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This paper describes a stochastic analysis of steady state flow in a bounded, partially saturated heteroge-
neous porous medium subject to distributed infiltration. The presence of boundary conditions leads to
non-uniformity in the mean unsaturated flow, which in turn causes non-stationarity in the statistics of
velocity fields. Motivated by this, our aim is to investigate the impact of boundary conditions on the
behavior of field-scale unsaturated flow. Within the framework of spectral theory based on Fourier–
Stieltjes representations for the perturbed quantities, the general expressions for the pressure head
variance, variance of log unsaturated hydraulic conductivity and variance of the specific discharge are
presented in the wave number domain. Closed-form expressions are developed for the simplified case
of statistical isotropy of the log hydraulic conductivity field with a constant soil pore-size distribution
parameter. These expressions allow us to investigate the impact of the boundary conditions, namely
the vertical infiltration from the soil surface and a prescribed pressure head at a certain depth below
the soil surface. It is found that the boundary conditions are critical in predicting uncertainty in bounded
unsaturated flow. Our analytical expression for the pressure head variance in a one-dimensional,
heterogeneous flow domain, developed using a nonstationary spectral representation approach [Li S-G,
McLaughlin D. A nonstationary spectral method for solving stochastic groundwater problems: uncondi-
tional analysis. Water Resour Res 1991;27(7):1589–605; Li S-G, McLaughlin D. Using the nonstationary
spectral method to analyze flow through heterogeneous trending media. Water Resour Res 1995;
31(3):541–51], is precisely equivalent to the published result of Lu et al. [Lu Z, Zhang D. Analytical solu-
tions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transforma-
tion. Adv Water Resour 2004;27:775–84].

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The field-scale behavior of unsaturated flow in unbounded het-
erogeneous formations has been investigated stochastically in
numerous studies [8,15,16,21]. Common to these investigations
is the assumption of a constant mean head gradient in the treat-
ment of unbounded flow problem. However, in cases of bounded
flow domain, a recharge from the surface may cause non-unifor-
mity in the mean flow and consequently, non-stationarity in the
statistics of random velocity fields. In the presence of a shallow
water table, the constant mean gradient region may constitute
only a small portion of the flow domain [9]. Therefore, the applica-
bility of solutions developed based on a constant mean head gradi-
ent assumption to the case of bounded flow domain is excluded.
Motivated by the above, this study is devoted to the quantification
of the flow perturbation caused by non-uniformity of the mean
ll rights reserved.

M. Chang), hdyeh@mail.nctu.
unsaturated flow resulting from the imposed boundary conditions.
The resulting expressions provide a basic framework for under-
standing and quantifying field-scale unsaturated flow processes
in heterogeneous media.

The infinite-domain spectral approach [1,7,21] is appropriate in
the situation where the flow domain is large compared to the cor-
relations scale of hydraulic conductivity field; however, this spec-
tral approach will not provide accurate predictions of the field-
scale behavior of groundwater movement in cases of bounded flow
domain where the boundaries introduce the non-stationarity in
the statistics of random velocity fields. Li and McLaughlin [10] sug-
gested that the infinite-domain Fourier–Stieltjes representations
can be adjusted to incorporate nonstationary effects by using a
transfer function, found by solving a linearized partial differential
equation. This nonstationary spectral approach has proven useful
in analysis of field-scale stochastic flow with a mean head gradient
changing rapidly over space [3,4,11,12].

Many studies have been devoted to the modeling bounded
unsaturated flow [5,9,13,14,20,22]. However, the application of
the nonstationary spectral representation approach [10,11] to the
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investigation of the behavior of field-scale three-dimensional (3-D)
unsaturated flow in a bounded domain has so far not been at-
tempted, and this is the task undertaken here. This approach leads
to develop closed-form expressions for the pressure head variance,
variance of log unsaturated hydraulic conductivity and variance of
the specific discharge in a bounded flow domain, which, to the best
of our knowledge, have never before been presented for the 3-D
unsaturated flow case.

Recharge as a major hydrology component plays an important
role in regional hydrology and environment, as well as in water ta-
ble change. A better knowledge of the impact of recharge on the
behavior of unsaturated flow would allow an improved groundwa-
ter management and assessment of surface-applied pollution.
Therefore, our investigation focuses on the impact of the boundary
conditions, namely the vertical infiltration from the soil surface
and a prescribed pressure head at a certain depth below the soil
surface, on these results. We hope that our predictive model will
improve the understanding of the impact of the boundary condi-
tions on field-scale unsaturated flow and solute transport.

