TR AN R R K s N RN Rk e

A Flexible Graph-based Software Watermarking Framework with Robust
and High Bit-rate Encodings

TR LD F A KL G X PR ke g

A Flexible Graph-based Software Watermarking Framework with Robust
and High Bit-rate Encodings

oy oA EER Student : Chia-Liang Hung
hErE F TS L Advisor : Dr. Yu-Lun Huang
B2 gl F
CRE I ol T R I G
A R
A Thesis

Submitted to Degree of Electrical Engineering and Control Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in
Electrical and Control Engineering
September 2006

Hsinchu, Taiwan, Republic of China

PENRE LT E D

i
)
R
TR
&%\J-
W3
<l
3
9 \
L3
(ﬂ

¥k 7 B A5 N Gy

it
o+
|
I
ﬁﬁw
(‘5
Ve
‘E w
it
EA
i
wht
=}
EnS
pE
| L

R

bizhte? > APRD- FRESEHE KRR R TG % 27 R gAY
FHEH SRR R 2 B TR B X 2R G RS kB R R
E7 4o QP 2 QPS B ¥ MR A TR FINAZHRE- E G PnfEi ko B
EHRE KB Ao X 22 G ha BE Ko) B FEZ LY KT RFIEELER
TR A BRGE R TR A B L BTG K R E R Y hak B B AT
SRR Y oV R Ak s 2 R I A BRBFE R -
FRE R e > R EL AT R IR G R o b Bk g

A R-g RN ERE SR XY RS BRAA DRG] P B RS 2 Aot
DIHRF o Bl BT ERA BRSBTS AT
PR AT ORI RIS A T2 B 2 AR AR E R T

FEA A R H s RSk

A Flexible Graph-based Software Watermarking Framework with

Robust and High Bit-rate Encodings

Student: Chia-Liang Hung Advisor: Dr. Yu-Lun Huang

Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract

In this paper, we propose a graph-based software watermarking framework to flexibly adapt
hybrid encoding algorithms accerding to.different security requirements. Existing graph-based
software watermarking algorithms, such as QP and QPS, only address specific problems and
thus cannot provide a one-fit-all solution to meet various requirements in terms of performance
and security. In addition, these algorithms could suffer from the low data rate issue and
vulnerable to additive and subtract attacks. To address the above issues, the proposed framework
works in a hybrid manner and three encoding algorithms are also proposed to cooperate with
our framework and to achieve higher data rate and robustness. In this paper, a software program
is represented as a graph and can be further divided into smaller sub-graphs. The watermarking
procedure runs through the graph and applies one of the three proposed encoding algorithms to
each visited sub-graph per the security and efficiency requirement. As an evaluation of our work,
error detection capability, attack resistance and encoding data rate are analyzed and compared
between our work and the related work. The result shows that the proposed framework performs

better bit rates under the same requirements.

il

s

bR AP F o HHRHT - BART o AR R b DT

AR
R

“=¥
5
ok

Frenfis gl 7 LR A PERE P R 0 4 BT MR &
B A d PR AL A FE P e o s IR FRHL AL A FRT K- F
— O BRRFEXXFT AL PR R R EFS Y XFFL O > LR S
feod o BRI REARREZ F ST RARENF TR RGP - RSE
WE-ARIw RAEE LT o RHR A RN 2 Dot LA DS -

BE SR AT - S I B RE LG R A My 4 T

il

Contents

¥ SRR TR UPOTSRPPRRPRRPRTIS i
ADSTFACT ...t i
B =TSP P O R TP PP UPPTRURTUPROPRN ii
(O70] 01 (=] 0| £ J TS TS U PP P TSP PPSPRPRPPN \Y%
I TS o) T 10 SO ST Vi
LISE OF TADIES ... viii
Chapter 1 INTFOAUCTIONccuviiieiecie et re e esbe e e sneesraennesreesneeneas 1
1.1 BACKEIOUNG. ...cuiiiiiieiieeieee ettt ettt et ettt e st e st e e s aeeenbeessaeenseesaseenne 1
L Ofa) 1138 Lo 1150 s HO PR ST 3

L I 110 o] T PSR S RPN 3
Chapter 2 Related WOKKcc.ve it eee e setsfas e eesee st este e ssaestaesaesseesseeaesnaestaesaesseesneansens 4
2.1 Graph Theoretic Approach-for Software Watermarking..............cccoeevveeiiienieiiienieenienie 4
2.2 Static Watermark AlgorithIms. .. o e et e 5
2.2.1 QP ALGOTTRIM c...ooiieeeee et e Be 000 T2 0ot e o0k ettt et eenteseaesseenseenseeneeeneeeseanseanseanseensensaeseenseensennnes 6
RPN O) S AN T o) 11 Yoo D o USSP 7

2.2.3 PODIGINIS ...ttt ettt ettt b bt bttt et ettt b e bbbt bttt be e b 9

2.3 Dynamic Watermark AIZOTTthmcccooiiiiiiiiiiiiiiecieee e 12
2.4 SUININATY c...tteeitieeeiiee ettt ee et e ettt e sttt e et eesateeesabee e sbeeeasaeesnsteesnsseesaseeesabaeenaseeennseesnseesnnne 15
Chapter 3 The Proposed Software Watermarking Framework............ccccccooveviviieiverncnene. 16
3.1 FTAMEWOTKcoiiiiiiieeiie ettt ettt et eebeesabeesbeesnbeeaseesnbaenseesnseenseens 16
3.2 Proposed Graph Encoding AlgOrithms...........ccccueeiiiiiiieiiienieiieeie et 20
3.2.1 Link ENCOAING (LE)ieiiiiieieeie ettt ettt sttt ettt e et e ssaesseesseeseensesnnesneesneenseenes 20

3.2.2 Color ENCOING (CE) ..eoviiiieiieie ettt sttt ettt et et e e enteenseesaesseesseeseensesnsesneesseenseenes 23

3.2.3 Link with Color Encoding (LCE)cocuiiiiiiiiiiecieieee ettt esesae s ae e e snnesnne e 25

3.3 EXAMPIE ..ttt et ettt et ebe e aa e e ab e e snaeebeenateenbeennbeennaens 28
3.4 Path ANALYSIS cuevieiieeiiieiieeie ettt ettt ettt e et et e st e e bt e e nb e e taeenbeenaeeenbeennaens 30
3.5 EITOT DETECTION ...ttt ettt ettt ettt et et et eebeesaaeenseessaeenseessseenseansneenseans 32
30 SUIMIMATYeeeiiiieiie ettt ettt e ettt e et e e st e e sttt e eabeeesabeeesabeeesabeeesaseesnnseesnseesnnseesnnne 33
(O T o (T N g F= YL £ SSSR 34
4.1 SECUTIEY ANALYSIS ..utieiiieiieiiieeiieeie ettt ettt et et eeteesite e bt e esbe e tbeenbeeseesnbeesssesnseensseannas 34

v

4.2 Bit 1At ANALYSIS ..eeuviiiiieiieiieeitieeie ettt ettt et e et e et e ste e bt e st e e teeenbe et e enbeenaaeenteesnaennnas 36

4.3 SUITIMIATY ...utieiiieeeitee ettt et e et e et e et e e esabeeeebeeenabeesasteesasteesasteesaseeesnseeennseesnnseesnnseenns 37
(O T o] (T o OXo] 1 o1 oF- 1 g <o) o PSSR 38
5.1 Framework CharacCteriStiC.........eouieruierieeiiienieeiieeieeieesteeteeseeeteeseeeebeesateeseessneenseesnsaens 38
5.2 Bit rate of Software Watermark AIZOrithms..........c.occieiiiiiiiiiiiiiiiieeee e 38
5.3 Characteristic of Software Watermark Algorithms.............cccoecieriieiiiiniiiiiienieeeeeie e 40
54 SUIMIMATYeieiiie ettt ettt e st e e st e e st e e s abteesabeeesabeeesabeeesabeesnnseesnseesnseesnnne 41
(O gF= 10 (T T O o] o Tod 1115 o] o PSS 42
Chapter 7 FULTUIE WOKK.........ooieiecie ettt st et e s e neenaenns 43
RETEIEICE ...t b et 44

