

國 立 交 通 大 學

電 機 與 控 制 工 程 研 究 所

碩 士 論 文

利用實驗分析加速嵌入式 Linux 2.6.14 核心的開機時間

An Empirical Analysis of Embedded Linux Kernel 2.6.14

to Achieve Faster Boot Time

研 究 生：楊志堅

指導教授：黃育綸 博士

中 華 民 國 九 十 五 年 七 月

利用實驗分析加速嵌入式 Linux 2.6.14 核心的開機時間

An Empirical Analysis of Embedded Linux Kernel 2.6.14
to Achieve Faster Boot Time

研 究 生：楊志堅 Student：Chih-Chien Yang

指導教授：黃育綸 博士 Advisor：Dr. Yu-Lun Huang

國 立 交 通 大 學
電 機 與 控 制 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Degree of Electrical Engineering and Control Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electrical and Control Engineering

July 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年七月

 i

利用實驗分析加速嵌入式 Linux 2.6.14 核心的

開機時間

研 究 生：楊志堅 指導教授：黃育綸 博士

國 立 交 通 大 學

電 機 與 控 制 工 程 研 究 所

摘要

在本篇論文中，我們嘗試利用實驗性的分析方法降低嵌入式Linux 2.6.14核

心的開機時間，並且採用內建德儀OMAP5912核心的開發套件作為實驗平台。首

先我們分析核心的開機流程，接著使用示波器與邏輯分析儀測量整個開機流程中

每一個函式區塊的時間需求。根據所收集到的時間量測資料，我們選擇執行時間

較長的部分，研究與其相關的U-Boot、Linux核心以及BusyBox原始碼，最後判

斷該部分的操作是否可以在經過修改程式碼之後被簡化或是甚至在沒有副作用

的情況下略過。在初步的結果裡，我們已經確認在開機流程中有許多項目是可以

加以修訂來加速開機時間。實驗結果顯示，利用我們所提出的核心設定以及最佳

化方法，我們可以在使用U-Boot 1.1.3、Linux2.6.14核心與BusyBox 1.01的

OMAP5912平台上將整體開機時間由原本的7934.41毫秒大幅減少到1477.77毫

秒。而如此的快速開機是眾多嵌入式系統所需要的重要特性。

 ii

An Empirical Analysis of Embedded Linux
Kernel 2.6.14 to Achieve Faster Boot Time

Student: Chih-Chien Yang Advisor: Dr. Yu-Lun Huang

Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract

In this thesis, we try to minimize the boot time of the embedded Linux 2.6.14

kernel with the empirical approaches. For the experimental purpose, TI’s

ARM9-based OMAP5912 development kit is selected as our reference platform.

Firstly, we analyze the boot sequence of the selected kernel and measure the time

needed for each functional block in the whole sequence using the oscillator and

logical analyzer. With the collected timing data, we hack in the related codes of

U-Boot, Linux kernel and BusyBox that expose long execution time and study

whether they can be either simplified by rewriting the codes or even skipped without

any side effect. As a preliminary result, we have identified several points in the boot

sequence that can be reworked to achieve faster boot time. In our experiment on the

reference platform and with our suggested kernel configuration, we have achieved the

instant boot of U-Boot 1.1.3, Linux kernel 2.6.14 and BusyBox 1.01 by greatly

reducing the total boot time from 7934.41 ms to 1477.77 ms which is considered as

one of the important features on many embedded systems.

 iii

致謝

 首先由衷感激我的指導教授黃育綸老師，在這兩年的研究生生涯裡，總是熱

心而絲毫不厭倦的不斷的引導我如何做研究；開導我如何從千頭萬緒之中找出方

向；建議我如何將大筆雜亂無章的資料收為己用；教導我如何吸收他人的新觀念

並找出加以改進的地方；研究之外，也細心的關懷我脫離情緒的低潮。老師的呵

護，讓我如沐春風，在短短的兩年內持續進步，有所成長，終於能寫出自己的論

文，成為一位合格的研究生。也感謝口試委員：胡竹生老師與何福軒博士撥冗對

我的論文提出建議，讓我的論文更加完整。

 其次我也非常感謝即時嵌入式系統實驗室的夥伴們：建銘和精佑對於我的研

究提供了很多幫助；嘉良、瀞瑩、欣宜、依文、勁源、恩捷、Newlin、興龍、立

穎以及培華充實了我的研究生生活，也讓實驗室天天充滿了歡笑。希望大家都能

找到自己的方向，順利的完成學業。

 也謝謝我的女朋友猴兒，願意犧牲相處的時間，進而支持鼓勵我專心的學

習。最後要感謝我親愛的家人，雖然總是讓他們擔心，但仍然能夠默默的包容我，

僅以此論文獻給我最愛的家人。

 iv

Table of Content

摘要 ... i
Abstract ... ii
致謝 ...iii
Table of Content .. iv

List of Figures .. vi
List of Tables...vii
Chapter 1 Introduction .. 1

1.1 Motivation..1

1.2 Contribution ...2

1.3 Synopsis ...2

Chapter 2 Related Work.. 3

2.1 Snapshot Technique for NOR Flash ..3

2.2 Erase Block Summary ...4

2.3 Kernel Execute-In-Place ..5

2.4 InitNG ..5

2.5 Summary ..6

Chapter 3 Background... 7

3.1 OSK5912 OMAP Starter Kit ...7

3.2 U-Boot..9

3.3 Embedded Linux..10

3.4 BusyBox...11

3.5 Summary ..11

Chapter 4 Boot Time Analysis... 12

4.1 Boot Sequence ...12

4.2 Boot Time Measurement Tools..13

4.2.1 Kernel Function Trace...13

4.2.2 Printk Times ..15

 v

4.2.3 initcall-times patch..15

4.2.4 Expect ...16

4.3 Measurement Tools Analysis ...17

4.3.1 Kernel Function Trace...17

4.3.2 Printk Times ..18

4.3.3 initcall-times patch..18

4.3.4 Expect ...19

4.4 Boot Time Measurement..19

4.5 Boot Sequence Analysis...22

4.5.1 Level I: From the Application’s Point of View...................................23

4.5.2 Level II: From the Functional Block’s Point of View.........................23

4.5.3 Measurement result ...26

4.6 Summary ..27

Chapter 5 Experiment.. 28

5.1 Redundancy Analysis ..28

5.2 Comparison ..35

5.3 Reduced Functional Ability ...49

5.4 Recommendation ...50

5.5 Summary ..51

Chapter 6 Conclusion... 52

Chapter 7 Future Work ... 53

Reference ... 54

 vi

List of Figures

Figure 2.1 Snapshot Management of Snapshot Technique for NOR Flash4

Figure 4.1 Numeric Trace Data of KFT ..14

Figure 4.2 Symbolic Trace Date of KFT...14

Figure 4.3 Kernel Routines Date in Nested...15

Figure 4.4 Initcall Log in Kernel Ring Buffer...16

Figure 4.5 The Timestamp Resetting ..16

Figure 4.6 No Timestamp before Some Messages ..18

Figure 4.7 Device Reset Timing of OMAP5912...20

Figure 4.8 The Movie Frame of Finish Uncompressing Kernel21

Figure 4.9 The Movie Frame of Finish Displaying Linux Banner........................21

Figure 4.10 The Records of Logic Analyzer ...22

Figure 5.1 The Patch of Changing Clocking Mode...37

Figure 5.2 The Patch of Simplifying abortboot ..38

Figure 5.3 The Patch of Verification Switch...40

Figure 5.4 The Sample Patch of Silent Console..41

Figure 5.5 The Patch of Uncompressed Kernel ..43

Figure 5.6 The Effect of Preset LPJ ..43

Figure 5.7 The Patch of Quick Shell Prompt ..47

Figure 5.8 The NOR Flash Memory Map ...48

Figure 5.9 The Mount Operation of JFFS2 Partition in Background....................48

 vii

List of Tables

Table 4.1 KFT Activates from start_kernel to to_userspace...............................17

Table 4.2 The 18 functional blocks..23

Table 4.3 A Template of Boot Time Measurement Table25

Table 4.4 Boot Time with 18 Function Blocks ..26

Table 5.1 The Time Comparison of Changing Clocking Mode...........................36

Table 5.2 The Time Reduced by Skipping console_init_r37

Table 5.3 The Time Reduced by Simplifying abortboot38

Table 5.4 The Time Reduced by Verification Switch..39

Table 5.5 The Time Reduced by Silent Console in U-Boot.................................40

Table 5.6 The Time Reduced by Uncompressed Kernel41

Table 5.7 The Time of calibrate_delay ...43

Table 5.8 The Time of Initcalls..44

Table 5.9 The Time Reduced by Silent Console in Linux kernel45

Table 5.10 The Comparison between Different FS ...47

Table 5.11 Functional Ability Comparison..49

 1

Chapter 1

Introduction

1.1 Motivation

With the development and popularity of the mobile device and high-level

consumer electronics, there are more and more applications of embedded Linux

operating system on them. Boot is the first impression of an electronic product for

consumers; therefore the boot time should not be too long to give consumers a good

impression. However, the boot time of general embedded Linux operating system on

the market is about 8-10 seconds on average at present and most of consumer

electronics use Linux kernel 2.4 as the embedded Linux operating system. But with

the development of Linux kernel 2.6, using Linux kernel 2.6 as the embedded Linux

operation system will be a trend certainly in the future. In order to prevent users from

having bad impressions, the developer let product show boot logo using extra graphic

chip on screen first during the core processor doing boot. Therefore if we can provide

fast boot mechanism of Linux kernel 2.6 and enable users to do the first operation of

the product within a shortest time, users will accept this product even more,

developers can save the extra hardware cost (the graphic chip) and the product will

meet the requirements in the future even more. In addition, we can save more valuable

time in critical reboot operating, if boot is faster.

 2

1.2 Contribution

At first, we propose the method which measure the exact time needed for each

specific function, even for specific instruction in the whole boot sequence using the

oscillator, logical analyzer and other assistant records and information.

Secondly, with our optimized U-Boot 1.1.3, suggested Linux kernel 2.6.14

configuration, and optimized BusyBox 1.01, we have achieved the instant boot on the

OMAP5912OSK by greatly reducing the total boot time from 10062.94 ms to 1477.77

ms which is considered as one of the important features on many embedded systems.

And the optimization methods of U-Boot 1.1.3 and BusyBox 1.01 are also suitable for

other platforms, not only on the OMAP5912OSK.

1.3 Synopsis

This thesis is organized as follows. In Chapter 2 and Chapter 3, related work and

background are surveyed. In Chapter 4, we analyze the issue of boot time

measurement tools, use complex tools and oscillator and logical analyzer to measure

boot time, and analyze the measurement result to find long execution time operations.

