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摘要  

在本篇論文中，我們研究如何穩健控制撓性臂頂端位置的問

題。首先以有限元素法推導撓性臂的數學模型，將非線性的撓性

臂的高階模式省略，求出一個近似的線性數學模型。而這些被省

略的高階撓性臂模式，與系統結構的不確定項一起當成系統外在

的擾亂。知名的穩健順滑模式理論可以對付這些擾亂，做有效的

控制。模擬以及實驗的結果顯示順滑控制理論的穩健以及在控制

結果上的優越。 
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ABSTRACT 
 

This thesis studies the robust problem of the tip position control of a physical 

flexible arm. Its linear model is mathematically derived by the finite element method 

(FEM), which is approximate to the nonlinear flexible arm by neglecting the higher 

order modes. As a result, these higher order modes are considered as the disturbances 

of the linear model of the flexible arm. In addition, uncertainties subject to the 

structure and payload variations are also included in the linear model. To cope with 

these disturbances and uncertainties, the well-known robust control technique, the 

sliding-mode control, is employed to effectively control the tip position of the flexible 

arm. Finally, simulation and experimental results are used to demonstrate the 

robustness and superiority of the sliding mode control.  
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Notations 

 

 A,B,C : Upper-case bold italic letters denote matrices. 

 a,b,c : Lower-case bold italic letters denote vectors. 

 a,b,c : Lower-case italic letters denote scalars. 

 w : Deformation of beam. 

 θ  : Rotary angle of hub. 

 ρ  : mass per unit length. 

 E : Young’s modulus of elasticity. 

 I : area moment of inertia of the arm’s cross section. 

 Jh : Rotary inertia of hub. 

 u : Input torque. 

 ( )⋅φ  : Shape function for beam. 

 s : Sliding surface. 

 ( )⋅sgn  : The sign function. 

  ( )⋅sat  : The saturation function. 

 ε  : Width of saturation function. 
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Chapter 1 

Introduction 

 

1.1 Preliminary 

 

 Recently, the control problems of flexible systems have been intensively studied 

due to the challenging demand of fast and precise manipulators in various industrial 

and space applications. In future space applications, the manipulators will need to be 

lighter and to move faster with higher accuracy. The reduced inertias of these lighter 

and faster manipulators unavoidably result in vibration. Thus, it is important to 

investigate the dynamics and control problems for manipulators with structure 

flexibility. The desired control strategy for the flexible arms is not only to control the 

motion of the rigid mode with reasonable accuracy, but also to suppress the vibration 

of the arm to achieve high speed and precise tip position.  

Since the tip position motion of the lightweight flexible arm has an infinite 

number of modes, most of the investigators [1, 2, 14, 18] adopt the so-called finite 

freedom model to simulate the real flexible arm. Instead, this thesis uses the finite 

element method (FEM) to derive a reduced-order model for the flexible arm. 

It is well known that the sliding mode control is an established robust method of 
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controlling uncertain systems [3]. Besides, the sliding mode control for flexible arms 

has been widely studied [2, 16, 17, 18]. In these papers, numerical simulation results 

show that the flexible arm is effectively controlled by SMC. In this thesis, an 

experimental flexible arm is set up to control the flexible arm tip position. In addition, 

the robustness of the proposed sliding mode controller is compared with the rigid 

controller by applying impulse disturbance and payload variation to the flexible arm.  

 

1.2 Content Organization 

 

This thesis is organized into six chapters. Chapter 1 gives an introduction. 

Chapter 2 describes the FEM model of the flexible arm. Chapter 3 presents the 

scheme and theorem of sliding mode controller. The control purpose in this thesis is to 

regulate the hub angle of the flexible arm with vibration suppressed. Chapter 4 

simulates the flexible arm control in Matlab and then Chapter 5 fulfills the experiment. 

Finally, concluding remarks are stated in Chapter 6. 

 
 

 2



Chapter 2 

System Modeling of a Flexible Arm 

 

Although there are some documents using system identification method to 

identify the flexible arm model [19], the derived mathematical model is used in this 

thesis because of its accuracy of physical meaning to describe the nonlinear model.  

 

2.1 Introduction 

 

Mathematical model derivation of flexible arm is generally concluded into two 

methods. One is using Assumed Mode Method (AMM), and the other is using Finite 

Element Method (FEM). In Assumed Mode Method, the vibration modes in flexible 

arm are considered as shape functions, and the amplitude of these modes are state 

variables. The shape function of AMM is more complicated and could not be used for 

different complex geometry shape system. It means that different plant needs different 

shape function. FEM divides the flexible arm into several elements, and the shape 

function of each one is the same. The shape functions are simple polynomial 

equations and do not change when different complex geometry shape flexible arm is 

applied. The state variables of FEM model are deformations of all elements which are 
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easier to get from the strain gauge feedbacks. The FEM-based flexible arm model is 

derived as follows. 

 A clamped-free single flexible arm is generally modeled by a partial 

differential equation [9], expressed as 

p
t
wρ

x
wEI

x 2

2

=
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

2

2

2

2

 (2.1.1) 

where  

E : Young’s modulus of elasticity. 

I : area moment of inertia of the arm’s cross section. 

w : transverse displacement (deformation). 

ρ : mass per unit length. 

p : external force per unit length. 

There is no exact solution for (2.1.1). Instead, an approximate approach using 

polynomials is adopted to solve the partial differential equation. A more correct 

solution will be obtained when higher order polynomials are used. FEM is employed 

to derive the single flexible arm model in this paper. 

 

2.2 FEM-Based Model description 

 

The flexible arm is a one-meter stainless steel ruler shown in Fig. 2.2.1. The 

left-hand side of the arm is clamped on the motor joint and the right-hand side is free. 

