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SOFT-DECISION A PRIORI KNOWLEDGE INTERPOLATION
FOR ROBUST TELEPHONE SPEAKER IDENTIFICATION

Yuan-Fu Liao®, Jyh-Her Yang, and Sin-Horng Chen

ABSTRACT

Handsets which are not seen in the training phase (a.k.a unseen handsets) are
main sources of performance degradation for speaker identification (SID) applica-
tions in telecommunication environments. To alleviate the problem, a soft-decision a
priori knowledge interpolation (SD-AKI) method of handset characteristic estimation
for handset mismatch-compensated SID is proposed in this paper. The idea of the
SD-AKI method is to first collect a set of characteristics of seen handsets in the train-
ing phase, and to then estimate the characteristic of the unknown testing handset by
interpolating the set of seen handset characteristics in the test phase. The estimated
handset characteristic is then used to compensate for handset mismatch for robust
SID. The SD-AKI method can be realized in both feature and model spaces. Experi-
mental results on the handset TIMIT (HTIMIT) database showed that both the pro-
posed feature- and model-space SD-AKI schemes were more robust than the blind
cepstral mean subtraction (CMS), feature warping (FW) methods and their hard-deci-
sion counterpart (HD-AKI) for both cases of all-handset and unseen-handset SID tests.
It is therefore a promising robust SID method.

Key Words: robust speaker identification, channel mismatch compensation, speech

processing.

I.INTRODUCTION

In this paper, the problem of robust speaker iden-
tification (SID) (Campbell, 1997; Chaudhari et al.,
2003; Faundez-Zanuy and Monte-Moreno., 2005) in
the public telephone switching network (PTSN) is
addressed. An SID system in PTSN needs to be ro-
bust against distortions of various handsets. The char-
acteristic mismatches between the training handsets,
where speakers have registered their voiceprints, and
testing handsets may cause significant performance
degradation (Reynolds and Rose, 1995; Mamone et
al., 1996; Murthy et al., 1999). Thisis especially
true for testing handsets whose characteristics are not
seen in the training phase (a.k.a unseen handsets).

*Corresponding author. (Tel: 886-919-968592; Fax: 886-2-
27317120; Email: yfliao@ntut.edu.tw)
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J. H. Yang and S. H. Chen are with the Department of Commu-
nication Engineering, National Chiao Tung University, Hsinchu
300, Taiwan, R.O.C.

The problem of handset mismatch compensation is
not easily solved because the characteristics of the
handset and speaker are usually tightly mixed or
coupled together. To separate them is essentially a
difficult one-to-many mapping problem, unless some
a priori knowledge about the unknown testing hand-
set is available.

The topic of handset mismatch compensation for
speech recognition (Bates and Ostendorf, 1999; Chien
and Wang 1998; Gong, 2005; Hermansky and
Morgan, 1994; Jiang and Deng, 2000; Juang and
Rahim, 1996; Kozat et al., 2007; Sankar and Lee,
1996; Zhao, 2000) has been investigated for many
years and various methods have been developed in
the past. Recently, some of the proposed approaches
have been applied to robust speaker recognition. They
can usually be classified into three categories: (1)
robust feature-based method, (2) blind feature com-
pensation-based method, and (3) hard-decision a
priori knowledge-based method.

In the robust feature-based method, features
which are less sensitive to handset/channel mismatch,
such as pitch dynamics, prosodic and lexical features
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(Adami et al., 2003; Chen et al., 2005), Hurst param-
eter (Sant’ Anaet al., 2006), and autocorrelation-based
features (You et al., 2005), are extracted and used as
auxiliary features to assist the conventional cepstral
features in improving the SID recognition
performance. Inthe blind feature compensation-based
method, feature processing techniques, such as
cepstral mean subtraction (CMS) (Furui, 1981), the
RalAtive SpecTrAl (RASTA) method (Hermansky
and Morgan, 1994), principal component analysis
(PCA)-based temporal filtering (Huan and Lee, 2006),
feature warping (FW) (Pelecanos and Sridhari, 2001)
and short-time Gaussianization (SG) (Xiang et al.,
2002), are applied to blindly compensate/eliminate
the handset effect. In the hard-decision a priori
knowledge-based method, the handset type, such as
carbon button or electret, of the testing speech is first
detected. Then, a feature-/model-space compensa-
tion or transformation technique, such as feature
transformation (FT) (Quatieri et al., 2000; Yiu et al .,
2004), feature mapping (FM) (Mason et al., 2005;
Reynolds, 2003), or speaker model synthesis (SMS)
(Beaufays and Weintraub, 1997; Teunen et al., 2000),
is then applied to remove the handset distortion or to
adapt/synthesize the speaker models using the a priori
knowledge of the characteristic of the handset type.

