
Genetic Regulatory Network of Yeast / Xenopus Frog Egg

Improved Genetic Algorithm 



Genetic Regulatory Network of Yeast / Xenopus Frog Egg
Improved Genetic Algorithm 

Student Chia-Hsien Chou

Advisor Dr. Tsu-Tian Lee  

Dr. Shinq-Jen Wu 

A Thesis 

Submitted to Department of Electrical and Control Engineering 

College of Electrical and Computer Engineering 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master

in

Electrical and Control Engineering 

July 2006 

Hsinchu, Taiwan, Republic of China 



i

modified power-law model S-system

Michaelis-Menten model

modified power-law model S-system



Genetic Regulatory Network of Yeast / Xenopus Frog Egg

Improved Genetic Algorithm

Student Chia-Hsien Chou Advisor Dr. Tsu-Tian Lee 

Dr. Shinq-Jen Wu

Department (Institute) of Electrical and Control Engineering

National Chiao Tung University

Abstract

An improved genetic algorithm is proposed to achieve gene regulatory network 

modeling of Xenopus frog egg in S-system and yeast in modified power-law 

model respectively. Via the time-course datasets from experiment of yeast and 

Michaelis-Menten model of Xenopus, the optimal parameters are learned. The 

modified power-law model and S-system can clearly describe activative and 

inhibitory interaction between genes as generating and consuming process. We 

concern cell cycle of yeast and the mitotic control in cell cycle of Xenopus frog 

egg to realize gene reactions. The proposed improved genetic algorithm can 

achieve global search with migration and keep the best individual with elitism 

operation. The generated gene regulatory networks can provide biological 

researchers for further experiments in yeast and Xenopus frog egg cell cycle. 
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Chapter 1  

Introduction

1.1 Research Background 

As the rapid development in cDNA microarray technologies, time-course gene 

dataset becomes available day by day. Hence, the construction of gene regulatory 

networks and signal transduction cascades for complicated biological systems 

has come of age. In order to approximate biological behavior for controlling 

metabolic/biological reaction, more and more experiments are set up for 

achievement of quantitative control. After post-genomic era, new scientific and 

technological methods on the biotechnology such as microarray technology are 

developed to bring massive biological knowledgeable dataset. Now system 

biologists are trying to describe biochemical phenomenon via mathematical 

model. With the mathematical model, we can realize the detailed genes-genes 

interaction, simulate the gene regulatory network and predict gene behavior. 

1.2 Literature Discussion 

Numerous models are proposed to describe the gene network such as Boolean 

network, Bayesian network, Michaelis-Menten model, and S-system. Boolean 

network is to reconstruct gene regulatory network via Boolean function and 
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express gene relationship in graphical way [1, 2], which distinguish gene states to 

be INPUT and OUTPUT. At any time points, the state values of chosen INPUT 

genes are set to be 1 and 0 for non-chosen genes; the states values are given in 

the similar way as OUTPUT. Further, Bayesian network can also the 

probabilistic relationships of genes [2, 3]; joint probability distributions among 

genes are calculated to construct the graphical model. Michaelis-Menten model is 

nonlinear differential equations to describe the metabolic concentration in the 

biological system [4]. S-system is another nonlinear differential type expressed in 

power-law formalism [5, 6]. S-system describes gene regulation not only in 

mathematical description but also can further express into graphical form to show 

the activatory and inhibitory operation directly. Each equation is composed by 

synthesis and degradation flux; and the activation and inhibition relationship are 

shown in positive and negative kinetic order, respectively. In this paper, we shall 

develop the general S-system and another reformed nonlinear differential system, 

which is a modified power-low model modified from equation in [7, 8], to find 

out the gene regulatory network of yeast cell cycle and Xenopus cell cycle M 

phase control from microarray dataset, respectively. 

 However, the construction of such a highly nonlinear equation is a tough 

work. Chen and the authors first reform the nonlinear differential equation into 

linear form and then resolve it via linear algebra [7]. In these years, some 

researchers are devoted to infer gene regulatory network with various intelligent 

computation technologies such as hybrid differential evolution, genetic algorithm, 

genetic programming, ..., etc. Wang use Hybrid differential evolution and genetic 

algorithm to obtain the global optimal solution for highly nonlinear system and 

2



various biochemical system [9, 10]. Kikuchi and coauthors use a genetic 

algorithm to transform parameters into individuals first and solve optimal 

parameters via evolution procedure [11]. Sakamoto and coauthors use genetic 

programming to develop the gene regulatory network in a tree form [12].  In this 

work, we shall adopt improved genetic algorithm [13] to infer the gene 

regulatory networks of yeast cell cycle in modified power-law model and 

Xenopus frog egg cell cycle in S-system. Improved evolutionary direction 

operator (IEDO), migration operation and elitism are combined into genetic 

program for global optimal, fast and best-optional searching. The input/output 

datasets, yeast cell cycle dataset [14], generated from Michaelis-Menten model of 

mitotic control in Xenopus frog eggs [15, 16], are used to train the genetic 

networks for searching the optimal parameters of the corresponding modified 

power-law model and S-system, respectively.

