
國  立  交  通  大  學 
 

電 機 與 控 制 工 程 研 究 所 

 

 

碩 士 論 文 

 

 

快速輻射半徑基底函數網路演算法 

於蛋白質相對溶劑可接觸性預測的應用 

Applying Quick Radial Basis Function Network 

to Protein Relative Solvent Accessibility Prediction 

 

 

學       生： 游 涵 任 

指 導 教 授： 張 志 永 

 

中 華 民 國 九十五 年 七 月 
 



 2

快速輻射半徑基底函數網路演算法 

於蛋白質相對溶劑可接觸性預測的應用 

Applying Quick Radial Basis Function Network 

to Protein Relative Solvent Accessibility Prediction 

 

學    生 : 游涵任        Student : Han-Jen Yu 

指導教授 : 張志永        Advisor : Jyh-Yeong Chang 

 

國立交通大學 

電機與控制工程學系 

碩士論文 

 

A Thesis 

Submitted to Department of Electrical and Control Engineering 

College of Electrical Engineering and Computer Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of Master in 

Electrical and Control Engineering 

July 2006 

Hsinchu, Taiwan, Republic of China 

 

中 華 民 國 九 十 五 年 七 月 



 3

快速輻射半徑基底函數網路演算法 

於蛋白質相對溶劑可接觸性預測的應用 

 

學生:游涵任                         指導教授:張志永博士 

 

 

國立交通大學電機與控制工程研究所 

 

 

摘要 

 

    蛋白質在生物體中一直扮演著很重要的角色，蛋白質被發現的數量及其結構

逐年增加。隨著蛋白質的應用越來越廣泛，待解決的課題也就越來越多。例如：

蛋白質二級結構預測問題、蛋白質相對溶劑可接觸性預測問題等。目前在蛋白質

結構問題的解決上，科學家都是利用X光繞射以及核磁共振 (NMR) 來取得實驗結

果。這些方法雖然正確率高，但是相對地所要花費的時間及成本是相當高的。因

此利用電腦科學中的機器學習 (Machine learning) 演算法來預測這些問題，相

信能夠有效降低實驗與時間成本。 

 

    本篇論文，我們利用修改的快速輻射半徑基底函數網路演算法，混合從

PSI-BLAST 產生的位置加權矩陣，針對蛋白質相對溶劑可接觸性預測問題進行研

究。最近歐等人 [10]，發展出快速輻射半徑基底函數網路演算法，是一種較快

速且精確設計之網路，應用於蛋白質二級結構預測有顯著的效果。我們的修改的



 4

快速輻射半徑基底函數網路演算法，應用於蛋白質相對溶劑可接觸性預測。我們

使用五種不同的快速輻射半徑基底函數網路演算法，應用在三態相對溶劑可接觸

性預測和二態相對溶劑可接觸性預測。此五種方法包括:(1) 快速輻射半徑基底

函數網路演算法、(2) 二階快速輻射半徑基底函數網路演算法、(3) 一般混合快

速輻射半徑基底函數網路演算法、(4) 地域趨勢混合快速輻射半徑基底函數網路

演算法、以及(5) 全域趨勢混合快速輻射半徑基底函數網路演算法。我們選擇有

最佳表現的一般混合快速輻射半徑基底函數網路演算法，做為建議的演算法。我

們也將修改的快速輻射半徑基底函數網路演算法的實驗結果，與近幾年的其他方

法比較，並且提出我們的方法改進方向的建議。 
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Applying Quick Radial Basis Function Network to  

Protein Relative Solvent Accessibility Prediction 

                              

 

STUDENT: HAN-JEN YU          ADVISOR: JYH-YEONG CHANG 

           

Institute of Electrical and Control Engineering 

National Chiao-Tung University 

 

Abstract 

   Proteins have been played an important role in a creature and the numbers of 

proteins and their structures have been increased with years. Since protein 

applications are more widely used, there will be a lot of problems to be solved. For 

example, there are protein secondary structure prediction problem, protein relative 

solvent accessibility problem and so on. Nowadays, scientists use X-ray diffraction or 

nuclear magnetic resonance (NMR) to solve the protein structure problem. Although 

they can achieve high accuracy, it is expensive and long to solve this protein problem. 

To reduce the time and the costs, it is imperative to use machine learning algorithms 

to solve this protein problem. 
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In this thesis, we study protein relative solvent accessibility problem using a 

modified QuickRBF method combined with a position-specific scoring matrix (PSSM) 

generated from PSI-BLAST. The QuickRBF method, recently developed by Ou et al. 

[10], has been applied to protein secondary structure prediction with excellent results. 

Our modified QuickRBF method is applied on relative solvent accessibility prediction. 

Five different kind of QuickRBF approaches are applied on three-state, E, I, and B, 

and two-state, E, and B, relative solvent accessibility predictions. These five 

approaches include: (1) QuickRBF, (2) Two-Stage QuickRBF, (3) Common Fusion 

QuickRBF, (4) Local Tendency Fusion QuickRBF, and (5) Global Tendency Fusion 

QuickRBF. We recommend the Common Fusion QuickRBF approach which has the 

best performance as our modified QuickRBF method. We also compare the results of 

the modified QuickRBF method with other methods in the recent years, and suggest 

the improvement direction of our approach in the future. 
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Chapter 1. Introduction  

 

1.1 Motivation and The Background of This Research 

 

The knowledge of protein structures is valuable for understanding mechanisms 

of diseases of living organisms and for facilitating discovery of new drugs. Protein 

structure can be experimentally determined by NMR spectroscopy and X-ray 

crystallography techniques or by molecular dynamics simulations. However, the 

experimental approaches are marred by long experimental time, prone to difficulties, 

and expensive. There are more than 130,000 protein sequences in Swissport (release 

41.20), but less than about 37,000 three-dimensional (3D) protein structure are in the 

Protein Data Bank (PDB). Only a small fraction, 17%, of the enormous number of 

sequenced proteins has their structure determined. In order to reduce the gap between 

sequence and structure, developing reliable and applicable structure prediction 

method has become a more important task in computational biology. An intermediate 

but useful step is to predict protein secondary structure (PSS) or relative solvent 

accessibility (RSA), which provides some knowledge and simplifies the complicated 

