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摘要 

 

    ID3 演算法是一種對於符號屬性資料的決策樹歸納且普遍有效的方法。然

而，進一步能結合人類思考與感覺的知識法則有著不精確和不確定性，為了獲取

不精確和不確定的知識，因此 ID3 決策樹方法乃推廣至模糊集語試之模糊 ID3

決策樹，它和 ID3 演算法的特徵有高度可推廣至模糊集之語試變數，並且自然擴

展到應用在包含連續數值屬性的資料集。但是模糊 ID3 演算法只能處理連續數值

資料，並且通常被批評為不夠高的辨識準確性。在本篇論文中，我們提出一個產

生模糊決策樹的新方法，它可以接受非連續數值、連續數值或混雜型的資料並使

用基因演算法調整決策樹法則相關的模糊集合。此外，我們提出三種決策樹刪減

的方法並且加以比較，進而選擇較好的決策樹刪減方法以得到更好的正確率或是

更精簡的規則庫。我們利用一些著名的資料集來測試我們所提出的方法，並且選

用最好的決策樹刪減方法，以五摺交叉評比方式的結果跟 C5.0 方法比較，在實

驗數據顯示，我們的方法有較好的結果。 
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ABSTRACT 

ID3 algorithm is a popular and efficient method for decision tree induction from 

symbolic data. However, most knowledge associated with human’s thinking and 

perception has some imprecision and uncertainty. For the purpose of handling 

imprecise and uncertain knowledge; hence, ID3 has been expanded to developed a 

kind of decision tree is fuzzy ID3 algorithm, which is similar to ID3 algorithm and is 

extended to apply a data set containing continuous attribute values. But fuzzy ID3 

algorithm can only deal with continuous data and it is often criticized to result in poor 

learning accuracy. 

In this thesis, we propose a genetic algorithm based fuzzy ID3 method to 

construct fuzzy classification system, which can accept continuous, discrete, or 

mixed-mode data sets. Furthermore, we formulate and compare three pruning 

methods, then choose better pruning method of decision tree to obtain better accuracy 

or a more efficient rule base. We have tested our method on some famous data sets, 

and the results of a five-fold cross validation are compared to those by C5.0. The 

experiments show that our method works better in practice. 
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Chapter 1. Introduction 

 

 

1.1. Research Background 

 

Learning is very important for human being. An infant learn how to eat, how to 

speak and how to walk. Without learning, people are incapable to profit from their 

experience or to adapt to changing conditions. Learning is an essential component of 

any intelligent system, whether human, animal, or machine. There are two significant 

kinds of learning, one is acquisition of new knowledge and the other is getting new 

skills. With learning, system can get experience or get some knowledge form 

processing.  

 

In modern life, we observe exponential growth of the amount of data and 

information available on the Internet and in database systems. But the data is always 

disorganized and difficult to understand. Researchers often use machine learning (ML) 

algorithm to automate the processing and extraction of knowledge from data. 

Inductive ML algorithms are used to generate classification rules from class-labeled 

examples that are described by a set of numerical (e.g., 1, 2, 4), symbolic (e.g., black, 

white), or continuous attributes. With analysis of the data, we can get the information 

or the regulations from it.    

  

Machine learning [1] is programming computers to optimize a performance 

criterion using example data or past experience. We have a model defined up to some 

parameters, and learning is the execution of a computer program to optimize the 
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parameters of the model using the training data or past experience. The model may be 

predictive to make predictions in the future, or descriptive to gain knowledge form 

data, or both.  

 

Machine learning uses the theory of statistics in building mathematical models, 

because the core task is making inference from a sample. The role of computer 

science is twofold: First, in training, we need efficient algorithms to solve the 

optimization problem, as well as to store and process the massive amount of data we 

generally have. Second, once a model is learned, its representation and algorithmic 

solution for inference needs to be efficient as well. In certain applications, the 

efficiency of the learning or inference algorithm, namely, its space and time 

complexity may be as important as its predictive accuracy.  

 

The meaning of machine learning is to develop techniques to allow computers to 

“learn.” Briefly, machine learning is a method for analyzing of data sets by computer 

programs, it is better than the intuition of engineers. The system often generate 

knowledge form the data set, and it is often shown in the form of decision trees [2], 

which are the most popular choices for learning and reasoning from feature-based 

examples. 

 

Machine learning has two stages, which finds the common properties between 

the set of examples in the database and classifies them into different classes, 

according to the model as shown in Fig. 1.1. In the first stage, we analyze the data set 

by the algorithm. We will get knowledge in the process which is in the form of 

decision rules or mathematical formulae. In the second stage, we use testing data to 

estimate the accuracy of the decision rules which generated previously. If the testing 
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accuracy is considered acceptable, the decision rules or mathematical formulae can be 

built as rule-base. We can use it to classify the testing data or new data examples 

which the categories are not known. 

  

Data

Testing
Data

Training
Data

Training
algorithm

Rule-base

Classification &
Accuracy

New Data

           Training

 

Fig. 1.1.  Machine learning process. 

 

Machine learning algorithms can be categorized in several ways. In general, they 

are divided into supervised and unsupervised algorithms [3]. The supervised learning 

algorithm is told to which class each training example belongs. In case where there is 

no a priori knowledge of classes, supervised learning can be still applied if the data 

has a natural cluster structure. Then a clustering algorithm [3] has to be run first to 

reveal these natural groupings. In unsupervised learning, the system learns the classes 
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on its own. This type of learning does the classification by searching trough common 

properties existing among the data.  

 

There are many ways to acquire knowledge automatically. Decision tree 

induction [2] has been widely used in extracting knowledge from feature-based 

examples for classification. A decision tree based classification method is a supervised 

learning method that constructs decision trees from a set of examples. The quality of a 

tree depends on both the classification accuracy and the size of the tree. One of the 

most significant developments in this domain is the ID3 algorithm, which is a popular 

and efficient method of making a decision tree for classification from symbolic data 

without much computation.  

 

ID3 stands for “Iterative Dichotomizer (version) 3,” and is a decision tree 

induction algorithm, developed by Quinlan [4], and later versions including C4.5 [5] 

and C5.0 [6]. In the ID3 approach, we make use of the labeled examples and 

determine how features might be examined in sequence until all the labeled examples 

have been classified correctly. However, ID3 algorithm does not directly deal with 

continuous data. If the attributes of the training set has continuous values, the 

algorithms must be integrated with a discretization algorithm like CART [7] and C4.5, 

which transforms them into several intervals, but these decision trees are not easy to 

understand because we cannot know how a range of attribute is divided into intervals, 

and moreover most knowledge associated with human’s thinking and perception has 

imprecision and uncertainty. In addition, the fuzzy version of ID3 based on minimum 

fuzzy entropy was proposed. Investigations to fuzzy ID3 could be found in [8]–[13].  
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1.2. Motivation 

 

Umano [8] and Janikow [9] have proposed fuzzy ID3 algorithm which is tightly 

connected with characteristic features of the ID3 algorithm and is extended to apply 

fuzzy sets of attributes which containing continuous attributes value instead of 

symbolic attributes and generates a fuzzy decision tree using fuzzy sets defined by a 

user. To increase comprehensibility and avoid the misclassification due to sudden 

class change near the cut points of attributes, fuzzy ID3 represents attributes with 

linguistic variables and partitions continuous attributes into several fuzzy sets.  

