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Chapter 1 

Introduction 

1.1 Textures of cholesteric liquid crystals 

For a cholesteric liquid crystal with a given pitch, its texture is characterised by 

the direction of the helical axis. When the helical axis is perpendicular to the cell 

surface, the planar texture is obtained, as shown in Fig. 1.1(a). A microphotograph of 

the planar texture with domain boundary is shown in Fig. 1.1(b). When, on the other 

hand, the helical axis is more or less parallel to the cell surface, the focal conic 

texture is obtained, as shown in Fig. 1.2(a). A microphotograph of the focal conic 

texture is shown in Fig. 1.2(b). However, when the pitch of a cholesteric liquid 

crystal is long and the helical axis is parallel to the cell surface, the texture is called 

fingerprint texture, as shown in Fig. 1.3(a). Figure 1.3(b) shows a microphotograph 

of the fingerprint texture. 

With the appropriate substrate surface treatment or dispersed polymer, the planar 

texture and focal conic texture can be stable at zero field. For a cholesteric liquid 

crystal with a positive dielectric anisotropy, the pitch can be elongated by applying 

an external field. When the applied field is larger than a critical field 
2/1

0220
2 )/K()P/(Ec ε∆ε×π= , the helical structure is unwound. If the field is parallel 

to the helical axis, the field-induced homeotropic texture is obtained, as shown in Fig. 

1.4(a). However, if the field is perpendicular to the helical axis, the field-induced 
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homogeneous texture is obtained, as shown in Fig. 1.4(b). In cholesteric liquid 

crystals, a transient planar texture forms during relaxation from the field-induced 

homeotropic texture. When the applied field is removed, the relaxation occurs that 

results in the formation of the transient planar texture, which is a Grandjean texture 

and possesses a pitch longer than the natural pitch, as shown in Fig. 1.4(c). 
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Figure 1.1 (a) Schematic structure of the planar texture. (b) Microphotograph of 
the planar texture. 

Figure 1.2 (a) Schematic structure of the focal conic texture. (b) Microphotograph 
of the focal conic texture. 
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Figure 1.3 (a) Schematic structure of the fingerprint texture. (b) Microphotograph 
of the fingerprint texture. 

(a) (b) 

(a) (b) 

Figure 1.4 Schematic structures of (a) homeotropic texture, (b) homogeneous 
texture and (c) transient planar texture.  

(c) 
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1.2 Optical properties of cholesteric textures 

When a cholesteric liquid crystal is in the planar texture, there is a periodic 

variation of the refractive index along the cell normal direction. The refractive index 

oscillates between the ordinary refractive index no and the extraordinary refractive 

index ne of the liquid crystals. The period is half of the natural pitch P0 because nv  

and nv−  are equivalent. When the wavelength λ  of incident light and P0 are 

comparable, the planar texture exhibits Bragg reflection at the wavelength Bλ  with 

θ><=λ cosnPm 0B .      (1.1) 

Here, m is the diffraction order, θ  is the angle of light incidence and >< n  is the 

average refractive index of the medium. For light propagating along the helical axis, 

only the first-order Bragg reflection is possible. Therefore, the maximum of selective 

reflection occurs at 0B Pn ><=λ  for the normal incident light. The spectral width 

of the selective reflection band is equal to nP0 ∆=λ∆ , where oe nnn −=∆  is 

the birefringence of a nematic layer perpendicular to the helical axis. Circularly 

polarized light with the same handedness as the helical structure is reflected strongly 

because of the constructive interference of the light reflected from different positions, 

while circularly polarized light with the opposite handedness to the helical structure 

is not reflected because of the destructive interference of the light reflected from 

different positions. If the normally incident light is unpolarized, then the maximum 

reflection from the cholesteric liquid crystal is 50%. If the peak wavelength of the 

Bragg reflection lies in the visible spectrum, the planar texture will hence appear 

highly colored. In addition, the focal conic texture weakly scatters light in a forward 

direction, therefore is predominantly transparent in appearance. By painting the back 

of the cell with a black mask, the focal conic texture will therefore appear black. 
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In the fingerprint texture, a cholesteric liquid crystal with a long pitch can be 

considered as a medium with a periodic gradient effective birefringence effn∆ , as 

shown in Fig. 1.5. The effective birefringence changes between )nn(n oe −=∆  and 

zero and the period is half of the pitch. This periodic effective birefringence will 

result in the periodicity in the phase and then causes a diffraction of the incident light. 

There are two main cases of interests, namely (a) the Raman-Nath diffraction and (b) 

the Bragg diffraction. Raman-Nath diffraction can occur when the helical axis is 

perpendicular to the incident beam direction, as shown in Fig. 1.6(a) and when the 

wavelength λ  of the incident light, the grating period Λ , and the grating thickness 

(the thickness of the liquid crystal cell gap) d satisfy the condition Q << 1, where 

2/dQ Λλ= .       (1.2) 

The diffraction condition is given in general by 

msinm θΛ=λ ,        (1.3) 

where m is the diffraction order and mθ  is the corresponding diffraction angle. 

Figure 1.5 Schematic structure of the fingerprint texture which corresponds a 
periodic variation of the effective birefringence )nn(n oeffeff −=∆  when the 
light is incident along the z axis.  
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As can be seen from Fig. 1.5, for the light with the polarization perpendicular to 

the helical axis, the refractive index is a periodic function of the coordinate y along 

the helical axis, namely n = neff. For the light with the polarization parallel to the 

helical axis, the refractive index is constant, namely n = no. Such a layer structure 

represents a polarization-sensitive phase grating: only the component of electric field 

vector that is perpendicular to the helical axis is diffracted.  

On the other hand, when Q >> 1, the Bragg diffraction occurs, as shown in Fig. 

1.6(b), and the so-called Bragg angle Bθ  satisfies the condition 

)2/arcsin(B Λλ=θ .       (1.4) 

When the angle of the incidence light is equal to the Bragg angle, the intensity of the 

diffracted beam, which strongly depends on the angle of incidence, reaches a 

maximum. In other words, for each grating period Λ , the incident angle should be 

adjusted to satisfy the Bragg angle in order to obtain the maximum diffractive 

efficiency. 

Raman-Nath diffraction Bragg diffraction

θB

Λ

d

Raman-Nath diffraction Bragg diffraction

θBθB

Λ

d

Figure 1.6 Geometry for (a) Raman-Nath diffraction and (b) Bragg diffraction. 

(a) (b)
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1.3 Aims of this research 

Cholesteric liquid crystals (ChLCs) are of considerable interest for display 

applications. The bistable characteristic of ChLCs eliminates the need for a constant 

refresh of the displays and permits image retention without any power, offering 

unprecedented energy savings in many applications. The naturally reflective property 

of ChLCs offers unmatched readability even in direct sunlight. Moreover, the 

cholesteric liquid crystal displays (Ch-LCDs) also exhibit high contrast ratio and 

high reflectance due to the reflective nature of ChLCs. Superior wide viewing angle 

is accomplished by the elimination of polarizers. Reflective Ch-LCDs do not require 

polarizers, color filters, back-lighting or active matrix substrates, therefore the 

manufacturing costs are minimized. On the other hand, the use of the passive matrix 

driving scheme also makes this technology particularly suitable for large area 

applications because it ensures that the largest possible aspect ratio is achieved, 

hence maximizing the total reflectance of the displays. In the very near future 

Ch-LCDs could form the ideal choice for low power sign board applications and 

hand held applications, such as cell phones and e-books. 

Nevertheless, the switching time of the Ch-LCDs is relatively long. The typical 

frame update time using standard passive matrix driving techniques lies in the region 

of 10 ms per row. In order to enable the rapid updating of the Ch-LCDs and to 

design driving schemes, it is essential to understand the mechanisms of texture 

transitions in ChLCs. However, it is very hard to investigate the mechanisms of 

texture transitions in ChLCs, because it involves the complex evolution of director 

configurations during the texture transitions. Therefore, the three-dimensional 

simulation program based on the finite element method is developed to investigate 
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the dynamics of texture transitions in ChLCs. On the basis of the understanding for 

the mechanisms of texture transitions, the design of driving schemes can be made.  