Consider vibration and rotation in horizontal direction and neglect shear deformation, 

as in the Euler-Bernoulli beam shown in Fig. 2.2.1. The motor rotational angle ( )tθ  

and deformation, transverse displacement, ( )txw ,  are expressed in the fixed X-Y 
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coordinate system and reference x-y coordinate system, respectively. To model the 

FEM structure, it is required that the transverse displacement ( )txw ,  be small, less 

than one tenth of the full arm length.  

y Y

 
 
 w(x,t) x 
 

( )tθ X 
 
 

Fig. 2.2.1 The flexible arm structure

 

The flexible arm dynamic equation is generally derived by Hamilton’s principle 

described as 

( ) 02

1

2

1

=+− ∫∫
t

t nc

t

t
dtWdtVT δδ  (2.2.1) 

where  

T : system kinetic energy 

V : system potential energy 

ncWδ  : virtual work by non-conservative forces 

The system kinetic energy is composed of rotational and moving energies, written as  

( ) ( )∫+=
L

0

22
h dxtx,ρv

2
1tθJ

2
1T &  (2.2.2) 

where Jh is the rotational inertia of the hub, and  
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  ( ) ( ) ( ) ( )tθrxx,twx,tvv && ++==  

represents flexible arm velocity.  

Because the flexible arm rotates on the horizontal plane, the gravity potential 

energy is neglected, and total system potential energy only contains strain energy, 

expressed by 

∫ ⎟⎟
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⎞
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dx
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wEIV
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 (2.2.3) 

Virtual work ncWδ  done by non-conservative force is described as 

( )tuWnc δθδ 1=  (2.2.4) 

where u1 is the motor torque applied to the system. Substituting T, V and ncWδ  into 

(2.2.1) yields 
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From the truth of 
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and the assumption of ( ) ( ) 021 == tqtq ii δδ  in Hamilton’s principle, we have  
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and rearrange (2.2.5) as 
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where  is the deformation that refers to the rotational reference coordinate 

system x-y and is described by FEM. Since  and 

( txw , )

dx δθ  are linear independent, we 

have 

( )( )∫ =⎥
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⎢
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( ) ( )( ) 0
0 1 =⎥⎦

⎤
⎢⎣
⎡ −++++∫ δθθθρ

L

h uJdxrxwrx &&&&&&  (2.2.9) 

Based on FEM, the flexible arm consists of many linear piecewise arm elements, each 

with four degrees of freedom (DOF). The deformation ( )txw ,  of the j-th element is 

written as 

( ) ( ) ( ) 1

4

1
+

=

<<−=∑ jj
i

ijji xxxtvxxtx,w φ  (2.2.10) 

where v1j(t) and v2 j(t) (v3j(t) and v4j(t)) represent the transverse deflection and rotation 

at node j (j+1) as depicted in Fig. 2.2.2, and ( )xiφ  means the shape functions [6]. To 

solve the shape functions ( )xiφ , i=1,2,3,4, the following boundary conditions must 

be satisfied  

( ) ( )

( ) ( )

( ) ( )

( ) ( )tvt,xw
t

tvt,xw

tvt,xw
t

tvt,xw

j4j

j3j

j2j

j1j

=
∂
∂

=

=
∂
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+

+

1

1

 (2.2.11) 
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Fig. 2.2.2 Four degrees of freedom of an element 

 

Substituting (2.2.11) into (2.2.10) yields 

( ) 10 =1φ , ( ) ( ) ( ) 00 === hh φφφ &&
111

2

 

( ) 10 =φ& , ( ) ( ) ( ) 00 === hh φφφ &
222  

( ) 13 =hφ , ( ) ( ) ( ) 000 333 === hφφφ &&  

( ) 1=hφ&4 , ( ) ( ) ( ) 000 === hφφφ &
444  (2.2.12) 

where h is the length of the flexible arm. Since there are four boundary conditions per 

interpolation function, the simplest functions we can select are linear polynomials of 

the form 

( ) 3
4

2
321 xCxCxCCx iiiii +++=φ , i = 1, 2, 3, 4 (2.2.13) 
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Substitute (2.2.12) into (2.2.13) to solve the four shape functions, which are obtained 

as  
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h2xxxφ

h
xx

2
h
xx
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 (2.2.14) 

where x is the distance to the base. 

 

 Fig. 2.2.3 Shape functions 

 

Calculate the second partial derivative of ( )txw ,  to time and the second partial 

derivative of  to x, then ( txw , )

) ( ) ( ) (∑
=

=
4

1i
iji tvxt,xw &&&& φ           (2.2.15) 
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( ) ( )[ ] ( )∑
= ∂
∂

=
∂

∂ 4

1
2

2

2

2

i
iji tvx

xx
t,xw φ  (2.2.16) 

Substituting (2.2.15) and (2.2.16) into (2.2.8) and (2.2.9) and integrating spatial 

domains leads to the global mass and stiffness matrices (the local mass and stiffness 

matrices are showed in Appendix A). The assembled set of matrix differential 

equations is as follows [1, 2, 14, 18]: 

uNbxx =+ KM &&  (2.2.17) 

where  

N is the number of elements, 

  ⎥
⎦

⎤
⎢
⎣

⎡
=

v
x

θ

where 

   [ ]TNN vvvv 21221 −= Lv

represents the state variables, 

⎥
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⎤
⎢
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⎡
=

0
1

Nb  represents the single input, and 

⎥
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represents the mass matrix for the FEM-based model. 

⎥
⎦

⎤
⎢
⎣

⎡
=

vvK0
00

K

 

represents the stiffness matrix for the FEM-based model. 

where 
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=

=
N

i

i

1
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Finally, the tip position defined as [8] 

 

( ) ( ) ( txwtLtxt ,, += )θ

 
is also an important index in this thesis. 

 

2.3 Nature frequencies of the flexible arm 

 

To determine the nature frequencies of the flexible arm described in (2.2.17), the 

inertial matrix M is often changed into MU by neglecting the coupling elements 

between hub coordinate θ  and flexible coordinates such that the dynamic equation 

becomes as 

          (2.3.1) uKMU Nbxx =+&&

where denotes the uncoupled inertial matrix. Hence, (2.3.1) 

can be further decomposed into the following equations 

⎥
⎦

⎤
⎢
⎣

⎡ +
=

VV
U M0

0
M θθh MJ

  (2.3.2) ( ) uMJ θθ =+ θ&&h

 0  (2.3.3) =+ vKvM VVVV &&

Furthermore, the matrices  and  are symmetric and positive-definite. VVM VVK

 NNUΛUΛUΛΛUΛUUM T2
1T

2
1

2
1

2
1

TT
VV =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===  (2.3.4) 

where U is the orthogonal matrix,  is the diagonal matrix, and Λ UΛN 2
1

= . With 
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(2.3.4), rewrite (2.3.3) into 

