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of FEM-based Flexible Arm

Student: Jen-Chung Chang Advisor: Dr. Yon-Ping Chen

Department of Electrical and Control Engineering
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ABSTRACT

This thesis studies the robust problem of. the«tip position control of a physical
flexible arm. Its linear model is. mathematically derived by the finite element method
(FEM), which is approximate to the*nonlinear flexible arm by neglecting the higher
order modes. As a result, these higher order modes are considered as the disturbances
of the linear model of the flexible arm. In addition, uncertainties subject to the
structure and payload variations are also included in the linear model. To cope with
these disturbances and uncertainties, the well-known robust control technique, the
sliding-mode control, is employed to effectively control the tip position of the flexible
arm. Finally, simulation and experimental results are used to demonstrate the

robustness and superiority of the sliding mode control.
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Notations

Upper-case bold italic letters denote matrices.

Lower-case bold italic letters denote vectors.

: Lower-case italic letters denote scalars.
: Deformation of beam.

: Rotary angle of hub.

: mass per unit length.

: Young’s modulus of elasticity.

: area moment of inertia of the arm’s cross section.
: Rotary inertia of hub.

- Input torque.

: Shape function for beam.

: Sliding surface.

: The sign function.

: The saturation function.

: Width of saturation function.



Chapter 1

Introduction

1.1 Preliminary

Recently, the control problems of flexible systems have been intensively studied
due to the challenging demand of fast and precise manipulators in various industrial
and space applications. In future space applications, the manipulators will need to be
lighter and to move faster with highér-accuracy.:The reduced inertias of these lighter
and faster manipulators unavoidably result®in vibration. Thus, it is important to
investigate the dynamics and ‘control  problems:for manipulators with structure
flexibility. The desired control strategy for the flexible arms is not only to control the
motion of the rigid mode with reasonable accuracy, but also to suppress the vibration
of the arm to achieve high speed and precise tip position.

Since the tip position motion of the lightweight flexible arm has an infinite
number of modes, most of the investigators [1, 2, 14, 18] adopt the so-called finite
freedom model to simulate the real flexible arm. Instead, this thesis uses the finite
element method (FEM) to derive a reduced-order model for the flexible arm.

It is well known that the sliding mode control is an established robust method of



controlling uncertain systems [3]. Besides, the sliding mode control for flexible arms

has been widely studied [2, 16, 17, 18]. In these papers, numerical simulation results

show that the flexible arm is effectively controlled by SMC. In this thesis, an

experimental flexible arm is set up to control the flexible arm tip position. In addition,

the robustness of the proposed sliding mode controller is compared with the rigid

controller by applying impulse disturbance and payload variation to the flexible arm.

1.2 Content Organization

This thesis is organized into"six chapters.” Chapter 1 gives an introduction.

Chapter 2 describes the FEM model* of the flexible arm. Chapter 3 presents the

scheme and theorem of sliding mode controller. The control purpose in this thesis is to

regulate the hub angle of the flexible arm with vibration suppressed. Chapter 4

simulates the flexible arm control in Matlab and then Chapter 5 fulfills the experiment.

Finally, concluding remarks are stated in Chapter 6.



Chapter 2

System Modeling of a Flexible Arm

Although there are some documents using system identification method to
identify the flexible arm model [19], the derived mathematical model is used in this

thesis because of its accuracy of physical meaning to describe the nonlinear model.

2.1 Introduction

Mathematical model derivation of flexible arm-is generally concluded into two
methods. One is using Assumed Mode*Method (AMM), and the other is using Finite
Element Method (FEM). In Assumed Mode Method, the vibration modes in flexible
arm are considered as shape functions, and the amplitude of these modes are state
variables. The shape function of AMM is more complicated and could not be used for
different complex geometry shape system. It means that different plant needs different
shape function. FEM divides the flexible arm into several elements, and the shape
function of each one is the same. The shape functions are simple polynomial
equations and do not change when different complex geometry shape flexible arm is

applied. The state variables of FEM model are deformations of all elements which are



easier to get from the strain gauge feedbacks. The FEM-based flexible arm model is

derived as follows.
A clamped-free single flexible arm is generally modeled by a partial

differential equation [9], expressed as

0° 0’ o’
(EI 3 vzijrp ?} =p (2.1.1)

ox’? X Ot

where

E > Young’s modulus of elasticity.

1 : area moment of inertia of the arm’s cross section.

w : transverse displacement (deformation).

£ . mass per unit length.

p . external force per-unit length.
There is no exact solution for (2.1.1): Instead, @n approximate approach using
polynomials is adopted to solvé:the partial differential equation. A more correct
solution will be obtained when higher order polynomials are used. FEM is employed

to derive the single flexible arm model in this paper.

2.2 FEM-Based Model description

The flexible arm is a one-meter stainless steel ruler shown in Fig. 2.2.1. The
left-hand side of the arm is clamped on the motor joint and the right-hand side is free.
Consider vibration and rotation in horizontal direction and neglect shear deformation,

as in the Euler-Bernoulli beam shown in Fig. 2.2.1. The motor rotational angled(¢)

and deformation, transverse displacement, w(x,z) are expressed in the fixed X-Y



coordinate system and reference x-y coordinate system, respectively. To model the
FEM structure, it is required that the transverse displacement w(x,z) be small, less

than one tenth of the full arm length.