List of Figures

Figure 2.1 Graph Theoretic APProachi.........coeevuirieriiiiiiienieieeeseeteeee et 5
Figure 2.2 An Example of QP AlZOTithmccccooiiiiiiiiiiiiieeeeeece e 6
Figure 2.3 QP Recognition AlGOTithm..........c.cooiiiiiiiiiiiiieiieeie et 7
Figure 2.4 Failure Recognition of QP Algorithmcccoviiiiiiiiiiiiiiiiieeeee 8
Figure 2.5 Failure Recognition of QP Algorithmcccooviiiiiiiiiiniiiieeeee 8
Figure 2.6 Example of Recognition Problem in QP Algorithm...........c.ccooeviiiniininiiniininicnes 10
Figure 2.7 Example of Recognition Problem in QP Algorithm...........c.ccooevviiniininiiniininienens 11
Figure 2.8 Example of Recognition Problem in QP Algorithm............ccocevviiniininiiniininienes 11
Figure 2.9 Example of Permutation Encoding Algorithm...........cccccooiiniiiiniiniininiicccee 13
Figure 2.10 Example of Radix Encoding AlgOrithm.........c.cccceeiiiniiiiniiiniiniiiecccceeeee 14
Figure 2.11 Example of PP Tree Encoding Algorithmcocoeviiiiiiiiniininiinieecieneeee 14
Figure 3.1 Embedding Phase of Proposed Frameworkccccooeviiniininiiniiniiiciiccecee 17
Figure 3.2 Example of Path ANAlLYSISccouiiiiriiiiiiiiiieieieceeee et 18
Figure 3.3 Recognition Phase of Proposed Frameworkc.cccccoviviiniiiiniininiinicnecenee 19
Figure 3.4 Example of Proposed Embedding Phasé-Frameworkc.ccoceviiiiniininnincnens 20
Figure 3.5 Example of Link Encoding in Embedding Phasec..ccccoviiiiniiiiniininiiiienee 21
Figure 3.6 Pseudo Code of LE Embedding Algorithm..i..............ccocooeiiiiiiiniiiieeeee 21
Figure 3.7 Pseudo Code of LE Recognition Algorithme................cccooeviiiiiiiiiiniiicieeeeeeee, 22
Figure 3.8 Pseudo Code of CE Embedding AIgorithmcccoevieiiiiininniiiiieceeeeeeeeee, 23
Figure 3.9 Example of Color Encoding'in Embedding Phase.........c..ccocoviviiniiniiiininiicn, 24
Figure 3.10: Pseudo Code of CE Recognition Algorithmcccceeeiieniieniiniiiinieeiieieeee 25
Figure 3.11: Pseudo Code of LCE Embedding Algorithm...........ccccevviiiniiiiiienieiiicieeeeeeee, 27
Figure 3.12: Example of Link with Color Encoding in Embedding Phase...........cccccocevenenne. 27
Figure 3.13: Pseudo Code of LCE Recognition Algorithm............ccceoveviiieniieiienieiiieieeeene, 28
Figure 3.14: EXample Program...........cccooiiiiiiiiieiieciiee ettt et et 28
Figure 3.15: The Parsed Programccccooeiiiiiiiiiiiniiieiesteeeetee ettt 29
Figure 3.16: The Graph of EMbedding...........cccueeiiiiiiiiiiieiiieiieieceese et 29
Figure 3.17: The Watermarked Programcccccooeviiiiiiiniiiniiieneeeieseseeeeee e 30
Figure 3.18: The Parsed Watermarked Program...............coccovieniiiiiniininiiiieneeiecicsceeeeneene 30
Figure 3.19 Example of 4 Possible Paths with 4 Vertices and LE Algorithmcccccoceeenen. 30
Figure 3.20 Example of 2 Possible Paths with 4 Vertices and LE Algorithmcccccoceeeenen. 31
Figure 3.21 Example of Zero Possible Paths with 4 Vertices and LE Algorithm........................ 31
Figure 3.22 Example of Path Analysis with 4 Vertices and LE Algorithmccccoccevieninnnin, 31
Figure 3.23 Example of Path Analysis with 2 Vertices and LE Algorithmcccccoceviniennin, 32
Figure 3.24 Example of Error Detectioncccevieriiiiiiiinieiiiieneeieeeeseesie e 32
Figure 4.1 Example of Vertex Subtractive Attackcccceveriiniiiiiiiniiniiienieecceeces 35

vi

Figure 4.2 Example of Edge-flip Attack

vii

List of Tables

Table 1 : Framework Characteristic...........cccccevuenneene
Table 2: Bit rate of Graph Encoding Algorithm
Table 3: Comparison of Graph Encoding Algorithm

viii

Chapter 1

Introduction

In the past few years, development of digital technology has enabled digital contents to be accessed
over the Internet. Advance of modern network technologies makes electronic distribution of digital
contents increasingly popular and meanwhile promotes the acceptance to the public. However, the
facile distribution of digital contents also has side effects that make illicit copying and
dissemination rather easier, for example, the controvertible mp3 download platform. In this chapter,

we explain the background of software watermark.

1.1 Background

Recently, many methods were proposed to-prevent piracy and prove the ownership of the digital
contents. These methods can be classified into two types, software-based [9] [12] [13] [16] [19] and
hardware-based [10] [17], according to their implementation. The software-based methods, used to
prove the ownership, are implemented using pure software, for example, watermarking [20] [21]
[23], fingerprinting [11] [18], birthmarking [6] [14] and so on. The hardware-based methods should
be operated on a trusted computing platform which you can't tamper with the application software
and where these applications can communicate securely with their authors and with each other.
Digital Rights Management (DRM) is one of most famous schemes implemented on trusted
computing platforms. Compared with software-based methods, hardware-based methods have better
security but higher cost. In addition, hardware-based methods encounter a problem in deployment.
In such a condition, software-based methods are widely used in protecting the digital contents.
There are two types of software watermarking algorithms, static and dynamic software

watermarking algorithms, depend on the way they embed or recognize the watermarking

information. Static software watermarking algorithm is directly embedded and extracted the unique

message. Dynamic software watermarking algorithm [15] uses functions in the program and the

correct information will be embedded during the execution of the program. In the same way, the

right information will also be extracted and identified.

A good software watermarking system must be evaluated using following criteria:

® Robust: Watermark with high robust can against various attacks as many as possible while
maintains the integrity.

® Bit rate: The ratio of bits watermarked to the extra code size is called bit rate. The higher bit
rate, the more bits can be embedded to the software module.

® Stealth: High stealth makes the piracy confuse with original and watermarked program.

® Performance: Watermarked program should maintain the same performance as the original.

In 1996, Davidson and Myhrvold [1] published the first software watermarking algorithm in order
based. In this algorithm, watermark information.is embedded by reorder the basic blocks of in the
original program. In 1999, Qu and Potkonjak [2] proposed QP Algorithm, which is a graph-based
software watermarking through register allocation. QP algorithm has three kinds of methods to
embed the message: adding edges ~ selecting MIS (maximum independent set) and adding nodes. In
QP algorithm, edges and vertices are added or connected in a graph according to the watermark
information. Through the edges set and vertices set of the graph, the message can be extracted from
the watermarked program. However, credibility in QP algorithm and security from attack hadn’t
been considered in their analysis.

Collberg and Thomborson [4] [7] [8] brought out the first dynamic software watermark algorithm,
CT algorithm, in the same year of QP algorithm. CT algorithm implemented in Java called
SandMark. Five kinds of graph encoding algorithms which have their respective features are
applied in SandMark. Based on those graph encoding algorithms, CT algorithm have high robust
and stealth against different kinds of attacks. In 2004, Myles and Collberg [3] implemented QPS

2

algorithm, an improved QP algorithm with SandMark. QPS algorithm rearranges the color of vertex
when message is embedded to correct the problems in the embedding and recognition phases of QP
algorithm. Color between vertices is used to detect and re-correct the embedded information in QPS
algorithm. The characters of QPS algorithm, stealth and robust, are evaluated by QPS-based

SandMark.

1.2 Contribution

In this paper, we not only improve QP and QPS algorithm, but also bring up a new graph-based
software watermark framework with three graph encoding algorithms. The procedures of
segmentation and recombination of graphs make watermarks harder to be detected. For being
adopted to the process of graph in framework, we proposed Link encoding, Color encoding and
Link with color encoding algorithmto increase robust and bit rate respectively. We also proposed a
kind of method, path analysis, can be used in.embedding phase of graph encoding, recovery from
error or attack. Besides, we do seme analysis-and comparison in bit rate with each graph encoding

to exam the resilience.

1.3 Synopsis

In the next chapter, we will introduce the related work of software watermark framework and
algorithms. The proposed framework with three graph encoding will be expounded in Chapter 3.
Analysis and comparison will be applied in Chapter 4 and 5 respectively. Finally, we give the

conclusion in Chapter 6.

Chapter 2

Related Work

In this chapter, related software watermark algorithms will be introduced. At first, a software
watermark framework which can adapt different graph encodings is published by Ramarathnam
Venkatesan [5]. Static and dynamic software watermark algorithms both have each related
graph-based encodings. QP algorithm is a significant concept to embed the watermark through
graph-based encoding. QPS algorithm use color modification to improve QP algorithm. And CT

algorithm provides a runtime execution algorithm to embed or recognize watermark.

2.1 Graph Theoretic Approach for Software Watermarking

Graph Theoretic Approach whieh is proposed by Venkatesan, Vazirani, and Sinha [5] provides a
tool for software tamper resistance and against.the graph based attack. In this approach, weak
connection means that a link or function call between program P and watermark W is only a single
edge between two subgraphs which are parsed from P and W. To prevent being identified as weak
connection, graphs are efficiently separated into subgraphs which will be merged by adding edges,
and graphs will be well connected. Subgraphs of # must be locally indistinguishable from P. Based
on well connection and locally indistinguishableness. The steps of graph algorithm are shown as
Figure 2.1. For given program P, watermark code W, secret keys w;, @, and w3, and integer m:
Graph step: Flow graph G which has basic block as nodes and control flow or function calls as
edges is computed from P. Similarly for W. G and W are both digraphs.