Although all those methods are shown to be ef-
fective in improving the performance of SID, they
may have the following drawbacks. The CMS,
RASTA and FW methods may remove not only the
characteristic of the handset but also the speaker’s as
well. The hard-decision a priori knowledge-based
methods may have difficultiesin dealing with the test-
ing speech from an unseen handset since the knowl-
edge about the distortion of the unseen handset is not
available. In such a case, one may select the most
likely handset from a set of seen handsets, simply
reject the testing speech as from an out-of-handset
(OOH) source (Mak and Kung, 2002), or backoff to a
blind feature compensation-based method.

To alleviate the problem of unseen handsets, a
soft-decision a priori knowledge interpolation (SD-
AKI) method (Y ang and Liao, 2004) of handset char-
acteristic estimation for robust SID is proposed in this
paper. The idea of the SD-AKI method isto collect a
set of characteristics of seen handsets in the training
phase and take it as the a priori knowledge to repre-
sent the space of handsets. In the test phase, the char-
acteristic of the unknown testing handset is first
estimated by a soft-decision interpolation using the set
of a priori handset characteristics, and then used to
compensate for the handset mismatch in the SID test.

This paper is organized as follows. Section Il
presents the proposed SD-AKI handset mismatch-
compensated SID method, especially, how to deter-
mine the interpolation weights. Experimental results
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Fig. 1 Block diagrams of the two proposed SD-AKI handset mis-
match-compensated speaker identification schemes: (a) fea-
ture-space and (b) model-space schemes

on the HTIMIT database (Reynolds, 1997) are re-
ported in Section II1. Some conclusions are given in
the last section.

Il. THE PROPOSED SD-AKI METHOD

The proposed SD-AKI| handset mismatch-com-
pensated SID method is to first estimate the charac-
teristics of an unknown testing handset by

N
h= n;l oxh,,, (¢D)]

and to then use h to compensate for the handset mis-
match for robust SID. HereH ={h,,n=1, ---, N} is
aset of a priori handset characteristics collected from
N seen handsets and a = { oy, N = 1, -+, N} are the
interpolation weight vector.

Two types of h, are considered in this study.
One is the feature-space transformation function be-
tween the n-th seen handset and a testing handset
where speakers have registered their voiceprints. This
type of h, can be extracted by the stochastic match-
ing (SM) method (Sankar and Lee, 1996) or the fea-
ture maximum likelihood linear regression (FMLLR)
method (Gales 1997; Kozat et al., 2007). Another is
the model -space transformation function between the
n-th seen handset and the testing handset, and can be
calculated by the MLLR or constrained MLLR
(CMLLR) (Digalakis et al., 1995; Gales and
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Woodland, 1996) method. So, the proposed SD-AKI
handset mismatch-compensated SID method can be
realized in either feature or model space.

Figures 1(a) and 1(b) show block diagrams of
the two proposed feature- and model-space SD-AKI
handset mismatch-compensated SID schemes,
respectively. As shown in these two figures, both
schemes prepare a priori knowledge of the charac-
teristics of all seen handsets, H, and a set of handset-
specific universal background models (UBMs), AYBM
= {AYBM n =1, ..., N}, in advance in the training
phase. In the test phase, they first estimate the hand-
set characteristic, h, of the input testing speech, and
then use it to transform the input speech feature
vectors, O, to handset mismatch-compensated feature
vectors, O, to match with the characteristic of test-
ing-handset speaker Gaussian mixture models
(GMMs), A ={A, q=1, -, Q}, for SID in the fea-
ture-space scheme; or to transform the set of speaker
GMMs, A, to aset of testing-handset speaker GMMs,
A ={24 Aq=1, -, Q}, to match with the characteris-
tics of the input speech for SID in the model-space
scheme.