 

There are three main steps of the fuzzy ID3 algorithm: 1) generating the root 

node having the set of all data, 2) generating and testing new nodes to see if they are 

leaf nodes by some criteria, and 3) breaking the non-leaf nodes into branches by best 

selection of features according to feature ranking. For feature ranking, ID3 algorithm 

selects the feature based on the maximum information gain, which is computed by the 

probability of training data, but fuzzy ID3 by the degree of membership values of the 

training data. 

 

Fuzzy ID3 is a typical algorithm of fuzzy decision tree induction, and from fuzzy 

ID3, one can extract a set of fuzzy rules, which possess many advantage such as 

simplicity of the rules, moderate computational effort, and easy manipulation of fuzzy 

reasoning. But fuzzy ID3 algorithm can only deal with continuous data and it is often 

criticized to result in poor learning accuracy. 

 

In this thesis, we propose an algorithm to generate a fuzzy decision tree, which 

can accept continuous, discrete, or mixed-mode data sets [14]–[16], using fuzzy sets 
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and it is tuned by genetic algorithm (GA) [17]. We improve the fuzzy ID3 algorithm 

in both the accuracy and the size of the tree through two key steps. First, we optimize 

the thresholds of leaf nodes and the mean and variance of fuzzy numbers involved by 

GA. Second, we prune the rules of the tree by evaluating the effectiveness of the rules, 

and then the reduced tree is retrained by the same GA. We can directly classify any 

kind of attribute included mixed-mode data by our proposed fuzzy ID3 schemes and 

achieves high accuracy rate due to the genetic tuning algorithm. For many famous 

data sets, we use the five-fold cross-validation procedure to estimate the classification 

accuracy; moreover, we compare our proposed method with others to estimate the 

classification accuracy. 

 

For some data sets, the classification accuracy tested by our fuzzy ID3 algorithm 

is not good enough. To improve the learning accuracy, we further proposed the 

method for pruning decision trees to deal with this problem. It helps us acquire the 

better accuracy and decrease the number of the fuzzy rules.  

 

1.3. Thesis Outline 

 

The organization of this thesis is structured as follows. Chapter 1 introduces the 

role of machine learning and the motivation of this research is explained. In Chapter 2, 

the attribute types will be described, then we introduce genetic algorithm based fuzzy 

ID3 method for mixed-model attributes learning problem, and give an example to 

illustrate the learning process. Chapter 3 describes two kinds of the method which 

pruning the rule base in order to improve the performance for our method. In Chapter 

4, the experiment of computer simulations on some famous data sets is conducted and 

compared to C5.0. Finally, conclusion is presented in Chapter 5. 
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Chapter 2. Genetic Algorithm Based Fuzzy ID3 Method 

 

 

2.1.  Description of the Attributes Learning 

     

Data sets are characterized by a set of attributes. The values of these attributes 

can be categorized roughly in three types: 

 

1 )  Continuous attributes: Continuous attributes mean that any two values of 

the data can be inserted with another value and it always mean the real 

number. In other words, continuous attributes include infinite values. For 

example, height and weight of human, and scores of exam are continuous 

attributes. 

2 )  Discrete attributes: Discrete attributes are nonnumeric and are unsuitable 

for proximity distance based analysis. For example, a man’s occupation is 

teacher, public servant or engineer that cannot be instead of ordinal 

number here. 

3 )  Mix-mode attributes: The attributes include both continuous attributes and 

discrete attributes. 

 

The ID3 approach to classification consists of a procedure for synthesizing an 

efficient decision tree for classifying pattern that has non-numeric feature values. 

Fuzzy ID3 (FID3) algorithm [8] extended from ID3 to incorporate fuzzy notation. Our 

algorithm is designed to handle both continuous and discrete attributes. It combines 

the methods of ID3 and fuzzy ID3. In the traditional fuzzy ID3 algorithm, the fuzzy 
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sets of all continuous attributes and the threshold values of leaf node condition are 

user defined. A good selection of fuzzy sets and leaf node thresholds would greatly 

improve the accuracy of decision tree. But we cannot easily obtain the best solution of 

these parameters. Choosing these parameters is a decisive factor for good 

classification performance. In this thesis, we introduce genetic algorithm (GA) [17] to 

find out an optimal solution of the parameters of fuzzy ID3 algorithm. But the discrete 

attributes are divided into crisp sets, thus they have no membership functions. When 

deal with discrete attributes, our method is similarly to ID3. The details are described 

in the following sections. 

 

2.2.  Feature Ranking 

 

The feature ranking step is optional as we can use any arbitrary order of the 

feature, but it is a desirable step because it can help to reduce the size of the tree. 

When we start to construct decision tree, we have to choose the order of features. The 

process is called the Feature Ranking problem [8], [9], [18]. With a good feature 

ranking, important features will be considered in the higher levels of the tree and can 

construct a decision tree with high accuracy and small size. The order of features is 

evaluated using information gain [5] here.  

 

The fundamental premise of information theory [19] is that the generation of 

information can be modeled as a probabilistic process that can be measured in a 

manner that agrees with intuition. In accordance with this supposition, a random event 

E  that occurs with probability  is said to contain )(EP )(log2 EP−  units of 

information. If  (that is, the event always occurs), 1)( =EP 0)(log2 =− EP  and no 

information is attributed to it. That is because no uncertainty is associated with the 
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event; no information would be transferred by communicating that the event has 

occurred. When one of two possible equally likely events occurs, the information 

conveyed by any one of them is )2/1(log2−  or 1 bit. A simple example of such a 

situation is flipping a coin and communicating the result.                                     

 

In fuzzy ID3 algorithm, we assign each example a unit membership value. 

Assume that we have a set of training data , where each data has  attributes 

and one classified class 

D l

  ..., , , 21 lAAA } ..., , ,{ 21 nCCCC =  and fuzzy sets 

 for the attribute . We assign each example a unit membership 

value. Let  to be a fuzzy subset in  whose class is and 

  ..., , , 21 imii FFF iA

kCD D kC D  is the sum of 

the membership values in a fuzzy set of training data . D

        

The information gain G  for the i-th attribute (Ai,D) iA  by a fuzzy set of 

training data  is defined by D

      ) ,()() ,( DAEDIDAG ii −= .                      (2.1) 

For the training set, class membership is known for all the examples. Therefore, the 

initial entropy for the system consisting of membership values of D labeled examples 

can be expressed as 

,)log()(
1

2∑
=

⋅−=
n

k
kk ppDI                          (2.2) 

where  

.pk =  D

D kC

.                                    (2.3) 
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Weighting the entropy of each branch by its population can be written as  

E(Ai,D) =
P
j=1

m

(pij á I(DFij
)),                       (2.4) 

where  

.pij = P
j=1

m

DFij

ìì ììDFij

ìì ìì
.                                        ..   (2.5) 

 

We will calculate the information gains  and decide the order of features 

from the top to the bottom by decreasing  gradually. First, we choose the 

feature with maximum information gain for constructing the decision tree at root, 

moreover, according to  of features in decreasing order. The feature ranking 

procedure will affect the performance and size of the decision tree. 