In Chapter 5, we implement experiments to optimize the lone execution time

operations in Chapter4 to achieve faster boot time. Finally, we the conclusions and

further work are given in Chapter 6.

 3

Chapter 2

Related Work

There are many exist techniques to improve the boot time of Linux. They

improve different parts of full boot process separately. They include the different file

system structure of flash storage device [1] [2], the special method to execute kernel

[3] [10] and the process control initialization utility [4].

2.1 Snapshot Technique for NOR Flash

 This technique stores snapshot to variable-size areas managed by linked lists and

sequentially record the location of the stored snapshots to prearranged areas by using

an ordered tree data structure.

In Figure 2-1, it can be seen that the first block of flash memory is reserved as a

root block which sequentially stores pointers to snapshot header blocks. During the

mount_root operation, the last stored pointer can be found quickly using sequential or

binary search algorithms. The binary searching divides the root block into two

sub-blocks and reads the boundary pointer of these sub-blocks. If the pointer is null,

this searching selects the left sub-block. Otherwise, the other one is selected. With the

selected sub-block, the above procedure is repeated until the last stored pointer is

found. Since the block size (Bsize) is typically 128KB in NOR flash and the size of a

pointer to block is 2B (Psize), this search algorithm has a better time complexity of

O(lg(Bsize / Psize)) = O(16).

In summary, this technique only reads lg(Bsize / Psize) x Psize + lg(Bsize / Hsize) x

 4

Hsize (=92) bytes in an average case to fine the location of the last stored snapshot,

providing an instant lookup time.

However, the author doesn’t release the source code. Therefore we can’t try

using this technique.

Figure 2.1 Snapshot Management of Snapshot Technique for NOR Flash

2.2 Erase Block Summary

 Erase Block Summary (EBS) is an improvement to speed up the mount process.

EBS stores extra summary information at the end of every (closed) erase block. This

information is generated automatically at file system write operations. To make it

possible to determine the size of the summary node, there is an 8 byte long summary

marker node (jffs2_sum_marker) at the end of erase blocks. At mount time

jffs2_scan_eraseblock() reads the last 8 bytes of the erase block during the scan

process. If it finds valid sum_marker node, it loads the summary node pointed by the

 5

relative offset stored in sum_marker. All information needed at mount time is stored

in this node, so scanning the full erase block is not necessary. It can cause a big

speedup, especially at NAND devices. If sum_marker is not found (or invalid) the

normal scan process will be applied.

Known the EBS is only existent in JFFS2 image. That is to say, EBS is only

existent in the parts of used space and not existent in the parts of unused space.

Therefore, the effect of EBS is limited.

2.3 Kernel Execute-In-Place

 Execute-In-Place (XIP) allows the kernel run from non-volatile storage directly

addressable by the CPU, such as NOR flash. This saves RAM space since the text

section of the kernel is not loaded from flash to RAM. Read-write sections, such as

the data section and stack, are still copied to RAM. The XIP kernel is not compressed

since it has to run directly from flash, so it will take more space to store it. The flash

address used to link the kernel object files, and for storing it, is configuration

dependent. Therefore, the proper physical address where to store the kernel image

depending on specific flash memory usage must be known.

 For OMAP-based platform, Kernel XIP is only effective on OMAP Innovator

using rrload. Now, Kernel XIP still not support by U-Boot on ARM-based platform.

2.4 InitNG

 InitNG is a full replacement of the old and in many ways deprecated sysvinit tool

(init) created by Jimmy Wennlund. It is designed to significantly increase the speed of

 6

booting a UNIX-compatible system by starting processes asynchronously. On boot,

initng will be invoked as the first process (pid = 1) by the kernel. At first, initng will

parse configuration files located in /etc/initng for critical information such as runlevel

and service data. After that, all services required by the default runlevel will be started

as soon as their dependencies are met, allowing services to run in parallel. This

asynchronous execution can dramatically improve boot time by better utilizing the

system resources (especially in the case of multiprocessor systems).

 The last version of InitNG is 0.6.7, which still not support for ARM-based
platform.

2.5 Summary

 In Chapter 2, we introduce many new techniques for improve the boot time.

Some techniques are only absorbed in PPC; some techniques are still not ported to

OMAP-based platform and others techniques are only working on specific peripheral

and application.

 7

Chapter 3

Background

On the market, the choices of hardware and software for development of mobile

device and high-level consumer electronics are very many. To choose a good

combination for product which is suitable for the function requirement and high return

on investment is the most important.

3.1 OSK5912 OMAP Starter Kit

The OMAP 5912 multiprocessor platform is available in the OSK5912 OMAP

Starter kit by Spectrum Digital. The dual-core architecture provides benefits of both

DSP and reduced instruction set computer (RISC) technologies [5].

The MPU core is the ARM926EJ-S reduced instruction set computer (RISC)

processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit or 16-bit

instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that

all parts of the processor and memory system can operate continuously. The MPU

core also incorporates the data and program memory management units (MMUs) with

table look-aside buffers. To minimize external memory access time, the ARM926EJ-S

includes an instruction cache, data cache, and a write buffer. In general, these are

transparent to program execution.

The DSP core of the OMAP5912 device is based on the TMS320C55x DSP

generation CPU processor core. The C55x DSP architecture achieves high

performance and low power through increased parallelism and total focus on

 8

reduction in power dissipation. The CPU supports an internal bus structure composed

of one program bus, three data read buses, two data write buses, and additional buses

dedicated to peripheral and DMA activity. These buses provide the ability to perform

up to three data reads and two data writes in a single cycle. In parallel, the DMA

controller can perform up to two data transfers per cycle independent of the CPU

activity. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional

16-bit ALU. Using of the ALU provides the ability to optimize parallel activity and

power consumption. The OMAP5912 DSP core also includes a 24K-byte instruction

cache to minimize external memory accesses, improving data throughput and

conserving system power.

The TMS320C55x DSP core within the OMAP5912 device utilizes three

powerful hardware accelerator modules which assist the DSP core in implementing

specific algorithms that are commonly used in video compression applications such as

MPEG4 encoders/decoders. They are DCT/iDCT Accelerator, Motion Estimation

Accelerator and Pixel Interpolation Accelerator. These accelerators allow

implementation of such algorithms using fewer DSP instruction cycles and dissipating

less power than implementations using only the DSP core. The hardware accelerators

are utilized via functions from the TMS320C55x Image/Video Processing Library

available from Texas Instruments.

The OMAP5912OSK platform also provides rich user interfaces, high processing

performance, and long battery life through the maximum flexibility of a fully

integrated mixed processor solution. Therefore, the OMAP5912OSK could meet of

requirement of following applications:

 Applications Processing Devices

 Mobile Communications

 WAN 802.11X

 9

 Bluetooth　

 GSM, GPRS, EDGE

 CDMA

 Video and Image Processing (MPEG4, JPEG, Windows Media V　 ideo,

etc.)

 Advanced Speech Applications (text-to-speech, speech recognition)

 Audio Processing (MPEG-1 Audio Layer3 [MP3], AMR, WMA, AAC, and

Other GSM Speech Codecs)

 Graphics and Video Acceleration

 Generalized Web Access

 Data Processing

For the diversified features and applications, we choose OMAP5912OSK as our

development platform.

3.2 U-Boot

 In an embedded system the role of the boot loader is more complicated since

these systems do not have BIOS to perform the initial system configuration. The low

level initialization of microprocessors, memory controllers, and other board specific

hardware must be performed before a Linux kernel image can execute. At a minimum

an embedded loader provides the following features:

1. Initializing the hardware, especially the memory controller.

2. Providing boot parameters for the Linux kernel.

3. Starting the Linux kernel.

Additionally, most boot loaders also provide convenience features that simplify

development:

 10

1. Reading and writing arbitrary memory locations.

2. Uploading new binary images to the board's RAM via a serial line or

Ethernet.

3. Copying binary images from RAM to FLASH memory.

Das U-Boot is a GPL'ed cross-platform boot loader shepherded by Wolfgang

Denk [6] and provides the full functions of above-mentioned requirement. It also

provides out-of-the-box support for hundreds of embedded boards and a wide variety

of CPUs including PowerPC, ARM, XScale, MIPS, Coldfire, NIOS, Microblaze, and

x86. The easy configuration of U-Boot strikes the right balance between a rich feature

set and a small binary footprint. Therefore, U-Boot 1.1.3 is the best choice of the boot

loader on our implementation platform, and supports for Linux kernel 2.6.

3.3 Embedded Linux

There are many embedded operating system, which are designed to be very

compact and efficient, forsaking many functionalities that non-embedded computer

operating systems provide and which may not be used by the specialized applications

they run. Embedded operating systems include: eCos, Embedded Linux, FreeDOS,

FreeRTOS, LynxOS RTOS, NetBSD, OpenBSD, Inferno, OSE, OS-9, QNX,

VxWorks, Windows CE and Windows XP Embedded…etc. Among them, Embedded

Linux refers to the use of the open source Linux operating system in embedded

systems such as cell phones, PDAs, media player handsets, and other consumer

electronics devices.

In the past an embedded development was mostly performed using proprietary

code written in assembler. Developers had to write all of the hardware drivers and

interfaces from scratch. It appeared that the Linux kernel, combined with a small set

 11

of other free software utilities, could be fit into the confines of the limited hardware

space of an embedded device. And a typical installation of embedded Linux takes

about 2 megabytes. Therefore, we use the embedded Linux kernel 2.6.14

(linux-2.6.14-omap2) [7] [8] as our embedded operating system.

3.4 BusyBox

 BusyBox [9] combines tiny versions of many common UNIX utilities into a

single small executable. It provides replacements for most of the utilities in GNU,

which are archival utilities, coreutils, console utilities, editors, finding utilities and init

utilities…etc. The utilities in BusyBox generally have fewer options than their

full-featured GNU cousins; however, the options that are included provide the

expected functionality and behave very much like their GNU counterparts. BusyBox

provides a fairly complete environment for any small or embedded system.

 BusyBox has been written with size-optimization and limited resources in mind.

It is also extremely modular so including or excluding commands (or features) is easy

at compile time. This makes it easy to customize specific embedded systems. To

create a working system, developers just need to add some device nodes in /dev, a few

configuration files in /etc, and a Linux kernel. We use BusyBox 1.01 to replace the

original big file system of PC running Linux.

3.5 Summary

 In Chapter 3, we describe the background of our development platform. It

includes powerful OMAP5912OSK, universal U-Boot, the open source embedded

Linux and tiny BusyBox.

 12

Chapter 4

Boot Time Analysis

Before starting reducing the booting time, we should understand the boot

sequence first. Then measuring the booting time and analyzing the timing result.