   (2.3.5) 0=+ NvKvN VN&&

where . It can be found that 1
VV

T
VN NKNK −−=

  ( ) ( ) yKyxNKxNxNKNxxKx VV
T1

VV
T11

VV
TT

VN
T === −−−−  (2.3.6) 

Which implies KVN is symmetric and positive definite, same as KVV. Hence, it can be 

written as 

  (2.3.7) ΩPPK T
VN =

where P is the orthogonal matrix and  is the diagonal matrix. Substituting (2.3.7) 

into (2.3.5) yields 

Ω

   (2.3.8) 0ΩPNvPvN =+ T&&

   0ΩPNvvPN =+&&

Define a new modified state vector 

 , (2.3.9)     PNvy =

where y  is the  vetor of model coordinates. The transformed equation of 

motion (2.3.3) becomes 

12 ×n

                (2.3.10) 0Ωyy =+&&

where    (2.3.11) 
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⎥
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⎣

⎡
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2
2

2
2

2
1

2

2

1

00
0

000
00

00
0

000
00

nn w

w
w

L

MOM

L

L

MOM

L

λ

λ
λ

Ω

where  are the flexible arm frequencies. nww,w 221 L
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2.4 Parameter Identification 

 

In order to test and validate the controller designed in this thesis, an experimental 

setup, which is shown in Fig. 2.4.1, was developed. 

 

 

 

 

Fig. 2.4.1 Experimental plant 

 

The main characteristics of the prototype of Fig. 2.4.1 are shown in Table 2.4.1.  
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Table 2.4.1: Physical parameters of the system 
 
Arm length l 0.94[m]  
Arm width  0.031[m] 
Arm thick 0.0015[m] 
Arm mass m 0.3706[kg] 
Flexible arm mass per unit length ρ  0.3554[kg/m] 
Young’s modulus E 2.08×1011[Nt/m2] 
Cross-section inertia momentum I 8.718×10-12[m4] 
Hub rotary inertia Jh 1.12×10-4[kg m2] 
Hub radius r 0.0265[m] 
 

 

 In Section 2.3, the nature frequencies of the flexible arm, shown in (2.3.12), are 

derived for its uncoupled model. The Young’s modulus E could be determined from 

the expression of nature frequencies of the uncoupled model (shown in Appendix B) 

[17], which is constructed with the flexible arm fixed in the hub. To attain the nature 

frequencies, an impulse force is generally required as the excitation source. In this 

experiment, the impulse force is created by a hammer knocking near the root of the 

flexible arm. After a knock, the strain gage feedback signal of the uncoupled flexible 

arm is recorded.  In order to get the nature frequencies of the uncoupled flexible arm, 

a Fast Fourier transform (FFT) is performed for the signal to get the primary nature 

frequencies which results in high amplitude response at the frequencies. For the 

precise position of the nature frequencies, it is necessary to obtain many samples from 

many experiments. Using the precise nature frequencies position, the Young’s 
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modulus E is derived in Appendix B. Since the Young’s modulus E is acquired, the 

precise nature frequencies of the coupled model can be derived in the same way like 

the derivation of section 2.3. The difference of the coupled model and the uncoupled 

model is that the latter is neglecting the coupling elements between hub coordinate θ  

and flexible coordinates. Because the controller is designed for the flexible arm FEM 

model, it is important to make sure the accuracy of the FEM model. It is a good way 

to check the accuracy of the FEM model by checking the nature frequencies of the 

derived FEM model is the same as the experiment flexible arm. So, let the flexible 

arm free with the hub and give a knock to the arm, the nature frequency response of 

the coupled model is obtained by performing FFT to the strain gages feedback signal. 

Finally, compare the nature frequencies of the coupled experimental model with the 

derived model, the result, Table 2.4.2, shows that they were remarkably close to each 

other, and it means that the finite-element-method is valid to describe the flexible arm 

[9]. 
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Table 2.4.2: Nature frequencies (Hz) of coupled and uncoupled models 
 

 Coupled Model Uncoupled model 

 

Fig. 2.4.2 shows the frequency response of coupled model and uncoupled model. 

 

 

Fig. 2.4.2 (a) Coupled model frequency response 

FEMb FEM ExpaNature 
freq. 

Exp 

N=2 N=10 N=40 N=2 N=10 N=40 

f1 5.9 5.9404 5.9057 5.9056 1.5 1.4313 1.4306 1.4306 

f2 18.8 20.474 18.918 18.916 8.9 9.0416 8.9658 8.9655 

a Exp means the experimental nature frequencies 
b N means that there are N-elements used in FEM  
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Fig. 2.4.2 (b) Uncoupled model frequency response 

 

 With the accurate flexible arm FEM model, the controller could be validly 

designed in the next chapter. 
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Chapter 3 

Controller Design 

 

3.1 Introduction 

 

Two main classes of controllers were considered here to control the hub angle of 

the arm. Firstly, the flexible arm was modeled with a two-element FEM model 

derived in Chapter 2, and a rigid controller was developed. Then, a sliding mode 

controller was developed and its performance was compared with that of rigid 

controller. These controllers were designed to meet the following specifications: 

In response to a step inputs: 

1. The steady-state error must be minimized. 

2. The settling time must be minimized. 

3. The vibration effect of the flexible arm hub angel and tip position must be 

minimized. 

 

3.2 Rigid Controller Design 

 

The rigid controller is meant by considering the controller design of a rigid arm, 
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so the coupled terms in the FEM model, the stiffness matrix, and the mass matrix 

could be neglected. Then, the model is in a simple form: 

( ) uMJ R =+ θθθ
&&  (3.2.1) 

In order to control such a double differential model, the PID controller is a candidate. 

There are several well documented methods available to design PID controller. 

Furthermore, PID controllers are relatively easy to implement. But in practical 

Integral controller is not useful because that it may windup when the steady-state 

error is large and may cause damage to the transient response, such as more overshoot 

or undershoot. In this experiment, the drawback of I controller was verified, so PD 

controller was adapted. In order to design a suitable PD controller for the flexible arm, 

the PD parameters are chosen based on the FEM model. From (3.2.1), 

( ) θθθθθ PDR kkuMJ +==+ &&&  (3.2.2) 

Then, the poles placement method was used to assign the two poles to the left half 

plane in s domain. Because the motor has limited maximum torque, the two poles 

should be assigned to the proper position for the purpose that the input could be below 

the maximum value.  