) ,( DAG i

) ,( DAG i

) ,( DAG i

 

    Now, we will use a training set as example to illustrate the learning process. The 

training set is shown in Table I. The data set is a mixed-mode data [15], [16], and 

there are four attributes, namely outlook, temperature, humidity, and wind. The 

decision classes are don’t play golf and play golf. In this example, the fuzzy sets of the 

continuous attributes are defined by genetic algorithm [17] that we will describe in the 

following section. The small training set with fuzzy representation is shown in Table 

II.  
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TABLE I 

EXAMPLES OF TRAINING SET 

 

ID Class outlook temperature humidity windy u 
1 don’t play sunny 72 95 false 1 
2 play sunny 69 70 false 1 
3 play rain 75 80 false 1 
4 play sunny 75 70 true 1 
5 play overcast 72 90 true 1 
6 play overcast 81 75 false 1 
7 don’t play rain 71 80 true 1 

 

 

 

TABLE II 

EXAMPLES WITH FUZZY REPRESENTATION OF TRAINING SET  

 

outlook temperature humidity windy 
ID 

class 
sunny overcast rain low high low high false true

µ 

1 don’t play 1 0 0 0.545 0.962 0.068 0.975 1 0 1 
2 play 1 0 0 0.270 0.675 0.959 0 1 0 1 
3 play 0 0 1 0 0.567 0.752 0.034 1 0 1 
4 play 1 0 0 0 0.567 0.959 0 0 1 1 
5 play 0 1 0 0.545 0.962 0.198 0.774 0 1 1 
6 play 0 1 0 0 0 0.973 0.002 1 0 1 
7 don’t play 0 0 1 1 0.995 0.752 0.034 0 1 1 

 

 

 

 11



From the theory we discuss above, we have =D 7, DCdon0t play
ìì ìì=2 and DCplay

ìì ìì=5, we 

have 

I(D)＝
7
5log

7
5

7
2log

7
2

22 −− ＝0.863.  

For “outlook,” we have 

Doutlook,sunny| | =3, 1, 2,  D
don0t play

outlook,sunny

ì
Dplay

outlook,sunny

ì ì
=ì ììì= ìì ìì

I(Doutlook,sunny) =

ì
and 0.918; 

Doutlook,overcast| |=2, 0, =2, D
don0t play

outlook,overcast

ì
Dplay

outlook,overcast

ì ìì ììì= ìì ìì
I(Doutlook,overcast) =

ì ììì= ìì ìì
I(Doutlook,rain) =

ì
and 0; 

Doutlook,rain| |=2, 1, =1, D
don0t play

outlook,rain

ì
Dplay

outlook,rain

ì ìì
and 1. 

Now we can calculate the entropy of the branch “outlook” as 

E(outlook,D) = 1
7
20

7
2918.0

7
3

×+×+×  

                ＝0.679. 

For “temperature,” we have 

=lowetemperaturD , 2.36, |Ddon0t play

temperature,low
|=1.545, 0.815,  |Dplay

temperature,low
|=

and 0.93; I(Dtemperature,low) =

|Dtemperature,high|=4.728, |Ddon0t play

temperature,high
|=1.957, 2.771,  |Dplay

temperature,high
|=

and 0.979. I(Dtemperature,high) =

We can calculate the entropy of the branch “temperature” as 

E(temperature,D) = 979.0
638.6
728.493.0

638.6
36.2

×+× . 

                 =1.028.  
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For “humidity,” we have 

|Dhumidity,low|=4.661, |Ddon0t play

humidity,low
|=0.82, 3.841,  |Dplay

humidity,low
|=

and 0.671; I(Dhumidity,low) =

|Dhumidity,high|=1.819, |Ddon0t play

humidity,high
|=1.009, 0.81,  |Dplay

humidity,high
|=

and 0.991; I(Dhumidity,high) =

E(humidity,D) =0.761. 

For “wind,” we have 

|Dwindy,false|=4, |Ddon0t play

windy,false
|=1, 3,  |Dplay

windy,false
|=

and 0.811; I(Dwindy,false) =

|Dwindy,true| =3, 1, 2,  |Ddon0t play
windy,true

| = |Dplay
windy,true

| =

and 0.918; I(Dwindy,true) =

E(windy,D) =0.857. 

Thus we have the information gain for the attribute “outlook” as 

) ,()() ,( DoutlookEDIDoutlookG −=  

=0.863－0.679 

=0.184. 

By the same method for “temperature,” “humidity,” and “windy,” we have 

G(temperature,D) = à0.165, 0.102,  G(humidity,D) =

and 0.006. G(windy,D) =

Now, we assign the order of features from the top to the bottom of the decision tree 

according to  of features in decreasing order. Then the order of features is 

{outlook, humidity, windy, temperature}. 

G(Ai,D)
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2.3. Tree Construction 

 

In Fuzzy ID3 algorithm, we assign each example a unit membership value. 

Assume that we have a set of training data , where each data has  continuous 

attributes  and one classified class 

D l

lAAA  ..., , , 21 } ...,  ,{ ,21 nCCCC =  and fuzzy sets 

 for the attribute . Let  be a fuzzy subset in  whose class is imii FFF  ..., , , 21 iA DCk D

Ck  and  is the sum of the membership values in a fuzzy set of training data . 

An algorithm to generate a fuzzy decision tree [2], [9] is shown in the following: 

|D| D

 

1 ) Generate the root node and that has a set of all data, i.e., a fuzzy set of all 

data point with the unit membership value. 

2 ) If a node  with a fuzzy set of data  satisfies the following conditions: t D

2.1 )  the proportion of a data set of a class  is greater than or equal to 

a threshold , that is, 

Ck

òr

     |D|
|DC

k|
 ,                                        (2.6) õ òr

2.2 )  the number of a data set is less than a threshold , that is, òn

. ,                                          (2.7)              |D| < òn

2.3 )  there are no attributes for more classifications, then it is a leaf node, 

and we record the certainties |D|
|DC

k|
 with all classes at the node.  

3 ) If it does not satisfy the above conditions, it is not a leaf node, and the 

branch node is generated as follows: 

3.1 ) Divide  into fuzzy subsets  according to the 

feature 

D mDDD  ..., , , 21

Ai which has next large  that will generate son ) ,( DAG i
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nodes. The membership value of example in  is the product of 

the membership value in  and the value of F  of the value of 

Dj

D ij

Ai in D. 

