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CHANNEL-OPTIMIZED ERROR MITIGATION FOR DISTRIBUTED

SPEECH RECOGNITION OVER WIRELESS NETWORKS

Cheng-Lung Lee and Wen-Whei Chang*

ABSTRACT

This paper investigates the error mitigation algorithms for distributed speech
recognition over wireless channels.  A MAP symbol decoding algorithm which ex-
ploits the combined a priori information of source and channel is proposed.  This is
used in conjunction with a modified BCJR algorithm for decoding convolutional codes
based on sectionalized code trellises. Performance is further enhanced by the use of
the Gilbert channel model that more closely characterizes the statistical dependencies
between channel bit errors.  Experiments on Mandarin digit string recognition task
indicate that our proposed mitigation scheme achieves high robustness against chan-
nel errors.
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I. INTRODUCTION

The increasing use of mobile and IP networks
for speech communication has lead to distributed
speech recognition (DSR) systems being developed
(ETSI ES 202 212 v1.1.1., 2003).  The basic idea of
DSR consists of using a local front-end from which
speech features are extracted and transmitted through
a data channel to a remote back-end recognizer. F or
transmission, speech features are grouped into pairs
and compressed via vector quantizers (VQs) in order
to meet bandwidth requirements.  The VQ encoder
operates by mapping a large set of input vectors into
a finite set of representative codevectors.  The trans-
mitter sends the index of the nearest codevector to
the receiver, while the receiver decodes the codevector
associated with the received index and uses it as an
approximation of the input vector. Transmitting VQ
data over noisy channels changes the encoded infor-
mation and consequently leads to degraded recogni-
tion performance.  In the case of packet-erasure
channels, several packet loss compensation techniques
such as interpolation (Bernard and Alwan, 2002) and
error control coding (Boulis et al., 2002) have been
introduced for DSR.  For wireless channels, joint

source-channel decoding (JSCD) techniques (Peinado
et al., 2003; Reinhold and Valentin, 2004; Fingscheidt
and Vary, 2001) have been shown effective for error
mitigation using source residual redundancy assisted
by bit reliability information provided by the soft-
output channel decoder.  However, the usefulness of
these techniques may be restricted because they only
exploit the bit-level source correlation on the basis
of a memoryless AWGN channel assumption.

In this paper, we attempt to capitalize more fully
on the a priori knowledge of source and channel and
then develop a DSR system with increased robustness
against channel errors.  The first step toward realiza-
tion is to use quantizer indexes rather than single
index-bits as the bases for the JSCD, since the depen-
dencies of quantizer indexes are stronger than the cor-
relations of the index-bits.  The next knowledge source
to be exploited is the channel error characteristics.
Transmission errors encountered in most real commu-
nication channels exhibit various degrees of statistical
dependency that are contingent on the transmission
medium and on the particular modulation technique used.
A typical example occurs in digital mobile radio
channels, where speech parameters suffer severe deg-
radation from error bursts due to the combined effects
of fading and multipath propagation.  A standard tech-
nique for robust VQ over a channel with memory is to
use interleaving to render the channel memoryless and
then design a decoding algorithm for the memoryless
channel.  This approach, however, often introduces large
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decoding delays and does not utilize the channel memory
information. Further improvement can be realized
through a more precise characterization of the channel
on which the decoder design is based (Kanal and Sastry,
1978).  For this investigation, we focused on the two-
state Markov chain model proposed by Gilbert (Gilbert,
1960).  This model has several practical advantages
over the Gaussian channel (Peinado et al., 2003) and
binary Markov channels (Wang and Moayeri, 1993).
First, the Gilbert model is relatively simple and can
characterize a wide range of digital channels, as evi-
denced by its applicability to performance analysis of
various error control schemes (Drukarev and Yiu, 1986).
Second, as we shall see later, the channel transition
probabilities of the Gilbert model have a recursive
formula that can be represented in terms of model
parameters.