3D structure prediction problem [1], [2]. The usual goal of RSA prediction is to 

classify a pattern of residues in amino acid sequences to a pattern of solvent 

accessibility elements: buried (B), intermediate (I) and exposed (E) residues. Though 

the prediction of solvent accessibility is less accurate than that of secondary structure 

from the homology approach, since it is less conserved than secondary structure [3], 

there has been much effort to improve prediction accuracy to obtain important 

information regarding a buried, intermediate or exposed residue for constructing 
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tertiary structure from sequences. Many different techniques have been proposed for 

RSA prediction, which broadly fall into the following categories: (1) Bayesian, (2) 

neural networks, and (3) information theoretical approaches. The Bayesian methods 

provide a framework to take into account local interactions among amino acid 

residues, by extracting the information from single sequences or multiple sequence 

alignments to obtain posterior probabilities for RSA prediction [4]. Neural networks 

use residues in a local neighborhood, as inputs, to predict the RSA of a residue at a 

particular location by finding an arbitrary, nonlinear mapping [5]–[8]. The 

information theoretical approaches use mutual information between the sequences of 

amino acids and solvent accessibility values derived from a single amino acid residue, 

or pairs of residues, in a neighborhood for RSA prediction [9]. In this study, we 

propose a modified QuickRBF method for RSA prediction combined with a 

position-specific scoring matrix (PSSM) generated from PSI-BLAST. The QuickRBF 

method, recently developed by Ou et al. [10], is applied on protein secondary 

structure prediction. Our modified QuickRBF method is applied on relative solvent 

accessibility prediction. We also compare the results of the modified QuickRBF 

method with other methods. 

 

1.2 Thesis Outline 
 

The organization of this thesis is structured as follows. Chapter 1 introduces the 

role of machine learning, the motivation and the background of this thesis. In Chapter 

2, we will first introduce the data set and the definition of protein solvent accessibility. 

Then we will propose five different kind of QuickRBF methods to predict protein 

relative solvent accessibility. In Chapter 3, the experiment of computer simulation and 

the results are conducted and compared with other methods. Finally, the conclusion of 
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this thesis is presented in Chapter 4.  

Chapter 2. Materials and Methods  

 

2.1 Training and Data Set 

 

 The set of 126 nonhomologous globular protein chains used in the experiment of 

Rost and Sander [3] and referred to as the RS126 set was used to evaluate the 

accuracy of the prediction. The proteins in the RS126 data set have less than 25% 

pairwise sequence identity. This set was used to evaluate different methods of relative 

solvent accessibility prediction, for example, PHDacc [3] and other methods 

[21]–[23]. In this paper, we performed a sevenfold cross-validation test on this set as 

defined in Table 2.1. In order to avoid the selection of extremely biased partitions, the 

RS126 set was divided into subsets of approximately same composition of each type 

of RSA state. One subset was chose as the testing set while the rest was merged into 

the training set. This procedure was repeated seven times to cover whole RS126 data 

set. 
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Table 2.1. The database of non-homologous proteins used for seven-fold cross 
validation. All proteins have less than 25% pairwise similarity for lengths greater than 
80 residues. 

 

256b_A 2aat 8abp 6acn 1acx 8adh 3ait 

2ak3_A 2alp 9api_A 9api_B 1azu 1cyo 1bbp_AFold_A 

1bds 1bmv_1 1bmv_2 3blm 4bp2  

2cab 7cat_A 1cbh 1cc5 2ccy_A 1cdh 1cdt_A

3cla 3cln 4cms 4cpa_I 6cpa 6cpp 4cpv Fold_B 

1crn 1cse_I 6cts 2cyp 5cyt_R  

1eca 6dfr 3ebx 5er2_E 1etu 1fc2_C 1fdl_H

1dur 1fkf 1fnd 2fxb 1fxi_A 2fox 1g6n_AFold_C 

2gbp 1a45 1gd1_O 2gls_A 2gn5  

1gpl 4gr1 1hip 6hir 3hmg_A 3hmg_B 2hmz_A

5hvp_A 2i1b 3icb 7icd 1il8_A 9ins_B 1l58 Fold_D 

1lap 5ldh 1gdj 2lhb 1lmb_3  

2ltn_A 2ltn_B 5lyz 1mcp_L 2mev_4 2or1_L 1ovo_A

1paz 9pap 2pcy 4pfk 3pgm 2phh 1pyp Fold_E 

1r09_2 2pab_A 2mhu 1mrt 1ppt  

1rbp 1rhd 4rhv_1 4rhv_3 4rhv_4 3rnt 7rsa 

2rsp_A 4rxn 1s01 3sdh_A 4sgb_I 1sh1 2sns Fold_F 

2sod_B 2stv 2tgp_I 1tgs_I 3tim_A  

1bks_A 1bks_B 1tnf_A 1ubq 2tmv_P 2tsc_A 2utg_A
Fold_G 

2wrp_R 4ts1_A 4xia_A 6tmn_E 9wga_A  
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2.2 The Definition of Protein Solvent Accessibility 

 

2.2.1 Static Residue Solvent Accessibility  

 

The native structure of globular proteins exists only in the presence of water [11], 

and therefore the analysis of their interactions with water is central to the theory of 

protein structure [12]. The term “accessible surface area” was introduced by Lee and 

Richards [13] to quantitatively describe the extent to which atoms on the protein 

surface can form contacts with water. For a particular protein atom it is defined as the 

area over which the centre of a water molecule can be placed while retaining van der 

Waals contacts with that atom and not penetrating any other atom. The principal goal 

is to predict the extent to which a residue embedded in a protein structure is accessible 

to solvent. Solvent accessibility can be described in several ways [13]–[15]. The most 

detailed fast method compiles solvent accessibility by estimating the volume of a 

residue embedded in a structure that is exposed to solvent as shown in Fig. 2.1; note: 

this method was developed by Lee and Richards [13] and later implemented in DSSP 

[16]. Different residues have a different possible accessible area. 