In recent years, interest in ChLCs has emerged not only for the applications of 

bistable Ch-LCDs but also for the applications of light modulators. The fingerprint 

texture with periodic helical twist structure, as shown in Fig. 1.5, is capable of 

Raman-Nath or Bragg diffraction, depending on the value of Q in equation (1.2). For 

most cholesteric diffractive devices, the initial state is a field-free planar texture. The 

dielectric coupling of the cholesteric structure with the external electric field creates 

the fingerprint texture, as shown in Fig. 1.3. Once the fingerprint texture is formed, 

the period is switchable by changing the applied electric field. In addition, the 

in-plane grating orientation strongly depends on φ , the angle between the rubbing 

directions of two plates, and d/P0 ratio in a planar-aligned cholesteric liquid crystal 

cell. Experimental evidence has shown that the cell with φ  = 0° exhibits no more 

than two possible striped orientations in the fingerprint texture. The striped 

orientation is either parallel or perpendicular to the rubbing direction, depending on 

the d/P0 ratio. For the cell with φ  = 90°, the striped orientataion makes an angle of 

45° or 135° with one of the rubbing directions. In other words, for the cell with fixed 

angle φ  and d/P0 ratio, only one striped orientation is obtained. 

In order to design cholesteric phase gratings with zero-field stable fingerprint 

texture and tunable striped orientation as well as striped period, it is essential to 

understand the formation mechanism of the fingerprint texture during the texture 

transition. On the basis of this understanding, the cholesteric phase gratings with the 

field-tunable grating orientation and grating period can be realized. 
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As illustrated in Figs. 1.1-1.4, ChLCs exhibit many textures which are 

determined by the surface anchoring, the cell thickness and the applied field. There 

are many possible transitions among these textures, as shown in Fig. 1.7, where Ec1, 

Ec2, Eb1 and Eb2 are threshold voltage of different texture transitions. These texture 

transitions are very interesting and are of importance for both fundamental science 

and applications. In order to investigate the dynamics of texture transitions, the basic 

theory and algorithm of simulation for modeling a ChLC system are discussed in 

chapter 2. In chapter 3, the dynamics of the homeotropic-planar texture transition in 

a planar-aligned cholesteric liquid crystal cell is numerically investigated and 

experimentally confirmed. Furthermore, the effect of bias waveforms on the 

Figure 1.7 Schematic diagram showing the possible transitions among the 
cholesteric textures. 
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homeotropic-planar texture transition is discussed in chapter 4. On the basis of this 

knowledge, a bias waveform is designed to reduce the long relaxation time. In 

chapter 5, we numerically investigate the dynamics of the homogeneous-planar 

texture transition in a planar-aligned cholesteric liquid crystal cell. Moreover, the 

formation mechanism of the elastic-induced Helfrich deformation is reported. The 

electric-field-induced periodic modulated textures observed during the planar-focal 

conic texture transition in a planar-aligned cholesteric liquid crystal cell are 

described in chapter 6. In chapter 7, we observed the stripe formation during the 

homeotropic-fingerprint texture transition in homeotropic-aligned cholesteric liquid 

crystal cells with patterned electrode configurations. In this work, the cholesteric 

phase grating with the field-controllable grating orientation and grating period is 

realized and the operational mechanism of this device is presented. Finally, in 

chapter 8, summary and conclusions are made. 
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Chapter 2 

Theory and Numerical Method 

2.1 Theory 

2.1.1 Continuum theory of liquid crystals 

In this section, we model the liquid crystal system based on the continuum 

theory which comes from the assumption that the director field is continuous over all 

space. Under this assumption, the average orientation of liquid crystal molecules in a 

local area can be denoted as a “director”. However, defects containing isotropic cores 

do not meet this assumption. Therefore, it is very hard to accurately predict the 

configuration of a defect with an isotropic core by the model based on the continuum 

theory. To accurately model the behavior of systems that include defects having 

isotropic cores, the rigorous Landau-de Gennes theory can be used [1]. This theory 

uses the order parameter tensor and can phenomenally explain the nematic-isotropic 

phase transition. In this thesis, we focus on the continuum theory which is the most 

commonly used to model the liquid crystal system. 

2.1.2 Elastic free energy 

The elastic free energy is a measure of elastic stresses on the system. An elastic 

free energy of zero occurs when the directors are in the undisturbed state. For a 

nematic liquid crystal, this results in a configuration with all directors aligned 

parallel to each other, as shown in Fig 2.1(a).  
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Under the assumption of continuum theory, the Frank-Oseen theory is widely 

used to represent the elastic free energy of the liquid crystal system [2-4]. For an 

isothermal deformation of an incompressible nematic liquid crystal fluid, the 

expression of the elastic free energy density flc in terms of the director nv  is given 

by 

2
33

2
22

2
11lc )nn(K

2
1)nn(K

2
1)n(K

2
1f vvvvv ×∇×+×∇⋅+⋅∇= ,   (2.1) 

where K11, K22, K33 are elastic constants for splay, twist and bend, respectively, 

associated with three types of deformations illustrated in Fig 2.1. The first term 

)n( v⋅∇  is for the splay deformation, the second term )nn( vv ×∇⋅  is for the twist 

deformation and the third term )nn( vv ×∇×  is for the bend deformation. In the 

ground state, 0flc = , thus 0n =⋅∇ v , 0nn =×∇⋅ vv  and 0nn =×∇× vv ; that is , the 

director is unidirectional in space. Moreover, two other elastic constants K13 and K24, 

related to the splay-bend deformation )]nn([ vv ⋅∇⋅∇  and saddle-splay deformation 

)]nnnn([ vvvv ×∇×+⋅∇⋅∇ , respectively, sometimes appear in the equation for the 

elastic free energy density. However, when the free energy contains the K13 term, it 

Figure 2.1 The equilibrium configuration of nematic liquid crystals is shown in (a). 
There are three types of elastic deformations: (b) splay, (c) twist, (d) bend. 

(a) (d) (c) (b)
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can always be reduced; that is, there is no energy minimum [4]. Hence, the K13 term 

is usually ignored. For the K24 term, the free energy related to this term can be 

transposed from a volume integral to a surface integral [5]. Therefore, the K24 term 

can also be neglected when the anchoring energy on the surface is assumed to be 

sufficiently strong. 

 

 

 

 

 

 

In the cholesteric (chiral nematic) liquid crystals, usually obtained by doping a 

small quantity of chiral molecules to a nematic liquid crystal, the liquid crystal 

molecules twist about their helical axis [6]. The distance along the helical axis for the 

directors to rotate 360° is called the pitch and is denoted by P0, as shown in Fig. 2.2. 

To account this natural twist, equation 2.1 is modified as 

2
33

2
022

2
11lc )nn(K

2
1)qnn(K

2
1)n(K

2
1f vvvvv ×∇×++×∇⋅+⋅∇= ,   (2.2) 

here, q0 (=2π/P0) is the chiral parameter and it represents the chirality of the system. 

The sign of q0 determines the handedness of the twist: a positive sign corresponds to 

P0P0

Figure 2.2 The structure of a cholesteric phase. The pitch is defined as the 
distance needed for the directors to twist 360° in space. 
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a right-hand twist and a negative sign corresponds to a left-hand twist. In the ground 

state, 0n =⋅∇ v , 0nn =×∇× vv  and 0qnn 0 ≠−=×∇⋅ vv ; that is, the director field is no 

longer a uniform configuration in space but a twist structure, as shown in Fig. 2.2. 

2.1.3 Electric free energy 

In this section, we discuss the interaction between liquid crystals and electric 

field. Here, a liquid crystal with rod-like shape is considered and the nematic phase 

is uniaxial. There are two dielectric constants for rod-like director. One is the 

dielectric constant ||ε  which is measured under the electric field parallel to the 

director. The other is the dielectric constant ⊥ε  which is measured under the electric 

field perpendicular to the director. The dielectric anisotropy ε∆  is defied as ⊥ε−ε|| . 

When an electric field is applied to a liquid crystal, the liquid crystal becomes 

polarized and then an induced dipole forms. This effect is called polarization and is 

denoted as P
v

 (dipole moment per unit volume) [7].  