Clustering step: Using w; as random seed to partition G into n clusters, so that edges straddling
across clusters are minimized. Let G. be the graph where each node corresponds to a cluster in G

and there is an edge between two nodes if the corresponding clusters in G have an edge going

across them. W, is yielded in the same way as G. to produces undirected graphs of small order.
Merging step: Edges are added between G. and W, using a random process. The edges are added

by a random process: when the node is v, the current values are dy and dy,,, the number of nodes

adjacent to v in G, and W, respectively. Let P, =d,, /(d o +d gw) and P, =d,, /(d o td gw).

The next random node in G, will be visited with probability Py, or a node in W, with probability P,
and secret key w; will make the choices. An edge is added between node v and its next random node.
Repeat the step until the resultant graph H yield.

Recovery step: Finally, . is compute and encrypted with secret key w;.

FOOY compute : .
ﬂowgpraph ; G ! T spartition I G, ; random seed

Gly

merge by
adding edge

random seed
@

wlernark compute i T
code ﬂowgraphj 14 f’, partition AZ W, ,*

Graph Step Clustering Step Merging Step

random seed
@

atermarked compute compute encrypled
compute
program flow graph & encrypt message

Recovery Step

Figure 2.1 Graph Theoretic Approach

2.2 Static Watermark Algorithms

In static watermark algorithm, watermarks are stored in the application executable itself. Static

watermark may exist as code or data stored in the section of the program. QP and QPS are classified

into this group.

2.2.1 QP Algorithm
Qu and Potkonjak have proposed QP algorithm for embedding a watermark. QP algorithm contains
three kinds of watermark algorithms and adding edges is the algorithm we choose to study and
improve. In this paper, for a given graph G (V, E) and a message M to be embedded in G. Let
vertices set V = (v, Vi... Vn.1), edges set E and the message is encrypted into a binary string M = my
m;... (By stream ciphers, block ciphers or cryptographic hash functions).
Embedding phase: First, a vertex v; is selected from given graph G (¥, E) and find the nearest two
vertices v;; and v;; for all i < i; < i, (mod n) which are not connected to v;, where means (v; v;;), (v;
viz) ¢ E. And the rule for embedding according to m; is as follows:

It m; =0, (v; viz) is put into £’+means the edge between v; and v;; is added.

If m; =1, (v; viz) is put into E’y;means-the edge between v; and v;; is added.
After the message M = my m,...aré.entirely embedded, a new graph G’ (¥, E’) which have new
edges set is reported. For example, in Figure 2.2, a message M = 5,9 = 101, has been embedded into
a 6 vertices graph by 3 edges and each edge presents one bit of message M. The essence of this
algorithm is to add an extra edge between two vertices, and these two vertices have to be colored by

different colors.

Figure 2.2 An Example of QP Algorithm

Figure 2.3 QP Recognition Algorithm

Recognition phase: In given graph G’ (V, E’), each (v;, v;) is the vertices pair that one bit of the
embedded message can be obtained. For each (v, v;), j > i (mod n), the bit extraction is done by
examining the number of vertices between v; and v; are not connected to v;. There will be three cases
to consider:

Case I : If there is no vertex which is not connected to v;, a 0 bit will be extracted. The example is

shown as Figure 2.3 (a).

Case Il : If there is only one vertex which is not connected to v;, a 1 bit will be extracted. The

example is shown as Figure 2.3 (b).

Casell: If there is more than one vertex which is.hot connected to v;, then reverse the order of v;

and v; and repeat the extraction process.

2.2.2 QPS Algorithm

Myles and Collberg pointed out the error in QP algorithm, recognition failure. They provide two
example of recognition failure as follow:

Example 1: Consider a graph G (V, E) as Figure 2.4 (a) and the message M = m;m;is 00. The
embedding phase is illustrated as Figure 2.3 (b). At first, v; = v, vi; = v and v;z = v3 are selected to
embed m;= 0 by adding edge between vy and v,. And v; = v3, vi; = vo and v;; = v, are selected to
embed m,= 0 by adding edge between v3 and vo. New graph G’ (¥, E’) is obtained as Figure 2.3 (c).
In recognition phase, m; = 0 is found by examining the number of vertices not connected to vy

between vo and v,. And m; = 1 is found by examining the number of vertices not connected to v;

between vg and vs. The inaccurate message 01 is extracted when 00 was the embedded message.

/ 7
#
(a) original (b) embed (c) recognize

Figure 2.4 Failure Recognition of QP Algorithm

Example 2: When we embed the message 101 in the graph G (¥, E) as Figure 2.5 (a), the new graph
G’ (V, E’) is obtained as Figure 2.5 (b). By following the recognition algorithm, the message 1001 is

recovered.

(a) original (b) embed

Figure 2.5 Failure Recognition of QP Algorithm

They considered the unpredictability of coloring for the vertices as the inaccurate message
recognition of QP algorithm. To eliminate the unpredictability, QPS algorithm places additional
constraints on which vertices can be selected for a triple. In this paper, for a given a graph G = (V]
E), a set of three vertices {v;, v,, v3} is considered a triple if

1. v, vy, vieV,

2. (vi,va), Vi, v3), (v2, v3) € E
And for a given a n-colorable graph G = (V, E), a set of three vertices {v;, v,, v3} is considered a

8

colored triple if

1. v, vy vi€V,

2. (vi,va), (v, v3), (va, v3) € E, and

3. {vy, va, v3}are all colored the same color.

Embedding phase: Select a vertex v; which is not must already in a triple. Find the nearest two
vertices v;; and v;; which are the same color as v; and not already in a triple. An additional register
allocator would be used to record related color of selected triple as (v}, vi;, viz). And the rule for
embedding according to m; is as follows:

If m; =0, add edge (v; vi;) and change the color (v; vij).

If m; =1, add edge (v; vi2).
The key idea of QPS embedding algorithmyisito.select the triples so that they are isolated units that
will not affect other vertices in the graph. In addition, they use a specially designed register
allocator which only changes the*coloring of-one of'the two vertices involved in the added edge and
no other vertices in the graph.
Recognition phase: QPS recognition algorithm works by identifying triples which had been
selected in the embedding phase. A triple (v, vi;, vi2) has been identified, and its related colored
triple, (vi, vi;, vi2), is examined. If v and v; are different color, a 0 was embedded, otherwise a 1

was embedded.

2.2.3 Problems

The colors of vertices provide starting-point to discuss. In QP embedding algorithm, an extra edge
is added between two vertices and these two vertices which may not be necessary in the original
graph G will be colored by different colors. In QP recognition algorithm, we will find colors

between two vertices are not accurate feature to observe one bit of message had been embedded.

The coloring feature in QP algorithm is ambiguous. This results in bad performance in embedding
and recognizing watermark information.
In Example 1, when v; = v3, viy = vp and v;; = v, are selected to embed m,= 0, QP embedding
algorithm which is defined as i < i; < i (mod n) has been mistaken about. Unpredictable error could
occur when we embed the message and neglect the definition i < i; < i, (mod n). For illustration, as
Figure 2.6, the message M = 1 will be embedded into original graph, as Figure 2.6 (a). In
embedding phase, v; = vy, vi; = v3 and v;; = vy are selected to embed M= 1 as Figure 2.6 (b). In
recognition phase, the message will be identified by examining the number of vertices not
connected to vy between vy and v, and there are two cases can take into consider:

Case 1: v; = v3 is considered that is not connected to v; = vy and a 1 message is identified.

Case 2: v; = v, is considered that is not connected to v; = vo and a 0 message is identified.
Different message is identified when different vertex is taken into consider and it is uncertain
whether message is true. This makes it clear that Example 1 is not a proper example to illustrate

problem of QP algorithm.

(a) Origmal (b) Embed
Figure 2.6 Example of Recognition Problem in QP Algorithm

Some problems occur when the definition is followed already. To illustrate, Example 3 and 4 are

applied to consider and there is no need to go into details about the color between vertices:

10

(a) original (b) embed (c) Recognize
Figure 2.7 Example of Recognition Problem in QP Algorithm

Example 3: Consider a graph G (¥, E) as Figure 2.7 (a) and the message M = 0. The embedding
phase is illustrated as Figure 2.7 (b), and v; = v, vi; = v, and v;; = v; are selected to embed M= 0
by adding edge between vo and v,. New graph G’ (V) E’) is obtained as Figure 2.7 (c). In
recognition phase, M = 1 is found by examining the number of vertices not connected to vy

between vg and v,. The inaccurate message 1 is extracted when 0 was the embedded message.

Py
. .
’)
["
fi \
I '
i 1
' |
' '
| '
I [
1 i '
| '
[|
H I
H]
[N
gt
T W
) A
«

(a) original (b) embed (cj Recognize

Figure 2.8 Example of Recognition Problem in QP Algorithm

Example 4: Consider a graph G (¥, E) as Figure 2.8 (a) and the message M = 1. The embedding
phase is illustrated as Figure 2.8 (b), and v; = vy, v;; = vz and v;; = vs are selected to embed M= 0
by adding edge between vy and vs;. New graph G’ (¥, E’) is obtained as Figure 2.8 (¢). In
recognition phase, the number of vertices not connected to v; = v between v; = v and v; = vz is 2,
and the same we reverse the order as v; = v3 and v; = vj. It is an undefined case that an unknown

message is extracted if the number is 2.

