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A Functional-Link-Based Neuro-Fuzzy Network
and Its Applications

Student : Cheng-Hung Chen Advisor : Dr. Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract

This dissertation proposes a functional-link-based neuro-fuzzy network (FLNFN) and its
related learning algorithms. The proposed FLNFN model uses a functional link neural
network to the consequent part of the fuzzy rul€s. The consequent part uses a nonlinear
functional expansion to form=arbitrarily complex’ decision boundaries. Thus, the local
properties of the consequent part injthe FLNFN model enable a nonlinear combination of
input variables to be approximatedmore effectively. This dissertation consists of three major
parts. In the first part, the FLNFN model and an online learning are presented. The online
learning algorithm consists of structure learning and parameter learning. The structure
learning depends on the entropy measure to determine the number of fuzzy rules. The
parameter learning, based on back-propagation, can adjust the shape of the membership
function and the corresponding weights of the consequent part. Unfortunately, the
back-propagation learning algorithm may reach the local minima very quickly. Therefore, a
modified differential evolution (MODE) is presented to optimize the FLNFN parameters in
the second part. The proposed MODE learning algorithm differs from the traditional
differential evolution. The MODE adopts a method to effectively search between the best
individual and randomly chosen individuals, and the MODE also provides a cluster-based
mutation scheme, which maintains useful diversity in the population to increase the search
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capability. But, the aforementioned algorithm cannot determine how many rules to be used.
Therefore, a rule-based symbiotic modified differential evolution (RSMODE) is proposed for
the FLNFN model in the third part. The RSMODE adopts a multi-subpopulation scheme that
uses each individual represents a single fuzzy rule and each individual in each subpopulation
evolves separately. Furthermore, the proposed RSMODE learning algorithm can also
determine the number of rule-based subpopulation and adjust the FLNFN parameters. Finally,
the proposed FLNFN model and its related learning algorithms are applied in various control

problems. Results of this dissertation demonstrate the effectiveness of the proposed methods.
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Chapter 1

Introduction

1.1 Motivation

In the field of artificial intelligence, neural networks are essentially low-level computational
structures and algorithms that offer good performance when they deal with sensory data.
However, it is difficult to understand the meaning of each neuron and each weight in the
networks. Generally, fuzzy systems aré‘easy to appreciate because they use linguistic terms
and if-then rules. However, they lack the learning capacity to fine-tune fuzzy rules and
membership functions. Therefore, neuro-fuzzy networks combine the benefits of neural
networks and fuzzy systems to solve many engineering problems. Neuro-fuzzy networks
bring the low-level learning and computational power of neural networks into fuzzy systems
and give the high-level human-like thinking and reasoning of fuzzy systems to neural
networks.

Recently, neuro-fuzzy networks have become popular topics of research, and are applied
in many areas, such as prediction, control, identification, recognition, decision-making, etc.
Neuro-fuzzy networks have some significant issues including how to design an adaptive
neruo-fuzzy network and how to design an effective learning algorithm. Therefore, we
propose a functional-link-based neuro-fuzzy network (FLNFN) and its related learning
algorithms in this dissertation. The proposed FLNFN model, which combines a neuro-fuzzy
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network with a functional link neural network, is designed to improve the accuracy of
functional approximation. Each fuzzy rule that corresponds to a functional link neural
network consists of a functional expansion of input variables. The consequent part of the
proposed model is a nonlinear combination of input variables. Hence, the local properties of
the consequent part in the FLNFN model enable a nonlinear combination of input variables to
be approximated more effectively.

Training of the parameters is the main problem in designing a neuro-fuzzy network.
Backpropagation (BP) training is commonly adopted to solve this problem. It is a powerful
training technique that can be applied to networks with a forward structure. Since the steepest
descent approach is used in BP training to minimize the error function, the algorithms may
reach the local minima very quickly and never find the global solution. The aforementioned
disadvantages lead to suboptimalsperformance, even for a favorable neuro-fuzzy network
topology. Therefore, technologies, that can be used to|train the system parameters and find the
global solution while optimizing the overall structure, are required. Next, we propose a
rule-based symbiotic modified differential evolution (RSMODE) for the proposed FLNFN
model. The RSMODE can automatically determine the number of fuzzy rules and generate
initial subpopulation. Furthermore, each individual in each subpopulation evolves separately
using a modified differential evolution (MODE). The proposed MODE adopts a method to
effectively search between the best individual and randomly chosen individuals. Finally, the
proposed FLNFN model is applied in various control problems and practical applications.

Results of this dissertation demonstrate the effectiveness of the proposed method.

1.2 Literature Survey

Recently, neuro-fuzzy networks [1]-[20] provide the advantages of both neural networks and

fuzzy systems, unlike pure neural networks or fuzzy systems alone. Neuro-fuzzy networks



(NFN) bring the low-level learning and computational power of neural networks into fuzzy
systems and give the high-level human-like thinking and reasoning of fuzzy systems to neural
networks.