In the following subsections, we discuss these
two schemes in detail:

1. The A priori Knowledge of Handset Char acter -
istics

Some well-known speaker adaptation methods

MLLR and CMLLR (Sankar and L ee, 1996; Gales 1997,
Kozat et al., 2007; Digalakis et al., 1995; Gales and
Woodland, 1996), can be used to extract the charac-
teristics of seen handsets from their training data. In
this study, the FMLLR and MLLR methods are em-
ployed to extract these two types of model- and fea-
ture-space a priori handset characteristics.

In both schemes, wefirst train an UBM (Reynolds
et al., 2000), AYBM = {(c\, py, Z), k=1, -, K}, in
advance using the observed spectral feature vectors
of all speakers from the training handset. Here, uy
and X, are the mean vector and covariance matrix of
the k-th mixture component; ¢ is the mixture weight;
and K is the number of mixture components.

We then use MLLR to train a set of handset-
specific UBMs, AYBM = { AUBM 'n = 1 ... N}, where
ARBM = {(cy, Un k 2, K=1, -+, K}, viafinding the
optimal transformation from the UBM, AYBM to AYBV
using the training feature vectors of all speakers from
the n-th seen handset, O, = {0,(1), -+, 0,(Tn)}. The
relationship between A58 and AYBM can be expressed

by
Mo =AY - g+ b,
fork=1,-,Kand n=1, -, N, (2)

where AM and bM are the mixture-mean transforma-
tion matrix and the bias vector, respectively. Here,
only the means of all mixture components are treated
as handset-specific because they are the most impor-
tant factors for mismatch-compensated speaker iden-
tification (Gales and Woodland, 1996; Reynolds et
al. 2000). We regard AM and bY as the characteris-
tics of the n-th seen handset and collect them to form
the model-space a priori knowledge, i.e., HM = { (AN,
bM,n=1, -, N}.

For the feature-space scheme, we want to find
the optimal transformation of the observed spectral
feature vectors, O, = {0,(1), -+, 0x(T,)}, of the n-th
seen handset to the space of the UBM by using the
following linear regression function

o(t) = Afon(t) + bf,
fort=1, -, Toandn=1, -, N, 3)

where AF and b, are the transformation matrix and
the bias vector, respectively. Here, we use the
FMLLR method (Gales 1997; Kozat et al., 2007) to
find A} and b5. We regard A, and b, as the charac-
teristic of the n-th seen handset to form the feature-
space a priori knowledge, i.e., HF = {(Af, bf), n =1,
o, N}.

2. Estimation of the Testing Handset Characteris-
tic

The SD-AKI handset characteristic estimation is
essentially amodified a posteriori-weighting interpo-
lation method with weights steered by a divergence-
based distances measure (between the characteristics
of the unknown test handset and the set of seen refer-
ence handsets).

The block diagram of SD-AKI is displayed in
Fig. 2. It first calculates the log-likelihood vector, L
= {L(OJA{®M), n = 1, -, N}, of the unknown testing
handset with respect to the N seen handsets by the
Likelihood Estimator using the feature vectors, O, of
the input testing speech and the set of handset-spe-
cific UBMs, AYBM. These N log-likelihoods are then
converted to the a posteriori probability vector, P =
{p(A¥BMO), n = 1, -, N}, by the A Posteriori
Estimator.

A Jensen-Shannon divergence measure, D(P, U)
(sometimes called Jensen difference, Burbea and Rao
1982; Schitze and Manning, 1999), is then computed
by the Divergence Measurer using the a posteriori
probability vector, P, and a uniformly-distributed
reference probability mass function, U = {%, %
ﬁ}. The aim is to measure how close the character-

istics of the unknown test handset are to the set of
the pre-prepared seen handsets. If P isfar away from
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Fig. 2 A block diagram of the SD-AKI method for characteristic estimation of unknown testing handset

U, then D(P, U) approaches a large value to indicate
that the handset characteristic of the testing speech
resembles one handset or a few seen handsets. We
should therefore emphasize the contributions of those
similar handsets to synthesize the unknown handset
characteristic. On the contrary, if P is close to U,
then D(P, U) approaches zero. This indicates that
the handset characteristic of the testing speech does
not fit any of the N seen handsets. We could at best
approximate the unknown-handset characteristic us-
ing the average characteristic of all seen handsets.

