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Automatic Eye Detection and Reflection

Separation within Glasses

STUDENT: YU-SHENG LIN ADVISOR: JYH-YEONG CHANG

Institute of Electrical and Control Engineering

National Chiao-Tung University

Abstract

Eye detection has been applied to.many applications, for instance, human or
faces recognition, eye gaze detection, drowsiness detection, and so on. However, eye
detection often misdiagnoses for the interference caused by glasses when one wears
spectacles. This thesis addresses-an algorithm'to automatically detect the eye location
from a given face image and separate ‘reflections within glasses while one has worn
glasses. Our system consists of three modules: face segmentation, optic-area detection,
and the separating of glasses reflections while one has worn glasses. First, we use the
universal skin-color map to detect the face regions, which can ensure sufficient
adaptability to ambient lighting conditions. Then, we proposed a novel method to
detect the eye region and separate the reflection within glasses based on edge
detection, corner detection, and anisotropic diffusion transform. The principle of
separating reflection is based on that the correct decomposition of the reflection image
whose summation of corners and edges is the smallest among all possible
decompositions. The simulation and results demonstrate that the principle of

separating reflection can be applied to the reflection within glasses effectively and



result in good reflection separation.
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Chapter 1. Introduction

1.1 Motivation of This Research

Eye detection has been applied to many applications, for instance, human or face
recognition, eye gaze detection, drowsiness detection, and so on. But eye detection
often misdiagnoses for the interference caused by sunglasses or glass reflection when
one wears glasses. There are a lot of methods proposed to solve the eye detection, yet
the cases of people who wearing glasses seem to be omitted in these developments.
There are several good reasons why people avoided dealing with eyeglasses, such as
the following:

® The appearance of glasses frames is so diverse due to various material

properties, such as metal and plastic:

® The reflectance distribution on glasses emerges randomly; for this reason,

sometimes the reflection may be overlapped on the eye or eyebrows area.

® The reflectance brightness on glasses appears arbitrarily; consequently,

sometimes the eye detection likely is mistaken for the erroneous eye
location.

® Many faces are always well separated with the background whereas the

glasses are stuck to the face and mixed by eyes or eyebrows.
Therefore, dealing with the wearing glasses cases in all of the application is important

and instant.

To this end, we particularly aim at the drowsiness detection system and the



camouflage of face recognition system dealing with eyeglasses interference problem.
For the drowsiness detection system, we used image processing technique to measure
the eye closure and calculate the PERCLOS and blinking rate. Then we use these two
evidences above to estimate whether the consciousness state of a subject is drowsy or
not [1]. The approach above offers the advantage of providing high detection accuracy
and does not use any intrusive sensor the driver. When a driver wears eyeglasses,
however, the system cannot detect the eye position accurately because the reflections
within eyeglasses may be overlapped with eyes. Since there are almost one half
people in Taiwan wearing glasses, the system must be able to accommodate the use of
different kinds of glasses in individual driver to make the drowsiness detection system
more practical. Moreover, wearing glasses is one of the most common camouflages to
a human identification problem to face recognition system. The automatic glasses
reflections separation method we will propose can helpfully remove this stumbling

block.

1.2 Face Detection

There are many methods or algorithms have been proposed for face detection in
the recent years. According to Hjelmas and Low [2], the major approaches are listed
chronologically in Table I. These approaches utilize techniques such as principal
component analysis, neural networks, machine learning, information theory,
geometrical modeling, (deformable) template matching, Hough transform, motion
extraction, and color analysis. Among these methods above, color analysis is a

straightforward method and useful cue for face detection.



In this thesis, the method we adopted, is proposed by Chai and Ngan [3], which
used color as a feature for identifying a human face in an image. This is feasible
because human faces have a special color distribution that differs significantly
(although not entirely) from those of the background objects. Hence this approach
requires a color map that models the skin-color distribution characteristics. The
skin-color reference map can be derived in two ways on account of the fact not all
faces have identical color features. One approach is to predefine or manually obtain
the map such that it suits only an individual color feature. In another approach, the
skin-color map can be designed by adopting histogram technique on a given set of
training data and subsequently used as a reference for any human face. Although the
first approach is more accurate and has better segmentation results, the second
approach is more practical and attempts to cater:to all personal color features in an

automatic manner. The remaining question'is which color space should we use.

TABLE
MAJOR FACE DETETION APPROACHES

Authors Approach Features Used
Féraud et al. [6] Neural Networks Motion; Color; Texture
Maio et al. [7] Facial templates; Hough Texture; Directional images
Transform
Garcia et al. [8] Statistical wavelet analysis Color wavelet coefficients
Wau et al. [4] Fuzzy color models; Color
Template matching
Sung et al. [9] Learning Texture
Yang et al. [5] Multi-scale segmentation; Skin Color; intensity
color model
Yow et al. [10] Feature; Belief networks Geometrical facial features




Although RGB color space is suitable for display, it is not good for color scene
segmentation and analysis because of the high correlation among the R, G, and B
components. By high correlation, we mean that if the intensity changes, all the three
components will change accordingly. Also, the measurement of a color in RGB space
does not represent color differences in a uniform scale, hence it is impossible to
evaluate the similarity of two colors from their distance in RGB space. Here, we use

the YC,C, color space to be the color model. The details will be given in Chapter 2.

1.3 Eye Location and Glasses Existence Detection

One of the most essential pre=requisites in‘building an automated system for face
recognition is eye detection. T-here. are many. algorithms being proposed to do this
work. Rosenfeld et al. [11] used filers-based-on-Gabor wavelets to detect eyes in gray
level images. Feng et al. [12] employed. multi-cues for eye detection on gray images
using variance projection function. Kumar et al. [13] used color cues and projection
function to detect the eye position. Liu et al. [14] first used edge information to
roughly segment the eye region and then used genetic algorithm to search the eye.
Kawato et al. [15] proposed a new idea that uses a circle-frequency filter to search

“between-eyes” rather than to detect the eye directly.

These various schemes that have been proposed for eye detection can be broadly
categorized into two approaches. The first category assumes that rough eye regions
have been located or there are some restrictions on the face image such that eye
windows can be easily located. The detection of eyes in the face is then operated on

the restricted windows. However, in practical, it is generally difficult to locate the eye

4



windows in real world situations. In the second approach, a face detection algorithm
is used to extract the approximate face region and the detection of eyes is carried out
in the identified face area. But there is a problem that the eye detection accuracy
depends on the robustness of the face detection algorithm. Moreover, unless the

orientation of the face is known, it is very difficult to extract the eye pair.

