user-specified discrimination threshold J, i.e., the feature’s discriminating power
does not satisfy the minimum requirement, the discrimination algorithm reduces the

feature weights in 7" by multiplying the feature vector with its gini index value (Step

76

1.3). A classifier C can be therefore constructed (Step 2), since the weight between a
document and each category can be easily calculated by summarizing its related
feature vectors in 7. Consequently, the training algorithm returns the classifier C (Step
3).

Example 4-4: Assume the discrimination threshold o is set to 0.5. As in Figure
4-3, the discrimination algorithm will adjust the feature-domain weighting table 73 to
produce the classifier C;. For example, the feature vector of ‘Data’, <0.235, 0.6157,
0.6175>, in T3 is adjusted as follows. One-normalization of ‘Data’ is <0.235/1.4682,
0.6157/1.4682, 0.6175/1.4682 > = <0.16, 0.4194, 0.4206>, and the gini index value of
‘Data’ is 0.16%+0.4194°+0.4206° = 0.3784; since 0.3784 < 0.5, the original feature

vector is reduced to <0.16, 0.4194, 0.4206> * 0.3784 = <0.0605, 0.1587, 0.1592>.1

4.4.3 Tuning Phase

The purpose of the Tuning.Phase istomutilize feedback information from tuning
documents (other pre-defined documents) to reduce the number of false positives
yielded by the constructed classifier. Conceptually, it operates like the Perceptron
learning algorithm [64] in neural network. Given a tuning document, the Tuning
Phase first compares its pre-defined category label with the category label suggested
by the constructed classifier. If they are consistent, it means that the classifier can
correctly decide on this tuning document using the corresponding feature vectors in
the feature-domain weighting table; the weight between each corresponding feature
and the category suggested by the classifier is then emphasized, such that the
classifier has strong weights. Otherwise, it means that the classifier may make
incorrect decisions using the feature-domain weighting table. The weight between

each corresponding feature and the category suggested by the classifier should be

77

reduced and the weight between each corresponding feature and the pre-defined
category of the tuning document should be emphasized, such that the classifier has
appropriate weights.

The proposed tuning algorithm, shown in Figure 4-6, first extracts features from
each given tuning document (Step 1.1), and then obtains the category label suggested
by the constructed classifier C (Step 1.2). The document labeling algorithm, described
in next section, is used to carry out the suggestion procedure. If the category label
suggested by C is consistent with the pre-defined category label of a tuning document,
the tuning algorithm emphasizes the weight between each corresponding feature and
the suggested category by { percent of the feature weight in the tuning document
(Step 1.4), where (is the user-specified tuning parameter. Otherwise, the tuning
algorithm reduces the weight between each corresponding feature and the suggested
category by ¢ percent of the feature weight in the tuning document and emphasizes
the weight between each corresponding feature and the pre-defined category of a
tuning document by { percent of the feature weight in the tuning document (Step 1.5).

Consequently, the tuning algorithm returns the updated classifier C (Step 2).

Tuning Algorithm:
I nput:
C: The classifier.
D’: A set of tuning documents.
{: A tuning parameter.
Output:
C: The updated classifier.
Begin
(1) For each dUID’, do
(1.1) F — { fx| fr1s a feature in d };
(1.2) I « Document labeling(d, C);
(1.3) /; = the pre-defined category label of d;
(1.4)If =14, do
(1.4.1) Foreach f; 0 F, do wy =wi + d; * ;
// ' wy; 1s the weight between f; and / in C

78

// d is the [-th entry of d’s document vector
(1.5)1f 1 # 14, do
(1.5.1) For each f; [0 F, do wyy = wiy — d; * { and wy, = wi, + di*¢
(2) Return the updated classifier C.
End

Figure 4-6: The tuning algorithm

Example 4-5: Assume the tuning parameter ¢ is set to 0.01 and a given tuning
document d with two keywords, ‘Data’ and ‘Database’, belongs to “DM” Category.
According to the constructed classifier C; in Figure 4-3, the document vector of d is
thus <(0.0605+0.0521)/2, (0.1587+0.2387)/2, (0.1592+0.2344)/2> = <0.0563, 0.1987,
0.1968>, and the classifier then assigns the category label “DB” to d. Obviously, the
constructed classifier C; made an incorrect decision using the feature-domain
weighting table. Thus, the tuning algorithm reduces the weight between feature ‘Data’
and “DB” Category to 0.1587-0.1987%0:01=0.1567 and emphasizes the weight
between feature ‘Data’ and “DM” Category to 0.1592+0.1968%0.01=0.1612. On the
other hand, the weight between féature ‘Database’ and “DB” Category is reduced to
0.2387-0.1987*0.01=0.2367 and the weight between feature ‘Database’ and “DM”
Category is emphasized to 0.2344+0.1968*0.01=0.2364. The updated Cj; is shown in

Table 4-4. [|

Table 4-4: An example of the tuning algorithm

Domain) 4y DB DM
Feature
Database 0.0521 | 0.2367(1) | 0.2364(3)
Primary 0 1 0
Relation 0.138 0.9852 0
View 0 1 0
Data 0.0605 | 0.1567(2) | 0.1612(4)
Mining 0.2992 0 0.7008
Clustering 0.3282 0 0.6718
Rule 0 0 1

79

(1) 0.2387-0.1987*0.01 = 0.2367
(2) 0.1587-0.1987*0.01 =0.1567
(3) 0.2344 +0.1968*0.01 = 0.2364
(4) 0.1592 +0.1968*%0.01 =0.1612

4.5 Document L abeling by the Constructed Classifier

According to the constructed classifier, a document vector is easily calculated by
summarizing related feature vectors in the feature-domain weighting table. The larger
the weight assigned to a document vector entry is the more relevant the entry is. Thus,
the classifier can assign a category label to an undefined document on the basis of its
entry weights.

Given an undefined document d, the document labeling algorithm, shown in
Figure 4-7, first uses the constructed classifier C to obtain the document vector V; by
summarizing the feature vectors® of features. occurred in d from feature-domain
weighting table (Step 2 and Step 3). The document labeling algorithm then assigns a

category label to d according to the entry with the maximum weight in V; (Step 4).

Document Labeling Algorithm:
I nput:
d: An undefined document.
C: The classifier constructed by the classifier construction algorithm.
Output:
[: The category label for d.
Begin
(1) V4 < 0; //V41s the document vector of d and |V, equals the number of categories
(2) For each feature f; in d, do
(2.1) Extract the feature vector fv; from C;
(22) Va=Va+ fui

3) v, = L;//count(fk) is the number of features in d
count(f})
(4) Return the category label / of the maximum weight in V.
End

Figure 4-7: The document labeling algorithm

80

4.6 Experimental Results

Our experiments were conducted in Java on a personal computer with a Pentium
1.7GHz processor and 512MB of main memory running Windows 2000, and using the
Reuters-21578 benchmark text collection standard (REUTERS-21578, Distribution
1.0) experimental dataset [58] based on the “ModApte” split version. This dataset
consists of 118 categories in 12,902 documents, of which 9,603 are for training and
3,299 are for testing. The following groups of categories were used to evaluate
classification accuracy:

(1) the 10 categories with the largest number of training documents

(Reuters-21578(10));

(2) the 90 categories, each of which contains at least one training document and

one test document (Reuters-21578(90));

(3) the 115 categories, each of which-contains at least one training document

(Reuters-21578(115)):

We tested our classifier on four aspects of micro- and macro-averaging F;

evaluation functions (shown in Formula 4-1):

(1) the classification accuracy of our classifier construction algorithm compared

to the algorithms shown in [23];

(2) the influence of the training document threshold ¢ and the discrimination

threshold 0 on classification accuracy;
(3) the influence of the number of tuning documents on classification accuracy;

(4) the time performance of our classifier construction algorithm compared to a

batch-based mining algorithm.

81

In [23], Debole and Sebastiani utilized six supervised term weighting functions,
chi-square, information gain, and gain ratio, globally and locally, e.g., ¥*(g), IG(g),
GR(g), ¥*(I), IG(I), and GR(l), in the Rocchio, k-NN, and SVM classifier construction
algorithms to compare their average classification accuracy on the Reuters-21578(10),
Reuters-21578(90), and Reuters-21578(115) datasets. The comparison results are

shown in Table 4-5.

Table 4-5: Micro- and macro-averaging F; values shown in [23]

£@® | IG® | GR@® | /@ | IGWH) | GR®

Reuters-21578(10) 0.852 0.843 0.857 0.810 0.816 0.816

Micro F; |Reuters-21578(90) 0.795 0.750 0.803 0.758 0.767 0.767
Reuters-21578(115) 0.793 0.747 0.800 0.756 0.765 0.765
Reuters-21578(10) 0.725 0.707 0.739 0.674 0.684 0.684

Macro F; |Reuters-21578(90) 0.542 0.377 0.589 0.527 0.559 0.559
Reuters-21578(115) 0.596 0.458 0.629 0.581 0.608 0.608

We set the discrimination -threshold d-in our classifier construction algorithm to
0.5 for the Reuters-21578(10) dataset; and to 0.04 for the Reubters-21578(90) and
Reuters-21578(115) datasets; the number of tuning documents was set to 0. Table 4-6
shows the classification accuracy of our classifier at various training document
thresholds ¢. The ¢ was to determine the availability of categories in the training
documents for our training algorithm. Thus, if the number of training documents in a
category was less than the specified ¢, the category was omitted from the training
algorithm. For example, only 39 categories in Reuters-21578(90) satisfying ¢ = 25

were used in the training algorithm.

Tables 4-5 and 4-6 show the classification accuracy of our classifier construction
algorithm was always better than those in [23] on Reuters-21578(10), whereas the
results on Reuters-21578(90) and Reuters-21578(115) were worse when ¢ was less
than 15. We may therefore conclude that the classification accuracy of the classifier

82

constructed by the domain-space weighting scheme will be getting better with

sufficient training documents.

Table 4-6: Micro- and macro-averaging F values at ¢ =1, ¢ =15 and ¢ =25

0=1 0 =I5 0=25

Reuters-21578(10) 0.903 0.903 0.903

Micro F; |Reuters-21578(90) 0.751 0.784 0.815
Reuter s-21578(115) 0.737 0.784 0.815
Reuters-21578(10) 0.824 0.824 0.824

Macro F; |Reuters-21578(90) 0.490 0.569 0.660
Reuter s-21578(115) 0.616 0.569 0.660

Details of training document threshold ¢ and discrimination threshold ¢ affected
classification accuracy on Reuters-21578(10), Reuters-21578(90), and
Reuters-21578(115) are shown in Tables 4-7 to 4-11. Since each category in
Reuters-21578(10) contains morethan 50 training. documents, the influence of ¢ is
ignored in Table 4-7. As mentioned before, the scale of 0 is determined according to
the number of categories. Thus,-the scale range of @ in Table 4-7 is [1/10, 1], and the
scale ranges of 0 in Tables 4-8, 4-9 and in Tables 4-10, 4-11 are [1/90, 1] and [1/115,
1], respectively.

In Tables 4-7 to 4-11, we can see that the influence of ¢ is not evident even on
Reuters-21578(10), perhaps because the one-normalization of the discrimination
algorithm has achieved the purpose of discrimination such that setting ¢ has less
influence on the classification accuracy. By contrast, setting ¢ had a decisive
influence on classification accuracy: the larger the number of training document
included, the better classification accuracy will be. Table 4-12 shows the number of
remaining categories at various ¢ on Reuters-21578(10), Reuters-21578(90), and
Reuters-21578(115). When ¢ was 15 or greater, the training algorithm considered the

same numbers of categories on Reuters-21578(90) and Reuters-21578(115).

83

Table 4-7: Micro-and macro-averaging F; values at various ¢ for Reuters-21578(10)

) Micro F, Macro F,
0.9 0.902511370 0.814721475
0.8 0.901324896 0.813716994
0.7 0.903302353 0.820149529
0.6 0.903302353 0.819969831
0.5 0.902906862 0.823657403
0.4 0.898951948 0.815825122
0.3 0.901324896 0.817534791
0.2 0.895788017 0.804622957
0.1 0.898160965 0.806951786

Table 4-8: Micro-averaging F; values at various J and ¢ for Reuters-21578(90)

9
5 1 5 15 25 35 45
0.1 0.74739 0.75360 0.78372 0.81300 0.82566 0.84547
0.08 0.74827 0.75389 078403 0.81269 0.82631 0.84447
0.06 0.75033 0.75478 0.78464 0.81458 0.82695 0.84681
0.04 0.75063 0.75300 0:78433 0.81521 0.82824 0.84681
0.02 0.74974 0.75271 0.73555 0.81553 0.8289 0.84681
0.01 0.74974 0.75330 0.78555 0:81584 0.8289 0.84681

Table 4-9: Macro-averaging Fvalues at various ¢ and ¢ for Reuters-21578(90)

9
5 1 5 15 25 35 45
0.1 0.46830 0.52281 0.56963 0.66335 0.67258 0.71811
0.08 0.48881 0.54619 0.57344 0.65812 0.67529 0.71390
0.06 0.48748 0.53001 0.57152 0.66360 0.67395 0.71542
0.04 0.48997 0.52214 0.56868 0.65998 0.67747 0.71738
0.02 0.48467 0.51960 0.57205 0.66281 0.67783 0.71738
0.01 0.48922 0.52176 0.57205 0.66312 0.67783 0.71738

Table 4-10: Micro-averaging F; values at various ¢ and ¢ for Reuters-21578(115)

9
P 1 5 15 25 35 45
0.1 0.73593 0.74885 0.78372 0.81300 0.82566 0.71811
0.08 0.73505 0.74915 0.78403 0.81269 0.82631 0.71390
0.06 0.73711 0.7506 0.78464 0.81458 0.82695 0.71542
0.04 0.73681 0.74944 0.78433 0.81521 0.82824 0.71738
0.02 0.73652 0.74855 0.78555 0.81553 0.8289 0.71738
0.01 0.73711 0.74915 0.78555 0.81553 0.8289 0.71738

84

Table 4-11: Macro-averaging F values at various ¢ and ¢ for Reuters-21578(115)

9
5 1 5 15 25 35 45
0.1 0.62378 0.53231 0.56963 0.66335 0.67258 0.71811
0.08 0.60384 0.55127 0.57344 0.65812 0.67529 0.71390
0.06 0.60474 0.53598 0.57152 0.66360 0.67395 0.71542
0.04 0.61597 0.53130 0.56868 0.65998 0.67747 0.71738
0.02 0.61526 0.53057 0.55990 0.66312 0.67783 0.71738
0.01 0.61526 0.52903 0.57205 0.66281 0.67783 0.71738
Table 4-12: Numbers of remaining categories at various ¢
o =1 9 =5 o =15 0 =25 9 =35 o =45
Reuters-21578(10) 10 10 10 10 10 10
Reuters-21578(90) 90 69 51 39 34 27
Reuters-21578(115) 115 70 51 39 34 27
Reuters-21578(10)
0.95

=

2

&

509 F

5

2

2

0.85
0 100 200 300 400 500 600 700 800 900 1000

Tuning documents

Figure 4-8: Micro-averaging F; value vs. number of tuning documents for

Reuters-21578(10)

The influence of tuning document number on classification accuracy for

Reuters-21578(10), Reuters-21578(90), and Reuters-21578(115) is shown in Figures

4-8, 4-9 and 4-10, respectively. Since the tuning documents in our experiments were

selected from the test documents, the original test document dataset was divided into

85

tuning and test sets. Experimental results showed that setting the tuning parameter {
to 0.000005 yielded a stably increasing trend. Too low the ¢ value may lead to a
tuning adjustment so tiny that the tuning effect is insignificant, and too large the {
value may lead to an unstable and oscillatory tuning adjustment with unpredictable
tuning effects. Figures 4-8 to 4-10 show that the classification accuracy of the

constructed classifier improved as the number of tuning documents was increased and

tended toward convergence when the number exceeded 700.

Reuters-21578(90)
0.85
w —— =]
= —a— =15
Rl ——p=25
g
(]
=
o
8 0.75
=
0.7
0 100 200 300 400 500 600 700 800 900 1000
Tuning documents

Figure 4-9: Micro-averaging F} values vs. number of tuning documents at ¢ =1, ¢ =15

and ¢ =25 for Reuters-21578(90)

Reuters-21578(115)

=2

'%D 0.8 F

] =1
= —a—p=]5
o

=

0.7
0 100 200 300 400 500 600 700 800 900 1000
Tuning documents

86

Figure 4-10: Micro-averaging F; values vs. number of tuning documents at ¢ =1, ¢

=15 and ¢ =25 for Reuters-21578(115)

We evaluated the efficiency of our classifier construction algorithm in
comparison with a batch-based classifier construction approach, excluding the tuning
algorithm. The computation time of our classifier construction algorithm contains
three major portions when a new category is added in the i-th run: (1) time to extract
and weight features from a given category, denoted as #;;; (2) time to integrate the
training results into the feature-domain weighting table, denoted as #,,; and (3) time to
reduce the weights of features in the feature-domain weighting table having lower
discriminating powers, denoted as #;;. Since t;; > t;; >> t;3, total computation time can
be simplified to O(z;;+¢;;) in the i-th run. However, when our classifier construction
algorithm mimicked a batch-based approachs and needed to re-process all previous

categories to reconstruct its classifiérforyeach; run, the total computation time was

O(Zi‘:l (¢, +1t ,-2)) for the i-th run. Figure4=11 shows the computation times spent by

our classifier construction algorithm respectively in batch and in incremental for

Reuters-21578(10) with increasing numbers of considered categories.

‘ —e— Batch-based —#— Incremental-based

800000
600000
£
5 400000 F
E
F
200000

0

TT T2 T3 T4 T5 T6 T7 T8 T9 TIO
Categories

Figure 4-11: Computation times spent by the batch-based classifier and the

87

incremental-based classifier for reuters-21578(10)

It is easily seen that, the computation times for the batch-based classifier
increased as the number of involved categories was increased, but the computation
times for the incremental-based classifier remained almost the same as the number of
involved categories was increased. Since previously discovering information is all
retained in the feature-domain weighting table, the classification accuracy of the

incremental-based classifier is the same as that of the batch-based classifier.

4.7 Conclusions

This study proposes a domain-space weighting scheme to represent documents in
domain-space and incrementally® construct, a classifier to resolve the document
representation and categories -adaptation problems.- The scheme consists of three
major phases: Training Phase, Discrimination Phase and Tuning Phase. The training
algorithm incrementally extracts and weights features from each individual category,
and then integrates the results into a feature-domain weighting table. The
discrimination algorithm reduces feature weights with lower discriminating powers.
When these algorithms finish constructing the classifier, the tuning algorithm
strengthens it using feedback information from tuning documents to reduce the
number of false positives. Experiments with the Reuters-21578 benchmark show that

with sufficient training documents, the classifier is rather effective and efficient.