Fig. 2.2.1 The flexible arm structure

The flexible arm dynamic equation is generally derived by Hamilton’s principle

described as

j S(T—v)dt + j SW.dt =0 (2.2.1)
where
T': system kinetic energy

V. system potential energy

oW . :virtual work by non-conservative forces

nc

The system kinetic energy is composed of rotational and moving energies, written as

1 YRV 2
T=3Jh0(t) +5L pv(x,t) dx (2.2.2)

where J;, is the rotational inertia of the hub, and



V= v(x,t) = W(x,t)+ (x + r)@(t)
represents flexible arm velocity.
Because the flexible arm rotates on the horizontal plane, the gravity potential
energy is neglected, and total system potential energy only contains strain energy,

expressed by

2 2
V= % [ ' EI(ZxZVj dx (2.2.3)

Virtual work oW, done by non-conservative force is described as

W, =u,60(t) (2.2.4)
where u; is the motor torque applied to the system. Substituting 7, ¥ and oW,. into

(2.2.1) yields

f . . 2 2 . .
[ [ it ot ) Novine (4 )8 e j;Ez(a ?ja(g ?]dx+]h(950+u150}dt=0
h X X

(2.2.5)

From the truth of

—fzi(@—.Tjaq,-dr 2.29)
e aqi

[T e = T,
" 04, o4 dt

h

and the assumption of & (z)=dy(z,)=0 in Hamilton’s principle, we have

O g =" L O g, ar
u0gq, udt\ 0q

i

and rearrange (2.2.5) as



J’:{LL {p(w (+ 7))o+ EI{ szf] 5[%}} o

DOL px+ r)(v'f/+ (x+ r)é)der J,6— u,}w} di=0

(2.2.7)

where w(x,z) is the deformation that refers to the rotational reference coordinate
system x-y and is described by FEM. Since dx and o6 are linear independent, we

have

I:|:p(w+(x+ r)é)éw+ El[gjc—?]é[%ﬂdx =0 (2.2.8)
[J.OL,O(X+r)(\?f/+(x+r)(éi x+Jhé—ul}5¢9=0 (2.2.9)
Based on FEM, the flexible arm consists of many linear piecewise arm elements, each
with four degrees of freedom (DOF). The deformation w(x,t) of the j-th element is
written as
w(x,t):i@(x—xj)vij(t) X; <X<X;, (2.2.10)
P
where v;,(7) and v, ,(7) (v5(#) and v,(7)) represent the transverse deflection and rotation
at node j (j+1) as depicted in Fig. 2.2.2, and ¢,.(x) means the shape functions [6]. To

solve the shape functions ¢,(x), i=1,2,3,4, the following boundary conditions must

be satisfied
W(xj’t):"zj(t)
gw(xj,t): sz(t)

ot

w(x, t):v (t) (2.2.11)

%W(xﬂl’ t): Vyj (t)



Vit
wixt)
A

vyt

F Y

¥

7 Kial

Fig. 2.2.2 Four degrees-of freedom. of an element

Substituting (2.2.11) into (2.2.10) yields

¢1(0) =1, ¢1(0) = ¢1(h) = ¢1(h) =0

¢2(0) 1, ¢2(0)=¢2(h)=¢2(h) 0

d5(h)=1, ¢:(0)=4,(0)=4(h)=0

¢4(h) 1, ¢4(0)=¢4(0)=¢4(h)=0 (2.2.12)
where / is the length of the flexible arm. Since there are four boundary conditions per
interpolation function, the simplest functions we can select are linear polynomials of

the form

$.(x)=C, +Cox+Cyx* +C,x%,i=1,2,3,4 (2.2.13)

8



Substitute (2.2.12) into (2.2.13) to solve the four shape functions, which are obtained

as

h h
5 5 X; <X<Xy (2.2.14)
(x)—3 x—xj _5 x—x]
@3 i h
X—X ’ X—X ?
x)=-h | +h /
o)== J =)
where x is the distance to the base.
. $100 . G20
$30x) G ()

[u] -4hi27
u]

2hi3 h

Fig. 2.2.3 Shape functions

Calculate the second partial derivative of w(x,z) to time and the second partial

derivative of w(x,z) to x, then

w(x,t)=> ¢ (x), () (2.2.15)



Pet) 5 0 1y (o), ) 2216)
Substituting (2.2.15) and (2.2.16) into (2.2.8) and (2.2.9) and integrating spatial
domains leads to the global mass and stiffness matrices (the local mass and stiffness
matrices are showed in Appendix A). The assembled set of matrix differential
equations is as follows [1, 2, 14, 18]:

M5i+Kx=bu (2.2.17)
where

N is the number of elements,

o

T
V—[Vl Vo ottt Vong VzN]

where

represents the state variables,

1
by, = {0} represents the single input, and

M:|:Jh +M, M,

o } represents the mass matrix for the FEM-based model.

vo v

0 0
K = {0 K } represents the stiffness matrix for the FEM-based model.

where
N .
M, :zMil
i=1
M, =Ml =ML +M], M+M}, Mi+M}, - MN'+M}* M)]

10



vy

where

ph

N-1 N-1 N N
MY MY+ MY MY
N N

M, M

M, :?[(xi +r)2 +(xi +r+h)(xi +r)+(xi _H,Jrh)z]

i i T 3 1
M, =M,, ZPh[Z—OhJFE(xi +7)

i i T 7 1
M =M, :Ph[z—oh +E(x‘ +r)

. ph[156 22k
22:@{2% 4h2}

i1 ph| 545 =13k
" _EL% _3;,2}

, 156 =22h
3 = ph{ } , and

BT 400|220 4R

Mis =M

- 5
K33+ K22
2
K32

2
K23

2 3

K33+ Kzz

3 3 4 4

K32 K33+K22 K23

v

where

. EI[12 6h
27 136k 4K2

i i T EI —12 6]’1
K = :h_{—Gh 2h2}

. EI[ 12 —6h
Ki="%
o {—eh 4h2}

11

N-1 N-1 N N
K32 K33 +K22 K23
N N

K32 K33_




Finally, the tip position defined as [8]
t(x,t)=LO(t)+w(x,1)

is also an important index in this thesis.