For linear dielectrics, the polarization is proportional to the electric field and is 

given by 

EP e0

vv
χε= ,           (2.3) 

where ε0 is the permittivity of free space and is equal to 8.854×10-12 C2/Nm2, eχ  is 

the electric susceptibility of the medium, and E
v

 is the total field inside the medium 

and has units N/C or V/m. So the polarization has units of C/m2, in accordance with 

its definition as the dipole moment (Cm) per unit volume (m3). By assuming the 

liquid crystal material to be a linear dielectric medium, the electric free energy 

density in an electric field 0E
v

 caused by static charges is expressed as the following 

equation, [8]: 
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Here θ is the angle between electric field and director, D is the electric displacement, 

and ε  is the dielectric constant of the material. Equations ED 0

vv
εε=  and 

e1 χ+=ε  are used to derive equation (2.4). 

Now we consider two physical systems which are frequently used to model the 

liquid crystal systems, that is, the constant charge system and constant voltage 

system. For the constant charge system, the voltage source is not connected to the 

liquid crystal system; in other words, it is a closed system and the electric energy 

cannot be injected to or rejected from the system, that is, electric charges on the cell 

electrodes are kept constant ideally, yielding 0DD
vv

= . Therefore, the electric energy 

density in equation (2.4) can be rewritten as 

(2.4)
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Note the first term is not concerned with the director orientation, implying that it is a 

constant value for the energy of the system and can be dropped. Thus equation (2.5) 

becomes 

.ED
2
1

D
2
1

|f

0

2

eargchttanconse

vv
⋅=

εε
=          (2.6) 

For the constant voltage system, the electric source is connected, giving the 

system an open one, where the electric charge can be injected or ejected 

synchronously with the change of director distribution even if the applied voltage is 

kept constant. In this case, we consider the contribution of the second term in 

equation (2.4) to the electric free energy of the system, so we have 

.vE
2
1

dlEE
2
1

dVfF

00

00

ε=

ε=

=

∫

∫
.         (2.7) 
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Similarly, this is a constant value and does not affect the director contribution at all. 

Therefore, the electric free energy density of the system can be rewritten as  

.ED
2
1

|f voltagettanconse

vv
⋅−=

            (2.8) 

Finally, we conclude that, under the constant charge condition, the electric free 

energy density is represented as )ED(21
vv
⋅  which is used in the “Helmholtz” free 

energy representation. On the other hand, under the constant voltage condition, the 

electric free energy density is represented as )ED(21
vv
⋅−  which is used in the 

“Gibbs” free energy representation. According to the statistical thermodynamics 

theory, the Helmholtz free energy has a minimum value in a constant charge system, 

whereas the electric Gibbs free energy has a minimum value in a constant voltage 

system [9,10]. 

The electric free energy density can also be represented in terms of the applied 

voltage v instead of the electric displacement D
v

. In the right-handed Cartesian 

coordinates, the dielectric tensor can be rewritten as  

jiijij nnε∆+δε=ε ⊥ ,        (2.9) 

where δij is Kronecker’s delta ( δij = 1 when i=j; otherwise δij = 0; i, j = 1~3 ). Under 

the application of an electric field, the electric displacement inside the liquid crystal 

medium is given by jij0i ED εε=  and from equation (2.9), we obtain 

i0i0i n)En(ED
vv ⋅ε∆ε+εε= ⊥ .         
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or 

n)En(ED 00
vvvvv

⋅ε∆ε+εε= ⊥ .        (2.10) 

In terms of vE −∇=
v

, we have 

).)v(n()v((
2
1

))En(E(
2
1

ED
2
1

2
0

2
0

2
0

2
0

−∇⋅ε∆ε+−∇εε=

⋅ε∆ε+εε=

⋅

⊥

⊥

v

vvv

vv

      (2.11) 

2.1.4 Surface free energy 

The directors at the surface are usually anchored along an energy favorable 

orientation, called the “easy direction” or “easy axis” which is usually determined by 

the rubbing direction. When the director at the surface deviates from the easy 

direction, the surface energy has to be added to the energy of the system. The 

interaction between the director and surface is characterized by the “anchoring 

strength” or “anchoring energy”, which is a measure of how rigidly the director at 

the surface is fixed at its easy axis. For convenience, the dimensionless surface 

parameter λs is introduced: 

Ad
K11

s
π

=λ ,          (2.12) 

here A is the anchoring strength and d is the cell gap. The larger the anchoring 

strength, the smaller the surface parameter, and for strong anchoring condition, the 

surface parameter λs equals to zero because the anchoring strength A goes to infinity.  
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There are two kinds of anchoring energy capable of describing the interaction 

between the surface and director. One is the polar anchoring energy which is 

associated with how much energy is required to pull the director away from the 

surface. The other is azimuthal anchoring energy which is associated with how much 

energy is required to rotate the director at the surface. Rapini and Papoular built a 

simple phenomenological expression for the surface free energy density [11]: 

φ∆+α∆= 2
a

2
ps sinA

2
1sinA

2
1f ,        (2.13) 

here Ap and Aa denote the polar and azimuthal anchoring strengths, respectively. ∆α 

and φ∆  are the deviation angles of the director at the surface from the easy axis at 

the polar and azimuthal directions, respectively. Note that equation (2.13) is obtained 

under the assumption that the anchoring energy of the surface can be decoupled into 

polar and azimuthal anchoring energy, respectively. This is valid only when the 

coupling between polar and azimuthal anchoring energy is not very strong. However, 

in real situations, they couple with each other, therefore the interfacial energy density 

in equation (2.13) can be generalized by a “simple” coupling between polar and 

azimuthal interfacial free energy densities as the following equation [12]:  

αφ∆+α∆= 22
a

2
ps cossinA

2
1sinA

2
1f ,       (2.14) 

where α is the pretilt angle of the director at the surface. In recent years, many 

attempts had been made to generalize the R-P surface energy model [13-16]. 
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2.1.5 Total free energy 

The total free energy of the liquid crystal system is obtained by adding the bulk 

free energy, which is the integral of the Gibbs free energy density fg over the volume 

of the system, and surface free energy, which is the integral of the surface free 

energy density fs over the surface of the volume, and is given by 

∫∫ += dSfdVfF sg ,      (2.15) 

where fg = flc-fe [9]. When the anchoring energy on the surface is assumed to be 

sufficiently strong, like most liquid crystal cells, the surface term can be neglected 

therefore, equation (2.15) becomes 

.dxdydz)])v(n(
2
1)v((

2
1[

dxdydz])nn(K
2
1)qnn(K

2
1)n(K

2
1[

dV)ff(

F

2
0

2
0

2
33

2
022

2
11

elc

−∇⋅ε∆ε+−∇εε−

×∇×++×∇⋅+⋅∇=

−=

⊥∫ ∫ ∫

∫ ∫ ∫

∫

v

vvvvv .  (2.16) 
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2.1.6 Comparison of the tensor form and vector form 

There are two kinds of forms to represent the free energy density of a liquid 

crystal system. One is the vector form in which the free energy density can be 

expressed in terms of a vector nv , i.e. a director. The other is tensor form in which 

the free energy density can be expressed in terms of the tensor order parameter Q 

[6,8,17]. In the Cartesian vector representation, the discretized free energy 

representation gives different free energies for nv  and nv− . However, in real 

nematic phase, nv  and nv−  are equivalent and should give the same energy. On the 

other hand, in the Q tenser representation, it always incorporates the multiplication 

of two nv ’s. This means that the sign of nv  is always cancelled out. From the 

mathematical point of view, the tenser form seems to be more appropriate to 

represent the free energy density of the liquid crystal system. However, the inversion 

symmetry of the tensor formulation can cause the calculation to give not only 

inaccurate results, but also physically impossible ones. For example, the tensor form 

can allow the continuous transformation between splay state and bend state, which 

are topologically inequivalent states in the pi-cell system [18]. Nevertheless, this is 

impossible in experiment, because the two states with topologically inequivalent 

configuration can not be transformed from one to the other without the motion of an 

isotropic core defect [19]. Though the vector representation cannot preserve the 

property of inversion symmetry, it is mathematically simpler. When the director does 

not change steeply, the vector approach is physically correct and reasonable. 