In this thesis, we apply the corner operator, edge operator and anisotropic
diffusion to the face segment that is extracted at the face detection stage. Then we
calculate the response particularly to find out the eye region. We will present the

details in Chapter 3.2.

1.4 Glasses Reflection Separation System

When a subject wears glasses-or-sunglasses the performance of estimating the
state of eye will descend. Because the reflection will arise on the lens of glasses
arbitrarily; hence, we need to diminish the side effect from the reflection. There are
many algorithms being proposed to do this task. Levin and Weiss [16] use derivative
filters, linear programming and some user assistance. [17, 18] use the feature which
the reflection and non-reflection images have different motions to separate the two
image. In this thesis, we adopt the method proposed by Levin et al. [19] to separate

the reflection. We will show the details in Chapter 3.3.



1.5 Flowchart of Eye Detection and Glasses Reflections Separation System

Fig 1.1 exhibits the flowchart of eye detection and glasses reflections system.
The system starts with a new image frame. After getting a new color frame, we search
out the face region by extracting a skin-color area based on the skin-color reference
map in [3]. Then we detected the appearance of glasses because we must preprocess
the reflection within glasses if one wears glasses. Subsequently, we locate the area of
eye for eye detection. Finally, we use the eye detection to determine that the state of

eye is open or closed.

1.6 Thesis Outline

This thesis is organized as follows.-Chapter-2 introduces the face location
detection with some illustrative ‘examples...Chapter 3 shows how we use edge
detection, corner detection, and anisotropic diffusion transform to location eye area,
estimate the presence of glasses, and then to separate the reflection within glasses.
The technique that we use patch database and evaluation function to choose the best
decomposition will also be shown. Several simulation examples and their results of
each topic of chapters are provided in Chapter 4. We conclude this thesis with a

discussion in Chapter 5.
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Chapter 2. Face Segmentation

2.1 Introduction

In this section, we will show how to segment face area. Here we adopt a method
proposed by Chai et al. [3]. We just used four stages of this method except the
luminance regularization stage. The luminance regularity property is only appropriate
for a simple background, but we will identify a person’s face in an image without any
constraints. To this end, we skip the luminance stage, and use more constraints on

geometry to distinguish the face region and background instead.

2.2 Face Segmentation Algorithm

The algorithm in [3] is an unsupervised segmentation algorithm, and hence no
manual adjustment of any design parameter is needed in order to suit any particular
input image. The only principal assumption is that the person’s face must be present
in the given image, since we are locating and not detecting whether there is a face.

The revised algorithm we used is consists of four stages, as depicted in Fig. 2.1.



Input Image: An Image Including A Face

Color
Segmentation

A 4

Density
Regularization

A 4

Geomet_ric
Correction

A 4

Contour
Extraction

__________________________________________

Output Image: Segmented Facial Region

Fig. 2.1. Outline of face-segmentation algorithm.

A. Color Segmentation

The first stage of the algorithm is to classify the pixels of the input image to skin
region and non-skin region. To do this, we reference a skin-color reference map in
YC,Cy, color space.lt has been proved that a skin-color region can be identified by
the presence of a certain set of chrominance values (i.e., C, and Cy) narrowly and
consistently distributed in the YC,C, color space. We utilize R¢r and Rgp to
represent the respective ranges of C, and Cp values that correspond to skin color,
which subsequently define our skin-color reference map. The ranges that the paper

uses to be the most suitable for all the input images that they have tested are



Re, = [133, 173],and Re, = [77, 127].

The size of image we use is 640x480. In the cause of reducing the computing
time, we downsample the image to become 320x240 and recover in the last stage.
Therefore, for an image of MxN pixels and we downsample it to M/2xN/2. With the

skin-color reference map, we got the color segmentation result O as

OA(SL', y) — {(1)7 fte[}iéf;e y) € RC,»] ﬂ[Ob(x7 y) € Rcb] (21)

Y

where z =0, ... , M/2-1and y =0, ... , N/2-1 and M, N are the height and width of
the picture respectively. An example _to .illustrate the classification of the original

image Fig. 2.2 is shown in Fig. 2.3.

Nevertheless, the result of color:segmentation is the detection of pixels in a facial
area and may also include other areas where the chrominance values coincide with
those of the skin color (as is the case in Fig. 2.3). Hence the successive operating

stages of the algorithm can be exploited to eliminate these misdiagnosed areas.
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Y

Fig. 2.3. Image after filtered by skin-color map in stage A.

B. Density Regularization

This stage considers the bitmap produced by the previous stages to contain the
facial region that is corrupted by noise. The noise may appear as small holes on the
facial region due to undetected facial features such as eyes, mouth, even glasses, or it

may also appear as objects with skin-color appearance in the background scene

11



Therefore, this stage pre-performs simple morphological operations such as
dilation to fill in any small hole in the facial area and erosion to remove any small
object in the background area. Nevertheless, the intention is not to remove the noise

entirely but to reduce its amount and size.

To distinguish between facial and non-facial region more complete, we first need
to identify regions of the bitmap that have higher probability of being the facial region.
According to their observation in [3], it shows that the facial color is very uniform,
and therefore the skin-color pixels belonging to the facial region will appear in a
single large cluster, while the skin-color pixels belonging to the background may
appear as many large clusters or small isolated objects. Thus, we study the density
distribution of the skin-color pixels detected in.stage A. A density map is calculus as

follows.

3 3

D(z, y) = ZOZ:OOA(LLZL‘—FL 1y + ) (2.2)
=0 7=

It first partitions the output bitmap of stage A Oa(x, y) into non-overlapping
groups of 4x4 pixels, then counts the number of skin-color pixels within each group

and assigns this value to the corresponding point of the density map.

According to the density value, we classify each point into three types, namely,
zero (D = 0), intermediate (0 < D < 16), and full (D = 16). A group of points with zero
density value will represent a non-facial region, while a group of full density points
will signify a cluster of skin-color pixels and a high probability of belonging to a
facial region. Any point of intermediate density value will indicate the presence of
noise. The density map of an example with three density classifications is depicted in

Fig. 2.4. The point of zero density is shown in white, intermediate density in green,

12



and full density in black.