II. DSR TRANSMISSION SYSTEM

The standard, ETSI ES 202 212, describes the
speech processing, transmission, and quality aspects
of a DSR system.  The local front-end consists of a
feature extraction algorithm and an encoding scheme
for speech input to be transmitted to a remote recognizer.
Each speech frame is represented by a 14-dimension
feature vector containing log-energy logE and 13 Mel-
frequency cepstral coefficients (MFCCs) ranging from
C0 to C12.  For the cepstral analysis speech signals
are sampled at 8 kHz and analyzed using a 25 ms Ham-
ming window with 10 ms frame shift.  These features
are further compressed based on a split vector codebook
where the set of 14 features is split into 7 subsets
with two features in each.  Each feature pair is quan-
tized using its own codebook. MFCCs C1 to C10 are
quantized with 6 bits each pair, (C11, C12) is quan-
tized with 5 bits, and (C0, logE) is quantized with 8
bits.  Two quantized frames are grouped together and
protected by a 4-bit cyclic redundancy check creat-
ing a 92-bit frame-pair packet. Twelve of these frame-
pairs are combined and appended with overhead bits
resulting in an 1152-bit multiframe packet represent-
ing 240 ms of speech.  Multiframe packets are con-
catenated into a bit-stream for transmission via a data
channel with an overall data rate of 4800 bits/s.

This work is devoted to channel error mitiga-
tion for DSR over burst error channels.  Fig. 1 gives
the block diagram of the transmission scheme for each

DSR feature pair.  Suppose at time t, the input vector
vt is quantized to obtain a codevector ct ∈  {c(i), i = 0,
1, ..., 2k – 1} that, after bit mapping, is represented
by a k-bit combination ut = (ut(1), ut(2),..., ut(k)).
Each bit combination ut is assigned to a quantizer
index i ∈ {0,1, ..., 2k –1} and we write for simplicity
ut = ui

t to denote that ut represents the i-th quantizer
index.  Due to constraints on coding complexity and
delay, the VQ encoder exhibits considerable redun-
dancy within the encoded index sequence, either in
terms of a non-uniform distribution or in terms of
correlation.  If only the non-uniform distribution is
considered and the indexes are assumed to be inde-
pendent of each other, the redundancy is defined as
the difference between the index length k and the
entropy given by

H(ut) = – P(ut) ⋅ log2P(ut)Σ
ut

. (1)

If inter-frame correlation of indexes is considered by
using a first-order Markov model with transition prob-
abilities P(ut|ut – 1), the redundancy is then defined as
the index length k and the conditional entropy given
by

H( ut ut – 1) = – Σut
P(ut, ut – 1) ⋅ log2P( ut ut – 1)Σ

ut – 1
.

(2)

Table 1 shows the index lengths and entropies for the
seven feature pairs of the ETSI DSR frond-end.  For
each column in Table 1, the probabilities P(ut) and
P(ut|ut –1 ) have to be estimated in advance from a
training speech database. From it we see that the DSR
index sequence is better characterized by a first-or-
der Markov process.  For error protection individual
index-bits are fed into a binary convolutional encoder
consisting of M shift registers.  The register shifts

Feature
extraction

Input
signal

Parameter
estimation

Index APP
computation

VQ encoder
and

Bit mapping

Channel
encoder

Source a priori knowledge
Channel information

Channel

yt
vt

xtutvt

P[ut | y1 ]
^ T

Table 1  Entropies for DSR feature pairs

Parameter (ut) C1, C2 C3, C4 C5, C6 C7, C8 C9, C10 C11, C12 C0, logE

Bits/Codeword 6 6 6 6 6 5 8
H(ut) 5.75 5.71 5.68 5.80 5.82 4.85 7.33
H(ut|ut – 1) 3.17 3.42 3.85 4.14 4.25 3.64 3.46

Fig. 1  Transmission scheme for each DSR feature pair
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one bit at a time and its state is determined by the M
most recent inputs.  After channel encoding, the code-
bit combination corresponding to the quantizer index
ut is denoted by xt = (xt(1), xt(2), ..., xt(n)) with the
code rate R = k/n.