 

3.3 Introduction to the Variable Structure Control (VSC) 
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 Variable structure control (VSC) is one influential method to deal with the 

uncertainties of system. The structure of a VSC is a nonlinear control that switches 

with different control input, according to some pre-assigned algorithm or law of 

substructure change in the current value of the error signal and its derivatives. For 

example, assume there is a system 

uxx =+&&   

With its initial condition,  

   ( ) ( ) 0010 == xx &

VSC is used to changing the input u in different conditions in fig.3.3.1. The response 

of x is better than the conditional control because VSC combines the advantages of 

the different inputs.  
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sliding-mode control

 line u=-5x

  ---- u=0

xxxx u=0 when x>0.05
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Fig. 3.3.1 Sliding Mode Control input combined with different inputs 
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Sliding mode control is an influential control method and is generally chosen for 

VSC nowadays. At first, a stable sliding surface should be determined in sliding mode 

control. The state variables of the system will lead to the sliding surface by variable 

structure control and will not leave the sliding surface. VSC is robust for the noise and 

disturbance and its rise time and transient response are also satisfied. Generally there 

are two steps in designing the sliding mode controller, the first is choosing the sliding 

surface, and the second is designing the sliding mode controller. The purpose of the 

second one is to reaching the sliding surface in limited time and it is easier to achieve 

than the first. Choosing a good sliding surface is an art. 

 

3.4 Sliding Mode Controller Design 

 

The purpose of this experiment is to rotate the flexible arm to the desired angle 

dθ  and eliminate the vibration of the arm. So the state variables of the FEM should 

be brought to zero finally, in the beginning, the controllability of the plant model must 

be checked out. From (2.2.17), because M is positive definite matrix that its inverse 

matrix is exist. 

BuAxx +=&  (3.4.1) 

Where [ ]NN 2121x vvvv &L&&L θθ=  (3.4.2) 
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⎥
⎦

⎤
⎢
⎣

⎡
−

= − 0KM
I0

A 1  (3.4.3) 

⎥
⎦

⎤
⎢
⎣

⎡
= −

NbM 1

0
B  (3.4.4) 

PBH test shows that  is controllable if and only if ( BA, ) ( )BAIrank −λ  is full 

rank for all eigenvalues λ . After checking all the eigenvalues, the result shows that 

the flexible arm FEM model is controllable and could be used poles placement 

method to design the controller. Then, design the error states as 

de θθ −=1  (3.4.5) 

   dxve 112 −=

  M  

   ( )dNNN xxe 222222 +++ −=

 Substituting (3.4.5) into (2.2.17) yields 

BuKDKEEM =++&&  (3.4.6) 

where   [ ]′= +2221 NeeeE K  (3.4.7) 

 (3.4.8)    [ ]′= 00 KdD θ

Then     (3.4.9) dDBuAZZ ++=&

where    (3.4.10) ⎥
⎦

⎤
⎢
⎣

⎡
=

E
E

Z &

  (3.4.11) ⎥
⎦

⎤
⎢
⎣

⎡
−

= − KM
d 1

0

Although there are some documents mentioned about the global damping matrix in 
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dynamic equation [12], we still neglect the phenomenon because the effect is not very 

clear. In order to design the sliding mode controller, sliding surface  is need 

to be chosen at first. The sliding surface in our design is based on Lyapunov method 

shown in Appendix C. assume the sliding Surface is expressed as 

CxS =

ZCs T=  (3.4.12) 

where C is the sliding surface coefficient chosen in Appendix C [16]. The equivalent 

control input could be obtained from 

ZCs T && =  (3.4.13) 

Substituting (3.4.9) into (3.4.12) yields 

dDCBuCAZCs T
eq

TT ++=&  (3.4.14) 

( ) ( dDCAZCBCu TTT
eq +−=

−1 )  (3.4.15) 

The controlled system’s sliding motion now is restricted by 

( )( ) ( )( )dDCBCBIAZCBCBIZ TTTT 11 −−
−+−=&  (3.4.16) 

0== ZCs T  (3.4.17) 

According to (3.4.17), the order of the system is reduced by one. In order to guarantee 

that the trajectory of the states will enter the sliding surface, the control law must 

satisfied the reaching and sliding condition 

0<ss&  (3.4.18) 

Substituting (3.4.14) into (3.4.18) yields 
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( )dDCBuCAZCsss T
eq

TT ++=&  (3.4.19) 

If the control law is set as 

( ) ( )( ksdDCAZCBCu TTT sgn++−=
−1 ) (3.4.20) 

where  

         0>k

        

 (3.4.21)

 

( )
⎩
⎨
⎧

<−
>

=
01
01

sif
sif

ssgn

 
 
 
 
 1
 
 

s
 

-1 
 
    Fig. 3.4.1 Sgn(s) function 

The condition (3.4.18) will be met because 

( ) sksksss −=−= sgn&  (3.4.18) 

When the control law (3.4.15) is applied, using sign function  will cause 

chattering effect which could be eased off by Slotine’s boundary-layer modification. 

We use the saturation function 

( )ssgn
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( ) ( )
⎩
⎨
⎧

≤
>

=
εε
ε

sifs
sifs

s
/

sgn
sat  (3.4.22) 

 

1

 

substituted for sign function ( )ssgn . Therefore, the control law is rewritten as 

( ) ( )( ksdDCAZCBCu TTT sat++−=
−1 ) (3.4.23) 

Before entering the sliding layer ε>s , the modified control law is the same as the 

previous one. The control law forces the system trajectory to reach the sliding layer 

ε≤s  in a limit time. When entering the sliding layer, gain of the control law must 

be minimized. And, the system can’t maintain zero when there occurs a disturbance. It 

means that the control law couldn’t make all states to zero but around zero. The 

tradeoff of the decreased precision is that the input chattering effect is slow down and 

input gain is decreased. The key point is that the sign function of (3.4.20) is not 

s
-1

ε−

ε

Fig. 3.4.2 Sat(s) function
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realizable in practical because of its infinite switch, and the modified control input 

(3.4.23) could be realized in practical component. 
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Chapter 4 

Simulation Results 

 

4.1 Pole Placement 

 

From Chapter 2, two-element model is chosen as the desired control system [11], 

and the flexible model has 10 system poles shown in Fig. 4.1.1. Before system 

simulation, the desired system poles should be determined first. In rigid control, the 

poles -0.5 and -2 are determined and used in experimental demonstration. Then, 

consider about the Sliding mode control, Lyapunov method which has been 

introduced in Appendix C is used to design the sliding surface. The system poles of 

the control system should be designed in the procedure of applying Lyapunov method. 