2. Unsaturated flow analysis

2.1. Statement of the problem

We are concerned with steady state flow in a partially saturated
heterogeneous porous medium, where the flow domain is in a for-
mation of infinite horizontal extent, bounded above by a constant
flux at the soil surface and below by a prescribed pressure head at a
certain depth below the surface. The formation properties, namely
the log saturated hydraulic conductivity (lnKs) and the log soil
pore-size distribution parameter (lna), are modeled as random
space functions with stationary means and presumed covariance
structure. It is also assumed that the effect of variability of the soil
moisture content is secondary relative to the effect of variability of
the saturated hydraulic conductivity.

It is well known that spatial variability of soil properties affects
the field-scale movement of groundwater in aquifers. The aim of
the stochastic approach, therefore, is to realistically incorporate
the impact of the spatial variability of soil properties into predic-
tive models. This can be achieved by representing the local hydrau-
lic properties in the form of statistically homogeneous random
fields in 3-D space. Under this assumption, spectral techniques in
conjunction with perturbation theory lead to closed-form expres-
sions describing the statistical behavior of heterogeneous ground-
water flow systems. The analysis is simplified to the case where the
mean flow is aligned in the vertical direction (X1) as the only non-
zero component of the mean hydraulic gradient [19,22] but pertur-
bations to the flow in three dimensions.

The starting point of this study is to use stochastic analysis to
develop the head perturbation equation, linearized by Kirchhoff
transformation, whose solution is used to determine the variability
of key output processes.

The general equation describing the steady state moisture
movement in a partially saturated, isotropic medium at the local
scale takes the form [2]

@

@Xi
Kð/Þ @/

@Xi

� �
þ @Kð/Þ

@X1
¼ 0; ð1Þ

where / is the water pressure head, X1 denotes the vertical axis and
is positive pointing upward, and K(/) is the unsaturated hydraulic
conductivity, which may be decomposed as

Kð/Þ ¼ Ks � Krð/Þ; ð2Þ

where Ks is the saturated hydraulic conductivity and Kr(/) denotes
the relative hydraulic conductivity. The fluid pressure is prescribed
at X1 = X0
/jX1¼X0
¼ /0 ð3Þ

and a constant flux q0 occurs at the soil surface (X1 = XL)

KsKrð/Þ
@/
@X1
þ 1

� �����
X1¼XL

¼ �q0: ð4Þ

The unsaturated flow equation (1) can be linearized with the
Kirchhoff transform [13,20]

eðXÞ ¼
Z /ðXÞ

�1
KrðSÞdS: ð5Þ

With the aid of the identities

@e
@Xi
¼ @e
@/

@/
@Xi
¼ Krð/Þ

@/
@Xi

ð6Þ

and

@Kr

@X1
¼ @Kr

@/
1
@e
@/

@e
@X1
¼ 1

Kr

@Kr

@/
@e
@X1

: ð7Þ

Eq. (1) leads to

@2e
@X2

i

þ @ ln Ks

@Xi

@e
@Xi
þ 1

Kr

@Kr

@/
@e
@X1
þ Kr

@ ln Ks

@X1
¼ 0: ð8Þ

Assume that the relative hydraulic conductivity at the local
level is related to the pressure head by Gardner [6]

KrðX;/Þ ¼ exp½aðXÞ/�; ð9Þ

where a is a soil pore-size distribution parameter. The exponential
hydraulic conductivity model has been used widely to simplify the
task of solving the unsaturated flow equation [13,14,17,18,20,21].
Introducing Eq. (9) into Eq. (5) results in

eðXÞ ¼ 1
a

exp½aðXÞ/� ¼ Kr

a
: ð10Þ

Substituting Eqs. (9) and (10) into Eq. (8) gives a linear partial dif-
ferential equation