The interpolation weight vector, a, are then cal-
culated by the Interpolation Weight Generator using
both L and D(P, U). Lastly, the testing handset char-
acteristic estimate, h, is calculated by the AKI
Interpolator. We discuss the SD-AKI handset char-
acteristic estimation in detail as follows.

Assume that there are N seen handsets that
speakers are likely to use. In the training phase, we
first extract the a priori handset characteristics, H,
and derive the set of handset-specific UBMs, AYBM,
from the training speech O, of all N seen handsets.
We then take H and AYBM to represent the space of
handsets.

In the test phase, the spectral feature vectors,
O, of the input speech of a testing speaker from an
unknown handset are first fed into the Likelihood Es-
timator to compute N log likelihoods by

.
L(O4,"") = X, log p(o(®) |15°") ,
forn=1, -, N, 4

They are then transformed into N a posteriori prob-
abilities by

p(/lrl]JBM |O) - Nexp(L(O|l,l1JBM))

3, exp(L(0J27™)

forn=1, -, N, (5)

The a posteriori probability vector P made of
these N probabilities is then used to calculate the di-
vergence measure, D(P, U) (Burbea and Rao 1982;
Schiitze and Manning, 1999) to evaluate the reliabil-
ity of applying the a priori knowledge to the input
testing speech. The divergence measure is defined
based on comparing the a posteriori probability
vector, P, with U, and can be expressed by

D(P,U) =s(PEY) - JsP) + qu)] (6)
where
2 =—n§l z,log 7, ()

is the Shannon entropy and z, is the n-th component
of Z. Then, the Interpolation Weight Generator uses
L and D(P, U) to determine the interpolation weights

by

exp(D(P, U) - L(O|4,""))

N 1
2, ep(D(P, U) - L(O[2]™))

n=

forn=1, -, N. (8)

It is worth noting that, by embedding the diver-
gence measure in Eqg. (8), the proposed SD-AKI ap-
proach may act as (in two extreme and one normal cases):
(1) ahard-decision a priori knowledge-based method,
i.e., the weight of the dominant handset will be
emphasized and adjusted automatically to ap-
proach 1 while all other weights will be de-em-
phasized and adjusted to approach zero

(2) a blind mismatch-compensation method, i.e., all
weights are adjusted to approach %

(3) a soft-decision interpolation method, i.e., some-

thing in between

Lastly, the AKI Interpolator estimates the char-
acteristic of the unknown testing handset by

- N N N
A = 2 oAl and b = 2 obh (9)
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for the feature-space SD-AKI scheme, and by

for the model-space SD-AKI scheme.
3. The Compensation of Handset Mismatch

For the feature-space SD-AKI scheme, the hand-
set-mismatch compensation is performed via trans-
forming the input testing feature vector sequence, O,

by
o(t) = AFo(t) + bF, fort=1, .-, T (11)

to obtain a handset mismatch-compensated feature
vector sequence, O = {0(1), -, o(T)}.

For the model-space SD-AKI scheme, we want
to transform the set of speaker GMMs, A = {44, =
1, -+, Q} into the testing-speech environment, i.e., A
={2,9=1, -, Q}. HereQ isthetotal number of
speakers in the SID test. In this study, 4, is built
from the UBM, AYBM, by the MAP adaptation method
(Reynolds 2000) using the training speech data, O,
of the g-th speaker of the handset. The handset-mis-
match compensation is performed by

ﬁqu:AM[lq’k"'BM, k=1,-,Kandq=1, - Q,
(12)

where g  and f,  are the mean vectors of the k-th
mixture component of Aq and its mismatch-compen-
sated counterpart A4, respectively. We therefore ob-
taina set of Q mismatch-compensated speaker GMMs,
/i = {lq = {(Ckv ﬁq, ks zk)v k= 11 ] K}v q= 1! ] Q}

4. The Handset Mismatch-Compensated Speaker
I dentification

The handset mismatch-compensated SID is per-
formed last. For the feature-space SD-AKI scheme,
the speaker of the input testing speech is identified
from the mismatch-compensated feature vector
sequence, O, by the GMM-based SID method using
the set of speaker GMMs, A. The optimal speaker
identified is determined by

q" =argmaxL(O|4,)
q
T
=argmax 3, logP(a(t) |49 o) 1 (13)
where |J(0(t))| is the determinant of the Jacobian
matrix of 0(t) with respect to o(t) according to the

transformation law of probabilities and Eq. (11),
(Press, 1994; Sankar and Lee, 1996), i.e.,