2.3 Nature frequencies of the flexible arm

To determine the nature frequencies of the flexible arm described in (2.2.17), the
inertial matrix M is often changed into M, by neglecting the coupling elements

between hub coordinate & and flexible coordinates such that the dynamic equation

becomes as
M, X+Kx=byu (2.3.1)
J,+M, 0 N .
where M, = 0 o denotes the uncoupled inertial matrix. Hence, (2.3.1)
1424

can be further decomposed into the following equations
(J,+M,))0=u (2.3.2)
M, v+K,v=0 (2.3.3)

Furthermore, the matrices M,, and K,, aresymmetric and positive-definite.

11 1 N/ o1
M, =U"AU =U"A*A°U = [AZU] [AZUJ =N'N (2.3.4)

1
where U is the orthogonal matrix, A is the diagonal matrix, and N = A?U . With

12



(2.3.4), rewrite (2.3.3) into

Nv+K,,Nv=0 (2.3.5)
where K,, = N""K,, N . Itcan be found that

X'Kyyx=x"N"K,,N'x=(N"x) K,,(N"'x)=y"K,,y (236)
Which implies Ky is symmetric and positive definite, same as Ky, Hence, it can be
written as

K,, =P"QP (2.3.7)
where P is the orthogonal matrix and € is the diagonal matrix. Substituting (2.3.7)
into (2.3.5) yields

Ni+ P"QPNv =10 (2.3.8)

PNv+ QPNv =0

Define a new modified state vector
y=PNv, (2.3.9)

where y is the 2nx1 vetor of model coordinates. The transformed equation of

motion (2.3.3) becomes

+Qy=0 (2.3.10)
4 0 0 wl2 0 0
0 4, 0 O 2
where 2=| . " | |= O "2 _O 0 (2.3.11)
0 - : 0 . :
0 0 A, 0 0 - w’

where w,,w,---w,, are the flexible arm frequencies.

13



2.4 Parameter ldentification

In order to test and validate the controller designed in this thesis, an experimental

setup, which is shown in Fig. 2.4.1, was developed.

Fig. 2.4.1 Experimental plant

The main characteristics of the prototype of Fig. 2.4.1 are shown in Table 2.4.1.

14



Table 2.4.1: Physical parameters of the system

Arm length / 0.94[m]

Arm width 0.031[m]

Arm thick 0.0015[m]

Arm mass m 0.3706[kg]
Flexible arm mass per unit length p 0.3554[kg/m]
Young’s modulus E 2.08x 10" [Nt/m?]
Cross-section inertia momentum 7 8.718x 10™4[m"]
Hub rotary inertia Jj, 1.12x10™[kg m?]
Hub radius 0.0265[m]

In Section 2.3, the nature frequencies of the flexible arm, shown in (2.3.12), are

derived for its uncoupled model. The Young’s modulus E could be determined from

the expression of nature frequencies of the uncoupled model (shown in Appendix B)

[17], which is constructed with the flexible arm fixed in the hub. To attain the nature

frequencies, an impulse force is generally required as the excitation source. In this

experiment, the impulse force is created by a hammer knocking near the root of the

flexible arm. After a knock, the strain gage feedback signal of the uncoupled flexible

arm is recorded. In order to get the nature frequencies of the uncoupled flexible arm,

a Fast Fourier transform (FFT) is performed for the signal to get the primary nature

frequencies which results in high amplitude response at the frequencies. For the

precise position of the nature frequencies, it is necessary to obtain many samples from

many experiments. Using the precise nature frequencies position, the Young’s

15



modulus £ is derived in Appendix B. Since the Young’s modulus E is acquired, the

precise nature frequencies of the coupled model can be derived in the same way like

the derivation of section 2.3. The difference of the coupled model and the uncoupled

model is that the latter is neglecting the coupling elements between hub coordinate &

and flexible coordinates. Because the controller is designed for the flexible arm FEM

model, it is important to make sure the accuracy of the FEM model. It is a good way

to check the accuracy of the FEM model by checking the nature frequencies of the

derived FEM model is the same as the experiment flexible arm. So, let the flexible

arm free with the hub and give a knock to the arm, the nature frequency response of

the coupled model is obtained by performing FFTto the strain gages feedback signal.

Finally, compare the nature frequencies of the coupled experimental model with the

derived model, the result, Table 2.4.2, shows that they were remarkably close to each

other, and it means that the finite-element-method is valid to describe the flexible arm

[9].

16



Table 2.4.2: Nature frequencies (Hz) of coupled and uncoupled models

Coupled Model

Uncoupled model

Nature | Exp® FEMP Exp FEM
freq.

N=2 | N=10 | N=40 N=2 | N=10 | N=40
f1 5.9 |5.9404 | 5.9057 | 5.9056 | 1.5 |1.4313|1.4306 | 1.4306
f2 18.8 | 20.474 | 18.918 | 18.916 | 8.9 |9.0416 | 8.9658 | 8.9655

% Exp means the experimental nature frequencies
® N means that there are N-elements used in FEM

Fig. 2.4.2 shows the frequency response of coupled model and uncoupled model.

a0 -

Power Spectrum Density

i0F

14

1
1] 10 0 ao 40 50
Frequency[Hz]

il

To

B0

Fig. 2.4.2 (a) Coupled model frequency response
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Power Specirum Density
Eﬂ

15+ -

1 1 L 1 1 1

-q0 -20 u] il a1 G0 a0
Frequency[Hz]

Fig. 2.4.2 (b) Uncoupled model frequency response

With the accurate flexible arm FEM -model, the controller could be validly

designed in the next chapter.

18



Chapter 3

Controller Design

3.1 Introduction

Two main classes of controllers were considered here to control the hub angle of
the arm. Firstly, the flexible arm was modeled with a two-element FEM model
derived in Chapter 2, and a rigid controller was developed. Then, a sliding mode
controller was developed and itssperformance.was compared with that of rigid
controller. These controllers were designed to‘meet the following specifications:

In response to a step inputs:

1. The steady-state error must be minimized.
2. The settling time must be minimized.
3. The vibration effect of the flexible arm hub angel and tip position must be

minimized.