@2e
@X2

i

þ @ ln Ks

@Xi

@e
@Xi
þ a

@e
@X1
þ a

@ ln Ks

@X1
e ¼ 0: ð11Þ

By virtue of Eqs. (5) and (9), the boundary conditions Eqs. (3) and
(4) are expressed in the forms, respectively, as

ejX1¼X0
¼ ea/0

a
; ð12aÞ

@e
@X1
þ ae

� �����
X1¼XL

¼ � q0

Ks
: ð12bÞ
2.2. Pressure head perturbation

In the analysis that follows, lnKs, lna and e are considered to be
random space functions and decomposed into ensemble means
and small perturbations around the mean

ln Ks ¼ hln Ksi þ f ¼ F þ f ;
lna ¼ hln ai þ b ¼ Bþ b;

e ¼ hei þ e0 ¼ �eþ e0;
ð13Þ

where h i stands for the ensemble average. Substituting the per-
turbed forms given in Eq. (13) into Eqs. (11), (12a) and (12b),
expanding terms and taking the mean produces the following mean
equation, approximated to the first-order in perturbation products:

@2�e
@X2

i

þ ag
@�e
@X1
¼ 0 ð14Þ

subject to the boundary conditions
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�eðX0Þ ¼
exp½ag/0�

ag
; ð15aÞ

@�e
@X1
þ ag�e

� �����
X1¼XL

¼ � q0

Kg
; ð15bÞ

where ag = exp(B) and Kg = exp[F]. The detailed development of Eq.
(15a) was given by Lu and Zhang [13]. It follows from Eq. (13) that
Ks = exp(F + f) and a = exp(B + b). Substituting them into Eq. (12a),
expanding exp(�f) and exp(b) in terms of power series, retaining
terms up to the fist-order and taking the mean leads to Eq. (15b).

The first-order perturbation approximation is developed by
subtracting the mean equation from the perturbation representa-
tion of Eq. (11) and neglecting products of perturbation quantities
beyond the second-order

@2e0

@X2
i

þ ag
@e0

@X1
þ @�e

@Xi

@f
@Xi
þ ag�e

@f
@X1

� �
þ agb

@�e
@X1
¼ 0 ð16Þ

subject to the boundary conditions

e0ðX0Þ ¼
exp½ag/0�

ag
ðag/0 � 1Þb; ð17aÞ

@e0

@X1
þ age0 þ ag�eb

� �����
X1¼XL

¼ q0

Kg
f : ð17bÞ

It follows from Eqs. (14) and (16) that the imposed boundary con-
ditions produce a space-dependent �e, and consequently, results in
a nonstationary solution, e0, to Eq. (16).

The approach followed is to develop the solution to the pertur-
bation equation in order to quantify the variability of pressure
head. Under the unidirectional mean flow condition, Eq. (16) can
be simplified to

@2e0

@X2
i

þ ag
@e0

@X1
þ @�e

@X1
þ ag�e

� �
@f
@X1
þ agb

@�e
@X1
¼ 0: ð18Þ

To solve Eq. (18), one needs to know the spatial behavior of �e and its
space gradient, which in turn, requires solving the mean flow equa-
tion (14).

In the case of unidirectional mean flow, the corresponding solu-
tion to Eq. (14), subject to the boundary conditions (15a) and (15b),
is given by [13,14]

�eðX1Þ ¼
exp½agð/0 � ðX1 � X0ÞÞ�

ag
þ q0

agKg
½exp½�agðX1 � X0Þ� � 1�:

ð19Þ

Substitution of Eq. (19) and its space gradient into Eq. (18) yields

@2e0

@X2
i

þ ag
@e0

@X1
¼ q0

Kg

@f
@X1
þ agcðX1Þb; ð20Þ

where

cðX1Þ ¼ exp½ag ½/0 � ðX1 � X0Þ�� þ ðq0=KgÞ exp½�agðX1 � X0Þ�: ð21Þ

Eq. (20) can be solved using the nonstationary spectral repre-
sentation [10,11] based on Fourier–Stieltjes representation for
the perturbed quantities in wave number domain. By using this ap-
proach, the random perturbations are represented by the following
3-D wave number integrals:

f ðXÞ ¼
Z 1

�1
exp½iR � X�dZf ðRÞ; ð22Þ

bðXÞ ¼
Z 1

�1
exp½iR � X�dZbðRÞ; ð23Þ

e0ðXÞ ¼
Z 1

�1
Uf ðX;RÞdZf ðRÞ

þ
Z 1

�1
UbðX;RÞdZbðRÞ; ð24Þ
where Uf(X,R) and Ub(X,R) are transfer functions to be given, dZf(R)
is the complex Fourier amplitude of lnKs, dZb(R) is the complex Fou-
rier amplitude of lna and R = (K1,K2,K3) is the wave number vector.
Note that Eq. (24) is represented based on the principle of superpo-
sition, which is applicable to any linear system, including algebraic
equations and linear differential equations. The first term on the
right-hand side of Eq. (24) reflects the effect of the variation of
the log hydraulic conductivity, while the second term reflects the
effect of the variation of the log soil pore-size distribution
parameter.