3.2 ) Generate new nodes  for fuzzy subsets  

and label the fuzzy sets  to edges that connect between the nodes 

 and t . 

mttt  ..., , , 21 mDDD  ..., , , 21

Fij

jt

3.3 ) Select the next feature for generating the son nodes by the result of 

feature ranking. 

4) Replace D by D  and repeat from step 2 ) recursively until the end of 

all paths are leaf nodes. 

j

 

Now, we make the first layer of decision tree with the attribute “outlook” as 

shown in Fig. 2.1. There are three branches “sunny,” “overcast,” and “rain” from the 

root. We continue the construction process to produce the full fuzzy decision tree with 

other attributes until it satisfies the leaf node criterions above. For this training data, 

the fuzzy decision tree is shown in Fig. 2.2.  
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Fig. 2.1.  The first layer of fuzzy decision tree. 
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Fig. 2.2.  The full fuzzy decision tree of this example. 

 

 

2.4. Inference of Fuzzy Decision Tree 

 

After generating the fuzzy decision tree from the training data , we need a 

method to test the classification of training examples or to predict the classification of 

other examples. At all the leaf nodes, we have recorded the certainties 

D

|D|
|DCk|

 
of each 

class as mentioned above. The rule produced by each leaf node which can classify the 

data point to each class with the certainty value. Then the reasoning by fuzzy decision 
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tree can be converted into a set of fuzzy rules. For example, the fuzzy rule extracted 

from the leaf node can be described as 

 

IF outlook is sunny AND humidity is low 

THEN don’t play with certainty 0.034 and play with certainty 0.966. 

 

For the generated fuzzy decision tree, each connection from root to leaf is called 

path. There are one or more membership values between root and each leaf node 

because a continuous attribute value has a membership value according to the 

corresponding membership function. Assume that the fuzzy decision tree contains r  

leaf nodes, and  decision class. The steps to classify a data using obtained fuzzy 

rule base are described as follows: 

n

 

1 ) For each  ( ), the certainty of class i 1 ô iô r j  of the leaf node i 

multiplied by the membership values which are on the path . Sum the  

terms to get  which is the possibility of the class 

i r

( )jP j. 

2 ) Repeat from step 1 ) for each j (1 ) such that all the  have 

been computed. 

ô j ô n ( )jP

3 ) The example e is assigned to the class which has the maximum value in 

step 2 ). 

 

An illustration is shown in Fig. 2.3, where the 7-th example of Table I is tested 

by the fuzzy rule-base. Thus we can use these 7 rules to classify the 7-th example of 

Table I as follows: 
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( )playtdonP  '  

= 0×0.752×0.034 + 0×0.034×1 + 0×0 + 1×0.752×0×0 + 1×0.752×1×1  

+ 1×0.034×0×0 + 1×0.034×1×1 = 0.786, 

( )playP  

= 0×0.752×0.966 + 0×0.034×0 + 0×1 + 1×0.752×0×1 + 1×0.752×1×0  

+ 1×0.034×0×0 + 1×0.034×0 = 0. 

 

The 7-th example is assigned to class don’t play because  is 

maximum between all the . Note that each rule has influence on the testing, so we 

use all rules to classify an example but not just depend on a single rule.  

( )playtdonP  '

( )jP

 

 

 

 

Fig. 2.3.  Reasoning of the example by fuzzy decision tree.  
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2.5. Genetic Algorithm for Fuzzy ID3 

 

From the description above, ò , and the membership functions of all the 

continuous features of Fuzzy ID3 algorithm are defined by a user. A good selection of 

fuzzy rule base, ò , and the membership functions are best matched to the 

database to be processed, would greatly improve the accuracy of the decision tree. To 

this end, any optimization algorithms seem appropriate for this purpose. In particular, 

genetic algorithm (GA) based scheme is highly recommended since a gradient 

computation for conventional optimization approach is usually not feasible for a 

decision tree. This is because condition-based decision path is nonlinear in nature, and 

hence its gradient is not defined. Based on the concept, we will introduce genetic 

algorithm to search best , and the membership functions of all the continuous 

features for the design of fuzzy ID3.  

r, òn

r, òn

òr, òn

 

GA is adaptive heuristic search method that may be used to solve all kinds of 

complex search and optimization problems. It is an optimization search mechanism 

based natural selection process. Its essential mind is to imitate the criterion “survival 

of the fittest” of the biology. GA is often capable of finding optimal solutions even in 

the most complex of search spaces or at least it offer significant benefits over other 

search and optimization techniques. A typical GA operates on a population of 

solutions within the search space. The search space represents all the possible 

solutions that can be obtained for the given problem and is usually very complex or 

even infinite. Every point of the search space is one of the possible solutions and 

therefore the aim of the GA is to find an optimal point or at least come as close to is as 

possible.  

 

 20



The advantage of GA is in their parallelism. GA is considering many individuals 

instead of an individual in a search space. It gets the global optimum rapidly, 

furthermore avoids the chance to fall into the local optimum. 

 

GA is typically implemented as a computer simulation in which a population of 

chromosomes of individuals to an optimization problem evolves toward better 

solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but 

different encodings are also possible. In this thesis, we use 6-bits to represent a 

parameter. We use GA to tune the thresholds ò , and the parameters of the 

membership functions of feature values. The membership function of each 

sub-attribute is assumed to be Gaussian-type and is given by  

r, òn

m(x) = exp(à 2û2

(xàö)2
) ,                                (2.8) 

where x is the corresponding feature value of the data point with mean ö  and 

standard deviation . Thus for each membership function, we have two parameters û

ö  and û to tune. For example, assume we have a data set, which has 4 continuous 

attributes and 3 classes such that there are 12 membership functions. Each 

membership function has 2 parameters and there are 2 thresholds of leaf condition in 

addition. Thus we have 26 parameters to be tuned, and the length of a binary 

chromosome is 156. There are three operators of genetic algorithm which are 

reproduction, crossover, and mutation. We briefly describe how to perform these three 

operators. The flowchart of GA is shown in Fig. 2.4. 
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Fig. 2.4.  Flowchart of genetic algorithm. 

 

Reproduction is a process according to the fitness degree of each individual to 

decide which will be eliminated or copied at next generation, the individual with 

higher fitness value will be copied in a large number; the individual with lower fitness 

value will be eliminated. The potential chromosomes of the population are copied into 

a mating pool depending on their fitness values. The operator is shown in Fig. 2.5.  
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Fig. 2.5.  Reproduction. 