1.3 Content Organization 

This paper is organized as follows: the biological systems, yeast cell cycle and 

cell cycle M phase control model of the Xenopus frog egg, are described in 

Chapter 2. Improved genetic algorithm is shown in Chapter 3. Chapter 4 shows 

the modeling and simulation results. Chapter 5 is the conclusion.
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Chapter 2  

Biological System

2.1 Yeast cell cycle 

Research in cell cycle is very important not only for realizing cell reproduction 

but also for realizing cancer development. Figure 2.1 is the cell cycle that 

includes four phases (G1 S G2 M). Cell grows up in G1 phase, produces 

RNA and synthesizes protein. During S phase, DNA is duplicated to produce two 

similar daughter cells. The cell continues to grow and produce protein and 

prepares to enter M phase during G2 phase. As DNA replication is completed, 

the cell enters M phase and divides.  

Figure 2.1 The four phases of cell cycle. 
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Table 2.1 The genes of the Yeast cell cycle. 

Gene Description
CDC28 Catalytic subunit of the main cell cycle cyclin-dependent kinase

CLN3
role in cell cycle START; involved in G(sub)1 size control; 
G1/S-specific cyclin, interacts with Cdc28p protein kinase to control 
events at START 

SWI4
Involved in cell cycle dependent gene expression; both Swi4p and 
Swi6p are required for the in vivo protection of the SCB sequences at 
any cell cycle stage 

SWI6 Involved in cell cycle dependent gene expression 
MBP1 transcription factor 

FUS3 Required for the arrest of cells in G(sub)1 in response to pheromone 
and cell fusion during conjugation 

FAR1 Inhibitor of Cdc28p/Cln1p and Cdc28p/Cln2p complexes involved in 
cell cycle arrest for mating; Factor arrest protein 

CLN1 G1 cyclin; role in cell cycle START 
CLN2 G1 cyclin;  role in cell cycle START 
SIC1 P40 inhibitor of Cdc28p-Clb5 protein kinase complex 

CLB5
role in DNA replication during S phase; additional functional role in 
formation of mitotic spindles along with Clb3 and Clb4; B-type cyclin 
involved in S-phase initiation 

CLB6 role in DNA replication during S phase; B-type cyclin involved in 
S-phase initiation 

CDC6

Protein involved in initiation of DNA replication; Protein that regulates 
initiation of DNA replication through binding to origins of replication 
at the end of mitosis, directing the assembly of MCM proteins and the 
pre-replication complex  

CDC20 Cell Division Cycle; Required for onset of anaphase; adaptor for APC 
GRR1 F box protein with several leucine rich repeats 

CDC4

Init. of DNA synthesis & spindle pole body separation; dispensable for 
both mitotic and meiotic spindle pole body dupl.; essential for mitotic 
but not premeiotic DNA synth.; wt levels of synaptonemal complexes 
and intragenic recombination 
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The yeast cell cycle gene expression data is collected by Spellman [14]. The 

dataset were covered six experimental conditions (CLN2; CLN3; ALPH, CDC15, 

CDC28 and ELU). We use the gene time-course data from experimental 

condition CDC28, which contains 24 time points. We concentrate in G1 and S 

phase and set up our dataset from the sub network of yeast cell cycle pathway. 

The descriptions and datasets are available at http://cellcycle-www.stanford.edu. 

This dataset in Table 2.1 involves 16 genes.

2.2 M phase control of Xenopus frog egg 

Michaelis-Menten model are concerned to describe the mitotic control in 

cell-cycle of Xenopus frog egg [15, 16], 
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with

2 2 9 2 2

7

25 25 6 25 25
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k V x V V

where xi, i = 1, 2, ···, 9, are the concentrations or activities of cyclin, 

unphosphorylated cyclin-Cdc2, Tyr-15 phosphorylated cyclin-Cdc2, doubly 

phosphorylated cyclin-Cdc2, Thr-161 phosphorylated cyclin-Cdc2 activated by 

four enzymes Cdc25, Wee1, IE and APC, respectively. Eqs. (1) ~ (4) describe 

four phosphorylation states of the cyclin-Cdc2 dimer. The Thr-161 

phosphorylated cyclin-Cdc2 represents the M phase promoting factor (MPF). 