By applying the superposition principle, the linear differential
equation (20) can be divided into two sub-equations: one describ-
ing the response of the log hydraulic conductivity variation and the
other the variation of soil pore-size distribution parameter. The re-
sults of each part is summed to obtain the solution to the original
problem. Using Eqs. (22)–(24) in Eq. (20) and uniqueness of the
representations results in two sub-equations

@2Uf

@X2
i

þ ag
@Uf

@X1
¼ i

q0

Kg
R1 exp½iR � X�; ð25Þ

@2Ub

@X2
i

þ ag
@Ub

@X1
¼ agcðX1Þ exp½iR � X�: ð26Þ

The solutions to Eqs. (25) and (26) give the transfer functions

Uf ¼ �i
q0

Kg

R1

R2 � iagR1
exp½iR � X�; ð27Þ

Ub ¼ �agcðX1Þ
1

R2 þ iagR1
exp½iR � X�: ð28Þ

To take the advantage of a closed-form expression, the boundary ef-
fects on the head fluctuation is assumed negligible [3,4,11,12] in
obtaining solutions to Eqs. (25) and (26). It is expected the bound-
ary effect is largely limited to a small zone next to the medium
boundary.

In terms of the above transfer functions of Uf and Ub, Eq. (24)
can be written as

e0ðXÞ ¼ � q0

Kg

Z 1

�1

iR1

R2 � iagR1
exp½iR � X�dZf ðRÞ � agcðX1Þ

�
Z 1

�1

1
R2 þ iagR1

exp½iR � X�dZbðRÞ: ð29Þ
2.3. Variances of pressure head and log unsaturated hydraulic
conductivity

Following Tartakovsky et al. [20] and Lu and Zhang [13], we
note from Eqs. (9) and (10) that the variance of pressure head r2

/

can be expressed as

r2
/ ¼

1� ag/
ag

� �2

r2
b þ 2

1� ag
�/

a2
g
he0bi þ r2

e
a2

g
�e2 ; ð30Þ

where r2
e is the variance of e, r2

b is the variance of lna and
�/ ¼ ln½ag�e�=ag . Using the representation theorem for e0, it follows
that

he0bi¼ q0

Kg
ag

Z 1

�1

R2
1

R4þa2
g R2

1

Sbf ðRÞdR�agcðX1Þ
Z 1

�1

R2

R4þa2
g R2

1

SbbðRÞdR

ð31Þ
and

r2
e¼

q0

Kg

� �2Z 1

�1

R2
1

R4þa2
gR2

1

Sff ðRÞdR�4a2
gcðX1Þ

Z 1

�1

R2R2
1

ðR4þa2
g R2

1Þ
2Sbf ðRÞdR

þa2
gc

2ðX1Þ
Z 1

�1

1
R4þa2

gR2
1

SbbðRÞdR; ð32Þ
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where Sff(R) is the spectrum of lnKs, Sbf(R) is the cross-spectral spec-
tra of the b and f processes and Sbb(R) is the spectrum of lna.

As in Yeh et al. [21], the expansion of (9) in Taylor series, ignor-
ing the product of perturbations and application of the expectation
operator to Eqs. (2) and (9) leads to the corresponding perturbation
of lnK, ln K � hln Ki ¼ ag

�/bþ ag/
0 þ f , where /0 is the perturbation

of pressure head and related to e0, according to Lu and Zhang [12],
by /0 ¼ ð1� ag

�/Þb=ag þ e0=ð�eagÞ. As such, the variance of log unsat-
urated hydraulic conductivity then can be expressed as

r2
ln K ¼ r2

b þ 2hbf i þ 2
�e
he0bi þ r2

e
�e2 þ

2
�e
he0f i þ r2

f ; ð33Þ

where hbfi is the integration of the cross-spectral spectra of b and f,
he0bi is given by (31) and

he0f i¼ q0

Kg

� �
ag

Z 1

�1

R2
1

R4þa2
g R2

1

Sff ðRÞdR�agcðX1Þ
Z 1

�1

R2

R4þa2
g R2

1

Sbf ðRÞdR:

ð34Þ
2.4. Flow perturbation

With Eq. (29), we now start to quantify the specific discharge
spectrum which can be determined from the linearized first-order
perturbation approximation of Darcy’s law, such as those pre-
sented by Gelhar and Axness [7] and Yeh et al. [21].