88

Chapter 5
From Incremental Mining to Multidimensional

Online Mining for Knowledge Discovery

5.1 Introduction

Although incremental mining algorithms are rather efficient and useful for static
models such as mining all the data accumulated thus far and mining only a recently
collected portion of data in uncomplicated applications, they usually provide little
support for user focus (e.g., limiting the computation to what interests the user) and
user interaction (e.g., dynamically,changing the parameters or constraints). This may
produce thousands of rules that‘are irrélevantrand uninteresting to users. On the other
hand, decision-makers usually diversely-consider problems at different aspects: they
may need to analyze market demands, customer preferences, localities, and
short-term/long-term trends; they may want to understand the change of discovered
patterns or rules in different dimensions. This may neither flexibly obtain rules or
patterns from their interesting portions of data, nor diversely consider problems at
different aspects to provide online decision supports for users.

Some examples about that a decision-maker usually requires online mining
supports of association rules are shown below.

Scenario 1: A decision-maker may have known which product combinations
sold in last August were popular, and wants to know which product combinations sold

in last September were also popular.

89

Scenario 2: A decision-maker may have known that people often buy beer and
diapers together from a transaction database, and want to further know under what
contexts (e.g., place, month, or branch) this pattern is significant or, oppositely, under
what contexts this pattern becomes insignificant.

Scenario 3: A decision-maker may want to know how the mined patterns this
year differ from those last year, such as what new patterns appear and what old
patterns disappear.

Scenario 4: A marketing analyst may want to analyze the data collected from the
branches in Los Angeles and San Francisco in all the first quarters in the last five
years.

Scenario 5: A marketing analyst may want to know what patterns are significant
in the recent month when the minimum supportincreases from 5% to 10%.

The examples above all=require more. context information to describe the
problem domain. A mining algorithm.that,ean-handle relevant context information in
mining requests will thus help decision-makers consider various aspects of problems
in diverse ways.

Constraint-based and multidimensional mining techniques [11][15][35][37]
[48][51][52][65][72] which allow users to specify constraints as a guidance have thus
been developed to identify and extract interesting and focused knowledge from a data
warehouse or a database. Users can continually express his focus and change not only
the parameters but also the constraints in the mining process. For example, Kamber et
al. [48] proposed a famous approach that allowed users to specify the predicates that
appear in antecedent and consequent parts of association rules. However, putting all
data gathered in different contexts (such as different branches, different time intervals

and different regions) together for centralized mining seems to be time-consuming

90

and infeasible for online mining support because of the size of data. Users may need
to wait for a long period of time for the mining results.

Different from the techniques of constraint-based and multidimensional mining,
we attempt to extend the concept of effectively utilizing previously discovered patterns
in incremental mining to support multidimensional online mining. We first
systematically mines rules or patterns from data gathered in different contexts
according to the pre-defined parameter setting, and forwards the rules or patterns with
the corresponding context information to a structural repository called knowledge
warehouse for centralized post-mining and refining. Then, we can efficiently acquire
user-interesting and/or user-focused association rules or patterns by integrating related
mining information from the knowledge warehouse, and greatly reduce the cost of
mining the underlying data at each.time.

Consequently, a systematie, automatic, integrated, and on-demand architecture,
called Online Knowledge Discovery:System—-(OKDS), can be developed to help
managers and decision-makers diversely.consider problems at different aspects and
provide online mining supports. The OKDS mainly consists of five major components,
knowledge client, knowledge warehouse, knowledge organizer, mining agent, and
underlying storage facility. Through the mining agents systematically and
continuously mine potentially useful patterns from each underlying storage facilities,
the knowledge organizer structurally stores these mined patterns into the knowledge
warehouse, and thus users can utilize aggregation and generalization functions in the

knowledge client for online patterns generation.

5.2 Related Work

Data warchouse is an integrated, subject-oriented, and nonvolatile data

91

repository containing historical and aggregated data from operational and legacy
systems for supporting decision-making processes [17][45][97]. Comparing to routine
works of On-Line Transaction Processing (OLTP) in the operational databases, the
purpose of data warehouse is to help analysts On-Line Analytical Processing (OLAP).
Therefore, to facilitate complex analyses and achieve high query throughput is the
most important consideration in the data warehouse. Table 5-1 lists the major
differences between the operational database and the data warehouse [17][45]. Thus,
data warehouses are usually maintained separately from the organization’s operational

databases.

Table 5-1: Differences between the operational database and the data warehouse

Aspects Operational database Data Warehouse
User ® Data entry clerk ® Decision maker
® System designer ® Knowledge worker
® System administrator: |® Executives
Function ® Daily operations ® Decision support
® OLTP ® OLAP
DB Design ® Application oriented ® Subject oriented
Data ® Current ® Historical
® Up-to-date atomic ® Summarized
® Relational(normalized) |(® Multidimensional
® [solated ® Integrated
Usage ® Repetitive routine ® Ad hoc
Access ® Read/write ® Read mostly
® Simple transaction ® Complex query
System Requirements |® Transaction throughput |® Query throughput
® Data consistency ® Data accuracy

Developing a data warchouse often extracts user-interesting information from
each source (operational database) in advance, then merging the relevant information,
and consequently installing into a structurally centralized repository for later analysis.
The data warehouse often adopts a multidimensional data model to prepare the data

for analytical processing under multidimensional consideration. The star schema

92

consisting of a fact table and a set of dimension tables is the most used form in the
multidimensional data model. The fact table contains user-interesting measure
attributes, which are the objects for analysis, and key attributes (identifiable attributes)
to each of the related dimension tables. The dimension table contains additional
attributes to further describe each of key attributes in the fact table. The
multidimensional data model provides users a clear and multidimensional view of

data. Data can be easily accessed by manipulating the dimensions.

5.3 Knowledge Warehouse

For providing efficient online mining, the knowledge warehouse is initiated from
the concept of effectively utilizing previously discovered patterns in incremental
mining. As we know, for not wasting the previotisly mined patterns and improving
rule maintenance performance, incremental mining algorithms always keep the mined
patterns into the storage for later use. For providing multidimensional consideration,
the knowledge warehouse is further referred to the multidimensional data model of
data warehouse capable of supporting ad-hoc queries and decision making by
aggregation functions and OLAP operations.

As the data under decision-support consideration does not evolve in an arbitrary
way (e.g., the data in the data warehouse may be inserted or deleted in a block during
an interval of a month [32]), the knowledge warehouse is thus proposed to structurally
and systematically store the context information and mining information for each
inserted dataset. The context information is used to represent the contexts of each
individual block of data which are gathered together from a specific business
viewpoint, such as region, time and branch. The mining information is used to record

the available information mined from each individual block of data by a batch mining

93

algorithm, such as the number of data, the number of mined patterns, and the set of
previously mined patterns with related information. Conceptually, the knowledge
warehouse is similar to the data warehouse for OLAP. Both of them systematically
preprocess the underlying data in advance, integrate related information, and store the
results in a centralized structural repository for later use and analysis. However, the
data warehouse is mainly used to store mined patterns at knowledge level but not data
at information level. Table 5-2 lists the major differences between the knowledge

warehouse and the data warehouse.

Table 5-2: Differences between the knowledge warehouse and the data warehouse

Aspects Data Warehouse Knowledge Warehouse
Function ® OLAP ® Online mining
Data ® Historical ® Mined
® Summarized ® Multidimensional
® Multidimensional
® Integrated
Access ® Read mostly ® Read only
® Complex query ® Mining query
System Requirements |® Query throughput ® Mining throughput
® Data accuracy ® Knowledge usability

The star schema can still be a concise and organized structure to model the
knowledge warehouse. The context information and mining information can be
represented by dimensions and measures, respectively. Example 5-1 shows a star
schema of the knowledge warehouse used to provide online generation of association
rules for product sales in a bicycle manufacturer. However, unlike the summarized
information on measure attributes in the data warehouse, the mining information in
the knowledge warehouse, such as the mined patterns, may not be directly aggregated
to satisfy users’ mining requests. Thus, the major challenge of the knowledge

warehouse is how to efficiently aggregate, generalize and manipulate the mining

94

information. In the next chapter, we will design corresponding aggregation and
generalization approaches to provide online mining supports on association rules.
Example 5-1: Figure 5-1 is a star schema of the knowledge warehouse for a
bicycle manufacturer. It consists of three dimensions, 7ime, Branch and Minsup, and
three measures, No Trans, No_Patterns and Pattern_Set. Of the three dimensions,
Time and Branch are nonnumeric dimension similar to that in a typical data
warehouse, and Minsup is a numeric dimension indicating the minimum supports for
the measures, No Patterns and Pattern Set. Of the three measures, No Trans is a
numeric measure that can be calculated similar to that in a typical data warehouse,
and No_ Patterns is also a numeric measure and decided by Pattern Set, and
Pattern_Set is a set measure that represents a collection of frequent itemsets with their
supports under the corresponding: time and branches and satisfying a minimum

support in Minsup dimension.

~ Time ~ Branch
dimension table dimension table
time key = —/branch_key A
day sales branch name
month fact table region
. year) | [time_key N country
branch _key [— J
minsup_key
Mi Pattern_Set
insup
dimension table W) LFEETIE
- N _ No_Trans)

minsup_key
minsup_value

AN J

Figure 5-1: An example of the star schema of a knowledge warehouse

95

5.4 Online Knowledge Discovery System (OKDS)

Based on the proposed knowledge warehouse, a systematic, automatic, integrated,
and on-demand architecture, called Online Knowledge Discovery System (OKDS),
can be developed to provide managers and decision-makers multidimensional online
mining supports. The OKDS, as shown in Figure 5-2, mainly consists of five major
components, knowledge client, knowledge warehouse, knowledge organizer, mining

agent, and underlying storage facility.

Knowledge
Client 1

Knowledge
Client 2

Knowledge
Client m

Knowledge Warehouse
R

A

Knowledge Organizer

_— T

Mining Mining Mining
Agent 1 Agent 2 Agent n
/ [A
Underlying Underlying Underlying
Storage Facility 1 Storage Facility 2 Storage Facility n
1 ‘ n
[T

Figure 5-2: The OKDS architecture

Whenever a new block of data is inserted into a underlying storage facility, the
corresponding mining agent will systematically and continuously mine potentially

useful patterns from the block of data as the mining information; then the knowledge

96

organizer will structurally store the mining information associated with related

context information in the knowledge warehouse; and thus users can utilize

aggregation and generalization functions in the knowledge client for online generation

of patterns. On the other hand, when an old block of data is deleted from a underlying

storage facility, its corresponding context and mining information will be removed

from the knowledge warehouse by the knowledge organizer.

® Underlying storage facility: A underlying storage facility is served as materials
supplier in OKDS to provide underling, purpose-oriented and pre-processed data.
Therefore, it can be a data warehouse, a preprocessed database or a cleaned file.

® Mining agent: Agents often play autonomous, adaptive and intelligent roles in a
distributed system. For example, for an intelligent travel service system, a
traveling agent follows the user setting or the user profile to collect interesting
traveling paths and hotel coupons; a scheduling-agent follows the user program,
weather prediction and news to”previdesproper periods for traveling; and a
coordinator agent is responsible for.coordinate the traveling and scheduling
agents capable of obtaining proper traveling packages and suitable schedules for
users. Thus, a mining agent mainly follows the user setting to periodically detect
the data changes in a underlying storage facility, automatically mining potential
patterns from a underlying storage facility and reporting the results to the
knowledge organizer. The knowledge organizer is served as the coordinator
agent of mining agents.

® Knowledge organizer: The knowledge organizer is responsible for periodically
maintaining the patterns in the knowledge warehouse. Its works include
collecting the discovered patterns from each mining agent, merging or

summarizing these ones as the mining information, and then storing them

97

associated with corresponding context information into the knowledge
warehouse. For improving the performance of fulfilling user requests, the
knowledge organizer is also responsible for constructing and maintaining the
materialized views of knowledge warehouse.

Knowledge client: A knowledge client is an interface used for receiving user’s
mining requests, transferring a mining request to an operating procedure for the
knowledge warehouse, and reporting mining results to users. For convenient to
understand and evaluate the mining results, it is also responsible for providing

visualization services.

98

Chapter 6
Multidimensional Online Mining Algorithms for

Generation of Association Rules

6.1 Introduction

Previous works on mining association rules can be classified into batch mining
[5][16][40][53][61][67][78][95] and incremental mining approaches [8][20][21]
[27][43][77][85] according to their processing procedures. Most focus on finding
association rules in specified parts of databases that satisfy the user-specified
minimum support and minimim: confidence [11][15][37][52][65]. Some contexts
(circumstances) such as regiofi, time,7and~-branch are usually ignored in mining
requests, and thus they usually can not flexibly obtain association rules from portions
of data, diversely consider problems and provide on-line decision supports for users.

To provide ad-hoc, query-driven and online mining support for generation of
association rules, we first propose a relation called the Multidimensional Pattern
Relation (MPR) as a form of knowledge warehouse to structurally and systematically
store context and mining information for later analysis [90][92]. We then develop an
online mining approach called Three-phase Online Association Rule Mining
(TOARM) based on this proposed MPR to support online generation of association
rules under multidimensional considerations. The TOARM approach consists of three
phases, candidate itemset generation, candidate itemset reduction, and association

rule generation, during which final sets of patterns satisfying various mining requests

99

are found. The candidate itemset generation phase selects tuples that satisfy the
context constraints in mining requests and generates candidate itemsets from the
matching tuples. The candidate itemset reduction phase then calculates upper-bound
supports for the candidate itemsets and uses two pruning strategies to reduce the
number of candidates. Finally, the association rule generation phase finds final

frequent itemsets and derives association rules from them.

6.2 Related Work

Recently, researchers have developed online mining algorithms to obtain
required sets of association rules without re-processing the entire database whenever
user-specified thresholds are changed. Examples are the OLAP-style algorithm
proposed by Aggarwal and Yu [L} and the Carmaralgorithm proposed by Hider [41].
The OLAP-style algorithm is quite similar to a typical incremental mining algorithm
that utilizes previously mined patterns to save on I/O and computation. It first stores
primary itemsets based on a low minimum Support criterion in a latticed data structure,
and then responds to users’ queries with higher minimum support criteria by
processing the lattice. It thus preprocesses the data just once, but can efficiently
handle multiple user queries. The Carma algorithm attempts to provide intermediate
results as feedback to users while databases or minimum support thresholds are being
changed. Users are thus able to dynamically adjust thresholds according to
intermediate results. The Carma algorithm uses two runs. During the first run, it
constructs a lattice composed of all potential frequent itemsets from the transactions.
Each itemset in the lattice uses a lower bound and an upper bound to record its
possible support range. When a mining request is input, itemsets in the lattice whose

support ranges cover or are larger than the new minimum support threshold are output

100

to the second run. During the second run, the Carma algorithm finds the precise
support for each itemset from the first run to determine whether it is truly large.

Interestingly, many large organizations have multiple databases distributed at
different branches. Traditional data mining algorithms may put all data from different
databases in a common repository for centralized analysis. This kind of mining causes
some problems. The collected data may be too huge to be coped with, and some
useful rules or patterns regarding local databases may be lost. As a result,
multi-database mining has recently been recognized as an important research topic
and some studies [50][98][105] on mining association rules over multi-databases have
been proposed. These approaches mine rules or patterns at different databases and
then gather the mined results.

These online mining and multi-database ‘mining approaches do not, however,
maintain a repository to systematically and structurally store the mining information

and related context information for latet flexible;analysis.

6.3 Multidimensional Pattern Relation (M PR)

In this section, we formally define the Multidimensional Pattern Relation (MPR)
for storing context information and mining information for later analysis. First, a
relation schema R, denoted by R(A;, A, ..., A,), is made up of a relation name R and a
list of attributes A;, 4, ..., A,. Each attribute 4; is associated with a set of attribute
values, called the domain of 4; and denoted by dom(4;). A relation r of the relation
schema R(4,, 4>, ..., Ay) is a set of tuples {¢,, t,, ..., t,,}. Each tuple #; is an ordered list
of n values <v;;, vis, ..., vi,>, where each value v; is an element of dom(4;).

A Multidimensional Pattern Relation Schema (MPRS) is a special relation

schema for storing mining information. An MPRS consists of three types of attributes:

101

identification (ID), context, and content. There is only one identification attribute for
an MPRS. It is used to uniquely label tuples. Context attributes describe the contexts
(circumstances) of an individual data block, gathered together from a specific
business viewpoint. Examples of context attributes are region, time, and branch.
Content attributes describe available mining information discovered from each
individual data block by a batch mining algorithm. Examples of content attributes are
number of transactions, number of mined patterns, and the set of previously mined
frequent itemsets with supports.

The set of all patterns, with supports, previously mined from an individual data
block is called a pattern set (ps) in this study. Assume the minimum support is s and /
frequent itemsets are discovered in a data block. A pattern set can be represented as ps
= {(x;, 5;) | s; 2 s and 1< i <[}, where x; is a frequent itemset and s; is its support. The
pattern set is thus an essential content attribute of an inserted block of data.

An MPRS with n; contextattributes-andzz content attributes can be represented

as MPRS(ID, CXx,, CX,, ..., Can, CN,,"CN,, ..., CNn2), where ID is an

identification attribute, CX;, 1 < i < ny, is a context attribute, and CN;, 1 <i<mp, is a
content attribute. Assume the MPR to be an instance of a given MPRS that includes
the tuples {#;, t>, ..., tn}. Each tuple t;, = (id,, cx,, cx,, ..., cx

Ch,, CHy,y ooy

cn,,) in MPR indicates that for the block of data identified by the contexts cx;,

CX;5, ..., and cx, , the mined information contains cn,, cn,,...,and cn, .

in ?