Once the density map is derived, we can then begin the process that we termed as

density regularization. This involves the following three steps.

1)

2)

3)

as

Discard all points at the edge of the density map, i.e., set D(0, ) = D(M/8-1, v)
= D(x, 0) = D(x, N/8-1) forall x =0, ..., M/8-1and y =0, ..., N/8-1.

Erode any full-density point (i.e., set to zero) if it is surrounded by less than five
other full-density points in its local 3x3 neighborhood.

Dilate any point of either zero or intermediate density (i.e., set to 16) if there are

more than two full-density points in its local 3x3 neighborhood.

After this process, the density-map is converted to the output bitmap of stage B

(1, it D(z,y) =16
Op(z, y) = {0 otherwise (2.3)

Y

forall z =0, ...,M/8-1and y =0, ..., N/8-1.

The result of the previous example is displayed in Fig. 2.5.

Fig. 2.4. Density map after classified to three classes.

13



Fig. 2.5. Image produced by stage B.

C. Geometric Correction

In this stage, we first performed two simple procedures that are similar to that
initially introduced in stage B to ensure that noise appearing on the facial region is
filled in and that isolated noise objects on the background are removed. The two
procedures are shown as followings, a pixel.in Og(x, y) with the values of one will
remain as a detected pixel if there are‘more.than three other pixels, in its local 3x3
neighborhood, with the same value.-At the same time, a pixel in Og(z, y) with a value
of zero will be reconverted to a value of one (i.e., as a potential pixel of the facial
region) if it is surrounded by more than five pixels, in its local 3x3 neighborhood,

with a value of one.

We then commence the horizontal scanning process on the “filtered” bitmap. We
search for any short continuous run of pixels that are assigned with the value of one.
Any group of less than four horizontally connected pixels with the value of one will
be eliminated and assigned to zero. A similar process is then performed in the vertical
direction. As a result the output bitmap of this stage should contain the facial region

with minimal or no noise, as demonstrated in Fig. 2.6.

14



Fig. 2.6. Image produced by stage C.

D. Contour Extraction

In this final stage, we convert the M/8 x N/8 output bitmap of stage C back to
the dimension of M/2 x N/2. To achieve the increase in spatial resolution, we utilize
the edge information that is already made available by the color segmentation in stage
A. Therefore, all the boundary points:inthe previous bitmap will be mapped into the
corresponding group of 4 x 4 pixels with the value of each pixel as defined in the
output bitmap of stage A. The representative output-bitmap of this final stage of the

algorithm is shown in Fig. 2.7.

Fig. 2.7. Image produced by stage D.

15



Chapter 3. Eye Detection, Glasses Existence Detection

and Reflection Separation of Glasses

3.1 Introduction

In this section, we first show three measures that were employed to eye location,
glasses existence detection, and reflection separation. Then we describe how to locate
the eye area, and then present the details of separating reflection. Our procedure is
slightly different from the order of the flowchart mentioned in Fig 1.1. The task of
glasses existence detection and eye position detection is done at the same stage,

because the position of glasses always'overlapped with eye or eyebrow.

3.1.1 Edge Detection

Image edges have already been defined as local variations of image intensity.
Therefore, local image differentiation techniques [20]-[22] can produce edge detector

operators. The image gradient V f(x,y)

T
vt () = {% ;iy} 6T, @)

provides useful information about local intensity variations. Its magnitude,

‘Vf (x, y)‘ = \/fxz(x, y)+ f7(xy), (3.2)

can be used as an edge detector. Alternatively, the sum of the absolute values of

16



partial derivatives f, f, can be employed by

VE(x,y)| =

fx (X, y)‘ + ‘fy (x, y)‘ (3.3)

for computational simplicity. Local edge direction can be described by the direction

angle:

¢z, y) = arctan(f,/ f.). (3.4)

Gradient estimates can be obtained by using gradient operators of the form:

fr=WiX, (3.5)
o= W,X, (3.6)

where X is the vector containing image pixels-in a local image neighborhood. Weight
vectors Wy, W are described by gradient. masks..Such masks are shown in Fig. 3.1 for
the Sobel edge detectors. Egs. (3.5) and (3.6) are essentially two-dimensional linear
convolutions with the 3x3 kernels shown in Fig. 3.1. They can be easily implemented

in the spatial domain.

Edge templates are masks that can be used to detect edges along different
directions. Such Modified Sobel edge detector masks of size 3x3 are shown in Fig.
3.2. They can detect edges at four directions (0, 45, 90, and 135 degrees).The resultant
edge images processed through Sobel and Modified Sobel operator are shown in Figs.
3.3(b) and 3.3(c) respectively, over a test image “Baboon.” The Modified Sobel
operator has better performance than the Sobel operator because it can produce more

minute and subtle edge, such as slanted edges beside the noise.

17
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Fig. 3.2. Modified Sobel edge detector masks.
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Fig. 3.3. The example of image applying edge detector. (a) Original image (Baboon);

(b) Sobel edge detector output; and (c) Modified Sobel edge detector output.
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3.1.2 Corner Detection

In this thesis, we utilize the Harris-like operator as a corner detection operator;
therefore, we first describe the concept of Harris corner detector. In an arbitrary image,
we can classify it to three kinds of regions with respect to Harris corner detector. Here,
we show it as follows.

® The flat region: The intensity at this region changes scarcely at all

directions.

® The edge region: The intensity at this region changes scarcely along the

direction of edge, but it changes severely along the orthogonal direction of
edge.

® The corner region: The.intensity at this.region changes significantly at all

directions.

According to Harris [23], the Harris..corner detector is based on the local
auto-correlation function of a signal; where the local auto-correlation function

measures the local changes of the signal with patches shifted by a small amount in

different directions. Given a shift (Ax,Ay) and a point (x,y), the auto-correlation

function is defined as,

c(x,y)=>W(x, y)[l (%, Y;)=1(% +AX, Y, +Ay)]2 (3.7)

where 1(-,-) denotes the image function and (x,yi) are the points in window

W (Gaussian) centered on (x, y). The shifted image is approximated by a Taylor

expansion truncated to the first order terms,
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| (X +AX, Yi +Ay) ~ | (xi,yi)+|:lx(xi,yi)Iy(Xi,yi)][iﬂ (3.8)

where 1,(--) and 1,(--) denote the partial derivativesin x and y, respectively.