 

To minimize the rule number and maximize the accuracy, let the fitness function  

( ) ( )( iavgworsti RRAAf +−= 2100100 ) ,                            (2.9) 

where  is the learning accuracy of the individual , and  is the worst 

learning accuracy of all individuals.  is the average number of the rules of all 

individuals, and  is the number of the rules of the individual .  

iA i worstA

avgR

iR i

 

    Crossover is a process with selecting two potential chromosomes randomly from 

the matching pool, and exchange bit information mutually to produce two new 

individuals. Roughly speaking, it hopes to generate greater filial generation by 

accumulating the superior bit information of parents. An example for crossover is 

shown as Fig. 2.6.  
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Fig. 2.6.  Crossover. 

Mutation is an occasional alteration of a random bit. It is the process that selects 

randomly string of an individual and selects randomly the mutation point to change 

the bit information of the string. The probability of this process is controlled by the 

mutation probability. For binary string, “0” is changed to “1,” and “1” is changed to 

“0.” The mutation is shown as Fig. 2.7. Mutation that helps to find an optimal solution 

to the given problem more reliably, as it prevents GA from finishing the search 

prematurely with a sub-optimal solution. 

 

 
Fig. 2.7.  Mutation. 

 After the genetic algorithm above, the system will generate two parameters of 

Gaussian-type membership function ö  and û, and we get the parameters 0.827, 

and 0.001 of the criterions for tree construction. The membership functions of 

each continuous attribute for the training set are illustrated in Fig. 2.8.  

òr =

òn =
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(a) 
 

(b) 

Fig. 2.8.  The membership functions of each attribute for the training set. (a) The 

membership functions of “temperature.” (b) The membership functions of “humidity.” 
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Chapter 3. Pruning Methods for Fuzzy ID3 

 

 

3.1.  Introduction of Pruning Method 

 

There are many pruning methods which can be grouped into two classes: 

pre-pruning and post-pruning. The former approaches stop growing the tree earlier, 

before it reaches the point where it perfectly classifies the training data, and the other 

approaches that allow the tree to ovefit the data, and then post-prune it. Although the 

first kind of approaches might seem more direct, the second kind of approaches of 

post-pruning has been found to be more successful in practice. The reason involves 

that pre-pruning methods have difficulty in estimating precisely when to stop growing 

the tree. Moreover, a very important benefit of post-pruning methods is that they can 

generate a sequence of trees instead of a single one, which allows expert to seek the 

optimal one out based on his professional knowledge. In this thesis, we propose to 

adopt the post-pruning method for our study.  

 

For the generation of fuzzy decision trees, the tree size is a very important issue. 

The aim of pruning is to reduce the number of nodes while the accuracy is retained. In 

this thesis, we propose to use mathematical method to investigate how the rules of 

pruning algorithms influence fuzzy decision trees. 

 

3.2.  Description of Our Pruning Methods 

     

We have used the GA to improve the performance of the classification task and 

decrease the rule number as well. In this thesis, we propose three pruning methods to 
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further minimize the number of rules. The first pruning method is described as 

follows: 

 

1 ) For each rules, when any data point is classified, we maintain the 

production value of the membership value and the certainty of each class, 

, where n is an index of each class.  )(nJ

2 )  corresponding to the correct class of the data point gets positive sign 

and the others get negative sign. 

)(nJ

3 ) Sum for all classes of , and then we get the credit of the 

rule to classify this data point. 

... ),2( ),1( JJ )(nJ

4 ) Repeat from 1) until all data points are classified by this rule and we get the 

final credit of this rule. 

5 )  Remove the redundant rules whose the credits are less than certain threshold 

and/or have big drops. 

 

In the second pruning method, when any data point is classified, we define the 

second credit formula  as  2
jV

( )
21

22
11

2 1
pp

c
rrr

V

c
j

c
jjj

jj
j −

−
++

−
=

ααα L

,                  (3.1) 

where c is the class number of the training data,  is the production value of the 

membership value which corresponds to the maximum possibility of the class for the 

j-th rule;  is the possibility ratio assigned to the maximum class of the j-th rule. 

And  is the production value of the membership value which corresponds to the 

1
jα

1
jr

2
jα
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second largest possibility of the class for the j-th rule, and  is the possibility ratio 

assigned to the second largest class for the j-th rule; other  and  follow 

similarly. Value  is the maximum possibility of the class which is the sums of 

each class assigned by each rule;  is the second largest possibility of the class 

which is the sums of each class assigned by each rule. The credit value gets positive 

sign when the class of the  and  is the same. On the contrary, if the class of 

the  and  is different, the credit value gets negative sign. If the  is equal to 

the , the credit value  is assigned to 10000. Instead of , 

2
jr

∗
jα ∗

jr

1p

2p

1
jα 1p

1
jα 1p 1p

2p 2
jV 2p 1

2

−c
p  may be 

another solution. 

 

The third pruning method is improved from the second kind of the pruning 

method. We revise the third credit formula  as  3
jV

21

21
3

pp
V jj

j −

−
=

αα
,                      (3.2) 

where  is the production value of the membership value which corresponds to the 

maximum possibility of the class for the j-th rule,  is the production value of the 

membership value which corresponds to the second largest possibility of the class for 

the j-th rule. Value  is the maximum possibility of the class which is the sums of 

each class assigned by each rule,  is the second largest possibility of the class 

which is the sums of each class assigned by each rule. The credit value gets positive 

sign when the class of the  and  is the same. On the contrary, if the class of 

the  and  is different, the credit value gets negative sign. If the  is equal to 

1
jα

2
jα

1p

2p

1
jα 1p

1
jα 1p 1p
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the , the credit value  is assigned to 10000. Instead of , 2p 3
jV 2p 1

2

−c
p  may be 

another solution. 

 

The credit of each rule computed and then arranged in an order of from the 

largest to the smallest. This number represents the effectiveness of the rule in 

performing the classification task. If the rule is essential for classification, then it 

would get a high credit value. On the contrary, if the credit is low, this rule could be 

an insignificant or redundant rule. The reason is explained as follows. The rule that 

classifies the instance to the true class or to the wrong class will be cumulatively 

counted. In this way, we can prune the insignificant or inconsistent rules to obtain a 

smaller and efficient rule base set. After deleting the inefficient rule or rules, we 

retune the parameters of pruned Fuzzy ID3 tree again by GA. 

 

For example, after we get the credit of each rule of the training set as shown in 

Table I, we then sort and plot the total credit of all rules of each credit computation of 

the above three pruning methods. They are as shown in Figs. 3.1(a)–(c), respectively. 

We find that the credit of the 6-th rule and 7-th rule are much smaller than others, 

which indicates that these two rules may be redundant. Hence, we can select the 

following thresholds: (a) between 1 and 0.589; (b) between 0.645 and 6.965; (c) 

between 1.331 and 1.15, for these three methods, respectively, and remove the 

redundant rules. The pruned fuzzy decision trees of the training set as shown in Table 

I, are shown in Fig. 3.2(a)–(c), respectively. The flowchart of our genetic algorithm 

based fuzzy ID3 method is illustrated in Fig. 3.3. 