The concentration of MPF can control the phases during cell cycle. For instance, 

high concentration of MPF can make the cell to divide to two child cells. 

The numerical solution of Michaelis-Menten model is shown as Figure 2.2 ~ 

2.5. The parameter values Ka=0.1, Kb=1.0, Kc=0.01, Kd=1.0, Ke=0.1, Kf=1.0,

Kg=0.01, Kh=0.01, ka=2.0, kb=0.1, kc=0.13, kd=0.13, ke=2.0, kf=0.1, kg=2.0,

kh=0.15, k1=0.01, k3=0.5, kcak=0.64, kpp=0.004, 25 0.017V , ,

, , , 

25 0.17V

2 0.005V 2 0.25V 0.01weeV 0.1weeV  from [15, 16].
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Figure 2.2 The concentrations of cyclin, unphosphorylated cyclin-Cdc2 and 
Tyr-15 phosphorylated cyclin-Cdc2. 
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Figure 2.3 The concentrations of doubly phosphorylated cyclin-Cdc2 and 
Thr-161 phosphorylated cyclin-Cdc2. 
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Figure 2.4 The concentrations of Cdc25 and IE. 
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Figure 2.5 The concentrations of Wee1 and APC
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Chapter 3  

Improved Genetic Algorithm 

3.1 Introduction

Based on general genetic algorithm, improved genetic algorithm includes 

improved evolutionary direction operator to speed the searching; migration

operator to escape from bogging down into local solution and elitism to keeping 

the best to be passed down always. The flow chart is shown in Figure 3.1.  

Figure 3.1 Flow chart for improved genetic algorithm. 
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The algorithm initializes a population first. The definition of population is 

shown in Figure 3.2. The chromosome in individual represents parameter. And 

then, we evaluate the fitness value of each individual in the population and keep 

the better individuals and eliminates the worse individuals though evolution 

procedures. 

Figure 3.2 Population definition.

3.2 IEDO 

Three preferred fitness value and its associated individuals are chosen to decide 

the evolutionary direction in the population. Improved evolutionary direction 

operator (IEDO) has the ability for both local and global search synchronously. 

We can use the IEDO operator to search quickly and converge toward the global 
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optimal solution. Besides, the IEDO operator can avoid bogging down in the 

local optimal solution, which conventional GA is usually stuck into. 

After completing all fitness values of individuals, we choose preferred 

fitness values denote Fb, Fs, Ft and its associated individuals denote Ib, Is, It. And 

then, the new individual denote Iideo is calculated as 

(10)

            (11)

s t1 1 2 2iedo b b b

max miniedo iedo

I = I  + r  * D  *(  I  - I  ) + r  * D  * (  I  - I ),                    

I = max(min(I ,I ),I ),             

where r1 and r2 are two random numbers, r1, r2 [0, 1]; D1 and D2 are the 

magnitude of two evolutionary directions to be 1; Imax and Imin are the upper and 

lower bound, respectively. The new fitness value Fnew of the Iideo is calculated; if 

the Fnew is better than one of the three preferred fitness values, it would be 

replaced that. 

3.3 Reproduction 

The probability of reproduction directly depends on the fitness of the individuals. 

The individual with better fitness has high probability of reproduction. In contrast, 

the individual with worse fitness has low probability of reproduction. The rule of 

reproduction is shown in Figure 3.3. 
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Figure 3.3 Rule of reproduction. 

3.4 Crossover 

Two-point crossover operation shown in Figure 3.4 is adopted and operates 

according to crossover probability, which involves selection of two crossover 

cut-points randomly and then exchanges the chosen two cut-points genes of 

parent individuals to generate two child individuals. And further, randomly select 

one of the new individuals to replace father or mother individuals. 
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Figure 3.4 Crossover operation. 

3.5 Probability Mutation and Elitism 

Different from the conventional GA to choose only one gene in individual 

randomly for mutation operation, all genes in individuals are chosen and their 

mutation probability are assigned by the designer for exchanging their original 

values in Figure 3.5. This will bring excessive diversity in population and hence 

may fail to converge to temperately optimal solution. Therefore, we adopt elitism 

operator to decrease this effect. Elitism operator is to keep the best individual to 

survive for each generation and hence to ensure good characteristic to pass down 
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always.

