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Abstract

An improved genetic algorithm is proposed to-achieve gene regulatory network
modeling of Xenopus frog egg rin S-system and yeast in modified power-law
model respectively. Via the time-course datasets from experiment of yeast and
Michaelis-Menten model of Xenopus, the optimal parameters are learned. The
modified power-law model and S-system can clearly describe activative and
inhibitory interaction between genes as generating and consuming process. We
concern cell cycle of yeast and the mitotic control in cell cycle of Xenopus frog
egg to realize gene reactions. The proposed improved genetic algorithm can
achieve global search with migration and keep the best individual with elitism
operation. The generated gene regulatory networks can provide biological

researchers for further experiments in yeast and Xenopus frog egg cell cycle.
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Chapter 1

Introduction

1.1 Research Background

As the rapid development in cDNA microarray technologies, time-course gene
dataset becomes available day by day. Hence, the construction of gene regulatory
networks and signal transduction cascades for complicated biological systems
has come of age. In order to approximate biological behavior for controlling
metabolic/biological reaction;: morerand, more experiments are set up for
achievement of quantitative -control. After post-genomic era, new scientific and
technological methods on thé biotechnology such as microarray technology are
developed to bring massive biological*knowledgeable dataset. Now system
biologists are trying to describe biochemical phenomenon via mathematical
model. With the mathematical model, we can realize the detailed genes-genes

interaction, simulate the gene regulatory network and predict gene behavior.

1.2 Literature Discussion

Numerous models are proposed to describe the gene network such as Boolean
network, Bayesian network, Michaelis-Menten model, and S-system. Boolean

network is to reconstruct gene regulatory network via Boolean function and



express gene relationship in graphical way [1, 2], which distinguish gene states to
be INPUT and OUTPUT. At any time points, the state values of chosen INPUT
genes are set to be 1 and 0 for non-chosen genes; the states values are given in
the similar way as OUTPUT. Further, Bayesian network can also the
probabilistic relationships of genes [2, 3]; joint probability distributions among
genes are calculated to construct the graphical model. Michaelis-Menten model is
nonlinear differential equations to describe the metabolic concentration in the
biological system [4]. S-system is another nonlinear differential type expressed in
power-law formalism [5, 6]. S-system describes gene regulation not only in
mathematical description but also can further express into graphical form to show
the activatory and inhibitory operation directly. Each equation is composed by
synthesis and degradation flux;and the activation and inhibition relationship are
shown in positive and negative kinetic order, respectively. In this paper, we shall
develop the general S-system andianother reformed nonlinear differential system,
which is a modified power-low medel modified from equation in [7, 8], to find
out the gene regulatory network of yeast cell cycle and Xenopus cell cycle M

phase control from microarray dataset, respectively.

However, the construction of such a highly nonlinear equation is a tough
work. Chen and the authors first reform the nonlinear differential equation into
linear form and then resolve it via linear algebra [7]. In these years, some
researchers are devoted to infer gene regulatory network with various intelligent
computation technologies such as hybrid differential evolution, genetic algorithm,
genetic programming, ..., etc. Wang use Hybrid differential evolution and genetic

algorithm to obtain the global optimal solution for highly nonlinear system and



various biochemical system [9, 10]. Kikuchi and coauthors use a genetic
algorithm to transform parameters into individuals first and solve optimal
parameters via evolution procedure [11]. Sakamoto and coauthors use genetic
programming to develop the gene regulatory network in a tree form [12]. In this
work, we shall adopt improved genetic algorithm [13] to infer the gene
regulatory networks of yeast cell cycle in modified power-law model and
Xenopus frog egg cell cycle in S-system. Improved evolutionary direction
operator (IEDO), migration operation and elitism are combined into genetic
program for global optimal, fast and best-optional searching. The input/output
datasets, yeast cell cycle dataset [14], generated from Michaelis-Menten model of
mitotic control in Xenopus frog eggs [15, 16], are used to train the genetic
networks for searching the optimal parameters of the corresponding modified

power-law model and S-system,.respectively.

1.3 Content Organization

This paper is organized as follows: the biological systems, yeast cell cycle and
cell cycle M phase control model of the Xenopus frog egg, are described in
Chapter 2. Improved genetic algorithm is shown in Chapter 3. Chapter 4 shows

the modeling and simulation results. Chapter 5 is the conclusion.