Moreover, the advantages of the vector form over the tensor form are fewer 

calculation time, fewer grid points and more reliable. So in this thesis, we use the 

vector form to represent the free energy density of the liquid crystal system. 
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2.2 Numerical method 

Over the recent years, the liquid crystal displays (LCDs) have been widely used 

for applications such as computer monitors and flat-panel TVs. Nowadays, the size 

of LCDs becomes more and more large, however, the pixel size becomes smaller and 

smaller in order to obtain finer resolution and high image quality. As LCDs become 

so sophisticated, the accurate analysis and design of liquid crystal modes for displays 

by computer simulation is becoming more and more important. Simulation tools can 

help us to understand the behavior of the director and optical properties of LCDs. 

Therefore, the design and the prediction for the performance of LCDs can be 

completely achieved by using the simulation software without undertaking all steps 

of the development experimentally. 

Simple analysis has been performed in one-dimension to optimize the area in the 

center of pixels of LCDs [20,21]. This one-dimension means that the director varies 

only in the Cartesian Z-direction and requires the assumption that the electric-field 

distribution is uniform in the X-direction and Y-direction. The two-dimensional (2-D) 

simulation tool provides the more practical results, which considers the director 

variation and nonuniform fields in the Cartesian X-Z plane by assuming the 

electric-field distribution to be uniform in the Y direction [22,23]. Although the 

simple and faster 1-D and 2-D simulation tools are adequate for the modeling of 

liquid crystal devices, there are some cases where they cannot provide a satisfactory 

representation for the behavior of devices with complex structures. There are many 

features occurring in the liquid crystal devices, like multidomain vertically aligned 

(MVA) and in-plane switching (IPS) LCDs, that are truly three-dimension, hence the 

3-D simulation tool is required to optimize and design these devices [17,24,25]. 
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2.2.1 Comparison of the finite difference method and finite element 

method 

The finite difference is much more straightforward than the finite element 

method and for this reason it is the more commonly used approach [8]. In this 

method, the solution region is divided into a lot of meshes of a regular shape such as 

rectangles for 2-D modeling or rectangular cubes for 3-D modeling, which have the 

same dimensions. The derivatives are performed on the “mesh points”, or “grid 

points” by using the Taylor series expansions shown as follows 

....)x(
6

)x('''f)x(
2

)x(''fx)x('f)x(f)xx(f 32 +∆+∆+∆+=∆+   (2.17) 

For example, the forward difference formula can be obtained by solving for the first 

derivative )x('f  in equation (2.17): 

.
x

)x(f)xx(f....x
2

)x(''f
x

)x(f)xx(f)x('f
∆

−∆+
≈+∆−

∆
−∆+

=    (2.18) 

Therefore, the governing equations of the system can be discretized as difference 

equations for the grid points, in other words, the finite difference method gives a 

“pointwise” approximation to the governing equations of the system. The accuracy 

of this method depends on the numbers of grid points.  

In the finite elements method, the solution region is divided into a finite number 

of interconnected sections, or elements of a similar shape such as triangle element 

for 2-D modeling or tetrahedral element for 3-D modeling [26]. The vertices of these 

elements are called “nodes”. Unlike the finite difference model, the finite element 

method, gives a “piecewise” approximation to the governing equations of the system. 
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The detail procedures are well described in section 2.2.2. The basic premise of the 

finite element method is that a solution region can be approximated by replacing it 

with an assemblage of discrete elements. Since these elements can be put together in 

a variety of ways, they can be used to represent the solution region with complex 

shapes. The accuracy of this method depends not only on the size and number of the 

elements but also on the interpolation function which is used to approximate the 

distribution of the field variable within an element. 

An advantage of the finite element method over the finite difference method is 

that the boundary conditions of the problem are easily handled. Many physical 

problems have boundary conditions involving derivatives and irregular shaped 

boundaries. The boundary condition of this type is difficult to handle by using the 

finite difference method, since the irregular shape of the boundary makes placing the 

grid points difficult. However, the finite element method includes the boundary 

conditions as integrals in a functional that is being minimized. Therefore, the 

construction procedure is independent of the particular boundary conditions of the 

problem. This comparison is not intended to suggest that the finite element method is 

better than the finite difference method for all problems. Here, we only demonstrate 

that the finite element method is particularly well suited for problems with complex 

geometries. 

Nowadays, the liquid crystal devices involve the complex patterned electrode 

structures due to the needs of wide viewing angle, such as multidomain MVA and IPS 

as wells as multidomain TN and STN modes. Thus, the finite element method is more 

suited for modeling the simulation tool to accurately predict the behavior of liquid 

crystal molecules near the irregular boundaries. In this thesis, we will show how the 

finite element method is implemented for simulating the liquid crystal devices.  
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2.2.2 Three-dimensional modeling using the finite element method 

In the continuum problem, the field variables possess infinite values because 

they are functions of each generic point in the solution region. Consequently, the 

problem becomes one with an infinite number of unknowns. The finite element 

method reduces the problem to one with finite unknowns by dividing the solution 

region into elements and by expressing the unknown field variable in terms of an 

interpolation function within each element. The interpolation functions (sometimes 

called shape functions) are defined in terms of the values of field variables at nodes. 

The nodal values of the field variables and the interpolation functions completely 

define the behavior of the field variables within the elements. For the finite element 

representation of a problem, the nodal values of the field variables become the 

unknowns. Once the unknowns are found, the interpolation functions define the 

distribution of field variables through the assemblage of elements. The most 

impotent feature of the finite element method over other numerical methods is its 

ability to formulate solutions for individual elements before putting them together to 

represent the entire problem. Moreover, there are several methods to formulate the 

properties of individual elements. To summarize how the finite element method is 

implemented in the modeling of liquid crystal devices, we simply list these steps as 

follows. In this modeling, the liquid crystal system with an application of external 

electric source is considered therefore, the director field and the electric potential 

become the field variables of the problem. 



 26

    

 

1. Select the element shape and discretize the solution region. In the 

three-dimensional modeling of the liquid crystal system, the computational region 

with the rectangular cubic shape, as shown in Fig. 2.3(a), is selected as our solution 

region. Here, the four-node tetrahedral element, as shown in Fig. 2.3(b), is selected 

to divide the solution region. The nodes are numbered in the right-handed Cartesian 

coordinate system and nodes 1, 2, and 3 are counterclockwise ordered when viewed 

from node 4. 

2. Select the interpolation functions. In this step, the nodal values of the director 

field )z,y,x(nv and electric potential )z,y,x(v  are assigned, respectively at each 

node of each element, as shown in Fig. 2.4. However, the magnitudes of nodal values 

are assumed to be unknowns in the problem. Under the assumption of continuum 

theory, we assume the director field and electric potential to vary linearly over each 

element. 

X Y

Z

Solution region

Figure 2.3 (a) A rectangular cubic solution region for the three-dimensional 
modeling of the liquid crystal system. (b) A tetrahedral element whose nodes are 
numbered according to the right-hand rule. The point (x,y,z) is some point within 
the element. 

(a) (b)
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Therefore, the polynomials, as shown in equations (2.19) and (2.20), are selected to 

represent the distribution of the director field and electric potential, respectively 

within the element (e):  

zdycxba)z,y,x(n eeeee +++=v ,      (2.19) 

zdycxba)z,y,x(v eeeee +++= ,      (2.20) 

where ae, be, ce and de are constants to be determined and the degree of the 

polynomial depends on the number of nodes assigned to the element. Equation (2.19) 

and equation (2.20) state that the director field and electric potential vary linearly 

within the element and along the element boundaries. Such behaviors of polynomials 

ensure the continuity of the director field and electric potential throughout all 

elements in solution region. After defining the director field and electric potential 

within an element, we are now ready to find the constants in terms of coordinates 

and nodal values of nodes.  