3000 |=| 58 | =1 A (14

For the model-space SD-AKI scheme, the
speaker of the input testing speech is identified from
the input testing feature vector sequence, O, by the
GMM-based SID method using the set of handset
mismatch-compensated speaker GMMs, A. The op-
timal speaker identified is determined by

R T -
q" =argmaxL(O|4,) =argmax 3, log P(o(t) |4)
q q t=1
(15)

5. Discussion

Some advantages of the proposed SD-AKI hand-
set mismatch-compensated SID method can be found.
Oneisthat it can be applied to the telephone SID case
with very limited available data (a few seconds), be-
cause only a small number of parameters have to be
estimated. Another isthat it can take care of cases of
both seen and unseen testing handsets by adjusting
interpolation weights automatically without human
intervention.

It is also worth noting that all speaker adapta-
tion methods, including SM, FMLLR, MLLR and
CMLLR, can not be directly used in the test phase
either to transform the testing spectral feature vec-
tors to match with speaker GMMs for the feature-
space scheme, or to adapt all speaker GMMs to an
unknown testing handset environment for the model-
space scheme. The reason is that this will result in
the elimination of the characteristic of the testing
speaker for the formal case or cause all speaker
GMMs o collapse to a UBM model for the latter case,
so as to make the following SID fail totally.

1. EXPERIMENTAL RESULTS
1. Experiment Conditions

To evaluate the effectiveness of the proposed
SD-AKI handset mismatch-compensated SID method,
the handset TIMIT (HTIMIT) database (Reynolds,
1997), which was recorded by the Massachusetts In-
stitute of Technology for the study of the handset
mismatch problem, was used. There werein total 384
speakers, each gave ten utterances using a Sennheizer
head-mounted microphone (referred to as sen). The
set of 3840 utterances was played back and recorded
through nine other handsets, including four carbon
button handsets (referred to as cbl, cb2, cb3 and cb4),
four electret handsets (el1, el2, el3 and el4), and one
portable cordless phone (ptl).

All speech signals were first filtered by a band-
pass filter with passband 300 ~ 3400 Hz, endpointed
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Fig. 3 A performance comparison between the plain MFCC baseline, CMS or FW, the two proposed SD-AKI schemes and their hard-

decision counterparts (HD-AKI): (a) the average SID rates of 9 leave-one-handset-out test turns, (b) the SID rates (%) of unseen
handsets in the 9 leave-one-handset-out test turns. Here, ch1~4, el1~4, and pt1l shown in the 1st row of (b) are the unseen handsets

in these 9 leave-one-handset-out test turns

using energy-based rules and then processed to extract
38-dimensional spectral feature vectors, composed of
12 mel-frequency cepstral coefficients (MFCCs), 12
A-MFCCs, 12 A>-MFCCs, A-log energy, and A%-log
energy. A frame size of 30 ms with 10-ms shift was
used. Moreover, low energy frames were dropped.

In all our experiments, a subset of HTIMIT com-
prising 356 speakers (178 females and 178 males) was
used. Each speaker had ten 16-second and another
(disjoint) ten 4-second segments from all ten differ-
ent handsets for testing, respectively.

In al cases, the 16-second speech segments of all
speakers from sen were taken as the data. They were
first collectively used to train a 256-mixture UBM, AYBM,
and then separately used to adjust the UBM by the MAP
adaptation method (Reynolds et al., 2000) to generate
the set of 356 speaker GMMs, A ={44, q=1, -, 356}.

To simulate the scenario of variable unseen test-
ing handsets to evaluate the proposed SD-AKI
schemes, a leave-one-handset-out (excepted sen)

experimental strategy was adopted. There were in
total 9 leave-one-handset-out turns. For each turn,
we chose 9 seen handsets (including sen) and one un-
seen handset in turn. The experiment setting is de-
scribed in more detail as follows.