Two typical types of neuro-fuzzy networks are the Mamdani-type and the
Takagi-Sugeno-Kang (TSK)-type. For Mamdani-type neuro-fuzzy networks [4]-[6], the
minimum fuzzy implication is adopted in fuzzy reasoning. For TSK-type neuro-fuzzy
networks (TSK-type NFN) [7]-[10], the consequence part of each rule is a linear combination
of input variables. Many researchers [9]-[10] have shown that TSK-type neuro-fuzzy
networks offer better network size and learning accuracy than Mamdani-type neuro-fuzzy
networks. In the typical TSK-type neuro-fuzzy network, which is a linear polynomial of input
variables, the model output is approximated locally by the rule hyper-planes. Nevertheless,
the traditional TSK-type neuro-fuzzy network does not take full advantage of the mapping
capabilities that may be offered by the consequent part.

Introducing a nonlinear functiony especially a neural structure, to the consequent part of
the fuzzy rules has yielded the NARA [21] and.the CANFIS [22] models. These models
[21]-[22] apply multilayer neural networks to the consequent part of the fuzzy rules. Although
the interpretability of the model is reduced, the representational capability of the model is
markedly improved. However, the multilayer neural network has such disadvantages as
slower convergence and greater computational complexity. Therefore, this dissertation uses
the functional link neural network (FLNN) [23]-[25] to the consequent part of the fuzzy rules,
called a functional-link-based neuro-fuzzy network (FLNFN). The consequent part of the
proposed FLNFN model is a nonlinear combination of input variables, which differs from the
other existing models [5], [9]-[10]. The FLNN is a single layer neural structure capable of
forming arbitrarily complex decision regions by generating nonlinear decision boundaries
with nonlinear functional expansion. The FLNN [26] was conveniently used for function
approximation and pattern classification with faster convergence rate and less computational
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loading than a multilayer neural network. Moreover, using the functional expansion can
effectively increase the dimensionality of the input vector, so the hyper-planes generated by
the FLNN will provide a good discrimination capability in input data space.

In addition, training of the parameters is the main problem in designing a neuro-fuzzy
network. Backpropagation (BP) training is commonly adopted to solve this problem. It is a
powerful training technique that can be applied to networks with a forward structure. Since
the steepest descent approach is used in BP training to minimize the error function, the
algorithms may reach the local minima very quickly and never find the global solution. The
aforementioned disadvantages lead to suboptimal performance, even for a favorable
neuro-fuzzy network topology. Therefore, technologies, that can be used to train the system
parameters and find the global solution while optimizing the overall structure, are required.

Recent development in geneti¢ algorithms (GAs) has provided a method for neuro-fuzzy
system design. Genetic fuzzy systems (GESs).{27]-[3F] hybridize the approximate reasoning
of fuzzy systems with the learhing capability of genetic algorithms. GAs represent highly
effective techniques for evaluating system parameters and finding global solutions while
optimizing the overall structure. Thus, many researchers have developed GAs to implement
fuzzy systems and neuro-fuzzy systems in order to automate the determination of structures
and parameters [32]-[52].

Carse et al. [32] presented a GA-based approach to employ variable length rule sets and
simultaneously evolves fuzzy membership functions and relations called Pittsburgh-style
fuzzy classifier system. Herrera er al. [33] proposed a genetic algorithm-based tuning
approach for the parameters of membership functions used to define fuzzy rules. This
approach relied on a set of input-output training data and minimized a squared-error function
defined in terms of the training data. Homaifar and McCormick [34] presented a method that
simultaneously found the consequents of fuzzy rules and the center points of triangular
membership functions in the antecedent using genetic algorithms. Velasco [35] described a
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Michigan approach which generates a special place where rules can be tested to avoid the use
of bad rules for online genetic learning. Ishibuchi et al. [36] applied a Michigan-style genetic
fuzzy system to automatically generate fuzzy IF-THEN rules for designing compact fuzzy
rule-based classification systems. The genetic learning process proposed is based on the
iterative rule learning approach and it can automatically design fuzzy rule-based systems by
Cordon et al. [37]. A GA-based learning algorithm called structural learning algorithm in a
vague environment (SLAVE) was proposed in [38]. SLAVE used an iterative approach to
include more information in the process of learning one individual rule. Furthermore, a very
interesting algorithm was proposed by Russo in [39] which attempted to combine all good
features of fuzzy systems, neural networks and genetic algorithm for fuzzy model derivation
from input-output data. Chung et al [40] adopted both neural networks and GAs to
automatically determine the parameters of fuzzy logic systems. They utilized a feedforward
neural network for realizing the-basic elements: and. functions of a fuzzy controller. In [41], a
hybrid of evolution strategies and simulated annealing algorithms is employed to optimize
membership function parameters+and rule numbers which are combined with genetic
parameters.