Applying Eqs. (6) and (7) to Darcy’s law

qi ¼ �Ks Kr
@/
@Xi
þ di1Kr

� �
ð35Þ

leads to

qi ¼ �Ks
@e
@Xi
þ di1ae

� �
: ð36Þ

Then the corresponding equations for the mean specific dis-
charge and perturbation to Eq. (36) take the forms

qi ¼ �eF @�e
@Xi
þ di1ag�e

� �
; ð37Þ

q0i ¼ �eF @e0

@Xi
þ di1 f

@�e
@X1
þ agðe0 þ b�eþ f�eÞ

� �� �
: ð38Þ

Substituting Fourier–Stieltjes representations for the specific
discharge perturbations

q0i ¼
Z 1

�1
exp½iR � X�dZqi

ðRÞ ð39Þ

and the representations in Eq. (29) with its gradients

@e0

@X1
¼ q0

Kg

Z 1

�1

R2
1

R2 � iagR1
exp½iR � X�dZf ðRÞ

þ agcðX1Þ
Z 1

�1

ag � iR1

R2 þ iagR1
exp½iR � X�dZbðRÞ; ð40Þ

@e0

@X2
¼ q0

Kg

Z 1

�1

R1R2

R2 � iagR1
exp½iR � X�dZf ðRÞ

� agcðX1Þ
Z 1

�1

iR2

R2 þ iagR1
exp½iR � X�dZbðRÞ; ð41Þ

@e0

@X3
¼ q0

Kg

Z 1

�1

R1R3

R2 � iagR1

exp½iR � X�dZf ðRÞ

� agcðX1Þ
Z 1

�1

iR3

R2 þ iagR1

exp½iR � X�dZbðRÞ ð42Þ

into Eq. (38) and using the uniqueness of the spectrum presenta-
tions yields
dZq1
¼ �Kg

q0

Kg

�R2 þ R2
1

R2 � iagR1
dZf þ ag

�eR2 � iðq0=KgÞR1

R2 þ iagR1
dZb

( )
; ð43Þ

dZq2
¼ �Kg

q0

Kg

R1R2

R2 � iagR1
dZf � ag

icðX1ÞR2

R2 þ iagR1
dZb

( )
; ð44Þ

dZq3
¼ �Kg

q0

Kg

R1R3

R2 � iagR1
dZf � ag

icðX1ÞR3

R2 þ iagR1
dZb

( )
: ð45Þ

Taking the expected value of the product of the Fourier amplitude
and its complex conjugate gives the spectrum for the stochastic
process. Thus it follows from Eqs. (43)–(45) that

Sq1q1
ðRÞ¼K2

g
q0

Kg

� �2 R4�2R2R2
1þR4

1

R4þa2
g R2

1

Sff ðRÞ
(

þa2
g

�e2R4þðq0=KgÞ2R2
1

R4þa2
g R2

1

SbbðRÞþ2ag
q0

Kg

�
�eð�R4þR2R2

1ÞðR
4�a2

g R2
1Þ�2ðq0=KgÞagR2R2

1ð�R2þR2
1Þ

ðR4þa2
g R2

1Þ
2 Sbf ðRÞ

)
;

ð46Þ

Sq2q2
ðRÞ ¼ K2

g
q0

Kg

� �2 R2
1R2

2

R4 þ a2
g R2

1

Sff ðRÞ � 4a2
gc

q0

Kg

R2R2
1R2

2

ðR4 þ a2
g R2

1Þ
2 Sbf ðRÞ

(

þa2
gc

2 R2
2

R4 þ a2
g R2

1

SbbðRÞ
)
; ð47Þ

Sq3q3
ðRÞ ¼ K2

g
q0

Kg

� �2 R2
1R2

3

R4 þ a2
g R2

1

Sff ðRÞ � 4a2
gc

q0

Kg

R2R2
1R2

3

ðR4 þ a2
g R2

1Þ
2 Sbf ðRÞ

(

þa2
gc

2 R2
3

R4 þ a2
g R2

1

SbbðRÞ
)
; ð48Þ

where Sqiqi(R) is the spectrum of the specific discharge.
Integration of Eqs. (46)–(48) over the wave number domain

yields the variances of the specific discharge in the longitudinal
and transverse directions, respectively,

r2
q1
¼K2

g
q0

Kg

� �2Z 1

�1

R4�2R2R2
1þR4

1

R4þa2
g R2

1

Sff ðRÞdR

(

þa2
g

Z 1

�1

�e2R4þðq0=KgÞ2R2
1

R4þa2
g R2

1

SbbðRÞdRþ2ag
q0

Kg

�
Z 1

�1

�eð�R4þR2R2
1ÞðR

4�a2
g R2

1Þ�2ðq0=KgÞagR2R2
1ð�R2þR2

1Þ
ðR4þa2

g R2
1Þ

2 Sbf ðRÞdR

)
;