3.2 Rigid Controller Design

The rigid controller is meant by considering the controller design of a rigid arm,
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so the coupled terms in the FEM model, the stiffness matrix, and the mass matrix
could be neglected. Then, the model is in a simple form:

(Je+M,)0=u (3.2.1)
In order to control such a double differential model, the PID controller is a candidate.
There are several well documented methods available to design PID controller.
Furthermore, PID controllers are relatively easy to implement. But in practical
Integral controller is not useful because that it may windup when the steady-state
error is large and may cause damage to the transient response, such as more overshoot
or undershoot. In this experiment, the drawback.of | controller was verified, so PD
controller was adapted. In order-toidesign a suitable PD controller for the flexible arm,
the PD parameters are chosen based on‘the FEM model. From (3.2.1),

(Je+M,)0=u=ky,0+k,0 (3.2.2)
Then, the poles placement method was used to assign the two poles to the left half
plane in s domain. Because the motor has limited maximum torque, the two poles

should be assigned to the proper position for the purpose that the input could be below

the maximum value.

3.3 Introduction to the Variable Structure Control (VSC)
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Variable structure control (VSC) is one influential method to deal with the
uncertainties of system. The structure of a VSC is a nonlinear control that switches
with different control input, according to some pre-assigned algorithm or law of
substructure change in the current value of the error signal and its derivatives. For
example, assume there is a system

X+x=u
With its initial condition,

x(0)=1 x(0)=0
VSC is used to changing the input.z'in different:conditions in fig.3.3.1. The response
of x is better than the conditionalicontrol because V'SC combines the advantages of

the different inputs.

sliding-mode control
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’f“ | | | | | \ | | I
06 bl
\ | | | Vol | [ | | i
X ! [ \ o | | | | h
04FL - -1-—1———— 1 [ [P

Lo | ) | s | | I | [
‘\‘ | | ““ t \\\ | | “\ | |
0.2 = m o of b
X1 [ | ol T | 1| | |
*\ | | | ! | | t | i |
X 0———42;;——\—4——4————H XXXXXXXX T ThesT s XX X i X K e X
| o x kX XN | | I | | |
“ S | 1 | | i | [
D2 T
g i ! Al ! 'line u=-5x ! !
| | | | | | | | |
04F---- \ ***** \T‘***ﬂ****#f***‘r****f****\ ***** [l -——-—--
e
0.6 - Rt et At S,
\ ;‘w | [ i XXXX ux0 when x>0.05
[ il | | | | | \ [ |
-0.8---- I e A e R A
LA/ ! AN ‘ u=-5x when x<=0.05
Y I TR/ T S O O S B e i
0 2 4 6 8 10 12 14 16 18 20
time(sec)

Fig. 3.3.1 Sliding Mode Control input combined with different inputs
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Sliding mode control is an influential control method and is generally chosen for
VSC nowadays. At first, a stable sliding surface should be determined in sliding mode
control. The state variables of the system will lead to the sliding surface by variable
structure control and will not leave the sliding surface. VSC is robust for the noise and
disturbance and its rise time and transient response are also satisfied. Generally there
are two steps in designing the sliding mode controller, the first is choosing the sliding
surface, and the second is designing the sliding mode controller. The purpose of the
second one is to reaching the sliding surface in limited time and it is easier to achieve

than the first. Choosing a good sliding surfaceis an art.

3.4 Sliding Mode Controller Design

The purpose of this experiment is to rotate the flexible arm to the desired angle
6, and eliminate the vibration of the arm. So the state variables of the FEM should
be brought to zero finally, in the beginning, the controllability of the plant model must
be checked out. From (2.2.17), because M is positive definite matrix that its inverse
matrix is exist.
x=Ax+ Bu (3.4.1)

Where x=[0 v, - v,y 6 ¥ - ] (3.4.2)
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-M'K 0

[0
B=|
M bJ

(3.4.3)

(3.4.4)

PBH test shows that (4,B) is controllable if and only if rank(AI-A4 B) is full

rank for all eigenvalues A . After checking all the eigenvalues, the result shows that

the flexible arm FEM model is controllable and could be used poles placement

method to design the controller. Then, design the error states as

e=0-0,

€rnvi2 = Xoni2 — Xani2)a

(3.4.5)

Substituting (3.4.5) into (2.2.17) yields

ME + KE + KD = Bu

!

where E=[e1 e, .. e2N+2]
D=[9, 0 .. 0]
Then Z=AZ+Bu+dD
E
E
d= .
-MK

where VA

(3.4.6)

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)

Although there are some documents mentioned about the global damping matrix in
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dynamic equation [12], we still neglect the phenomenon because the effect is not very
clear. In order to design the sliding mode controller, sliding surface S =Cx is need
to be chosen at first. The sliding surface in our design is based on Lyapunov method
shown in Appendix C. assume the sliding Surface is expressed as

s=C"Z (3.4.12)
where C is the sliding surface coefficient chosen in Appendix C [16]. The equivalent
control input could be obtained from

§=C"Z (3.4.13)
Substituting (3.4.9) into (3.4.12) yields

§=C"AZ +C"Bu, + G dD (3.4.14)

u, =—(C"B)'(C" 4z +C" D) (3.4.15)
The controlled system’s sliding motion now is restricted by

Z-= (1 —B(CTB)‘lcT)AZ+ (I—B(CTB)‘lcT }JD (3.4.16)

s=C'Z=0 (3.4.17)
According to (3.4.17), the order of the system is reduced by one. In order to guarantee
that the trajectory of the states will enter the sliding surface, the control law must
satisfied the reaching and sliding condition

s§<0 (3.4.18)

Substituting (3.4.14) into (3.4.18) yields
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ss=5(C"AZ + C" Bu, +C"dD) (3.4.19)

If the control law is set as

u=—(C"B)'(C"AZ + CTdD + sgn(s)k) (3.4.20)
where
k>0
1 if s>0
sgnls)= :
-1 if s<0
(3.4.21)
A
1
S
-1
Fig. 3.4.1 Sgn(s) function
The condition (3.4.18) will be met because
ss =—ks Sgn(s) = —k|s| (3.4.18)

When the control law (3.4.15) is applied, using sign function sgn(s) will cause
chattering effect which could be eased off by Slotine’s boundary-layer modification.