Figure 3.5 Probability mutation operation. 

3.5 Migration 

To wider the search space, a migration operator is done to get a new and diverse 

population. The degree of population diversity  is to check if the migration 

should be performed.  

2

_1

1 1

0,  if ,                                                    (12)

1,  otherwise        

,                 (13)_ ( 1)

ij bj

ij bj

Dim INP
ij

i j

x x
temp x

temp
Dim I NP

where 2 [0,1] is the tolerance of the real-valued gene diversity; xij and xbj are 
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respectively the j-th chromosome in the i-th individual and the best individual; 

NP is the number of individual; Dim I is the dimension of individual;  is in the 

range between 0 and 1. 1 [0,1] is a tolerance-threshold of population diversity 

for migration; if  is small than 1, migration operate to generate a new 

chromosome as follows.

,min
2 1,m

,m

j

jx

in
,max ,min

ax2

,  if
,                     (14)

,     ortherwise          

bj j
bj bj

j jij

bj bj

x x
x r x x r

x xx
x r x

where xj,max and xj,min are the upper and lower bound of the j-th chromosome, 

respectively. The r1 and r2 are two random numbers, r1, r2 [0, 1]. 

3.6 Fitness 

Every individual is evaluated by its fitness value, which keeps the better 

individuals and eliminates the worse individuals. We adopt two different 

methods to evaluate fitness. The fitness of an individual in yeast cell cycle is 

defined as 

2

0 0
1 1

-

               ,                                                  (15)

ei i
i j

fitness X t j t X t j t

kinetic order

-1n N

where the Xi(t) is approximate value of the i-th variable at time t, Xei(t) is original 

time-course data at time t, N is number of total time points.  
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The fitness of an individual in Xenopus M phase control is defined as 

_ -1Dim I N 2

0 0
1 1

-
,                     (16)

_

ei i
i j

X t j t X t j t
fitness

Dim I N

where N is number of time points; Xei(t) and Xi(t) are experiment value and 

estimated value of i-th reactant at time t, respectively.
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Chapter 4  

Modeling and Simulation Results

4.1 Yeast cell cycle

The mathematical model in yeast cell cycle is approximated from the model 

adopted in [7, 8].  

( ) ( ) ( ),   =1,2, , ,                                         (17)i i i iX t G t X t i n

where Gi(t) is the transcription rate, i is the self-degradation rate and n is the 

number of the variable, Xi(t) is the concentration of the i-th gene at time t. Gi(t) is 

a nonlinear function,  

1
( ) ,                              (18)

1 exp , ,
i ij

j
j

G t a
u t

1m

0

( , , ) .                              (19)
( )

0

j

j
j j

j
j

j j

j

t

t
t

u t
t

t

t

We use a power-law function Vi(t) to approximate the nonlinear function Gi(t) in 

Eq. (18) to denote the synthesis rate. 
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1
( ) ( ),                                                                (20)ijf

i i j
j

V t X t
n

k

where i is the rate constant and fij is kinetic order. Further, the degradation term 

in Eq. (17) is replaced by i ( )i
iX t  to emphasize how a gene reacts itself. The 

kinetic orders, fij and i, can be positive or negative; positive kinetic orders 

indicate activating influences, but negative kinetic orders mean inhibition. In 

other words, the following modified power-law dynamic model is proposed. 

1

( ) ( , ) ( ) ( )

         ( ) ( ),    =1,2, , ,                        (21)

i

ij i

i i i i i

n f k
i ij i

j

X t f V t X t

X t X t i n

X P k

where n is the number of the variables; the vector X in Eq. (21) indicates all 

genes in the yeast cell cycle; the vector P in Eq. (21) consists the rate constants, 

i and i, and kinetic orders, fij and ki. According to 16 genes of yeast cell cycle, 

there are 16 differential equations with 288 parameters. 

 Figure 4.1 is the pathway for the modified power-low model whose fitness is 

1.1104688E-02. Black lines represent activation reaction and red lines represent 

inhibition reaction. The start point of the lines is the reactant and the end point is 

the product. For instance, the concentration of CDC28 increases rapidly as the 

concentrations of MBP1, CLN1,  CDC6, CDC20 and  GRR1 increase; 

however, the concentration of CDC28 decreases rapidly as the concentrations of 

CLN3, SWI4, FUS3, FAR1, CDC4, CLB6 andCLB6 increase.
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Figure 4.1 The gene regulatory network of the generated modified power-low 
system.
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4.2 M phase control of Xenopus frog egg 

We shall generate the training dataset from the Eqs. (1) ~ (9) to generate the 

corresponding S-system model of the frog cell cycle to further realize the 

gene-gene inhibitory and activatory operation for gene and enzyme synthesis and 

decomposition. The training dataset is shown in Figure 4.2 ~ 4.5. 
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Figure 4.2 Training dataset-1.
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Figure 4.3 Training dataset-2. 