Table 6-1: An MPR with minimum support = 5%

ID | Region Branch Time | No_Trans | No_Patterns (Itfr::;teet’,‘%zj;f)r 9
(A,10%),(B,11%),(C,9%),

1 CA |San Francisco | 2003/10 10000 7 (AB,8%),(AC,7%),(BC,6
%),(ABC,6%)

102

2 | CA |San Francisco | 2003/11 | 15000 3 (A.5%)(B.7%)(C.5%)
3 | CA |San Francisco | 2003/12 | 12000 2 (A.5%).(C.9%)
4 | CA |LosAngeles | 2003/10 | 20000 3 (A.8%)(B.6%)F.5%)
5 | CA |LosAngeles | 2003/11 | 25000 2 (A.5%).(C.6%)

(A.6%).(B.6%).(C.0%),
6 | CA |LosAngeles | 2003/12 | 30000 4 e
71 NY [New York 2003/10 | 18000 3 (B.8%).(C.7%)(BC.6%)
§ | NY [New York 2003/11 | 18500 2 (B.8%)(C.6%)

0 0 0

9 | NY [New York 2003/12 | 19000 5 (A,5%),(B,9%),(C.8%),

(D,6%),(BC,6%)

Example 6-1: Table 6-1 shows an MPR with the initial minimum support set to
5%. ID is the identification attribute, Region, Branch and Time are context attributes,
and No_Trans, No_Patterns and Pattern_Sets are content attributes. The Pattern Sets
attribute records the sets of frequent itemsets mined from previous data blocks. For
example, the tuple /D = 1 shows that seven frequent itemsets, {(A, 10%), (B, 11%),
(C, 9%), (AB, 8%), (AC, 7%), (BC,.6%),; and (ABC, 6%)}, were discovered from
10000 transactions and in the contexts-of Region = €A, Branch = San Francisco, and

Time = 2003/10. The other tuples have similar meanings. [

6.4 Three-Phased Online Association Rule Mining (TOARM) based

on MPR

The goal of online mining is to find association rules satisfying the constraints in
mining requests. The flexibility of mining requests can be increased by using the
proposed MPR. An online mining approach called Three-phase Online Association
Rule Mining (TOARM) is proposed to carry out mining tasks with an MPR. TOARM
first selects tuples from the relation that satisfy the constraints in a mining request. It
then integrates the mined information in these tuples and outputs them to users.
Before describing the TOARM approach, we first formally define the problem to be
solved and some related terminology. Some lemmas are also derived and proven.

Assume MPR = {¢,, t,, ..., t,,} 1s a multidimensional pattern relation based on an

103

initial minimum support s. Given a mining request ¢ with the set of contexts cx,, the
new minimum support s, (s, = s), and the new minimum confidence conf,, the
TOARM approach will effectively and efficiently derive association rules satisfying s,
confy and cx,. Tuples with cx, in an MPR are called matched tuples (mt). Let t; denote
the i-th tuple in an MPR, #.frans the number of transactions in ¢, #.ps the pattern set in
t;, and t.s, the actual support of an itemset x in #. Lemma 6-1 is easily derived as
follows.

Lemma 6-1: For each itemset x satisfying s, and cx, in a mining request g, there
exists at least a matched tuple ¢, such that z.s, satisfies s,.

Proof: We prove the lemma by contradiction. If #.s, < s, for each matched tuple

t;, then:
Zti trans Llt,.s < Zti trans s, . (6-1)
t;0mt t;0mt

It implies that the itemset'x does not satisfy sy, contradicting the claim that x
satisfies s,. Thus, there must exist at least a matched tuple ¢ with z.s, > s,. [|

According to Lemma 6-1, an itemset with support greater than or equal to s, in at
least one matched tuple is a possible candidate. The following lemma about candidate
itemsets can thus be derived.

Lemma 6-2: Each itemset x satisfying s, and cx, in a mining request g must be
among the candidate itemsets obtained by collecting the ones whose supports are
greater than or equal to s, in at least one matched tuple. [

Example 6-2: For the MPR given in Table 6-1, assume that a mining request ¢
calls for getting the patterns under the contexts cx, of Region = CA and Time =
2003/11~2003/12 and satistying the minimum support s, = 5.5%. The matched tuples
are shown in Table 6-2. According to Lemma 6-2, the set of candidate itemsets is

{{4}, {B}, {C}, {AB}}, which is the union of the itemsets appearing in the pattern

104

sets with supports greater than 5.5%. |

Table 6-2: Matched tuples in Example 6-2

ID | Region Branch Time No_Trans | No_Patterns Pattern_Sets
(Itemset, Support)
2 CA |San Francisco| 2003/11 15000 3 (A,5%),(B,7%),(C,5%)
3 CA |San Francisco| 2003/12 12000 2 (A,5%),(C,9%)
5 CA Los Angeles | 2003/11 25000 2 (A,5%),(C,6%)
6 CA Los Angeles | 2003/12 30000 4 (A,6%),(B,6%),(C,9%),
(AB,6%)

The following relation can be derived for a candidate itemset x and its proper
subsets.

Lemma 6-3: If x is a candidate itemset, then [Ix’ [x, x’ is also a candidate
itemset.

Proof: 1f x’ U x, then t.5,x2 f.s, for.each tuple #; in an MPR. According to
Lemma 6-2, if x is a candidate itemset, there‘must exist at least a matched tuple # with

t.sx 2 s4. Thus, t.sy 2 t.s, 2 s, for'the tuple £.x"is thus a candidate itemset. |

appearing
X

The appearing count Count of"a candidate itemset x is defined as the

count of x calculated from the matched tuples in which x appears. Thus:

Count!”™ = >t transk,.s,. (6-2)

t;0mt & xUt; . ps
The upper-bound count Count.’ of a candidate itemset x is defined as the

upper bound count of x calculated from the matched tuples in which x does not appear.

Thus:

Count.” = Z (¢, trans s —1). (6-3)

t;0mt & xOt; . ps
Let Match_Trans denote the number of transactions in the matched tuples. Thus:

Match Trans = z t trans . (6-4)

t;O0mt

105

The upper-bound support s.° of a candidate itemset x is thus calculated as:

i B
vz Count ™™ + Count’’
S =

; (6-5)
Match _Trans

Lemma 6-4: If x is a candidate itemset and s_ is its actual support, then s <

UB

Proof:

z t trans Ll .s

t;0mt
Sy =
Z t,.trans
t;Omt
Zti trans Ut,.s + Zti trans U, s,
t;0mt & xUt; . ps t;0mt & x(lt;. ps
z t,.trans
t;Omt
Zti trans Ut,.s -+ Z (¢,.trans (s’ 1)
< t;0mt & xUt; . ps t;0mt & xUlt; . ps
B Z t,.trans
t;Ome
appearing UB
_ Count; + Count;
Match Trans
_ UB
= 5. .
UB
Thus s, < s . [

Example 6-3: Continuing Example 2, the upper-bound supports of the four

candidate itemsets {4}, {B}, {C}, and {4B}, are calculated as follows:

appearing UB
us _ Count + Count;

ub =
Match _Trans
_15000%* 5% + 12000 * 5% + 25000 * 5% + 30000 * 6%

15000+ 12000 + 25000 + 30000

=0.0537,

appearing UB
vB _ Count) + Count

? Match Trans

106

_15000%*7% + 30000%* 6% + 12000 * 5% - 1+ 25000* 5% - 1

=0.0573,
15000+ 12000 + 25000 + 30000

appearing UB
us . Count; + Countz

¢ Match _Trans

_15000%* 5% + 12000 * 9% + 25000 * 6% + 30000 * 9%

=(0.0735, and
15000 + 12000 + 25000 + 30000

i UB
Count{¥*" + Count=,

UB _ AB

S —_
a» Match _Trans

_30000%*6% +15000* 5% - 1+12000* 5% - 1+ 25000* 5% - 1
15000+ 12000 + 25000 + 30000

=0.0536.

L emma 6-5: If x is a candidate itemset, then Ox’ O x, s. = s, .

Proof: If x’ U x, then t,.5, 2 t,.5,7for each tuple ¢; in an MPR. Therefore:

ing UB
UB Count’”*"" + Count-,
X

* Match _Trans

Zti trans L, .s .+ Z(tl. trans Els —1)

t;0mt & x'0t;. ps t;0mt & x'Ot;. ps

Z t,.trans

t;0mt

Zt[trans [lt,.s . + Zt[trans [lt,.s . + Z(tl. trans Us —1)

_ t;0mt & x'Tht; . ps& x0t; . ps t;0mt & x'0t;. ps& xLt; . ps t;0mt & x'0t;. ps
Z t,.trans
t;Omt
Z t trans Lt,.s + Z (t,.trans Us —1) + Z (t,.trans Us —1)
> t;0mt & x'0t;. ps & x[t; . ps t;0mt & x'Ot;. ps & x[t;. ps t;0mt & x'Ct; . ps
Z t, trans
t;O0mt

Zti trans [t,.s + Z(tl. trans s —1)

t;0mt & xOIt; . ps t;0mt & xUit; . ps

Z t,.trans

t;0mt

7 B
Count ™™ + Count"

Match _Trans

107

UB UB
Thus, s = s, . |

L emma 6-6: If a candidate itemset x is contained in all matched tuples, then s."
= Sy

Proof: If x is contained in all the matched tuples, then:
Z t trans Lt .s

7 UB
$UB Count ™" + Count.” ;G
* Match Trans t. trans
— 1

=5 [|

Example 6-4: Continuing Examples 2 and 3, according to Lemmas 6-4 and 6-5,
candidate itemsets {4} and {4B} will be pruned since {AB} is a proper superset of {4}
and the upper-bound support of {4} is less than s, (= 5.5%). According to Lemma 6-6,
the candidate itemset {C} will be'put into-the set-of final frequent itemsets since it
appears in all matched tuples and its support’is greater than 5.5%. Only the remaining

candidate itemset {B} needs further processing. |

The TOARM approach for carrying out mining tasks with an MPR consists of
three main phases, candidate itemset generation, candidate itemset reduction, and
association rule generation. The candidate itemset generation phase selects tuples
that satisfy the context constraints in mining requests and generates candidate itemsets
from matched tuples. The candidate itemset reduction phase then calculates the
upper-bound supports for the candidate itemsets and uses two pruning strategies to
reduce the number of candidates. Finally, the association rule generation phase finds
final frequent itemsets and derives association rules from them. The proposed

three-phase online mining approach is described in Figure 6-1.

The Three-phase Online Association Rule Mining (TOARM) approach:

108

INPUT: An MPR based on an initial minimum support s and a mining request ¢ with
a context set cx,, a minimum support s, (s, = s)and a minimum confidence
confy.

OUTPUT: A set of association rules satisfying the mining request g.

Phase I: Candidate itemset generation:

(a) Select tuples satisfying cx, from the MPR.

(b) Gather the candidate itemsets appearing in the matched tuples.

(c) Calculate Count™ ™ and Count." for each candidate itemset x.

Phase 2. Candidate itemset reduction:
UB

(a) Calculate the upper-bound support S+ for each candidate itemset x using:
GUB Count™™ + Count’®
) Match _Trans

(b) Discard candidate itemset x and its proper supersets if si/B < sq.

appearing
v _ Count;

(c) Put x into the set of frequent itemsets if s, =————— and SijB =5,
Match _Trans

Phase 3: Association rule generation:

(a) Check whether each remaining candidate itemset x is large by scanning the
underlying blocks of data for the matched tuples in which x does not appear.

(b) Generate association rules satisfying the. minimum confidence conf, from the set
of frequent itemsets.

Figure 6-1:/The TOARM algorithm

The TOARM approach considers‘only itemsets appearing in matched tuples and
satisfying minimum support as candidates. It also uses two pruning strategies to
reduce the number of candidate itemsets. It therefore only needs to re-process the
remaining candidate itemsets against the underlying blocks of data for matched tuples
in which they do not appear. For this reason, the cost of re-processing underlying
blocks of data by the TOARM approach is less than that of typical batch mining or
incremental mining approaches (experimental results presented below show this).

Theorem 6-1: The TOARM approach can correctly obtain association rules in
response to an on-line mining request ¢ as long as its minimum support s, is greater
than or equal to the initial minimum support s for getting the MPR.

Proof: According to Lemma 6-2, all candidate itemsets for g are collected in

Phase 1 of the TOARM approach. After that, the candidate itemsets whose

109

upper-bound supports are less than s, are pruned in Phase 2 (b) of the TOARM
approach according to Lemmas 6-4 and 6-5. Also, the candidate itemsets which
appear in all the matched tuples can know their actual supports according to Lemma
6-6. If they satisfy s,, they are put into the set of final frequent itemsets in Phase 2 (c)
of the TOARM approach. Finally, the actual supports of the remaining candidate
itemsets can be found by Phase 3 (a) of the TOARM approach from the underlying
blocks of data. The final frequent itemsets can then be determined. The association

rules can thus be derived by Phase 3 (b) of the TOARM approach. |

6.5 Negative-Border Online Mining (NOM) based on Extended MPR

(EMPR)

Although the proposed TOARM approach based on a well-defined MPR can
flexibly obtain association rules or patterns from portions of data, diversely consider
problems at different aspects and provide-on=line decision supports for users, it may
get loose upper-bound supports of candidate itemsets for heterogeneous blocks of data
and thus cause excessive /O and computation costs to re-process them against the
underlying database. As a result, we attempt to apply the concept of negative border
[60] to calculate tighter upper-bound supports of candidate itemsets and then reduce
the number of candidate itemsets to be considered [91][93]. The MPR is first
extended for keeping the additional negative-border information. Based on the
extended MPR (EMPR), we then develop an online mining approach called
Negative-Border Online Mining (NOM) to efficiently and effectively utilize the
information of negative itemset in the negative border.

Definition 6-1: An Extended Multidimensional Pattern Relation Schema

(EMPRS) with n; context attributes and n, content attributes can be represented as

110

EMPRS(ID, CX,, CX,, ..., CX,, CN,, CN,, ..., CN,), where ID is an

identification attribute, CX;, 1 < i < ny, is a context attribute, and CN;, 1 < i < np, is a
content attribute. |
Definition 6-2: An Extended Multidimensional Pattern Relation (EMPR)

including tuples {¢,, t, ..., t,} is an instance of the given EMPRS(ID, CX,, CX,, ...,

CX,, CN,, CN,, ..., CN,). A tuple t; = (id,, cx,, Xy, ..., CX, , Cny,
cny, ..., cn,,) in an EMPR indicates that for the block of data under the contexts of
CX;y5 CX;yy.ons CX,, , the mining information contains cn,, cn,, ..., cn,, . |

The frequent pattern set and the negative pattern set are two essential content
attributes which are defined as follows.

Definition 6-3: A frequent pattern set (fps) for a block of data D is the set of all
previously mined frequent itemsets with their supports for D. Assume the minimum
support is s and the number of frequent-itemsets discovered from D is [. A frequent
pattern set can be represented as fps = {(xi; 89| s; = s and 1< i < [}, where x; is a
frequent itemset and s; is its support. |

Definition 6-4: A negative pattern set (nps) for a block of data D is the set of all
previously mined negative itemsets with their supports from NB (fps) for D. |

Below, an example is given to illustrate the above concepts.

Example 6-5: Table 6-3 shows an EMPR with the initial minimum support set to
5%. ID is an identification attribute, Region, Branch and Time are context attributes,
and No_ Trans, No Patterns, Frequent Pattern_Set and Negative Pattern_Set are
content attributes. The two attributes of Frequent Pattern Set and
Negative Pattern_Set respectively record the sets of mined frequent itemsets and

negative itemsets from the corresponding data blocks. For example, the tuple with /D

111

= 1 shows that seven frequent itemsets {(A, 10%), (B, 11%), (C, 9%), (AB, 8%), (AC,

7%), (BC, 6%), (ABC, 6%)} and one negative itemset (D, 2%) are discovered from

10000 transactions under the contexts of Region = CA, Branch = San Francisco and

Time = 2003/10. The other tuples have similar meanings.

Table 6-3: An EMPR with minimum support = 5%

Frequent Pattern_Set

Negative Pattern_Set

ID|Region Branch Time |No_Trans| No_Patterns (Itemset, Support) (Ttemset, Support)
1| CA [San Francisco |2003/10| 10000 8 (A,10%),(B,11%),(C,9%), |(D,2%)
(AB,8%),(AC,7%),(BC,6
%),(ABC,6%)
2| CA [San Francisco [2003/11] 15000 7 (A,5%),(B,7%),(C,5%) |(D,1%),(AB,2%),(AC,2%
).(BC,1%)
3| CA [San Francisco |2003/12] 12000 5 (A,5%).(C,9%) (B.4%)(D,1%),(AC4%)
4| CA [LosAngeles |2003/10] 20000 8 (A,8%),(B,6%),(F,5%) _ |(C,2%),(D,3%),(AB,3%),
(AF,4%),(BF,3%)
5| CA |LosAngeles |2003/11] 25000 5 (A,5%),(C,6%) (B,3%),(D,4%),(AC,3%)
6| CA |LosAngeles [2003/12] 30000 7 (A.6%),(B,6%),(C.9%), |(D,3%),(AC,4%),(BC,3%
(AB6%))
7| NY [NewYork |2003/10] 18000 5 (B.8%).(C.7%).(BC.6%) |(A,2%).(D,2%)
8| NY |NewYork |2003/11] 18500 5 (B.8%)(C.6%) (A, 4%),(D,2%),(BC,3%)
9 NY |NewYork [2003/12] 19000 10 (A,5%).(B,9%),(C,8%), |(AB,4%),(AC,4%),(AD,2
(D,6%).(BC,6%) %),(BD,4%)(CD,4%)
Example 6-6: For the EMPR in Table 6-3, assume a mining request ¢ wants to get
the patterns with the contexts cx, of Region = CA and Time = 2003/10 and satisfying
the minimum support s, = 5.5%. The matched tuples are shown in Table 6-4.
According to Lemma 6-2, the set of candidate itemsets is {{4}, {B}, {C}, {4B},
{AC}, {BC}, {ABC}}, which is the union of the itemsets appearing in the frequent
pattern sets and with their supports larger than 5.5%. |
Table 6-4: The matched tuples in Example 6-6
. . Frequent_Pattern_Set | Negative Pattern_Set
ID|Region Branch Time |No_Trans| No_Patterns (Itemset, Support) (Ttemset, Support)
1| CA [San Francisco |2003/10| 10000 8 (A,10%),(B,11%),(C,9%),|(D.2%)
(AB,8%),(AC,7%),(BC,6
%),(ABC,6%)
4| CA |LosAngeles |2003/10] 20000 8 (A,8%).(B,6%),(F,5%) |(C,2%),(D,3%),(AB,3%),

112

| | | | | [(AF.4%)(BF,3%)

Based on the EMPR, the appearing and upper-bound counts of a candidate

itemset is re-defined as follows.

appearing
X

Definition 6-5: The appearing count Count of a candidate itemset x is

the sum of the counts of x appearing in the frequent pattern sets or negative pattern

sets of matched tuples. Thus:

X

Count ™™ = D t,arans k... (6-6)

t;0mt & xUt;.. fpsOt; .nps

|
Definition 6-6: The upper-bound count Count.’ of a candidate itemset x is the

sum of the upper-bound counts of x_netappearing in the frequent pattern sets and

negative pattern sets of matched tuples. Thus:

Countg P = Z min(t, frans*s — Lt trans * min(t,.s .)). ~ (6-7)
t;0mt & xUt;.. fpsOt; .nps Clx

|
Example 6-7: Continuing from Example 6-6, the upper-bound supports of the

seven candidate itemsets {4}, {B}, {C}, {4B}, {AC}, {BC} and {ABC} are calculated

as follows:

U - Count ™™ + Count” _ (10000* 10% + 20000* 8%) +0 _ 0.0867
A Match _Trans 10000 + 20000 S

= Count ™" + Counts” (10000 * 11% + 20000 * 6%) +0 _ 0.0767
? Match _Trans 10000 + 20000 ' ’

e Count™*™ + Countt” _ (10000* 9% + 20000 * 2%)+0 _ 0.0433
¢ Match _Trans 10000 + 20000 R
v _ Count 7™ + Count", _ (10000* 8% + 20000* 3%) +0 __ 0.0467

Sap ~

Match _Trans 10000 + 20000

113

o _ Count "™ + Count = _ (10000* 7%)+(20000* 2%) _ 0.0367
e Match _Trans 10000 + 20000 ' ’
o _ Count "™ + Countyz_ (10000 6%)+ (20000 * 2%) _ 0.0333 . and
Be Match _Trans 10000 + 20000 ’
o Count s + Countg - (10000* 6%)+ (20000 2%) _ 00333
ABC : ‘
Match _Trans 10000 + 20000

Let sijB denote the upper-bound support of a candidate itemset x in the EMPR

and szOM denote the upper-bound support of a candidate itemset x in the MPR. The

old
following lemma can easily be derived to show sijB is tighter than si]B

UBu/d

Lemma 6-7: If x is a candidate, itemset,'then s~ < s,

Proof:
Count "™ = Dt dransiss,
t;0mt & x[t;. fpsOt;inps.
= Zti trans Lt,.s + Zti trans L, .s
t;0mt & xUt; . fps t;0mt & x[It; .nps
< Zt[trans ;s + Z(t[trans Us —1);
t;0mt & xUt; . fps t;0mt & xOlt; .nps
UB _ . " I
Count.” = Z min(t, trans * s —1,t, trans * min(t,.s .))
t;0mt & xUt;. fpsOt; .nps CCx
< Z (t,trans Us — 1) ;
t;0mt & xU; . fpsOt; .nps
] UB
UB Count f:p peariE Count;
S =
* Match _Trans
Zti trans Llt,.s + Z(ti trans Us —1) + Z (¢, .trans Us —1)
< t;0met & xIt;.. fps t;0mt & xUt; .nps t;0mt & xU; . fpsOt; .nps

Match _Trans

114

Zti trans Llt,.s _ + Z(ti trans Us —1)

t;0mt & xUt; . ps t;0mt & x[It; . ps

Match _Trans

UBaId

old

UB UB
Thus, s~ < s, . |

The following lemmas are important to the design of the proposed mining

algorithm.