Three main strategies, including Pittsburgh-type, Michigan-type, and the iterative rule
learning genetic fuzzy systems, focus on generating and learning fuzzy rules in genetic fuzzy
systems. First, the Pittsburgh-type genetic fuzzy system [42] was characterized by using a
fuzzy system as an individual in genetic operators. Second, the Michigan-type genetic fuzzy
system was used for generating fuzzy rules in [43], where each fuzzy rule was treated as an
individual. Thus, the rule generation methods in [43] were referred to as fuzzy classifier
systems. Third, the iterative rule learning genetic fuzzy system [44] was adopted to search one
adequate rule set for each iteration of the learning process. Moreover, Ishibuchi et al. [45]-[48]
proposed genetic algorithms for constructing a fuzzy system consisting of a small number of
linguistic rules. Mitra et al. [49]-[52] presented some approaches that exploit the benefits of
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soft computation tools for rule generation.

In the aforementioned literatures, it has been fully demonstrated that GAs are very
powerful in searching for the true profile. However, the search is extremely time-consuming,
which is one of the basic disadvantages of all GAs. Although the convergence in some special
cases can be improved by hybridizing GAs with some local search algorithms, it is achieved
at the expense of the versatility and simplicity of the algorithm. Similar to GAs, DE [53]-[55]
also belongs to the broad class of evolutionary algorithms, but DE has many advantages such
as the strong search ability and the fast convergence ability over GAs or any other traditional
optimization approach, especially for real valued problems [55]. Therefore, we propose a
rule-based symbiotic modified differential evolution (RSMODE) for the proposed FLNFN
model. The RSMODE is to adjust the system parameters and find the global solution while

optimizing the overall structure.

1.3 Organization of Dissertation

The overall objective of this dissertation i to develop a novel neuro-fuzzy network and its
related learning algorithm. Organization and objectives of each chapter in this dissertation are
as follows.

In Chapter 2, we propose a functional-link-based neuro-fuzzy network (FLNFN)
structure for nonlinear system control. The proposed FLNFN model uses a functional link
neural network (FLNN) to the consequent part of the fuzzy rules. This dissertation uses
orthogonal polynomials and linearly independent functions in a functional expansion of the
FLNN. Thus, the consequent part of the proposed FLNFN model is a nonlinear combination
of input variables. An online learning algorithm, which consists of structure learning and
parameter learning, is also presented. The structure learning depends on the entropy measure

to determine the number of fuzzy rules. The parameter learning, based on the gradient descent



method, can adjust the shape of the membership function and the corresponding weights of
the FLNN.

In Chapter 3, we present a modified differential evolution (MODE) for the proposed
FLNFN model. The proposed MODE learning algorithm adopts an evolutionary learning
method to optimize the FLNFN parameters. The MODE algorithm uses a method to
effectively search toward the current best individual. Furthermore, the MODE algorithm also
provides a cluster-based mutation scheme, which maintains useful diversity in the population
to increase the search capability.

In Chapter 4, we propose a rule-based symbiotic modified differential evolution
(RSMODE) for the proposed FLNFN model. The proposed RSMODE learning algorithm
consists of initialization phase and parameter learning phase. The initialization phase can
determine the number of subpopulation which satisfies the fuzzy partition of input variables
using the entropy measure. Theparameter Iearning phase combines two strategies including a
subpopulation symbiotic evolution and-a modified differential evolution. The RSMODE can
automatically generate initial subpopulation and"each individual in each subpopulation
evolves separately using a modified differential evolution. We also compare our method with
other methods in the literature early. Finally, conclusions and future works are summarized in

the last section.



Chapter 2

A Functional-Link-Based Neuro-Fuzzy Network

In this chapter, a functional-link-based neuro-fuzzy network (FLNFN) model is presented for
nonlinear system control. The FLNFN model, which combines a neuro-fuzzy network with a
functional link neural network (FLNN), 1s designed to improve the accuracy of functional
approximation. Each fuzzy rule that corresponds to a FLNN consists of a functional
expansion of input variables. The orthogonal polynomials and linearly independent functions
are adopted as functional link neural network bases..An online learning algorithm, consisting
of structure learning and parameter learning, is proposed to construct the FLNFN model
automatically. The structure learning algorithm determines whether or not to add a new node
which satisfies the fuzzy partition of input variables. Initially, the FLNFN model has no rules.
The rules are automatically generated from training data by entropy measure. The parameter
learning algorithm is based on back-propagation to tune the free parameters in the FLNFN

model simultaneously to minimize an output error function.