ð49Þ

r2
q2
¼r2

q3
¼K2

g
q0

Kg

� �2Z 1

�1

R2
1R2

2

R4þa2
g R2

1

Sff ðRÞdRþa2
gc

2ðX1Þ
(

�
Z 1

�1

R2
2

R4þa2
g R2

1

SbbðRÞdR�4a2
gc

q0

Kg

Z 1

�1

R2R2
1R2

2

ðR4þa2
g R2

1Þ
2 Sbf ðRÞdR

)
:

ð50Þ
3. Analytical solutions: statistically isotropic media with a
constant a

Eqs. (30), (33), (49) and (50) in conjunction with Eqs. (46)–(48)
provide the framework required to quantify the pressure head var-
iance, variance of log unsaturated hydraulic conductivity and vari-
abilities of the specific discharge in the longitudinal and transverse
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directions, respectively, in terms of the input soil hydraulic param-
eters. In this section, we implement those results to the particular
case of statistical isotropy of the lnKs field with a constant a (i.e.,
ag = a, r2

b ¼ 0, hbf > = 0 and he0b > = 0), which allows for the devel-
opment of closed-form expressions.

It is assumed that the random lnKs perturbation field f is char-
acterized by the following spectral density function [1,7,21]:

Sff ðRÞ ¼
r2

f k
3

p2ð1þ k2R2Þ2
; ð51Þ

where r2
f is the variance of lnKs and k is the correlation scale of lnKs.

The variance of pressure head perturbation is obtained by
substituting Eqs. (51) and (32) into Eq. (30) and integrating Eq.
(30) over the wave domain

r2
/ ¼

r2
f

a2
gq2 ð

q0

Kg
Þ2 1þ 1

1þ l
� 2

l
lnð1þ lÞ

� �
; ð52Þ

where l = agk, q ¼ ag�e ¼ exp½l½/0=k� n�� � ðq0=KgÞð1� exp½�ln�Þ
and n = (X1 � X0)/k. It is important to recognize from Eq. (4) that
the specific flux q0 is negative for infiltration. Clearly, in the limit
of n ?1, q approaches �q0/Kg and Eq. (52) converges to the un-
bounded flow domain limit of the pressure head variance

r2
/ ¼

r2
f

a2
g

1þ 1
1þ l

� 2
l

lnð1þ lÞ
� �

; ð53Þ

which is equivalent to the result of Yeh et al. [21] with the assump-
tion of unit mean head gradient.
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Fig. 1. Dimensionless variance of pressure head versus dimensionless distance
from the boundary of constant pressure head for various (a) infiltration rates and
(b) prescribed pressure heads at the bottom boundary.
Fig. 1a and b illustrates the spatial distribution of the variance
of pressure head for various infiltration rates and prescribed pres-
sure heads at the bottom boundary, respectively, based on Eq. (52).
The phenomenon that the pressure head variance increases with
the infiltration rate can be attributed to the influence of the
pore-scale variability on the pressure head variability which is
more persistent for a larger infiltration rate. The variability of the
pressure head appears to be stationary toward the soil surface (a
gravity-dominated region) where an unit mean hydraulic gradient
has been reached. As expected, boundaries with higher prescribed
pressure head (more negative) produce much higher pressure var-
iability for a given infiltration rate. This is a consequence of the
conditioning effect of the fixed pressure at the boundary. There is
a transition from the gravity-dominated region to the boundary.
The lower is the prescribed pressure head, the smaller is the tran-
sition; in other words, when the prescribed pressure head is low,
only minor adjustments are necessary to reach the equilibrium va-
lue of pressure head, which in turn reduces the pressure head fluc-
tuations. Substituting Eqs. (51) and (34) into Eq. (33) and
integrating Eq. (33) over the wave domain results in