Substituting approximation Eqg. (3.8) into Eq. (3.7) yields,

(X, ¥) =2 W (X, y)[ 1 (%, i) =1 (% +Ax, Y, +Ay):|2

ZZW(X’”['(X"y‘>"<Xi'vi>—['x<xi,yi>|y<xi,yi>]{AXD2

Ay
=2 W(x, y)[['x(xi, yi)ly (%, vi )]K;DZ
(1 ()’ .X(xi,yi).y(xi,yi)Fx}

|X(Xi,yi)|y(Xi,yi) ('y(Xi,yi))2 Ay

aayle(y) ) 39

=[Ax Ay] D W (x,y)

where matrix C(x,y) captures the.intensity. structure of the local neighborhood.

Let 2;, A, be the eigenvalues of matrix C(x,y). The eigenvalues form a

rotationally invariant description. There are three cases to be considered:

1. If bothAi,4, are small, then it indicates the windowed image region is of
approximately constant intensity.

2. If one eigenvalue is high and the other is low, then it denotes local shifts
along the edge direction cause little change and significant change in the
orthogonal direction; this means an edge.

3. If both eigenvalues are high, then it indicates local shifts in any direction

will result in a significant increase; this means a corner.

21



Harris [23] defined a measure of corner strength:
H (x,y)=detC—«(trace C)Z, (3.10)
and a corner is detected when
H(X,y)> Hinr (3.11)

where Hy, is a parameter, a threshold on corner strength. In Harris corner detector, «

plays a role to tune the sensitivity of corner. When « is larger, thenH (x, y)is

smaller and less sensitive for corner detection; otherwise not. Fig. 3.4 and Fig. 3.5

shows Harris corner detector appliedto'some-image with corners.
o + +
III lll++++ lll++
(a) (b) (c)
(d) (e) ()
Fig. 3.4 The example 1 of corner detection. (a) Original image. (b) « =0.04 and

Hinr=0.005. () «=0.04 and H,=0.01. (d) «=0.04 and H,=0.15. () «=0.04

and Hu,=0.6. (f) & =0.04 and H=0.9.
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(a) (b)

Fig. 3.5 The example 2 of corner detection. (a) Original image. (b) « =0.05 and

chr :005

Although the Harris corner detector provide good repeatability under varying
rotation and illumination, it will be the best that remove noise before apply Harris
corner detector to prevent from “spurious” corner. Therefore, the next section will

introduce how anisotropic diffusion to remove noise.

3.1.3 Anisotropic Diffusion

In [24], Black mentioned diffusion algorithms could remove noise from an image
by modifying the image via a partial differential equation (PDE). For example,

consider applying the isotropic diffusion equation (the heat equation) given by

ol (x,y,t)/et =div(V1), using the original (degraded/noisy) image 1(x,y,0) as the
initial condition, where | (x, y,O):]R2 — R" is an image in the continuous domain,

(x, y) specifies spatial position, t is an artificial time parameter, and where VI is
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the image gradient. Modifying the image according to this isotropic diffusion equation
is equivalent to filtering the image with Gaussian filter; however it result in blurring

the edge.

Perona and Malik [25] proposed the anisotropic diffusion equation as follows:

W = div[g(||V|||)V|] (3.12)

where V1| is the gradient magnitude, and g(|[VI]) is an “edge-stopping” function.

This function is chosen to satisfy g(x) — 0 when x — o so that the diffusion

is “stopped” across edges as Fig. 3.6. The ‘edge-stopping” function adopted in [25]

are

g(Vl) = e(_(HVInIK)Z), (3.13)

and

g(Vl) = . (3.14)

)

The constant K was fixed either by hand at some fixed value, or using the “noise

estimator” described by Canny [22].
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Perona and Malik discretized their anisotropic diffusion equation as follows:

oty A > g(Vlsp)Visp (3.15)
|77S pens

where ¢ is a discretely sampled image, s denotes the pixel position in a discrete,
two-dimensional (2-D) grid, and t now denotes discrete time steps (iterations). The

constant A is a scalar that determines the rate of diffusion, 7s represents the spatial

neighborhood of pixel s, and |773| is the number of neighbors. Perona and Malik

linearly approximated the image gradient (magnitude) in a particular direction as
Vs, =1, -1s, p € ns. (3.16)

We show the local neighborhood of pixels at-a boundary in Fig. 3.7. Fig. 3.8
shows the example of the noise_image andits result Image after anisotropic diffusion

processing.
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Fig. 3.7. Local neighborhood of pixels at a boundary (intensity discontinuity).
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(a) (b) (©)

Fig. 3.8. The example about anisotropic diffusion processing. (@) The input

image(with noise). (b) The processed image after average mask 10 times. (c) The

processed image after anisotropic diffusion 10 times.

3.2 Glasses Existence Detection and Eye Location

In this section, we discuss .the glasses existence and eye location detection
together, because the position of glasses always oVe‘r‘Iapped with eye or eyebrow. At
first, we classify the face conditi‘o“n in‘to“ three types: “

® Face without glasses. ” | |

® Face with glasses (non-sunglasses).

® Face with sunglasses.

The typical results of face segment derived from above three types are shown in Figs.

3.9, 3.10, and 3.11, respectively.
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(b)

Fig. 3.9. The example of face without glasses. (a) The input face image without

glasses. (b) The face segment derived from (a).

(b)

Fig. 3.10. The example of face with glaéses. (a) The input face image with glasses. (b)

The face segment derived from (a).

(b)

Fig. 3.11. The example of face with sunglasses. (a) The input face image with

sunglasses. (b) The face segment derived from (a).
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We can utilize the fact that the segment of the face with sunglasses has rapid gap
at the position of eye caused from sunglasses to locate the eye wearing sunglasses,
and hence to detect the existence of sunglasses. Therefore, we first assign the point of
non-face region to zero, and assign the point of face region to the value of one. Then
we sum up the face segment row by row into an 1-D vector that presents the quantity

of face intensity to locate the eye position. Fig. 3.12 depicts the method above.

......