UB
.

Lemma 6-8: If x is a candidate itemset, then s < s
Proof: For each x” U x, t;.5, 2 t..s, for each tuple 7. There are two possible cases
for x’.

Case 1: If [k’ U t..nps, then:

z t trans Lt s,

t;Omt
Sy =
z L, trans
t;0mt
Zt[trans Ot.s + Zt[trans L, .s
_ ;0met & X, fpsOt; .nps t;0mt & x0t;. fpsOt; .nps
z t,.trans
t;0mt
appearin, .
Count ™™ + > t,trans * min(t,.s)
< t;0mt & x0t;.. fpsOt; .nps CoDx
B Z t, trans
t;0mt
appearin, . .
Count ™™ + > min(t, trans * s —1,t, trans * min(t,.s)
Or'Ox

t;0mt & xU; . fps Ot; .nps

z t,.trans

t;Omt

7 UB
Count ™™ + Count

Match Trans

UB

Case 2: If Ux’ O t,.nps, then:

115

z t . trans Lk, s,

t;O0mt

z L, trans

t;Omt

Zt[trans [t,.s_+ Zt[trans LI, .s

t;0mt & xUt; . fps Ot; .nps t;0mt & x0t;.. fpsOt; .nps

z t,.trans

t;0mt

appearin,
Count ™™ + D (t,1rans*s = 1)
t;0mt & xUt;.. fpsOt; .nps

IN

Count ™™ + > min(t, trans * s —1,t, trans * min(t,.s)
Ox'Ox

t;0mt & xU; . fps Ot; .nps

z t,.trans

t;Omt

7 UB
Count ™™ + Count_

Match Trans

UB

UB
Thus, s, < s . |

X

UB

X

Lemma 6-9: If x is a candidate itemset, then Ux’ O x, sgB > s

Proof: For each x’ U x, .5, 2 t,.5, for each tuple ¢. Therefore:

appearing
¥

Count

= z t,trans L, .s .

t;0mt & x'T;. fpsOt; .nps

= Zti trans [t,.s . + Zt[trans [}, .s .
t;0mt & x'0t;.. fps Ot; .nps & xUt;.. fpsOt; .nps t;0mt & x'T; . fps Ot; .nps & xU; . fps Ot; .nps
appearin, . .
>Count """ + z min(t, trans * s —1,t, trans Umin(t,.s .));
Ox"Ox

t;0mt & x'T;. fpsOt; .nps & xO;. fpsOt; .nps
UB
Count

= z min(t, trans* s —1,t, trans Umin t,.s)
t;0mt & x'T; . fps0t; .nps Cor"Hx

116

> Z min(t; trans * s —1,¢, trans Umint,.s .) ;
t;0mt & xk;. fpsOt; .nps b

i UB
UB Count "™ + Count-
s, = =
! Match _Trans
ing UB
Count ™™ + Count
Match Trans
_ UB
=5, .
UB UB
Thus, s, = s . |

Lemma 6-10: If a candidate itemset x is contained in all the matched tuples, then

UB
S =58y

X

Proof: If x is contained in all the matched tuples, then:

Z t trans Ufas

i UB
vs_ Count™*"" + Count™ ;Gui
S = i
* Match _Trans E t, .trans

i

= Sy. |

Example 6-8: Continuing from Examples 6-6.and 6-7, according to Lemmas 6-8
and 6-9, the candidate itemsets {C}, {AB}, {AC}, {BC} and {4BC} will be pruned
since their upper-bound supports are less than s, (= 5.5%). According to Lemma 6-10,
the candidate itemsets {4} and {B} will be put into the set of final frequent itemsets
since it appears in all the matched tuples and its support is larger than 5.5%. No
remaining candidate itemsets needs to be further processed. |

The NOM approach with an EMPR consists of three main phases, candidate
itemset generation, candidate itemset reduction, and association rule generation,
which are the same as the TOARM approach. The NOM approach can correctly
obtain the association rules satisfying an on-line mining request as long as the new
minimum support is larger than or equal to the initial minimum support for getting the

EMPR.

117

6.6 LNOM: Algorithm Design and I mplementation

The NOM approach needs to calculate the appearing counts and the
non-appearing upper-bound counts of the candidate itemsets derived from matched
tuples. A straightforward way for finding these values is to process matched tuples
one after one for each candidate itemset. Assume £ is the number of matched tuples, m
is the average number of itemsets in the & matched tuples, and » is the number of
candidate itemsets generated from the £ matched tuples. The computation cost will be
O(knm) when the candidate itemsets are processed one by one. The computation cost
will, however, become large along with the increase of the itemsets kept in EMPR and
the candidate itemsets to be considered. In fact, in the NOM approach, many
candidate itemsets with the samg subsets.can bé.processed at the same time. For
example, in Tuple 4 of Example 66, the appearing count of the candidate itemset {C}
and the upper-bound counts of the candidate-itemsets {AC}, {BC} and {ABC} can be
calculated at the same time because they have the same subset {C}. On the other hand,
many itemsets kept in the matched tuples are useless for calculating the counts of
candidates since they are not the subsets of candidates and can be omitted. For
example, in Example 6-6, the itemsets {D}, {F}, {AF} and {BF} kept in the matched
tuples are not the subsets of the candidate itemsets and can be omitted. We thus try to
use appropriate data structures and design efficient algorithms to improve the
performance of the NOM approach.

At first, the problem of calculating the appearing and upper-bound counts of
candidate itemsets in a matched tuple is conceptually modeled by a graph and
converted into a directed-minimum-spanning-tree problem. The spanning-tree-count-

calculating (STCC) algorithm is then proposed to find the directed minimum spanning

118

tree. The lattice data structure [2][41] is utilized to organize and maintain all
candidate itemsets such that the candidate itemsets with the same proper subsets can
be considered at the same time. Consequently, by the STCC algorithm, the proposed
lattice-based NOM (LNOM) approach requires only one scan of the itemsets for each
matched tuple in Phase 1.

In addition, the hashing technique is used to filter out a part of itemsets kept in
the matched tuples which are useless for calculating the counts of candidate. The
NOM approach first hashes the set of candidate itemsets into a given hash table as
soon as they are collected. Each bucket of the hash table consists of an integer to
represent how many candidate itemsets have been hashed into this bucket. When an
itemset of a matched tuple is selected, the NOM approach calculates its hash value
and finds its corresponding bucket. If the value stored in the target bucket is equal to 0,
the itemset must be useless sinee it.is not a candidate itemset. It can thus be directly

omitted. The computational time can'thus-be-further reduced.

6.6.1 The Proposed L attice-based NOM (LNOM) Approach

The problem of calculating the appearing and upper-bound counts of candidate
itemsets in a matched tuple ¢ can be conceptually modeled by a graph. Let G = (V, E)
be a directed graph, where V' is the set of vertices representing all candidate itemsets
and E is the set of directed edges representing a-proper-subset-of relationships
between pairs of candidate itemsets. For each edge (u, v) U E, a weight w(u, v)
specifies the possible upper-bound count of the candidate itemset v estimated from the
candidate itemset u. Given a new vertex r representing the pseudo starting vertex, we
make a new graph G’ = (V°, E’), where V' =V U {r}, E’=E U {(r, u): u O V}. For

each edge (7, u), if u appears in ¢, the appearing count of u is assigned as the weight

119

w(r, u). For the case that u does not appear in ¢, meaning it is collected from the other
matched tuple(s), then w(r, u) = 0 if there exists one item contained in u but not
contained in ¢ and w(r, u) = t.trans*s—1 otherwise, where s is the initial minimum
support for deriving EMPR. The following lemmas formally show the above
concepts.

Lemma 6-11: G’ is an acyclic and connected graph.

Proof: 1t is obvious that the a-proper-subset-of relation on a set is transitive and
anti-symmetric. G’ is thus acyclic. Next, we prove G’ is a connected graph by
contradiction. If G’ is not a connected graph, there exists a vertex u which is not
reachable from the pseudo starting vertex r. This contradicts the definition of G’. Thus,
G’ is an acyclic and connected graph. [

Lemma 6-12: Let k be the number of items contained in a candidate itemset x.
The vertex u, has 2k1 incoming-edges in G .

Proof: 1f x is a candidate k=itemset;itrwill-appear in the frequent pattern set of at
least a tuple. Since x is large in that tuple,all its proper subsets except @are also large
and appear in that tuple. There are 252 proper subsets for x except @ In addition, the
incoming edge (7, u,) is used to link the two vertices » and u,. The vertex u, thus has
2%-1 incoming edges in G". [

Lemma 6-13: For a matched tuple ¢ in EMPR, if there exists one item contained
in a candidate itemset u# but not contained in ¢, then the upper-bound count of u is 0.

Proof: According to the concept of the negative border, all single items which
are not large must be put into the negative 1-itemsets. Since all the large and negative
itemsets for a block of data are stored in a corresponding tuple, if there exists one item
contained in a candidate itemset but not contained in the tuple, this item does not

appear in the corresponding block of data. The count of the item is thus O in this tuple,

120

causing the count of each itemset containing the item is also 0. This completes the
proof. |

Lemma 6-14: For a matched tuple # in EMPR, if a candidate itemset # does not
appear in ¢, then the maximum possible upper-bound count of u is t.trans*s—1.

Proof: Since u does not appear in ¢, it is not a frequent itemset. The support of u
in ¢ must thus be less than the minimum support s. Therefore, the count of u in # must
be less than t.trans*s. The maximum possible upper-bound count of u is thus
t.trans*s—1. |

Example 6-9: For the EMPR given in Table 6-3 and the mining request in

Example 6-6, the graph model for Tuple 4 is generated as shown in Figure 6-2. W

t.trans*5%-

t.rans*5%-1

Figure 6-2: The graph model of candidate itemsets for Tuple 4 in Table 6-4

For each vertex other than 7 in G’, the smallest weight on all its incoming edges

is its tight upper bound count. The count-calculation problem can thus be easily

121

thought of as the directed-minimum-spanning-tree problem [30], which wishes to find

a rooted directed spanning tree 7= (¥, §’) from G’, such that S’ is a subset of £’ and

Zw(u,v) is a minimum. The spanning-tree-count-calculating (STCC) algorithm
(u,v)0S

shown in Figure 6-3 is thus proposed based on the above concept for efficiently
finding the counts of all candidate itemsets in a tuple. The STCC algorithm first
selects an itemset appearing in ¢ and with the smallest support. It then estimates the
upper-bound count of each itemset reachable from the selected one in the graph, and
thus avoids recalculating the counts of these traversed vertices in the future. This
requires only one scan of the itemsets in ¢ if they have been sorted according to their

supports.

The spanning-tree-count-calculating (STCC) algorithm:

INPUT: The graph of candidate itemsets G = (V’, E*) derived from the EMPR, and a
matched tuple ¢ in EMPR,

OUTPUT: The minimum spanning tree of candidate itemsets 7= (V, S°).

STEP 1: Set ProcessedSet = @& where ProcessedSet is a set used to keep the vertices in
G’ which have been traversed.

STEP 2: Select an itemset x appearing in ¢ and with the smallest support ¢.s;.
STEP 3: If x O 7’ (i.e., x is a candidate itemset), set Count ™™ = t.trans * t.s,,

ProcessedSet = ProcessedSet [1 {x}, and do STEP 4; otherwise (i.e., x is not
a candidate itemset), do nothing and go to STEP 5.

STEP 4: For each y reachable from x and y U ProcessedSet, set Coum‘;j ' =

min(t.trans * s-1, t.trans * t.s,) and ProcessedSet = ProcessedSet [1 {y}.
STEP 5: Repeat STEPs 2 to 4 until all the itemsets appearing in ¢ are processed.
STEP 6: If |ProcessedSet| # || (i.e., some candidate itemsets do not appear in the

underlying dataset of 7), set Count." =0 for each remaining itemset x [V",

Figure 6-3: The STCC algorithm

122

Example 10: Continuing Example 3, the negative itemset {C} with 2% will be
first selected by the proposed STCC algorithm to calculate the appearing count of
itself and the upper-bound counts of {AC}, {BC} and {4BC}. Then, the itemsets {D}
with 3%, {4B} with 3%, {B} with 6% and {4} with 8% are selected in turn. Among
them, the support information of {D} is useless because it is not a candidate itemset.

Figure 6-4 shows the directed minimum spanning tree found from Figure 6-2. [

t.trans*5%-

t.trans*5%-1

Figure 6-4: The directed minimum spanning tree found from Figure 6-2

The STCC algorithm mentioned above can be efficiently implemented by the
lattice data structure [2][41], which organizes all candidate itemsets in a systematic

way. The lattice is constructed as follows. For each candidate itemset x, a
corresponding vertex u, associated with a pair of values (Count ™™ ,Count.") is

built in the lattice. For any pair of vertices u, and u, corresponding to candidate

itemsets x and y, there is a directed edge from u, to u, if x is a parent of y. An itemset

123

x is said to be a parent of an itemset y if y can be obtained by adding an item to x, and
inversely, y is said to be a child of x. Therefore, a candidate itemset may have more
than one parent and more than one child in the constructed lattice.

Example 6-11: Consider the candidate itemsets illustrated in Example 6-6. The
lattice to represent the candidate itemsets is illustrated in Figure 6-5, where the vertex

labeled “Null” denotes the greatest lower bound of the lattice. [

appearing _
(Count . ™ =0,

UB _
Count— =0)

appearing _ appearing _
(Count ;.. =0, (Count . =0,

UB UB _
Count— =0) County; =0)

(Count ™™ =0,

Countgg =0)

appearing _
(Count =0,

UB _
Count—; =0)

(Countg™ ™ =0

Count;B =0)

(Count™""* =0

Count%g =0)

Figure 6-5: The lattice to represent the candidate itemsets illustrated in Example 6-6

The lattice structure is used to efficiently find the appearing and upper-bound
counts of candidate itemsets in each tuple and to accumulate these values when the
tuples are processed one by one. By the connected edges in the lattice structure, the
proposed lattice-based NOM approach (called LNOM) can not only restrict the
number of candidate itemsets to be examined, but also easily consider candidate
itemsets with the same proper subsets at the same time. The detailed LNOM

algorithm will be described in Section 6.6.3.

124

6.6.2 Using the Hashing Technique to Reduce Computation Cost Further

Many itemsets kept in matched tuples, especially negative itemsets, may be
useless for calculating the counts of candidate itemsets. For example, the itemsets
{D}, {F}, {AF} and {BF} kept in the matched tuples in Example 6-6 are not the
subsets of the candidate itemsets and can be omitted. Negative itemsets are formed by
excluding frequent itemsets from the candidates which are generated in a level-wise
way [27][85]. In other words, a negative itemset is a candidate itemset without
enough support. In general, the set of candidate itemsets generated level-wisely is
usually much larger than the set of frequent itemsets found, especially in the early
stage of candidate generation [5][67]. The number of negative itemsets useless for
calculating the counts of candidate itemsets may-thus be large. In this section, we
shall utilize the hashing technique{67] to filter out a part of useless itemsets to be
considered in Phase 1. Take the.direct hashingifunction as an example to explain our
idea. Let x = {a1, as, ..., a,} denote‘anitemset consisting of n items (from a; to a,),
order(a;) denote the serial number of the item a; among the entire set of items, and
size(HT) denote the size of a given hash table H7. A direct hashing function for
n-dimensional keys can be defined as follows:

h(x) = (order(a;) * order(ay) * ...* order(a,)) mod size(HT).

The hashing function is order-independent; that is, it can generate the same hash
value for all permutations of items in an itemset. Each bucket of the hash table
consists of only an integer to represent how many candidate itemsets have been
hashed into this bucket. 0 denotes that no candidate itemsets have been hashed into
this bucket. When initially obtaining the set of candidate itemsets, the NOM approach

calculates their hash values, finds corresponding hash buckets, and for each candidate

125

add one to the value of its corresponding bucket.