à à
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(a) 

 

 
(b) 
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(c) 

Fig. 3.1. The credit plot on each rule: (a) result of the first pruning method, (b) result 

of the second pruning method, and (c) result of the third pruning method. 
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 (a) 

 

 

(b) 
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 (c) 

Fig. 3.2. Fuzzy decision trees after pruning: (a) result of the first pruning method, (b) 

result of the second pruning method, (c) result of the third pruning method. 
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Fig. 3.3.  Flowchart of genetic algorithm based fuzzy ID3 method. 
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Chapter 4. Simulation and Experiment 

 

 

    As mentioned in Chapter 2, we introduce a fuzzy ID3 algorithm to construct a 

fuzzy classification system whose membership functions and leaf conditions are tuned 

by GA. In this chapter, we apply the algorithm to classify some data sets, which 

include continuous, discrete, and mixed-mode data sets [14], [16]. We also use this 

method together with three pruning methods to classify these data sets and compare 

the results. This simulation was done on Pentium 4 CPU 3.4 GHz personal computers 

with 2GB RAM. 

 

4.1. Description of The Data Sets 

 

    The ten well known data sets employed for experiments are obtained from the 

University of California, Irvine, Repository of Machine Learning databases (UCI) 

[20]. Their characters are briefly described below. 

 

1 ) Crude_oil: Gerrid and Lantz analyzed Crude_oil samples from three 

zones of sandstone. The Crude_oil data set with 56 examples has five 

attributes and three classes named wilhelm, submuilinia, and upper. The 

attributes are vanadium (in percent ash), iron (in percent ash), beryllium 

(in percent ash), saturated hydrocarbons (in percent area), and aromatic 

hydrocarbons (in percent area). 

2 ) Glass Identification Database: The data set represents the problem of 

identifying glass samples taken from the scene of an accident. The 214 

examples were originally collected by B. German of the Home Office 
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Forensic Science Service at Aldermaston, Reading, Berkshire in the UK. 

The nine attributes are all real valued and fully known, representing 

refractive index and the percent weight of oxides such as silicon, sodium, 

and magnesium. The six classes are named as building windows float 

processed, building windows not float processed, vehicle windows float 

processed, containers, tableware, and headlamps 

3 ) Iris Plant Database: The Iris data set, Fisher’s classic test data (Fisher, 

1936), has three classes with four-dimensional data consisting of 150 

examples. The four attributes are: sepal length, sepal width, petal length, 

and petal width. This data set gives good results with almost all classic 

learning methods and has become a sort of benchmark data. 

4 ) Myo_electric: The Myo_electric data set is extracted from a problem in 

discriminating between electrical signals observed at the human skin 

surface. This is a four-dimensional data set consisting of 72 examples 

divided into two classes. 

5 ) Norm4: The data set has 800 examples consisting of 200 examples each 

from the four components of a mixture of four class 4-variate normals. 

6 ) BUPA liver disorders: This UCI data set was donated by R. S. Forsyth. 

The problem is to predict whether or not a male patient has a liver disorder 

based on blood tests and alcohol consumption. There are two classes, six 

continuous attributes, and 345 examples. 

7 ) Promoter Gene Sequences Database: Promoters have a region where a 

protein (RNA polymerase) must make contact and the helical DNA 

sequence must have a valid conformation so that the two pieces of the 

contact region spatially align. The data set with 106 examples has 57 

attributes and two classes. All attributes are discrete. 
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8 ) StatLog Project Heart Disease dataset: This UCI data set is from the 

Cleveland Clinic Foundation, courtesy of R. Detrano. The problem 

concerns the prediction of the presence or absence of heart disease given 

the results of various medical tests carried out on a patient. There are two 

classes, seven continuous attributes, six discrete attributes, and 270 

examples.  

9 ) Golf: The data set with 28 examples has four attributes and two classes 

named play, and don’t play. There are 2 continuous and 2 discrete 

attributes. The attributes are outlook, temperature, humidity, and windy. 

10) StatLog Project Australian Credit Approval: This credit data originates 

from Quinlan. This file concerns credit card applications. All attribute 

names and values have been changed to meaningless symbols to protect 

confidentiality of the data. The Australian data set with 690 examples has 

14 attributes and two classes. There are 6 continuous and 8 discrete 

attributes. 

 

In older to clearly summarize the ten data sets, we list the properties of them in 

Table Ⅲ and the partial examples of our testing data sets are illustrated in Fig. 4.1.    
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TABLE III   

SUMMARY OF THE DATABASES EMPLOYED 

 

Data set # of examples # of attributes 
# of continuous 

attributes 
# of classes 

Crude oil  56  5 5 3 
Glass 214  9 9 6 
Iris 150  4 4 3 
Myo_electric  72  4 4 2 
Norm4 800  4 4 4 
Bupa 345  6 6 2 
Promoters 106 57 0 2 
Heart 270 13 6 2 
Golf  28  4 2 2 
Australian 690 14 6 2 

 

 

 

Fig. 4.1.  The partial examples of the Crude oil. 
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4.2. Simulation and Comparison 

  

    We use all the data sets to be the training data and the same examples to be the 

testing data for the performance evaluation with our proposed GA based fuzzy ID3 

method. In rule pruning, we remove the redundant rules that will still maintain or only 

slightly reduced the learning accuracy to be considered as acceptable. We take down 

the accuracy and the number of fuzzy rules before and after pruning. We have applied 

three pruning methods; their results are shown in Tables IV, V, and VI, respectively. 

For classifying Glass data set, we consider only five attributes that are Na, Mg, Al, K, 

Ba according to feature subset select [21]. In addition, we divide the sub-feature into 

two partitions for Norm4, and divide three partitions for Glass. If we do not reduce 

the attributes of this data set, we will obtain too many rules after tree construction. 

Without the restrictions above, the fuzzy ID3 still can not increase in the learning 

accuracy. 

TABLE IV 

PERFORMANCE OF THE DATA SETS BEFORE AND AFTER PRUNING  

BY THE FIRST PRUNING METHOD 

Before rule pruning After rule pruning 
Data set 

# of rules Training acc. # of rules Training acc. 
Crude_oil 13.0 100.0 8.0 97.7 
Glass 11.0 75.4 9.0 69.0 
Iris 4.0 99.1 3.0 97.5 
Myo_electric 4.0 96.4 3.0 92.9 
Norm4 5.0 93.9 4.0 72.0 
Bupa 8.0 76.8 7.0 76.8 
Promoters 10.0 85.7 8.0 85.7 
Heart 15.0 87.0 13.0 86.1 
Golf 6.0 95.4 5.0 95.4 
Australian 4.0 86.4 2.0 87.3 
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TABLE V 