The desired poles for sliding mode control are shown in Fig. 4.1.2. The dominant 

poles of SMC are designed at -0.5 and -2, and the other poles are designed as complex 

conjugates lined in 45 degrees to the origin in left half plane. The imaginary part of 

original poles (Fig. 4.1.1) and desired poles (Fig. 4.1.2) are of the same value, so that 

the sliding surface will let the controller better with low input torque. But, the 

shortcoming of the Lyapunov method is that the finally poles of the system may not 

be the same position as we expected in controller design when the control goal is 
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achieved which is meant that the system is in sliding surface. However, there is a 

significant advantage of the Lyapunov method based on its fundamental algorithm 

which is come from energy for the sliding surface design yields the less input torque 

required. Not only consider about the limited motor torque in this experiment but also 

concern for power consumption, Lyapunov method achieves a good result in input 

restricted torque compared with the transformation matrix method. As for PD 

controller, it also needs large torque for better transient response [5]. Although the 

worse case could be corrected by adding a shaping reference input [13, 4]. 
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   Fig. 4.1.1The system poles of the flexible arm 
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   Fig. 4.1.2The desired poles of the sliding mode controller 

 
4.2 Sliding Mode Controller Simulation Results 
 

 According to poles placement in section 4.1, the system poles are determined in 

sliding mode control. Then, the software Matlab is used to verify the controller. With 

the experimental equipment parameters showed in Table 2.4.1, the simulation results 

for hub angle regulation are shown in Fig. 4.2.1 to Fig. 4.2.5, and the parameters 

010.=ε  and 5=σ .  
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Fig. 4.2.1 Hub angle regulation in sliding mode control 
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Fig. 4.2.2 Four states response in sliding mode control 
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Fig. 4.2.3 Sliding surface in sliding mode control 

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t(s)

N
or

m
[z

](m
)

SMC

 

Fig. 4.2.4 Norm of the error states in sliding mode control 
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Fig. 4.2.5 Tip position regulation in sliding mode control 

We have considered the sliding mode controller for the flexible arm. A set of 

simulation has been carried out. Simulation results confirm that the controller 

performs remarkably well with suppressed vibration.  
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Chapter 5 

Experimental Demonstration 

 

This chapter is about the flexible arm experimental demonstration. The results 

will show the sliding mode controller is successful in vibration tolerance and the 

developed FEM model of the flexible arm is valid. Compared with the simulation 

results, the experimental demonstration makes us convinced of the controller design 

in chapter is work. The beginning of this chapter is about experiment setup included 

of Matlab xPC target environment, motor setup, and deflection measurement which 

are the foundations of experiment. 

 

5.1 Experimental Setup 

 

5.1.1 Matlab xPC Target Environment 

 

 This experiment is established in Matlab toolbox-xPC Target.  In Fig.5.1.1, 

xPC-MC240 I/O card is used to get the angle from the motor and PCI-1716 card is 

used to do AD/DA signal convert. The xPC Target is a solution for prototyping, 

testing, and deploying real-time systems using standard PC hardware. It is an 
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environment that uses a target PC, separate from a host PC, for running real-time 

applications. In this environment the desktop computer as a host PC with Matlab and 

Simulink creates a model using Simulink blocks. After creating the model, xPC Target 

lets the blocks and a C/C++ compiler to create executable code with its embedded 

coder. The executable code is downloaded from the host PC to the target PC running 

the xPC Target real-time kernel. After downloading the executive code, the 

application can be run by the target PC in real-time. The advantages of xPC Target are 

the fast sampling rate to ten thousands Hz in real-time work and it is convenient to 

hardware implementation with convenient parameters turning.  

Host PC

xPC Target

PCI-1716
Amp Ckt

Strain
Guage

Phase A B
MC240(QEP)

Motor

Torque

xPC
Kernel

 
     Fig. 5.1.1 Hardware Architecture 
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5.1.2 Motor Setup 

 

The Mitsubishi AC-servo motor HC-KFS 053B and the servo-amplifier 

MR-J2S-10A are adapted in the experiment. The specifications of AC-servo motor 

HC-KFS 053B is shown below in the table 5.1.2 [20]. 

Table 5.1.2 Servo Motor Specifications 
Maximum torque 0.48[Nm] 
Maximum rotation speed 3000[rpm]  
Moment of inertia J  0.053[× ] 24 kgm10−

Position detector 131072p/rev[17-bits] 
Maximum current 2.5[A] 
Rated current 0.83[A] 
Permissible instantaneous rotation speed  5175[r/min] 
Maximum rotation speed  4500[rpm] 

 

The PCI-1716 card provides a 16-bit resolution AD/DA transformation for strain 

feedback and torque driven voltage. The hub angle is detected by the xPC-MC240 I/O 

card with a TM S320F240DSP embedded with Quadrature Encoder Pulse (QEP) 

circuit. The QEP circuit determines the rotation direction by the input generated by an 

optical encoder on a motor shaft, the direction of rotation of the motor can be 

determined by detecting which of the two sequences leads. The two sequences are 

pulses with variable frequencies and fixed phase shifts of a quarter of a period (90 

degrees). The angular position and speed can be determined by the pulse count. 
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High-resolution position determination 32768 pulse per revolution is applied in this 

experiment.   

 

5.1.3 Deflection Measurement 

 

 Several methods have been used to measure the deflections of the arm, such as 

Photo-Diodes, Laser Doppler Vibrometers, and Strain gauges. Since strain gauges are 

cheap and effective sensors, they are used to measure strains as small as a fewµε  in 

this experiment. A strain gauge is basically a grid of wire or conductor attached to the 

arm and changes its conductance as the arm stretches. This change in conductance is 

used to find the change in bending moment of the arm. The strainε  measured in the 

arm is related to the deflection ( )txw ,  as follows [10]: 
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txw ,ε     (5.1) 

where x is the axis parallel to the arm in a stress-free state and p is the distance 

between the location strain gauge attached and the root of the arm. However, the 

disadvantage of the strain gauges is that they have a maximum strain and might get 

damaged subject to higher strains. Only small deflections in the arm are considered. 