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [min]

co
nc

en
tra

tio
n

Cdc25

IE

Figure 4.4 Training dataset-3. 
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Figure 4.5 Training dataset-4. 

S-system use power-law flux to describe the synergism and saturation of the 

biological system, 

1 1
,   for 1,2,..., ,                               (22)ij ijg h

i i ij j
j j

x x x i n
n n

where xi is the state variable or reactant; n is the number of xi. i is the production 

rate-constant and i is the degradation rate-constant; both can be positive or zero. 

gij and hij, are kinetic orders; their values can be positive to indicate activating 

influences or negative to denote inhibition. We now construct our S-system 

structure for Xenopus frog egg as  
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19 1911 11                                                       (23)g hg hx x x x x

23 25 26 27 29 23 26 27 2921 22 22

32 33 34 36 37

1 1 1 9 1 1 9

5 7 72 2 1 2 3 6 9 2 2 3 6 9

73 3 2 3 4 6 9

      (24)g g g g g h h h hg g h

g g g g g

x x x x x x x x x x x x x

x x x x x x x 39 32 33 36 37 39

43 45 46 47 49 45 46 47 4944 44

52 54 55 56 57 59 54 55 56 57 59

73 2 3 6 9

5 7 5 74 4 3 4 6 9 4 4 6 9

5 5 5 7 5 5 72 4 6 9 4 6 9

             (25)

            (26)

g h h h h h

g g g g g h h h hg h

g g g g h h hg g h h

x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

65 66 65 66

75 77 75 77

85 88

5 56 6 6 6 6

7 7 5 7 7 5 7

58 8 8 8

     (27)

                (28)

                (29)

g g h h

g g h h

g g

x x x x x

x x x x x

x x x 85 88

98 99 98 99

5 8

9 9 8 9 9 8 9

                (30)

                (31)

h h

g g h h

x x

x x x x x

Note that since concentrations of x1, x2, x3, x4 and x5 are too small as compared to 

other variables. According to Eqs. (23) ~ (31), there are 83 parameters to 

estimate. The scale-up operation is adopted to normalize all states variables to a 

computation reasonable range to improve the computation error. Another test 

data from Michaelis-Menten model is used to demonstrate the performance of 

the improved genetic algorithm program, Figure 4.6 ~ 4.14 is the simulation 

results with the estimated fitness 3.0766122E-08 for N=80,000, Dim_I=83. The 

low fitness value ensures the good fitting of the simulation results with the 

datasets and also guarantees the reliability of the generated S-system. From the 

constructed S model, we can realize the interaction between various genes in 

Xenopus frog egg. For instance, the concentration of x2 increases rapidly as 

concentrations of x1, x3 and x5 increase; the concentration of x2 decreases rapidly 

as concentrations of x7 and x9 increase.
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Figure 4.6 Cyclin evolution. 
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Figure 4.7 Unphosphorylated cyclin-Cdc2 evolution.
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Figure 4.8 Tyr-15 phosphorylated cyclin-Cdc2 evolution.
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Figure 4.9 Doubly phosphorylated cyclin-Cdc2 evolution. 
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Figure 4.10 Thr-161 phosphorylated cyclin-Cdc2 evolution. 
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Figure 4.11 Cdc25 evolution.
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Figure 4.12 Wee1 evolution.
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Figure 4.13 IE evolution.

28



0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x9  (APC)

time [min]

co
nc

en
tra

tio
n

Test data
S-system

Figure 4.14 APC evolution.
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Chapter 5  

Conclusion

Improved genetic algorithm technique, which involves IEDO, migration 

operation and Elitism, is adopted to construct mathematical models for yeast and 

Xenopus frog egg. The gene time-course data form experiment of yeast cell cycle 

is used to construct gene regulatory network in modified power-law model. The 

training and test dataset are generated from Michaelis-Menten metabolic model 

of mitotic cell-cycle control of Xenopus frog egg in S-system. The two proposed 

gene regulatory networks reveal activatory and inhibitory operations for 

gene/enzyme synthesis and decomposition. Hence, the networks can provide 

biological researchers for further experiments in yeast and Xenopus frog egg cell 

cycle. 
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