Chapter 2

Biological System

2.1 Yeast cell cycle

Research in cell cycle is very important not only for realizing cell reproduction
but also for realizing cancer development. Figure 2.1 is the cell cycle that
includes four phases (G1=2>S—>G2->M). Cell grows up in G1 phase, produces
RNA and synthesizes protein. During, S. phase, DNA is duplicated to produce two
similar daughter cells. The ¢ell continues to grow and produce protein and
prepares to enter M phase during G2 phase. As DNA replication is completed,

the cell enters M phase and divides.

Figure 2.1 The four phases of cell cycle.
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Table 2.1 The genes of the Yeast cell cycle.

Gene | Description
CDC28 | Catalytic subunit of the main cell cycle cyclin-dependent kinase
role in cell cycle START; involved in G(sub)l size control;
CLN3 | G1/S-specific cyclin, interacts with Cdc28p protein kinase to control
events at START
Involved in cell cycle dependent gene expression; both Swi4p and
SWI4 | Swi6bp are required for the in vivo protection of the SCB sequences at
any cell cycle stage
SWI6 | Involved in cell cycle dependent gene expression
MBP1 | transcription factor
FUS3 Required for the arrest of cells in G(sub)1 in response to pheromone
and cell fusion during conjugation
FARI Inhibitor of Cdc28p/Clnlp and Cdc28p/Cln2p complexes involved in
cell cycle arrest for mating; Factor arrest protein
CLN1 | G1 cyclin; role in cell'eycle START
CLN2 | Gl cyclin; role inicell cycle START
SIC1 | P40 inhibitor of Cdec28p-Clb5 protein kinase complex
role in DNA replication:during-S-phase; additional functional role in
CLBS5 | formation of mitotic'spindles along with Clb3 and Clb4; B-type cyclin
involved in S-phase initiation
CLB6 role in DNA replication during S phase; B-type cyclin involved in
S-phase initiation
Protein involved in initiation of DNA replication; Protein that regulates
CDC6 initiation of DNA replication through binding to origins of replication
at the end of mitosis, directing the assembly of MCM proteins and the
pre-replication complex
CDC20 | Cell Division Cycle; Required for onset of anaphase; adaptor for APC
GRR1 | F box protein with several leucine rich repeats
Init. of DNA synthesis & spindle pole body separation; dispensable for
CDC4 both mitotic and meiotic spindle pole body dupl.; essential for mitotic

but not premeiotic DNA synth.; wt levels of synaptonemal complexes
and intragenic recombination




The yeast cell cycle gene expression data is collected by Spellman [14]. The
dataset were covered six experimental conditions (CLN2; CLN3; ALPH, CDCI15,
CDC28 and ELU). We use the gene time-course data from experimental
condition CDC28, which contains 24 time points. We concentrate in G1 and S
phase and set up our dataset from the sub network of yeast cell cycle pathway.
The descriptions and datasets are available at http://cellcycle-www.stanford.edu.

This dataset in Table 2.1 involves 16 genes.

2.2 M phase control of Xenopus frog egg

Michaelis-Menten model are.‘¢oncerned to describe the mitotic control in

cell-cycle of Xenopus frog egg [15, 16],

x, =k —k,x, —kx, (D)
X, = kppx5 — (kwee +k.,, + kz)x2 + ks x;, + kyx,, (2)
X, =k,,x,— (k25 +k., +k, )x3 + kppx4, (3)
%y = kX = (K, +hogs Ky ) X,k (4)
gy = ko, = (K, + e, Ry ) X+ Ky, (5)
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with
ky =V +x, (Vzﬂ_ Vz’)a
kwee = lei,ee + x7 (VM’/ee - Vv:ee ) ’

kys = Vs + X, (Vzlg _Vz’s)a

where x;, i = 1, 2, -, 9, are the concentrations or activities of cyclin,
unphosphorylated cyclin-Cdc2, Tyr-15 phosphorylated cyclin-Cdc2, doubly
phosphorylated cyclin-Cdc2, Thr-161 phosphorylated cyclin-Cdc2 activated by
four enzymes Cdc25, Weel, IE and APC, respectively. Egs. (1) ~ (4) describe
four phosphorylation states of the cyclin-Cdc2 dimer. The Thr-161
phosphorylated cyclin-Cdc2 represents the M phase promoting factor (MPF).
The concentration of MPF can control the:phases during cell cycle. For instance,

high concentration of MPF can make the cell to:divide to two child cells.