One of the principal concerns in transmitting VQ
data over noisy channels is that channel errors cor-
rupt the bits that convey information about quantizer
indexes.  Assume that a channel’s input xt and output
yt differ by an error pattern et, so that the received bit
combination is yt = (yt(1), yt(2), ..., yt(n)) in which
yt(l) = xt(l) ⊕  et(l), l = 1, 2, ..., n, and ⊕  denotes the
bitwise modulo-2 addition.  At the receiver side, the
JSCD decoder will find the most probable transmit-
ted quantizer index given the received sequence.  The
decoding process starts with the formation of an a
posteriori probability (APP) for each of the possibly
transmitted indices ut = i, which is followed by choosing
the index value 

^
i that corresponds to the maximum a

posteriori (MAP) probability for that quantizer index.
Once the MAP estimate of the quantizer index is
determined, its corresponding codevector becomes the
decoded output ^vt = c(

^

i ).  The APP is the probability
that a decoded index ut = i can be derived from the
joint probability P(ui

t, st, y T
1), where st is the channel

encoder state at time t and y T
1 =(y1, y2, ..., yT) is the

received sequence from time t = 1 through some time
T.  We have chosen the length T = 24 in compliance
with the ETSI bit-streaming format, where each
multiframe message packages speech features from
24 frames.  Proceeding in this way, the symbol APP
can be obtained by summing the joint probability over
all encoder states, as follows:

P(ut = i y1
T) =

P(ut
i, st, y1

T)
P(y1

T)Σ
st

, i = 0, 1, ..., 2k –1.

(3)

III. MODIFIED BCJR ALGORITHM

Depending upon the choice of the symbol APP
calculator, a number of different MAP decoder imple-
mentations can be realized.  For the transmission

scheme with channel coding, a soft-output channel
decoder can be used to provide both decoded bits and
their reliability information for further processing to
improve the system error performance.  The most
well-known soft-output decoding algorithm is the
BCJR algorithm (Bahl et al., 1974) that was devised
to minimize the bit error probability.  This algorithm
is a trellis-based decoding algorithm for both linear
block and convolutional codes.  The derivation pre-
sented in Bahl et al. led to a forward-backward re-
cursive computation on the basis of a bit-level code
trellis.  In a bit-level trellis diagram, there are two
branches leaving each state and every branch repre-
sents a single index-bit. Proper sectionalization of a
bit-level trellis may result in useful trellis structural
properties (Lin and Costello, 2004) and allow us to
devise MAP decoding algorithms which exploit bit-
level as well as symbol-level source correlations.  To
advance with this, we propose a modified BCJR al-
gorithm which parses the received code-bit sequence
into blocks of length n and computes the APP for each
quantizer index on a symbol-by-symbol basis.  Un-
like a conventional BCJR algorithm that decodes one
bit at a time, our scheme proceeds with decoding the
quantizer indexes in a frame as nonbinary symbols
according to their index length k.  By parsing the code-
bit sequence into n-bit blocks, we are in essence merg-
ing k stages of the original bit-level code trellis into
one.  As an example, we illustrate in Fig. 2 two stages
of the bit-level trellis diagram of a rate 1/2 convolu-
tional encoder with generator polynomial (5, 7)8.  The
solid lines and dashed lines correspond to the input
bits of 0 and 1, respectively.  Fig. 2 also shows the
decoding trellis diagram when two stages of the origi-
nal bit-level trellis are merged together.  In general,
there are 2k branches leaving and entering each state
in a k-stage merged trellis diagram.  Having defined
the decoding trellis diagram as such, there will be one
symbol APP corresponding to each branch which
represents a particular quantizer index ut = i.  For
convenience, we say that the sectionalized trellis dia-
gram forms a finite-state machine defined by its state
transition function S(u i

t, st) and output function X(u i
t,

Stage 1

(a) Bit-level trellis diagram

Previous state Stage 2
00

01

10

11

Next state

00

01

10

11

(b) Merged trellis diagram

Previous state

00

01

10

11

Next state

00

01

10

11

Fig. 2  Trellis diagrams used for (a) the encoder and (b) the MAP decoder
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st).  Viewed from this perspective, the code-bit com-
bination xt = X(u i

t, st) is associated with the branch
from state st to state st + 1 = S(u i

t, st) if the correspond-
ing quantizer index at time t is ut = i.