Finally, to improve the original embedded operating system as fast booting system.

4.1 Boot Sequence

 We can summarize the initial boot sequence of Linux kernel as follows [10] [11]:

1. The boot loader arranges for the kernel to be placed at the proper address in

memory. This code is external to Linux source code and usually the first

code segment executed once the system is powered on. Finally, this boot

loader jumps to execute Linux kernel.

2. Architecture-specific assembly code in Linux kernel performs very

low-level tasks, such as initializing memory and setting up CPU registers so

that C code can run flawlessly. This includes selecting a stack area and

setting the stack pointer accordingly. The amount of such code varies from

platform to platform; it can range from a few dozen lines up to a few

thousand lines.

3. Function start_kernel is called. It acquires the kernel lock, prints the banner,

and calls function setup_arch to configure the system according to the

platform's architecture.

4. Architecture-specific C-language code completes low-level initialization,

 13

including interrupt vectors initialization, and retrieves a command line for

start_kernel to use.

5. start_kernel parses the command line and calls the handlers associated with

the keyword it identifies.

6. start_kernel initializes basic facilities and forks the init thread.

7. init is the first user space application, it does the process control

initialization, runs the initialization script and start daemons. Finally it starts

the getty processes that put the login prompt.

4.2 Boot Time Measurement Tools

 The usual way to look at a program is to start where execution begins. As far as

Linux is concerned, it's hard to tell where execution begins - it depends on how you

define begins. Therefore we need to use some measurement tools to assist us

measuring boot time.

4.2.1 Kernel Function Trace

Kernel Function Trace (KFT) [10] [12] is a kernel function tracing system, which

uses the “-finstrument-functions” capability of the gcc compiler to add

instrumentation callouts to every function entry and exit. The KFT system provides

for capturing these callouts and generating a trace of events, with timing details. KFT

is excellent at providing a good timing overview of kernel procedures, allowing you

to see where time is spent in functions and sub-routines in the kernel.

 The STATIC_RUN mode of operation with KFT is doing configuration for a

KFT run and is compiled statically into the kernel. This mode is useful for getting a

 14

trace of kernel operation during system boot (before user space is running).

 The KFT configuration lets you specify how to automatically start and stop a

trace, whether to include interrupts as part of the trace, and whether to filter the trace

data by various criteria (for minimum function duration, only certain listed functions,

etc.) KFT trace data is retrieved by reading from /proc/kft_data after the trace is

complete.

Entry Delta Function Caller
-------- -------- ------------ ------------
 0 -1 0xc002307c 0xc00231b4
 0 -1 0xc002935c 0xc00230b4
 0 468750 0xc0099bc4 0xc00293ac
 0 312500 0xc0098c48 0xc0099c20
 0 312500 0xc009dfe0 0xc0098c88
 0 312500 0xc009db18 0xc009e1d4
 0 312500 0xc009cb34 0xc009dbdc
 0 7813 0xc009ca58 0xc009cf0c
 0 7813 0xc009c50c 0xc009cadc
 0 7813 0xc00cd148 0xc009c5ac
 0 7813 0xc00dacf4 0xc00cd298
 0 7813 0xc00d29ec 0xc00dad58

Figure 4.1 Numeric Trace Data of KFT

Entry Delta Function Caller
-------- -------- ----------------- ------------
 0 -1 run_init_process init+0xb4
 0 -1 execve run_init_process+0x38
 0 468750 do_execve execve+0x50
 0 312500 open_exec do_execve+0x5c
 0 312500 path_lookup open_exec+0x40
 0 312500 link_path_walk path_lookup+0x1f4
 0 312500 __link_path_walk link_path_walk+0xc4
 0 7813 do_lookup __link_path_walk+0x3d8
 0 7813 real_lookup do_lookup+0x84
 0 7813 jffs2_lookup real_lookup+0xa0
 0 7813 jffs2_read_inode jffs2_lookup+0x150
 0 7813 jffs2_do_read_inode jffs2_read_inode+0x64

Figure 4.2 Symbolic Trace Date of KFT

KFT supplies two useful log analysis tools: addr2sym is supplied to convert

numeric trace data (see Figure 4.1) to kernel symbolic trace data (see Figure 4.2), and

kd is supplied to process and analyze the data in a KFT trace. By using both tools, the

log with function name, execution count, amount execution time and average

execution time of kernel routines can be produced. In addition, a log with the trace of

 15

kernel routines in nested (see Figure 4.3) can be produced by using “kd -c”.

Entry Delta PID Trace
-------- -------- ----- ---
 0 -1 1 run_init_process
 0 -1 1 | execve

 0 468750 1 | | do_execve
 0 312500 1 | | | open_exec
 0 312500 1 | | | | path_lookup
 0 312500 1 | | | | | link_path_walk
 0 312500 1 | | | | | | __link_path_walk
 0 7813 1 | | | | | | | do_lookup
 0 7813 1 | | | | | | | | real_lookup
 0 7813 1 | | | | | | | | | jffs2_lookup
 0 7813 1 | | | | | | | | | | jffs2_read_inode
 0 7813 1 | | | | | | | | | | | jffs2_do_read_inode

Figure 4.3 Kernel Routines Date in Nested

4.2.2 Printk Times

 Printk times [13] is a simple technology which adds some code to the standard

kernel printk routine, to output timing data with each message. While a crude status,

this can be used to get an overview of the areas of kernel initialization which take a

relatively long time. This feature is used to identify areas of the Linux kernel

requiring work.

 With printk times turned on, the system emits the timing data as a floating point

number of seconds (to microsecond resolution) for the time at which the printk started.

The utility program shows the time between calls, or it can show the times relative to

a specific message. This makes it easier to see the timing for specific segments of

kernel code during boot.

4.2.3 initcall-times patch

 Matt Mackall provided an initcall-times [13] patch which measures times for the

 16

initialization of each driver during do_initcalls. This is a special tool to look at the

time of initialization of buses and drivers. It times just the initcalls and is enabled by

putting “initcall_debug” on the command line. The records of device initializations

can be read by dmesg after boot and use grep to find time-consuming initializations

(see Figure 4.4).

Calling initcall 0xc000ea6c: ptrace_break_init+0x0/0x2c()
 initcall elapsed 0.000000s - ptrace_break_init+0x0/0x2c()
Calling initcall 0xc000f8d4: consistent_init+0x0/0xb4()
 initcall elapsed 0.000061s - consistent_init+0x0/0xb4()
Calling initcall 0xc0013a30: helper_init+0x0/0x48()
 initcall elapsed 0.000427s - helper_init+0x0/0x48()
Calling initcall 0xc0013b88: ksysfs_init+0x0/0x44()
 initcall elapsed 0.000122s - ksysfs_init+0x0/0x44()
Calling initcall 0xc0015958: filelock_init+0x0/0x54()
 initcall elapsed 0.000091s - filelock_init+0x0/0x54()
Calling initcall 0xc0016320: init_script_binfmt+0x0/0x1c()
 initcall elapsed 0.000000s - init_script_binfmt+0x0/0x1c()

Figure 4.4 Initcall Log in Kernel Ring Buffer

4.2.4 Expect

 Wolfgang Denk provides a expect [14] script do start-to-finish timings by

filtering every outputted lines of kermit [15]. The timestamp is refers to the newline

character, i.e. to the end of each line. Because this expect script measure the time on

host, it depends on clock of host, not the clock of target. Therefore, the time

measurement will not make any affection to the target. There is a special parameter

called “start_string”, which can be set to reset the timestamp (see Figure 4.5).

 5.837 Starting kernel ...
 5.837
 7.717 Uncompressing Linux...
.......................... done, booting the kernel.
 8.794 Linux version 2.6.14-omap2 (root@phantom.cn.nctu.edu.tw) (gcc version 3.3.2)
#2 Tue Jul 18 16:06:26 CST 2006
 0.008 CPU: ARM926EJ-Sid(wb) [41069263] revision 3 (ARMv5TEJ)
 0.019 Machine: TI-OSK
 0.070 Memory policy: ECC disabled, Data cache writeback
 0.071 OMAP1611b revision 2 handled as 16xx id: 5b058f7948960a0f

Figure 4.5 The Timestamp Resetting

 17

4.3 Measurement Tools Analysis

 We must to check the accuracy of different tools on OMAP5912OSK. In order to

obtain exact boot time, we use the oscilloscope to measure signals of RS232_TX

which represent the console outputs. So we can compare the time before and after

using specific tool, and cross check with the records of oscilloscope.

4.3.1 Kernel Function Trace

 Since KFT add instrumentation callouts to every function entry and exit. The

requirement of system performance will increase in a large amount. Therefore, the

execution performance of KFT is limited to the platform. If the performance of

specific platform is not enough, KFT will causes huge overhead when doing record.

The timing result of KFT is not correct, because the result includes not only original

execution time but also overheads.

 In Table 4.1, we observe that the boot time will become 2 times because the

performance of OMAP5912 can not meet the requirement of KFT. And most of boot

time waste on routine schedule which reschedules tasks schedule when the usage of

MPU is almost 100%.

Table 4.1 KFT Activates from start_kernel to to_userspace

Configuration Boot time

CONFIG_KFT=n 8.212 seconds

CONFIG_KFT=y, ONFIG_KFT_STATIC_RUN=n 13.134 seconds

CONFIG_KFT=y, ONFIG_KFT_STATIC_RUN=y 16.010 seconds

 18

4.3.2 Printk Times

 At first, the time resolution of printk time is not enough to measure the time

below 1 ms. Printk times uses the routine sched_clock to get timestamp, but

sched_clock only has a time resolution of 1 jiffy which is 1/HZ = 1/128 = 7.8125 ms

on OMAP5912. Although the value of HZ is 1000 in part of PC, the time resolution is

only 1 jiffy = 1/1000 = 1 ms.

Secondly, OMAP5912 will hang when printk times function is compiled in the

kernel, therefore we must use it dynamically, i.e. putting “time” on the command line.

After using printk times dynamically, we observe that not all kernel messages have

the timestamp (see Figure 4.6) until the kernel commands have passed.