In the training phase, the 16-second speech seg-
ments of all speakers from the nine seen handsets were
used to construct the a priori knowledge of handset
characteristics as well as the set of handset-specific
UBMs. In the test phase, we took other 4-second
(disjoint with the training material) speech segments
of all speakersfrom all ten handsets comprising 9 seen
handsets (including sen) and one unseen handset, as
testing utterances. So, in each |eave-one-handset-out
turn we had 356 and 356* 9 speaker identification tri-
als from one unseen and 9 seen handset, respectively.

Before we evaluated the proposed SD-AKI
method, the plain MFCC, CMS, FW methods and its
hard-decision counterpart (HD-AKI) were first tested
and taken as the baselines.
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Fig. 4 The scattering plot of the 1% vs. 2" dimensions of observed average plain MFCCs of all speakers when their speeches pass through

ten different handsets

2. Plain MFCC Baseline and Handset Mismatch
Analysis

First of all, if training and test were all executed
on the same sen handset (handset match case or seen
handset), the speaker identification rate was found to
be 87.5%. However, if training and test handsets may
be different (handset mismatch or unseen handset
condition), i.e., training on sen but test on sen, cb1~4,
el1~4 and pt1, the average speaker identification rates
was dramatically degraded to 35.3%. The result fur-
ther decreased to 29.5% if we only counted the re-
sults of the 9 unseen handsets. The detail experimen-
tal results of the plain MFCC features baseline could
be found in Figs. 3(a) and 3(b).

The reason why handset mismatch may cause
so serious performance degradation on HTIMIT cor-
pus was analyzed. Fig. 4 displays the scattering plot
of the first two dimensions of the observed average
plain MFCCs of each speaker when speech signal's of
all speakers passed through the ten handsets used. It
can be seen from the figure that the distribution of
the observed feature vectors of all speakers could be
greatly changed when they used different handsets.
This change in distribution, of course, will cause a
mismatch between the testing utterance and the
speaker models trained from sen and hence might

result in serious performance degradation.
3.CMSand FW

CMS and FW were then utilized to partially al-
leviate the handset mismatch problem. In both the
training and test phase, the cepstral mean vector or
the distribution of MFCCs of each input speech seg-
ment was removed or normalized into a Gaussian dis-
tribution first using CMS or FW, respectively.

The experimental results are also displayed in
Figs. 3(a) and 3(b). It can be seen from the figure
that the average speaker identification rates for all
10 handsets was raised to 59.6% and 61.3% for CM S
and FW, respectively, as we counted the results of
both seen and unseen handsets. If we only counted
the results of the 9 unseen handsets, the results were
also increased to 57.8% and 59.6% for CMS and FW,
respectively. These resultsreveal the benefitsof CMS
and FW for SID in handset mismatch condition.

4. The Proposed SD-AKI| Method and its Hard-
Decision Counterpart

We then examined the performances of the
proposed feature- and model-space SD-AKI schemes
and their hard-decision counterparts (HD-AKI). All
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experimental settings and handset compensation op-
erations were same for both SD-AKI and HD-AKI
except that HD-AKI only picked up and utilized the
characteristic of the most possible handset. It isalso
worth noting that the average accuracy for HD-AKI
to choose the correct seen handset is 95.3%.

The experimental results are displayed in Figs.
3(a) and 3(b). First of all, it can be seen from the
figures that feature-/model-space HD- and SD-AKI
schemes dramatically raised the average identifica-
tion rates to 72.3%/73.7% and 75.5%/75.9%,
respectively, if we counted the results of both seen
and unseen handsets. It can also be found from Figs.
3(a) and 3(b) that the average identification rates were
also increased to 61.2%/61.6% and 64.2%/64.2%,
respectively, for feature-/model-space HD- and SD-
AKI schemes if we only counted the results of un-
seen handsets.

These results revealed that (1) the benefits of a
priori handset knowledge-based approaches (HD- and
SD-AKIs), (2) model-space approaches were slightly
better than the feature-space ones in both HD- and
SD-AKI cases and (3) hard-decision-based ap-
proaches were more sensitive to the disturbance of
unseen handsets (may due to handset detection error).

Comparing with the result of the CMS, FW and
HD-AKI methods, both the two proposed SD-AKI
schemes performed much better. We can therefore
conclude that the feature- and model-space SD-AKI
schemes are more effective on compensating the
handset mismatch so as to improve the SID perfor-
mances for both cases of all handsets and unseen
handsets.