 

Studies of solvent accessibility in proteins have led to many new insights into 

protein structure [13]–[18]. Knowledge of solvent accessibility has proved useful for 

identifying protein function, sequence motifs, and domains, and for formulating 

hypotheses about antigenic determinants, site-directed mutagenesis, humanization of 

antibodies, and on the correctness of designed or experimentally determined protein 

structures. Furthermore, knowledge of solvent accessibility has assisted alignments in 

regions of remote sequence identity.  
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Fig. 2.1. Measure accessibility. Residue solvent accessibility is usually measured by 
rolling a spherical water molecule over a protein surface and summing the area that 
can be accessed by this molecule on each residue (typical values range from 0－300 
Å2 ). To allow comparisons between the accessibility of long extended and spherical 
amino acids, typically relative values are compiled (actual area as percentage of 
maximally accessible area). A more simplified description distinguishes two states: 
exposed (here residues numbered 1－3 and 10－12) and buried (here residues 4－9) 
residues. Since the packing density of native proteins resembles the crystals, values 
for solvent accessibility provide upper and lower limits to the number of possible 
inter-residue contacts. 
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2.2.2 Residue Relative Solvent Accessibility  

 

How can the solvent accessibility of a residue embedded in a 3D structure be cast 

into a simple number? One simple way is to count the number of water molecules in 

direct contact with the residue, as estimated by the program DSSP for the first 

hydration shell. For comparison between amino acids of different sizes, the relative 

solvent accessibility is a useful quantity as defined in Table 2.2.  

 

Amino acid relative solvent accessibility is the degree to which a residue in a 

protein is accessible to a solvent module. The relative solvent accessibility can be 

calculated by the formula as follows: 

RelAcc (%) = 100 ×Acc / MaxAcc (%) , 

where Acc is the solvent accessible surface area of the residue observed in the 3D 

structure, given in Angstrom units, calculated from coordinates by the dictionary of 

protein secondary structure (DSSP) program [16]. The number of water molecules 

around a residue can be approximated by Acc/10, and MaxAcc is the maximum value 

of solvent accessible surface area of each kind of residue for a Gly-X-Gly extended 

tripeptide conformation.  
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Table 2.2. Definition of solvent accessibility states. 
 

 Solvent accessibility: 
Acc = solvent accessibility of a residue (given in Å2) calculated from coordinates 
using DSSP [16]. W≈Acc/10, approximates the number of water molecules 
around the residue. 

 
 Relative solvent accessibility:  

RelAcc = Acc/MaxAcc, with maximal accessibility (measured in Å2) for the 
amino acids given by the table following (amino acids in one-letter code; B 
stands for D or N; Z for E or Q, and X for an undetermined amino acid) [18][19]. 
 

AA A B C D E F G H I K L M 

MaxAcc 106 160 135 163 194 197 84 184 169 205 164 188

AA N P Q R S T V W X Y Z 

MaxAcc 157 136 198 248 130 142 142 227 180 222 196 
 

 
 Two-state (binary) model for accessibility (B/E) : 

 
 Buried (B) Exposed (E) 

RelAcc ≤  0% RelAcc > 0% 

RelAcc < 5% RelAcc ≥  5% 

RelAcc < 9% RelAcc ≥  9% 

RelAcc < 16% RelAcc ≥  16% 

Thresholds to distinguish two states

RelAcc < 25% RelAcc ≥  25% 

 
 Three-state (ternary) model for accessibility (B/I/E) : 

 
 Buried (B) Intermediate (I) Exposed (E) 

Thresholds to distinguish three states RelAcc < 9% 9% ≤  RelAcc < 36% RelAcc ≥  36% 

 
 Measure for evaluation of conservation and accuracy of prediction: 

Q2 percentage of conserved, or correctly predicted, residues in two states defined 
by thresholds given above. 
Q3 percentage of conserved, or correctly predicted, residues in three states 
defined by thresholds given above. 
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RelAcc can hence adopt values between 0% and 100%, with 0% corresponding 

to a fully buried and 100% to a fully accessible residue, respectively. Different 

arbitrary threshold values of relative solvent accessibility are chose to define 

categories: buried and exposed as shown in Fig. 2.2, or ternary categories: buried, 

intermediate, or exposed. The precise choice of the threshold is not well defined [3].  

 

We used two kind of class definitions: (1) buried (B) and exposed (E); and (2) 

buried (B), intermediate (I), and exposed (E). For the two-state, B and E definition, 

we chose various thresholds of the relative solvent accessibility such as 25%, 16%, 

9%, 5%, and 0%. For the three-state, B, I, and E, description of relative solvent 

accessibility, one set of thresholds that we selected is the same as those in Rost and 

Sander [3]: 

Buried (B): RelAcc < 9% 

Intermediate (I): 9% ≤  RelAcc < 36% 

Exposed (E): RelAcc ≥  36% 
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Fig 2.2. Binary model: thick and dark line is buried residues; thin and light line is 
exposed residues [20]. 
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2.3 PSI-BLAST Profiles 

 

 It is well known that evolutionary information in the form of multiple alignments 

and profiles significantly improves the accuracy of, for instance, secondary structure 

prediction methods [4], [24]–[27]. This is so because the secondary structure of a 

family is more conserved than the primary amino acid sequence. Similar effects have 

been reported for the prediction of contact number and relative solvent accessibility. 

For relative solvent accessibility, a corresponding increase of 5% has been described 

both with neural networks [25] and Bayesian methods.  

 

 PSI-BLAST [28] generates the profile of a protein in the form of an N×20 

position-specific scoring matrix as shown in Fig. 2.3, where N is the length of the 

sequence. PSI-BLAST is run with default options, -j 3, -h 0.001, and -e 10.0, and the 

non-redundant protein sequence database (ftp://ncbi.nlm.nih.gov/blast/db) filtered by 

PFILT [29] to mask out regions of low complexity sequence, the coiled coil regions 

and transmembrane spans. The BLOSUM62 [30] substitution matrix as shown in Fig. 

2.4, is used for PSI-BLAST. These profiles were scaled to the required 0–1 range 

using the standard logistic function: 

)exp(1
1)(

x
xf

−+
=  , 

where x is the raw profile matrix value.  
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Fig. 2.3. Raw profile from PSI-Blast log file 

 

 

 
Fig. 2.4. BLOSUM 62 substitution matrix (Lower) and difference matrix (Upper) 
obtained by subtracting the PAM 160 matrix position by position. These matrices 
have identical relative entropies (0.70); the expected value of BLOSUM 62 is -0.52; 
that for PAM 160 is -0.57. 
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2.4 Quick Radial Basis Function Network 

 

The radial basis function network (RBFN) is a special type of neural networks 

with several distinctive features [31]. Since its first proposal, the RBFN has attracted 

a high degree of interest in research communities. A RBFN consists of three layers, 

namely the input layer, the hidden layer, and the output layer. The input layer 

broadcasts the coordinates of the input vector to each of the nodes in the hidden layer. 