We next modified the BCJR algorithm based on
sectionalized trellis to exploit the combined a priori
information of source and channel.  We begin our de-
velopment of the modified BCJR algorithm by rewrit-
ing the joint probability in Eq. (3) as follows:

P(u i
t, st, yT

1) = α i
t(st)β i

t(st), (4)

where α i
t(st) = P(u i

t, st, y t
1) and β i

t(st) = P(yT
t + 1|u i

t, st,
y t

1).  For the MAP symbol decoding algorithm, the
forward and backward recursions are to compute the
following metrics:

α t
i(st) = P(ut

i, st, ut – 1
j , st – 1, yt, y1

t – 1)Σ
j

Σ
st – 1

= α t – 1
j (st – 1)γi, j(yt, st, st – 1)Σ

j
Σ

st – 1
, (5)

β t
i(st) = P(ut + 1

j , st + 1, yt + 1, yt + 2
T ut

i, st, y1
t )Σ

j
Σ
st + 1

= β t + 1
j (st + 1)γ j, i(yt + 1, st + 1, st)Σ

j
Σ

st + 1
,      (6)

in which

γi, j(yt, st, st – 1)

= P(ui
t, st, yt|u j

t – 1, st – 1, y1
t – 1)

= P(st|u j
t – 1, st – 1, y1

t – 1)P(ui
t|st, u

j
t – 1, st – 1, y1

t – 1)

. P(yt|ui
t, st, u

j
t – 1, st – 1, y1

t – 1). (7)

Having a proper representation of the branch metric
γi, j(yt, st, st – 1) is the critical step in applying MAP
symbol decoding to error mitigation and one that con-
ditions all subsequent steps of the implementation.
As a practical manner, several additional factors must
be considered to take advantage of source correla-
tion and channel memory.  First, making use of the
sectionalized structure of a decoding trellis, we write
the first term in Eq. (7) as

P( st ut – 1
j , st – 1, y1

t – 1) = P( st ut – 1
j , st – 1)

=
1 , st = S(ut – 1

j , st – 1)
0 , othertwise .

(8)

The next knowledge source to be exploited is the re-
sidual redundancy remaining in the DSR features.
Assuming that the quantizer index is modelled as a first-
order Markov process with transition probabilities
P(ut|ut – 1), the second term in Eq. (7) is reduced to

P(ui
t|st, u

j
t – 1, st – 1, y1

t – 1) = P(ut = i|ut – 1 = j).  (9)

In addition to source a priori knowledge, specific
knowledge about the channel memory must be taken
into consideration.  There are many models describ-
ing the correlation of bit error sequences.  If no chan-
nel memory information is considered, which means
that the channel bit errors are assumed to be random,
the third term in Eq. (7) is reduced to

P(yt|ui
t, st, u

j
t – 1, st – 1, y1

t – 1)

= P(yt|xt = X(u i
t, st))

= P(et) = εl(1 – ε)n – 1, (10)

where ε is the channel bit error rate (BER) and l is
the number of ones occurring in the error pattern et.
When intraframe and interframe memory of the chan-
nel are considered, the third term in Eq. (7) becomes

P(yt|ui
t, st, u

j
t – 1, st – 1, y1

t – 1)

= P(yt|xt = X(u i
t, st), yt – 1, xt – 1 = X(u j

t – 1, st – 1))

= P(et|et – 1). (11)