r2
ln K ¼ r2

f 1þ 1
q

q0

Kg

1
q

q0

Kg
þ 2

� �
1þ 1

1þ l
� 2

l
lnð1þ lÞ

� �� �
ð54Þ

with the corresponding limit for the unbounded flow case n ?1
[20]

r2
ln K ¼ r2

f
2
l

lnð1þ lÞ � 1
1þ l

� �
: ð55Þ

Fig. 2a indicates the variance of logK varying with the infiltration
rate. The result agrees with our physical intuition: for a given for-
mation properties, the smaller the infiltration rate, the dryer the soil
and, consequently, the more variation in soil moisture content.
Therefore, the variance of logK will increase with decreasing infil-
tration rate. The decrease in the variance of logK with an increase
in constant pressure head at the bottom boundary is displayed in
Fig. 2b. It is clear that the variance of logK is stationary along the
unit gradient mean flow region.

The integral expressions in Eqs. (49) and (50) for the variances
of the specific discharge in the longitudinal and transverse direc-
tions are integrated analytically using Eq. (51) to yield

r2
q1
¼ r2

f q2
0 �

5
2

1
l
þ 6

l2 þ
3
l3 �

6
l4 þ lnð1þ lÞ 2

l
� 8

l3 þ
6
l5

� �� �
;

ð56Þ

r2
q2
¼ r2

q3
¼ r2

f q2
0

1
4

1
l
� 1

l2 �
3
2

1
l3 þ

3
l4 þ lnð1þ lÞ 2

l3 �
3
l5

� �� �
:

ð57Þ

From (30), �/ ¼ ln½ag�e�=ag implies that �e ¼ exp½ag
�/�=ag . Recall that as

n ?1, �e ¼ �q0=ðKgagÞ. With those, �q0=Kg ¼ exp½ag
�/� (or q0 ¼ �Kg

exp½ag
�/�, where �/ is the mean pressure head) and, therefore, Eqs.

(56) and (57) lead to

r2
q1
¼r2

f ðKg exp½ag
�/�Þ2 �5

2
1
l
þ 6

l2þ
3
l3�

6
l4þlnð1þlÞ 2

l
� 8

l3þ
6
l5

� �� �
;

ð58Þ

r2
q2
¼r2

q3
¼r2

f ðKg exp½ag
�/�Þ2 1

4
1
l
� 1

l2�
3
2

1
l3þ

3
l4þ lnð1þlÞ 2

l3�
3
l5

� �� �
;

ð59Þ

which are identical to those found by Yeh et al. [21] using the unit
mean head gradient assumption.

From Eqs. (56) and (57) the coefficients of variation of the spe-
cific discharge in the longitudinal and transverse directions are ob-
tained, respectively, in the forms
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Fig. 2. Dimensionless variance of log unsaturated hydraulic conductivity versus
dimensionless distance from the boundary of constant pressure head for various (a)
infiltration rates and (b) prescribed pressure heads at the bottom boundary.
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rq1

hqi ¼ rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �s
; ð60Þ

rq2
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rq3
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� 1
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1
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3
l4 þ lnð1þ lÞ 2

l3 �
3
l5

� �s
:

ð61Þ

These results suggest that the boundary conditions have no influ-
ence on the variation (or dispersion) of the specific discharge, which
are important in the analysis of solute transport, in the case of a
constant soil pore-size distribution parameter. It is important to
recognize that the influence of the boundary conditions is reflected
in the behavior of mean pressure head. The mean flow and mean
pressure head are directly related through the Darcy’s law. In other
words, the boundary conditions implicitly affect the behavior of
mean flow. Therefore, the coefficient of variation of the specific dis-
charge, which measures the variation in specific discharge relative
to the mean discharge, is independent of the boundary conditions.

4. Comparison of the pressure head variance with the published
result

It is of interest to justify the application of the nonstationary
spectral approach to unsaturated flow problems involved in non-
stationarity in the statistics of random velocity fields by comparing
with the published results. Lu et al. [14] have developed a first-or-
der analytical solution to the pressure head variance for one-
dimensional (1-D) steady state unsaturated flow in randomly het-
erogeneous layered soil columns under various random boundary
conditions. The comparison of our analytical expression for the
pressure head variance with the result of Lu et al. [14] is presented
below.