Each node in the hidden layer then produces an activation based on the associated 

radial basis function. Finally, each node in the output layer computes a linear 

combination of the activations of the hidden nodes. How a RBFN reacts to a given 

input stimulus is completely determined by the activation functions associated with 

the hidden nodes and the weights associated with the links between the hidden layer 

and the output layer. The general mathematical form of the output nodes in a RBFN is 

as follows: 

cj(x) = ∑
=

k

i 1
wjiΦ( ||x-μi ||;σi  ) , 

where cj(x) is the function corresponding to the j-th output unit (class-j) and is a linear 

combination of k radial basis functions Φ(．) with centerμi and bandwidthσi . Also, wj 

is the weight vector of class-j and wji is the weight corresponding to the j-th class and 

i-th center. The general architecture of RBFN is shown in Fig. 2.5. It can be seen that 

constructing a RBFN involves determining the number of centers, k, the center 

locations, μi , the bandwidth of each center, σi , and the weights, wji. That is, training a 

RBFN involves determining the values of three sets of parameters: the centers (μi ), 

the bandwidths (σi ), and the weights (wji), in order to minimize a suitable cost 

function.  
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Fig. 2.5. General architecture of Radial Basis Function Network 

 

In QuickRBF package [10], it is focused on the calculation of the weights, and 

conducting a simple method to determine the centers and bandwidths. Therefore, it 

selects the centers randomly in the package. Also, it utilizes a fixed bandwidth of each 

kernel function, which is set to five for each kernel function. After the centers and 

bandwidths of the kernel functions in the hidden layer have been determined, the 

transformation between the inputs and the corresponding outputs of the hidden units is 

now fixed. The network can thus be viewed as an equivalent single-layer network 

with linear output units. Then, the Least Mean Square Error method is used to 

determine the weights associated with the links between the hidden layer and the 

output layer.  

 

Ou used a single-layer Quick Radial Basis Function Network [10] to analyze 

protein secondary structure with excellent prediction results on the RS126 data set. 

There are more details about QuickRBF can be found in QuickRBF package 

(http://csie.org/~yien/quickrbf/index.php). Here, we propose a modified QuickRBF 

system to predict protein relative solvent accessibility. 
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2.5 Coding Scheme 

 

As with Hua and Sun’s work [32], the present analysis used the classical local 

coding scheme of the protein sequences with a sliding window. PSI-BLAST matrix 

with n rows and 20 columns can be defined for single sequence with n residues. For 

the first layer in the prediction, each residue is represented using 20 components in a 

vector, based on the PSSM. In order to allow a window to extend over the N-terminus 

and the C-terminus, an additional 21st unit (spacer) was attached to each residue. 

Then, each input vector has 21×w components, where w is a sliding window size. For 

the second layer, the vector corresponding to a residue has four elements in the 

three-state prediction and three elements in the two-state prediction, where the first 

three elements represent the three relative solvent accessibility states, E, I, and B, in 

the three-state prediction and the first two elements represent the two relative solvent 

accessibility states, E and B, in the two-state prediction. Both the last units were 

added in order to allow a window to extend over the N-terminus and the C-terminus. 

If the window length is v, the dimension of the feature vector is 4×v for the second 

layer in the three-state prediction and 3×v in the two-state prediction.  
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2.6 Several Prediction System Structures 

 

Five different kind of QuickRBF approaches are applied on three-state, E, I, and 

B, and two-state, E and B, relative solvent accessibility predictions. These five 

approaches include: (1) QuickRBF, (2) Two-Stage QuickRBF, (3) Common Fusion 

QuickRBF, (4) Local Tendency Fusion QuickRBF, and (5) Global Tendency Fusion 

QuickRBF. 

 

2.6.1 QuickRBF Approach 

 

A QuickRBF structure was used in the prediction system as shown in Fig. 2.6. 

The QuickRBF classifier classifies each residue of each sequence into the three 

relative solvent accessibility states, E, I, or B, by using the values of matrices of 

PSI-BLAST profile as the inputs. The outputs represent the tendency that the residue 

belongs to that state. The one-against-rest strategy was used for the multiclass 

classification, so each residue was classified into the state with the largest output 

value for a QuickRBF approach. 
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Fig. 2.6. Architecture of QuickRBF method. The system includes two parts: the 
PSI-BLAST profile, and the classifier. The profile is transformed into a number of 
21*17 dimension vectors using the slide-window method. These vectors are input into 
the QuickRBF classifier. The outputs of the QuickRBF classifier are a number of 3D 
vectors representing the tendency that the residue belongs to that state. The 
one-against-rest strategy was used to classify each residue into the state with the largest
value. 

PSI-BLAST Profile

Coding : transform the 17*20 matrix into a 17*21 dimension vector 

QuickRBF Classifier 

Data Normalization 

Classifier 

outputs of the classifier 
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2.6.2 Two-Stage QuickRBF Approach 

 

A Two-Stage QuickRBF structure was used in the prediction system as shown in 

Fig. 2.7. The first stage is a QuickRBF classifier that classifies each residue of each 

sequence into the three relative solvent accessibility states, E, I, or B, by using the 

values of matrices of PSI-BLAST profile as the inputs. The outputs of the first stage 

represent the tendency that the residue belongs to that state. The second stage 

QuickRBF classifier also classifies each residue of each sequence into the three 

relative solvent accessibility states, E, I, or B, by using the RSA three-state tendency 

matrices from the outputs of the first stage as the inputs. The outputs of the second 

stage also represent the tendency that the residue belongs to that state. As with an 

One-Stage QuickRBF approach, the second stage also uses the one-against-rest 

strategy, with each residue classified into the state with the largest output value for a 

Two-Stage QuickRBF approach. 
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Second Stage

Fig. 2.7. Architecture of Two-Stage QuickRBF method. The system includes three parts: the 
PSI-BLAST profile, the first stage, and the second stage. The profile is transformed into a 
number of 21*17 dimension vectors using the slide-window method. These vectors are input 
into the first-stage QuickRBF. The outputs of the first-stage QuickRBF are a number of 3D 
vectors representing the tendency that the residue belongs to that state. Using the slide-window 
method, the outputs of the first-stage QuickRBF are transformed into a number of 4*15 
dimensional vector, which are used as the inputs of the second-stage QuickRBF. The final 
decisions are based on the outputs of the second-stage QuickRBF.