5. Discussions

Three important issues on the proposed SD-AKI
approach including (1) the benefit of introducing the
divergence measure, (2) handset coverage and (3)
computation cost are further addressed in this subsection.

Since the number of available seen handsets is
usually limited, the set of pre-collected a priori hand-
set knowledge may be a sparse representation of handset
space. If only the normalized likelihoods (a poste-
riori in Eqg. (5)) are used to generate the interpolation
weights, the pre-collected handset characteristics may
be smear out too much, especially, for those test handsets
similar or same to the seen ones. According to some
preliminary experiments, the divergence measure did
bring significant benefit for those seen test handsets.

Although, the proposed SD-AKI method in general
performed better than CMS and FW approaches in
the leave-one-handset-out experiments, especially, for
those seen handsets. However, it was found from Fig.
3(b) that its performance on unseen handset el2 was
less than CM 'S and FW methods. This may due to the

incomplete coverage of the set of pre-prepared a priori
handset knowledge, i.e., other seen handsets may not
close enough to handset el2 (see Fig. 4). This prob-
lem may be partially alleviated by further recruiting
the characteristics of CMS- or FW-based features or
models into the set of the a priori handset knowledge.

Comparing with other approaches, the proposed
SD-AKI requires extra computation power on cal cu-
lating the handset a posteriori probabilities (Eq. (4)).
However, the most computation intensive procedure
of SID isusually on the evaluating the likelihoods of
alarge amount of speaker models (Egs. (13) or (15)).
Since the number of handsets is often one to two or-
der less than the number of speaker models, this over-
head may be acceptable.

V. CONCLUSIONS

A new SD-AKI method for handset mismatch-
compensated speaker identification was proposed in
this paper. Two schemes of realizing the SD-AKI
method in feature and model spaces were discussed.
Experimental results on the HTIMIT database have
showed that both feature- and model-space SD-AKI
schemes performed much better than the CMS, FW
and their hard-decision counterpart methods on both
cases of all-handset and unseen-handset SIDs. So,
the proposed SD-AKI-based method is promising for
robust speaker identification over PTSN.
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NOMENCLATURE

AF feature transformation matrix for the n-
th seen handset

AF estimated feature transformation ma-
trix

AM model transformation matrix for the n-
th seen handset

AM estimated model transformation matrix

bf feature transformation bias vector for
the n-th seen handset

bF estimated of feature transformation
bias vector

pM model transformation bias vector for
the n-th seen handset

M estimated of model transformation bias
vector

Cx mixture weight of the k-th mixture

component of GMMs
D(P, U) Jensen-Shannon divergence measure
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between two distributions P and U

a priori handset knowledge
feature-space a priori handset know!-
edge

model-space a priori handset knowl-
edge

characteristics of the n-th seen hand-
set

estimated handset characteristics
Jacobian matrix of 0(t) with respect to
o(t)

number of mixture components
log-likelihood vector

log-likelihood function given n-th seen
handset UBM

number of seen handsets

index of seen handsets

speech feature vectors

speech feature vectors from the n-th
seen handset

compensated speech feature vectors
speech feature vector of the t-th frame
speech feature vector of the t-th frame
of the n-th seen handset

compensated speech feature vectors of
the t-th frame

a posteriori probability vector

a posteriori probability of n-th hand-
set UBM given the speech feature vec-
tors

probability of speech feature vector of
the t-th frame given n-th seen handset
UBM

number of speakers

identified speaker

Shannon entropy of distribution Z
number of frames of an input utterance
index of frame

probability distribution

n-th component of Z

uniform probability mass function
interpolation weight vectors

n-th interpolation weight

set of speaker models

set of compensated speaker models
set of universal background models
g-th speaker model

compensated speaker model

universal background model of the
training handset

universal background model of the n-
th seen handset

covariance matrix of the k-th mixture
component

mean vector of the k-th mixture com-
ponent of UBM

Hn, mean vector of the k-th mixture com-
ponent of n-th seen handset UBM

U « mean vectors of the k-th mixture com-
ponent of the g-th speaker model

By compensated mean vectors of the k-th
mixture component of the g-th speaker
model
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