PERFORMANCE OF THE DATA SETS BEFORE AND AFTER PRUNING 

BY THE SECOND PRUNING METHOD 

Before rule pruning After rule pruning 
Data set 

# of rules Training acc. # of rules Training acc. 
Crude_oil 13.0 100.0 12.0 97.7 
Glass 11.0 75.4 10.0 73.6 
Iris 4.0 99.1 3.0 91.6 
Myo_electric 4.0 96.4 3.0 92.9 
Norm4 5.0 93.9 4.0 83.9 
Bupa 8.0 76.8 6.0 77.1 
Promoters 10.0 85.7 4.0 84.5 
Heart 15.0 87.0 4.0 79.1 
Golf 6.0 95.4 3.0 95.4 
Australian 4.0 86.4 2.0 87.3 

 

TABLE VI 

PERFORMANCE OF THE DATA SETS BEFORE AND AFTER PRUNING 

BY THE THIRD PRUNING METHOD 

Before rule pruning After rule pruning 
Data set 

# of rules Training acc. # of rules Training acc. 
Crude_oil 13.0 100.0 10.0 100.0 
Glass 11.0 75.4 8.0 74.8 
Iris 4.0 99.1 3.0 97.5 
Myo_electric 4.0 96.4 3.0 92.9 
Norm4 5.0 93.9 4.0 92.8 
Bupa 8.0 76.8 5.0 76.8 
Promoters 10.0 85.7 5.0 84.5 
Heart 15.0 87.0 11.0 86.1 
Golf 6.0 95.4 4.0 95.4 
Australian 4.0 86.4 2.0 87.5 
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From Tables IV, V, and VI, we find that most of data sets slightly reduce the 

accuracy after rule pruning. This has happened possibly because the rule pruning 

process has removed some rules, which were correctly classifying these data sets. And 

the residual rules are not able to correctly classify few examples. We can also see that 

the number of the rules is decreased for all data sets, which shows the effectiveness of 

our rule pruning process. 

 

From Table VII, we compare the accuracy with different pruning methods for 

each data set; moreover, we can find that for Myo_electric and Golf data sets, the 

accuracy have the same with different pruning method. For the others except 

Promoters data, the third pruning method is superior to others in accuracy. Table VIII 

compares the number of rules with different pruning methods for each data set. We 

can find that for Iris, Myo_electric, and Norm4 data sets, the number of rules is the 

same with different pruning method. For the others expect Crude_oil, Glass, and Bupa, 

the second pruning method is smaller than others in the number of rules. 
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TABLE VII 

COMPARISON OF THE ACCURACIES WITH DIFFERENT PRUNING 

METHODS 
After rule pruning 

First Pruning Second Pruning Third Pruning Data set 
Training acc. Training acc. Training acc. 

Crude_oil 97.7 97.7 100.0 
Glass 69.0 73.6 74.8 
Iris 97.5 91.6 97.5 
Myo_electric 92.9 92.9 92.9 
Norm4 72.0 83.9 92.8 
Bupa 76.8 77.1 76.8 
Promoters 85.7 84.5 84.5 
Heart 86.1 79.1 86.1 
Golf 95.4 95.4 95.4 
Australian 87.3 87.3 87.5 

 

TABLE VIII 

COMPARISON OF THE NUMBER OF RULES WITH DIFFERENT PRUNING 

METHODS 
After rule pruning 

First Pruning Second Pruning Third Pruning Data set 
# of rules # of rules # of rules 

Crude_oil 8.0 12.0 10.0 
Glass 9.0 10.0 8.0 
Iris 3.0 3.0 3.0 
Myo_electric 3.0 3.0 3.0 
Norm4 4.0 4.0 4.0 
Bupa 7.0 6.0 5.0 
Promoters 8.0 4.0 5.0 
Heart 13.0 4.0 11.0 
Golf 5.0 3.0 4.0 
Australian 2.0 1.0 2.0 
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For classifying system, the main concern is its accuracy; therefore, we compare 

performance with the best two pruning methods, i.e., the first and third second 

pruning method further. We use five-fold cross validation testing which divides the 

each data set into five folds. Namely, the instances are randomly divided among the 

five folds. The first fold is the testing data, the others are used for training. Then the 

learned structure is then tested against the first fold. The same procedure is repeated 

considering the second fold to be the testing data and the others to be the training data, 

the procedure is operated until the fifth fold. Average accuracy and the number of 

rules are recorded in Tables IX and X, respectively. This procedure is repeated three 

times. 

 

Table IX shows the comparison of the accuracies of the first pruning and the 

third pruning methods. On average, we find that for Heart data set, the accuracy of the 

first pruning and second pruning are the same. For the others, the third pruning 

method outperforms the first pruning method in accuracy. Similarly, Table X shows 

that the rule number of the third pruning method is smaller than that of the first 

pruning method. Finally, for our proposed GA based fuzzy ID3 with third pruning 

method is compared to C5.0 [6]. The reason why we choose C5.0 is that C5.0 is a 

decent version of C4.5 and is the state-of-the-art algorithm, which works well for 

many decision-making problems. 
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TABLE IX 
COMPARISON OF THE TESTING ACCURACIES WITH TWO BETTER PRUNING 

METHODS 

Testing acc. (five-fold CV repeated three times) 
Data set Pruning Method 

1 2 3 

Avg. 

acc. 

First Pruning 75.8 89.1 83.3 82.7 

Crude_oil 
Third Pruning 78.3 90.8 85.0 84.7 

First Pruning 54.8 56.2 48.3 53.1 
Glass 

Third Pruning 62.3 58.1 56.2 58.9 

First Pruning 93.3 91.3 88.0 90.9 

Iris 
Third Pruning 93.3 92.7 90.6 92.2 

First Pruning 78.6 73.6 77.6 76.6 

Myo_electric 
Third Pruning 90.3 79.6 81.0 83.6 

First Pruning 86.6 77.2 74.2 79.3 

Norm4 
Third Pruning 86.5 82.7 73.7 81.0 

First Pruning 64.3 66.0 58.2 62.8 
Bupa 

Third Pruning 64.3 66.3 62.9 64.5 

First Pruning 80.0 78.6 73.3 77.3 

Promoters 
Third Pruning 80.3 76.7 75.1 77.4 

First Pruning 74.8 72.5 67.7 71.7 

Heart 
Third Pruning 74.8 72.5 67.7 71.7 

First Pruning 86.6 83.3 86.6 85.5 

Golf 
Third Pruning 93.3 93.3 93.3 93.3 

First Pruning 84.7 85.1 83.6 84.5 

Australian 
Third Pruning 84.3 85.6 84.9 84.9 
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TABLE X 
COMPARISON OF THE NUMBER OF RULES WITH TWO BETTER PRUNING       

METHODS 

# of rules (five-fold CV repeated three times) 
Data set Pruning Method 

1 2 3 

Avg. 