CPU0: I cache: 16384 bytes, associativity 4, 32 byte lines, 128 sets
CPU0: D cache: 8192 bytes, associativity 4, 32 byte lines, 64 sets
Built 1 zonelists
Kernel command line: console=ttyS0,115200n8 noinitrd rw ip=off root=/dev/mtdblock3
rootfstype=jffs2 mem=32M time
[4.512268] Total of 128 interrupts in 4 interrupt banks
[4.512634] OMAP GPIO hardware version 1.0
[4.512817] MUX: initialized M7_1610_GPIO62
[4.512908] PID hash table entries: 256 (order: 8, 4096 bytes)
[4.513824] Console: colour dummy device 80x30

Figure 4.6 No Timestamp before Some Messages

4.3.3 initcall-times patch

 The default value of CONFIG_LOG_BUF_SHIFT is 14, that is to say, the kernel

ring buffer size is 214 B = 16 KB [16]. That is not sufficient to hold all the messages

with the additional information of initcall-times patch. The kernel ring buffer size

must be modified to 128 KB by setting to CONFIG_LOG_BUF_SHIFT to 17 to

address the request of initcall-times patch.

 19

4.3.4 Expect

 This method can’t measure the time before console initialized, i.e. the time of the

hardware initialization time before U-Boot start can’t be measured by expect script.

Original kernel messages in normal mode are not enough to do accurate analysis; we

can’t measure the time of specific function or instruction. And the time result will

include the delay from the RS232_TX ping to kermit doing decode signal to ASCII

and outing. The delay time is different of each output and the boot time measured

using expect is not correct enough.

4.4 Boot Time Measurement

In order to measure the exact boot time, we use the oscillator and logical

analyzer to record the specific signals on OMAP5912OSK [5] [17]. The DC_IN

signal represents the DC input status, which is the power status. The DC input

supplies the core voltage (CVDDx) and the I/O voltage (DVDDx). The MPU_nRESET

pin is connected to the MPU_RST pin of OMAP5912 core, whose signal represents

the MPU reset input status. The MPU_RST signal is asserted low until power supplies

is stable, and then high. MPU core ties the PWRON_RESET pin and MPU_RST pin

together, therefore the PWRON_RESET signal and MPU_RST signal are the same.

The RST_OUT signal represents the reset output. The RST_OUT signal is asserted

low until OMAP5912 finished device reset operation. The signal RS232_TX

represents the transmit data pin status of RS232, that is to say the console output of

OMAP5912OSK. The nFLASH.CSx pin is connected to the CSx pin of NOR flash,

which represents the access status of NOR flash. Referencing following Figure 4.7,

we decide to use the MPU_RST signal which is asserted from low to high as the start

 20

point of boot, and the final signal of RS232_TX (BusyBox banner) as the end point of

boot.

Figure 4.7 Device Reset Timing of OMAP5912

When boot, we capture the screen output of console as a 1000fps (1000 frames

per second) movie to assist us to determine specific timestamp.

The records of oscillator and logical analyzer are ambiguous, we need to do cross

check of the source code, the signals of MPU_nRESET, the signals of RS232_TX, the

signals of nFLASH.CSx, the frames of boot movie and the dmesg information to

determine which signal is represented for the specific one.

 In order to measure further detailed timestamp of specific function, we use

different methods and tools at the same time. At first, we trace full source code to

obtain detailed boot sequence, i.e. from start_armboot of U-Boot to ash_main of

BusyBox. And then, we hacking the source code to output function names and timings.

In the source code of U-Boot, we use puts to output U-Boot function names. In the

source code of Linux kernel, we use printk(KERN_EMERG “ ”) to output kernel

function names and use sched_clock to calculate each execution time of function. In

the source code of BusyBox, we use fprintf(stderr, “ ”) to output user space function

names.

 21

After measurement, we can obtain following useful information:

1. Full console records of boot in 1000fps movie. We can review boot process

frame by frame (Every frame represents for 1 millisecond). The movie

frame of finish uncompressing kernel and finish displaying Linux banner

are show in Figure 4.8 and 4.9.

Figure 4.8 The Movie Frame of Finish Uncompressing Kernel

Figure 4.9 The Movie Frame of Finish Displaying Linux Banner

2. Kernel ring buffer. We can use dmesg to print the kernel ring buffer to

review kernel and initcall_debug messages during kernel phase (see Figure

4.4 and 4.6).

 22

3. The signal records of DC_IN, MPU_nRESET, RST_OUT, RS232_TX,

nFLASH.CSx with 100 microsecond’s time resolution (see Figure 4.10).

Figure 4.10 The Records of Logic Analyzer

4.5 Boot Sequence Analysis

After observing and cross check the original records, we add extra timestamp

points and measure repeatedly to divide boot sequence into three levels: represent the

level of application’s point of view, the level of functional block’s point of view and

the level of instruction’s point of view respectively.

 23

4.5.1 Level I: From the Application’s Point of View

 We divide the boot sequence preliminary from the application’s point of view.

They are three major phases which art boot loader phase, kernel phase and user space

phase. U-Boot 1.1.3 is executed in boot loader phase. Embedded Linux kernel 2.6.14

is executed in the kernel phase. BusyBox v1.01 is executed in user space phase.

4.5.2 Level II: From the Functional Block’s Point of View

We subdivide the three major phases further by timing result, to enable us to

measure more detailed boot time. In order to do subdivision, we need to cross check

the boot movie frames, kernel ring buffer and the signal records of oscillator and

logical to decide the separate time of the different function block. And subdivide the

boot time to 18 functional blocks by the characteristic of different signal of oscillator

and logical analyzer, e.g. the flash access status or the console output. The 18

functional blocks is shown at Table 4.2.

Table 4.2 The 18 functional blocks

Start Point End Point #

Description

Device reset start Device reset over 1

 From the first signal MPU_nRESET becoming high to the first signal

RST_OUT becoming high. OMAP5912OSK enable the hardware preliminary.

Device reset over MPU read first instruction 2

 From the first signal RST_OUT becoming high to the first signal RS232_TX

becoming low. OMAP5912OSK start to execute the first instruction.

MPU read first instruction env_relocate_spec start

Boot

loader

phase

3

 From the first signal nFLASH.CSx becoming low to the signal RS232_TX of

function env_relocate_spec start (the signal RS232_TX becoming high). U-boot

starts and prepares to execute the first function which access flash.

 24

env_relocate_spec start env_relocate_spec over 4

 From the signal RS232_TX of function env_relocate_spec start to the signal

RS232_TX of function env_relocate_spec over. env_relocate_spec relocates the

environment parameters.

env_relocate_spec over Image date checksum start 5

 From the signal RS232_TX of function env_relocate_spec over to the signal

RS232_TX of image date checksum start. This function block does not access flash.

Image date checksum start Image date checksum over 6

 From the signal RS232_TX of image date checksum start to the signal

RS232_TX of image date checksum over. U-Boot verifies the image data checksum.

Image date checksum over Copying image to ram start 7

 From the signal RS232_TX of image date checksum over to the signal

RS232_TX of copying image to ram start. U-Boot finished image data checksum and

prepares copy image to DDRRAM.

Copying image to ram start Copying image to ram over 8

 From the signal RS232_TX of copying image to ram start to the signal

RS232_TX of copying image to ram over. U-Boot copies image from flash to

DDRRAM.

Copying image to ram over Transfer control to Linux

9

 From the signal RS232_TX of copying image to ram over to the signal

RS232_TX of transferring control to Linux. U-Boot transfers control to Linux kernel.

Transfer control to Linux Uncompress kernel start 10

 From the signal RS232_TX of transferring control to Linux to the signal

RS232_TX of uncompressing kernel start. Linux kernel gets the control and prepares

to uncompress kernel.

Uncompress kernel start Uncompress kernel over 11

 From the signal RS232_TX of the signal RS232_TX of uncompressing kernel

start to the signal RS232_TX of the signal RS232_TX of uncompressing kernel over.

Linux kernel is uncompressed.

Uncompress kernel over jffs2_build_filesystem start 12

 From the signal RS232_TX of uncompressing kernel over to the signal

RS232_TX of jffs2_build_filesystem start. Linux kernel uncompressed and execute

routine start_kernel, Linux kernel does not access flash until the routine mount_root

invoking jffs2_build_filesystem.

jffs2_build_filesystem start jffs2_build_filesystem over 13

 From the signal RS232_TX of jffs2_build_filesystem start to the signal

RS232_TX of jffs2_build_filesystem over. Linux kernel builds the jffs2 file system.

Kernel

phase

14 jffs2_build_filesystem over Invoke init

 25

 From the signal RS232_TX of jffs2_build_filesystem over to the signal

RS232_TX of invoking init. Root file system has been built and Linux kernel invoke

the sysvinit tool: /sbin/init.

Invoke init init_main start 15

 From the signal RS232_TX of invoking init to the signal RS232_TX of

invoking init_main start. Linux kernel still run background routines and init wait for

start.

init_main start RC script start 16

 From the signal RS232_TX of invoking init_main start to the signal

RS232_TX of RC script start. init_main started for user space and prepares to run RC

script.

RC script start RC script over 17

 From the signal RS232_TX of RC script start to the signal RS232_TX of RC

script over. RC script starts several daemons.

RC script over Shell prompt

User

space

phase

18

 From the signal RS232_TX of RC script over to the signal RS232_TX of shell

prompt. RC script finished and shell prompt enabled.

 After subdivide the boot sequence to 18 function blocks, each function has the

similar characteristic. That is to say, the behaviors of all function in a function block

are almost similar. It is useful for our redundancy analysis.

 We supply a template of the boot time measurement table. See Table 4.3.

Table 4.3 A Template of Boot Time Measurement Table

Level II
Start Point End Point

 Level I

Time
Device reset start Device reset over

 ms
Device reset over MPU read first instruction

 ms
MPU read first instruction env_relocate_spec start

 ms
env_relocate_spec start env_relocate_spec over

 ms
env_relocate_spec over image date checksum start

 ms
image date checksum start image date checksum over

Total
 ms

Boot Loader
 ms

 ms

 26

image date checksum over copy image to ram start
 ms

copy image to ram start copy image to ram over
 ms

copy image to ram over transfer control to Linux

 ms
transfer control to Linux uncompress kernel start

 ms
uncompress kernel start uncompress kernel over

 ms
uncompress kernel over jffs2_build_filesystem start

 ms
jffs2_build_filesystem start jffs2_build_filesystem over

 ms
jffs2_build_filesystem over invoke init

Kernel
 ms

 ms
invoke init init_main start

 ms
init_main start RC script start

 ms
RC script start RC script over

 ms
RC script over Shell prompt

User Space
 ms

 ms

4.5.3 Measurement result

 The boot time using default setting of U-Boot 1.1.3, Linux kernel 2.6.14 and

BusyBox 1.01 is 7934.41 ms (Do not include the part of wait). Among them, boot

loader spends 1111.76 ms, Linux kernel spends 5882.60 ms and user space spends

943.05 ms. The detailed time is in the Table 4.4.