Example 6-12: For the candidate itemsets {4}, {B}, {C}, {4AB}, {AC}, {BC}
and {4BC} obtained in Example 6-6, the LNOM approach will hash them into a given
hash table HT. Without loss of generality, assume order(4) = 1, order(B) = 2 and
order(C) = 3. Also assume the size of the hash table is 7. The hash values of these
candidate itemsets will first be calculated. Take the itemset {4B} as an example. Its
hash value is (order(4) * order(8)) mod 7, which is 2. The value in Bucket 2 is then

increased by one. The other candidate itemsets are hashed in a similar way. The

resulting hash table is shown in Figure 6-6. |
HT
{AB}. -{AC} {BC}
Itemsets A} | {BE L CY {ABC}
Bucket value | 0 1 2 2 0 0 2
Bucket number 0 | 2 3 4 5 6

Figure 6-6: The hash table derived from the candidate itemsets illustrated in Example

6-6

After a hash table is constructed from all the candidate itemsets, it can then be
used to filter out a part of useless itemsets in a tuple. Tuples are processed one by one.
When an itemset of a matched tuple is selected, the NOM approach calculates its hash
value and finds its corresponding bucket. If the value stored in the target bucket is
equal to 0, the itemset must be useless since it is not a candidate itemset. It can thus be
directly omitted. Otherwise, the itemset may be, but not certainly, a candidate itemset.
Rescanning the candidate itemsets is then necessary to determine whether it is a

candidate.

126

Furthermore, the corresponding value in the bucket of the itemset which has
been assured to be a candidate will be decreased by one. The next itemset of the same
tuple is then checked according to the modified hash table, which can thus raise the
probability for a useless itemset to be filtered out. After a tuple is processed, the hash
table is restored to its original state, which is then used for another tuple. This is
illustrated by the following example.

Example 6-13: Continuing Example 6-12, after the hash table in Figure 6-6 has
been constructed, it can be used to filter out some useless itemsets in matched tuples.
For example, when Tuple 4 in Example 6-6 is checked, the itemset {C} with 2%
support is first selected to process since it has the smallest support value among all the
itemsets appearing in the tuple. The hash value of {C} is calculated as 3 and the value
in Bucket 3 is 2, not 0. The itemset {C} is thus checked against the candidate itemsets
and is found to be a candidate. ‘It is.then used-to calculate the counts of the candidate
{C} and its superset in the lattice. In:this-example, the counts of the candidates {C},
{AC}, {BC} and {ABC} are then calculated.”As a result, the value in Bucket 3 is
decreased by 2 due to {C} and {AC}. The value in Bucket 6 is decreased to 0 as well
due to {BC} and {ABC}. Bucket 6 in the modified hash table can filter out the
itemsets {f'} and {AF} in Tuple 4 since the value in Bucket 6 has been zero. After
that , the hash table will be restored to the original one in Figure 6-6 for processing

another matched tuple. |

6.6.3 The LNOM Algorithm with a Direct Hashing Function
In Phase 1, by one scan of a given EMPR, the LNOM approach first collects the
itemsets in the matched tuples satisfying the query support as candidates, constructs a

corresponding lattice for considering candidate itemsets with the same proper subsets

127

at the same time, and hashes them into a given hash table for filtering out a part of
useless itemsets in matched tuples. The LNOM approach then processes matched
tuples one by one, selects the itemsets in the order of ascending support values for
each matched tuple, and checks whether they are useful for calculating the counts of
candidates according to the values of their hash buckets. If the corresponding target
bucket value is 0, the itemset is omitted. Otherwise, for each itemset x, the LNOM

approach will assure whether x is a candidate by checking the set of candidate

appearing
X

itemsets. If x is a candidate, the LNOM approach will cumulate the Count

and each Coum‘;j " in the lattice, where y denotes an element in the proper superset of

x (y 1s a descendant of x). This procedure is then repeated until all the matched tuples
have been processed. After that, the {sNOM, approach can generate the candidate
itemsets with appearing counts.andjupper-bound counts corresponding to the given
mining request.

Example 6-14: Consider the mining request in Example 6-6. The LNOM
approach will construct the lattice shown in Figure 6-5 and the hash table shown in
Figure 6-6. It then processes the first matched tuple, and filter out (D, 2%) using the
hash table. The remaining itemsets (4ABC, 6%), (BC, 6%), (AC, 7%), (AB, 8%), (C,
9%), (4, 10%) and (B, 11%) are then processed in turn to update the counts of the
corresponding itemsets in the lattice. After that, the LNOM approach processes the
second matched tuple. Only the four itemsets (C, 2%), (4B, 3%), (B, 6%) and (4, 8%)
needs to be processed after the hash-table checking. (C, 2%) is then first selected, and
is used to update not only the appearing count of {C} but also the upper-bound counts
of the itemsets in its proper superset ({AC}, {BC} and {4BC}). The updated lattice

after processing all the matched tuples is shown in Figure 6-7. [

128

(Count”” P = 600,
ABC
Count”2. = 400)

ABC

(Count 7™ =1400

Count% =0)

Count "™ =2600,
A
Count%g =0)

(Count™*™ =700,
Count™? = 400)

(Count "™ =2300,
Count%g =0)

(Count™™ = 600,
County? = 400)

(Count*"™ =1300,
Count? =0)

Figure 6-7: The updated lattice after processing all matched tuples

Next, Phase 2 proceeds to, prune candidates in a level-wise way. Candidate
I-itemsets are then first handled. If the upper-bound support of a candidate 1-itemset
is less than the query support, it and the itemsets in its proper superset are removed
from the lattice. If a candidate 1-itemset appears in all the matched tuples and its
upper-bound support is larger than or equal to the query support, then it is put into the
set of final frequent itemsets and removed from the lattice. This procedure is repeated
level-wisely until all the candidate itemsets have been processed. After Phase 2, the
remaining candidate itemsets in the lattice have enough upper-bound supports but do
not appear in at least one matched tuple. The LNOM approach thus re-processes them
against the underlying blocks of data for the matched tuples in which they do not
appear to get their actual supports. After all the frequent itemsets are found, the
association rules can then be easily generated from them. The detailed algorithm of

the LNOM approach with a direct hashing function is stated in Figure 6-8.

129

The LNOM approach with a direct hashing function:

INPUT: An EMPR based on an initial minimum support s, and a mining request g
with a set of contexts cx,, a minimum support s, (s, = 5) and a minimum
confidence conf,.

OUTPUT: A set of association rules satisfying the mining request q.

Phase 1. Generation of candidate itemsets:

STEP 1: Set C = @and Match Trans = 0, where C is a lattice used to maintain the set
of candidate itemsets and Match_Trans is a variable used to keep the total
number of transactions in the matched tuples which have been processed.

STEP 2: Initialize two equal-sized hash tables H7| and HT, with all the bucket values
being zero.

STEP 3: For each tuple # in EMPR, do the following substeps:

STEP 3-1: If ¢ satisfies cx,, put it into the matched set and do STEP 3-2;
otherwise, repeat STEP 3 to process the next tuple.
STEP 3-2: For each itemset x [¢.fps, if x U C and t.s, = 54, set HT1[h(x)] =

HT\[h(x)] + 1, insert x into C with Count ™" =0 and Count."

= 0, and add+edges tojits-parents and children, where HT)[A(x)]
denotes the .value stofed in the bucket corresponding to the hash
value A(x) of x in HT}.
STEP 4: For each tuple ¢ in the matched set,-do the following substeps:

STEP 4-1: Set ProcessedSet =.¢3 where ProcessedSet is a set used to keep the
itemsets in C which have been processed.

STEP 4-2: Restore the bucket values in H7, to those in H7; and set
Match_Trans = Match_Trans + t.trans.

STEP 4-3: Select an itemset x with the smallest support ¢.s, from ¢.

STEP 4-4: If HT5[h(x)] # 0 and x O C, set Count™*™ = Count™*"™ +

ttrans * tsy, HT[h(x)] = HT,[h(x)] — 1, ProcessedSet =
ProcessedSet 11 {x}, and do STEP 4-5; otherwise, do nothing and
go to STEP 4-6.

STEP 4-5: For each itemset y in the proper superset of x in C and y U

ProcessedSet, set Counth = CounthJr min(t.trans * s — 1,

ttrans * tsy), HT>[h(y)] = HT>[h(y)] — 1, and ProcessedSet =
ProcessedSet 11 {y}.
STEP 4-6: Repeat STEPs 4-3 and 4-4 until all itemsets in # are processed.

Phase 2: Reduction of candidate itemsets:

130

STEP 5:Set k= 1, where £ 1s used to keep the number of items in a candidate itemset
currently being processed.
STEP 6: For each itemset x [1 Cy, do the following substeps:

STEP 6-1: Calculate the upper-bound support sijB by the formula:

i B
ws_ Count™™ + Count’
S =
' Match _Trans

STEP 6-2: If 5. <s,set C=C—{y|y 0 Candx Oy}.

appearing
——— and sz > s, thenset L =L U {x} and
Match _Trans

C=C- {x}.
STEP 7:Setk=Fk+ 1.
STEP 8: Repeat STEPs 6 and 7 until all candidate itemsets are processed.

STEP 6-3: If 5" =_C2Un!

Phase 3. Generation of association rules:

STEP 9: For each x UJ C, re-process each underlying block of data D; for tuple # in

appearing

which x does not appear to get Count , and then calculate the actual

¥

support of x by the following formula:
Count ™™™+ Count %"
Match: - Trans '
STEP 10: If s, < s,, then set C = C = {x}; otherwise, set L =L U {x} and C = C — {x}.

STEP 11:Derive the association rules satisfying conf, from the set of frequent

Sy =

itemsets L.

Figure 6-8: The algorithm of the LNOM approach with a direct hashing function

6.7 Experimental Results

The experiments were conducted in Java on a workstation with dual XEON
2.8GHz processors and 2048MB main memory, running the RedHat 9.0 operating
system. For performance comparison, two batch-based mining algorithms, Apriori and
Partition, and one incremental mining algorithm, FUP, in addition to our proposed
TOARM, NOM and LNOM algorithms, were run on several synthetic and a

real-world datasets.

131

6.7.1 Experimental Resultsfor Synthetic Datasets

The synthetic datasets were generated by a generator similar to that used in [5].
The parameters used are listed in Table 6-5. The generator first generated L maximal
potentially frequent itemsets, each with an average of [items. The items in the
potentially frequent itemsets were randomly chosen from the total N items according
to their actual sizes. The generator then generated D transactions, each with an
average of T items. The items in a transaction were generated according to the L
maximal potentially frequent itemsets in a probabilistic way. Details of the dataset

generation process may be found in [5].

Table 6-5: Parameters considered when generating datasets

Parameter Description
D Number of transactions
N Number of items
L Number of maximal potentially frequent itemsets
T Average size of items if a transaction
1 Average size of items in maximal potentially frequent
itemsets

Table 6-6 listed the six groups of synthetic datasets generated and used in our
experiments, where datasets in the same group had the same D, T and / values, but
different L or N values. Each dataset was treated as a block of data in the database.
For example, Group 1 in Table 6-6 contained ten blocks of data, from T10I8D10KL’
to T10I8D10KL', each consisting of 10000 transactions averaging 10 items and
generated according to 200 to 245 maximal potentially frequent itemsets with an
average size of 8 from a total of 100 items. Let a group of heterogeneous datasets be
defined as one in which the datasets have different items. Among the six groups,

Groups 2, 4 and 6 may be considered heterogeneous because their varied N values

132

yield different items. These groups of synthetic datasets were used to show how the

TOARM, NOM and LNOM algorithms dealt with heterogeneous blocks of data.

Table 6-6: The six groups of synthetic datasets

Group| Size Datasets D T |1 L N
1|10 ;ﬁgﬁggjgﬁjf" 10000 | 10 | 8 | 200 to 245 100
2 |10 ;§g§§g53§%j0t0 10000 | 10| 8 200 | 100 to 145
3110 ggﬁg;ggﬁjﬁ 100000 | 20 | 8 | 40010490 | 200
4 |10 ggﬁgg;gg][%o” 100000 |20 | 8 | 400 | 200 to 290
5 |5 %gﬁggggﬁi 01 500000 | 10 | 8 | 40010560 | 200
6 | 5 %gﬁggggﬁ% 01500000 10| 8 | 400 | 200 to 360

The MPR and EMPR werg first derived. from each group of synthetic datasets.

These are summarized in Table 6-7.

Table 6-7: Mining information for the six groups

Initial | Average length of | Average size of .
Group| minimum | maximal frequent frequent n’:vfl:?‘i ei:Z:;szjtps
support itemsets itemsets &

1 2% 11 9006 10762
2 2% 9 5093 11243
3 2% 9 12127 55625
4 2% 11 18534 49318
5 2% 5 799 11899
6 2% 8 869 14488

First, the TOARM, Apriori, Partition and FUP algorithms were run on Groups 1,
2, 3 and 5 along with various minimum supports in the mining requests, where the
Partition algorithm partitioned the data sets according to group size (the number of

datasets in a group) and the FUP algorithm treated each dataset in a group as a new

133

addition of transactions. Details of the TOARM algorithm compared with the other

three algorithms are illustrated as follows.

Group 1

—&— Apriori —8— Partition —&— FUP —&— TOARM

£
F 200
150
" B\M

0 e ——

Time (sec.)

@
=3
3

~
&
3

~
S
3

=
=}
3

=
S
3

o
3

Group 2

‘+Apriurx —&— Partition —&— FUP —&— TOARM ‘

T
S

0.022 0.024 0.026 0.028 0.03 0.032

Query Support

0.034 0.036 0.038 0.04

o

0.022 0.024 0.026 0.028 0.03 0.032

Query Support

0.034 0.036 0.038 0.04

(a)

(b)

Group 3

Group 5

‘ —— Apriori —8— Partition —#&— FUP —#&— TOARM ‘ —— Apriori —8— Partition —&— FUP —&— TOARM
100000 4500
4000
10000 M 3500
= 100 =
f $ 2500
E £ 2000
F o100 =
‘\ﬁ\‘*‘_‘\‘_‘\‘_‘ 1500
10 1000 e o
500
b R

0.022 0.024 0.026 0.028 0.03 0.032

Query Support

0.034 0.036 0.038. 0.04 0.022 0.024 0.026 0.028 0.03 0.032

Query Support

0.034 0.036 0.038 0.04

© @
Figure 6-9: Execution times for the TOARM, Apriori, Partition and FUP algorithms

on Groups 1, 2, 3 and 5

(a) Comparison with the Apriori algorithm. Figures 6-9(a), 6(c) and 6(d) show
that execution times for the TOARM algorithm on Groups 1, 3 and 5 were always
much less than those of the Apriori algorithm. This is because the datasets in these
three groups were homogeneous, meaning they used the same set of items in each
group. In this situation, the number of candidate itemsets considered by the TOARM
algorithm was much closer to the number of final frequent itemsets than those

considered by the Apriori algorithm. The former thus had more compact candidate

134

sets than the latter. For example, Table 6-8 shows the number of candidate itemsets
considered by the TOARM and the Apriori algorithms for Group 5 with minimum

supports ranging from 2.2% to 4% in the mining requests.

Table 6-8: The numbers of candidate itemsets for Group 5

Approach | Support | 0022 | 0024 | 0026 | 0028 | 003 | 0032 | 0034 | 0036 | 0038 | 0.04
No. of Canddiate itemsets
TOARM 959 690 550 442 372 308 269 241 220 199
Apriori 11636] 10327] 9165 8590] 7722] 7085] 6603 6346] 5898 5369
No. of final Large itemsets
TOARM/Apriori | 574] 453] 373] 318] 260] 228] 201] 177] 158] 144

Table 6-9: The numbers of candidate itemsets for Group 2

Approach | Support | 0022 | 0024 | 0026 | 0028 | 003 | 0032 | 0034 | 0036 | 0038 | 004
No. of Canddiate itemsets
TOARM 20893] 16003] 11920]. 079016 " " 7421 6541 5731 4984] 3775 2816
Apriori 11615 10157 9158) ~ 8o016] 7372} 6704] 6070] 5243] 4593|4255
No. of final Large itemsets
TOARM/Apriori | 902] 778 684] 608 537] 473] 417] 372] 327] 296

By contrast, the datasets in Group 2 were heterogeneous, meaning they used
different sets of items. In this situation, the number of candidate itemsets considered
by the TOARM algorithm was much larger than the number of final frequent itemsets
considered by the Apriori algorithm since most of the candidate itemsets appeared in
only one or a few tuples in the MPR. Table 6-9 shows the number of candidate
itemsets considered by the TOARM and Apriori algorithms for Group 2 along with
minimum supports ranging from 0.022 to 0.04 in the mining requests. Table 6-9 also
shows that while the number of candidate itemsets for Group 2 considered by the
TOARM algorithm was larger than that considered by the Apriori algorithm, the
TOARM algorithm used two pruning strategies in Phase 2 and thus only had to

re-process the remaining candidate itemsets against the underlying datasets in Phase 3.

135

The result was that the TOARM algorithm usually required less time than the Apriori
algorithm. This is consistent with the results shown in Figure 6-9(b).

(b) Comparison with the Partition algorithm. Although the number of candidate
itemsets considered by the Partition algorithm in the second pass was equal to that
considered by the TOARM algorithm, the Partition algorithm must generate a set of
all potentially frequent itemsets from each partition during its first pass. The TOARM
algorithm can, however, use the pattern sets in the MPR to achieve this purpose.
Therefore, the execution times required by the TOARM algorithm on these four
groups were always less than those required by the Partition algorithm. This is also
consistent with the results shown in Figure 6-9.

(c) Comparison with the FUP algorithm. The FUP algorithm can, in general,
perform well when the size of newly inserted transactions is relatively smaller than
the size of an original database because the cost of generating candidate itemsets from
only new transactions is usually low'and-a-large proportion of the candidate itemsets
can be determined from previously mined frequent itemsets. However, the FUP
algorithm treated the datasets in each of our application groups as increments and
yielded even worse performance than the Apriori algorithm, especially on the
heterogeneous datasets since it had to process all of them one by one. Figures 6-9(a),
6-9(c) and 6-9(d) show that the execution times for the FUP algorithm on the three
homogeneous groups were about twice those of the Apriori algorithm. On the second
group, which was heterogeneous, the FUP algorithm required about four times the
execution time required by the Apriori algorithm.

Next, for showing the influence of the number of negative itemsets on execution
time, the TOARM algorithm using no negative itemsets and the NOM using all

negative itemsets were run on Groups 1 to 6. Figures 6-10(a) to 6-10(f) show the

136

groups, where the query support is

execution times for the two algorithms on the six

set to 2.4%.

z

gure 6-10: The influence of the number of negative itemsets on execution time for

Fi

Groups 1 to 6

For Groups 1 and 3, most candidate itemsets appeared in nearly all tuples in

137

EMPR such that the negative itemsets provided little help in calculating counts of
candidates. The reduced execution time in Phase 3 was thus not significant when
compared to that in Phase 1. This can be easily seen from Figures 6-10(a) and 6-10(c)
that the execution time by TOARM was less than that by NOM. By contrast, for
Groups 2 and 4, most candidate itemsets appeared in only one or few tuples in EMPR.
The effect of negative itemsets on finding tight upper-bound supports thus become
apparent. However, since the computation cost in Phase 1 was much larger than that
in Phase 3, the execution time by TOARM was still less than that by NOM as shown
in Figures 6-10(b) and 6-10(d). Even so, it can be observed from Figures 6-10(e) and
6-10(f) that TOARM did not always outperform NOM for Groups 5 and 6, This
phenomena is especially when the size of candidate itemsets is small and the size of
underlying data is large. For Group:5, NOM could.decide all the candidate itemsets in
Phase 2 and thus no one in Phase 3 needed to be processed. For Group 6, the
computation cost in Phase 3 was much highes-than that in Phase 1 because the size of
underlying data is large.