We use the saturation function
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sat(s)={sgn(s) i |s|> e (34.22)

s/e if |s|£g

v

Fig. 3.4.2 Sat(s) function

substituted for sign function sg(s). Therefore, the-control law is rewritten as
u=—(C"B)"(CTAZ + CTdD + sat(s)k) (3.4.23)

Before entering the sliding Iayer|s| > &, the modified control law is the same as the
previous one. The control law forces the system trajectory to reach the sliding layer
|s| <¢ in a limit time. When entering the sliding layer, gain of the control law must
be minimized. And, the system can’t maintain zero when there occurs a disturbance. It
means that the control law couldn’t make all states to zero but around zero. The
tradeoff of the decreased precision is that the input chattering effect is slow down and

input gain is decreased. The key point is that the sign function of (3.4.20) is not
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realizable in practical because of its infinite switch, and the modified control input

(3.4.23) could be realized in practical component.
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Chapter 4

Simulation Results

4.1 Pole Placement

From Chapter 2, two-element model is chosen as the desired control system [11],
and the flexible model has 10 system poles shown in Fig. 4.1.1. Before system
simulation, the desired system poles should be determined first. In rigid control, the
poles -0.5 and -2 are determined.sand used ihr.experimental demonstration. Then,
consider about the Sliding mode control; - Lyapunov method which has been
introduced in Appendix C is used to design the sliding surface. The system poles of
the control system should be designed in the procedure of applying Lyapunov method.
The desired poles for sliding mode control are shown in Fig. 4.1.2. The dominant
poles of SMC are designed at -0.5 and -2, and the other poles are designed as complex
conjugates lined in 45 degrees to the origin in left half plane. The imaginary part of
original poles (Fig. 4.1.1) and desired poles (Fig. 4.1.2) are of the same value, so that
the sliding surface will let the controller better with low input torque. But, the
shortcoming of the Lyapunov method is that the finally poles of the system may not

be the same position as we expected in controller design when the control goal is
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achieved which is meant that the system is in sliding surface. However, there is a

significant advantage of the Lyapunov method based on its fundamental algorithm

which is come from energy for the sliding surface design yields the less input torque

required. Not only consider about the limited motor torque in this experiment but also

concern for power consumption, Lyapunov method achieves a good result in input

restricted torque compared with the transformation matrix method. As for PD

controller, it also needs large torque for better transient response [5]. Although the

worse case could be corrected by adding a shaping reference input [13, 4].

Pole-Zero Map
600 : % : _
400 + | -
X%
200 |- ! .
K%} X
g x
>
5 0 5 1
£ X
< |
E X
-200 - ! .
%
-400 - .
_600 L | | L \)‘/ | L | |
-10 -8 -6 -4 -2 0 2 4 6 8 10
Real Axis

Fig. 4.1.1The system poles of the flexible arm

29



Pole Map of SMC
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Fig. 4.1.2The desired poles of the-sliding mode controller

4.2 Sliding Mode Controller Simulation Results

According to poles placement in section 4.1, the system poles are determined in

sliding mode control. Then, the software Matlab is used to verify the controller. With

the experimental equipment parameters showed in Table 2.4.1, the simulation results

for hub angle regulation are shown in Fig. 4.2.1 to Fig. 4.2.5, and the parameters

£=0.01 ando =5.
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t(s)

Fig. 4.2.5 Tip positionregulation in.sliding mode control

We have considered the sliding 'mode controller for the flexible arm. A set of

simulation has been carried out. Simulation™results confirm that the controller

performs remarkably well with suppressed vibration.
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Chapter 5

Experimental Demonstration

This chapter is about the flexible arm experimental demonstration. The results
will show the sliding mode controller is successful in vibration tolerance and the
developed FEM model of the flexible arm is valid. Compared with the simulation
results, the experimental demonstration makes us convinced of the controller design
in chapter is work. The beginning of this chapter is about experiment setup included
of Matlab xPC target environment,smotor setup;.and deflection measurement which

are the foundations of experiment.

5.1 Experimental Setup

5.1.1 Matlab xPC Target Environment

This experiment is established in Matlab toolbox-xPC Target. In Fig.5.1.1,
XPC-MC240 1/O card is used to get the angle from the motor and PCI-1716 card is
used to do AD/DA signal convert. The xPC Target is a solution for prototyping,

testing, and deploying real-time systems using standard PC hardware. It is an
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environment that uses a target PC, separate from a host PC, for running real-time
applications. In this environment the desktop computer as a host PC with Matlab and
Simulink creates a model using Simulink blocks. After creating the model, XPC Target
lets the blocks and a C/C++ compiler to create executable code with its embedded
coder. The executable code is downloaded from the host PC to the target PC running
the xPC Target real-time kernel. After downloading the executive code, the
application can be run by the target PC in real-time. The advantages of xPC Target are
the fast sampling rate to ten thousands Hz in real-time work and it is convenient to

hardware implementation with convenient parameters turning.

Host PC
Strain
Guage
» Amp Ckt > < i
PCI-1716 R xPC
- Kernel
*» MC240(QEP)|
Motor Phase A B
XPC Target
Torque

Fig. 5.1.1 Hardware Architecture
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5.1.2 Motor Setup

The Mitsubishi AC-servo motor HC-KFS 053B and the servo-amplifier

MR-J2S-10A are adapted in the experiment. The specifications of AC-servo motor

HC-KFS 053B is shown below in the table 5.1.2 [20].