The numerical solution of Michaelis-Menten model is shown as Figure 2.2 ~
2.5. The parameter values K,=0.1, K;=1.0, K~=0.01, K~1.0, K~0.1, K~1.0,
K~0.01, K,=0.01, £~=2.0, k=0.1, k~0.13, k~0.13, k=2.0, k=0.1, k=2.0,

k=0.15, k=0.01, k=05, k.4=0.64, k,=0.004, Vi =0.017 , V}=0.17 ,

7;=0.005, V=025, V!, =0.01, V", =0.1 from[I5, 16].
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Chapter 3

Improved Genetic Algorithm

3.1 Introduction

Based on general genetic algorithm, improved genetic algorithm includes
improved evolutionary direction operator to speed the searching; migration
operator to escape from bogging down into local solution and elitism to keeping

the best to be passed down always. The flow chart is shown in Figure 3.1.

START

‘ Initialize a population ‘

v

‘ Evaluate fitness

Exceed the number of

. 5 . END
iterative computation yes

Reproduction

Figure 3.1 Flow chart for improved genetic algorithm.
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The algorithm initializes a population first. The definition of population is
shown in Figure 3.2. The chromosome in individual represents parameter. And
then, we evaluate the fitness value of each individual in the population and keep
the better individuals and eliminates the worse individuals though evolution

procedures.

individual

chromosome
(parameter)

chromosome
(parameter)

chromosome
(parameter)

individual

chromosome | chromosome chromosome
Popula‘[jon (parameter) | (parameter) (parameter)

individual

chromosome
(parameter)

chromosome
(parameter)

chromosome
(parameter)

Figure 3.2 Population definition.

3.2 IEDO

Three preferred fitness value and its associated individuals are chosen to decide
the evolutionary direction in the population. Improved evolutionary direction
operator (IEDO) has the ability for both local and global search synchronously.

We can use the IEDO operator to search quickly and converge toward the global

11



optimal solution. Besides, the IEDO operator can avoid bogging down in the

local optimal solution, which conventional GA i1s usually stuck into.

After completing all fitness values of individuals, we choose preferred
fitness values denote F), F|, F, and its associated individuals denote I, [, I, And

then, the new individual denote /4, 1s calculated as

I/

iedo

:Ib+r1*D1*(]b']s)+72*D2*([b'1t)} (10)
[iedo :max(min(liedo’[max)llmin )’ (1 1)

where 7, and r, are two random numbers, 7, m€[0, 1]; D; and D, are the
magnitude of two evolutionary diréctions to be 1; /..., and /., are the upper and
lower bound, respectively. The new fitness value F,.,, of the [;,, is calculated; if
the F., 1s better than one:of the three preferred fitness values, it would be

replaced that.

3.3 Reproduction

The probability of reproduction directly depends on the fitness of the individuals.
The individual with better fitness has high probability of reproduction. In contrast,
the individual with worse fitness has low probability of reproduction. The rule of

reproduction is shown in Figure 3.3.

12



1st Individual
40 %

2nd Individual
30 %

20 %
3rd Individual

Randomly generate

Figure 3.3 Rule of reproduction.

3.4 Crossover

Two-point crossover operation shown‘in Figure 3.4 is adopted and operates
according to crossover probability, which involves selection of two crossover
cut-points randomly and then exchanges the chosen two cut-points genes of
parent individuals to generate two child individuals. And further, randomly select

one of the new individuals to replace father or mother individuals.

13



A
Parent | |

Crossover

Children

Figure 3.4 Crossover operation.

3.5 Probability Mutation and Elitism

Different from the conventional GA to choose only one gene in individual
randomly for mutation operation, all genes in individuals are chosen and their
mutation probability are assigned by the designer for exchanging their original
values in Figure 3.5. This will bring excessive diversity in population and hence
may fail to converge to temperately optimal solution. Therefore, we adopt elitism
operator to decrease this effect. Elitism operator is to keep the best individual to

survive for each generation and hence to ensure good characteristic to pass down

14



always.

mutate mutate mutate mutate mutate

oo ' 'V '

r,0jo,1{1,0,1},1,070;, 0170, 1] 1]0/0

Figure 3.5 Probability mutation operation.