2.1 Structure of Functional-Link-Based Neuro-Fuzzy Network

This section describes the structure of functional link neural networks and the structure of the
FLNFN model. In functional link neural networks, the input data usually incorporate high
order effects and thus artificially increase the dimensions of the input space using a functional
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expansion. Accordingly, the input representation is enhanced and linear separability is
achieved in the extended space. The FLNFN model adopted the functional link neural
network generating complex nonlinear combination of input variables to the consequent part

of the fuzzy rules. The rest of this section details these structures.

2.1.1 Functional Link Neural Networks

The functional link neural network is a single layer network in which the need for hidden
layers is removed. While the input variables generated by the linear links of neural networks
are linearly weighted, the functional link acts on an element of input variables by generating a
set of linearly independent functions (i.e., the use of suitable orthogonal polynomials for a
functional expansion), and then evaluating these functions with the variables as the arguments.
Therefore, the FLNN structure «Considers trigonemetric functions. For example, for a
two-dimensional input X =[x;;x,]", the enhanced input is obtained using trigonometric
functions in @ =[x, sin(7 X, ),€08 (X, Yyorr XpsSin(7x, ), cos(zr x,),...]" . Thus, the input
variables can be separated in the enhanced space [23]. In the FLNN structure with reference
to Fig. 2.1, a set of basis functions ® and a fixed number of weight parameters W
represent fy, (x). The theory behind the FLNN for multidimensional function approximation

has been discussed elsewhere [24] and is analyzed below.

X|— s 8
= .9
x| — © @
X= S S
o <
g &
XN/~ [

Figure 2.1: Structure of FLNN.

Consider a set of basis functions B ={g, e ®(4)},., K={1,2,..} with the following



properties; 1) ¢ =1, 2) the subset B, ={¢, € B}’Z1 is a linearly independent set, meaning

thatif 3wy =0, then w, =0 forall k=12, and3) sup,[S 4[] <o0.

Let B= {gﬁ,{}‘z1 be a set of basis functions to be considered, as shown in Fig. 2.1. The
FLNN comprises M basis functions {¢,,d,,...,4,,} €B,,. The linear sum of the jth node is
given by

P,=2 W (X) (2.1)

where Xe AcR", X=[x,x,,.,x,]" is the input vector and W, =[w,,w

T .
s Wigsees Wi 118

the weight vector associated with the jth output of the FLNN. 'y, denotes the local output of

the FLNN structure and the consequent part of the jth fuzzy rule in the FLNFN model. Thus,
Eq.(2.1) can be expressed in matrix form.as.y, =W @, where ® =[4(x),4, (x),... 8y ()]
is the basis function vector, which is the output of"the functional expansion block. The
m-dimensional linear output may. be given-by Y= W® , where \A(:[jil, Pasen ]y M
denotes the number of functional link bases, which equals the number of fuzzy rules in the
FLNFN model, and W is a (mxM)-dimensional weight matrix of the FLNN given by
A% =[w1,w2,...,wM]T. In the FLNFN model, the corresponding weights of functional link
bases do not exist in the initial state, and the amount of the corresponding weights of

functional link bases generated by the online learning algorithm is consistent with the number

of fuzzy rules. Section 3 details the online learning algorithm.

2.1.2 Structure of the FLNFN Model
This subsection describes the FLNFN model, which uses a nonlinear combination of input
variables (FLNN). Each fuzzy rule corresponds to a sub-FLNN, comprising a functional link.

Figure 2.2 presents the structure of the proposed FLNFN model.
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The FLNFN model realizes a fuzzy if-then rule in the following form.

Rule-j: 1F x,is 4,; and x, is 4, ...and x, is 4, ...and x,; is 4,

M
THEN p. = > w,.¢
2 (22)
=W, +wy 0+ WPy,

where x; and y, are the input and local output variables, respectively; 4; is the linguistic

term of the precondition part with Gaussian membership function; N is the number of input

variables; wy; 1s the link weight of the local output; ¢, is the basis trigonometric function of

input variables; M is the number of basis function, and Rule-j is the jth fuzzy rule.

-
I
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Figure 2.2: Structure of proposed FLNFN model.

The operation functions of the nodes in each layer of the FLNFN model are now

described. In the following description, u®” denotes the output of a node in the /th layer.
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No computation is performed in layer 1. Each node in this layer only transmits input

values to the next layer directly:
u =x,. (2.3)

Each fuzzy set A;; is described here by a Gaussian membership function. Therefore, the

calculated membership value in layer 2 is

u™ —m_ 71
u :exp(_—[ i) 2.4)

O

where m; and o, are the mean and variance of the Gaussian membership function,

respectively, of the jth term of the ith input variable x;.

Nodes in layer 3 receive one-dimensional membership degrees of the associated rule
from the nodes of a set in layer 2. Here, the product operator described above is adopted to
perform the precondition part ¢f the fuzzy.rules. ‘As a result, the output function of each

inference node is

u =T ug 2.5)

where the Hu,.(jz) of a rule node represents the firing strength of its corresponding rule.