Table 5.1.2 Servo Motor Specifications

Maximum torque 0.48[Nm]

Maximum rotation speed 3000[rpm]

Moment of inertia J 0.053[x10*kgm?]
Position detector 131072p/rev[17-bits]
Maximum current 2.5[A]

Rated current 0.83[A]

Permissible instantaneous rotation speed 5175[r/min]
Maximum rotation speed 4500[rpm]

The PCI-1716 card provides a 16-bit resolution AD/DA transformation for strain

feedback and torque driven voltage. The hub angle is detected by the xPC-MC240 1/0

card with a TM S320F240DSP embedded with Quadrature Encoder Pulse (QEP)

circuit. The QEP circuit determines the rotation direction by the input generated by an

optical encoder on a motor shaft, the direction of rotation of the motor can be

determined by detecting which of the two sequences leads. The two sequences are

pulses with variable frequencies and fixed phase shifts of a quarter of a period (90

degrees). The angular position and speed can be determined by the pulse count.
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High-resolution position determination 32768 pulse per revolution is applied in this

experiment.
5.1.3 Deflection Measurement

Several methods have been used to measure the deflections of the arm, such as
Photo-Diodes, Laser Doppler Vibrometers, and Strain gauges. Since strain gauges are
cheap and effective sensors, they are used to measure strains as small as a few pg in
this experiment. A strain gauge is basically a grid.of wire or conductor attached to the
arm and changes its conductance as the arm-stretches. This change in conductance is
used to find the change in bending moment of the arm. The straine measured in the

arm is related to the deflection w(x,¢) as follows [10]:

2 ) 2
+1 a_w + 82w (5.1)
2|\ ox|._, 0°x p

where x is the axis parallel to the arm in a stress-free state and p is the distance

o*w(x,t)
ox?

1
E=—
2

X=p

between the location strain gauge attached and the root of the arm. However, the

disadvantage of the strain gauges is that they have a maximum strain and might get

damaged subject to higher strains. Only small deflections in the arm are considered.

The strain-gauge KYOWA Y3099 is used in this experiment.
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To precisely detect the distortion of the arm, first determine a certain positions
with explicit deformation and then purposely paste two strain gauges to each of these
positions in the way of face-to-face on both sides. When deformation appears, the
resistance of each strain gauge changes with the variation AR. The small variation

AR will be detected by the Wheatstone bridge circuit shown in Fig. 5.1.2.

R~ R+ AR

Fig.5.1.2 Wheatstone Bridge Circuit

The gain of the Wheatstone bridge circuit is

2RAR

VormVos ame —am?

(5.2)
The value of V7, is small in (5.2) because of the use of low voltageV,,, to protect

the strain gauges from broken by high temperature due to the high reference voltage.

In this experiment, the reference voltage V,,, is assigned to 5 volt. The voltage
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amplifier circuit shown in Fig. 5.1.3 is designed to amplify ¥, so that the AD input

will get higher resolution.

Fig.5.1.3 Voltage Amplifier Circuit

The circuit of Fig.5.1.3 which is common uséd as an industrial voltage amplifier has

high input resistance and good CMRR:The~¥,,, -could be calculated as

V,, - (1+ %"j%xvm (5.3)
When the resistancesR, R', R, and R,are chosen in proper values, the proper
gain which limits the A/D input ranged inside +10F" could be achieved. Finally, it is
important to design a low pass filter to reduce the high pass noise. The second order
Butterworth filter shown in Fig.5.1.4 is designed and its 3db cutoff frequency

assigned to 250Hz is calculated in (5.4). The frequency response of the filter is shown

in Fig.5.1.5.
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(5.4)

(C,C,RR,)s* + C,(R, +R,)s +1

Vos _
Voo

H(s)z

Fig.5.1.4 Low Pass Filter Circuit
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Although the low pass filter is designed in the last stage of the circuit, there is still
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some high impulse noise appears when signal transfers in wires, but it is solved by a
software 80Hz low pass filter in digital before into the digital controller. Until now,
the signals of strain gauges are finally precisely fed back. However, the state feedback
is considered as elements’ position angular variation and angular velocity, so the
mathematical transformation from strain gauges feedback to states needs to derived.
Here, the mathematical transformation in two-element FEM model is considered and
will be shown in the following description. By definitions, the measured amount for a
strain gauge feedback is an external moment applied to a strain gauge position. The

first strain gauges pasted at x, to théroot can be described as

0*w,(x,,1)

:/L[-Ml (5'5)
ox,

The second ones pasted at x, to.theroot canbe described as

62w2(x2,t)

:/’l.MZ (5'6)
ox,

Consider the continuous boundary between two elements, the moment of them must

be the same, so

o*w,(h,t) ow,(0,2)
- 2

2

(5.7)

ox; ox,

And, the principle assumption of Euler Bernoulli beam is the zero moment at the arm

tip, so

0*w,(h,t)

2

-0 (5.8)

ox,

Then, substituting w(x,¢) into (5.5) (5.6) (5.7) (5.8) yields
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2 - 'Ml
ox,
¢1N(xl)-0+¢2”(xl)'0+¢3”(xl)-vl(t)+¢4”(xl)-v2(t):,u]\ll (5.9)
a2”’2(3‘721)_ )
ox, =M,

"

) (x2)~vl(t)+¢2"(x2)- vz(t)+¢3"(x2)- v3(t)+¢4"(x2)- "A(t): uM,  (5.10)

0*w,(h,t) _ ow,(0,1)

2 2

ox, ox,

n ”

gy (W), (0)+4, (1)-v,()=4 (0)-wy(0)+45 (0)-v,(6)+4s (0)-va(e)+y (0)-,()
(5.11)

0*w,(h,t)

2

=0

ox,

4 (2h),(e)+ ¢, (2m)ovale)4 dy @R, (e}+ g, (2h)v,(1)=0  (512)

Rearrange (5.9) (5.10) (5.11) (5.12) into a matrix form

where

pv=u-M (5.13)
C4) 4) 0 0
¢ = ¢1 (O?'_¢3 (h) ¢2 (O?'_¢4 (h) ¢§, (0) ¢z,1’ (0) (5_14)
¢1"(x2) ¢2"(x2) ¢3”(x2) ¢4”(x2)
¢, (2h) #, (2h) ¢, (2n) ¢, (2h)]
_vl(t)
_ vz(t)
y= v3(t) (5.15)
_"A(t)
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S

0
M = (5.16)
M2
0
When ¢ is exist, the flexible arm state variables could be calculated by
v=u-¢ M (5.17)

Now, we have already described the measurement the strain moments of two elements

of the arm.