200 200 400 800 00 a 50 100 180 200 200

(@) (b)

Fig. 3.12. The example of eye detection on-sunglasses. (a) The face segment of a face
with sunglasses. (b) The 1-D graph derived via summing the row-wise intensity face
segment of (a).

In the bare face image, the eye region has more corners and gradient magnitude
than other region. Moreover, the face image with glasses has more corners and
horizontal edges than without glasses caused from the frame of glasses, nose-piece,

and reflections within lens.

However, when the corner and edge detectors are applied to flat region of a face
segment, many spurious responses will be generated. To avoid these responses, we

first invoke anisotropic diffusion. Then we use the corner and edge detectors to detect
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the existence of glasses, and to locate the eye. Therefore, after anisotropic diffusion
processing on the face segment, we then apply the corner operator and edge operator.
We sum up the two operator’s output into a 1-D vector. Subsequently, we find the
position that has peak value from the 1-D vector. The peak point indicates the

horizontal position of eyes. Fig. 3.13 and Fig. 3.14 show the method above.
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(@) (h)

(i) ()

Fig. 3.13. The example of eye location determination on an image of face without
glasses. (a) The input face image. (b) Face extraction by skin-color map. (c) The
boundary of face segment by erosion operation. (d) The corner response of (b). (e)
The edge response of (b). (f) The corner response inside the boundary of face segment.
(g) The edge response inside the boundary of face segment. (h) The 1-D graph
showing the sum of (f) and (g). (i) The eye location detected by the position that has
the peak value at the 1-D graph of (h). (j) The detected eye position in the face

segment of (b).
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(@) (h)

(i) )

Fig. 3.14. The example of eye location determination on an image of face wearing
glasses. (a) The input face image. (b) Face extraction by skin-color map. (c) The
boundary of face segment by erosion operation. (d) The corner response of (b). (e)
The edge response of (b). (f) The corner response inside the boundary of face segment.
(g) The edge response inside the boundary of face segment. (h) The 1-D graph
showing the sum of (f) and (g). (i) The eye location detected by the position that has
the peak value at the 1-D graph of (h). (j) The detected eye position in the face

segment of (b).
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Comparing Figs. 3.13(h) and 3.14(h), it can be seen that the shapes and the
maximum of the peak lobe are different. With these differences in the peak lobe, we
can select suitable threshold value to determine whether the eyes of a face image

wearing glasses or not.

3.2.1 Eyeball Extraction within Glasses

If the glasses are present, we have to perform some operation to extract the eye
as below. First, we compute the color edge of the eye region in HSV color model and
perform simple morphological operations to get the preliminary edge map of glasses.
The color edge detection method proposed by Fan et al. [26] use entropic thresholding
technique to obtain an optimal threshold that is-adaptive to the image contents, and
this technique has been proved-to be highly: efficient for two-class data classification
problem [27]. Then, we convert the.image-of-eye region from RGB color space to
YC,Cy, color space because in YC,Cyp. colormodel domain the intervals of the C,
and C, components of skin-color are always very dissimilar from glasses and can
easily be clustered to two classes. However, for kinds of glasses, such as metallic and
thin-frame, the color of glasses frame sometimes lies in the skin-color interval in
YC,C, color model because the metallic reflection and the noise caused by low
resolution CCD. In order to solve this type problem, we make use of extra information
from RGB gradient edge detector. Subsequently, we combine the three evidences to
guarantee that the glasses have completely been extracted, despite some noises caused
by hair or eyebrows to be included in the map. Fig. 3.15 show an example of edge

detection while one wear glasses.

After getting the edge map of detected eye region, we use geometry and
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projections to eliminate the glasses region and locate accurately the eyes position.
When we apply erosion twice, twice better than once empirically, to the edge image of
wearing glasses image, the edge will break into small pieces and then the eye can be
separated from glasses contour easily by selecting the largest connected component
which has the smallest standard deviation to each center of the component. The hair
and eyebrows components also can be recognize because they are always from the top
to the bottom and begin with the top of the eye region we have set. The extracted eye
position result from edge map of wearing glasses example of Fig. 3.15 is
demonstrated in Fig. 3.16. Finally, we can estimate the state of eyes by its vertical
length and area, and determine whether the driver is drowsy or not in drowsiness
detection using PERCLOS and blinking rate, PERCLOS and blinking rate are,

respectively, the duration and frequency of eye closure.

Fig. 3.15. An example of edge detection on eye region. (a) Original image. (b) Edge
detection in RGB color space. (c) Edge detection in Hue component of HSV color
space. (d) Non-skin-color region. (e) The resultant edge map union the previous three

edge map.
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(d)

Fig. 3.16. Eye extraction from edge map of Fig. 3.15. (a) Edge map of eye region. (b)
Edge map with eliminating the hair region. (c) Edge map eliminating hair region with

twice erosion. (d) Extraction the pupil position.

3.3 Reflection Separation within Glasses

When we take a picture from a subject who wears glasses, the image
unavoidably catches some reflection within glasses. Therefore, we need to remove the

side effect of glasses reflection if we want to detect the open or close degree of eyes.

3.3.1 Introduction to Reflection Separation

As we take a picture through a glass, we often get an image that seems a linear
superposition of two images: the image of the scene beyond the glass plus the image
of the scene reflected by the glass. Our algorithm for reflection separation was

mentioned by Levin et al. [19], which assumed the image with reflection can be
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decomposed into two transparent layers.

Mathematically, the decomposition problem can be posed as follows. We are

given an image I(x, y) and wish to find two layers I; and 1, such that

L(x,y) = L(xy)+ l2(xy) (3.17)

Obviously, in the absence of additional prior knowledge there are a huge number of
possible decompositions. Fig. 3.17 depicts a number of possible decompositions; all
of them satisfy Eq. (3.17). In order to choose the “correct” decomposition, we need

additional assumptions or conditions.

One might think that in order to.correctly:decompose such images, an algorithm
would need to recognize all objects in images..The algorithm above would possess
such high level knowledge to prefer the.correct decomposition. But can the “correct”
decomposition be chosen without'such high level knowledge? In [19], Levin et al. [19]
propose an algorithm that can decompose reflection images using a single input image
and without any high level knowledge. The algorithm is based on a very simple cost

function: it favors decompositions which have a small number of edges and corners.
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4 F. \'\.
=
(a)

Fig. 3.17. The example of refl-éiétiofl_"""i.maléell'énd_'-.-it’s decomposition. (a) The input
image (generated by summing the two-i‘magéis' of (b)). (b) The correct decomposition.