Nodes in layer 4 are called consequent nodes. The input to a node in layer 4 is the output
from layer 3, and the other inputs are calculated from a functional link neural network, as

shown in Fig. 2.2. For such a node,

4 3 <
u? =u 3wy, (2.6)

k=1
where wy; is the corresponding link weight of functional link neural network and ¢, is the
functional expansion of input variables. The functional expansion uses a trigonometric
polynomial basis function, given by [ b b P D ¢6] =
[x, sin(z x,) cos(x x,) x, sin(r x,) cos(rr x,)] for two-dimensional input variables. Therefore,

M is the number of basis functions, M =3x N, where N is the number of input variables.
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Moreover, the output nodes of functional link neural network depend on the number of fuzzy
rules of the FLNFN model.
The output node in layer 5 integrates all of the actions recommended by layers 3 and 4

and acts as a defuzzifier with,

pu = . g7 2

where R is the number of fuzzy rules, and y is the output of the FLNFN model.

As described above, the number of tuning parameters for the FLNFN model is known to
be (2+3xP)xN*R, where N, R and P denote the number of inputs, existing rules, and outputs,
respectively. The proposed FLNFN model can be demonstrated to be a universal uniform
approximation by Stone-Weierstrass.theorem [56] for continuous functions over compact sets.

The detailed proof is given in the’Appendix.

2.2 Learning Algorithms of the FLNFN Model

This section presents an online learning algorithm for constructing the FLNFN model. The
proposed learning algorithm comprises a structure learning phase and a parameter learning
phase. Figure 2.3 presents flow diagram of the learning scheme for the FLNFN model.
Structure learning is based on the entropy measure used to determine whether a new rule
should be added to satisfy the fuzzy partitioning of input variables. Parameter learning is
based on supervised learning algorithms. The back-propagation algorithm minimizes a given
cost function by adjusting the link weights in the consequent part and the parameters of the
membership functions. Initially, there are no nodes in the network except the input-output
nodes, i.e., there are no any nodes in the FLNFN model. The nodes are created automatically
as learning proceeds, upon the reception of online incoming training data in the structure and
parameter learning processes. The rest of this section details the structure learning phase and
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the parameter learning phase. Finally in this section, the stability analysis of the FLNFN

model based on the Lyapunov approach is performed the convergence property.

Start
A 4
Initialization
> Structure learning
r—===7" vy T T - === === ===-== A
| |
| Is x; the first No, |
: input data? :
: Yes No :
| |
: Generate the first rule with Yes :
Mi=X; )
| ,'1= - Generate a new rule with |
l Oi1= 0O init l
I wy/=random /[-1,1] m=X; I
I where o;,; 1S 0i70 init I
| |a prespecified constant wy=random /-1,1] I
| where o;,; is |
| a prespecified constant |
| |
| |
L _ =8 e (8= _ _ _ _ ____ d
N
Parameter learning
(Backpropagation )
No
< Done?
Yes
End

Figure 2.3: Flow diagram of the structure/parameter learning for the FLNFN model.

2.2.1 Structure Learning Phase
The first step in structure learning is to determine whether a new rule from should be
extracted the training data and to determine the number of fuzzy sets in the universal of

discourse of each input variable, since one cluster in the input space corresponds to one

potential fuzzy logic rule, in which m; and o, represent the mean and variance of that

cluster, respectively. For each incoming pattern x;, the rule firing strength can be regarded as
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the degree to which the incoming pattern belongs to the corresponding cluster. Entropy
measure between each data point and each membership function is calculated based on a
similarity measure. A data point of closed mean will has lower entropy. Therefore, the entropy
values between data points and current membership functions are calculated to determine
whether or not to add a new rule. For computational efficiency, the entropy measure can be

(2)

; as follow;

calculated using the firing strength from u

N
EM;=-Y"D;log, D, (2.8)

i=1
- @ . )
where D, —exp(uy. ) and EM ; €[0,1]. According to Eq. (2.8), the measure is used to
generate a new fuzzy rule and new functional link bases for new incoming data is described as

follows. The maximum entropy measure

EM, . = max EM 2.9

il =Rt

is determined, where R is the:number of existing rules at time ¢. If EM < EM , then a

new rule is generated, where EM €[0,1] is a prespecified threshold that decays during the

learning process.

In the structure learning phase, the threshold parameter EM s an important parameter.
The threshold is set to between zero and one. A low threshold leads to the learning of coarse
clusters (i.e., fewer rules are generated), whereas a high threshold leads to the learning of fine
clusters (i.e., more rules are generated). If the threshold value equals zero, then all the training
data belong to the same cluster in the input space. Therefore, the selection of the threshold
value EM will critically affect the simulation results. As a result of our extensive
experiments and by carefully examining the threshold value EM , which uses the range [0, 1],
we concluded that the relationship between threshold value EM and the number of input
variables. Accordingly, EM is defined as 0.26-0.3 times of the number of input variables.