5.2 Sliding Mode Controller Experimental Results

Consider the robustness of a yariable structure system, there are three kinds of

noises need to be faced [15]. Suchas:

A. The disturbance from outside of the plant; such as AC power supply ...etc.

B. The uncertainty of the system parameters changes with different environment,

such as changes of temperature.

C. The unmodeled modes are hard to find in the control system.

As a result, Fig. 5.2.1 to Fig. 5.2.3 show the experimental results of the

flexible arm controlled by a rigid controller whose poles designed in -0.5 and -2. This

demonstration shows that these disturbances yield much vibration in rigid controller.

We needs to avoid these noises carefully, or the control goal may be failed, even then

the system will get loss in preciseness and be unstable. So how to arise the robustness
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of the control system is an important target in system and controller design. Variable

structure control is well used in practical for the most part of its robustness. The hub

regulation experimental results shown in Fig. 5.2.4 to Fig. 5.2.15 also verify the

advantages of SMC. In these figures, the dominant poles of SMC are designed at -0.5

and -2, and the other poles are designed as complex conjugates lined in 45 degrees to

the origin in left half plane shown in Fig.4.1.1. In Fig.5.2.4 to Fig. 5.2.7, the

parameters are defined as £=0.01 ando =5. Then, in Fig.5.2.8 to Fig. 5.2.11, the

parameters are defined as ¢ =0.0067 ando = 6. Finally, in Fig.5.2.12 to Fig. 5.2.15,

the parameters are defined as ¢ =0:005 ando=8.
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The experimental results obtained indicate sliding mode control is effectiveness
in suppressing structural vibration of the flexible arm when regulating reference
compared with the rigid controller. Simulation shows us that the experimental
performance will be improved when we change the parameters ¢ ando with proper
values. But the experimental result is not well improved as we expected in the
simulation. The error might come from the uncertainty of the system parameters,
viscous hub friction, outer disturbance, and the error of the strain feedback. Among
the uncertainties above, the error of the strain feedback seems to play the most

important role.

5.3 Experimental Results of Impulse Disturbance

A robust system must be able to reject external impulse disturbance. To show
such robustness of the proposed controller, an impulse disturbance which is taken as a
knock to the root of the arm is applied when the controller is in use of a zero hub
degree regulation. Two poles of a rigid controller are designed to —0.5 and-2, and
an impulse disturbance is applied about 3 seconds after the experiment is processing.
The results for the hub angle and tip position which are presented in Fig 5.3.1 and

5.3.2 are vibrating to divergent. The states of FEM model are shown in Fig.5.3.3. The
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frequency response of the hub angle is obtained by performing FFT to angle vibration

from 11 seconds to 12 seconds in Fig.5.3.1, and the result is shown in Fig. 5.3.4. The

dominant frequencies of the model derived in chapter 3 are excited for high response.
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Then, in order to check the robustness: of ithe sliding mode controller, the same
impulse disturbance is applied when,the“sliding mode controller is in use of zero hub
degree regulation about 3 seconds after the-experiment is processing. The poles of the
sliding mode controller are designed in the same position as in simulation. The results
for the hub angle and tip position are presented in Fig 5.3.5, and 5.3.6. The states of
FEM model and the sliding surface are shown in Fig. 5.3.7, and Fig. 5.3.8. The
frequency response of the hub angle is obtained by performing FFT to the angle
vibration from 17 seconds to 18 seconds in Fig. 5.3.5, and the result is shown in Fig.

5.3.9.
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Impulse disturbance is used to test-the robustness of the system. Compared with
rigid control, sliding mode control performs-obviously better. Vibration suppression in
sliding mode control shown in Fig.5.3.4 is 107 attenuate than the rigid control

shown in Fig.5.3.9.

5.4 Experimental Results with Tip-Mass Loading

The payload is considered as the system disturbance in these demonstrations.
The experimental results of rigid controller whose poles designed in -0.5 and -2 for

regulation problem are shown in Fig. 5.4.1 to Fig. 5.4.3., the tip position with 0.102
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Kg payload reaches the reference goal with much vibration effect. Then, Fig.5.4.4 to

Fig. 5.4.7 (Fig.5.4.8 to Fig. 5.4.11) show the robustness of the sliding mode control

against 0.102 Kg payload variation with sliding layer parameters ¢ =0.01 ando =6

(6 =0.005 ando =7). The vibration phenomenon is suppressed in the process of

regulation. The performance of sliding mode control is alike the non-payload ones but

exist greater steady state errors.
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The results of sliding mode controller compared with rigid controller obviously

indicated the robustness of sliding-mode controller against the variation of payload in

these demonstrations.

