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Study on the Mechanisms of Texture Transitions
In Cholesteric Liquid Crystal Cells
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Institute of Electro-Optical Engineering

National Chiao Tung University

ABSTRACT

The texture transitions in cholesteric liquid crystals are very interesting and
are of importance for both fundamental science and applications. It is essential to
understand the mechanisms of texture transitions in ordr to design driving

schemes for cholesteric devices.

In this thesis, we investigated the mechanisms of three types of texture
transitions in planar-aligned cholesteric liquid crystal cells: homeotropic-planar
texture transition, homogeneous-planar texture transition and planar-focal conic
texture transition. In addition, the mechanism of homeotropic-fingerprint texture
transition was discussed in homeotropic-aligned cholesteric liquid crystal cells. In
order to understand the dynamics of texture transitions, a computer program for

three-dimensional simulation based on the finite element method was developed.

il



When the applied electric field was turned off abruptly, the dynamics of
homeotropic-planar texture transition was numerically analyzed and
experimentally confirmed in a planar-aligned cholesteric liquid crystal cell.
Furthermore, the effect of bias waveform on the homeotropic-planar relaxation
process was also studied. On the basis of this knowledge, a bias waveform was
designed to reduce the long relaxation time. Similarly, we also numerically
investigated the dynamics of the homogeneous-planar texture transition when the
unwound electric field was removed abruptly. The simulation results agreed well
with the previous experimental observations. Moreover, we found that the
Helfrich deformation can be induced not only by an electric field but also by an
elastic force. Therefore, we compared the elastic-induced Helfrich deformation
during the homeotropic-planar and homogeneous-planar texture transitions with
the electric-induced Helfrich deformation during the planar-focal conic texture
transition. On the other hand, we observed the modulated textures during the
planar-focal conic texture transition by changing the applied electric field. It was
found that the modulated textures.exhibit-either an ordered striped texture or an
ordered hexagonal texture depending on ‘the applied electric-field strength. Of
these textures, the ordered hexagonal texture was experimentally observed for the

first time.

Finally, we observed the stripe formation during the homeotropic-fingerprint
texture transition when the applied electric field was turned off abruptly in
homeotropic-aligned cholesteric liquid crystal cells with patterned electrode
configurations. The striped direction depended not only on the thickness-to-pitch
ratio, but also on the applied electric field. In this work, the cholesteric liquid
crystal phase grating with the field-controllable grating orientation and grating

period was realized and the operational mechanism of this device was presented.
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