Table 4.4 Boot Time with 18 Function Blocks

Level II
Start Point End Point

 Level I

Time
Device reset start Device reset over

31.38 ms
Device reset over MPU read first instruction

0.74 ms
MPU read first instruction env_relocate_spec start

122.26 ms
env_relocate_spec start env_relocate_spec over

44.98 ms
env_relocate_spec over image date checksum start

Total
7934.41 ms

Boot Loader
1111.76 ms

27.62 + 1477.76 ms (wait for user: 1477.76 ms)

 27

image date checksum start image date checksum over
487.92 ms

image date checksum over copy image to ram start
0.44 ms

copy image to ram start copy image to ram over
395.52 ms

copy image to ram over transfer control to Linux

0.90 ms
transfer control to Linux uncompress kernel start

13.48 ms
uncompress kernel start uncompress kernel over

1838.62 ms
uncompress kernel over jffs2_build_filesystem start

1840.48 ms
jffs2_build_filesystem start jffs2_build_filesystem over

2179.54 ms
jffs2_build_filesystem over invoke init

Kernel
5882.60 ms

10.48 ms
invoke init init_main start

818.22 ms
init_main start RC script start

37.10 ms
RC script start RC script over

65.98 ms
RC script over Shell prompt

User Space
943.05 ms

21.75 + 656.79 ms (wait for user: 656.79 ms)

4.6 Summary

 In Chapter 4, we describe the boot sequence and the boot time measurement

tools, and then analyze the boot time measurement tools. Finally, we purpose a

method to measure the exact time of specific function or instruction, and measure the

boot time with 18 function blocks.

 28

Chapter 5

Experiment

 After obtaining the detailed and exact boot time measurement results, we can

find out the redundant operations. Finally, we can rewrite or skip them to achieve

faster boot without any side effect.

5.1 Redundancy Analysis

 By the time measurement result, at first, we can observe many operations of

accessing flash and some bad configuration during boot loader phase. Secondly,

during kernel phase, we can obtain the execution of all kernel routines by printk

useful information. Finally, the choice of file system has huge affection to the boot

time. After checking that, we can conclude following redundant works and the

methods of fast boot.

 Boot loader phase

METHOD 01: Adjust clocking mode

[Original] The Default setting of U-Boot uses fully synchronous mode as the

clocking mode [18]. In fully synchronous mode, the MPU, DSP, and Memory traffic

controller (TC) domains run at the same clock frequency derived from DPLL1.

[Limitation] The frequency of MPU and DSP are limited by the upper bound of TC

[19], i.e. 96 MHz. However, the upper bound frequency of MPU and DSP are 192

MHz. So, the performance of U-Boot is limited because the frequency of each

 29

domain.

[Modification] We changed the clocking mode from fully synchronous mode to

synchronous scalable mode by setting the value of ARM_SYSST (MPU System

Status Register) from 0x0000 to 0x1000 [18] [19]. In synchronous scalable mode, the

domains of MPU, DSP, and TC are synchronous and run at different clock speeds.

[Improvement] We can ramp up the DPLL1 clock to 192 MHz and let MPU work on

192 MHz by setting ARMDIV to 00, i.e. the frequency of ARM core equals the

frequency of DPLL1 divided by 20, and TC work on 96 MHz at the same time by

setting TCDIV to 01, i.e. the frequency of TC equals the frequency of DPLL1 divided

by 21.

METHOD 02: Reduce unused console functions

[Original] During U-Boot doing initialization, the initialization of console device is

separated into two functions: console_init_f and console_init_r.

[Limitation] After executing the two functions sequentially, the console device will

be initialized as a fully console device. However, we do not need U-Boot to provide a

fully console device during boot. Therefore fully initialization of console device is

redundant.

[Modification] After reading the U-Boot source code and doing experiment

repeatedly, we know that the function console_init_r is useless during boot. Therefore,

we skip the execution of console_init_r.

[Improvement] The execution time of console_init_r can be saved. Although we skip

the execution of console_init_r, boot is still successful and the output messages still

can be shown by console after the function console_init_f finished the first stage

initialization of console.

 30

METHOD 03: Improve abort boot function

[Original] The function abortboot will lock U-Boot to wait and check if any key

already pressed. If there is any key already pressed, function abortboot will abort the

boot process, and redirect to U-Boot prompt. Otherwise, after numbers of second,

function abortboot will unlock U-Boot, and resume the boot process.

[Limitation] The time of waiting is bootdelay seconds; the default value of bootdelay

is setting as 10. It will waste 1.25s to wait using U-Boot 1.1.3 (The timer is not

accurate; the correct wait time should be 10s. If the timer is accurate, the boot time

should add 10-1.25=8.75s more).

[Modification] We modified the code of function abortboot to reduce the waiting

time during U-Boot check if any key already pressed. Original abortboot routine will

spend numbers of seconds to check repeatedly.

[Improvement] After modifying, abortboot routine will only check once and waste

no time. The wait time can be saved

METHOD 04: Improve image verification mechanism

[Original] U-Boot provides an image verification mechanism; it will verify both

header checksum and data checksum of image at each time during boot.

[Limitation] In fact, after burning image, we only need to verify the image checksum

once. If the image is correct, doing image verification each time during boot is

nonsensical.

[Modification] We added a new parameter called verify in the U-Boot environment

parameters and regard it as a switch of the image verification mechanism. When

verify is y, U-Boot will do header checksum and data checksum same as default.

When verify is n, U-boot will skip the operation of verification.

[Improvement] In the practical application, we set verify as y after burning to verify

 31

the image checksum and set verify as n if we sure the image is correct. Therefore, we

can save the time of image verification.

METHOD 05: Use silent console in boot loader phase

[Original] U-Boot provides some functions to print the information of devices; the

information is useful during development and debug. In U-Boot, most of device

initialization and information are deal with separate functions.

[Limitation] The execution of information function and every console output by

serial port will spend much time.

[Modification] We added a new parameter called quiet in the U-Boot environment

parameters and modified the U-Boot source code to achieve quiet console. When

quiet is n, U-Boot will show full messages of U-Boot banner, dram configuration,

flash configuration, function abartboot, image verification and invoking Linux kernel.

When quiet is y, U-Boot will show no console messages.

[Improvement] By the parameter quiet, we can use the silent console to reduce boot

time.

 Kernel phase

METHOD 06: Use uncompressed kernel image

[Original] In the past, the cost of flash storage device in embedded product is quite

high, so compressed kernel is used to reduce the cost of product. However, the

compressed kernel size of optimized embedded Linux is general less than 1 MB, and

the uncompressed kernel size is less than 2MB. At present, the cost of 1MB flash

storage is not so high. Therefore, using uncompressed kernel becomes an acceptable

choice.

 32

[Modification] We change the Makefile in linux/arch/arm/boot to build an

uncompressed image for U-Boot.

[Improvement] The size of uncompressed kernel is close to 2.1 times of compressed

kernel. Therefore the time of coping uncompressed image from flash to ram is close

to 2.1 times of compressed kernel, too. However, after comparing the time of coping

image and uncompressing kernel between uncompressed and compressed kernel,

using uncompressed kernel can save huge proportion of boot time. Although the size

of uncompressed kernel is bigger, it is still within the default upper limit (2MB).

METHOD 07: Eliminate BogoMIPS calibration

[Original] The function calibrate_delay [10] [20] [21] can compute an appropriate

value for loops_per_jiffy and BogoMIPS at boot time. The value of loops_per_jiffy is

used to execute busy wait (non-yielding) delays inside the Linux kernel and primarily

dependent on processor speed. BogoMips is an unscientific performance of MPU and

cache, and the ratio of loops_per_jiffy. Its initial value at boot time is expected to be

constant for each boot of Linux on the same hardware.

[Limitation] The value of loops_per_jiffy is primarily dependent on processor speed.

Therefore, its initial value at boot time is expected to be constant for each boot of

Linux on the same hardware. We don’t need to compute the value every system boot.

[Modification] Because of the initial value at boot time is expected to be constant, we

can preset the initial value in advance.

[Improvement] By to preset the initial value in advance, we can avoid the delay

associated with dynamically calculating the value, by the kernel, on every system

boot.

 33

METHOD 08: Use device modularization

[Original] Kernel initiates many devices during boot in default setting for different

purpose of every kind of product.

[Limitation] Because of we might not need all devices as default setting, many

settings become non-critical or useless. For example, if we don’t need pseudo

terminal device (PTY), we should remove or modularize it.

[Modification] By reading the dmesg information, we can observe the useless,

non-critical or time-consumed devices. After understanding the function of those

devices, we should decide which the non-critical devices are. In our experiment

platform, we should change the setting of shared memory file system, paging of

anonymous memory (swap) support, resetting unused clocks, OMAP multiplexing

support, PCMCIA/CardBus support, firewall support, loopback device support, initial

RAM disk support, ATA/ATAPI/MFM/RLL support, PPP support, frame buffer

devices support, second extended file system support and kernel automounter support

and NFS file system support…etc, to remove or modularize them.

[Improvement] By removing and modularizing device driver, we can save much time

in initiating useless, non-critical or time-consumed device.

METHOD 09: Use silent console in kernel phase

[Original] During boot, Linux kernel provides much information for debug. Because

of the printk messages of kernel are quite a lot, they will spend much time by using

serial port or VGA [10].

[Modification] We can add quiet parameter in the kernel command line to changes

the loglevel to 4, which suppresses the output of regular (non-emergency) printk

messages. Even though the messages are not printed to the system console, they are

still placed in the kernel printk buffer, and can be retrieved after boot using the dmesg

 34

command.

[Improvement] We can unable the printk output, and view the message using dmesg.

That will save some time.

 User space phase

METHOD 10: Simplify user space utilities

[Original] BusyBox provide many useful utilities for using of user space. However,

we should give up some utilities that have similar function or useless in embedded

product.

[Modification] To reduce the size of busybox is to reduce the size of file system. We

can give up some similar utilities and some useless utilities which are related with the

requirement of a product. Most of archival utilities, editors and console utilities could

be gave up in embedded product.

[Improvement] The smaller size of busybox can reduce the execution time of

busybox.

METHOD 11: Accelerate shell prompt start

[Original] For the reason of saving memory, BusyBox will lock and wait for user to

press Enter key to activate shell prompt.

[Limitation] Generally, user wants to use a product immediately and don’t need to

press extra key. And the memory using of shell is few comparing full memory size on

OMAP5912OSK.

[Modification] We skip the wait operation and put shell prompt directly.

[Improvement] The time from the “Please press Enter to activate this console”

massage shown to user pressing enter is measured as 600 ms in average. That is too

long to reduce the boot time.

 35

METHOD 12: Use complex file system

[Original] By the time measurement result, we can observe function mount_root of

kernel spend a large amount of time to build the JFFS2 files system. If we can change

the file system which has a short mount time, the time can be saving.