(c)—(e) alternative possible decompositions.

3.3.2 Edges, Corners, and Cost Function

What is the reason we make use of edges and corners to estimate the “correct”
decompositions? At first, consider the simple image in Fig. 3.18(a), the image can be
decomposed into an infinite number of possible two layer decompositions. Fig.
3.18(b—e) show some possible decompositions including the decomposition into two

squares (the perceptually “correct” decomposition).

39



Why should the *“correct” decomposition be favored? One reason is that out of
the decompositions shown in the figure, it minimizes the total number of edges and
corners. The original image has 10 corners: 4 from each square and two “spurious”
corners caused by the superposition of the two images. When we separate the image
into two squares we get rid of the two spurious corners and are left only with eight
corners. The decomposition shown in the third row increases the number of corners (it
has 14 corners) while the bottom decomposition has 8 corners but increase the

number of edges.

(@)

(b) (©

(d) (e)

Fig. 3.18. An example of an input image and it’s possible decompositions .
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How can we translate the preference for a small number of edges and corners
into cost function? We need to make two decisions: (1) what operators to use for edge

and corner detectors and (2) what mathematical form to give the cost. We adopt the

expression proposed by Levin et al. [19], who use the gradient magnitude ‘VI (x, y)‘

as an edge operator and Harris-like operator c(x, y) as corner operator:

(oot = det(ZW(x, y)[ 12(xy)  h(xy) 1y (% y)n (3.18)

L(x )y (xy)  ly(xy)
For cost function, we motivate by the qualitative statistics observed from natural
images mentioned by Levin et al. [28]; it leads to the following cost function for a

single layer:

cost (1) = Z‘VI (X, y)‘a +.77¢(X, y;I)ﬂ (3.19)

XY

with a« = 0.7, f = 0.25, n ="15.:The values are obtained from the histograms of
the corner and edge operators in natural images and were shown to be critical for the
successful decomposition [28]. The cost of two layer decomposition is simply the sum

of the costs for each layer separately:
cost(l1,12) = cost(l) + cost(l2) (3.20)

In real images, however, Detecting edges by edge magnitude and corner via a
simple Harris detector arise many spurious “edges” and “corner” in many seemingly
flat regions of image. Therefore, we first apply a nonlinear smoothing separately to
each layer to diminish the number of spurious “edges” and “corner” found by the
gradient and Harris operators. Then we apply Eq. (3.19) to the smoothed layers. In

this thesis, we adopt anisotropic diffusion to achieve the task of nonlinear smoothing.
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Thus our cost function for a single layer now is:

costz (1) = Y,

X,y

Vf(x, y)‘a + ryc(x, y; f)ﬁ (3.21)

where 1 isthe layer after applying anisotropic diffusion [25].

3.3.3 Oiriented filters

In this section, we introduce oriented filters because they will be utilized as the
measure to find the correct decomposition. There are many approaches proposed in
the computer vision literature by convolving'the image with a bank of linear spatial
filters f; tuned to various orientation and spatial frequencies. The oriented filter we
exploit is introduced in Malik et-al. [29].-The oriented filterbank we used in this thesis,

depicted in Fig. 3.19, is based on‘rotated copies of-Gaussian derivative and its Hilbert

transform. More precisely, let fi(x,y) = Gi1(y)Go2(x) and f2(x,y) equal the

Hilbert transform of f,(x,y) along the y axis:

d? (1 2 G
fi(x,y) = TW(EEXD[%}eXp(EZJZ n (3.22)

fo(x,y) = Hilbert(fi(x,y)) (3.23)

where o is the scale, ¢ is the aspect ratio of the filter, and C is a normalization

constant.
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Now assume that the image is convolved with such a bank of linear filters. We
will refer to the collection of response images | * f; as the hypercolumn transform
of the image. Malik et al. [29] state the hypercolumn transform provides a convenient
front end for contour and texture analysis; therefore, it is the reason why we utilize

oriented filter as the measure to find the correct decomposition.

-E -
ol s
fHE - B3

Fig. 3.19. The example of A filterbank. Filter set consisting of 2 phase (even and odd)

and 6 orientations (equally spaced from 0 toz). The first and third column is the

image of f(x,y)with size 7x7; the second and forth column is the correspond

Hilbert transform of first and third column.

3.3.4 Implementation

In this section, we describe the detail of implementation because we have some

processes different to the one proposed by Levin et al. [19]. In [19], in order to
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optimizing possible decomposition, Levin et al. [19] discretized the problem by
dividing the image into small 7x7 overlapping patches and restrict the search to 20
possible decompositions for each patch. Therefore, in this thesis we divide the image
into small 7x7 non-overlapping patches p to reduce the computational time. Then we
build the patches database for searching the possible decompositions for each patch of
the input image. Our patches database just contains the eye area in the face image
with glass; because we only are interest in the layer that possesses the eye information,

not the reflection layer.

To find out the candidate patches p ~ p. + p2 we searched the database for

the patches g minimizing

Difixp-Ffixqg-:s| (3.24)

i
where f;i is the oriented filterbank mentioned above. For any candidate patch g and
the optimal contrast s were found via minimizing this equation. Where optimal
contrast s is exploited to conquer the change of intensity at patches as patches is
located at the doubtful reflection region. However, we just search candidate patches to
reconstruct the non-reflection layer from the patches database. Since, it arises some
misdiagnosed patches at the recovery image when the reflection layer has more strong
intensity of feature than the non-reflection layer. Fig. 3.20 depicts the example we

separate reflection by find out the patches by Eq. (3.24).
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(f)

Fig. 3.20. Example of separation results of images with reflections using
\;’ﬂ’-f"-phu.-'?b £

discretization. (a) The input |magE§‘5nS|stlrlg‘bfape foreground image multiplied by
el

0.8 and the reflection image m@llz/ Eed ) '*9'-,2“? ”Sgparated foreground layer image

L, ‘W o

,;té) The input image consisting of

the foreground image multiplied by EJ“%';fmd ,ﬁéﬂ?eflectlon image multiplied by 0.15.