The strain-gauge KYOWA Y3099 is used in this experiment. 
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 To precisely detect the distortion of the arm, first determine a certain positions 

with explicit deformation and then purposely paste two strain gauges to each of these 

positions in the way of face-to-face on both sides. When deformation appears, the 

resistance of each strain gauge changes with the variation R∆ . The small variation 

R∆  will be detected by the Wheatstone bridge circuit shown in Fig. 5.1.2. 

RR ∆− RR ∆+

R R

01VrefV

 
Fig.5.1.2 Wheatstone Bridge Circuit 

 

The gain of the Wheatstone bridge circuit is  

221 4
2

RR
RRVV refO ∆

∆
−

=  (5.2) 

The value of  is small in (5.2) because of the use of low voltageV  to protect 

the strain gauges from broken by high temperature due to the high reference voltage. 

In this experiment, the reference voltage V  is assigned to 5 volt. The voltage 

1OV ref

ref
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amplifier circuit shown in Fig. 5.1.3 is designed to amplify  so that the AD input 

will get higher resolution. 

1OV

R′

R

R′ 1R

1R

2R

2R

2OV
1OV

 
Fig.5.1.3 Voltage Amplifier Circuit 

 

The circuit of Fig.5.1.3 which is common used as an industrial voltage amplifier has 

high input resistance and good CMRR. The  could be calculated as  2OV

 

1
1

2
2

21 OO V
R
R

R
RV ×⎟
⎠
⎞

⎜
⎝
⎛ ′
+=  (5.3) 

When the resistances R , R′ , , and are chosen in proper values, the proper 

gain which limits the A/D input ranged inside 

1R 2R

V10±  could be achieved. Finally, it is 

important to design a low pass filter to reduce the high pass noise. The second order 

Butterworth filter shown in Fig.5.1.4 is designed and its 3db cutoff frequency 

assigned to 250Hz is calculated in (5.4). The frequency response of the filter is shown 

in Fig.5.1.5. 
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      Fig.5.1.4 Low Pass Filter Circuit 
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Fig.5.1.5 Low Pass Filter Bode Plot 

 

Although the low pass filter is designed in the last stage of the circuit, there is still 
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some high impulse noise appears when signal transfers in wires, but it is solved by a 

software 80Hz low pass filter in digital before into the digital controller. Until now, 

the signals of strain gauges are finally precisely fed back. However, the state feedback 

is considered as elements’ position angular variation and angular velocity, so the 

mathematical transformation from strain gauges feedback to states needs to derived. 

Here, the mathematical transformation in two-element FEM model is considered and 

will be shown in the following description. By definitions, the measured amount for a 

strain gauge feedback is an external moment applied to a strain gauge position. The 

first strain gauges pasted at  to the root can be described as  1x

( )
12

1

11
2

M
x

txw
⋅=

∂
∂ µ,  (5.5) 

The second ones pasted at  to the root can be described as 2x

( )
22

2

22
2

M
x

txw
⋅=

∂
∂ µ,  (5.6) 

Consider the continuous boundary between two elements, the moment of them must 

be the same, so 

( ) ( )
2

2

2
2

1

1
2 0

x
tw

x
thw

∂
∂

=
∂

∂ ,,  (5.7) 

And, the principle assumption of Euler Bernoulli beam is the zero moment at the arm 

tip, so 

( ) 02
2

2
2

=
∂

∂
x

thw ,  (5.8) 

Then, substituting  into (5.5) (5.6) (5.7) (5.8) yields ( txw , )
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Rearrange (5.9) (5.10) (5.11) (5.12) into a matrix form 

Mv ⋅=⋅ µφ  (5.13) 

where 
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When  is exist, the flexible arm state variables could be calculated by 1−φ

Mv ⋅⋅= −1φµ  (5.17) 

Now, we have already described the measurement the strain moments of two elements 

of the arm. 

 

5.2 Sliding Mode Controller Experimental Results 
 

Consider the robustness of a variable structure system, there are three kinds of 

noises need to be faced [15]. Such as: 

A. The disturbance from outside of the plant, such as AC power supply …etc. 

B. The uncertainty of the system parameters changes with different environment, 

such as changes of temperature. 

C. The unmodeled modes are hard to find in the control system. 

As a result, Fig. 5.2.1 to Fig. 5.2.3 show the experimental results of the 

flexible arm controlled by a rigid controller whose poles designed in -0.5 and -2. This 

demonstration shows that these disturbances yield much vibration in rigid controller. 

We needs to avoid these noises carefully, or the control goal may be failed, even then 

the system will get loss in preciseness and be unstable. So how to arise the robustness 
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of the control system is an important target in system and controller design. Variable 

structure control is well used in practical for the most part of its robustness. The hub 

regulation experimental results shown in Fig. 5.2.4 to Fig. 5.2.15 also verify the 

advantages of SMC. In these figures, the dominant poles of SMC are designed at -0.5 

and -2, and the other poles are designed as complex conjugates lined in 45 degrees to 

the origin in left half plane shown in Fig.4.1.1. In Fig.5.2.4 to Fig. 5.2.7, the 

parameters are defined as 010.=ε  and 5=σ . Then, in Fig.5.2.8 to Fig. 5.2.11, the 

parameters are defined as 00670.=ε  and 6=σ . Finally, in Fig.5.2.12 to Fig. 5.2.15, 

the parameters are defined as 0050.=ε  and 8=σ . 
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Fig. 5.2.1 Hub angle regulation in rigid control 
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Fig. 5.2.2 Tip position regulation in rigid control 
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Fig. 5.2.3 Four states response in rigid control 
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Fig. 5.2.4 Hub angle regulation in sliding mode control ( 010.=ε  and 5=σ ) 
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Fig. 5.2.5 Tip position regulation in sliding mode control ( 010.=ε and 5=σ ) 
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Fig. 5.2.6 Four states response in sliding mode control ( 010.=ε and 5=σ ) 
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Fig. 5.2.7 Sliding surface in sliding mode control ( 010.=ε and 5=σ ) 
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Fig. 5.2.8 Hub angle regulation in sliding mode control ( 00670.=ε and 6=σ ) 
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Fig. 5.2.9 Tip position regulation in sliding mode control ( 00670.=ε and 6=σ ) 
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Fig. 5.2.10 Four states response in sliding mode control ( 00670.=ε and 6=σ ) 
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Fig. 5.2.11 Sliding surface in sliding mode control ( 00670.=ε and 6=σ ) 