Figure 2.4 The nodal values of the director field and electric potential are 
assigned, respectively at each node of the tetrahedral element. nv  and v are the 
approximation values of the director field and electric potential, respectively at 
some point within the element. 
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Evaluating equation (2.19) at each node gives a set of equations: 

For node 1  1
e
11

e
11

e
1

e
1

e
1 zdycxban +++=v  

For node 2  2
e
12

e
12

e
1

e
1

e
2 zdycxban +++=v  

For node 3  3
e
13

e
13

e
1

e
1

e
3 zdycxban +++=v  

For node 4  4
e
14

e
14

e
1

e
1

e
4 zdycxban +++=v  

Similarly, for the electric potential, we have 

For node 1  1
e
21

e
21

e
2

e
2

e
1 zdycxbav +++=  

For node 2  2
e
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e
22

e
2

e
2

e
2 zdycxbav +++=   

For node 3  3
e
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e
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e
2

e
2

e
3 zdycxbav +++=   

For node 4  4
e
24

e
24

e
2

e
2

e
4 zdycxbav +++=   

with a little algebraic manipulation we can solve equation (2.21) for constants 
e
1

e
1

e
1 c,b,a  and e

1d  in terms of nodal values, e
inv , i=1~4 and nodal coordinates 

)z,y,x( iii , i=1~4. Substituting these constants into equation (2.19), we obtain 

(2.21) 

(2.22) 
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where  
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Following the same procedure for equation (2.22), we finally obtain 
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volume of tetrahedral element 
defined by nodes 1,2,3,4 
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Now we define 

)zDyCxBA(
V6
1)z,y,x(S iiii

e
i +++= ,  i = 1, 2, 3, 4,  (2.26) 
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In general, the functions, )z,y,x(Se
i , i=1~4, are called interpolation functions or 

shape functions and they play an important role in the finite element analyses. After 

defining the shape functions, the equations (2.23) and (2.25) can be rewritten, 

respectively as  
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and 
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e
3

e
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e
1
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By using the matrix notation, equations (2.28) and (2.29) can be rewritten as  

}n)]{z,y,x(S[)z,y,x(n eee vv = ,        (2.30) 

}v)]{z,y,x(S[)z,y,x(v eee = .        (2.31) 

If the solution region contains M elements, the complete representation of the 

director field and electric potential over the whole region are given by  
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ee
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1e

e }v)]{z,y,x(S[)z,y,x(v)z,y,x(v .     (2.33) 

From equations (2.32) and (2.33), we know that if the nodal values of the director 

field and electric potential are known, the complete solution region can be obtained 

by interconnecting the solution region of the tetrahedral element. This is the 

so-called “piecewise” approximation. 
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3. Find the element equations. Once the shape and shape function of the element 

have been selected, we are ready to determine the element equations which express 

the properties of the individual element. For this task, the variational method is used. 

In order to make the liquid crystal system stationary, we require that 

0v
v
Fn

n
F)v,n(F =δ

∂
∂

+δ
∂
∂

=δ v
v

v ,     (2.34) 

where )v,n(F v  is the total free energy of the liquid crystal system obtained from 

equation (2.16). Since nvδ  and vδ  are independent, equation (2.34) can hold only 

if  

0
v
F

n
F

=
∂
∂

=
∂
∂
v .        (2.35) 

If the shape functions of the director field and electric potential obey certain 

continuity and compatibility conditions, then the functional )v,n(F v  can be written 

as a sum of individual functionals defined for all elements of the assemblage, that is, 

∑
=

=
M

1e

eee )v,n(F)v,n(F vv ,      (2.36) 

where M is the total number of elements and superscript (e) denotes an element. 

Therefore, instead of working with the functional defined over the whole solution 

region, we may focus on our attention on the functional for the individual element.  
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From equations (2.34) and (2.36), we have 
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Equation (2.37) implies that 

0
v
F

n
F

e

e

e

e

=
∂
∂

=
∂
∂
v .          (2.38) 

From equations (2.28) and (2.29), we obtain 
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v ,    (2.39) 

where r is the number of nodes assigned to the element (e) and the variation of 

)v,n(F eee v  is taken only with respect to the nodal values associated with the element. 

Equation (2.39) comprises a set of 2r equations that characterizes the behavior of the 

element (e). The fact that we can present the functional for the assemblage of all 

elements as the sum of functionals for all individual elements provides the key to 

formulating individual element equations from a variation method.  
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In the liquid crystal modeling, the functional of an element is given by equation 

(2.16) and from the relationship:  

222 )n()nn()nn( vvvvv ×∇=×∇×+×∇⋅ ,       (2.40) 

and the constraint condition for director, we can rewrite the functional as  
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where the constant term is dropped and a Lagrange multiplier Γ  is used to maintain 

the unit length of the director. Substitution of equations (2.28) and (2.29) into 

equation (2.41), we have 
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where  
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Hence the functional of the element can be expressed in terms of the nodal values of 

the director field and electric potential and the element equations can be obtained by 

substituting equation (2.42) into equation (2.39). However, because the nodal value 

of the director field is a vector, that is, )n,n,n(n zyx=v , the variation in equation 

(2.39) has to be taken for the components of a director, respectively so that we have 
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For a dynamic solution, that is, the nodal unknowns are a function of time we have to 

derive the dynamic equations for director. In this stage, we add a Rayligh dissipation 

function to the element equations (2.44), therefore the equation of motion for 

director in an element can be expressed by  
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The dissipation function takes the form [21]: 
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d &&& ++γ= ∫∫∫ ,    (2.47) 

where 1γ  is the rotational viscosity of liquid crystals. However, it is impossible to 

simultaneously solve equation (2.46) for director component and Lagrange multiplier 

Γ . Therefore, we drop the Lagrange multiplier term and renormalize the director to 

be of unit length after each iteration. Under this condition, equation (2.46) can be 

rewritten as 
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On the other hand, equation (2.45) can be rewritten as 

4,3,2,1i0
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e
e ==
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∂ ,      (2.49) 

where the e
eF  is the electric free energy obtained by integrating equation (2.11) over 

the element volume.  
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4. Assemble the element equations to obtain the system equation. To find the 

properties of the overall liquid crystal system modeled by the network of elements, 

we must assemble all element properties. The complete set of system equations for 

the liquid crystal system is assembled by adding the element equation shown in 

equation (2.48) and (2.49), respectively, that is,  
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where N is the total node numbers of the system. Note that for some global node i in 

equations (2.50) and (2.51), only elements sharing node the i will contribute to the 

variations of ijdij nFnF &∂∂+∂∂  and ivF ∂∂ . The problem is solved when a set of 

3N equations from equation (2.50) and a set of N equations from equation (2.51) are 

simultaneously solved for the N nodal vector values of the director field and N nodal 

scalar values of electric potential. However, these simultaneous equations are hardly 

to solve so that we derive the update formula for director field and electric potential. 

By using the forward difference approximation shown in equation (2.18) for the time 

derivative in equation (2.50), we obtain the update formula for director as  
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here the time derivatives for the director components in an element are assumed to 

be the same. If the solution region is finely cut, this assumption is reasonable. On the 

other hand, when equation (2.51) is discretized, a linear equation for the discretized 

nodal voltage is derived. This equation can be directly solved for the voltage at the 

current node in terms of the voltage and the directors at the surrounding nodes as 

shown in equation (2.53): 

ji;N,...,2,1i)n,v(fv
M

1e

old
j

enew
i ≠=−= ∑

=

v ,    (2.53) 

where )n,v(f old
j

e v  is the function of nodal voltage and director at surrounding nodes 

in an element containing the global node. 

5. Impose the initial conditions and boundary conditions. Before the update 

equations in equations (2.52) and (2.53) are ready for iteration, the initial conditions 

for director and voltage must be given first. The initial conditions are very impotent 

to the accuracy and speed of the calculation. For the calculations of dynamics of a 

liquid crystal system, the initial director field should be the desired state form which 

the dynamics begins and the initial voltage distribution can be lineally given along 

the normal direction of the cell. For the boundary conditions, the periodic boundary 

conditions in the X and Y directions are taken in our modeling. Dirichlet boundary 

conditions are assumed for the Z = 0 and Z = d planes corresponding to strong 

anchoring. That means the known nodal values of director field and electric potential 

must to be imposed on the surface layer. 

6. Solve the system equations. The assembly process gives a set of simultaneous 

equations that we solve to obtain the unknown nodal directors and electric potential. 