[Limitation] Generally, we use the JFFS2 (The Journalling Flash File System,

version 2) file system which is log-structured and writable on flash storage device in

embedded systems. However, for a 32MB NOR flash, kernel always spends 2 to 3

seconds to build the JFFS2 file system. The mount time of JFFS2 file system is too

long to make the boot time shorter.

[Modification] For flash storage device, CramFS and SquashFS are highly

compressed read-only file system, the runtime performance and compression of

SquashFS is better than CramFS. No matter CramFS or SquashFS, the mount time is

quite short.

In view of the characteristics of writable and read-only file system, we use both

writable and read-only file system on a single flash storage device at the same time.

First, using appropriate spaces as root file system partition including init and most of

routines, then using remaining space as writable file system. Finally we let the

function mount_root just build the root file system, and build the writable file system

in the background after shell prompt.

[Improvement] The boot time can be reduced greatly, and we still can do write

operation on flash storage.

5.2 Comparison

 In this section, we compare the time needed of affected function block. In

 36

addition, we will supply the patch file if we modified the source code.

 Boot loader phase

METHOD 01: Adjust clocking mode

We modified the file u-boot/board/omap5912/platform.S (If you use last version

of U-Boot, you need to modify the file u-boot/board/omap5912osk/lowlevel_init.S) to

change the clocking mode. After we change the clocking mode and ramp up the

frequency of ARM core to 192 MHz, the timer inaccurate timer become accurate one,

and the wait time of abortboot is also accurate. Therefore, we skip the time

measurement result of the function block which includes the execution of abortboot.

Because U-Boot works on the upper limited frequency, operations which use MPU to

compute data will have the shorter execution time. This part of modification reduces

the time needed from 4774.72 ms to 3811.24 ms, i.e. 963.48 ms has been eliminated.

The time comparison is shown at Table 5.1 and the patch is shown at Figure 5.1.

Table 5.1 The Time Comparison of Changing Clocking Mode

Function block
Start Point End Point

Before
(ms)

After
(ms)

Device reset start Device reset over 31.38 31.38
Device reset over MPU read first instruction 0.74 0.82
MPU read first instruction env_relocate_spec start 122.26 100.42
env_relocate_spec start env_relocate_spec over 44.98 37.02
env_relocate_spec over image date checksum start - -
image date checksum start image date checksum over 487.92 423.68
image date checksum over copy image to ram start 0.44 0.50
copy image to ram start copy image to ram over 395.52 323.38

Boot
Loader

copy image to ram over transfer control to Linux 0.90 0.88
transfer control to Linux uncompress kernel start 13.48 13.32
uncompress kernel start uncompress kernel over 1836.62 1040.92

Kernel

uncompress kernel over jffs2_build_filesystem start 1840.48 1838.92
Amount 4774.72 3811.24

 37

--- board/omap5912osk/platform.S.old 2006-07-20 21:51:21.000000000 +0800
+++ board/omap5912osk/platform.S 2006-07-20 21:53:38.000000000 +0800
@@ -79,7 +79,7 @@

 /* Set CLKM to Sync-Scalable */
 /* I supposedly need to enable the dsp clock before switching */
- mov r1, #0x0000
+ mov r1, #0x1000
 ldr r0, REG_ARM_SYSST
 strh r1, [r0]
 mov r0, #0x400
@@ -384,9 +384,9 @@
 .word 0x00800002

 VAL_ARM_CKCTL:
- .word 0x3000
+ .word 0x050f
 VAL_DPLL1_CTL:
- .word 0x2830
+ .word 0x2810

 #ifdef CONFIG_OSK_OMAP5912
 VAL_TC_EMIFS_CS0_CONFIG:

Figure 5.1 The Patch of Changing Clocking Mode

METHOD 02: Reduce unused console functions

It is easy to skip the fully console device initialization, we delete the function

call console_init_r in file u-boot/lib_arm/board.c. We also delete the function call

misc_init_r, because that function is temp one. The time needed is reduced from

219.73 ms to 0 ms; it is shown at Table 5.2.

Table 5.2 The Time Reduced by Skipping console_init_r

Function Before (ms) After (ms)
console_init_r 219.74 0.0

METHOD 03: Improve abort boot function

After we simply the function abortboot in u-boot/common/main.c, the time

needed is reduced from 1704.74ms to 448.12 ms, i.e. 1256.74 ms has been eliminated,

and it is shown at Table 5.3 and the patch is shown at Figure 5.2.

 38

Table 5.3 The Time Reduced by Simplifying abortboot

Function block
Start Point End Point

Before
(ms)

After
 (ms)

Device reset start Device reset over 31.38 31.38
Device reset over MPU read first instruction 0.74 0.74
MPU read first instruction env_relocate_spec start 122.26 124.18
env_relocate_spec start env_relocate_spec over 44.98 45.28
env_relocate_spec over image date checksum start 1505.38 246.54
Amount 1704.74 448.12

--- u-boot-1.1.3/common/main.c.old 2006-07-21 01:04:03.000000000 +0800
+++ u-boot-1.1.3/common/main.c 2006-07-21 01:07:06.000000000 +0800
@@ -238,7 +238,6 @@
 printf("Hit any key to stop autoboot: %2d ", bootdelay);
 #endif

-#if defined CONFIG_ZERO_BOOTDELAY_CHECK
 /*
 * Check if key already pressed
 * Don't check if bootdelay < 0
@@ -250,29 +249,6 @@
 abort = 1; /* don't auto boot */
 }
 }
-#endif
-
- while ((bootdelay > 0) && (!abort)) {
- int i;
-
- --bootdelay;
- /* delay 100 * 10ms */
- for (i=0; !abort && i<100; ++i) {
- if (tstc()) { /* we got a key press */
- abort = 1; /* don't auto boot */
- bootdelay = 0; /* no more delay */
-# ifdef CONFIG_MENUKEY
- menukey = getc();
-# else
- (void) getc(); /* consume input */
-# endif
- break;
- }
- udelay (10000);
- }
-
- printf ("\b\b\b%2d ", bootdelay);
- }

 putc ('\n');

Figure 5.2 The Patch of Simplifying abortboot

 39

METHOD 04: Improve image verification mechanism

After we added a new parameter called verify in the U-Boot environment

parameters and modified file u-boot/common/cmd_bootm.c. When verify is n, U-boot

will skip the verification of image header checksum and image data checksum. The

time needed is reduced from 2193.1 ms to 1702.94 ms, i.e. 490.16 ms has been

eliminated, and it is shown at Table 5.4 and the patch is shown at Figure 5.3.

Table 5.4 The Time Reduced by Verification Switch

Function block
Start Point End Point

Before
(ms)

After
(ms)

Device reset start Device reset over 31.38 31.34
Device reset over MPU read first instruction 0.74 0.74
MPU read first instruction env_relocate_spec start 122.26 122.90
env_relocate_spec start env_relocate_spec over 44.98 45.10
env_relocate_spec over image date checksum start 1505.38
image date checksum start image date checksum over 487.92

Boot
Loader

image date checksum over copy image to ram start 0.44

1502.86

Amount 2193.10 1702.94

--- u-boot-1.1.3/common/cmd_bootm.c.old 2005-08-14 07:53:35.000000000 +0800
+++ u-boot-1.1.3/common/cmd_bootm.c 2006-07-21 01:45:33.000000000 +0800
@@ -191,16 +191,18 @@
 }
 SHOW_BOOT_PROGRESS (2);

- data = (ulong)&header;
- len = sizeof(image_header_t);
+ if (verify) {
+ data = (ulong)&header;
+ len = sizeof(image_header_t);

- checksum = ntohl(hdr->ih_hcrc);
- hdr->ih_hcrc = 0;
+ checksum = ntohl(hdr->ih_hcrc);
+ hdr->ih_hcrc = 0;

- if (crc32 (0, (char *)data, len) != checksum) {
- puts ("Bad Header Checksum\n");
- SHOW_BOOT_PROGRESS (-2);
- return 1;
+ if (crc32 (0, (char *)data, len) != checksum) {
+ puts ("Bad Header Checksum\n");
+ SHOW_BOOT_PROGRESS (-2);
+ return 1;
+ }
 }

 40

 SHOW_BOOT_PROGRESS (3);

Figure 5.3 The Patch of Verification Switch

METHOD 05: Use silent console in boot loader phase

There are five files need to be modified. In the file u-boot/common/cmd_bootm.c,

we need to modify the code of U-Boot banner, print_image_hdr. In the file

u-boot/common/main.c, we need to modify the code of abortboot message. In the file

u-boot/include/configs/omap5912osk.h, we set CFG_CONSOLE_INFO_QUIET=1.

In the file u-boot/lib_arm/armlinux.c, we modify the code of transfer control to Linux.

Finally, in the file u-boot/lib_arm/board.c, we modify the code of display_banner,

dram_init, display_dram_config and display_flash_config. This part of silent console

reduces the time needed from 2603.00 ms to 2557.80 ms, i.e. 45.20 ms has been

eliminated, and it is shown at Table 5.5 and the sample patch for

u-boot/lib_arm/armlinux.c is shown at Figure 5.4.

Table 5.5 The Time Reduced by Silent Console in U-Boot

Function block
Start Point End Point

Before
(ms)

After
(ms)

Device reset start Device reset over 31.38 31.38
Device reset over MPU read first instruction 0.74 0.74
MPU read first instruction env_relocate_spec start 122.26 109.48
env_relocate_spec start env_relocate_spec over 44.98 45.24
env_relocate_spec over image date checksum start 1505.38 1474.04
image date checksum star image date checksum over 487.92
image date checksum
over

copy image to ram start 0.44

copy image to ram start copy image to ram over 395.52

884.72

Boot
Loader

copy image to ram over transfer control to Linux 0.90 0.78
Kernel transfer control to Linux uncompress kernel start 13.48 11.42
Amount 2603.00 2557.80

diff -Nur u-boot-1.1.3/lib_arm/armlinux.c u-boot-1.1.3o/lib_arm/armlinux.c
--- u-boot-1.1.3/lib_arm/armlinux.c 2005-08-14 07:53:35.000000000 +0800
+++ u-boot-1.1.3o/lib_arm/armlinux.c 2006-07-21 03:43:12.000000000 +0800

 41

@@ -85,11 +85,15 @@
 void (*theKernel)(int zero, int arch, uint params);
 image_header_t *hdr = &header;
 bd_t *bd = gd->bd;
+ int quiet;
+ char *s;

 #ifdef CONFIG_CMDLINE_TAG
 char *commandline = getenv ("bootargs");
 #endif

+ s = getenv ("quiet");
+ quiet = (s && (*s == 'y')) ? 0 : 1;
 theKernel = (void (*)(int, int, uint))ntohl(hdr->ih_ep);

 /*
@@ -256,7 +260,11 @@
 #endif

 /* we assume that the kernel is in place */
- printf ("\nStarting kernel ...\n\n");
+ if (quiet) {
+ printf ("\nStarting kernel at %08lx...",
+ (ulong) theKernel);
+ }
+ printf("\n");

 #ifdef CONFIG_USB_DEVICE
 {

Figure 5.4 The Sample Patch of Silent Console

 Kernel phase

METHOD 06: Use uncompressed kernel image

For uncompressed kernel, we need to increase the size of mtdblock2 to put the

uncompressed kernel, which is assigned in linux/arch/arm/mach-omap1/board-osk.c

and linux/include/asm-arm/sizes.h. If the kernel has been optimized, the original size

of mtdblock2 is enough to put the optimized uncompressed kernel. After using of

uncompressed kernel, the time needed is reduced from 6282.1 ms to 5369.46 ms, i.e.