 49



0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t(s)

hu
b 

an
gl

e(
ra

d)

SMC

 

Fig. 5.2.12 Hub angle regulation in sliding mode control ( 0050.=ε and 8=σ ) 
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Fig. 5.2.13 Tip position regulation in sliding mode control ( 0050.=ε and 8=σ ) 
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Fig. 5.2.14 Four states response in sliding mode control ( 0050.=ε and 8=σ ) 
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Fig. 5.2.15 Sliding surface in sliding mode control ( 0050.=ε and 8=σ ) 
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The experimental results obtained indicate sliding mode control is effectiveness 

in suppressing structural vibration of the flexible arm when regulating reference 

compared with the rigid controller. Simulation shows us that the experimental 

performance will be improved when we change the parameters ε  andσ  with proper 

values. But the experimental result is not well improved as we expected in the 

simulation. The error might come from the uncertainty of the system parameters, 

viscous hub friction, outer disturbance, and the error of the strain feedback. Among 

the uncertainties above, the error of the strain feedback seems to play the most 

important role. 

 

5.3 Experimental Results of Impulse Disturbance 

 

A robust system must be able to reject external impulse disturbance. To show 

such robustness of the proposed controller, an impulse disturbance which is taken as a 

knock to the root of the arm is applied when the controller is in use of a zero hub 

degree regulation. Two poles of a rigid controller are designed to 50.−  and , and 

an impulse disturbance is applied about 3 seconds after the experiment is processing. 

The results for the hub angle and tip position which are presented in Fig 5.3.1 and 

5.3.2 are vibrating to divergent. The states of FEM model are shown in Fig.5.3.3. The 

2−
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frequency response of the hub angle is obtained by performing FFT to angle vibration 

from 11 seconds to 12 seconds in Fig.5.3.1, and the result is shown in Fig. 5.3.4. The 

dominant frequencies of the model derived in chapter 3 are excited for high response. 

 

0 2 4 6 8 10 12
-0.05

0

0.05

0.1

0.15

0.2

t(s)

hu
b 

an
gl

e(
ra

d)

Rigid Control

 

Fig. 5.3.1 Hub angle response in rigid control 
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Fig. 5.3.2 Tip position response in rigid control 
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Fig. 5.3.3 Four states response in rigid control 
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Fig. 5.3.4 Frequency response of vibration in rigid control 

Then, in order to check the robustness of the sliding mode controller, the same 

impulse disturbance is applied when the sliding mode controller is in use of zero hub 

degree regulation about 3 seconds after the experiment is processing. The poles of the 

sliding mode controller are designed in the same position as in simulation. The results 

for the hub angle and tip position are presented in Fig 5.3.5, and 5.3.6. The states of 

FEM model and the sliding surface are shown in Fig. 5.3.7, and Fig. 5.3.8. The 

frequency response of the hub angle is obtained by performing FFT to the angle 

vibration from 17 seconds to 18 seconds in Fig. 5.3.5, and the result is shown in Fig. 

5.3.9. 
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Fig. 5.3.5 Hub angle response in sliding mode control ( 010.=ε and 5=σ ) 
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Fig. 5.3.6 Tip position response in sliding mode control ( 010.=ε and 5=σ ) 
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Fig. 5.3.7 Four states response in sliding mode control ( 010.=ε and 5=σ ) 
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Fig. 5.3.8 Sliding surface in sliding mode control ( 010.=ε and 5=σ ) 
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Fig. 5.3.9 Frequency response of vibration in sliding mode control 

 

Impulse disturbance is used to test the robustness of the system. Compared with 

rigid control, sliding mode control performs obviously better. Vibration suppression in 

sliding mode control shown in Fig.5.3.4 is  attenuate than the rigid control 

shown in Fig.5.3.9. 

210−

 

5.4 Experimental Results with Tip-Mass Loading 

 

 The payload is considered as the system disturbance in these demonstrations. 

The experimental results of rigid controller whose poles designed in -0.5 and -2 for 

regulation problem are shown in Fig. 5.4.1 to Fig. 5.4.3., the tip position with 0.102 
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Kg payload reaches the reference goal with much vibration effect. Then, Fig.5.4.4 to 

Fig. 5.4.7 (Fig.5.4.8 to Fig. 5.4.11) show the robustness of the sliding mode control 

against 0.102 Kg payload variation with sliding layer parameters 010.=ε  and 6=σ  

( 0050.=ε  and 7=σ ). The vibration phenomenon is suppressed in the process of 

regulation. The performance of sliding mode control is alike the non-payload ones but 

exist greater steady state errors.  
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Fig. 5.4.1 Hub angle regulation in rigid control ( 1020.=tm kg) 
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Fig. 5.4.2 Tip position regulation in rigid control ( 1020.=tm kg) 
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Fig. 5.4.3 Four states response in rigid control ( 1020.=tm kg) 
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Fig. 5.4.4 Hub angle regulation in SMC ( 1020.=tm kg, 010.=ε and 6=σ ) 
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Fig. 5.4.5 Tip position regulation in SMC ( 1020.=tm kg, 010.=ε and 6=σ ) 
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Fig. 5.4.6 Four states response in SMC ( 1020.=tm kg, 010.=ε and 6=σ ) 
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Fig. 5.4.7 Sliding surface in SMC ( 1020.=tm kg, 010.=ε and 6=σ ) 
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Fig. 5.4.8 Hub angle regulation in SMC ( 1020.=tm kg, 0050.=ε and 7=σ ) 
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Fig. 5.4.5 Tip position regulation in SMC ( 1020.=tm kg, 0050.=ε and 7=σ ) 
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Fig. 5.4.6 Four states response in SMC ( 1020.=tm kg, 0050.=ε and 7=σ ) 
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Fig. 5.4.7 Sliding surface in SMC ( 1020.=tm kg, 0050.=ε and 7=σ ) 
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 The results of sliding mode controller compared with rigid controller obviously 

indicated the robustness of sliding-mode controller against the variation of payload in 

these demonstrations. 
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Chapter 6 