(e) Separated foreground layer image of (d). (f) Separated reflection layer image of

(d).
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Chapter 4. Simulation and Results

We have tested the eye-detection algorithm on a number of people in order to
confirm the validity and stability. First, we obtain frontal face images of people from a
CCD camera, and then we demonstrate the algorithm via these images. In Section 4.1,
we will show the step-by-step result of finding the eyes. Subsequently, we will show
the experiment result of reflection separation within glasses in Section 4.2. The size of
images is 640x480 and the simulation is processing on a Pentium 1V 3.2GHz personal

computer.

4.1 Eye detection

We show five example of eye detection on the images of bare face, three
examples of eye detection on the images of-face wearing glasses, and one example of
eye detection on the image of face wearing light sunglasses in Section 4.1.1. Then We
show two example of eye detection on the images of face wearing sunglass in Section

41.2.

4.1.1 Eye detection on the image of bare face, face wearing glasses, and face

wearing light sunglasses

In Figs. 4.1-4.5, we show five example of eye detection on the images of bare
face. In Figs. 4.6-4.8 we show three examples of eye detection on the images of face
wearing glasses. In Fig. 4.9 we show one example of eye detection on the image of
face wearing light sunglasses.

In each example, we will show the original face image in (a), and face extraction
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by skin-color map in (b). The boundary of face segment produced by erosion
operation is depicted in (c). The corner response and edge response of (b) are depicted
in (d) and (e), respectively. The corner response and edge response inside the
boundary of face segment are depicted in (f) and (g), respectively. (h) is the 1-D graph
showing the sum of (f) and (g). (i) shows the eye location is detected by the position
that has the peak value at the 1-D graph of (h). (j) locates the detected eye position in

the face segment of (b).
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Fig. 4.1. The example 1 of eye location on the image with bare face. (a) The input
face image. (b) Face extraction by skin-color map. (c) The boundary of face segment
by erosion operation. (d) The corner response of (b). (e) The edge response of (b). (f)
The corner response inside the boundary of face segment. (g) The edge response
inside the boundary of face segment. (h) The 1-D graph showing the sum of (f) and
(9). (i) The eye location detected by the position that has the peak value at the 1-D

graph of (h). (j) The detected eye position in the face segment of (b).
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Fig. 4.2. The example 2 of eye location on the image with bare face. (a) The input
face image. (b) Face extraction by skin-color map. (c) The boundary of face segment
by erosion operation. (d) The corner response of (b). (e) The edge response of (b). (f)
The corner response inside the boundary of face segment. (g) The edge response
inside the boundary of face segment. (h) The 1-D graph showing the sum of (f) and
(9). (i) The eye location detected by the position that has the peak value at the 1-D

graph of (h). (j) The detected eye position in the face segment of (b).
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Fig. 4.3. The example 3 of eye location on the image with bare face. (a) The input
face image. (b) Face extraction by skin-color map. (c) The boundary of face segment
by erosion operation. (d) The corner response of (b). (e) The edge response of (b). (f)
The corner response inside the boundary of face segment. (g) The edge response
inside the boundary of face segment. (h) The 1-D graph showing the sum of (f) and
(9). (i) The eye location detected by the position that has the peak value at the 1-D

graph of (h). (j) The detected eye position in the face segment of (b).
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Fig. 4.4. The example 4 of eye location on the image with bare face. (a) The input
face image. (b) Face extraction by skin-color map. (c) The boundary of face segment
by erosion operation. (d) The corner response of (b). (e) The edge response of (b). (f)
The corner response inside the boundary of face segment. (g) The edge response
inside the boundary of face segment. (h) The 1-D graph showing the sum of (f) and
(9). (i) The eye location detected by the position that has the peak value at the 1-D

graph of (h). (j) The detected eye position in the face segment of (b).
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Fig. 4.5. The example 5 of eye location on the image with bare face. (a) The input
face image. (b) Face extraction by skin-color map. (c) The boundary of face segment
by erosion operation. (d) The corner response of (b). (e) The edge response of (b). (f)
The corner response inside the boundary of face segment. (g) The edge response
inside the boundary of face segment. (h) The 1-D graph showing the sum of (f) and
(9). (i) The eye location detected by the position that has the peak value at the 1-D

graph of (h). (j) The detected eye position in the face segment of (b).
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Fig. 4.6. The example 1 of eye location on the image of face wearing glasses. (a) The
input face image. (b) Face extraction by skin-color map. (c) The boundary of face
segment by erosion operation. (d) The corner response of (b). (e) The edge response
of (b). (f) The corner response inside the boundary of face segment. (g) The edge
response inside the boundary of face segment. (h) The 1-D graph showing the sum of
(F) and (g). (i) The eye location detected by the position that has the peak value at the

1-D graph of (h). (j) The detected eye position in the face segment of (b).

59



(b)

(a)

(d)

(©)

(f)

(€)

60



(9) (h)

(i) )

Fig. 4.7. The example 2 of eye location on the image of face wearing glasses. (a) The
input face image. (b) Face extraction by skin-color map. (c) The boundary of face
segment by erosion operation. (d) The corner response of (b). (e) The edge response
of (b). (f) The corner response inside the boundary of face segment. (g) The edge
response inside the boundary of face segment. (h) The 1-D graph showing the sum of
(F) and (g). (i) The eye location detected by the position that has the peak value at the

1-D graph of (h). (j) The detected eye position in the face segment of (b).
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Fig. 4.8. The example 3 of eye location on the image of face wearing glasses. (a) The
input face image. (b) Face extraction by skin-color map. (c) The boundary of face
segment by erosion operation. (d) The corner response of (b). (e) The edge response
of (b). (f) The corner response inside the boundary of face segment. (g) The edge
response inside the boundary of face segment. (h) The 1-D graph showing the sum of
(F) and (g). (i) The eye location detected by the position that has the peak value at the

1-D graph of (h). (j) The detected eye position in the face segment of (b).
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Fig. 4.9. The example of eye location on the image of face wearing light sunglasses.
(a) The input face image. (b) Face extraction by skin-color map. (c) The boundary of
face segment by erosion operation. (d) The corner response of (b). (e) The edge
response of (b). (f) The corner response inside the boundary of face segment. (g) The
edge response inside the boundary of face segment. (h) The 1-D graph showing the
sum of (f) and (g). (i) The eye location detected by the position that has the peak value

at the 1-D graph of (h). (j) The detected eye position in the face segment of (b).
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4.1.2 Eye detection on the image of face wearing dark sunglasses

In Figs. 4.10-4.11, we show two examples of eye detection on the images of face
wearing sunglasses. (a) shows the input face image; (b) is the face segment derived
from (a); (c) is the 1-D graph derived via summing the row-wise intensity of face

segment of (b); (d) Locates the eye location at (b).