Once a new rule has been generated, the next step is to assign the initial mean and
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variance to the new membership function and the corresponding link weight for the

consequent part. Since the goal is to minimize an objective function, the mean, variance and

weight are all adjustable later in the parameter learning phase. Hence, the mean, variance and

weight for the new rule are set as follows;

(Risy) _
i =N
(R(,+1)) _
i =0t
(Risny) _
wy """ = random[-1,1]

where x; is the new input and o

init

(2.10)

(2.11)

(2.12)

is a prespecified constant. The whole algorithm for the

generation of new fuzzy rules and fuzzy sets in each input variable is as follows. No rule is

assumed to exist initially exist:

Step 1: IF x; is the first incoming pattern THEN do
{Generate a new rule

with mean m;;=x;, variahce @,=0C,.,

where o, . is a prespecified constant.

init
}
Step 2: ELSE for each newly incoming x;, do

{Find EM = max EM,

1<j<R,

IF EM, >EM

do nothing
ELSE

{Rery =Ry +1

generate a new rule

with mean m., =x,variance o, =o
iRip) i iRip1)

init 2

where o

init

is a prespecified constant. }
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2.2.2 Parameter Learning Phase

After the network structure has been adjusted according to the current training data, the
network enters the parameter learning phase to adjust the parameters of the network optimally
based on the same training data. The learning process involves determining the minimum of a
given cost function. The gradient of the cost function is computed and the parameters are
adjusted with the negative gradient. The back-propagation algorithm is adopted for this
supervised learning method. When the single output case is considered for clarity, the goal to

minimize the cost function £ is defined as

E(t)=%[y(t)—yd(t)]2 =%€2(f) (2.13)

where y(7) is the desired output dnd »().is/the'model output for each discrete time 7. In each
training cycle, starting at the input’ variables,.a forward pass is adopted to calculate the activity
of the model output y(7).

When the back-propagation learning-algorithm is adopted, the weighting vector of the
FLNFN model is adjusted such that the error defined in Eq. (2.13) is less than the desired
threshold value after a given number of training cycles. The well-known back-propagation

learning algorithm may be written briefly as

W(t+1)=W(t)+AW () = W(t)+(—77§§/—((tt))J (2.14)

where, in this case, 77 and W represent the learning rate and the tuning parameters of the
FLNFN model, respectively. Let W =[m,o,w]" be the weighting vector of the FLNFN
model. Then, the gradient of error £(.) in Eq. (2.13) with respect to an arbitrary weighting

vector W is

CE(@) _ . oy()
a0t (2.15)

Recursive applications of the chain rule yield the error term for each layer. Then the
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parameters in the corresponding layers are adjusted. With the FLNFN model and the cost

function as defined in Eq. (2.13), the update rule for w;can be derived as follows;

wy, (1 +1) = wy, (1) + 4w, (1) (2.16)
where
(0=, F
ki
=1, -€ u;3)¢k

I

Similarly, the update laws for my, and o, are

my (¢ +1) = m, (£)+ Am, () (2.17)
o {tHl)=0,(1)+ Ao, (1) (2.18)
where
A, (1= -1, =

o

(4) (O]
__m u; 2(u; —m,.j)
= 77m ZR u(3) 0_2
j=1 7

g

) M 2
e u; 2(u;” —my)
= 776 zR u(3) 0_3
j=1J

i
where 7,, 1, and 7_ are the learning rate parameters of the weight, the mean, and the
variance, respectively. In this dissertation, both the link weights in the consequent part and the
parameters of the membership functions in the precondition part are adjusted by using the
back-propagation algorithm. Recently, many researchers [10], [57] tuned the consequent
parameters using either least mean squares (LMS) or recursive least squares (RLS) algorithms

to obtain optimal parameters. However, they still used the back-propagation algorithm to
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adjust the precondition parameters.

2.2.3 Convergence Analysis

The selection of suitable learning rates is very important. If the learning rate is small,
convergence will be guaranteed. In this case, the speed of convergence may be slow. However,
the learning rate is large, and then the system may become unstable. The Appendix derives
varied learning rates, which guarantee convergence of the output error based on the analyses
of a discrete Lyapunov function, to train the FLNFN model effectively. The convergence
analyses in this dissertation are performed to derive specific learning rate parameters for
specific network parameters to ensure the convergence of the output error [58]-[59]. Moreover,
the guaranteed convergence of output error does not imply the convergence of the learning
rate parameters to their optimal values. The following simulation results demonstrate the
effectiveness of the online learning FLNFN!/model based on the proposed delta adaptation law

and varied learning rates.