The performance of the NOM algorithm with a direct hashing function was then
evaluated. Let NOM(H) denote running the NOM algorithm with a direct hashing
function The execution times on Groups 1 to 4 are shown in Figures 6-11(a) to
6-11(d), where the query support is set to 2.4% and the size of the hash table is about
10K. It can be easily seen that the computation time in Phase 1 of the NOM algorithm

can be efficiently reduced by the hashing technique.

138

Group 1 (Query support = 0.024) Group 2 (Query support = 0.024)
O Phase 1 W Phase 2 Phase 3 O Phase 1 MW Phase 2 Phase 3
45 120
40 F i) 100 F
35 F
30 F 80
g 25 8
T T 60 [
E 0 E
= =
15 | 40 |
10 F 2
sk
0 L ! 0
TOARM NOM NOM(H) TOARM NOM NOM(H)
(a) (b)
Group 3 (Query support = 0.024) Group 4 (Query support = 0.024)
O Phase 1 W Phase 2 Phase 3 O Phase 1 M Phase 2 Phase 3
90 1000
777727223 L
80 | 900)
70 800 ¢
el _ 700 |
§ s0 I § 600 -
T T 500 R
Eawp ol
30 F 300 |
20 F 200
10 100 b
0 ! ! 0
TOARM NOM NOM(H) TOARM NOM NOM(H)

© @
Figure 6-11: Execution times of the NOM algorithmrrespectively with and without a

direct hashing funetion-en Groups 1 to 4

Next, experiments were made to show the effect of using the lattice data
structure on the NOM algorithm. The execution time of the NOM algorithm was
compared with that of the LNOM algorithm with and without a direct hashing
function. The query support is set to 2.4% and the size of the hash table is about 10K.
The results for Groups 1 to 4 are shown in Figures 6-12(a) to 6-12(d), where LNOM
and LNOM(H) respectively denote running LNOM algorithm with and without a
direct hashing function. It is easily seen that the execution time by the LNOM
algorithm was always much less than that by the NOM algorithm. The reduced
computation cost in Phase 1 of the LNOM(H) algorithm was not significant because

the NOM approach with the lattice data structure could effectively restrict the number

139

of candidate itemsets to be examined.

Group 1 (Query support = 0.024) Group 2 (Query support = 0.024)
O Phase 1 W Phase 2 Phase 3 O Phase 1 W Phase 2 Phase 3
45 120
40 |
100 +
35 F
30 80
g 25 8
T T 60 [
E 20 E
= =
15 F 40 -
10 F
20 F
sk % %
0 0
TOARM NOM NOM(H) LNOM LNOM(H) TOARM NOM NOM(H) LNOM LNOM(H)
(a) (b)
Group 3 (Query support = 0.024) Group 4 (Query support = 0.024)
O Phase 1 W Phase 2 Phase 3 O Phase 1 W Phase 2 Phase 3
90 1000
L
80 1 900
70 800 ¢
o _ 700
§ 50 ?} 600 -
R LY.
S © 400 -
30 300 F
20 F 200"
10 | 1000
0 0 ez |z
TOARM NOM NOM(H) LNOM LNOM(H) TOARM NOM NOM(H) LNOM LNOM(H)

© @
Figure 6-12: Execution times spent'by the NOM ‘and LNOM algorithms on Groups 1

to 4

6.7.2 Experimental Resultsfor Real Datasets

In addition to the above synthetic datasets, a real one called the BMS-POS
dataset [106] and used in the KDDCUP 2000 competition was run in our experiments.
The BMS-POS dataset contains several years of point-of-sale data from a large
electronics retailer. Each transaction in this dataset is a customer purchase transaction
consisting of all the product categories purchased at one time. There are 515,597
transactions in the dataset. The number of distinct items is 1,657, the maximal

transaction size is 164, and the average transaction size is 6.5. This dataset was also

140

used in the KDDCUP 2000 competition. In our experiments, the seventh group of data
consisted of ten equal-size data subsets partitioned from the BMS-POS dataset, and its

corresponding MPR and EMPR were shown in Table 6-10.

Table 6-10: Mining information for the seventh group

Initial | Average length of | Average size of

. . . Average size o
Group| minimum | maximal frequent frequent ge size of

negative itemsets

support itemsets itemsets
7 0.1% 11 9006 10762
Group 7
—8— Apriori —8— Partition —&— FUP —&— TOARM

1000

900

800 -

700

600 -

500

Time (sec.)

400 -

300
20 1 M

100 [=

— .

0 . . n ; n n & n +
0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02
Query Support

Figure 6-13: Execution times for the TOARM, Apriori, Partition and FUP algorithms

on Group 7

The execution time for the TOARM, Apriori, Partition and FUP algorithms on
Group 7 is shown in Figure 6-13. The TOARM algorithm had the best performance
among the four algorithms. Then the execution time spent by the NOM and the
LNOM algorithms for Group 7 along with query supports ranging from 0.2% to 1.1%
in mining requests is shown in Figure 6-14. The experimental results were consistent

with the above discussion. The LNOM algorithm had much better performance than

141

the NOM algorithm, especially when the number of candidate itemsets is large due to

a low query support.

Group 7

—8— TOARM —8— NOM —<— NOM(H) —l—LNOM(H)‘

13000
12000 |-
11000 |
10000 |-
9000 [
8000
7000 |-
6000
5000
4000
3000
2000 |-
1000 -

Time (sec.)

L —— A 8

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011
Query Support

Figure 6-14: Execution times spent by the TOARM,;"NOM and LNOM algorithms on

Groups 7

6.8 Conclusion

By structurally and systematically storing context and mining information in the
MPR, our proposed TOARM approach can easily and efficiently derives association
rules that satisfy diverse user-concerned constraints. After that, the concept of
negative border has been used to enlarge the mining information in the MPR to help
get tight upper-bound supports of candidate itemsets and thus reduce the number of
candidate itemsets to be considered. Based on the EMPR (extended MPR), a
corresponding online mining approach called Negative-Border Online Mining (NOM)
has been then proposed to efficiently and effectively utilize the information of
negative itemset in the negative border. Consequently, for further improving the

performance of NOM approach, the lattice data structure has been utilized to organize

142

and maintain all candidate itemsets such that the candidate itemsets with the same
proper subsets can be considered at the same time. The derived /lattice-based NOM
(LNOM) approach will require only one scan of the itemsets stored in EMPR, thus
saving much computation time. In addition, a hashing technique has been used to
further improve the performance of the NOM approach since many itemsets stored in
EMPR may be useless for calculating the counts of candidates. Experiments for both
homogeneous and heterogeneous datasets are made, with results showing the

effectiveness of the proposed approaches.

143

Chapter 7
Using Association Rule Mining Techniques on
Knowledge Discovery Processin Semiconductor

M anufacture

7.1 Introduction

In recent years, manufacturing processes have become more and more complex,
and meeting high-yield target expectations and quickly identifying root-cause
machinesets, the major killer machine(s) that €auses a low-yield situation in a regular
manufacturing procedure, also become essential issues. Although process control and
statistical analysis techniques can be applied to establish a solid base for well-tuned
manufacturing processes, identification ‘of root-cause machineset is still hard and
costly due to the existence of multiple coefficients among variants, nonlinear
interactions, and the intermittent nature of the problem. For example, CIM/MES/EDA
systems in most semiconductor manufacturing companies help users analyze collected
manufacturing data in order to discover the root-cause machineset when the low-yield
situation occurs; however, too many indexes and diagrams generated by the statistical
methods in CIM/MES/EDA systems, such as K-W test, covariance analysis,
regression analysis, etc., are usually not easy for engineers to assimilate and judge. On
the other hand, lots of time is required to solve the false-alarm issue.

In the third part of this dissertation, we attempt to integrate incremental mining

and multidimensional online mining techniques on knowledge discovery process in

144

semiconductor manufacture. We first define the root-cause machineset identification
problem of analyzing correlations between combinations of machines and the
defective products, and then propose the Root-cause Machine Identifier (RMI)
approach [19] using a batch-based association rule mining algorithm to obtain
candidate root-cause machinesets from a shipment of wafer in process (WIP) data to
experts for further determination. After that, we propose the progressive RMI (PRMI)
concept, which applies incremental mining techniques to progressively process
previously mined candidate root-cause machinesets, and the multidimensional RMI
(MRMI) concept, which applies multidimensional online mining techniques to
diversely consider mined candidate root-cause machinesets from each shipment for

supporting online decision services.

7.2 Related Work

As mentioned above, The+process of mining association rules can be roughly
divided into two tasks [5]: finding frequentitemsets and generating association rules,
where the first task is used to discover statistically significant patterns while the
second task is used to obtain interesting rules. Since the first task is very
time-consuming compared to the second one, the major challenges in mining
association rules thus focus on how to reduce the search space and decrease the
computation time required for the first task.. Some famous mining algorithms, such as
Apriori [5], DIC [16], DHP [67], Partition [78], Sampling [61] and FP-Growth
[40][95], were proposed to achieve this purpose. Among them, the Apriori algorithm,
which is the most well-known, utilizes a level-wise candidate generation approach to
reduce its search space such that only the frequent itemsets found in the previous level

are treated as seeds for generating the candidate itemsets in the current level. This

145

Apriori property can greatly reduce the number of itemsets considered in a mining
process. Many later algorithms were based on this property and attempted to further
reduce candidate itemsets and I/O costs. Comprehensive overviews can be found in
[18][38].

Although a level-wise candidate generation algorithm can efficiently discover
significant patterns, many of them may be not interesting to users. Thus, designing a
useful interestingness measurement is becoming an important issue [15][18][38][82].
Confidence, the most typical interestingness measurement for association rule mining,
measures the conditional probability of events associated with a particular rule. For
example, an association rule 4B with confidence ¢% means that c% of all
transactions containing A4 also contain B. However, the confidence measurement may
be misleading or insufficient for many real-world-applications. For example, given a
minimum confidence of 60%, ‘therassociation rule milk — cigarette with confidence
66% is then discovered in a-supermarket. "However, it is misleading since the
probability of purchasing cigarette is 70%, which is even larger than 66%. In fact,
milk and cigarette associate negatively since purchasing milk actually decreases the
desirability of purchasing cigarettes. Thus, many researches [15][16][28][42][71][80]
[82] have proposed other effective interestingness measurements.

In [71], Piatetsky-Shaprio proposed a domain-independent interestingness
measurement to evaluate the interestingness of discovered rule 4 - B:

|4& B|-|4|B|/ N
A=A N[5)

where, N denotes the total number of tuples in the database, |4| denotes the number of
tuples that contain the antecedent A, |B| denotes the number of tuples that contain the

consequent B, and |4&B| denotes the number of tuples that contain both 4 and B. The

146

range of this interestingness measurement is between —0.25 and 0.25.

7.3 Root-cause M achineset | dentification Problem

Stage s, Stages, Stages,
. =
Machine M, Machine M,
=] Tt T Tt T T
| l—P
. . [e— 2
Materials MachineM, MachineM, |— —> A 1 " —p;
Machine M, , ! :
; — P
- Products
=
=
— :
Machine M, Machine M Machine M, Machine M,

Figure 7-1:-A'general manufacturing process

Figure 7-1 shows a general ‘manufacturing process requiring a multistage
production procedure. Each stage may have more than one machine performing the
same task. Thus, products may pass through different machines in a specific stage.
Assume a shipment consists of £ identical products {pi, pa, ..., px}. Each product must
pass through / stages <si, s2, ..., s/~ in sequence to be finished, and there are n
manufacturing machines {M,, M,, ..., M,} in this [-stage shipment. Note that a
machine with multiple functions may appear in more than one stage in the process.
The manufacturing process relation, r = {t,, t,..., tx}, based on the relation schema
R(PID, S, S, ..., Si, D), can be used to record the processing information from each
stage and the test result for each product, p;, 1 <i < k. Among the attributes in R, PID

is an identification attribute used to uniquely label the products, S; is a context

147

attribute associated with a pair <manufacturing machine, timestamp> used to indicate
that the manufacturing machine is used in the i-th stage at the timestamp for each
product, and D is a class attribute used to state whether a product is defective or not.
Example 7-1: Table 7-1 shows a manufacturing process relation used to record
five-stage (/=5) and seven-machine (n=7) processing information for a shipment
consisting of six products (k=6). The first tuple shows that product p; passed through
stage 1 on <M, 1>, stage 2 on <Ms, 3>, stage 3 on <Ms3, 10>, stage 4 on <My, 12>,
and stage 5 on <Ms, 14>, and its test result shows a defect (D=1). The other tuples

have similar meanings. [

Table 7-1: A manufacturing process relation for six products in a five-stage

manufacturing procedure

PID| §: S 83 S4 S5

M, 1 | Ms, 3| Ms;10 | My, 12 | Ms, 14
My, 5 | My, 8 My 12 My, 15 | My, 17
M3, 2 | My, 0 | Ms, 13 | My, 17 | Ms, 20
M, 4 | My, 6" Mag 14 | "My, 18 | M5, 19
My, 7 | Mo, 11 | My, 15 | M, 20 | Ms, 23
M3, 9 | M3, 8 | Mg, 12 | My, 16 | M7, 20

O|l=|=lolo—=IT

NN | (W~

Our goal is to identify the root-cause machineset for a given manufacturing
process relation. In recent years, many approaches have been proposed to solve
similar problems. Examples are such as V. Raghavan applied decision tree to discover
the root cause of yield loss in integrated circuits [74], M. Gardner and J. Bieker
combined self-organizing neural networks and rule induction to identify the critical
poor yield factors from normally collected wafer manufacturing data [33], F. Mieno et

al. applied a regression tree analysis to failure analysis in LSI manufacturing [63].

7.4 Root-cause M achine Identifier (RM1) Approach

148

We attempt to apply the technique of association rule mining to solve the
root-cause machineset identification problem. According to the general operation of
mining association rules, there are three major scenarios need to be discussed:

(1) Data preprocessing scenario: Since the technique of association rule mining
is usually performed on transactional data (its target of mining is not predetermined),
it is important to transform the data in the manufacturing process relation into the
materials and retain the appropriate relationships between machines and products that
facilitate mining.

(2) Mining procedure scenario: A product may pass through hundreds of stages
(machines) to be finished. The evaluation of all combinations of machines is
relatively enormous and impractical. Therefore, the pruning strategy is required to
remove the candidates with inadequate evidences.to be the root cause such that the
search space and the computation time can be.reduced.

(3) Visualization scenario: Ameng-—the generated candidates, a suitable
interestingness measurement is then'needed.to identify the root-cause machineset.

To overcome the above three scenarios, the Root-cause Machine Identifier (RMI)
approach shown in Figure 7-2 consisting of three phases, data preprocessing phase,
candidate generation phase and interestingness ranking phase, is proposed. The data
preprocessing phase focuses on transforming the raw data in a given manufacturing
process relation into transactional data. The candidate generation phase focuses on
generating candidate machinesets from the transactional data, and the interestingness
measurement phase focuses on identifying the root-cause machineset from the

obtained candidate machinesets.

149

Manufacturing
Process
Relation

Data Preprocessing Phase

~—

Machine-oriented Stage-Oriented
Data Preprocessing Data Preprocessing

Candidate Generation Phase

RV

The minimum defect Candidate
coverage

Generation

Interestingness Ranking Phase

The user-specified Interestingness

interestingness ™ Measurement &
measurement Ranking

A

Possible
Root-cause
Mahinesets

List

el -
Figure 7-2: The flowchartof the RMI approach

By the user-selected preprocessing procedure in the data preprocessing phase, the
RMI approach first gets materials transformed from the data in the manufacturing
process relation. Then given a user-specified minimum defect coverage, a threshold
used to remove the machinesets without enough evidences to be the root cause, the
RMI approach generates all candidate machinesets by the candidate generation phase.
Finally, by the interestingness ranking phase, the RMI approach ranks the candidate
machinesets based upon a user-specified interestingness measurement and provides

the result to experts for further determination.

7.4.1 The Data Preprocessing Phase of RM 1 Approach

150

The data preprocessing phase first selects the defective tuples from a given
manufacturing process relation. Two data preprocessing procedures, machine-oriented
and stage-oriented preprocessing procedures, have been proposed to handle different
manufacturing defect hypotheses. The machine-oriented preprocessing procedure
concentrates on the machines a product passes through, regardless of the
manufacturing stage. Thus, although a machine may be used in more than one stage in
a tuple because of its multi-functionality, this preprocessing procedure treats it as only
a single appearance.

Example 7-2: For the manufacturing process relation shown in Table 7-1, the
machine-oriented preprocessing procedure transforms the defect tuples 1, 4 and 5 as
shown in Table 7-2. The tuple TID1 = {M;, M>, M4, M5} means that the product p;
passed through four machines, Mj, M3, M4 and Ms. The other tuples have similar

meanings. u

Table 7-2: An example of the' machine-oriented preprocessing procedure

TID Items
1 My, M5, My, Ms
4 M, Mz, My, Ms
5 M> My, Ms

The machine-oriented preprocessing procedure transforms the processing
information in the manufacturing process relation into intuitive transactional data and
assumes a machine’s functions are correlated. That is, if one function is faulty, the
other may also be. By contrast, the stage-oriented preprocessing procedure assumes
that a machine’s functions are not correlated. If one function is faulty, the other ones
may still operate normally. Therefore, this preprocessing procedure treats machines in

different stages as distinct individuals.

151

Example 7-3: For the manufacturing process relation shown in Table 7-1, the
stage-oriented preprocessing procedure transforms the defect tuples 1, 4 and 5 as
shown in Table 7-3. The machine m; indicating M, is used at stage 1 is different from
the machine m, indicating M, is used at stage 2. The tuple 7IDI = {m1, msy, m33, Maa,
mss} means that the product p; passed through stage 1 on M, stage 2 on Ms, stage 3

on M3, stage 4 on M4, and stage 5 on Ms. The other tuples have similar meanings. H

Table 7-3: An example of the stage-oriented preprocessing procedure

TID Items
1 mi1, Msy, M33, May4, M55
4 m31, M2, My3, Maq, M55
5 ma1, M2, M43, Mayg, M55

7.4.2 The Candidate Gener ation Phase of RM | Approach

A level-wise processing procedure like finding-frequent itemsets in association
rules mining is used to generate. possible sets’ of machines called candidate
machinesets. The defect coverage of a machineset is defined as the percentage of all
defective products passing through the target machineset. Therefore given the
user-specified minimum defect coverage, in the first iteration, the proposed candidate
generation phase calculates the defect coverage for each individual machine, and then
retains the 1-machinesets that satisfy the minimum defect coverage as candidates. In
the second iteration, the proposed phase generates machinesets consisting of two
machines by joining the candidate 1-machinesets from the first iteration, and retains
the 2-machinesets that satisfy the minimum defect coverage as candidates. In each
subsequent iteration, candidate machinesets found in the preceding iteration are used
as seeds in the current iteration, and the process continues until no new candidate

machinesets can be generated.