B &8 § 8 ¥ 8

(c) (d)

Fig. 4.10. The example 1 of location on face wearing dark sunglasses. (a) The input
face image with sunglasses. (b) The face segment derived from (a). (c) The 1-D graph
derived via summing the row-wise intensity of face segment of (b). (d) Locating the

eye location at (b).
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Fig. 4.11. The example 2 of location 5r;1‘fé1ﬁc‘:g”vvearing dark sunglasses. (a) The input

face image with sunglasses. (b) The face segment derived from (a). (c) The 1-D graph
derived via summing the row-wise intensity of face segment of (b). (d) Locating the

eye location at (b).
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4.2 Reflection Separation

In Section 4.2.1, we show two example of one dimensional reflection separation
with cost value to confirm that the cost function Egs. (3.20) and (3.21) works well. In
Section 4.2.2, we first show three examples of reflection separation by discretization
to interpret the important of feature intensity between the reflection layer and the
foreground layer. Then we show the result of four examples with different reflection

straightly.

4.2.1 One Dimensional Reflection separation

In this section, we demonstrate a one dimensional family of solutions according

to [19]. First, we define s(x,y), shown in"Fig: 4.12(b), which is the image of the

“correct” decomposition for Fig..'4.12(a).-We. censider decompositions of the

expression 1y = ys(x,y), |, =1 =lg-and-evaluated the cost for different values

of r by Eq. (3.19). Fig. 4.12 indeed ‘shows ‘the minimum in this one dimensional

subspace of solution is obtained at the “correct” solution.

However, when we apply the cost function Eq. (3.19) at real image, it does not
favor the “correct” decomposition; the reason is the “spurious” response as mention at
Section 3.3.2. We should apply the refine cost function Eq. (3.21) to natural image
and we can see the “correct” decomposition is indeed favored in the one dimension

subspace (the minimum is obtained at » =1) at Fig. 4.13.
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(b)

()

Fig. 4.12. Example 1 for testing-an one dimension family of solutions. (a) Original
image 1. (b) The correct foreground layers. (c) The cost value of one dimension

family of solutions for (b).
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(d)

Fig. 4.13. Example 2 for one dimension family of solutions. (a) Reflection images.
(b) The correct foreground layers. (c) The cost value of one dimension family of
solutions for (b), calculated by (3.19). (d) The cost value of one dimension family of

solutions for (b) , calculated by (3.21).
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4.2.2 Reflection Separation by Discretization

In Figs. 4.14-4.16, we show three examples of reflection separation by
discretization to interpret the important of feature intensity between the reflection
layer and the foreground layer. Then we show the result of four examples with

different reflection straightly in Fig. 4.17.

(f)

Fig. 4.14. Example 1 of separation results of images with reflections using
discretization. (a) The input image consisting of the foreground image multiplied by
0.8 and the reflection image multiplied by 0.2. (b) Separated foreground layer image
of (a). (c) Separated reflection layer image of (a). (d) The input image consisting of
the foreground image multiplied by 0.85 and the reflection image multiplied by 0.15.

(e) Separated foreground layer image of (d). (f) Separated reflection layer image of
(d).
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Fig. 4.15. Example 2 of sebaratlpn "‘.esuLts' of ‘|mages with reflections using

.

.- ‘l

discretization. (a) The input |mage co- S|st|-ng-of 1;h'e foreground image multiplied by
0.8 and the reflection image multlplled by O 2 (b) Separated foreground layer image
of (a). (c) Separated reflection layer image of (a). (d) The input image consisting of

the foreground image multiplied by 0.85 and the reflection image multiplied by 0.15.

(e) Separated foreground layer image of (d). (f) Separated reflection layer image of

(d).
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Fig. 4.16. Example 3 of separatlpn-"’.esults of '|mages with reflections using

=

P, Ty |\_ i iy
discretization. (a) The input |mage con3|st|ng of th“e foreground image multiplied by

0.8 and the reflection image multlplled by O 2 (b) Separated foreground layer image
of (a). (c) Separated reflection layer image of (a). (d) The input image consisting of

the foreground image multiplied by 0.85 and the reflection image multiplied by 0.15.

(e) Separated foreground layer image of (d). (f) Separated reflection layer image of

(d).
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Fig. 4.17. Example of separation results of images with different reflections using
discretization. (a), (d), (g), and (j) The input image consisting of the foreground image
multiplied by 0.85 and the reflection image multiplied by 0.15. (b), (e), (h), and (k)
Separated foreground layer images for (a), (d), (g), and (j), respectively. (c), (f), (i),

and (l) Separated reflection layer images for (a), (d), (g), and (j), respectively.
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Chapter 5. Conclusion

In this thesis, we develop eye detection algorithm to locate the eye region. We
also introduce reflection separation algorithm to reduce the side effect of reflection
arisen from glasses or sunglasses. In the relevant applications we are concerned about
drowsiness detection system that provides an early detection and warning of fatigue at
the wheel. Our eye detection algorithm can provide high eye accurate location;
especially it is applicable to the case when a subject wears glasses or sunglasses. Our
proposed reflection separation algorithm can retrieve and recover the eye information

behind glasses.

In our eye detection system, we first utilize the universal skin-color map to
extract the face region. Then we use corner operator, edge operator, and anisotropic
diffusion to locate the eye region, detect the existence of glasses and separate
reflection. The anisotropic diffusion plays an important role at corner and edge

finding stage above because it can reduce noise and reserve the feature at same time.

For future work, we shall increase the number of patches in patches database.
Besides, in order to optimize the result of recover image, we should not only pick up
the correct patch based on the error of Eq. (3.24), but also take the neighbor cost into
account value will be. The optimization procedure could be improved by the

techniques such as belief propagation (BP), max-product BP, and graph cuts.
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