The cause of the problem can be traced back to the assumption of embedding phase of QP algorithm:
find the nearest two vertices v;; and v;; which are not connected to v;, We define the graph have

11

“vertices pair” which means the nearest vertices v;; and v;; are not connected to v, When v; is
selected, there are many vertices pairs {v;;, vi2} can be selected to embed the message. In Figure 2.6,
when v; = vy, there are two vertices pairs, {v;, v2} and {v,, v3} for being selected to embed the
message. Correct message will be extracted if {vj, v,} is selected. In Example 3, an inaccurate 1
message is extracted when {v,, vs} is selected. In the same way, in Figure 2.8, correct message will
be extracted if {vi, v»} is selected and inaccurate message will be extracted if {v,, v3} is selected.

Take a more carefully look into the selection of vertices pairs in the embedding phase and we find
the result: Only if the vertices pair is the nearest to v; is restricted to selected, the message must be

correct is extracted. This restrict can be treated as the definition in QP embedding phase.

2.3 Dynamic Watermark Algorithm

The basic concept of dynamic watermark algorithm is to embed watermark information to the
running state of a program. In the other words, the watermark information can be embedded and
extracted at runtime and thus make the-disclosure more difficult. However, the implementation of
dynamic watermark algorithm is difficult for most programming languages. Generally, Java-based
language can implement algorithm easily. It can divide into four phases:

Annotation: Adding annotation (or mark) points into the application to be watermarked before the
watermark can be embedded. Functions will be inserted into these annotation points. These
functions perform no action and simply indicate to the locations where watermark can be inserted.
Locations are preferred mark locations that allocate objects and manipulate pointers and directly
depend on user input. Hot spots and non-deterministically execution should avoid mark locations.
Tracing: A tracing run of the program will be performed after the application has been annotated.
Some annotation points will be selected after the tracing run. These annotation points will be the
location where watermark-building code will later be inserted.

Embedding: Hence, embedding of watermark will start when the application has been traced. The
input will be converted into an integer. From the integer, a graph G is generated to embed. The

12

embedding of watermark is divided into four steps:

1. Watermark 7 is embedded by generating graph G.

2. Generating an intermediate code to build this graph and translate into a Java method.

3. Replace the functions in annotation phase with these new functions.

4. New Java method file will be executed to build the graph G on the heap.
A single graph encoding method is not expected to fill requirements (high bit rate, high resilience to
attack, etc.) in CT algorithm. Develop a library of graph encoding for building watermark graphs
which have different characters instead. There are five kinds of graph encoding methods are
implemented: Permutation encoding ~ Radix encoding ~ Parent-pointer trees ~ Reducible permutation
graph and Planted plane cubic trees.
Extraction: In watermarked application, extraction is run as a sub-process under debugging. The
secret input sequences are exactly entered as input and same mark allocations will be hit during
tracing run. If the last part of input has been entered; the heap is examined for graphs that could
potentially be a complete watermark igraphs. Number of watermark will be extracted from graphs

and reported.

There are five kinds of graph encoding algorithms which are implemented in CT algorithm.
Permutation, Radix and Parent-pointer tree encoding algorithm have higher date rate than other

algorithm. The detail is given respectively as follow:

1

Permutation Encoding: A watermark integer in the range [0...n-1] can be shown by permuting the

13

numbers <O,...,n —1>, the mapping of permutation will represent a number. For an example, the

original 4=<0,1,2,3,4,5,6,7> and a watermark is 1000, the permuted A will
be 4=<0,7,2,1,4,3,6,5> to represent the watermark. Permutation can be constructed by a

singly-linked, circular list data structure, such as Figure 2.9.

Radix Encoding: A Radix graph is a circular linked list with n lengths, order of node represent the
number of exponent with base-n digit and data pointer is the coefficient. A null-pointer encodes a 0,
a self-pointer is a 1, and a pointer to next node encodes a 2, and so on. Take Figure 2.10 as an

example,3x 6% +2x6° +3x6> +4x6' +1x6"can be represented by the graph.

3Bt 42087 + 3B A E 1"

Figure 2710 Examplerof Radix Encoding Algorithm

Parent-pointer trees encoding (PP trees): This encoding algorithm can be described as
enumerations of graphs. The idea is that the watermark number 7 can be represented by the index of
the watermark graph in a table of enumeration and the number of nodes depends on your watermark.

Figure 2.11 is an example which represents the number 1, 2, 20 and 21.

Figure 2.11 Example of PP Tree Encoding Algorithm

14

2.4 Summary
In this chapter, we introduce advantage and disadvantage of some famous framework and
algorithms. Based on these characters, we will design and modify our proposed software watermark

framework and algorithms.

15

Chapter 3

The Proposed Software Watermarking Framework

As described in the previous chapter, we explain the problems of failure recognition, low bit rate
and color in QP and QPS algorithm. We also proposed static software watermark algorithms by
leveraging the concepts in CT dynamic algorithm. The proposed static watermark algorithms will
make the improvement on these characters:

B Easier in constructing and extracting

B Higher bit rates

B Better robust from common attacks

B More programming languages
We proposed a flexible framewaork to adopt not only proposed graph encoding algorithms but also
other graph algorithms. To construet.and extract watermark easily, we modify the heavy procedure
of random walk in Graph Theoretic Approach. 1t is also implemented easily with more kinds of

programming languages.

3.1 Framework

Framework can be divided into two phases: embedding and recognition phases. Embedding and
recognition phase are shown with Figure 3.1 and Figure 3.3 separately.

In embedding phase, process proceeds through three steps:

Transformation step: Program P is parsed into graph G which is constructed by vertices and edges.
Each vertex of graph represents a basic block consisting of instructions. Each edge will be a
directed edge represents a function call between two basic blocks. Order of vertices is arranged by

depth-first search (DFS) algorithm. Message M can be a statement or special integer in binary

16

format. To make binary conversion, the hash function or other transform function can also be
adopted to achieve higher security.

To increase the complexity and improve the privacy, graph G 1is segmented into »n

subgraphs, {gl Y- SO . }, where g; is one of the subgraph of G. The representation of the g; shown
asG = {gi| 1<i< n}, where n is the number of subgraphs. Message M is also segmented into n
fragmental messages, {m1 My ,e M, }, using the random seed w, where m; is one of the fragmental
messages of M. The representation of the m; shown asM = {ml| 1<i< n}, where 7 is the number of

subgraphs. Each subgraph is constructed according to the vertices selecting rule that make each

subgraph which is decided by the corresponding fragmental message being embedded successfully.

secret key @
message convert and M
s segment to —— E
merge

bit stream
(program parse into . n

H

Embedding Phase

Figure 3.1 Embedding Phase of Proposed Framework

The vertices selecting rule is defined as follow:
1. Select the vertex in the higher level of sub-graph as the first-selected vertex.

2. Select the vertices which aren’t the children of first vertex of sub-graph.

Each subgraph should have these characters:

17

1. The size of subgraph is decided by corresponding fragmental message
2. A sub-graph should contain at least three vertices.

3. If sub-graph is constructed from k vertices, fragmental message should be k-2 bits.

Embed step: When fragmental messages and subgraphs are generated, the next move is selecting
the algorithm of graph encoding. There are three kinds of graph encoding algorithms: link encoding
(LE) ~ color encoding (CE) and link color encoding (LCE). If LE or LCE is selected, path analysis
will proceed. During the process of path analysis, as Figure 3.2, subgraph and the path which has
more levels for embedding is analyzed by tree diagram. First vertex is selected according to the
result from path analysis. Follow on the first vertex, fragmental message is embedded into its

corresponding subgraph by adding directed edge between two vertices.

(a) Oniginal (b) Pogsible Paths (¢) Tree diagram

Figure 3.2 Example of Path Analysis

Merge step: The last step is merging original graph G and each subgraph into new graph. Directed
edge is added between two vertices in original graph if the same vertices in subgraph have been
embedded a bit of fragmental message. Color of vertices in original graph will be tampered
according to the same vertices in subgraph. Finally, a new graph G’ contains the embedded message

is generated.

18

Recognize

gra ph merge
analysis s

BR

8n

HHE

Recognition Phase

Figure 3.3 Recognition Phase of Proposed Framework

In recognition phase, there are two steps:

Recognition step: When watermarked graph G’ is received, information of subgraphs, vertices and
its corresponding color, and edges are also known. Algorithm of graph encoding which was used to
embed the message is also analyzed and found. In the light of information, graph G’is segmented

into » subgraphs{g/,g},---,g. }, whéte g’; is oné-of the subgraph of watermarked graph G’. The
representation of the g; is shownpasG'= {g'l.| 1< Sn}, where n is the number of subgraphs.