912.64 ms has been eliminated, and it is shown at Table 5.6 and the patch is shown at

Figure 5.5. The noteworthy one is if we use uncompressed kernel with no image

verification, the time will be reduced for 912.64+1026.1=1938.74 ms.

Table 5.6 The Time Reduced by Uncompressed Kernel

 42

Function block
Start Point End Point

Before
 (ms)

After
 (ms)

Device reset start Device reset over 31.38 31.38
Device reset over MPU read first instruction 0.74 0.74
MPU read first instruction env_relocate_spec start 122.26 122.22
env_relocate_spec start env_relocate_spec over 44.98 45.18
env_relocate_spec over image date checksum start 1505.38 1505.20
image date checksum start image date checksum over 487.92 1026.10
image date checksum over copy image to ram start 0.44 0.64
copy image to ram start copy image to ram over 395.52 831.58

Boot
Loader

copy image to ram over transfer control to Linux 0.90 0.90
transfer control to Linux uncompress kernel start 13.48
uncompress kernel start uncompress kernel over 1838.62

Kernel

uncompress kernel over jffs2_build_filesystem start 1840.48

1805.52

Amount 6282.1 5369.46

diff -ruN linux-2.6.14.orig/arch/arm/boot/Makefile
linux-2.6.14/arch/arm/boot/Makefile

--- linux-2.6.14.orig/arch/arm/boot/Makefile 2006-06-15 21:57:19.000000000
+0800

+++ linux-2.6.14/arch/arm/boot/Makefile 2006-06-15 22:20:09.000000000 +0800

@@ -46,6 +46,10 @@

 $(obj)/Image: vmlinux FORCE

 $(call if_changed,objcopy)

 @echo ' Kernel: $@ is ready'

+ $(CONFIG_SHELL) $(MKIMAGE) -A arm -O linux -T kernel \

+ -C none -a $(ZRELADDR) -e $(ZRELADDR) -n 'Linux-$(KERNELRELEASE)' \

+ -d arch/arm/boot/Image arch/arm/boot/uImage-uncompress

+ @echo ' Kernel: arch/arm/boot/uImage-uncompress is ready'

 $(obj)/compressed/vmlinux: $(obj)/Image FORCE

 (Q)(MAKE) $(build)=$(obj)/compressed $@

diff -ruN linux-2.6.14.orig/Makefile linux-2.6.14/Makefile

--- linux-2.6.14.orig/Makefile 2006-06-15 22:02:41.000000000 +0800

+++ linux-2.6.14/Makefile 2006-06-15 22:29:54.000000000 +0800

@@ -984,7 +984,8 @@

 # Directories & files removed with 'make clean'

 CLEAN_DIRS += $(MODVERDIR)

 CLEAN_FILES += vmlinux System.map \

- .tmp_kallsyms* .tmp_version .tmp_vmlinux* .tmp_System.map

+ .tmp_kallsyms* .tmp_version .tmp_vmlinux* .tmp_System.map \

 43

+ arch/arm/boot/uImage-uncompress

 # Directories & files removed with 'make mrproper'

 MRPROPER_DIRS += include/config include2

Figure 5.5 The Patch of Uncompressed Kernel

METHOD 07: Eliminate BogoMIPS calibration

By last boot, we can obtain the value of loops_per_jiffy by dmesg, which is

373760. By put “lpj=373760” (passing 373760 to kernel as the value of

loops_per_jiffy) in command line, the boot time is reduced from 154.785157 ms to

0.061036 ms, i.e. 154.724121 ms has been eliminated, and it is shown at Table 5.7

and the effect is shown at Figure 5.6.

Table 5.7 The Time of calibrate_delay

normal boot preset loops_per_jiffy

154.785157 ms 0.061036 ms

Before presetting:

Calibrating delay loop... 74.75 BogoMIPS (lpj=373760)

After presetting:

Calibrating delay loop (skipped)... 74.75 BogoMIPS preset

Figure 5.6 The Effect of Preset LPJ

METHOD 08: Use device modularization

After using the unofficial patch for OMAP5912, we find still many choices can

be modified. We remove these options: Code maturity level options, Support for

paging of anonymous memory (swap), Reset unused clocks during boot, OMAP

multiplexing support, IP kernel level autoconfiguration, Initial RAM disk (initrd)

 44

support, ATA/ATAPI/MFM/RLL support, Mouse interface, Keyboards, Virtual

terminal, Unix98 PTY support, Legacy (BSD) PTY support, Second extended fs

support, Inotify file change notification support, Dnotify support, Kernel automounter

support, MSDOS fs support and VFAT (Windows-95) fs support. And then we

modularize these options: PCCard (PCMCIA/CardBus) support, Unix domain sockets,

INET (socket monitoring interface), Loopback device support, PPP (point-to-point

protocol) support, Texas Instruments TLV320AIC23 Codec, Hardware Monitoring

support ,Support for frame buffer devices ,Kernel automounter version 4 support and

NFS file system support. Finally, we choose the option: Configure standard kernel

features (for small systems) to finish this part of works. Finally, by the initcall-times

patch, we can obtain the value of initcalls. The time measured by initcall-times is

accurate, which is the same as the value measured by oscilloscope and logic analyzer.

The boot time is reduced from 1574.645998 ms to 448.913571 ms, i.e. 1125.732427

ms has been eliminated, and it is shown at Table 5.8.

Table 5.8 The Time of Initcalls

Inincall name Before (ms) After (ms)

customize_machine 4.516601 4.364014

omap_init_devices 1.983643 1.983642

init_bio 1.037598 0.946044

i2c_init 1.220703 1.373291

omap_i2c_init_driver 2.380371 2.380371

tps_init 11.138916 11.016846

chr_dev_init 8.331299 8.392334

param_sysfs_init 16.387940 9.460449

init_jffs2_fs 1.312256 1.220703

omapfb_init 32.745361 -

tty_init 70.251465 1.922607

pty_init 626.342774 -

 45

serial8250_init 245.086670 189.575195

noop_init 2.777100 2.899170

as_init 3.814697 3.723144

deadline_init 3.295898 3.234863

cfq_init 3.112793 2.960205

rd_init 23.284912 22.033691

loop_init 10.803223 -

net_olddevs_init 1.586914 1.403808

ppp_init 4.394531 -

smc_init 17.425537 17.211915

i2c_dev_ini 4.577637 4.394531

omapflash_init 59.356690 57.983399

omap_cf_init 273.498535 -

mousedev_init 5.187988 -

omap_kp_init 3.845215 -

omap_ts_init 2.441407 2.044677

inet_init 100.341797 96.527100

bictcp_register 1.861572 1.861572

af_unix_init 3.570556 -

omap1_late_clk_reset 26.733399 -

Amount 1574.645998 448.913571

METHOD 09: Use silent console in kernel phase

After using silent console, the time needed is reduced from 5882.6 ms to 5499.6

ms, i.e. 383 ms has been eliminated, and it is shown at Table 5.9.

Table 5.9 The Time Reduced by Silent Console in Linux kernel

Function block

Start Point End Point

Before

 (ms)

After

(ms)

transfer control to Linux uncompress kernel start 13.48 13.38

uncompress kernel start uncompress kernel over 1838.62 1838.66

uncompress kernel over jffs2_build_filesystem start 1840.48 1463.88

jffs2_build_filesystem start jffs2_build_filesystem over 2179.54

 46

jffs2_build_filesystem over invoke init 10.48 2183.68

Amount 5882.60 5499.60

 User space phase

METHOD 10: Simplify user space utilities

We give up the most of archival utilities, editors and console utilities, because

the usage of these utilities is not many. And we remove the utilities for user

management, login/password management utilities and system logging utilities for

single user mode. Finally, we add the Linux module utilities, web server, telnet server

and some daemons. We have built a powerful file system, and the size of pure file

system without modules is only 636.4 KB using JFFS2.

METHOD 11: Accelerate shell prompt start

After skip the wait for enter, the wait time, 600ms in average is reduced. The

patch is shown at Figure 5.7.

diff -Nur busybox-1.01/init/init.c busybox-1.01-phantom-v2/init/init.c
--- busybox-1.01/init/init.c 2005-08-17 09:29:16.000000000 +0800
+++ busybox-1.01-phantom-v2/init/init.c 2006-07-11 06:13:37.000000000 +0800
@@ -429,12 +429,14 @@
 char *s, *tmpCmd, *cmd[INIT_BUFFS_SIZE], *cmdpath;
 char buf[INIT_BUFFS_SIZE + 6]; /* INIT_BUFFS_SIZE+strlen("exec ")+1 */
 sigset_t nmask, omask;
+/* skip press_enter */
+/*
 static const char press_enter[] =
 #ifdef CUSTOMIZED_BANNER
 #include CUSTOMIZED_BANNER
 #endif
 "\nPlease press Enter to activate this console. ";
-
+*/
 /* Block sigchild while forking. */
 sigemptyset(&nmask);
 sigaddset(&nmask, SIGCHLD);
@@ -579,17 +581,18 @@
 }
 }

+/*
+ * Save memory by not exec-ing anything large (like a shell)
+ * before the user wants it. This is critical if swap is not
+ * enabled and the system has low memory. Generally this will

 47

+ * be run on the second virtual console, and the first will
+ * be allowed to start a shell or whatever an init script
+ * specifies.
+ */
+/*
 #if !defined(__UCLIBC__) || defined(__ARCH_HAS_MMU__)
 if (a->action & ASKFIRST) {
 char c;
- /*
- * Save memory by not exec-ing anything large (like a shell)
- * before the user wants it. This is critical if swap is
not
- * enabled and the system has low memory. Generally this
will
- * be run on the second virtual console, and the first will
- * be allowed to start a shell or whatever an init script
- * specifies.
- */
 messageD(LOG, "Waiting for enter to start '%s'"
 "(pid %d, terminal %s)\n",
 cmdpath, getpid(), a->terminal);
@@ -598,7 +601,7 @@
 ;
 }
 #endif
-
+*/
 /* Log the process name and args */
 message(LOG, "Starting pid %d, console %s: '%s'",
 getpid(), a->terminal, cmdpath);

Figure 5.7 The Patch of Quick Shell Prompt

METHOD 12: Use complex file System

Firstly, the comparison between JFFS2, CramFS and SquashFS is shown at

Table 5.10.