For the comparison, the boundary conditions are included in the
evaluation of the pressure head variance in the 1-D case, which
have been neglected in the 3-D case. To determine the pressure
head variance, one needs to calculate r2

e , which is determined from
the transfer function given by Eq. (25). For the 1-D flow case, Eq.
(25) is reduced to

d2Uf

dX2
1

þ ag
dUf

dX1
¼ i

q0

Kg
R1 exp½iR1X1� ð62Þ

subject to the boundary conditions

Uf ¼ 0 X1 ¼ Xo; ð63aÞ
dUf

dX1
þ agUf ¼

q0

Kg
exp½iR1X1� X1 ¼ XL; ð63bÞ

where Eqs. (63a) and (63b) are obtained by applying Eq. (24) into
Eqs. (17a) and (17b), respectively. The solution of Eqs. (62) and
(63) is given by

Uf ¼ i
q0

Kg

1
R� iag

ð� exp½iRX1� þ exp½iRX0� exp½�agðX1 � X0�Þ: ð64Þ

Substituting Eq. (64) into Eq. (24) yields

e0ðXÞ ¼ q0

Kg

Z 1

�1

i
R� iag

ð� exp½iRX1� þ exp½iRX0�

� exp½�agðX1 � X0Þ�ÞdZf ðRÞ: ð65Þ

The equation for r2
e is obtained upon applying the representa-

tion theorem for e0 as follows:

r2
e ¼

q0

Kg

� �2

ð1þ exp½�2agðX1 � X0Þ�Þ
Z 1

�1

Sff ðRÞ
R2 þ a2

g

dR

(

�2 exp½�agðX1 � X0Þ�
Z 1

�1

cos½RðX1 � X0Þ
R2 þ a2

g

Sff ðRÞdR

)
: ð66Þ

With this result Eq. (66), the pressure head variance can be deter-
mined from Eq. (30).

We assume the same exponential form of the covariance func-
tion of lnKs previously used by Lu et al. [14] in the determination of
the pressure head variance in the case of 1-D unsaturated flow. The
associated spectral density function with an exponential covari-
ance function of lnKs has the form

Sff ðRÞ ¼
r2

f k

pð1þ k2R2Þ
: ð67Þ

The r2
e results from Eqs. (66) and (67) in the form

r2
e ¼

q0

Kg

� �2 r2
f k

2

l
ð1þ exp½�2ln�Þ 1

1þ l

�

� 2
1� l2 ðexp½�2ln� � l exp½�ð1þ lÞn�Þ

�
; ð68Þ

where l = agk and n = (X1 � X0)/k. The pressure head variance in Eq.
(30) with a constant a is given now by

r2
/ ¼

q0

Kg

� �2 r2
f k

2

q2l
ð1þ exp½�2ln�Þ 1

1þ l

�

� 2
1� l2 ðexp½�2ln� � l exp½�ð1þ lÞn�Þ

�
; ð69Þ

where q ¼ ag�e ¼ exp½lð/0=k� nÞ� þ ðq0=KgÞðexp½�ln� � 1Þ. This is
identical to the result of Lu et al. [14] (their Eq. (21)) with a constant
a under deterministic boundary conditions.
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5. Conclusions

A spectral approach based on Fourier–Stieltjes representations
for the perturbed quantities has been applied to the case of the
quantification of field-scale flow processes in a partially saturated
heterogeneous porous medium. The flow domain is assumed to be
in a formation of infinite horizontal extent, bounded above by a
constant flux at the surface and below by a prescribed pressure
head at a certain depth below the soil surface. The general expres-
sions for the pressure head variance, variance of log unsaturated
hydraulic conductivity and variance of the specific discharge are
presented in the wave number domain. The closed-form expres-
sions are developed for the simplified case of statistical isotropy
of the log hydraulic conductivity field with a constant soil pore-
size distribution parameter. The impact of the boundary conditions
on these results is examined.

It was found that the variance of pressure head increases with
the infiltration rate. This is attributed to the influence of the
pore-scale variability on the pressure head variability which is
more persistent for a larger infiltration rate. As expected, the high-
er the constant pressure head (more negative) at the boundary, the
higher the variability of pressure head for a given infiltration rate.
A larger infiltration rate or a higher constant pressure head at the
boundary leads to a reduction in variance of unsaturated logK. The
boundary conditions have no influence on the variation of longitu-
dinal and transverse specific discharge in the case of a constant soil
pore-size distribution parameter. The result for the pressure head
variance, obtained by applying the nonstationary spectral ap-
proach to 1-D unsaturated flow field, is identical to the published
result in Lu et al. [14].
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