For the director field, because equation (2.50) is a set of nonlinear equations for 
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director components, it can be solved by the relaxation method which is stable and 

gives acceptable convergence. Once the initial director and voltage distribution are 

given, the solution of director distribution can be obtained by iterating the update 

formula (2.52). However, as stated previously, this update formula does not maintain 

the unit length of the director. Therefore, after the director is updated, each node 

director must be renormalized to have the unit length by using equation (2.54) after 

each iteration. 

z,y,xj;N,...,2,1i
)nnn(

n
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2
iz
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iy

2
ix

ij
ij ==

++
= .   (2.54) 

For the electric potential, because equation (2.51) is a set of linear equations for the 

nodal voltage, it can be directly solved from the update formula (2.53) when the 

director field is given. Because the voltage distribution is dependent on the director 

field, in other words, the voltage distribution changes with the variation of the 

director field. Hence, we need to solve iteratively the system equations for director 

field and voltage distribution in turn until the equilibrium state is reached. On the 

other hand, for the calculations of dynamics of liquid crystal system, the new director 

configuration and new voltage distribution must be calculated, respectively before 

any nodal variables are updated. After the new director configuration and voltage 

distribution are calculated foe each time step, the old director configuration and 

voltage distribution are updated by the new ones. This is called “simultaneously 

displacement” when all nodal variables are updated simultaneously. When the above 

procedure is completed, we increase the time step ∆t and repeat the same updating 

procedure until the equilibrium state is reached. Figure 2.5 illustrates the simplified 

flow chart of the program. 
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Input the initial conditions

Calculate the new
voltage distribution

Update time variable
( t = t + dt)

Calculate the new
director field

Does director field converge ?
No

Yes

Start

Output the
director field

      

 

 

Figure 2.5 The simplified flow chart of the program for calculating the director 
filed and voltage distribution of the liquid crystals. 
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Chapter 3 

Transition between Homeotropic Texture and 

Planar Texture 

3.1 Introduction 

Bistable reflective display technology is of considerable interest because of its 

low power consumption and high brightness, high contrast at wide viewing angles, 

and low manufacturing cost [1,2]. Cholesteric reflective displays have two stable 

states at zero field [2]. One is the planar texture in which the helical axis is 

perpendicular to the cell surfaces. The other is the focal-conic texture in which the 

helical axis is more or less parallel to the cell surfaces [3]. Switching from the 

focal-conic texture to the planar texture requires the application of a high electric 

field which forces the liquid crystal system into a homeotropic texture [4]. On 

removal of the field, a transition from homeotropic texture to planar texture takes 

place in two steps: homeotropic texture to transient planar texture with the effective 

pitch 02233 P)K/K(P =∗ , and transient planar texture to planar texture with intrinsic 

pitch 0P  [5-7].  

However, the homeotropic-planar texture transition is usually slow [5]. Because 

of this slow transition, the application of cholesteric liquid crystals is limited to 

displaying static images. In order to obtain superior cholesteric reflective displays 
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and a design of driving schemes, we have investigated the dynamics of such a system 

and show a transformation between textures. On the basis of our simulation results, 

we suggest methods for improving the response characteristics. 

3.2 Numerical modeling 

In this section, a computer modeling method for three-dimensional dynamic 

analyses of liquid crystal cells using the finite element method is presented. The 

details of the numerical method are stated in section 2.2.2. The numerical method is 

based on a variational approach to the Frank-Oseen free energy formulation and uses 

a vectorial representation of the director [4]. The modeling employs finite element 

method for the calculations of director configurations and voltage distribution while 

uses finite difference method in the time stepping process. 

The expression for elastic free energy lcF  of a cholesteric liquid crystal system 

in terms of the director nv  is given by 

( ) ( )

( ) ( ) dxdydz]nnqK2nnK

nnKnK[
2
1F

022
2

33

2
22

2

11lc

rrrr

rrr

×∇⋅+×∇×+

×∇⋅+⋅∇= ∫ ∫ ∫ ,            (3.1) 

where 11K , 22K , 33K  are elastic constants for splay, twist and bend deformations, 

respectively. )P/2(q 00 π=  is the chiral parameter. The expression for electric free 

energy eF  of a liquid crystal system in terms of voltage v is given by 

( ) ( ) dxdydz])v(nv[
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0
2

0e −∇⋅ε∆ε+∇−εε= ⊥∫ ∫ ∫
r ,         (3.2) 
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where the dielectric anisotropy ⊥ε−ε=ε∆ || , and ||ε , ⊥ε  are the parallel and 

perpendicular permittivities of a director relative to the electric field. 

Based on the finite element method, the director and voltage within an element 

can be expressed in terms of the nodal director and nodal voltage, respectively, as 

well as the interpolation function, therefore, we have 

∑
=

=
4

1i

i
i n)z,y,x(Sn vv

,           

∑
=

=
4

1i

i
i v)z,y,x(Sv .      (3.3) 

Here )z,y,x(Si  is the interpolation function, inv  is the nodal director at node i and 
iv  is the nodal voltage at node i. By substitution of eq. (3.3) into eqs. (3.1) and (3.2), 

the Gibbs free energy in eq. (3.4) for one element can be expressed in terms of the 

nodal director and nodal voltage of the element. 

elcg FFF −= .       (3.4) 

Ignoring the flow of the director, the dynamic equation of the director becomes a 

nonlinear equation for nodal director component as expressed by [8,9] 
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where the Lagrange multiplier Γ is used to maintain the unit length of the director. 

However, one cannot simultaneously solve this equation for Γ and nv . Therefore, the 

Γ term is dropped and nv  is renormalized to have a unit length after each time step 
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[6,10]. In each element, for δ  = x, y or z, p = 1, 2, 3 or 4, and µ  (=x, y and z) 

implies summation, where 1γ  is the rotational viscosity of a liquid crystal material. 

After using the forward difference approximation for time derivative, we can obtain 

the numerical update equation for director at each node in terms of the directors and 

voltage at that and surrounding nodes. Given the initial conditions for director and 

voltage, this update equation for nodal director can be solved by the relaxation 

method which is stable and gives acceptable convergence. 

Because the dielectric constant is anisotropic, the voltage at each node depends 

on the directors at that and surrounding nodes. After solving Maxwell’s equation in 

equation (3.6), an equation linear in nodal voltage is derived as 

0D =•∇
v

,          (3.6) 

where D
r

 is the electric displacement. Given a director configuration, this equation 

can be rewritten as a numerical update equation for voltage at current node in terms 

of the neighboring nodal voltage and it can be solved by using the successive 

over-relaxation method which is similar to the relaxation method but gives faster 

convergence [10].  

In order to calculate the dynamics of the system, the new director configuration 

must be calculated before any variables are updated. When the old director 

configuration is updated by the new director configuration after each time step, the 

voltage distribution can be calculated directly or iterated to converge to the 

equilibrium distribution because the redistribution of voltage with the director 

variation is instantaneous. 
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In this simulation, we use periodic boundary conditions in the x and y directions. 

Dirichlet boundary conditions are assumed for the planes Z = 0 and Z = d 

corresponding to strong anchoring. The cell structure and the coordinate axes are 

shown in Fig. 3.1. The liquid crystal molecules are initially in the homeotropic 

texture under an applied electric field larger than ε∆επ= 0220
2

c /KP/E , as shown 

in Fig. 3.2 [4,11]. When the electric field is turned off, some random noise is 

superposed on the initial stage, and the liquid crystal relaxes to the planar state. In 

the simulation, the following parameters are used: K11 = 8.86 pN, K22 = 4.17 pN, K33 

= 9.28 pN, ∆ε = 8.8, ⊥ε  = 5.51, 1γ  = 0.133 Pas, P0 = 2.247 µm, cell gap d = 5.0 

µm, and pretilt angle = 3.0°. The thickness-to-pitch ratio (d/P0) is 2.225. The rubbing 

direction is along the x axis. The ranges calculated along the x and y directions are 

both 5.0 µm. 