152

Since this level-wise processing procedure is based on the Apriori property, each
proper subset of a candidate machineset must be a candidate. In other words, if a
machineset does not satisfy the user-specified minimum defect coverage, then none of
its proper supersets will be. This can greatly reduce the number of candidate
machinesets to be considered. Moreover, to improve the computation performance,
the candidate generation phase retains defective product information for each
candidate machineset in the current level so that each machineset’s defect coverage
information in the next level can be efficiently calculated by utilizing the retained
information rather than re-processing the original database.

Example 7-4: Table 7-4 shows the defect coverage for each 1-machineset in
Table 7-3. The first tuple shows that only the defective product p; passed through the

machineset m;;. Thus, the defect coverage of myis. 1/3 = 33%. [

Table 7-4: Defect coverage and defective-product information for each 1-machineset

in Table 7-3
Machineset | Involved Defective Products | Defect Coverage
mii 1 33%
ms3) 4 33%
maq 5 33%
ms 1 33%
mi 4 33%
myo 5 33%
ms3 1 33%
ma3 4, P5 66%
Mas 1, P4 66%
ma4 5 33%
mss 1, P4, P5 100%

Example 7-5: Continuing from Example 7-4 and assuming the user-specified
minimum defect coverage is 50%, Table 7-5 shows candidate 1-machinesets of Table

7-4.

153

Table 7-5: Defect coverage and defective product information for each candidate

1-machineset obtained

Machineset | Involved Defective Products | Defect Coverage
ma3 4, P5 66%
M4y 1, P4 66%
Mmss 1, P4, P5 100%

Next, 2-machinesets {ma3, maa}, {ma3, mss} and {maas, mss} are then generated by

joining the candidate 1-machinesets in Table 7-5. The defect coverage for {ma3, mas}
is 33% and its defective product information is {p4} by performing the intersection of

the set of defective products of m43 and m44. Complete results are shown in Table 7-6.

Table 7-6: Defect coverage and defective product information for each 2-machinesets

generated
Machineset | Involved Defective Products | Defect Coverage
M43, Mag |P4 33%
my3, Mss 4, P5 66%
M4a, M55 1, P4 66%

As we can see, the machineset {m43, mas} is removed since its defect coverage is

less than 50%, the specified minimum defect coverage. The resulting candidate

2-machinesets are shown in Table 7-7.

Table 7-7: Defect coverage and defective product information for each candidate

2-machineset obtained

Machineset | Involved Defective Products | Defect Coverage
ma3, Mss 4, D5 66%
My44, Mss 1, P4 66%

Next, the only 3-machineset {ma3, mas, mss} generated by joining the candidate

154

2-machinesets in Table 7-7. However, since {ma3, mas} is not included in the set of
candidate 2-machinesets, it is removed according to above-mentioned Apriori

property. All candidate machinesets generated are shown in Table 7-8. [

Table 7-8: Defect coverage and defective product information for each candidate

machinesets obtained

Machineset | Involved Defective Products | Defect Coverage
ma3 4, P5 66%
maq 1, P4 66%
Mmss 1, P4, P5 100%
ma3, Mss 4, P5 66%
M44, M55 1, D4 66%

7.4.3 The Interestingness Ranking Phase of RM | Approach

Although a candidate machineset having high defect coverage is statistically
significant, it may not have a high possibility’ of being the root cause. For example,
the defect coverage of mus is the same as that of niag in Table 7-8, but intuitively, ma;
is more probable than m44 since all products passing through it are defective. In this
section, an interestingness ranking phase using an interestingness measurement to
evaluate correlations between candidate machinesets and defective products is
proposed for finding the root-cause machineset. Below, in additional to two typical
interestingness measurements confidence and @ an novel interestingness
measurement called continuity-based interestingness measurement is proposed to
extend @

Confidence, the most well-known interestingness measurement for association
rule mining, calculates the conditional probability that a candidate machineset causes
defective products (machineset — defect). That is, it calculates the percentage of all

products passing through a candidate machineset that are defective. @ a

155

domain-independent interestingness measurement proposed by Piatetsky-Shaprio in

[71] evaluates the discovered rule 4 — B as follows:

~ |4 & B|~|A||B|/ N
A=AV Y= (B)

(7-1)

This equation indicates the degree to which “when antecedent A4 appears,
consequent B also appears”. If 4 is regarded as a certain candidate machineset and B
is regarded as a defective product, then the equation calculates the degree of
correlation between the candidate machineset and the defect.

However, the manufacturing process characteristics, such as the observation that
the root-cause machineset often produces defective products continuously, are not
considered in the two above-mentioned interestingness measurements. Thus, we
propose continuity function to measure the continuity between the defective products
for a candidate machineset. High continuity may indicate a higher probability of being
the root cause. We can easily extend therinterestingness measurement @to ¢, called
continuity-based interestingness measurement, as follows:

@' = @Ucontinuity. (7-2)

The continuity function calculates the reciprocal of the average distance between

pairs of neighboring defective products in the product sequence as follows:
Continuity =0 if|X| <l

(7-3)

Continuity = ! if|X| >1 7

-1
Y dla(x),a(x..,)) ﬂXl -1

i=1

where X = (x;, x2, ...) denotes a defective product sequence contained in the product
sequence P = (py, p2, ...) which is a sequence of products passing through a candidate

machineset (i.e. X is a subsequence of P), |X| denotes the number of defective

156

products, a(x;) denotes the order of the defective product x; in P (e.g., if a(x;) =, x; is
the j-th product in P), and d(a(x;),a(x;+1)) is the distance of a(x;) and a(x;+1), which

can easily be calculated by a(x;+1)—a(x;).

Example 7-6: Table 7-9 shows the product sequence, defective product sequence,
and calculated continuity value for each candidate machineset in Table 7-8. Among

..) 1) .
them, the continuity value of mu4 is = 0.5 according to its

(da(p),a(p,)/(2-1)

product sequence (p; p3,ps) and defective product sequence (p; pa). [

Table 7-9: Calculated continuities for each candidate machineset in Table 7-8

Machineset | Product Sequence | Defective Product Sequence | Continuity
my43 (P4, ps) (P4, ps) 1
My (1, p3, pa) (P1zpa) 0.5
nss (P1, p4, ps) (P15 P4 ps) /
ma3, Mss__|(pa, ps) (p4> P3) /
Mma4, Mss__|(P1, p4) (p1, pa) 1

According to the user-specified interestingness measurement, the set of candidate
machinesets with their interestingness values are ranked in descending order.

Example 7-7: Continuing from Example 7-6, Table 7-10 shows the ¢’ for each
candidate machineset. Since mss has highest interestingness value, the machine Ms is

most likely the root-cause machineset. [

Table 7-10: @ for each candidate machinesets in Table 7-8

Machineset @ | Continuity 4
ma3 0.67 1 0.67
Maa 0.167 0.5 0.0835
mss 1 1 1
M43, Mss 0.67 1 0.67
M44, M55 067 I 067

157

7.5 The Concepts of Progressive RMI (PRMI) and Multidimensional

RMI (MRMI)

Although the proposed RMI approach can find candidate root-cause machinesets
from a shipment to experts for further determination, it is difficult for a expert to find
the actual root-cause machineset which is not apparent in the pool of candidate
root-cause machinesets. For a complex manufacturing process such as the
semiconductor manufacture, some root-cause machinesets is hard to be investigated
and discovered in a short-term analysis due to their intermittent nature and gradually
wearing. As a result, progressively monitoring previously mined candidate root-cause
machinesets is a nontrivial work. In order to provide obtained evidences from
processed shipments of data for later use,,we can design a progressive RMI (PRMI)
using incremental mining techniques to/fprogressively process previously mined
candidate root-cause machinesets and consider the influence of subsequent shipments
on the possibility of being the root cause-for-each progressive candidate. Obviously,
for achieving long-term analysis, the" original defect coverage and interestingness
measurement calculations need to be re-designed. Some efforts and works in temporal
association rules mining [7][54][66][75][83], especially in [7][54], are related to
PRMI and can be further referred to.

A large dedicated semiconductor company, such as TSMC (Taiwan
Semiconductor Manufacturing Corporation 1.td), usually consists of many wafer fabs
around the world and provides varied fabrication processes. Decision-makers usually
may need to analyze yield situations, especially for a low-yield situation, in a
shipment, fabrication, production line, wafer size or even fab location. They may also
want to understand the change of yield in different dimensions. We can design a

knowledge warehouse to structurally and systematically store the context information,

158

such as fab location, wafer size, fabrication, product line, manufacturing time, etc.,
and the mining information, such as the number of lots, candidate root-cause
machinesets, etc., of each shipment for supporting decision-makers diversely

considering problems at different aspects.

7.6 Experimental Results

The RMI approach was implemented in Java on a Pentium-IV 2.4G processor
desktop with 512MB RAM, and nine real datasets with the known root-cause
machineset provided by the Taiwan Semiconductor Manufacturing Corporation
(TSMC) were used to evaluate its accuracy. As shown in Table 7-11, 368 and 2727
machines needed to be considered in machine-oriented and stage-oriented
preprocessing procedures respectively for.Case ®l having 153 products and each

passing through 658 stages.

Table 7-11: Relevant information for the nine real datasets

. Number of machines in | Number of machines in

Data size . . .
Dataset machine-oriented stage-oriented
(Products*Stages) . .

preprocessing procedure |preprocessing procedure
Case 1 153*658 368 2727
Case 2 145*867 497 4509
Case 3 141*837 499 4434
Case 4 116*624 416 2500
Case 5 305*733 424 3094
Case 6 53*587 411 2414
Case 7 484*709 455 3381
Case 8 106*632 419 2618
Case 9 77*1109 450 3367

With the minimum defect coverages ranging from 0.3 to 0.5 and the
interestingness measurement ¢, the ranks of the actual root-cause machinesets among

the generated candidate machinesets are shown in Table 7-12. For example, the rank

159

of the actual root-cause machineset for Case 1 was the 4th using machine-oriented

preprocessing procedure with the minimum defect coverage = 0.3. Note that “X”

means the actual root-cause machineset can not be found by the proposed RMI

approach.

Table 7-12: Accuracy results of the RMI approach for the nine datasets

Machine-oriented
preprocessing procedure

Stage-oriented

preprocessing procedure

Dataset Min. defect | Min. defect | Min. defect | Min. defect | Min. defect | Min. defect
coverage | coverage coverage | coverage coverage | coverage
=0.3 =04 =0.5 =0.3 =04 =0.5
Rank Rank Rank Rank Rank Rank
Case 1 4 4 4 22 12 6
Case 2 1 1 1 1 1 1
Case 3 1 1 1 1 1 1
Case 4 1 1 1 1 1 1
Case 5 1 1 1 1 1 1
Case 6 106 93 78 145 90 58
Case 7 6 5 3 2 1 1
Case 8 51 47 40 43 23 X
Case 9 74 50 44 10 X X

As stated previously, the machine-oriented preprocessing procedure assumes all

functions of a machine are co-affected whereas the stage-oriented preprocessing

procedure assumes each function of a machine is independent. Table 7-12 shows that

the RMI approach seems to have higher accuracy with the stage-oriented

preprocessing procedure than with the machine-oriented preprocessing procedure in

this semiconductor manufacturing experiment, if appropriate minimum defect

coverages were set. By consulting with the product engineers for all above cases, the

explanations of the experimental results are concluded as follows:

(a) For Cases 2, 3, 4 and 5, the actual root-cause machinesets were all ranked in

the first place both with the machine-oriented and the stage-oriented preprocessing

procedures. The major reasons are: (a) for Cases 2 or 3, the actual root-cause

160

machineset was a single-function machine. Therefore, it had the same interestingness
value both with the stage-oriented and machine-oriented preprocessing procedures; (b)
for Cases 4 or 5, most functions of the actual root-cause machineset had high
interestingness values and were ranked in the top ten with the stage-oriented
preprocessing procedure. Therefore, on the whole, the actual root-cause machineset
with the machine-oriented preprocessing procedure still had a not-bad rank.

(b) For Cases 6, 7, 8, or 9, many normal products passed through the actual
root-cause machineset without passing through the faulty function. Therefore the
actual root-cause machineset had higher rank with the stage-oriented preprocessing
procedure than with the machine-oriented preprocessing procedure, if an appropriate
minimum defect coverage was set.

(c) For Case 1, the actual root-cause machineset had the same interestingness
value in the machine-oriented and,stage-oriented preprocessing procedures because it
is a single-function machine (as in Cases-Z2-and:3). However, since most of the other
candidate machinesets had lower interestingness values with the machine-oriented
preprocessing procedure, the actual root-cause machineset with this preprocessing
procedure had higher rank than with the stage-oriented preprocessing procedure. This
was a special case in our experiments.

The actual root-cause machineset in most cases was ranked in the top ten with an
appropriate minimum defect coverage, except in Case 6, which had only 53 products
so the actual root-cause machineset was not more significant than the others.
Intuitively, setting a higher minimum defect coverage will prune more machinesets
from consideration during the candidate generation phase, and thus decrease the
execution time. As shown in Table 7-12 and Figure 7-3, the higher minimum defect

coverage is, the higher performance that RMI approach can be. However, the RMI

161

approach may prune the actual root-cause machinesets out once the minimum defect
coverage is set too high. How to set appropriate minimum defect coverage is thus

becoming a critical issue for future investigation.

250

200

=

[$a]

o
T

—&— CASE2
—— CASE3
—a&— CASE7

=

o

o
T

Execution Time (Sec)

50

Minimun Coverage

Figure 7-3: Execution times for Case 2, Case 3.and Case 7 with the minimum defect

coverage set from 0.3 to 0.6

In order to demonstrate the accuracy of ¢ compared to other known
interestingness measures, Table 7-13 shows the rank of the actual root-cause
machineset among all candidate machinesets generated by the RMI approach when
associated with three interestingness measures, confidence, @and ¢'. The result shows
that our proposed interestingness measurement ¢ does not always outperform ¢ or
confidence since the properties of all given testing case are different, and that

continuity can highlight cases 1, 7 and 9 with strong continuity defect signal.

162

Table 7-13: Accuracy results of the RMI approach on the nine datasets for

interestingness measurements confidence, @ and ¢’

Machine-oriented Stage-oriented
preprocessing procedure preprocessing procedure

Dataset (Min. defect coverage = 0.3) (Min. defect coverage = (.3)

Confidence Q [/ Confidence Q [

Rank Rank Rank Rank Rank Rank

Case 1 8 4 4 41 17 22
Case 2 1 1 1 1 1 1
Case 3 1 1 1 1 1 1
Case 4 1 1 1 1 1 1
Case 5 1 1 1 3 1 1
Case 6 163 94 106 168 128 145
Case 7 9 8 6 1 4 2
Case 8 25 32 51 2 2 43
Case 9 114 57 74 46 22 10

7.7 Conclusion

Identification of the root-catise machineset.in' manufacturing can not only reduce
manufacturing costs, but also improve manufactory performance. However,
conventional methodologies for identifying root causes are restricted and dependent
on experience and expertise. In this study, we have defined the root-cause machineset
identification problem and proposed RMI approach to solve the problem efficiently
and effectively. Two different data preparation procedures have proposed to transform
the raw data into the desired format based on different manufacturing defect
Also,

hypotheses. an novel

interestingness measurement considering the
manufacturing continuity has proposed for the interestingness measurement phase in
RMI approach. Currently, the proposed RMI approach has been considered as one of
standard component in semiconductor manufacturing defect detection solution using
data mining techniques of SAS® Taiwan Cooperation in order to help FAB users
discover root causes. The experimental results show that about 80% cases can be

ranked at the top ten and 20% cases are still remained unsolvable. In the future, we

163

will continue our research to refine interestingness measurements of RMI approach,

and develop automatic/semi-automatic mechanisms to solve the low-yield situations.

164

Chapter 8

Summary and Future Work

Designing incremental mining algorithms that can effectively and efficiently
utilize the previously mined information to reduce costs of knowledge maintenances
is rather important and useful. In the first part of this dissertation, we have utilized the
concepts of pre-large patterns and closed patterns to develop more efficient and
practical approaches for maintaining association rules and sequential patterns
especially in dense databases, and utilized the domain-space weighting scheme to
develop a more accurate and adaptive document classifier.

For providing ad-hoc, query-driven-and online’mining supports, in the second
part of this dissertation, the concept.of knowledge-warehouse and the architecture of
Online Knowledge Discovery System (OKDS) have been proposed. By structurally
and systematically storing context and mining information in the MPR, a form of
knowledge warehouse, our proposed TOARM approach can easily and efficiently
derive association rules that satisfy diverse, user-concerned constraints. In addition,
the concept of negative border has been further applied in the MPR to form the
EMPR, and based on the EMPR, the NOM and LNOM approaches have been
developed to improve the performance of TOARM especially for heterogeneous
blocks of data.

Consequently, in the third part of this dissertation, we attempt to apply
incremental mining and multidimensional online mining techniques on knowledge
discovery process in semiconductor manufacture. For a semiconductor manufacturing

165

company, the knowledge capable of quickly identifying root-cause machinesets is
rather important. We have proposed the RMI approach using a batch-based
association rule mining algorithm to provide an efficient and effective solution for the
root-cause machineset identification problem. After that, the concepts of PRMI, which
applies incremental mining techniques to progressively process previously mined
candidate root-cause machinesets, and MRMI, which applies multidimensional online
mining techniques to support multidimensional online generation of candidate
root-cause machinesets, have been proposed to improve the accuracy and flexibility of
RMI approach.

Some interesting issues may be studied in the future. In addition to record
insertion, record deletion [87][89] and record modification [88] are also commonly
seen in real-world applications. Processing record deletion and record modification
are, however, different from processings record insertion. Design effective
maintenance algorithms for association-rules-and sequential patterns as records are
deleted or modified are thus nontrivial.works. As for the proposed concept of
multidimensional online mining, we can adopt other techniques to further improve the
performance of the proposed methodology. For example, we can construct an iceberg
cube [13][26] or use materialized views [17][97] for the proposed MPR or EMPR to
provide more efficient online association rule generation and more powerful mining
services. Moreover, we can also attempt to apply the multidimensional online mining
concept to online decision support for other classes of knowledge, such as sequential
patterns, classifications, clusters, etc. In the third part of this dissertation, although we
expect the two concepts of progressively processing previously mined patterns and
structurally and systematically storing mined patterns can respectively improve the

accuracy of discovered knowledge and support decision-makers diversely considering

166

problems at different aspects, it is necessary to substantiate, test and deploy them in

real-world cases in semiconductor manufacture.