3.5 Migration

To wider the search space, a migration operator is done to get a new and diverse

population. The degree of population diversity n i1s to check if the migration

should be performed.
X —X,.
0, if L%
temp; =1’ : Xy =& ; (12)
1, otherwise
NP-1 Dimiltempi‘
=22 UDim Ix(NP-1) (13)

= A
where ¢,€[0,1] is the tolerance of the real-valued gene diversity; x; and x;; are

15



respectively the j-th chromosome in the i-th individual and the best individual;
NP is the number of individual; Dim_I is the dimension of individual; 1 is in the
range between 0 and 1. ¢,€[0,1] is a tolerance-threshold of population diversity
for migration; if m is small than &, migration operate to generate a new

chromosome as follows.

X, — X, .
. . bj j,min

Xy; +r2x(xj’min xbj), lfx —

X.. = j,max j,min

>
: 14)

Xy Ty % (x  max —xbj), ortherwise

where X;max and x;min are the upper and lower bound of the j-th chromosome,

respectively. The »; and r, are two random numbers, 7y, r,€[0, 1].

3.6 Fitness

Every individual is evaluated by its fitness value, which keeps the better
individuals and eliminates the worse individuals. We adopt two different
methods to evaluate fitness. The fitness of an individual in yeast cell cycle is

defined as

n 1

fitness = (Xei (19 + JA)- X, (1, +jAt))2

=1 j=1

+ Z kinetic order, (15)

where the X(7) is approximate value of the i-th variable at time 7, X,,(¢) is original

time-course data at time ¢, N is number of total time points.

16



The fitness of an individual in Xenopus M phase control is defined as

Dim I N-1

> 1: > (X (tg+ M) - X, (1, + jAt))2
i=l j
Dim IxN ’

=

Il
—

(16)

fitness =

where N is number of time points; X,{(#) and X,(¢) are experiment value and

estimated value of i-th reactant at time 7, respectively.

17



Chapter 4

Modeling and Simulation Results

4.1 Yeast cell cycle

The mathematical model in yeast cell cycle is approximated from the model

adopted in [7, 8].

Xi(t) = Gl-(t)—ﬂl-Xl-(t), i=1,2,--+,n,

(17)

where Gy(¢) is the transcription.rate, 4; 1s the ‘self-degradation rate and n is the

number of the variable, Xi(¢) is the concentration of the i-th gene at time 7. G(¢) is

a nonlinear function,

G()=Yq,

J=1

u(t, B,,6) =

1
; (18)
1+exp{—a[u(t,,8j,5)—)/}}
0 t<p,—o
~(4,-9)
—— ﬂj—5£tﬁﬂj. (19
—(ﬂﬁ;)_t p;<t<p+6
0 t2f,+6

We use a power-law function V() to approximate the nonlinear function G(r) in

Eq. (18) to denote the synthesis rate.

18



v =4l [X] 0. (20)

where /; 1s the rate constant and f;; 1s kinetic order. Further, the degradation term
in Eq. (17) is replaced by y; X fl’ () to emphasize how a gene reacts itself. The

kinetic orders, f; and y,, can be positive or negative; positive kinetic orders
indicate activating influences, but negative kinetic orders mean inhibition. In

other words, the following modified power-law dynamic model is proposed.
X;(0)=f;(X,P)=V;(t) =y, X;7 (1)

n
=4[ [X ]ff ()~ 13 X5i0),, =12+, (21)
j=1

where 7 is the number of the varniables; the vector X in Eq. (21) indicates all
genes in the yeast cell cycle; the vector P in'Eq. (21) consists the rate constants,
/; and y;, and kinetic orders, f; and k;. According to 16 genes of yeast cell cycle,

there are 16 differential equations with 288 parameters.

Figure 4.1 is the pathway for the modified power-low model whose fitness is
1.1104688E-02. Black lines represent activation reaction and red lines represent
inhibition reaction. The start point of the lines is the reactant and the end point 1s
the product. For instance, the concentration of CDC28 increases rapidly as the
concentrations of MBPI, CLN1, CDC6, CDC20 and GRRI1 increase;
however, the concentration of CDC28 decreases rapidly as the concentrations of

CLN3, SWI4, FUS3, FAR1, CDC4, CLB6 andCLB6 increase.
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Figure 4.1 The gene regulatory network of the generated modified power-low
system.