Figure 3.1 Schematic diagram of the cell structure and the coordinate axes. 
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3.3 Dynamics of the homeotropic to planar texture transition 

Figures 3.3-3.7 show the dynamic processes of the transition from the 

homeotropic texture to planar texture. Here, we show X-Z and Y-Z planes for the 

three-dimensional director configurations. If the electric field is turned off from the 

homeotropic texture, the liquid crystal molecules go through one-dimensional 

conical relaxation to the transient planar texture, as shown in Fig. 3.3. Figure 3.4 

shows the transient planar texture with the effective pitch P* = 5.0 µm which 

matches the theoretical prediction, 02233 P)K/K( . The thickness-to-effective-pitch 

ratio (d/P*) is 1. Due to the high twist energy, the liquid crystal molecules proceed 

through a three-dimensional Helfrich-like undulation during the transition from 

transient planar texture to planar texture [12]. The three-dimensional simulation 

results also clarify another important issue that the three-dimensional Helfrich-like 

undulation appears even for the low d/P0 value [6]. Initially, the release from the high 

twist energy along the rubbing direction will be more apparent than that 

Figure 3.2 Director configurations of the field-induced homeotropic texture. 
(a) Drawings of the simulated director configuration along Y axis. (b) Drawings 
of the simulated director configuration along X axis. 
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perpendicular to the rubbing direction, as shown in Fig. 3.5. The amplitude of the 

undulation will increase with time. The light transmittance through the system 

consisting of the three-dimensional deformed layer placed between crossed 

polarizers is calculated by the Jones matrix method. The light incident on the liquid 

crystal layer is assumed to be linearly polarized with the polarization direction 

making an angle 45° with the rubbing direction. Figure 3.6(a) shows the 

experimental observation for striped undulation along the rubbing direction and 

small sinusoidal deformation perpendicular to the rubbing direction. This 

phenomenon is also observed in the simulation result during the transition from the 

transient planar texture to planar texture, as shown in Fig. 3.6(b) [6]. After the 

complex three-dimensional bulk modulation, the final equilibrium texture appears, as 

shown in Fig. 3.7, which displays the two-dimensional planar texture with the 

intrinsic pitch P0 and the domain wall. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Director configurations of the one-dimensional conical relaxation. 
(a) Drawings of the simulated director configuration along Y axis. (b) Drawings 
of the simulated director configuration along X axis. 
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Figure 3.4 Director configurations of the transient planar texture with the d/P* 
ratio = 1. (a) Drawings of the simulated director configuration along Y axis. 
(b) Drawings of the simulated director configuration along X axis. 
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Figure 3.5 Director configurations of the Helfrich-like deformation. (a) Drawing 
of the simulated director configuration in the medium XZ plane. Dashed line 
represents the undulation of Helfrich-like deformation. (b) Drawing of the 
simulated director configuration in the medium YZ plane. 
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Figure 3.6 (a) Experimental observation of the striped undulation; the black bar is 
25 µm long. (b) Transmittance distribution calculated by the 2 × 2 Jones matrix 
method for the Helfrich-like deformation during the transition from transient 
planar texture to planar texture. 
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Figure 3.7 Director configuration of the equilibrium planar state with d/P0 ratio = 
2. Solid oval-shaped line represents the planar domain and dashed oval-shaped 
line represents the domain wall. 
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3.4 Improvements in the response time 

Due to the slow relaxation from homeotropic texture to planar texture, a number 

of methods have been suggested by Anderson, et al. to improve the transition speed 

[13]. They reduced the high applied voltage to a bias voltage to improve the 

transition speed during the transition from the homeotropic texture to Helfrich-like 

deformation. Here, we suggest another way for speeding up the transition. We apply 

a bias voltage (less than VPC = 2/1
0SC )d/F(22d ε∆ε ) to the cell during the transition 

from the transient planar texture to Helfrich-like deformation, where VPC is the 

threshold voltage for the transition from planar texture to focal-conic texture and FSC 

is surface free energy density in the focal-conic texture [14]. From our simulation 

results, we find that the bias voltage will hinder the relaxation from the homeotropic 

texture to transient planar texture, but it will accelerate the nucleation process during 

the transition from the transient planar texture to Helfrich-like deformation. The 

nucleation speed will increase with the applied voltage. In addition, the impurities or 

defects will also accelerate the slow nucleation process during the transition from the 

transient planar texture to Helfrich-like deformation. 

3.5 Conclusions 

By using the three-dimensional finite element method, the details of the 

transition from the homeotropic texture to planar texture are simulated. The 

simulation reproduces the observed relaxation from the homeotropic texture to the 

long-pitch transient planar texture. The simulation also agrees with the suggestion 

that the transient planar-planar transition occurs via a three-dimensional 

Helfrich-type deformation without the introduction of defect cores. We hope to 

enable the rapid updating of cholesteric displays by our simulation results. Two 

methods of decreasing the time required have been suggested due to the slowness of 
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the nucleation process during the transient planar-planar transition. One involves 

applying a bias voltage to the cell during the transition from transient planar texture 

to Helfrich-like deformation. The other involves doping a number of spacers or 

impurities to accelerate the nucleation process. 
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Chapter 4 

Transient Phenomenon during the Homeotropic to 

Planar Texture Transition 

4.1 Introduction 

Cholesteric liquid crystals with positive dielectric anisotropy exhibit two stable 

states at zero electric field. One is the Bragg reflecting planar (P) texture in which 

the helical axis is perpendicular to the cell surface. The other is the scattering 

focal-conic (FC) texture in which the helical axis is more or less parallel to the cell 

surface. Switching from P to FC requires the application of a small electric field, but 

the reverse is not true. Switching from FC to P requires the application of a high 

electric field which forces the liquid crystal molecules into a homeotropic (H) texture. 

On removal of the field, a transition from H texture to P texture (H-P) takes place. 

However, this relaxation is usually slow. For a cell with planar alignment layers, the 

relaxation process involves a fast conical relaxation to a transient planar (TP) texture, 

followed by a Helfrich-like deformation which results in the overlap of cholesteric 

layers to form the P texture [1]. The TP texture is a metastable state with the 

effective pitch 02233 P)K/K(P =∗ , where K33 and K22 are the bend and twist elastic 

constants of LC materials and P0 is the intrinsic pitch [2]. The driving force of 

Helfrich-like deformation results from the high twist energy in the TP texture and the 

period of that is 2/12/1
22330 ])K2/K3(dP[ , where d is the cell thickness [3-5]. 
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In order to use cholesteric liquid crystal displays for video application, 

considerable efforts have been devoted to reducing the long H-P relaxation time. The 

effect of surface alignment layers on the H-P relaxation time was described by 

Gandhi et al [6]. Xu et al. decreased the H-P relaxation time by changing the liquid 

crystal material parameters [7]. Though the effect of bias voltage on the H-P 

relaxation process has been studied over a long period of time, improving the H-P 

relaxation time by designing a driving waveform has not been realized yet [8-11]. In 

this chapter, we simulate the dynamics of H-P relaxation by using our 

multi-dimensional simulation software. Furthermore, we study the effect of bias 

waveforms on the H-P relaxation process. Finally, we design a bias waveform to 

reduce the H-P relaxation time. 

4.2 Experiment 

4.2.1 Cell preparation 

The empty cells were assembled with two ITO-coated glass plates. Figure 4.1 

shows the flow chart of preparation processes for the empty cells. The substrates 

were cleaned and ITO-patterned with photolithography. Then they were coated with 

a 700~800 Å thick SE-3310 (Nissan Chemical Industries, LTD.) alignment layer. We 

pre-cured the polyamide for 15 minutes at 80°C to smooth the surface and exhaust 

the solvent, and then hard-cured it for 60 minutes at 300°C for imidization. The 

substrates with hard-cured polyimide were then rubbed to produce the alignment 

characteristic of liquid crystal molecules. Figure 4.2 shows the top and side view of 

the rubbing process. The rubbing density used in this process is about 30. Here the 

rubbing density is defined as  

Rubbing density: 
A

ACB14.3.D.R −××
= , 
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where  

A: Moving speed of the substrate support (cm/min) 

B: Rotary speed of the roll (rpm) 

C: Roll diameter + cloth thickness×2 (cm). 

It produces a pretilt angle of 4º for liquid-crystal molecules after the rubbing process. 

The conditions of alignment-layer processes are listed as follows: 

Alignment-layer Process Condition 

Coating Spin coating method 

Pre-curing 80°C/15 min. 

Curing 300°C/60 min. 

Rubbing Rubbing roll  

Rubbing Cloth: Rayon 

Rubbing density: 30 

After the rubbing process, the 6 µm spacers were spread on the substrate to 

maintain the cell gap and the two substrates were assembled by heat seal, such that 

the rubbing directions were anti-parallel and the cell spacing was measured to be 6.4 

µm by an interferometer. The injected liquid-crystal material was the mixture of 97 

% ZLI-4792 (Merck Co.) doped with 3 % chiral agent S811 (Merck Co.), which 

resulted in a quiescent pitch P0 = 2.98 µm, and in turn, the thickness-to-pitch ratio 

(d/P0) of 2.15. After the LC mixture was injected, the injection hole was sealed with 

AB sealant.  
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Figure 4.1 Flow chart of the empty cell preparation. 
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Figure 4.2 Rubbing diagrams of (a) top view and (b) side view, where A is the 
moving speed of substrate, B is the rotary speed of roller and C is the diameter of 
the roller. 
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4.2.2 Experimental procedures 

The dynamic process of H-P relaxation is studied by monitoring the evolution of 

transient transmittance during this relaxation. The experimental setup is shown in Fig. 