According to that graph ¢éncoding ‘recognition algorithm, the fragmental messages

{m‘l,m'z,--',m'n}are extracted from ‘each| subgraph, where m’; is one of message M’. The

'

representation of the m; is shown as M'= {m , | 1<i< n}, where 7 is the number of subgraphs.

1

Message processing step: Combine each fragmental message into new message m’. It is not
necessary that new message M’ must be equal to original message M’ if we can verify the correct

hidden information from M.

Figure 3.4 is an example of proposed framework in embedding phase:

1. Inputism=1011 and program P.

2. Pis parsed into graph G, and index is arranged by DFS algorithm.

3. Mjp is segmented into two fragmental messages m; = 10 and m, = 11. G is also segmented into

two subgraphs g; and g, with vertices selecting rule.

19

4. When link encoding algorithm is selected, each subgraph is analyzed by path analysis and the
pivot vertex is decided. Then, fragmental messages b;; and b;,; are embedded into subgraphs g;
and g».

5. Merge graph G and subgraphs g; and g, into new graph G .

Step 1: parse P into a list Step 2: A select vertices split Step 3: merge g,
using depth-first search graph rule g, and G into G’
(DFS) algorithm B. path analysis

C. message embed

Figure 3.4 Example of Proposed Emibedding Phase Framework

3.2 Proposed Graph Encoding Algorithms
In this section, we will introduce proposed graph encoding algorithms.

At first, the definition is as follows:

Given fragmental message m; ,represent as {bﬂ, b,,-.,b }, where m, = {bij| 1<j< ﬂ}, [is number

of bit in fragmental message and a subgraph G; (V;, E;) which contains vertices set V; and edges set
E;. Vertices pair, {v,;, v,2} contains nearest two vertices v,; and v,,, and is also the nearest vertices

pair not connected to v,. Edges (v, var), (Va, va2) are not in edges set E;.

3.2.1 Link Encoding (LE)
This algorithm can have improvement in robust by the way of link list. Pivot vertex is the vertex

which is selected according to path analysis [24] [22] and subgraph will have the higher capacity

20

for embedding message.

/ remaining

vertex

Figure 3.5 Example of Link Encoding in Embedding Phase

Input: watermark m=b;b,.b, and a graph G(V,E)
Output: G”(V, E”), pivot vertex V,, remaining vertex v,
Pseudo Code:
vp = path_analyze(gi,n);
it v, is not found
return NULL;

Va = Vp;
V? = V;
foreach bit b;
{

search V> and find the vertices pair (Vai,Va2) that are nearest but not connected to Vv,
V= V- v}

if b;=0
E* = E U(Va,val);
Va = Va1,

else
E” = E U(Wa,Va2)3;
Va = Vaz;

}

vr = the last element in V7;
return G*(V, E?);

Figure 3.6 Pseudo Code of LE Embedding Algorithm

Embedding phase: v, is selected pivot vertex. For the first message b;;, vertices pair {v,;, vy} is
the nearest vertices pair not connected to v, is found. If b;; = 0, directed edge (V,, V.) is added. Else,
b;; = 1, directed edge (v,, v,2) is added. Then, the vertex v, is treated as invisible vertex and its
connected vertex (v,; or v,») is treated as new pivot vertex which will be embedded with the next

message m;. Repeat the step until m; = b;; b;...b;, are all embedded into subgraph G;(V;, E;) and

21

new graph G’;(V’;, E’;) will be generated. We will find that the last one vertex which is not used
during the embedding step and the information of pivot vertex and remaining vertex is useful for
robust. Figure 3.5 is an example of link encoding in embedding phase. For given subgraph, as
Figure 3.5 (a), m; = 0011 and pivot vertex v, is selected. First directed edge (v, v2) is added
according to b;; = 0 and {va, v3} is the nearest vertices pair not connected to v;. v, is treated as new
pivot vertex and v, is treated as invisible vertex when b;; = 0 is ready for embedding. Repeat the
step as Figure 3.5 (b) until m; = b;; b;» bis biy are embedded. The pseudo code for the embedding

phase in LE algorithm is described in Figure 3.6.

Input: watermarked graph G”(V’,E”), pivot vertex V,, remaining vertex v,
Output: watermark m=b;b,..b,

Algorithm:
V= V;
Va = Vp;
V= V7= {Va.};
foreach j between 1 and n
{
foreach vertex v in V~
if v Is adjacent to Vv,
count = 0;
foreach g between k and a
ifT vy is not connected to Vv,
count ++;
if count ==
bj=0;
Va = Vk;
elseif count == 1
bj:l;
Va = Vi,
else
continue; //check next adjacent vertex of v,
V7= V7= {Va};
3
ve' = the last element in V’;
it v =—=v
return m;
else

return NULL;

Figure 3.7 Pseudo Code of LE Recognition Algorithm

Recognition phase: How can we extract the message from graph? Given the graph G’;(V’;, E’;) and
the information of pivot vertex v,, find the number of vertices not connected to v, between v, and its

connected vertex. If the number is zero, b;; is 0, and if the number is 1, b;; is 1. For the vertex

22

connected to v, and treating v, as an invisible vertex, the next message will be extracted. Repeat the
step until that there is only one vertex in subgraph and compare this vertex with remaining vertex.
We will make sure the message is correct if the answer is “the same”. The pseudo code for the

recognition phase in LE algorithm is described in Figure 3.7.

3.2.2 Color Encoding (CE)
The function of color is applied for increasing bit rate in color encoding algorithm. All the vertices
in subgraph are the same color in original. The color rule is defined as follows:

v, and its connected vertex v, are same color, a 00 message is embedded.

v, and its connected vertex v are different color, a 01 message is embedded.

Input: watermark m=b;b,.b,, a graph G(V,E)
Output: G* (V, E”), vertex color set C = {c;,Cz,..Ch} and an embedding vertex set Vx.
Algorithm:

C = initialize_vertex_colors(V);

V7 o= V;
Vx = ¢;
foreach bjbj..
{

va = smallest(V?);
Va1, vaz = closest_vertices pair(vy);
switch (bjbj«1) {

case 00:
E> = E” U (Va, va2);
break;

case 01:

E* =E” U (Vay VaZ);
Ca2 = new color different than c,, //change v.,;”s color;
break;
case 11:
E> =E” U (Va, Val);
break;
case 10 :
E> = E” U (Va, va1);
Ca1 = new color different than c,; //change vai”s color;

break;
}
V? = VT — {va};
Vx = VX + {va};

b
return G*(V,E*), C”;

Figure 3.8 Pseudo Code of CE Embedding Algorithm

Embedding phase: For m;= b;; b;,...b;,, each fragment message is a 2-bit message in this method.

23

Find vertices pair {v,;, v,>} that are nearest pair and not connected to v,.

bij big+1y=00 (v4, v42) 1s added, v, and v, are same color.

bij bij+1y=01 (vq, va2) 1s added, v, and v,; are different color.

b big+1y=11 (v, var) is added, v, and v,; are same color.

bij bij+1y=10 (vq, var) 1s added, v, and v,; are different color.
The new graph G’; (V’;, E’;) which contains new edges set £’; and new vertices set V’; with its
related information of color is generated. The pseudo code for the embedding phase in CE
algorithm is described in Figure 3.8.
Figure 3.9 is a simple example of color encoding in embedding phase. At first, m; = 1101 is
segmented into 11 and O1. v; is selected as v,, and {v,, v3} is the nearest vertices pair that are not
connected to v;. For the first two bits 11, the directed edge (v, v») is added and v; and v, are still
same color. And the next message,. v, 1s selected as. v,, and {vs, v4} is the nearest vertices pair that
are not connected to v,. For the-next two bits 01, the-directed edge (v, v4) is added and v, and v4

are colored by different color.

11 00 (same color) & F (0)
1101 — —
01 01 (different color) & T (1)

Figure 3.9 Example of Color Encoding in Embedding Phase

Recognition phase: Given the graph G';(V’;, E’;) and vertices set with information of color. Find

the number of vertices not connected to v, between v, and its connected vertex v,. The embedded bit

24

is extracted according the rule as follows:
The number is 0, v, and v;, are same color, then m; = 11
The number is 0, v, and v;, are different color, then m; = 10
The number is 1, v, and v;, are same color, then m; = 00
The number is 1, v, and v, are different color, then m; = 01

The pseudo code for the recognition phase in CE algorithm is described in Figure 3.10.

Input: a graph G(V,E), an embedding vertex set Vx and its color set C
Output: m=b;b,..b,
Algorithm:
do
{
va = First element in Vx;
VX = Vx — {Vva};
find the closest vertices V.1, Va; that are not connected to Vv,;
count for the vertices whose indices are in between Vv, and Vv,,, and are not connected to V,;
switch (count)

{
case 0O:
if (Va, Va1) exists in E and ¢, == ca
bjbj+1:11;
elseif (Va, Va1) exists in E and c, != ca
bjb,-+1=10;
elseif (Va, Va2) exists in E and c; == Ca
bjbj+1:11;
elseif (Va, Va) exists in E and c, != ca
bjbj+1:10;
break;
case 1:
if (Va, Va) exists in E and ¢, == Ca
bjbj+1:OO;
elseif (Va, Va1) exists in E and c, != ca
bjbj+1=01;
elseif (Va, Va2) exists in E and c, == Ca
bjb,-+1=00;
elseif (Va, Va2) exists in E and c; != ca
bjbj+1201;
break;
}
} while (Vx)
return m;

Figure 3.10: Pseudo Code of CE Recognition Algorithm

3.2.3 Link with Color Encoding (LCE)
The third method is link with color encoding, as implied in the name, and is combined with link

encoding and color encoding. LCE method is successful to have the higher robust and bit rate.