PSI-BLAST Profile

Coding : transform the 17*20 matrix into a 17*21 dimension vector 

First-Stage QuickRBF 

Data Normalization 

Coding : transform the 3*15 matrix into a 4*15 dimension vector 

Second-Stage QuickRBF

First Stage

outputs of the second stage
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2.6.3 Common Fusion QuickRBF Approach 

 

Three kind of fusion QuickRBF approaches were used to combine the outputs of 

a QuickRBF approach and the outputs of a Two-Stage QuickRBF approach. One is 

the Common Fusion QuickRBF approach, and the others are the Local Tendency 

Fusion QuickRBF approach and the Global Tendency Fusion QuickRBF approach. 

The architectures of these three approaches were illustrated in Figs. 2.8, 2.9, and 2.10. 

The common fusion strategy adds up the tendency outputs from a QuickRBF 

approach and the tendency outputs from a Two-Stage QuickRBF approach. Then we 

also use the one-against-rest strategy to classify each residue into the state with the 

largest value.  

 

 
 
 

 
 

                    
 
 
 
 
 

 
 
           
         

 
 
 
 
Fig. 2.8. Architecture of Common Fusion QuickRBF method 

Common Fusion Rule: 

E  ( o n e - s t a g e )  +  E  ( tw o - s t a g e )

I  ( o n e - s t a g e )  +  I  ( t w o - s t a g e )

B  ( on e - s t a g e )  +  B  ( tw o- s t a g e )

outputs from QuickRBF 

outputs from Two-Stage QuickRBF 

outputs of Common Fusion QuickRBF 
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2.6.4 Local Tendency Fusion QuickRBF Approach 

 

The local tendency fusion strategy also adds up the tendency outputs from a 

QuickRBF approach and the tendency outputs from a Two-Stage QuickRBF approach. 

An occurrence number table is then applied in the summation as shown in Table 2.3. 

There are three occurrence numbers which are Oe, Oi and Ob, where Oe means the 

numbers of exposed components in the test data, and Oi means the numbers of 

intermediate components in the test data, and Ob means the numbers of buried 

components in the test data. These three occurrence numbers represent the potential 

factors for the affection ability of the three relative solvent accessibility states. In 

other words, if an occurrence number is larger, the tendency of a residue which 

belongs to that state is larger. Then we also use the one-against-rest strategy to 

classify each residue into the state with the largest value.  
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Fig. 2.9. Architecture of Local Tendency Fusion QuickRBF method. These three 
occurrence numbers are based on each test fold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

outputs from QuickRBF 

Local Tendency Fusion Rule: 

{ E (one-stage) + E (two-stage) } * Oe

{ I (one-stage) + I (two-stage) } * Oi

{ B (one-stage) + B (two-stage) } * Ob

outputs from Two-Stage QuickRBF 

outputs of Local Tendency Fusion QuickRBF
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Table 2.3. Occurrence numbers used for local and Global Tendency Fusion QuickRBF 
method. From Fold_A to Fold_G, these occurrence numbers of each fold are used for 
Local Tendency Fusion QuickRBF method. And the occurrence numbers of RS126 
dataset are used for Global Tendency Fusion QuickRBF method. 
 
 
Threshold: 9% ; 36% 

 
 
Threshold: 25% 

component

dataset Oe Ob Oe + Ob 

Fold_A 1983 2293 4276 
Fold_B 1844 1861 3705 
Fold_C 1629 1835 3464 
Fold_D 1842 2012 3854 
Fold_E 1400 1471 2871 
Fold_F 1366 1405 2771 
Fold_G 1709 2142 3851 
RS126 11773 13019 24792 

 
 
 
 
 
 
 
 

component 

dataset Oe Oi Ob Oe + Oi + Ob 

Fold_A 1524 1220 1532 4276 
Fold_B 1441 1090 1174 3705 
Fold_C 1269 1026 1169 3464 
Fold_D 1436 1196 1222 3854 
Fold_E 1081 829 961 2871 
Fold_F 1036 835 900 2771 
Fold_G 1271 1204 1376 3851 
RS126 9058 7400 8334 24792 
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Table 2.3.(continued) 
 
 
Threshold: 16% 

component

dataset Oe Ob Oe + Ob 

Fold_A 2373 1903 4276 
Fold_B 2231 1474 3705 
Fold_C 1977 1487 3464 
Fold_D 2261 1593 3854 
Fold_E 1679 1192 2871 
Fold_F 1630 1141 2771 
Fold_G 2083 1768 3851 
RS126 14234 10558 24792 

 
 
Threshold: 9% 

component

dataset Oe Ob Oe + Ob 

Fold_A 2744 1532 4276 
Fold_B 2531 1174 3705 
Fold_C 2295 1169 3464 
Fold_D 2632 1222 3854 
Fold_E 1910 961 2871 
Fold_F 1871 900 2771 
Fold_G 2475 1376 3851 
RS126 16458 8334 24792 
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Table 2.3.(continued) 
 
 
Threshold: 5% 

component

dataset Oe Ob Oe + Ob 

Fold_A 3028 1248 4276 
Fold_B 2769 936 3705 
Fold_C 2502 962 3464 
Fold_D 2866 988 3854 
Fold_E 2098 773 2871 
Fold_F 2048 723 2771 
Fold_G 2773 1078 3851 
RS126 18084 6708 24792 

 
 
Threshold: 0% 

component

dataset Oe Ob Oe + Ob 

Fold_A 3652 624 4276 
Fold_B 3297 408 3705 
Fold_C 3010 454 3464 
Fold_D 3378 476 3854 
Fold_E 2536 335 2871 
Fold_F 2451 320 2771 
Fold_G 3360 491 3851 
RS126 21684 3108 24792 
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2.6.5 Global Tendency Fusion QuickRBF Approach 

 

The global tendency fusion strategy is mostly the same with the local tendency 

fusion strategy. The difference between these two tendency fusion strategies is that 

these three occurrence numbers used for the global tendency fusion strategy are the 

occurrence numbers of three kind of components in the RS126 data set. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 

 
 
 

Fig. 2.10. Architecture of Global Tendency Fusion QuickRBF method. These three 
occurrence numbers are based on the RS126 data set. 
 
 
 
 
 
 
 

outputs from QuickRBF 

Global Tendency Fusion Rule: 

{ E (one-stage) + E (two-stage) } * Oe

{ I (one-stage) + I (two-stage) } * Oi

{ B (one-stage) + B (two-stage) } * Ob

outputs from Two-Stage QuickRBF 

outputs of Global Tendency Fusion QuickRBF
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Chapter 3. Experiment and Simulation Results 

 

3.1 Experiment Procedure of Five QuickRBF Approaches 

 

 Five different kind of QuickRBF approaches are applied on three-state, E, I, and 

B, and two-state, E and B, relative solvent accessibility predictions. These five 

methods are QuickRBF, Two-Stage QuickRBF, Common Fusion QuickRBF, Local 

Tendency Fusion QuickRBF, and Global Tendency Fusion QuickRBF. 