2.3 Experimental Results

This dissertation demonstrated the performance of the FLNFN model for nonlinear system
control. This section simulates various control examples and compares the performance of the
FLNFN model with that of other models. The FLNFN model is adopted to design controllers
in four simulations of nonlinear system control problems - water bath temperature control
system [60], control of a bounded input bounded output (BIBO) nonlinear plant [58], control

of the ball and beam system [61], and multi-input multi-output (MIMO) plant control [62].

Example 1: Control of Water Bath Temperature System

The goal of this section is to elucidate the control of the temperature of a water bath
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system according to,

dy(t) _u(®) Y, —y() (2.19)
dt C TRC |

where y(f) is the output temperature of the system in °C ; u(?) is the heat flowing into the
system; Y, is room temperature; C is the equivalent thermal capacity of the system, and 7% is
the equivalent thermal resistance between the borders of the system and the surroundings.

Tr and C are assumed to be essentially constant, and the system in Eq.(2.19) is rewritten

in discrete-time form to some reasonable approximation. The system

é (1 _ e*dTS)

y(k+1)=e " y(k)+ f‘:eojmu(k) +[1=e "1y, (2.20)
is obtained, where « and ¢ are some constant values of 7 and C. The system parameters
used in this example are a =1.0015¢1,1/5.=8.67973¢~ and Y,=25.0(°C), which were
obtained from a real water bath plant considered ‘elsewhere [60]. The plant input u(k) is
limited to 0 and 5V, and the sampling periodis 75=30 second.

The conventional online training” scheme is*adopted for online training. Figure 2.4
presents a block diagram for the conventional online training scheme. This scheme has two

phases - the training phase and the control phase. In the training phase, the switches S1 and

S2 are connected to nodes 1 and 2, respectively, to form a training loop. In this loop, we can

define a training data with input vector I(k)=[y,(k+1) y, (k)] and desired output u(k),

where the input vector of the FLNFN controller is the same as that used in the general inverse
modeling [63] training scheme. In the control phase, the switches S1 and S2 are connected to

nodes 3 and 4, respectively, forming a control loop. In this loop, the control signal u(k) is

generated according to the input vector I'(k)=[y,, (k+1) y,(k)], where y, is the plant
outputand y,, is the reference model output.
A sequence of random input signals u,,4(k) limited to 0 and 5V is injected directly into the

20



simulated system described in Eq. (2.20), using the online training scheme for the FLNFN
controller. The 120 training patterns are selected based on the input-outputs characteristics to
cover the entire reference output. The temperature of the water is initially 25°, and rises
progressively when random input signals are injected. After 10000 training iterations, four

fuzzy rules are generated. The obtained fuzzy rules are as follows.

Rule-1: TF x, is u(32.416,11.615 ) and x, is 1(27.234,7.249)

THEN y, =32.095x, + 74.849 sin( 7 x, ) —34.546 cos(r x, )
—17.026x, —41.799 sin( 7 x, )+35.204 cos( 7 x, )

Rule-2: TF x, is 11(34.96,9.627 )and x, is 1(46.281,13.977)

THEN y, =21.447x, +11.766 sin( 7 x, )—77.705cos(r x, )
—52.923x, —61.827 sin(7 x, )+ 70.946 cos(x x, )

Rule-3: TF x,is 1(62.771,6.910 ) and x, is £(62.499,15.864)

THEN y, =25.735x, —10.907sin( z.x, ) —46.359 cos( 7 x, )
—40.322x;+ 36.752sin( 7 Xy)+103.33cos(7 x, )

Rule-4: TF x, is 11(79.065,8:769.) and x, is.41(64.654,9.097)

THEN y, = 46.055x, —37.2235in(z x, )=57.759 cos( 7 x, )
—5.8152x, +'61.065sin( 7 x,) +34.838cos(7 x, )

/

yp(k+1) _ / u(k)
—@L> ~ - A_,’_
/Sl FLNFN N > Vplk+1)

+ \
rolkt1) Controller 82 \ Plant
Cﬁ(k)
/

v

Figure 2.4: Conventional online training scheme.

This dissertation compares the FLNFN controller to the proportional-integral-derivative
(PID) controller [64], the manually designed fuzzy controller [1], the functional link neural
network [25] and the TSK-type neuro-fuzzy network (TSK-type NFN) [9]. Each of these
controllers is applied to the water bath temperature control system. The performance measures
include the set-points regulation, the influence of impulse noise, and a large parameter

21



variation in the system, and the tracking capability of the controllers.

The first task is to control the simulated system to follow three set-points.

35%, for k<40
(k) =1{55%, for 40<k<80 . (2.21)
75°, for 80<k<120.