25

Follow the definition of link encoding and color encoding, this method is introduced as follow:
Embedding phase: Given message m;= b;; b;>...b;, and a subgraph G; (V;, E;), v, is selected pivot
vertex. Find vertices pair {v,;, v,2} is the nearest vertices pair not connected to v,. First two bit of
message b;; b;; are embedded according to the rule as follows:

bi;bi; =00 (v, v42) is added, v, and v,; are same color.

biibi» =01 (v, vy2) is added, v, and v, are different color.

biibi; =11 (v4, v4y) 1s added, v, and v,; are same color.

bibi» =10 (v, v4) is added, v, and v,; are different color.
Then, the pivot vertex v, is treated as invisible vertex and its connected vertex is treated as new
pivot vertex which will be embedded with the next two bits b;; b;,. Repeat the step until m; = by,
bi>...b;, are all embedded into subgraph G;(V; E;) and new graph G’; (V’, E’;) will be generated.
The pseudo code for the embeddingphase in LCE algorithm is described in Figure 3.11. Figure 3.12

is an example with LCE method in embedding phase:.

Input: G(V,E), m=bjb,.b,, and color set C = {c;,C5,..Cn}
Output: G”(V,E”), C*, the pivot vertex v,, the remaining vertex v,
Algorithm:
foreach bjbj..
{
select a pivot vertex v, from V;
let v, =v,;
start from the vertex v,, where a is the smallest vertex index in V;
find the closest vertices vy, Va that are not connected to Vvi;
switch (bjbj:1)
{
case 00:
add edge (Va, Vaz) to E;
Va = Va2 ;
break;
case 01:
add edge (Va, Va2) to E;
Ca; = different color from c,;

Va = Va2 ;
break;
Case 11:
add edge (Va, Va1) to E;
Va = Va1 ;
break;
Case 10:

add edge (Va, Va1) to E;

Ca1 = different color from c,;
Va = Va1 ;

break;

26

}

i
return G”(V,E*) and C~;

Figure 3.11: Pseudo Code of LCE Embedding Algorithm

00 00 (same color) & T (1)

0110110 — 00110110 — i — 11 (same color) & F (0)
0 @1 (different color) & T (1)
Need 6 vertices i0 10 (different color) & F (0)

Figure 3.12: Example of Link with Color Encoding in Embedding Phase

Recognition phase: Given the graph G'; (V’;, E"j):and vertices set with information of color. Find
the number of vertices not connected to v,.between v, and its connected vertex v,. The first
embedded bits b;; b;; are extracted according the rule as follows:

The number is 0, v, and v, are same color, then b;; b;,= 11

The number is 0, v, and v, are different color, then b;; b;> = 10

The number is 1, v, and v, are same color, then b;; b;; = 00

The number is 1, v, and v, are different color, then b;; b;, = 01
With the vertex v, connected to v, and treating v, as an invisible vertex, the next message m; will be
extracted. Repeat the step until that there is only one vertex in subgraph and compare this vertex
with remaining vertex. We will make sure the message is correct if answer is “the same”. The

pseudo code for the recognition phase in LCE algorithm is described in Figure 3.13.

Input: a watermarked graph G”(V,E”), the pivot vertex v,, the remaining vertex v, and the color set C
Output: m=b;b,..b,
Algorithm:

start from the pivot vertex v;;

let visiting vertex v, equals to vp;

find the closest vertices vy, Va that are not connected to Vvi;

foreach two bits bjbj.,

27

count for the vertices whose indices are in between al and a2, and are not connected to V,;
switch (count)

{
case O:
it (Va, Va) exists in E and ¢, == Ca
bjbj+1=11;
elseif (Va, Va) exists in E and c; = ca
bjbj+1:10;
elseif (Va, Va) exists in E and c, == ca
bjbj+1:11;
elseif (Va, Va2) exists in E and c, != ca
bjb,-+1=10;
break;
case 1:
if (Va, Va1) exists in E and c, == ca
bjbj+1:OO;
elseif (Va, Va1) exists in E and c; !'= ca
bjbj+1=01;
elseif (Va, Va2) exists in E and c; == Ca
bjbj+1:OO;
elseif (Va, Va) exists in E and c, != ca
bjbj+1=01;
break;
}
¥
return m;;
Figure 3.13: Pséudo Code of LCE Recognition Algorithm
3.3 Example

In this section, we present how the‘proposed graph encoding algorithms can be applied to a example
program shown in Figure 3.14, a prime number generator that generates prime numbers no larger

than integer a. A two-bit message 01 will be embedded into the program.

int k(int);

int main()

{ int a, b, sum; //v,
printf("'insert a prime number \n'); //v,
scanf("'%d",&a) ; //Vv3
for(sum=0,b=2;b<=a;b++) { //v,

if(k(b))
printf("'%3d",b); //vs
sum+=b; VIAYS
return O;

¥
int k(int b)
{ int i;
for(i=2;i<=b/2;i++)
if(b%1==0)
return O;
return 1;

Figure 3.14: Example Program

In the phase of transform, we select the blocks as vertices and the program is parsed into graph as

28

Figure 3.15. With the length of message, a four-vertex graph is prerequisite. We select a four-vertex
graph including vertices set V = {vy, v3, Vs, v} and edges set E = {(vs, v¢)}. According the analysis
of path, v, is selected as pivot vertex. In the embedding phase, LE algorithm is used to embed the
message 01 by adding the edges (vi, v3) and (v3, ve) as Figure 3. The watermarked program and its

related parsed graph is shown as Figure 4 and Figure 5 respectively.

v, mta, b, ¢, sum,

v, printf{"insert a prime number n")

V3 scanf{"%d", &a),

=0,b=2;
| et

Vs prutf("%3d",b);

+=b
V6 SUIT .

Figure 3/15: The Parsed Program

pivot 0
vertex @--- '@
-1

-
-
; ‘ :

Figure 3.16: The Graph of Embedding

int k(int);

int main()
int s, t;
int a, b, sum; //vy
it ((s"2+s)%2)
goto s2
printf("insert a prime number \n'); //v;
v3: scanf("'%d",&a); //vs3
it (V((2+t+1)%2))
goto v5
for(sum=0,b=2;b<=a;b++) { //v,
i1f(k(b))
v5: printf("'%3d",b); //vs
sum+=b; //vg
return O;
b

29

Figure 3.17: The Watermarked Program

SO mt a, b, ¢, sum;
—L printf{"msert a prime number ‘n"),
S scanf{"%d" &a);
=0,b=2,c=-1,
l Sl suIm: C

B1 b==a
S2 if(k(b)) printf("%3d",b);
sum-+=h;
ifib=<c) b=-1;
e
S3 b &

Figure 3.18: The Parsed Watermarked Program
3.4 Path Analysis

Path analysis is a useful tool which is not enly finding the longer path buy also providing a test and
verify. Take Figure 3.19 as an example, we'itroduce the concept of path analysis. Original graph is
given, as Figure 3.19 (a) is a 4-vettices diagram and v, is selected as pivot vertex. LE algorithm is
used to embed a 2-bit message with 4-vertices diagram. For a 2-bit message, Figure 3.19 (b) shows
4 possible paths to embed 4 possible messages. Given another graph as Figure 3.20 (a), it is obvious
to find that embedding process encounters problem if the message is 00 or 01. And graph as Figure
3.21 (a) can’t be embedded into any message if pivot vertex is v;.

© @ O o @ ©® @ @
0 1 1 DN

l].
‘
¢

(a) original (b) 4 possible paths with 4 vertices
Figure 3.19 Example of 4 Possible Paths with 4 Vertices and LE Algorithm

30

(a) original (b) only 2 possible paths with 4 vertices
Figure 3.20 Example of 2 Possible Paths with 4 Vertices and LE Algorithm

@) @)

(a) origmal (b) O possible paths with 4 vertices

Figure 3.21 Example of Zero Possible Paths with 4 Vertices and LE Algorithm

The situation of success and failure embedding can be checked with path analysis. In the same way,
possible paths are analyzed and found if arvertex 1sselected as pivot vertex. Take Figure 3.19 as an
example, the graph diagram is as Figure 3.22 (a). The graph diagram shows the possible paths from
the pivot vertex. From v, the vertices pair (va;-v3) is the nearest one not connected to v; and (vi, va)
will not be a possible path. The graph‘diagram will expand upon a tree diagram as Fig 3.22 (b)
under the rule of LE encoding algorithm. In tree diagram, it is obvious to find four possible paths

which are corresponding to Figure 3.19 (b).