 

For QuickRBF, One-Stage QuickRBF approach, each residue is coded as a 

21-dimensional vector, where the first 20 elements of the vector are the corresponding 

elements in PSI-BLAST matrix and the last unit was added in order to allow a 

window to extend over the N- and the C-terminus. The window length is 17 and the 

dimension of the feature vector is 21×17. The number of the centers randomly 

selected from the training data set is 12000 and the bandwidth is five for each kernel 

function. The architecture of QuickRBF in the three-state prediction is shown 

previously in Fig. 2.6. 

 

For Two-Stage QuickRBF, the window lengths are 17 for the first layer and 15 

for the second layer. The dimension of the feature vector for the first layer is 21×17. 

The dimensions of the feature vectors for the second layer are 4×15 in the three-state 

prediction and 3×15 in the two-state prediction. The numbers of the centers randomly 

selected from the training data set are 12000 for the first layer and 500 for the second 

layer. The bandwidths are both five for the first and second layer. The architecture of 

Two-Stage QuickRBF in the three-state prediction is shown previously in Fig. 2.7. 



 39

These three kind of fusion strategies, Common Fusion, Local Tendency Fusion, 

and Global Tendency Fusion, are the combinations of One-Stage QuickRBF and 

Two-Stage QuickRBF. Different rules are used for each fusion strategy. The 

architectures of these three fusion strategies in the three-state prediction are shown 

previously in Figs. 2.8, 2.9, and 2.10. 

 

3.2 Classification Accuracy of Five QuickRBF Approaches 

 

The results and the comparison of the five different kind of QuickRBF 

approaches on RS126 data set are listed in Table 3.1. On the RS126 data set, 

QuickRBF gave the overall prediction accuracy 59.67% for the three-state prediction 

with respect to thresholds: 9%; 36% and 87.99%, 80.06%, 78.46%, 76.98%, 75.60%, 

respectively for the two-state prediction with respect to thresholds of 0%, 5%, 9%, 

16%, 25%.  

 

Two-Stage QuickRBF gave the overall prediction accuracy 59.11% for the 

three-state prediction with respect to thresholds: 9%; 36% and 87.55%, 79.25%, 

78.21%, 76.15%, 73.76%, respectively for the two-state prediction with respect to 

thresholds of 0%, 5%, 9%, 16%, 25%.  

 

Common Fusion QuickRBF gave the overall prediction accuracy 60.07% for the 

three-state prediction with respect to thresholds: 9%; 36% and 87.82%, 80.15%, 

78.58%, 77.13%, 75.66%, respectively for the two-state prediction with respect to 

thresholds of 0%, 5%, 9%, 16%, 25%.  
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Local Tendency Fusion QuickRBF gave the overall prediction accuracy 59.91% 

for the three-state prediction with respect to thresholds: 9%; 36% and 87.60%, 

77.20%, 75.84%, 76.54%, 75.55%, respectively for the two-state prediction with 

respect to thresholds of 0%, 5%, 9%, 16%, 25%.  

 

Global Tendency Fusion QuickRBF gave the overall prediction accuracy 59.91% 

for the three-state prediction with respect to thresholds: 9%; 36% and 87.60%, 

77.25%, 75.82%, 76.43%, 75.48%, respectively for the two-state prediction with 

respect to thresholds of 0%, 5%, 9%, 16%, 25%.  

 

The accuracy plot of the above the five kind QuickRBF approaches is shown in 

Fig. 3.1 and Common Fusion QuickRBF is numbered three. Among these five 

QuickRBF approaches, Common Fusion QuickRBF has better performance for either 

the three-state prediction or the two-state prediction. Common Fusion QuickRBF is 

then decided as our modified QuickRBF approach because of the better performance 

among these five QuickRBF approaches.  
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Table 3.1. RSA classification accuracy of five kind QuickRBF methods on the RS126 
data set with PSI-BLAST pssm profiles. 

 

 

QuickRBF 

accuracy: % 

threshold

  

dataset 

3-state 

(9% ; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 61.25 86.72 80.52 78.70 78.16 76.92 

Fold_B 60.11 88.77 81.30 79.65 77.84 76.06 

Fold_C 62.99 87.90 81.76 81.18 79.19 77.77 

Fold_D 59.37 88.53 80.95 79.09 77.09 75.61 

Fold_E 60.85 88.65 81.92 80.22 78.65 76.63 

Fold_F 59.11 89.03 81.60 79.18 76.18 74.27 

Fold_G 53.99 86.32 72.34 71.18 71.75 71.90 

Average 59.67 87.99 80.06 78.46 76.98 75.60 

 

 

Two-Stage QuickRBF 

accuracy: % 

threshold

  

dataset 

3-state 

(9% ; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 60.71 86.62 80.43 78.30 76.52 74.58 

Fold_B 60.59 88.18 78.11 78.79 76.73 75.17 

Fold_C 62.73 88.14 81.41 81.21 77.34 77.74 

Fold_D 57.16 88.30 79.94 78.15 75.71 72.00 

Fold_E 59.80 88.92 81.85 80.49 77.81 72.34 

Fold_F 58.72 88.92 80.04 77.55 75.78 72.21 

Fold_G 54.06 83.80 72.97 72.97 73.18 72.29 

Average 59.11 87.55 79.25 78.21 76.15 73.76 
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Table 3.1. (continued) 
 
 

Common Fusion QuickRBF 
accuracy: % 

threshold

  

dataset 

3-state 

(9% ; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 61.20 86.67 80.40 78.53 77.95 76.19 

Fold_B 61.27 88.88 80.59 79.54 78.19 76.90 

Fold_C 63.40 88.08 81.67 81.67 78.96 78.09 

Fold_D 59.06 88.43 80.83 78.54 76.93 74.73 

Fold_E 61.20 88.75 82.41 80.74 78.34 76.04 

Fold_F 59.33 88.70 81.81 78.85 76.69 74.92 

Fold_G 55.05 85.23 73.36 72.16 72.84 72.76 

Average 60.07 87.82 80.15 78.58 77.13 75.66 

 
 