4.3. The cell is inserted into parallel polarizers and a He-Ne laser light beam is 

incident on it. The voltage applied to the sample is in the form of a 1k Hz square 

wave generated by a NI-5411 arbitrary waveform generator and the square wave is 

routed through a linear amplifier. Both the applied voltage and transmitted intensity 

are measured using a NI-6040E DAQ card. The temporal resolution of our 

measurement is 10 µs. In this experiment, we applied a voltage of 60 Vrms for 0.5 s 

to achieve a homeotropic texture and then achieved a relaxation to the planar texture 

under the application of a bias waveform. 

Figure 4.3 Experimental setup.
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4.3 Simulation method 

For the modeling of the ChLC system, we use a similar simulation method to 

that introduced in section 3.2 [12]. In this simulation, the LC material parameters 

described in section 4.2.1 are used：K11 = 13.2 pN, K22 = 6.5 pN, K33 = 18.3 pN, ∆ε 

= 5.2, ε⊥ = 3.1, 1γ  = 0.133 Pas, and P0 = 2.98 µm. The physical size of the cell in 

the calculation is assumed to be 9.4 µm and 6.4 µm in the X and Z directions, 

respectively with 95 × 65 node points. Fixed homogeneous boundary conditions are 

assumed with a 4.0° pretilt angle. In order for the undulation deformation to occur, 

some perturbations are required to be included in the system. So, the initial director 

configuration nv  = (0,0,1) is modified by setting a small random deviation from the 

cell normal. This results in the random distribution of director components nx and ny 

between -0.05 and 0.05 and the director component nz can be determined based on 

the relationship nz = (1 – nx
2 – ny

2)1/2. 

4.4 Effect of the bias voltage on the homeotropic to planar 
texture transition 

In this section, the influence of the bias waveform on the evolution of transient 

transmittance during the H-P relaxation is studied experimentally. To understand the 

relaxation process, the defect-free dynamic process of H-P relaxation is simulated. 

Figure 4.4 shows the two-dimensional dynamic process of H-P relaxation after the 

electric field is switched off. The detailed mechanism of H-P relaxation has been 

discussed in section 3.3 [12]. Figure 4.5 shows the dynamic response of H-P 

relaxation, which is measured as transmittance versus time after the voltage is 

removed. While a high voltage of 60 Vrms is applied to the cell, the LC molecules are 

aligned into the H texture and the maximum transmittance is obtained.  
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Figure 4.4 Drawings of the simulated director configuration throughout the 
homeotropic to planar texture transition after the applied voltage is removed. 
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We will define time t = 0 as the time at which the voltage is removed. According 

to our measurement results, the LC molecules relax to TP state in approximately 10 

ms. The decrease in transmittance results from that LC molecules proceed with 

one-dimensional conical relaxation. The transmittance does not change for the next 

10 ms. This indicates that the LC molecules will stay at TP state for approximately 

10 ms. Although the TP state is a metastable state, random fluctuation which is 

conceived of thermal agitation will nucleate to force LC directors to initiate the 

Helfrich-like deformation. In our simulation, this thermal vibration is represented as 

small random distribution in the director profile. The Helfrich-like deformation 

scatters incident light and results in the decrease in transmittance between times t = 

20 to 40 ms. This result agrees with the expected Helfrich-like deformation in the 

simulation. After the Helfrich-like deformation, most LC molecules are slowly 

aligned back to cell surfaces after t = 40 ms and this results in the slow increase in 

the transmittance. The slow increase in the transmittance, as shown in the insert of 

Fig. 4.5, is consistent with the fact that the TP-P transition is a nucleation process.  
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Figure 4.5 Transmittance vs. time during the homeotropic to planar texture 
transition after the applied voltage is removed. The insert shows the long-time 
behavior of transmittance. 
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Figure 4.6 Transmittance vs. time during the homeotropic to transient planar 
texture transition under various bias waveforms (Vb = 0 Vrms, 2 Vrms, 3 Vrms, 4
Vrms, and 5 Vrms.). 

Figure 4.7 Transmittance vs. time in the transient planar texture under various 
bias waveforms (Vb = 0 Vrms, 2 Vrms, 3 Vrms, 4 Vrms, and 5 Vrms.). 
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To speed up this relaxation, we investigate the dynamic response of H-P 

relaxation by applying different bias waveforms. Figure 4.6 shows the effect of bias 

voltage on the H-TP relaxation between times t = 0 to 10 ms. The relaxation time 

increases with bias voltage because the applied bias voltage hinders the conical 

relaxation from H texture to TP texture. When the bias voltage is higher than VHP* = 

(2/π)(K22/K33)1/2VC (which is the critical voltage for H-TP texture transition and the 

experimental value is 5 Vrms for this cell), the H-TP texture transition becomes 

impossible [2,11]. Figure 4.7 shows the influence of bias voltage on the nucleation 

process in the TP texture between times t = 10 to 20 ms. As the bias voltage is 

increased, the time for out of the TP texture decreases because the applied voltage 

enhances the thermal fluctuation. As shown in Fig. 4.8, the bias voltage is applied 

after the time (t = 20 ms) for Helfrich-like distortion to begin. The time for achieving 

the maximum Hefrich-like distortion decreases as the bias voltage is increased 

between times t = 20 to 40 ms. This is consistent with that the amplitude of 

Helfrich-like distortion increases as the bias voltage is increased. However, the time 

to form the equilibrium P texture increases with the bias voltage after t = 40 ms, 

since the bias voltage hinders the LC directors from lying in the plane of the 

substrates. If the bias voltage is higher than VP*C (which is the critical voltage for 

TP-FC transition and is 3 Vrms for this cell), the LC directors transform into the 

scattering FC texture and the time for TP-FC texture transition decreases with the 

applied bias voltage.  
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4.5 Driving scheme 

Now that we have an understanding of the effect of bias voltage on the H-P 

relaxation process, we can design a bias waveform, as shown in Fig. 4.9, to decrease 

the relaxation time required. The relaxation time can be reduced by applying the bias 

voltage to the cell during the transition from the TP texture to the maximum Helfrich 

deformation. In this work, the ChLC system with low d/P0 ratio is studied by 

applying a bias waveform with VB = 5.0 Vrms during times t = 10 to 20 ms (TB = 10 

ms). Figure 4.10 shows that the relaxation with such a bias waveform is faster than 

that without a bias waveform. The relaxation time is reduced from 16 s to 4 s. 

Figure 4.8 Transmittance vs. time during the transient planar to planar texture 
transition under various bias waveforms (Vb = 0 Vrms, 2 Vrms, 3 Vrms, 4 Vrms, and 
5 Vrms.). 
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Figure 4.9 Schematic diagram of the bias waveform during the homeotropic to 
planar texture transition. 

Figure 4.10 Transmittance vs. time during the homeotropic to planar relaxation. 
Curve A refers to the relaxation curve without a bias waveform. Curve B refers to 
the relaxation curve with a bias waveform (TB = 10 ms, VB = 5 Vrms). 
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4.6 Conclusions 

In this study, we simulated the dynamic process of H-P relaxation using a 

multi-dimensional simulation program based on the finite element method. By 

monitoring the evolution of transient transmittance, we observe that the H-P 

relaxation after the electric field is switched off occurs via a transient planar texture. 

Moreover, the effect of a bias waveform on the H-P relaxation has also been studied. 

The time for the H-P transition can be reduced by applying a bias voltage to the cell 

during the transition from the TP texture to the maximum Helfrich-like distortion. 

The bias voltage can speed up the nucleation process in the TP texture and can 

increase the amplitude of Helfrich-like deformation. However, a continuous bias 

voltage in the H-P relaxation prolongs the relaxation time. On the basis of this 

knowledge, a bias waveform is designed to speed up the H-P relaxation. 
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