IV. PROBABILITY RECURSIONS FOR
GILBERT CHANNEL

Designing a robust DSR system requires that pa-
rameterized probabilistic models be used to summa-
rize some of the most relevant aspects of error
statistics.  It is apparent from previous work on chan-
nel modelling (Kanal and Sastry, 1978) that we are
confronted with contrasting requirements in select-
ing a good model.  A model should be representative
enough to describe real channel behavior and yet it
should not be analytically complicated.  To permit
theoretical analysis, we assumed that the encoded bits
of DSR features were subjected to the sample error
sequences typical of the Gilbert channel.  The Gil-
bert channel model consists of a Markov chain hav-
ing an error-free state G and a bad state B, in which
errors occur with the probability (1 – h).  The state
transition probabilities are b and g for the G to B and
B to G transitions, respectively.  The model state-tran-
sition diagram is shown in Fig. 3.  The effective BER
produced by the Gilbert channel is ε = (1 – h)b/(g +
b).  Notice that in the particular case of a Gilbert
model with parameter values b = 1, g = 0, h = 1 – ε,

1-b G B 1-g

b

g

Fig. 3  Gilbert channel model
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the channel model reduces to a memoryless binary
symmetric channel with the BER ε.

The effectiveness of the MAP symbol decoding
depends crucially on how well the error characteris-
tics are incorporated into the calculation of channel
transition probabilities P(et|et – 1).  Although using
channel memory information was previously proposed
for MAP symbol decoding (Turin, 2001), the empha-
sis was placed upon channels with no interframe
memory.  When only access to the intraframe memory
is available, it was shown that the channel transition
probabilities of the Gilbert channel have closed-form
expressions that can be represented in terms of model
parameters {h, b, g}.  Under such conditions, we can
proceed with the MAP symbol decoding in a manner
similar to the work of (Turin, 2001).  Extensions of
these results to channels with both intraframe and
interframe memory have been found difficult.  Rec-
ognizing this, we next develop a general treatment of
probability recursions for the Gilbert channel.  The
main result is a recursive implementation of MAP
symbol decoder being closer to the optimal for chan-
nels with memory.  For notational convenience, channel
bit error et(l) will be denoted as rm, in which the bit
time m is related to the frame time t as m = n(t – 1) +
l, l = 1, 2, ..., n.  Let qm ∈  {G, B} denote the Gilbert
channel state at bit time m.  The memory of the Gil-
bert channel is due to the Markov structure of the state
transitions, which lead to a dependence of the cur-
rent channel state qm on the previous state qm – 1.

To develop a recursive algorithm, it is more con-
venient to rewrite the channel transition probabili-
ties as

P( et et – 1)

= P(rm = 1 rm0

m – 1)rmP(rm = 0 rm0

m – 1)1 – rmΠ
m = n(t – 1) + 1

nt
,

 (12)

where rm0

m – 1  = (rm0
, rm0 + 1, ..., rm – 1) represents the bit

error sequence starting from bit m0 = n(t –2) + 1.
The following is devoted to a way of recursively com-
puting P(rm = 1|rm0

m – 1 ) from P(rm – 1 = 1|rm0

m – 2 ).  The
Gilbert channel has two properties, P(qm|qm – 1, rm0

m – 1 )
= P(qm|qm – 1) and P(rm|qm, rm0

m – 1 ) = P(rm|qm), which
facilitate the probability recursions.  By successively
applying the Bayes rule and the Markovian property
of the channel, we have

P( rm = 1 rm0

m – 1)

= P( rm = 1 qm = B , rm0

m – 1)P( qm = B rm0

m – 1)

= (1 – h)P( qm = B rm0

m – 1) , (13)

in which

P( qm = B rm0

m – 1)

= P( qm = B qm – 1 = G, rm0

m – 1)P( qm – 1 = G rm0

m – 1)

+ P( qm = B qm – 1 = B, rm0

m – 1)P( qm – 1 = B rm0

m – 1)

= b
P( qm – 1 = G, rm – 1 rm0

m – 2)

P( rm – 1 rm0

m – 2)

+ (1 – g)
P( qm – 1 = B, rm – 1 rm0

m – 2)