rules 

First Pruning 7.6 11.6 9.8 9.7 

Crude_oil 
Third Pruning 9.2 12.6 9.8 10.5 

First Pruning 12.0 13.8 12.2 12.7 
Glass 

Third Pruning 11.8 14.0 11.6 12.5 

First Pruning 5.2 3.8 5.2 4.7 

Iris 
Third Pruning 4.6 3.4 4.6 4.2 

First Pruning 2.8 2.0 2.6 2.5 

Myo_electric 
Third Pruning 3.0 2.2 2.6 2.6 

First Pruning 4.6 4.2 4.0 4.3 

Norm4 
Third Pruning 4.4 4.2 3.4 4.0 

First Pruning 6.2 4.4 6.6 5.7 
Bupa 

Third Pruning 5.8 3.8 5.8 5.1 

First Pruning 8.2 6.6 3.6 6.1 

Promoters 
Third Pruning 6.8 7.0 2.8 5.5 

First Pruning 5.2 8.0 5.0 6.1 

Heart 
Third Pruning 4.6 7.0 3.0 4.9 

First Pruning 5.0 5.2 4.0 4.7 

Golf 
Third Pruning 3.6 5.2 5.8 4.9 

First Pruning 1.4 1.2 1.6 1.4 

Australian 
Third Pruning 1.6 1.4 1.2 1.4 
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Accuracy comparison result of our method to C5.0 is shown in Table XI. It 

records the testing accuracy from five-fold cross validation, repeated three times on 

each data set. On average, we find that our rule-base outperforms C5.0 in seven out of 

ten data sets. Thus our system has better generalization ability than C5.0. Our method 

is also compared to C5.0 with respect to the average number of rules. Table XII shows 

the comparison of the number of rules generated by these two methods at the same 

experiment. The training time and executive time of our method for the data sets, are 

recorded in Table XIII. This simulation was done on Pentium 4 CPU 3.4 GHz 

personal computers with 2GB RAM. The training and executive time for C5.0 are 

very fast, less than 0.1 sec., for all the above data sets. We find that our rule-base is 

smaller than C5.0 in seven out of ten data sets. It is evident that our approach tends to 

produce a better classification accuracy with more concise rule sets than C5.0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 46



TABLE XI 
ACCURACY COMPARISON OF OUR METHOD AND C5.0 

 

Testing acc. (five-fold CV repeated three times) 
Data set Algorithm 

1 2 3 

Avg. 

acc. 

Our rule-base 78.3 90.8 85.0 84.7 

Crude_oil 
C5.0 72.5 79.2 76.7 76.1 

Our rule-base 62.3 58.1 56.2 58.9 
Glass 

C5.0 62.8 65.6 69.8 66.0 

Our rule-base 94.0 96.0 96.0 95.3 

Iris 
C5.0 93.4 95.3 96.7 95.1 

Our rule-base 94.6 87.3 94.3 92.1 

Myo_electric 
C5.0 89.0 91.6 82.0 87.5 

Our rule-base 92.0 92.6 92.8 92.5 

Norm4 
C5.0 92.5 91.0 92.6 92.0 

Our rule-base 64.6 66.6 64.3 65.2 
Bupa 

C5.0 65.8 60.3 65.5 63.9 

Our rule-base 80.3 76.6 75.1 77.3 

Promoters 
C5.0 80.3 76.5 70.6 75.8 

Our rule-base 77.7 73.3 70.3 73.8 

Heart 
C5.0 79.3 75.5 76.8 77.2 

Our rule-base 93.3 96.7 93.3 94.4 

Golf 
C5.0 86.7 96.7 96.6 93.3 

Our rule-base 84.3 85.8 85.2 85.1 

Australian 
C5.0 84.8 86.2 86.0 85.7 
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TABLE XII 
RULE NUMBER COMPARISON OF OUR METHOD AND C5.0 

 

# of rules (five-fold CV repeated three times) 
Data set Algorithm 

1 2 3 

Avg. 

rules 

Our rule-base 9.2 12.6 9.8 10.5 

Crude_oil 
C5.0 4.6 4.4 4.6 4.5 

Our rule-base 11.8 14.0 11.6 12.5 
Glass 

C5.0 15.0 13.0 16.0 14.7 

Our rule-base 4.8 3.6 6.0 4.8 

Iris 
C5.0 4.0 3.8 4.2 4.0 

Our rule-base 3.4 2.8 3.6 3.3 

Myo_electric 
C5.0 4.4 3.8 3.8 4.0 

Our rule-base 5.0 4.6 5.0 4.9 

Norm4 
C5.0 19.0 18.4 15.8 17.8 

Our rule-base 6.0 3.8 6.0 5.3 
Bupa 

C5.0 15.2 17.4 20.8 17.8 

Our rule-base 6.8 7.0 2.8 5.5 

Promoters 
C5.0 12.6 12.6 12.0 12.4 

Our rule-base 5.0 7.6 3.2 5.3 

Heart 
C5.0 18.2 18.4 21.2 19.3 

Our rule-base 3.6 5.4 5.8 4.9 

Golf 
C5.0 5.2 4.2 5.0 4.8 

Our rule-base 1.6 2.2 1.8 1.9 

Australian 
C5.0 17.0 11.4 17.0 15.1 
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TABLE XIII 
TRAINING TIME AND EXECUTIVE TIME OF OUR METHOD 

Data set 
Training Time (sec)  

(five-fold CV) 
Executive Time (  sec) 

(five-fold CV) 

310−×

Crude_oil 0.203 1.433 
Glass 1.591 0.651 

Iris 0.172 0.526 
Myo_electric 0.156 1.107 
Norm4 0.114 0.098 
Bupa 0.422 0.269 

Promoters 0.024 5.650 
Heart 0.362 0.411 
Golf 0.289 3.134 
Australian 0.407 0.115 
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Chapter 5. Conclusion 

 

 

In this thesis, we proposed a genetic algorithm based fuzzy ID3 method to 

construct fuzzy classification system, which can accept continuous, discrete, or 

mixed-mode data sets. Next, we formulated three pruning methods to obtain a more 

efficient rule base. In the experiment, we found that the third pruning method was 

superior to the others; therefore, we used genetic algorithm based fuzzy ID3 with the 

third pruning method to classify data. Our proposed method can directly classify 

mixed-mode data set with high classification accuracy. On testing to some famous 

data sets, which include continuous, discrete, and mixed-mode data sets, we have 

obtained a very high classification accuracy with small number of rules. It is remarked 

that the decision tree after pruning can lead to a smaller fuzzy rule base and the 

pruned rule base can usually remain or decrease slightly the classification 

performance despite the deduction of the number of the rules. 

 

Furthermore, on comparing the results generated by our proposed method with 

C5.0, we find that our rule-base outperforms C5.0 in seven out of ten data sets. As 

demonstrated in the testing, the proposed new pruning method is helpful to improve 

the testing accuracy. 

 

For Heart, Australian, Myo_electric and Norm4 data sets, if the rule number of 

our fuzzy ID3 method is less than four, the accuracy is greatly decreased after pruning. 

In further work, when the rule number is few, we will determine whether the pruning 

method will be used or not. Computation consuming is another task in the field of 
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machine learning, we must try to reduce the computation burden in this scheme. 

These will be a good challenge to study in the future. 
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