Local Tendency Fusion QuickRBF 
of accuracy: % 

threshold

  

dataset 

3-state 

(9% ; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 60.69 85.45 76.38 75.89 75.96 76.31 

Fold_B 60.89 88.99 79.00 77.11 77.30 76.87 

Fold_C 62.96 87.01 78.41 78.03 79.27 78.38 

Fold_D 59.70 87.68 78.20 76.99 77.19 74.18 

Fold_E 60.92 88.30 78.44 77.01 77.85 75.62 

Fold_F 59.18 88.49 78.20 77.05 76.15 74.77 

Fold_G 55.03 87.25 71.80 68.79 72.06 72.73 

Average 59.91 87.60 77.20 75.84 76.54 75.55 
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Table 3.1. (continued) 
 
 

Global Tendency Fusion QuickRBF 
accuracy: % 

threshold

  

dataset 

3-state 

(9% ; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Fold_A 60.29 85.48 76.08 75.07 75.16 76.61 

Fold_B 61.16 89.02 79.16 77.38 77.92 76.65 

Fold_C 63.05 87.01 78.32 78.06 79.30 78.32 

Fold_D 59.68 87.68 78.41 77.43 77.30 74.16 

Fold_E 60.89 88.26 78.44 77.05 78.23 75.44 

Fold_F 59.26 88.49 78.49 77.27 76.18 74.67 

Fold_G 55.05 87.25 71.88 68.50 70.89 72.50 

Average 59.91 87.60 77.25 75.82 76.43 75.48 

 
 

Comparison of five kind QuickRBF methods 

accuracy: %

        threshold 

method 

3-state 

(9% ; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

QuickRBF 59.67 87.99 80.06 78.46 76.98 75.60 

Two-Stage QuickRBF 59.11 87.55 79.25 78.21 76.15 73.76 

Common Fusion QuickRBF 60.07 87.82 80.15 78.58 77.13 75.66 

Local Tendency Fusion QuickRBF 59.91 87.60 77.20 75.84 76.54 75.55 

Global Tendency Fusion QuickRBF 59.91 87.60 77.25 75.82 76.43 75.48 
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Fig. 3.1. Accuracy plot of five kind QuickRBF methods. 
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3.3 Matthew’s Correlation Coefficients of Five QuickRBF Approaches 

 

Another measure used to evaluate the performance of prediction methods is the 

Matthew’s Correlation Coefficient (MCC). It can be calculated from an accuracy table 

A by the following equations: 

ijA  = number of residues predicted to be in type j and observed to be in type i,  

))()()(( iiiiiiii

iiii
i onunopup

ounp
MCC

++++

−
= ,  

ip  = iiA ,  

in  = ∑∑
≠ ≠

3 3

ij ik
jkA ,  

io  = ∑
≠

3

ij
jiA ,  

iu  = ∑
≠

3

ij
ijA , for i = E, I, B. 

Also, pi , ni , oi and ui are the number of true positives, true negatives, false positives 

and false negatives for class i, respectively. The MCCs have the same value for the 

two classes in the case of the two-state prediction, i.e. MCCE = MCCB. 

 

First, the accuracy tables A of Common Fusion QuickRBF on each fold and the 

RS126 data set is shown in Table 3.2. Then, the MCCs of five kind QuickRBF 

methods on the RS126 data set is shown in Table 3.3. In a similar trend as Table 3.1, 

MCC’s of Common Fusion QuickRBF usually perform well, although not always the 

best, in comparison to other QuickRBF approaches. 
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Table 3.2. The accuracy tables A of Common Fusion QuickRBF on each fold and 
RS126. 

 

3-state (9%; 36%) 

 AEE AII ABB AEI AEB AIE AIB ABE ABI 

Fold_A 1276 294 1042 141 107 587 339 277 213 

Fold_B 1134 285 837 187 120 455 350 144 193 

Fold_C 1033 257 905 130 106 433 336 138 126 

Fold_D 1067 276 940 180 189 433 487 145 137 

Fold_E 843 196 724 132 106 347 286 120 117 

Fold_F 816 170 645 113 107 387 278 155 100 

Fold_G 835 279 1011 207 229 434 491 174 191 

RS126 7004 1757 6104 1090 964 3076 2567 1153 1077 

 

 

2-state (25%) 

 AEE ABB AEB ABE 

Fold_A 1695 1563 288 730 

Fold_B 1417 1432 427 429 

Fold_C 1247 1458 382 377 

Fold_D 1244 1636 598 376 

Fold_E 952 1231 448 240 

Fold_F 996 1080 370 325 

Fold_G 1109 1693 600 449 

RS126 8660 10093 3113 2926 

 

 

2-state (16%) 

 AEE ABB AEB ABE 

Fold_A 2134 1199 239 704 

Fold_B 1842 1055 389 419 

Fold_C 1613 1122 364 365 

Fold_D 1803 1162 458 431 

Fold_E 1402 847 277 345 

Fold_F 1368 757 262 384 

Fold_G 1596 1209 487 559 

RS126 11758 7351 2476 3207 
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Table 3.2. (continued) 
 

 

2-state (9%) 

 AEE ABB AEB ABE 

Fold_A 2489 869 255 663 

Fold_B 2228 719 303 455 

Fold_C 2051 778 244 391 

Fold_D 2300 727 332 495 

Fold_E 1742 576 168 385 

Fold_F 1657 528 214 372 

Fold_G 2003 776 472 600 

RS126 14470 4973 1988 3361 

 

 

2-state (5%) 

 AEE ABB AEB ABE 

Fold_A 2818 620 210 628 

Fold_B 2449 537 320 399 

Fold_C 2259 570 243 392 

Fold_D 2660 455 206 533 

Fold_E 1939 427 159 346 

Fold_F 1885 382 163 341 

Fold_G 2245 580 528 498 

RS126 16255 3571 1829 3137 

 

 

2-state (0%) 

 AEE ABB AEB ABE 

Fold_A 3612 94 40 530 

Fold_B 3206 87 91 321 

Fold_C 2956 95 54 359 

Fold_D 3330 78 48 398 

Fold_E 2473 75 63 260 

Fold_F 2416 42 35 278 

Fold_G 3202 80 158 411 

RS126 21195 551 489 2557 
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Table 3.3. Matthew’s Correlation Coefficients of Five Kind QuickRBF Methods on 
RS126. 