Conclusions 

 

A physical sliding mode control is investigated in this thesis to deal with the 

vibration problem of the tip position control of a single-link flexible arm. Based on 

the linear model derived by the FEM method, the disturbances related to the higher 

order modes of the flexible arm and the uncertainties resulted from the structure and 

payload variations can be successfully suppressed by the sliding mode control with 

sliding surface designed by Lyapunov method. The simulation and experimental 

results demonstrate that the sliding mode controller not only requires small control 

torque but also highly reduces the vibration. Besides, the robustness of the flexible 

arm controlled by sliding mode method is also verified by applying an impulse 

disturbance and tip-mass variation. Because the real system may be not enough to be 

described by the 2-element FEM Euler-Bernoulli beam, in the future the system 

model might be derived by a more complicated analytic approach. For the better 

control result in our future work, the experimental accuracy should be improved by 

reducing the errors from the voltage shifting effect in strain gauges feedback.  
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Appendix A 

Local Mass Matrix and Stiffness Matrix 

 

 For the Euler-Bernoulli beam introduced in Chapter 2, its local mass matrix in 

(2.2.9) and stiffness matrix in (2.2.8) are respectively given as 

[ ] ∫=
h

kjjk
i dx)x()x(

0
φρφM  (A.1) 

and 

[ ] ∫ ′′′′=
h

kjjk
i dx)x()x(EI

0
φφK  (A.2) 

where ( )xjφ  represents the j-th shape function. It is known that the shape functions 

are admissible and expressed as the following Hermite-cubic polynomial functions: 
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            (A.3) 

which as been shown in (2.2.14). 

Finite element modeling of a structure may be considered to be many fold local 

application of the assumed modes method wherein linear combinations of the locally 

valid ( )xiφ s are used to represent the deflection shape over a portion (finite element) 

of the structure, and with the element equations and boundary constraints being 
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assembled to form a global model of the structural system. For the general 

expressions of the Euler-Bernoulli beam elements. Substituting the four shape 

functions (A.3) into (A.1) and (A.2), the mass matrix Mi and the stiffness matrix Ki of 

the i-th element are obtained as 
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Then, N-element model of flexible arm could be derived with the above result. 
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Appendix B 

Measurement of Young’s Modulus 

 

 Young’s modulus E is an important parameter for the precise flexible arm model, 

and it is measured by the frequencies analysis in this thesis. At first, the flexible arm 

dynamic equation is described as 

p
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 (B.1) 

where p is external force which is assumed to be zero. Then, let the deformation w 

represented as 

( ) ( ) ( )φ−= wtxwtxw cos,  (B.2) 

Substituting (B.2) into (B.1) yields 
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Because the flexible arm is uniform in shape and property, its area moment of inertia I 

and Young’s modulus E are constant. Rewrite (B.3) as 

04
4

4

=+ w
dx

wd λ  (B.3) 

where    ( )
EI
w2

4 ρλ =  (B.4) 

The general solution of (B.4) is 

( ) xixixx eAeAeAeAxw λλλλ −− +++= 4321  (B.5) 
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or  

( ) xCxCxCxCxw λλλλ cossincoshsinh 4321 +++=  (B.6) 

The boundary conditions at the clamped end, x=0, are 

( ) 000
0

==
=xdx

dww ,  (B.7) 

On the other hand, at the free end, x=l, the boundary conditions are 

00 3
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Evaluating the boundary conditions at x=0 and x=l leads to the following 

homogeneous system of algebraic equations 
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For the set of homogeneous equations to have a nontrivial solution, the determinant of 

the coefficients must vanish. It follows that the determinant vanishes if and only if λ  

is such that the following condition holds 

01ll =+λλ coshcos  (B.10) 

which is recognized as the characteristic equation. The explicit expression for the for 

the roots of this characteristic equation is not simple, so these roots must be 

determined using some numerical method, generally yielding an infinite set of 

eigenvalues ( L,,21 )=rrλ . The first few eigenvalues are given approximately as 
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follows 
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From (B.4) 
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Therefore, the approximate values of the first three natural frequencies are obtained as 

follows 
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Based on (B.13), the Young’s modulus E could be found by getting the first several 

order resonant nature frequencies of the flexible arm. 
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Appendix C 

Design Sliding Surface by Lyapunov Method 

There are several methods to design the sliding surface. The Lyapunov method 

which is developed from the aspect of the energy convergence is the easiest one inside 

them. Assume the original system is  

dBuAxx ++=&   (C.1) 

where d is disturbance. In order to use Lyapunov method, by pole placement method 

the feedback matrix K should be obtained first so that all the eigenvalues of the matrix 

BKAAs −=   (C.2) 

are lied in the left half plane of s domain. Then, the input is designed as 

vKxu +−=   (C.3) 

(C.1) is rearranged as 

rrms dBBdBvxAx +++=&  (C.4) 

where  

md  is matched disturbance 

  is mismatched disturbance r

r

d

  is the null space of matrix B B

For every positive-definite matrix Q, The positive-definite matrix P is surely uniquely 

exist and satisfying the Lyapunov equation below. 
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QPAPA s
T
s −=+   (C.5) 

According to (3.3.2.13), the P matrix is calculated and analyzed for the system 

stability, define 

( ) PxxxV T=   (C.6) 

Substituting (C.1) and (C.4) into (C.6) yields 

( ) ( ) rr
T

m
TT dPBxdvPBxQxxxV 22 +++−=&  (C.7) 

In equation (C.7), if the mismatched disturbance is neglect and the condition 

 is included, (C.7) is written as 0=PxBT

( ) 0≤−= QxxxV T&  (C.8) 

The equal appears when x is equal to zero, ( )xV  is a Lyapunov function. The 

system is stable because that the infinity of x tends to become zero. If the mismatched 

disturbance  is neglected, the stable system occurs when the sliding surface was 

chosen as  

rd

0=== PxBCxs T  (C.9) 

In the same time, the control goal is accomplished. 
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