Table 5.10 The Comparison between Different FS

Writable FS Read-only FS

JFFS2 CramFS SquashFS

Kernel size (KB) 1721920 1627312 1660832

FS image size (KB) 1162272 1007616 1085440

Mount time (ms) 2179.54 8.62 6.98

 48

Figure 5.8 The NOR Flash Memory Map

Figure 5.9 The Mount Operation of JFFS2 Partition in Background

 49

And we implement a complex file system which includes SquashFS and JFFS2

FS to reduce the boot time greatly, and we still can do write operation on flash storage.

The NOR flash memory map is shown at Figure 5.8, and the mount operation of

JFFS2 partition in background is shown at Figure 5.9, the shell prompt is put at

1489.59 ms for user, and the JFFS2 partition is mounted at 3744.60 ms in

background.

5.3 Reduced Functional Ability

 We built the Table 5.11 to show the functional ability comparison between
original boor and faster boot, the abilities and characteristics will show in it.

Table 5.11 Functional Ability Comparison

 Original Boot Faster Boot

Clocking mode MPU and DSP work at 96 MHz
during U-Boot phase

MPU and DSP work at 192 MHz during U-Boot
phase

Console functions U-Boot will provide a fully
console device

The command loadb and the console outputs
work ok

Abort boot
function

U-Boot will wait for user for 1
second at least

U-Boot will wait for user for 200 ms at most

Image verification
mechanism

Image verification mechanism is
always ON

User can switch the mechanism himself

Silent console in
U-Boot

U-Boot will output the normal
information

U-Boot will output no information

Uncompressed
Kernel

The compressed image size is less
than 1 MB and kernel has been
uncompressed before start

The image size is more then 1MB and less than
2.2MB, and kernel hasn’t been uncompressed
before start

BogoMIPS
calibration

Kernel compute BogoMIPS and
loops_per_jiffy every boot

Kernel get the loops_per_jiffy from command
line

Device
Modularization

Kernel will initiate all usable
device during kernel phase

Some modularized devices have been initiated
before using them

 50

Silent console in
kernel

Kernel will output the normal
information

Kernel will output no information during boot,
and store information in kernel ring buffer

User space
utilities

Many useful utilities will be
supplied, some are similar

Limited utilities for specific requirement

Shell prompt start Saving memory and wait for user
to enable shell prompt

Shell prompt will use 84 or 96KB of memory
and user can user shell prompt soon

File system It will waste 2 to 3 seconds to build
the JFFS2 file system during boot

JFFS2 file system will be built in background
and save 2 to 3 seconds during boot

5.4 Recommendation

 In Section 5.4, we provide a comparison of original and faster boot.

Certainly, some method for faster boot will reduce the boot time and also the

functional abilities. Therefore, we need to do some choices to meet the balance

between boot time and functional abilities.

 We recommend that the methods of U-Boot phase must be used, because the

methods of reducing the time during U-Boot doing boot process are functional

lossless. Regarding the console information and image verification mechanism, we

can use the switch to meet the requirement. You only need to do image verification

again to determine if you shall re-burn the kernel image after system crash and the

stability of system is not acceptable.

 The implement of uncompressed image is according to the total size of boot

loader, kernel and file system. Sometimes, you must upgrade the flash because the

original flash capability can not meet the requirement of uncompressed kernel image.

For example, some specific product which has only 2 MB NOR flash, after reducing

useless modules and utilities of user space, the total size of U-Boot, boot loader

parameter, uncompressed kernel and root file system can be limited less than 2 MB.

 51

Therefore, using uncompressed kernel is feasible. On the other hand, in order to

provide multi-function and support more devices, a 4MB NOR flash is necessary for a

complete embedded operating system. At present, the price of 2Mbytes NOR flash

(Intel JS28F160C3TD70) is US$ 1.596 (price break is 1000) [22], and the price of

4Mbytes NOR flash (Intel JS28F320C3TD70) is US$ 3.0457 (price break is 1000)

[23], you must pay more costs for this method.

Device modularization is limited by the requirement of specific product, if the

product is required to provide all useable devices immediately after boot; the effect of

device modularization is restricted. For example, a smartphone should let the function

of communication usable immediately after boot, and let other functions be initiated

in background. And other methods of reducing the time during kernel phase are

functional lossless.

 If the product need not to store extra data, using a read-only file system is

recommendable, otherwise using a complex file system can meet the requirement of

faster boot and data storage. If the product need no shell prompt, the method of

quicker shell prompt should not be used. If the product is required to provide

complete utilities; the effect of the part of user space utilities is restricted.

5.5 Summary

 In Chapter 5, we implement many methods which reduced the boot time from

boot loader phase to user space phase. Our optimized U-Boot 1.1.3, suggested Linux

kernel 2.6.14 configuration, and optimized BusyBox 1.01 are usable immediately and

modification of hardware is needless.

 52

Chapter 6

Conclusion

 There are many mobile devices and high-level consumer electronics on the

market, such as Smart Phone, Palm PDA, Pocket PC and Camera Phones, etc; they

are very convenient and powerful. However, the boot time of them is generally 8~10

seconds. Most of people are impatient; they want the boot time faster and faster.

Therefore, we try to improve the boot time of these products which are based on

embedded platform. We choose the OMAP5912OSK running embedded Linux as our

experiment platform. OMAP5912OSK based on the dual core processor of

ARM926EJ-S MPU and TMS320C55x DSP, 32MB NOR flash and 32MB DDR

SDRAM; they are useful or development.

We study the source code of U-Boot, Linux kernel and BusyBox, and try to

measure the boot time by software tools and hardware tools, such as KFT, Printk

Times, initcall-times patch, expect script, oscilloscope and logic analyzer. After

obtaining the time measurement results, we subdivide the total boot time to 18

function blocks, and find out the long execution time operation in each function block.

By hack related source code, we either simplified by rewriting the codes or even

skipped without any side effect to reduce the execution time.

Finally, we optimize the U-Boot 1.1.3 and BusyBox, and suggest a fast boot

Linux kernel 2.6.14 configuration. With read-only SquashFS file system, the boot

time is only 1477.77 ms. With our complex writable file system, the boot time is only

1598.35 ms. By our method , the boot time of mobile devices and high-level

consumer electronics can also be reduced, people will like these.

 53

Chapter 7

Future Work

We already achieved the fast boot on OMAP5912OSK; we believe that our

methods can be implemented on other platform. And we will try to build a timing

equation for fast boot by analyze more detailed time measurement results. By that

timing equation, we can obtain the boot time by related parameter of specific

platform.

 54

Reference

[1] Keun Soo Yim, Jihong Kim, and Kern Koh, “A Fast Start-Up Technique for

Flash Memory Based Computing Systems,” Proceedings of the ACM

Symposium on Applied Computing, 2005

[2] Zoltán Sógor, Ferenc Havasi, “A JFFS2 Analysis (draft version),” University of

Szeged, 2005

[3] The Consumer Electronics Linux Forum, “Kernel Execute-In-Place,”

 http://tree.celinuxforum.org/CelfPubWiki/KernelXIP

[4] Jimmy Wennlund, “Next Generation Init System – InitNG,”

http://www.initng.org/

[5] Texas Instruments, “OMAP5912 Applications Processor (Rev. E),”

http://www-s.ti.com/sc/ds/omap5912.pdf

[6] Wolfgang Denk, “Das U-Boot - Universal Bootloader,“

 http://sourceforge.net/projects/u-boot/

[7] Linus Torvalds, “The Linux Kernel Archives,” http://www.kernel.org/

[8] Tony Lindgren, “Unofficial OMAP-1510/1610 Linux patches,”

 http://www.muru.com/linux/omap/

[9] Rob Landley, “BusyBox - The Swiss Army Knife of Embedded Linux,”

http://www.busybox.net/

[10] Tim R. Bird, “Methods to Improve Boot Time in Linux,” Proceedings of the

Ottawa Linux Symposium, Sony Electronics, 2004

[11] Alessandro Rubini, Jonathan Corbet, “Linux Device Drivers, Second Edition,”

O'Reilly Media, Inc., 2001

[12] The Consumer Electronics Linux Forum, “Kernel Function Trace,”

 55

 http://tree.celinuxforum.org/CelfPubWiki/KernelFunctionTrace

[13] The Consumer Electronics Linux Forum, “Printk Times,”

 http://tree.celinuxforum.org/CelfPubWiki/PrintkTimes

[14] Don Libes, “Exploring Expect,” O'Reilly Media, Inc., 1994

[15] Columbia University, “C-Kermit 8.0,”

 http://www.columbia.edu/kermit/ck80.html

[16] Robert Love, “Linux Kernel Development (2nd Edition),” Novell Press, 2005

[17] Texas Instruments, “OSK5912 Board Design Guide,”

http://www-s.ti.com/sc/psheets/spru715/spru715.pdf

[18] Texas Instruments, “OMAP5912 Multimedia Processor OMAP3.2 Subsystem

Reference Guide (Rev. B),”

http://www-s.ti.com/sc/psheets/spru749b/spru749b.pdf

[19] Texas Instruments, “OMAP5912 Applications Processor Silicon Errata (Rev. I),”

http://focus.ti.com/lit/er/sprz209i/sprz209i.pdf

[20] The Consumer Electronics Linux Forum, “Preset LPJ,”

http://tree.celinuxforum.org/pubwiki/moin.cgi/PresetLPJ

[21] The Consumer Electronics Linux Forum, “Calibrate Delay Avoidance

Specification R2,”

http://tree.celinuxforum.org/pubwiki/moin.cgi/CalibrateDelayAvoidanceSpecific

ation_5fR2

[22] Digi-Key Corporation, “Digi-Key Part Number：866265-ND,”

http://www.digikey.com/scripts/dksearch/dksus.dll?Detail?Ref=26333&Row=24

7793&Site=US

[23] Digi-Key Corporation, “Digi-Key Part Number：864838-ND,”

 http://www.digikey.com/scripts/dksearch/dksus.dll?Detail?Ref=26333&Row=24

7704&Site=US