 

 

3-state (9%; 36%) 

MCC

method 
MCCE MCCI MCCB 

QuickRBF 0.477 0.146 0.500 

Two-Stage QuickRBF 0.485 0.130 0.491 

Common Fusion QuickRBF 0.488 0.142 0.502 

Local Tendency Fusion QuickRBF 0.487 0.123 0.508 

Global Tendency Fusion QuickRBF 0.489 0.123 0.505 

 

 

2-state (25%) 

MCC

method 
MCCE = MCCB 

QuickRBF 0.517 

Two-Stage QuickRBF 0.476 

Common Fusion QuickRBF 0.511 

Local Tendency Fusion QuickRBF 0.439 

Global Tendency Fusion QuickRBF 0.440 

 

 

2-state (16%) 

MCC

method 
MCCE = MCCB 

QuickRBF 0.524 

Two-Stage QuickRBF 0.512 

Common Fusion QuickRBF 0.528 

Local Tendency Fusion QuickRBF 0.514 

Global Tendency Fusion QuickRBF 0.514 
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Table 3.3. (continued) 
 

 

2-state (9%) 

MCC

method 
MCCE = MCCB 

QuickRBF 0.493 

Two-Stage QuickRBF 0.499 

Common Fusion QuickRBF 0.500 

Local Tendency Fusion QuickRBF 0.513 

Global Tendency Fusion QuickRBF 0.513 

 

 

2-state (5%) 

MCC

method 
MCCE = MCCB 

QuickRBF 0.449 

Two-Stage QuickRBF 0.457 

Common Fusion QuickRBF 0.464 

Local Tendency Fusion QuickRBF 0.482 

Global Tendency Fusion QuickRBF 0.483 

 

 

2-state (0%) 

MCC

method 
MCCE = MCCB 

QuickRBF 0.249 

Two-Stage QuickRBF 0.262 

Common Fusion QuickRBF 0.256 

Local Tendency Fusion QuickRBF 0.281 

Global Tendency Fusion QuickRBF 0.281 
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3.4 Comparison with other Approaches 

 

Comparison of performance of modified QuickRBF approach with other 

methods in RSA prediction on the RS126 data set is shown in Table 3.4. Accuracy 

plot of modified QuickRBF approach and other methods is shown in Fig. 3.2.  

 

Modified QuickRBF, Common Fusion, is our method, and reported 60.1% for 

the three-state prediction with respect to 9%; 36% thresholds, and 87.8%, 80.2%, 

78.6%, 77.1%, 75.7%, respectively for the two-state predictions with respect to 

thresholds of 0%, 5%, 9%, 16%, 25%.  

 

Fuzzy k-NN (Sim, Kim and Lee, 2005) used fuzzy k-nearest neighbor method 

[23] using PSI-BLAST profiles as feature vectors, and shows slightly better prediction 

accuracies than other methods on the RS126 data set ,and reported 63.8% for the 

three-state prediction with respect to 9%; 36% thresholds, and 87.2%, 82.2%, 79.0%, 

78.3%, respectively for the two-state predictions with respect to thresholds of 0%, 5%, 

16%, 25%.  

 

PHDacc (Rost and Sander, 1994) used a neural network method [3] using 

evolutionary profiles of amino acid substitutions derived from multiple sequence 

alignments, and reported 57.5% for the three-state prediction with respect to 9%; 36% 

thresholds, and 86.0%, 74.6%, 75.0%, respectively for the two-state predictions with 

respect to thresholds of 0%, 9%, 16%.  
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SVMpsi (Kim and Park, 2004) was based on a support vector machine [21] using 

the position-specific scoring matrix generated from PSI-BLAST, and reported 59.6% 

accuracy for the three-state prediction with respect to 9%; 36% thresholds and 86.2%, 

79.8%, 77.8%, 76.8%, respectively accuracies for the two-state predictions with 

respect to thresholds of 0%, 5%, 16%, 25%.  

 

Two-Stage SVMpsi (Nguyen and Rajapakse, 2005) used a Two-Stage SVMpsi 

approach [22] using the position-specific scoring matrix generated from PSI-BLAST, 

and reported 90.2%, 83.5%, 81.3%, 79.4%, respectively accuracies for the two-state 

predictions with respect to thresholds of 0%, 5%, 9%, 16%. These prediction 

accuracies are obtained from their published results. The three state accuracy of 

Modified QuickRBF is 60.1%, which is 3.7% lower than Fuzzy k-NN (63.8%) and 

0.5% higher than SVMpsi (59.6%).  
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Table 3.4. Comparison of performance of modified QuickRBF approach with other 
methods in RSA prediction on the RS126 data set with PSSMs generated by 
PSI-BLAST. 
 

 
PHDacc (Rost and Sander, 1994) used neural networks [3]. 

SVMpsi (Kim and Park, 2004) was based on support vector machine [21]. 

Two-Stage SVMpsi (Nguyen and Rajapakse, 2005) used a two-stage SVM approach [22]. 

Fuzzy k-NN (Sim, Kim and Lee, 2005) used fuzzy k-nearest neighbor method [23]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

accuracy: %

        threshold 

method 

3-state 

(9%; 36%) 

2-state 

(0%) 

2-state 

(5%) 

2-state 

(9%) 

2-state 

(16%) 

2-state 

(25%) 

Modified QuickRBF (Common Fusion) 60.1 87.8 80.2 78.6 77.1 75.7 

PHDacc 57.5 86.0 ─ 74.6 75.0 ─ 

SVMpsi 59.6 86.2 79.8 ─ 77.8 76.8 

Two-Stage SVMpsi ─ 90.2 83.5 81.3 79.4 ─ 

Fuzzy k-NN 63.8 87.2 82.2 ─ 79.0 78.3 
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Fig. 3.2. Accuracy plot of Modified QuickRBF and other methods. 
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Chapter 4. Conclusion and Discussion 

 

In this study, we have applied the five QuickRBF approaches, which are 

QuickRBF, Two-Stage QuickRBF, Common Fusion QuickRBF, Local Tendency 

Fusion QuickRBF, and Global Tendency Fusion QuickRBF, to predict relative solvent 

accessibility, using PSI-BLAST profiles as feature vectors. Our best method, 

Common Fusion QuickRBF, achieved the similar performance as the researches did in 

the recent years. Because the goal of this thesis was to provide a new approach for 

relative solvent accessibility, the results suggest that the modified QuickRBF 

approach is a successful one.  

 

In the future strategy, we can apply our method on a larger data set. Data set 

growth can give an indirect advantage to our method. And our modified QuickRBF 

approach can be selected as a method to combine with other methods. 
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