(a) graph diagram (b) tree diagram

Figure 3.22 Example of Path Analysis with 4 Vertices and LE Algorithm

Figure 3.23 is another example corresponding to Figure 3.20. The graph diagram shows the possible

31

paths from the pivot vertex, v,. The tree diagram as Fig 3.23 (b) will expand from graph diagram.

There are only two possible paths under the rule of LE encoding algorithm.

(a) graph diagram (b) tree diagram
Figure 3.23 Example of Path Analysis with 2 Vertices and LE Algorithm

3.5 Error Detection
Path analysis described in the previous section can also be applied in error detection. According to
the information of pivot vertex andiremainingivertex;, we can verify that some bits of message are in

error or not. Figure 3.24 shows an example of etror detection:

path analysis:

@ remaining
vertex

(b) error occurs

pivot vertex

@ remaining
vertex

Figure 3.24 Example of Error Detection

Given watermarked graph G’ with LE algorithm as Figure 3.24 (a), start and remaining vertex are v,

and vy respectively. From the pivot vertex vy, to fit in with the information of remaining v4, an

32

embedding path E ={(v,,v,),(v,,v;),(v;,V5),(vs,v,)}1is found. A Hamiltonian path can be found if
we add a virtual directed path (ve, v4). The message is extracted correctly by LE recognition
algorithm.

Figure 3.24 (b) shows that an error occurs in edge (v, v3) and an altered edge (v, v¢) instead. From
the pivot vertex v, with the information of remaining v4, we can’t find any possible path. Critical
error occurs in graph if there is Hamiltonian path is found and we can use path analysis to recover
the message. At first, from LE embedding algorithm, we analyze the graph and find that edge (vi, v2)
should be correct message. The next pivot vertex is v, and {vs, v4} is the nearest vertices pair and
there should be an edge (v, v3) or (v, v4). According to the information of the edge (vs, vs), we can
recover the edge (v,, v3) and find the correct embedding path. A Hamiltonian path is found if we
add a virtual directed path (vs, v4). The message are recovered and extracted correctly by LE

recognition algorithm.

3.6 Summary
In this chapter, we propose a graph-based watermark framework can adopt more than three kinds of
graph encoding algorithms. According to the requirement of robust and bit rate, LE, CE and LCE

algorithm can be applied respectively.

33

Chapter 4

Analysis

After illustrating the proposed framework and algorithms, analysis and comparison with other
framework and algorithms is an essential work. The performance in stealth, robust and flexibility

are the criteria for software watermark algorithms.

4.1 Security Analysis
After the watermarked graph is produced, there are many kinds of adversaries. A robust watermark
algorithm can prevent specific attack from extracting or destroying the embedded message. We
focus on preventing the additive/subtractive attacks since the graph is constructed by vertices and
edges. Thus, a graph-based watermark is vulnerable to-attacks on the edges and vertices in the graph.
In this section, we illustrate the software‘watermark attacks on graph edges and vertices.
€ Edges additive/subtractive attack
The path analysis described in the previous section can be used to detect if there is any
redundant or missing edges, which can result in destroying the watermarked information in
the software module. Before the process of extraction, embedding path must be found to
construct a Hamiltonian path. Single edge has been altered will be recovered as we described
in last section. If few bits have been altered, we have to compare with the information of path
analysis from original graph according to start and remaining vertex and graph encoding
algorithm. Possible paths will be found to recover the message during comparison.
€ \ertices additive/subtractive attack
The number of vertices is restricted by the number of bit of the message. For an example, N
vertices must be matched with N+2 bit message for LE algorithm. Redundant or lost vertices
will be detected by the character of graph encoding algorithm. To recover the message, we

34

have to compare with the information of path analysis from original graph according to start
and remaining vertex and graph encoding algorithm. During comparison, we will find the
variation of vertices and reconstruct the graph to extract the correct message.

Figure 4.1 is an example of vertex subtractive attack. Adversaries have deleted the ve, and the
edges (v3, ve) and (vs, v¢) become null pointers. It is obviously that a vertex had been deleted

or lost. The correct message can still be extracted by rebuilding the graph.

(a) after attack (b) rebuild graph

pivot vertex

pivot vertex

@ remaining @ remaining
vertex vertex

Figure 4.1 Example of Vertex Subtractive Attack

(a) without error occurs

Figure 4.2 Example of Edge-flip Attack
€ Edge-flip Attack

An edge-flip attack against the watermark reorders the edge between vertices. The outgoing of
edge will be redirected to other vertices in the graph. Figure 4.2 (a) is an example of the model
of attack. Adversaries try to break watermark by changing the edge (v», v3) to be the edge (va,

ve¢). The malicious attack can be detected by path analysis. According the LE algorithm, the

35

original graph can be recovered. The message of watermark is still extractable correctly.

@ \ertex-Split Attack
The model of vertex-split attack splits the nodes in the graph. Each node will be divided into
two vertices. New edges are connected between the divided vertices. With the information, the
number of extracted message should be equal to embedded message in each graph or subgraph.
The redundant bits of message will be found by path analysis. We can extract the broken
message with some redundant 0 bits. However, we can’t recovery the correct value efficiently

without the information of original graph.

4.2 Bit rate Analysis

Bit rate is an important character to estimate the performance of stealth of watermark algorithm.
The definition which is given mestly is the ratie of code size of watermark to watermarked program.
However, we can find that bit rate istaffected by factor such as programming language, syntax of
programming language...etc. Different kinds ofalgorithms which are used to construct the encoded
graph will make bit rate have different result in comparison with other graph encoding algorithm.
We want to focus on constructing the encoded graph and neglect the difference in implement, the
definition is given below: The ratio of number of bits encoded by adding edges to the total size of
watermarked graph. With the definition of bit rate, we will analyze each graph encoding algorithm
respectively.

Given a watermark Mp contains » bits and graph is constructed by nodes and edges. The number of
byte of graph,B=S§, xN, +S§, x N,, where N, and N, are number of node and edge respectively, S,
and S, are size of node and edge respectively. The number of byte of watermarked graph
isB'=S,xN,+8,xNand N, is the number of edge after watermark being embedded. According
to definition, bit rate is defined as (B’ — B)/B’ .

Adding Edge Encoding (QP Algorithm) and Color Encoding:

36

It is not easy to calculate the correct value, estimation the bit rate of the common case instead.
When the number of node N, = N, the increasing number of edge is estimated as N, — N, =N —1.
Based on the assumption that there will be no existed edge before embedding phase, bit rate
is(B'~B)/B'=(N-1)S,/(NS, +(N -1)S.,).

Link Encoding and LC Encoding:

When the number of node N, = N, the increasing number of edge is N) — N, = N —2. Bit rate will
be(B'—~ B)/B' = (N -2)S,/(NS, + (N —2)S,)based on the assumption that there is no existed edge
before embedding phase.

Permutation Encoding and Radix Encoding:

When the number of node contains the node of rootis N, = N +1, the number of edge

isN, =2N +1 and the increased number of edge is N’ — N, = N . Bit rate is(B' — B)/B’

= NS, /(N+1)S, + (2N +1)S,)

Parent-pointer Tree Encoding:

It is also not easy to calculate the correct valuc of bit rate. When the number of node N, = N, the
increasing number of edge’. is estimated as N,-N,=N-1 and Dbit rate

is(B'~B)/B'=(N-1)S,/(NS, +(N -1)S.,).

4.3 Summary
We analyze the characteristics of our graph encoding algorithms. The performance in error detection
and robust is better than QP and QPS algorithm. The bit rate of each graph encoding algorithm is

described in section 4.3. We will give a further discussion in next chapter.

37

5.1 Framework Characteristic

We adapt and modify the Graph Theoretic Approach which is illustrated in section 2.1. The
differences between these two frameworks are the secret key and random walk in merging step.
There are three secret key for partition the graph in clustering step, choose the next node in merging
step and encrypt the extracted value in recovery step respectively. In our proposed framework, we
use only one secret key to segment the message into fragmental message and hence the segment of
subgraph will be decided. The second difference is the random walk for merging watermark and

graph. We embed each ordered fragmental message.into each ordered subgraph respectively instead

Chapter 5

Comparison

of using random seed to decide the next node.

Random seed

Graph/message IFragmental message

vertices select

well connected

segment generating graph
Graph Theoretic 3 yes random random yes
Approach
Proposed 1 yes random / user rule yes
Framework

Table 1 : Framework Characteristic

5.2 Bit rate of Software Watermark Algorithms

As we discuss in section 4.3, bit rate of each graph encoding is analyzed, and furthermore, we will

give

an example

for

illustrating

the

comparison.

Given an

integer as

W =10000,, = 1001100010000, and[¥|=14. LetS, = kS, , bit rate is show as following:

QP Algorithm/QPS Algorithm:

watermark

(B'~B)/B'=(N-1)S,/(NS, +(N -1)S,)=(N =1)/((k +1)N —1). Let N=15 from the bit number is
14 after estimation, and (B’ — B)/B' = 14/(15k +14).

Link Encoding:

(B'~B)/B'=(N-2)S,/(NS, +(N —2)S,)= (N —2)/(N(k +1)-2). If the bit number is 14, N=16 is
found, and (B’ — B)/B’ = 14/(16k +14).