65



Chapter 6

Conclusions

A physical sliding mode control is investigated in this thesis to deal with the
vibration problem of the tip position control of a single-link flexible arm. Based on
the linear model derived by the FEM method, the disturbances related to the higher
order modes of the flexible arm and the uncertainties resulted from the structure and
payload variations can be successfully suppressed by the sliding mode control with
sliding surface designed by Lyapuhov method.. The simulation and experimental
results demonstrate that the sliding mode cantroller-not only requires small control
torque but also highly reduces the vibration. Besides, the robustness of the flexible
arm controlled by sliding mode method is also verified by applying an impulse
disturbance and tip-mass variation. Because the real system may be not enough to be
described by the 2-element FEM Euler-Bernoulli beam, in the future the system
model might be derived by a more complicated analytic approach. For the better
control result in our future work, the experimental accuracy should be improved by

reducing the errors from the voltage shifting effect in strain gauges feedback.
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Appendix A

Local Mass Matrix and Stiffness Matrix

For the Euler-Bernoulli beam introduced in Chapter 2, its local mass matrix in

(2.2.9) and stiffness matrix in (2.2.8) are respectively given as

M, = [ o (5 (xJ (Al)

and

(K], = [ E16700080(x )dx (A2)

where ¢, (x) represents the j-th shape function:.:It is known that the shape functions

are admissible and expressed as-the following‘Hermite-cubic polynomial functions:

o434}
si=c-2f] o]
s3] )
s3] )

which as been shown in (2.2.14).

(A.3)

Finite element modeling of a structure may be considered to be many fold local
application of the assumed modes method wherein linear combinations of the locally

valid ¢, (x)s are used to represent the deflection shape over a portion (finite element)

of the structure, and with the element equations and boundary constraints being
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assembled to form a global model of the structural system. For the general
expressions of the Euler-Bernoulli beam elements. Substituting the four shape
functions (A.3) into (A.1) and (A.2), the mass matrix M’ and the stiffness matrix K’ of

the i-th element are obtained as

156  22h 54 —13h
o ph| 22h AR 13n 307
T 420 54 13h 156 22K
_13h —3W: —22h 4R

12 6h -12 6h
. EI| 6h 4h* —6h 2h°
TR -12 —6h 12 —6h
6h 21 —6h 4i?

Then, N-element model of flexible-arm could be derived with the above result.
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Appendix B

Measurement of Young’s Modulus

Young’s modulus £ is an important parameter for the precise flexible arm model,
and it is measured by the frequencies analysis in this thesis. At first, the flexible arm

dynamic equation is described as

0° o°w o'w
o’ (E[ 8x2J+p ar (B

where p is external force which is assumed to be zero. Then, let the deformation w
represented as
w(x,t)=w(x)cos(wt =¢) (B.2)

Substituting (B.2) into (B.1) yields

0? o*w
y(EI v J+pw2w: 0 (B.3)

Because the flexible arm is uniform in shape and property, its area moment of inertia /

and Young’s modulus E are constant. Rewrite (B.3) as

4
‘;jvw“w:o (B.3)
X
2
where A= (ﬂ) (B.4)

ET

The general solution of (B.4) is

w(x) = Ae™ + A,e ™ + Ae™ + 4™ (B.5)
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or
w(x) = C, sinh Jx + C, cosh Ax + C, sin Ax + C, cos Jx (B.6)

The boundary conditions at the clamped end, x=0, are

dw

=0 (B.7)

x=0

On the other hand, at the free end, x=/, the boundary conditions are

d*w

dx®

d*w

dx?

=0 (B.8)

x=l x=/

Evaluating the boundary conditions at x=0 and x=/ leads to the following
homogeneous system of algebraic equations

0 1 0 1 C
A 0 A 0 C,
A sinh Al A’ coshAl. —AsinAl . — Aeos Al || C,
A coshil  2Psinh il B eosil™ Asinil | C,

(B.9)

|
o O O O

For the set of homogeneous equations to have a nontrivial solution, the determinant of
the coefficients must vanish. It follows that the determinant vanishes if and only if 4
is such that the following condition holds

cos AlcoshAl+1=0 (B.10)
which is recognized as the characteristic equation. The explicit expression for the for
the roots of this characteristic equation is not simple, so these roots must be
determined using some numerical method, generally yielding an infinite set of

eigenvalues }L,(r:1,2,---). The first few eigenvalues are given approximately as
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follows

21 =1.8751 A,l=4.6941 A,]=7.8548 (B.11)
From (B.4)
) 1
2
Wr:(zlrzl) (ﬂj (=12, (8.12)
Y2,

Therefore, the approximate values of the first three natural frequencies are obtained as

follows

1 1 1

3.516( EI |2 22.03( EI \2 61.70( EI |2

w=——— W, =———| — Wy =———| — (B.13)
/ yo, / Yo, [ Yo,

Based on (B.13), the Young’s modulus £ couldsbe found by getting the first several

order resonant nature frequencies of the flexible arm.
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Appendix C
Design Sliding Surface by Lyapunov Method
There are several methods to design the sliding surface. The Lyapunov method
which is developed from the aspect of the energy convergence is the easiest one inside
them. Assume the original system is
x=Ax+Bu+d (C.1)
where d is disturbance. In order to use Lyapunov method, by pole placement method
the feedback matrix K should be obtained first so that all the eigenvalues of the matrix
A =A-BK (C.2)
are lied in the left half plane of s demain. Then; the input is designed as
u=—-Kx+v (C.3)
(C.1) is rearranged as
x=Ax+Bv+Bd, +B.d, (C.4)
where
d, is matched disturbance
d. is mismatched disturbance

r

B, is the null space of matrix B

For every positive-definite matrix @, The positive-definite matrix P is surely uniquely

exist and satisfying the Lyapunov equation below.
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AP+ PA, =-Q (C.5)
According to (3.3.2.13), the P matrix is calculated and analyzed for the system
stability, define

V(x)=x"Px (C.6)
Substituting (C.1) and (C.4) into (C.6) yields

V(x)=—x"Qx+2x"PB(v+d,)+2x"PB.d, (C.7)
In equation (C.7), if the mismatched disturbance is neglect and the condition
B"Px =0 isincluded, (C.7) is written as

V(x)=-x"0x<0 (C.8)

The equal appears when xIsiequal to zero, V(x) is a Lyapunov function. The
system is stable because that the infinity of X tends to become zero. If the mismatched
disturbance d, is neglected, the stable system occurs when the sliding surface was
chosen as

s=Cx=B"Px=0 (C.9)

In the same time, the control goal is accomplished.
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