P( rm – 1 rm0

m – 2)

= b + (1 – g – b)
P( qm – 1 = B, rm – 1 rm0

m – 2)

P( rm – 1 rm0

m – 2)

= b + (1 – g – b)
P( rm – 1 qm – 1 = B)

P( rm – 1 rm0

m – 2)

⋅
P( rm – 1 = 1 rm0

m – 2)

1 – h
. (14)

V. EXPERIMENTAL RESULTS

Computer simulations were conducted to evaluate
three MAP-based error mitigation schemes for DSR
over burst error channels.  First a bit-level trellis MAP
decoding scheme BMAP is considered that uses the
standard BCJR algorithm to decode the index-bits.
The decoders SMAP1 and SMAP2 exploit the sym-
bol-level source redundancy by using a modified BCJR
algorithm based on a sectionalized trellis structure.
The SMAP1 is designed for a memoryless binary sym-
metric channel, whereas the SMAP2 exploits the channel
memory though the Gilbert channel characterization.
The channel transition probabilities to be used for the
SMAP1 is P(et) in Eq. (10), and P(et|et – 1) in Eq. (11)
for the SMAP2.  For purposes of comparison, we also
investigated an error mitigation scheme (Peinado et
al., 2003) which applied the concept of softbit speech
decoding (SBSD) and achieved good recognition per-
formance for AWGN and burst channels.  A prelimi-
nary experiment was first performed to evaluate various
decoders for reconstruction of the feature pair (C0,
logE) encoded with the DSR front-end.  A rate R = 1/
2 convolutional code with memory order M = 6 and
the octal generator (46,72)8 is chosen as the channel
code.  Table 2 presents the signal-to-noise ratio (SNR)
obtained from transmission of the index-bits over Gilbert
channel with BER ranging from 10–3 to 10–1.  The
results of these experiments clearly demonstrate the
improved performance achievable using the SMAP1
and SMAP2 in comparison to those of BMAP and SBSD.
Furthermore, the improvement has a tendency to
increase for noisy channels with higher BER.  This
indicates that the residual redundancy of quantizer
indexes is better exploited at the symbol level to achieve
more performance improvement.  A comparison of
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the SMAP1 and SMAP2 also revealed the importance
of matching the real error characteristics to the chan-
nel model on which the MAP symbol decoder design
is based.  The better performance of SMAP2 can be
attributed to its ability to compute the symbol APP
taking interframe and intraframe memory of the channel
into consideration, as opposed to the memoryless chan-
nel assumption made in the SMAP1.

We further validate the proposed decoding
algorithms for the case where error sequences were
generated using a complete GSM simulation.  The simu-
lator is based on the CoCentric GSM library (CoCentric
System Studio-Referenec Design Kits, 2003) with TCH/
F4.8 data and channel coding, interleaving, modulation,
a channel model, and equalization.  The channel model
represents a typical case of a rural area with 6 propa-
gation paths and a user speed of 50 km/h.  Further,
cochannel interference was simulated at various car-
rier-to-interference ratios (CIR).  In using the SMAP1
and SMAP2 schemes, the channel transition probabilities
have to be combined with a priori knowledge of Gil-
bert model parameters which can be estimated once
in advance using the gradient iterative method
(Chouinard et al., 1988).  For each simulated error
sequence, we first measured the error-gap distribution
P(0l|1) by computing the probability that at least l suc-
cessive error-free bits will be encountered next on the
condition that an error bit has just occurred.  The op-
timal identification of Gilbert model parameters was
then formulated as the least square approximation of
the measured error-gap distribution by exponential curve
fitting.  Table 3 gives estimated Gilbert model parameters
for the GSM TCH/F4.8 data channels operating at CIR
= 1, 4, 7, 10 dB.  The next step in the present investi-
gation concerned the performance degradation that may
result from using the SMAP2 scheme under channel
mismatch conditions.  In Table 4, CIRd refers to the

CIR value assumed in the design process, and CIRa

refers to the true CIR used for the evaluation.  The
best results are in the main diagonal of the table, where
channel-matched Gilbert model parameters are used
for the channel transition probability computation of
Eq. (12).  The performance decreases in each column
below the main diagonal when the CIRd is increased.
The investigation further showed that the SMAP2 is
not very sensitive to a channel mismatch between the
design and evaluation assumptions.