Color Encoding:

(B'~B)/B'=(N-1)S,/(NS, +(N -1)S,)=(N =1)/((k +1)N —1). Let N=8 from the bit number is
14 after estimation, and (B’ — B)/B' = 7/(8k +7)

Link with Encoding:

(B'~B)/B'=(N-2)S,/(NS, +(N -2)S,)= (N —2)/(N(k +1)-2). If the bit number is 14, N=9 is

found, and(B'— B)/B' =7/(9% +7).
Permutation Encoding:

(B'=B)/B'= NS, /(N +1)S, +(2N +1)S.)= NA(N+1)k + (2N +1)). N = 8 is found if the bit

number is 14, and (B’ - B)/B’ =8/(9k +17).

Radix Encoding:

(B'~B)/B'=NS,/(N+1)S, +2N +1)S,)= N/(N +1)k + (2N +1)). N = 7 is found if the bit
number is 14, and (B’ - B)/B' =7/(8k +15).
Parent-pointer Tree Encoding:

(B'~B)/B'=(N-1)S,/(NS, +(N -1)S,)=(N -1)/(Nk + (N —1)) Let N=8 from the bit number is

14 after estimation, and (B’ — B)/B’ = 15/(16k +15).

According the definition, we know that ability of resilience is in inverse proportion to bit rate. In
Table 2, by applying different k, we will find that the difference between each algorithm in bit rate
isn’t affected. In the same situation, Radix encoding and Permutation encoding algorithms have the
better performance in bit rate than LE and LCE algorithm, and QP/QPS and PP tree algorithms have
worse performance in bit rate. From the information in table, we can find that “list-based”

39

algorithms have better performance than “graph-based” algorithms.

k=2 k=3 k=4

Radix 0.225 0.180 0.149
Permutation 0.228 0.182 0.151
PP trees 0.319 0.238 0.190
QP/QPS 0.318 0.238 0.189
Link Encoding 0.304 0.225 0.179
Color Encoding 0.304 0.225 0.179
LCE 0.280 0.205 0.163

Table 2: Bit rate of Graph Encoding Algorithm

5.3 Characteristic of Softwate Watermark Algorithms

stealth Flexible path | Error Detection
selecting

Radix Good No No
Permutation Good No Yes
PP trees Bad No No
opP Bad No Yes
OPS Bad No No
Link Encoding Fair Yes Yes
Color Encoding Fair Yes No
LCE Fair Yes Yes

Table 3: Comparison of Graph Encoding Algorithm

40

We compare each graph encoding algorithm with bit rate, flexible path selecting and the ability of
single error detection. It is obvious that Radix have higher bit rate but with worst performance in
robust and flexibility. LCE and LE will be ideal algorithm if we want have requirement of stealth,

flexibility and robust.

5.4 Summary

In this chapter, we analyze the difference between proposed and related framework. The detail

characteristic of each algorithm is also describes in Table 5.3.

41

Chapter 6

Conclusion

In this paper, we modify and build a flexible software watermarking framework which can adopt
graph theoretical encoding algorithms. In this framework, watermark and program will be parsed
into graph and merged with graph-based encoding algorithms. The hidden message with graph
encodings is harder to be detected and attacked by adversaries. Program with different graph
encoded watermark will have different performance in resilience and robust. QP and QPS
algorithms have neither credibility nor resilience and robust. Although CT algorithm have high
robust, embedding and recognition in execution time is hard and time-consuming to be constructed
with non-Java language. Based on these algorithms;. we design and modify three kinds of algorithms
can improve resilience and robust respectively by link-type structure and application of color.
Besides, proposed path analysis'is an.important analysis for selecting the longest embedding path
and searching and analyzing the correct.path. With path analysis, the watermark can be easier to be
constructed and extracted, and the information of start and rest vertices can output instead of the
whole information of original graph. Decrement of storage will improve the convenience and

practicability for mobile code system.

42

Chapter 7

Future Work

We believe that proposed framework and graph encoding algorithms have improvement in stealth
and robust. The framework can adopt not only our proposed but also other kinds of graph encoding
algorithms, such as QP and QPS. Three kinds of graph encoding algorithms still have another kind
of method to modify the integer of watermark into a shorter message in bit stream. If the message is
shorter, the performance of stealth and resilience can be better. Encoding algorithm will be
improved with robust is carried into effect. Implement is also an important work that we should

achieve for verify the characteristics of each algorithm and make more improvements.

43

Reference

[1] Robert L. Davidson. and Nathan Myhrvold. “Method and system for generating and auditing a
signature for a computer program,” US Patent 5,559,884, September 1996. Assignee: Microsoft
Corporation.
[2] Gang Qu and Miodrag Potkonjak. “Hiding Signatures in Graph Coloring Solutions,” In
CA90095. USA. 1999
[3] Ginger Myles. and Christian Collberg. “Software Watermarking Through Register Allocation:
Implementation, Analysis, and Attack,” ICISC 2003, LNCS 2971, pp. 274-293, 2004.
[4] C. Collberg and C. Thomborson. “Software watermarking: Models and dynamic embeddings,” In
POPL’99, Jan. 1999.
[5] Ramarathnam Venkatesan. Vijay Vazirani. Saurabh Sinha. “A Graph Theoretic Approach to
Software Watermarking,” In 4” International Information Hiding Workshop, Pittsbutgh, PA,
April 2001.
[6] Lin Yuan, Gang Qu, Ankur Srivastava. “VLSI'CAD tool protection by birthmarking design
solutions,” In Great Lakes Symposium on VLSI, Proceedings of the 15th ACM Great Lakes
symposium on VLSI table of contents, Chicago, Illinois, USA, Pages: 341 - 344, 2005
[7] Christian Collberg, Edward Carter, Stephen Kobourov, and Clark Thomborson. Error-correcting
graphs. Workshop on Graphs in Computer Science (WG’2003), June 2003.
[8] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap, resilient, and
stralthy opaque construct. In Principles of Programming Languages 1998,
[9] Fabien A.P. Peticolas, Ross J. Anderson, and Markus G. Kuhn. Attacks on copyright marking
systems. In Second Workshop On Information Hinding, Portland, Oregen, April 1998.

[10] Tapas Sahoo and Christian Collberg. Software Watermark in the frequency domain:
Implementation. Analysis, and attacks. Technical Report TR04-07, Department of Computer
Science, University of Arizona, March 2004.

44

[11] Ginger Myles, Christian Collberg. “K-gram based software birthmarks,” In Symposium on
Applied Computing, Proceedings of the 2005 ACM symposium on Applied computing, Santa Fe,

New Mexico, Pages 314 - 318, 2005

’

[12] H. Berghel and L. O’Gorman. “Protecting ownership rights through digital watermarking,”’
IRRR computer, 29(7):101-103, 1996.

[13] Christian Collberg, Clark Thomborson, and Douglas Low. “A taxonomy of obfuscating
transformations,” Technical Report 148, Department of Computer Science, UNerversity of

Auckland, July 1997.

[14] Takeshi Kakimoto, Akito Monden, Yasutaka Kamei, Haruaki Tamada, Masateru Tsunoda,
Ken-ichi Matsumoto. “MSR-challenge report: Using software birthmarks to identify
similar classes and major functionalities ,” Proceedings of the 2006 international workshop

on Mining software repositories MSR '06

[15] David Nagy-Fraksa. The easter egg archiverhttp://www.eeggs.com/Ir.html, 1998.

[16] D. Aucsmith, “Tamper Resistant Software: An Implementation,” Information Hiding, First
Int’l Workshop, R.J. Anderson, ed., pp:317-333, May 1996.

[17] F. Hohl, “A Framework to Protect Mobile Agents by Using Reference Status,” Proc. 20™ Int’l
Conf. Distributed Computing Systems, pp. 410-417, 2000.

[18] Yan Zhu, Wei Zou, and Xinshan Zhu. “Collusion Secure Convolutional Fingerprinting
Information Codes,” In ASIACCS’ 06, Taipei, Taiwan, March 21-24, 2006.

[19] Sam Michiels, Kristof Verslype, Wouter Joosen, Bart De Decker. “Software issues: Towards a
software architecture for DRM,” In Proceedings of the 5th ACM workshop on Digital rights
management DRM '05..

[20] Gaurav Gupta, Jasef Pieprzyk, Huaxiong Wang. “An Attack-Localizing Watermarking Scheme
for Natural Language Document,” In ASIACCS’ 06, Taipei, Taiwan, March 21-24, 2006.

[21] Soo-Chang Pei, Yi-Chong Zeng. “Tamper Proofing and Attack Identification of Corrupted
Image by using Semi-fragile Multiple-watermarking Algorithm,” In ASIACCS’ 06, Taipei,

Taiwan, March 21-24, 2006.

45

[22] Gross Yellen. “Graph Theory and its Application,” 1999.
[23] Ingemar J. Cox, Matthew L. Miller, Jeffrey A. Bloom. “Digital Watermarking,” 2002.

[24] Lowell W. Beineke, Robin J. Wilson. “Graph Connections,” 1997

46