167

Reference

1.

10.

I11.

12.

13.

14.

R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad. A tree projection algorithm for
generation of frequent item sets. Journal of Parallel and Distributed Computing,
Vol. 61, No. 3, pp. 350—- 371, 2001.

C.C. Aggarwal, P.S. Yu, A new approach to online generation of association rules,
IEEE Transactions on Knowledge and Data Engineering, Vol. 13, No. 4, pp.
527-540, 2001.

. R. Agrawal, T. Imielinksi, A. Swami, Mining association rules between sets of

items in large database, ACM SIGMOD Conference, pp. 207-216, Washington DC,
USA, 1993.

R. Agrawal, T. Imielinksi, A. Swami, Database mining: a performance perspective,
IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6, pp.
914-925, 1993.

. R. Agrawal, R. Srikant, Fast algorithm for mining association rules, ACM VLDB

Conference, pp. 487-499, 1994.

R. Agrawal, R. Srikant, Mining' 'sequential patterns, IEEE International
Conference on Data Engineering, pp..3-14,-1995.

J.M. Ale, G. Rossi, An approach to discovering temporal association rules, ACM
SAC Conference, pp. 294-300, 2000.

. W.G. Aref, M.G. Elfeky, A.K. Elmagarmid, Incremental, online, and merge mining

of partial periodic patterns “intime-series.‘databases, IEEE Transactions on
Knowledge and Data Engineering, Vol. 16, No. 3, pp. 332-342, 2004.

J. Ayres, J.E. Gehrke, T. Yiu, J. Flannick, Sequential pattern mining using bitmaps,
The International Conference on Knowledge Discovery and Data Mining, pp.
429-435, 2002.

L. Baker, A. McCallum, Distributional clustering of words for text classification,
ACM SIGIR Conference, pp. 93-103, 1998.

R.J. Bayardo, R. Agrawal, D. Gunopulos, Constraint-based rule mining in large,
dense databases, IEEE International Conference on Data Engineering, pp. 188-197,
1999.

C. Bettini, X.S. Wang, S. Jajodia, Mining temporal relationships with multiple
granularities in time sequences, IEEE Data Engineering Bulletin, Vol. 21, pp.
512-521, 1999.

K. Beyer, R. Ramakrishnan, Bottom-up computation of sparse and iceberg cubes,
ACM SIGMOD Conference, pp. 359-370, 1999.

L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and regression
trees, Wadsworth, Belmont, CA. 1984.

168

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

.S. Brin, R. Motwani, C Silverstein, Beyond market baskets: generalizing
association rules to correlations, ACM SIGMOD Conference, pp. 265-276,
Tucson, Arizona, USA, 1997.

S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and
implication rules for market basket data, ACM SIGMOD Conference, pp. 255-264,
Tucson, Arizona, USA, 1997.

S. Chaudhuri, U. Dayal, An overview of data warehousing and OLAP technology,
ACM SIGMOD Record, Vol. 26, No 1, pp. 65-74, 1997.

M.S. Chen, J. Han, P.S. Yu, Data mining: an overview from database perspective,
IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp.
866-883, 1996.

W.C. Chen, S.S. Tseng, C.Y. Wang, A novel manufacturing defeat detection
method using association rule mining techniques, An International Journal: Expert
System with Application, Vol. 29, No. 4, pp. 807-815, 2005.

D.W. Cheung, J. Han, V.T. Ng, C.Y. Wong, Maintenance of discovered association
rules in large databases: an incremental updating approach, IEEE International
Conference on Data Engineering, pp: 106=114, 1996.

D.W. Cheung, S.D. Lee, B. Kao, A general inctemental technique for maintaining
discovered association rules; The International Conference on Database Systems
for Advanced Applications,pp. 185-194, Melbourhe, Australia, 1997.

D.Y. Chiu, Y.H. Wu, A.L.P Chen, Aniefficient algorithm for mining frequent
sequences by a new strategy without support counting, IEEE International
Conference on Data Engineering, pp. 375-386, 2004.

F. Debole, F. Sebastiani, Supervised term weighting for automated text
categorization, ACM SAC Conference, pp. 784-788, 2003.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Hashman, Indexing
by latent semantic indexing, Journal of the American Society for Information
Science, Vol. 41, No. 6, 1990.

S. Dumais, J. Platt, D. Heckerman, M. Sahami, Inductive learning algorithms and
representations for text categorization, ACM CIKM Conference, pp. 148-155,
1998.

M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J.D. Ullman,
Computing iceberg queries efficientlyy, ACM VLDB Conference, pp. 299-310,
1998.

R. Feldman, Y. Aumann, A. Amir, H. Mannila, Efficient algorithms for
discovering frequent sets in incremental databases, ACM SIGMOD Workshop on
DMKD, pp. 59-66, USA, 1997.

A.A. Freitas, On rule interestingness measures, Knowledge-Based Systems, Vol.

169

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

12, No. 5-6, pp. 309-315, 1999.

M. Fuketa, S. Lee, T. Tsuji, M. Okada, J. Aoe, A document classification method
by using field association words, An International Journal: Information Sciences,
Vol. 126, No. 1-4, pp. 57-70, 2002.

H.N. Gabow, Z. Galil, T. Spencer, R.E. Tarjan, Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs, Combinatorica, Vol. 6,
No. 2, pp. 109-122, 1986.

L. Galavotti, F. Sebastiani, M. Simi, Experiments on the use of feature selection
and negative evidence in automated text categorization. The European Conference
on Research and Advanced Technology for Digital Libraries, 2000.

V. Ganti, J. Gehrke, R. Ramakrishnan, DEMON: Mining and monitoring evolving
data, IEEE International Conference on Data Engineering, pp. 439-448, 2000.

M. Gardner, J. Bieker, Data mining solves tough semiconductor manufacturing
problems, The International Conference on Knowledge Discovery and Data
Mining, pp. 376-383, Boston, USA, 2000.

H. George, J. Ron, P. Karl, Irrelevant features and the subset selection problem,
The International Conference on Machined.earning, pp. 121-129, 1994.

G. Grahne, L.V.S. Lakshmanan, X. . Wang, M.H. Xie, On dual mining: from
patterns to circumstances, ‘and back, IEEE. International Conference on Data
Engineering, pp. 195-204, 2001.

J. Han, G. Dong, Y. Yin, Efficient mifiifig-0f partial periodic patterns in time series
database, IEEE International Conference onData Engineering, pp. 106-115, 1999.

J. Han, L.V.S. Lakshmanan, R.T. Ng, Constraint-based, multidimensional data
mining, [EEE Computer Magazine, pp.2-6, 1999.

J. Han, M. Kamber, Data mining: concepts and techniques, Morgan Kaufmann,
2001.

J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.C. Hsu, FreeSpan:
Frequent pattern-projected sequential pattern mining, The International
Conference on Knowledge Discovery and Data Mining, pp. 355-359, 2001.

J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation,
ACM SIGMOD Conference, pp. 1-12, 2000.

C. Hidber, Online association rule mining, ACM SIGMOD Conference, pp.
145-156, USA, 1999.

R.J. Hilderman, H.J. Hamilton, Heuristic measures of interestingness, The
European Conference on Principles of Data Mining and Knowledge Discovery, pp.
232-241, 1999.

T.P. Hong, C.Y. Wang, Y.H. Tao, A new incremental data mining algorithm using

pre-large itemsets, An International Journal: Intelligent Data Analysis, pp. 111-129,

170

44,

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

38.

2001.

T.P. Hong, C.Y. Wang, S.S. Tseng, Incremental data mining for sequential patterns
using pre-large sequences, The International Multiconference on Systemics,
Cybernetics and Informatics, Vol. 14, pp. 543-548, 2001.

W.H. Immon, Building the data warehouse, Wiley Computer, 1996.

T. Joachims, Text categorization with support vector machines: Linearing with
many relevant features, The European Conference on Machine Learning, vol.
1938, pp. 137-142, 1998.

T. Joachims, Making large-scale SVM learning practical, Advances in Kernel
Methods-Support Vector Learning, pp. 169-184, MIT Press, 1999.

M. Kamber, J. Han, J.Y. Chiang, Metarule-guided mining of multi-dimensional
association rules using data cubes, The International Conference on Knowledge
Discovery and Data Mining, pp. 207-210, 1997.

G. Karypic, E.H. Han, Concept indexing: a fast dimensionality reduction
algorithm with applications to document retrieval and categorization, ACM CIKM
Conference, pp. 12-19, 2000.

H. Kona, S. Chakravarthy, Partitioned ‘approach to association rule mining over
multiple databases, The International. Ceonfetence on Data Warehousing and
Knowledge Discovery, pp. 320-330, 2004.

L.V.S. Lakshmanan, C.K.S. Leung, R.T. Ng,: Efficient dynamic mining of
constrained frequent sets, ACM Transaction on' Database Systems, Vol. 28, No. 4,
pp- 337-389, 2003.

L.V.S. Lakshmanan, R.T. Ng, J. Han, A. Pang, Optimization of constrained
frequent set queries with 2-variable constraints, ACM SIGMOD Conference, pp.
157-168, Philadelphia, Pennsylvania, USA, 1999.

B. Lan, B.C. Ooi, K.L. Tan, Efficient indexing structures for mining frequent
patterns, IEEE International Conference on Data Engineering, pp. 453-462, 2002.
C.H. Lee, M.S. Chen, C.R. Lin, Progressive partition miner: An efficient
algorithm for mining general temporal association rules, IEEE Transactions on
Knowledge and Data Engineering, Vol. 15, No. 4, pp. 1004-1017, 2003.

M.Y. Lin, S.Y. Lee, Incremental update on sequential patterns in large databases,
IEEE International Conference on Tools with Artificial Intelligence, pp. 24-31,
1998.

D.D. Lewis, R.E. Schapire, J.P. Callan, R. Papka, Training algorithms for linear
text classifiers, ACM SIGIR Conference, pp. 13-19, 1996.

D.D. Lewis, Naive (bayes) at forty: The independence assumption in information
retrieval, The European Conference on Machine Learning, pp. 4-15, 1998.

D.D. Lewis, Reuters-21578 text categorization test collection distribution 1.0,

171

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

http://www.research.att.com/~lewis/reuters21578.html, 1999.

R.L. Liu, and Y.L. Lu, Incremental context mining for adaptive document
classification, The International Conference on Knowledge Discovery and Data
Mining, pp. 599-604, 2002.

H. Mannila, H. Toivonen, On an algorithm for finding all interesting sentences,
The European Meeting on Cybernetics and Systems Research, pp. 973-978, 1996.

H. Mannila, H. Toivonen, A.l. Verkamo, Efficient algorithm for discovering
association rules, The AAAI Workshop on Knowledge Discovery in Databases, pp.
181-192, 1994.

H. Mannila, H. Toivonen, A.l. Verkamo, Discovery of frequent episodes in event
sequences, Data Mining and Knowledge Discovery, Vol. 1, pp. 259-289, 1997.

F. Mieno, T. Santo, Y. Shibuya, K. Odagiri, H. Tsuda, R. Take, Yield improvement
using data mining system, IEEE Semiconductor Manufacturing Conference, 1999.
M.L. Minsky, S.A. Papert, Perceptrons: An introduction to computational
geometry, MIT Press, 1969.

R.T. Ng, L.V.S. Lakshmanan, J. Han, A. Pang, Exploratory mining and pruning
optimizations of constrained associations Rules, ACM SIGMOD Conference, pp.
13-24, Seattle, Washington, USA, 1998,

B. Ozden, S. Ramaswamy, A. Siberschatz, Cyclic association rules, IEEE
International Conference or-Data Engineering, pp. 412-421, 1998.

J.S. Park, M.S. Chen, P.S: Yu, Using a hash-based method with transaction
trimming for mining association rules, IEEE Transactions on Knowledge and Data
Engineering, Vol. 9, No. 5, pp. 812-825, 1997.

N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets
for association rules. The International Conference on Database Theory, pp.
398-416, 1999.

J. Pei, J. Han, R. Mao, CLOSET: An efficient algorithm for mining frequent
closed itemsets, ACM SIGMOD Workshop on DMKD, pp. 11-20, May 2000.

J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pino, Q. Chen, U. Dayal, M.C. Hsu,
Mining sequential patterns by pattern-growth: The PrefixSpan approach, IEEE
Transactions on Knowledge and Data Engineering, Vol. 16, No. 10, pp. 1-17,
2004.

G. Piatestsky-Shaprio, Discovery, analysis and presentation of strong rules, G
Piatetsky-Shapiro, W.J. Frawley (Eds.), Knowledge Discovery in Databases,
AAAL pp. 229-247, 1991.

H. Pinto, J. Han, J. Pei, K. Wang, Multi-dimensional sequential pattern mining,
ACM CIKM Conference, pp. 81-88, 2001.

J.R. Quinlan, C4.5: Programs for machine learning. Moran Kaufmann, San Mateo,

172

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

1993.

V. Raghavan, Application of decision trees for integrated circuit yield
improvement, IEEE/SEMI Advanced Semiconductor Manufacturing Conference
and Workshop, 2002.

S. Ramaswami, S. Mahajan, A. Silberschatz, On the discovery of interesting
patterns in association rules, ACM VLDB Conference, pp. 368-379, 1998.

J.J. Rocchio, Relevance feedback in information retrieval, The Smart Retrieval
System-Experiments in Automatic Document Processing, pp. 313-323,
Prentice-Hall, 1971.

N.L. Sarda, N.V. Srinivas, An adaptive algorithm for incremental mining of
association rules, IEEE International Workshop on Database and Expert Systems,
pp. 240-245, 1998.

A. Savasere, E. Omiecinski, S. Navathe, An efficient algorithm for mining
association rules in large databases, ACM VLDB Conference, pp. 432-444, 1995.
F. Sebastiani, Machine learning in automated text categorization. ACM
Computing Surveys, Vol. 34, No. 1, pp. 1-47, 2002.

A. Silberschatz, A. Tuzhilin, What ‘'makes patterns interesting in knowledge
discovery systems, IEEE Tramsactions,on Knowledge and Data Engineering, Vol.
8, No. 6, pp. 970-974, 1996,

R. Srikant, R. Agrawal,= Mining sequential - patterns: Generalizations and
performance improvements,-The Inteérnational Conference on Extending Database
Technology, pp. 3-17, 1996.

PN. Tan, V. Kumar, Interestingness measures for association patterns: a
perspective, The KDD Workshop on Postprocessing in Machine Learning and
Data Mining, Boston, MA, 2000.

A.U. Tansel, N.F. Ayan, Discovery of association rules in temporal databases, The
AAAI Workshop on Knowledge Discovery in Databases, 1998.

P.C. Taylor, B.W. Silverman, Block diagrams and splitting criteria for
classification trees, Statistics and Computing, Vol. 3, pp. 147-161, 1993.

S. Thomas, S. Bodagala, K. Alsabti, S. Ranka, An efficient algorithm for the
incremental update of association rules in large databases, The International
Conference on Knowledge Discovery and Data Mining, pp. 263-266, 1997.

J. Wang, J. Han, J. Pei, Closet+: Searching for the best strategies for mining
frequent closed itemsets, The International Conference on Knowledge Discovery
and Data Mining, pp. 236-245, 2003.

C.Y. Wang, T.P. Hong, S.S. Tseng, Maintenance of sequential patterns for record
deletion, IEEE ICDM Conference, pp. 536-541, 2001.

C.Y. Wang, T.P. Hong, S.S. Tseng, Maintenance of sequential patterns for record

173

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

modification using pre-large sequences, IEEE ICDM Conference, pp. 693-696,
2002.

C.Y. Wang, T.P. Hong, S.S. Tseng, Maintenance of discovered sequential patterns
for record deletion, An International Journal: Intelligent Data Analysis, Vol. 6, No.
5, pp- 399-410, 2002.

C.Y. Wang, T.P. Hong, S.S. Tseng, Multidimensional on-line mining, IEEE ICDM
Foundation of Data Mining Workshop, pp. 196-202, 2003.

C.Y. Wang, S.S. Tseng, T.P. Hong, Y.S. Chu, Using extended multidimensional
pattern relation for multidimensional on-line mining, International Computer
Symposium, 2004.

C.Y. Wang, S.S. Tseng, T.P. Hong, Flexible online association rule mining based
on multidimensional pattern relations, to appear in An International Journal:
Information Sciences, 2005.

C.Y. Wang, S.S. Tseng, T.P. Hong, Y.S. Chu, Online generation of association
rules under multidimensional consideration based on negative-border, to appear in
Journal of Information Science and Engineering, 2005.

B.B. Wang, R.I. McKay, H.A. Abbass,>M. Barlow, A comparative study for
domain ontology guided feature extraction, ACM ACSC Conference, pp. 69-78,
2003.

K. Wang, L. Tang, J. Han, J. L, Top down FP-Growth for association rule
mining, The Pacific-Asia Conference on-Advances in Knowledge Discovery and
Data Mining, pp. 334-340, 2002.

W. Wibowo, H.E. Williams, Simple and accurate feature selection for hierarchical
categorization, ACM DocEng Conference, pp. 111-118, 2002.

J. Widom, Research problems in data warehousing, ACM CIKM Conference, pp.
25-30, 1995.

X. Wu, S. Zhang, Synthesizing high-frequency rules from different data sources,
IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 2, pp.
353-367,2003.

X. Yan, J. Han, R. Afshar, CloSpan: Mining closed sequential patterns in large
database, SIAM International Conference on Data Mining, pp. 166-177, 2003.

100. Y. Yang, An evaluation of statistical approaches to MEDLINE indexing, The

International Conference on American Medical Informatics Association, pp.
358-362, 1996.

101. Y. Yang, An evaluation of statistical approaches to text categorization, Technical

Report: CMU-CS-97-127, Computer Science Department, Carnegie Mellon
University, 1997.

102. Y. Yang, J.O. Pedersen, A comparative study on feature selection in text

174

categorization, The International Conference on Machine Learning, pp. 412-420,
1997.

103. M. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Machine
Learning, Vol. 40, pp. 31-60, 2001.

104. M. Zaki, C. Hsiao, CHARM: An efficient algorithm for closed itemset mining,
SIAM International Conference on Data Mining, pp. 457-473, 2002.

105.S. Zhang, X. Wu, C. Zhang, Multi-database mining, IEEE Computational
Intelligence Bulletin, Vol. 2, No. 1, pp. 5-13, 2003.

106. Z. Zheng, R. Kohavi, L. Mason, Real world performance of association rule
algorithms, The International Conference on Knowledge Discovery and Data
Mining, pp. 401-406, 2001.

175