We next considered the speaker-independent rec-
ognition of Mandarin digit strings as the task without
restricting the string length.  A Mandarin digit string
database recorded by 50 male and 50 female speakers
was used in our experiments.  Each speaker pronounced
10 utterances and 1-9 digits in each utterance.  The speech
of 90 speakers (45 male and 45 female) was used as the
training data, and the other 10 as test data.  The total
numbers of digits included in the training and test data
were 6796 and 642, respectively.  The reference recog-
nizer is based on the HTK software package.  A
38-dimension feature vector used in the recognizer con-
sisted of 12 MFCCs, delta-MFCC, delta-delta-MFCC,
delta-energy and delta-delta-energy.  The digits were
modelled as whole word Hidden Markov Models
(HMMs) with 8 states per word and 64 mixtures for each
state.  In addition, a 3-state HMM was used to model
pauses before and after the utterance and a one-state
HMM was used to model pauses between digits.  The
DSR results obtained by various error mitigation algo-
rithms for the Gilbert channel are shown in Fig. 4.  It

Table 2 SNR(dB) performance for various decod-
ers on a Gilbert channel

BER BMAP SBSD SMAP1 SMAP2

0.001 26.84 26.88 26.93 27.51
0.0025 26.37 26.51 26.56 27.10
0.0063 25.21 25.83 25.91 26.41
0.0158 22.30 22.71 23.31 25.13
0.0398 17.51 20.67 21.13 24.67
0.1 14.12 16.88 18.52 23.94

Table 3 Estimated Gilbert model parameters for
GSM TCH/F4.8 data channels

CIR(dB) 1 4 7 10

g 0.001 0.01 0.02 0.05
b 0.0197 0.0034 0.0022 0.0034
h 0.7528 0.6086 0.7511 0.9403

Table 4 SNR performance of the SMAP2 over the
GSM data channel under channel mis-
match conditions

CIRa = 1 CIRa = 4 CIRa = 7 CIRa = 10

CIRd = 1 11.86 16.68 27.02 30.25
CIRd = 4 11.62 16.78 27.19 30.40
CIRd = 7 11.51 16.72 27.24 30.41
CIRd = 10 11.31 16.32 27.01 30.64

Fig. 4   Recognition performances for DSR transmission over a
Gilbert channel
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can be seen that employing the source a priori infor-
mation, sectionalized trellis MAP decoding, and chan-
nel memory constantly improves the recognition
accuracy.  The SMAP2 scheme performs the best in all
cases, showing the importance of combining the a priori
knowledge of source and channel by means of a section-
alized code trellis and Gilbert channel characterization.

VI. CONCLUSIONS

A JSCD scheme which exploits the combined
source and channel statistics as an a priori informa-
tion is proposed and applied to channel error mitiga-
tion in DSR applications.  We first investigate the
residual redundancies existing in the DSR features
and find ways to exploit these redundancies in the
MAP symbol decoding process.  Also proposed is a
modified BCJR algorithm based on sectionalized code
trellises which uses Gilbert channel characterization
for better decoding in addition to source a priori
knowledge.  Experiments on Mandarin digit string
recognition indicate that the proposed decoder
achieved significant improvements in recognition
accuracy for DSR over burst error channels.
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NOMENCLATURE

b the probability for the state transition G to B
B the bad state of the Gilbert channel
ct the codeword of the VQ at time t
et the bit-error pattern at time t
g the probability for the state transition B to G
G the good state of the Gilbert channel
k the length of ut

st the state of the channel encoder
ut the binary index representing ct

vt the source vector
xt the code-bit combination after channel encoding
yt the received bit combination at the receiver
ε bit error rate of the noisy channel
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