4.2 M phase control of Xenopus frog egg

We shall generate the training dataset from the Eqgs. (1) ~ (9) to generate the
corresponding S-system model of the frog cell cycle to further realize the
gene-gene inhibitory and activatory operation for gene and enzyme synthesis and

decomposition. The training dataset is shown in Figure 4.2 ~ 4.5.
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Figure 4.2 Training dataset-1.
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Figure 4.3 Training dataset-2.
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Figure 4.4 Training dataset-3.
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time [min]

Figure 4.5 Training dataset-4.

S-system use power-law-flux:to-describe the synergism and saturation of the

biological system,
n n
, h.
xi:ainfU —ﬁinj’f, fori=12,...,n, (22)
j=1 j=1

where x; is the state variable or reactant; » is the number of x;. a; is the production
rate-constant and f; is the degradation rate-constant; both can be positive or zero.
g; and hy, are kinetic orders; their values can be positive to indicate activating
influences or negative to denote inhibition. We now construct our S-system

structure for Xenopus frog egg as
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— alxignxgw _ﬁlxlhnx;’w (23)

v — 821 4822 1823 1-825 1826 1827 +829 _ hyy oy I Iy g
Xy = QXU X2 XTBXTE X XTY XY — B Xy Xy B X2 X7 X, (24)

832 1833 1-834 1-836 1837 4839 _ Iy a3 g g g
= X522 XXX x5 X620 — Xy xy B X0 X5 X (25)
- o— 843 844 845 1846 1847 1849 __ hyy L Pys  hae L Pug Py
Xy = 0X5B X XGBP X0 XTT X540 — B, XM XSB X0 X5V X (26)
= . x552 854 x855 3856 857 x859 _ IB xh54 xhss xh56 xh57 xh59 (27)
5742 4 5 6 7 9 54 5 6 7 9
g65 866 __ hes Hee
= XSO X0 — B X5 xg (28)
v — 8758771 _ hys 7
X, = 05777 = Brxs” X (29)
_ 8385 1-888 __ hgs 8
= Qx5 xg™ — fixs® xg (30)
_ 898 1899 __ hog \hog
= QX" X" — Py Xy Xy (31)

Note that since concentrations of x;, X5, X3, X4.and xs are too small as compared to
other variables. According t0 Egs.—(23)-~ (31), there are 83 parameters to
estimate. The scale-up operation’is:adopted to normalize all states variables to a
computation reasonable range to improve the computation error. Another test
data from Michaelis-Menten model is used to demonstrate the performance of
the improved genetic algorithm program, Figure 4.6 ~ 4.14 is the simulation
results with the estimated fitness 3.0766122E-08 for N=80,000, Dim I=83. The
low fitness value ensures the good fitting of the simulation results with the
datasets and also guarantees the reliability of the generated S-system. From the
constructed S model, we can realize the interaction between various genes in
Xenopus frog egg. For instance, the concentration of x, increases rapidly as
concentrations of x;, x3 and x5 increase; the concentration of x, decreases rapidly

as concentrations of x; and xg increase.
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Figure 4.6 Cyclin evolution.
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Figure 4.7 Unphosphorylated cyclin-Cdc2 evolution.
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Figure 4.9 Doubly phosphorylated cyclin-Cdc2 evolution.
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Figure 4.10 Thr-161 phosphorylatedieyelin-Cdc2 evolution.
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Chapter 5

Conclusion

Improved genetic algorithm technique, which involves IEDO, migration
operation and Elitism, is adopted to construct mathematical models for yeast and
Xenopus frog egg. The gene time-course data form experiment of yeast cell cycle
is used to construct gene regulatory network in modified power-law model. The
training and test dataset are generated from Michaelis-Menten metabolic model
of mitotic cell-cycle control of Xenopus,frog egg in S-system. The two proposed
gene regulatory networks teveal jactivatory and inhibitory operations for
gene/enzyme synthesis and-decomposition. Heénce, the networks can provide
biological researchers for further experiments in yeast and Xenopus frog egg cell

cycle.
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