Figure 2.5(a) presents the regulation performance of the FLNFN controller. The regulation
performance was also tested using the FLNN controller and the TSK-type NFN controller.
Figure 2.5(b) plots the error curves of the FLNFN controller, the FLNN controller and the
TSK-type NFN controller between A=81 and £=100. In this figure, the FLNFN controller
obtains smaller errors than the other two controllers. To test their regulation performance, a

performance index, the sum of absolute error (SAE), is defined by

S4E=""

k

Yol — y (k) (2.22)
where y, (k) and y(k) are thejreference output and the actual output of the simulated

system, respectively. The SAE values. of the: ELNFN controller, the PID controller, the fuzzy
controller, the FLNN controller and ‘the FKS-type NFN controller are 352.8, 418.5, 401.5,
379.2 and361.9, which values are given in the second row of Table 2.1. The proposed FLNFN
controller has a much better SAE value of regulation performance than the other controllers.
The second set of simulations is performed to elucidate the noise-rejection ability of the
five controllers when some unknown impulse noise is imposed on the process. One impulse
noise value —5°C is added to the plant output at the 60" sampling instant. A set-point of
50°C 1is adopted in this set of simulations. For the FLNFN controller, the same training
scheme, training data and learning parameters as were used in the first set of simulations.
Figure 2.6(a) and (b) present the behaviors of the FLNFN controller under the influence of
impulse noise, and the corresponding errors, respectively. The SAE values of the FLNFN

controller, the PID controller, the fuzzy controller, the FLNN controller and the TSK-type

22



NFN controller are 270.4, 311.5, 275.8, 324.51 and 274.75, which are shown in the third row
of Table 2.1. The FLNFN controller performs quite well. It recovers very quickly and steadily
after the occurrence of the impulse noise.

One common characteristic of many industrial-control processes is that their parameters
tend to change in an unpredictable way. The value of 0.7*u(k—2) is added to the plant
input after the 60™ sample in the third set of simulations to test the robustness of the five
controllers. A set-point of 50°C is adopted in this set of simulations. Figure 2.7(a) presents
the behaviors of the FLNFN controller when in the plant dynamics change. Figure 2.7(b)
presents the corresponding errors of the FLNFN controller, the FLNN controller and the
TSK-type NFN controllers. The SAE values of the FLNFN controller, the PID controller, the
fuzzy controller, the FLNN controller and the TSK-type NFN controller are 263.3, 322.2,
273.5, 311.5 and 265.4, which values are shown in-the fourth row of Table 2.1. The results
present the favorable control and, disturbance: rejection capabilities of the trained FLNFN
controller in the water bath systém.

In the final set of simulations, the tracking.capability of the FLNFN controller with

respect to ramp-reference signals is studied. Define

34°C for k<30
(34+0.5%(k-30)°C  for 30<k<50

Py (k) =1(44+0.8%(k=50)°C  for 50<k<70 . (2.23)
(60+0.5%(k—70))°C  for 70<k <90
70°C for 90<k <120

Figure 2.8(a) presents the tracking performance of the FLNFN controller. Figure 2.8(b)
presents the corresponding errors of the FLNFN controller, the FLNN controller, and the
TSK-type NFN controller. The SAE values of the FLNFN controller, the PID controller, the
fuzzy controller, the FLNN controller, and the TSK-type NFN controller are 44.2, 100.6, 88.1,
98.4 and 54.2, which are shown in the fifth row of Table 2.1. The results present the favorable

control and disturbance rejection capabilities of the trained FLNFN controller in the water
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bath system. The aforementioned simulation results, presented in Table 2.1, demonstrate that

the proposed FLNFN controller outperforms other controllers.
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Figure 2.5: (a) Final regulation performance of FLNFN controller in water bath system. (b)
Error curves of the FLNFN controller, TSK-type NFN controller and FLNN controller
between k=81 and /=100.
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Figure 2.6: (a) Behavior of FLNFN controller under impulse noise in water bath system. (b)
Error curves of FLNFN controller, TSK-type NFN controller and FLNN controller.
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Figure 2.8: (a) Tracking of FLNFN controller when a change occurs in the water bath system.

(b) Error curves of FLNFN controller, TSK-type NFN controller and FLNN controller.

Table 2.1: Comparison of performance of various controllers to control of water bath

temperature system.

TSK-type
o FLNFN PID Fuzzy FLNN NEN
SAE=] ,,,(k) = y(k)| Controller | Controller | Controller
= Controller Controller
[64] [65] [25]
[9]
Regulation
354.84 418.5 401.5 379.22 361.96
Performance
Influence of Impulse
. 272.61 311.5 275.8 324.51 274.75
Noise
Effect of Change in
i 264.35 322.2 273.5 311.54 265.48
Plant Dynamics
Tracking
44.28 100.6 88.1 98.43 54.28
Performance
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Example 2: Control of Bounded Input Bounded Output Nonlinear Plant

In this case, the plant is described by the difference equation

__ Y(k) 3
e+ =—=or TRk ). (2.24)

The reference model is described by the difference equation

y.(k+1)=0.6y (k)+r(k) (2.25)
where r(k)=sin(2ak /10)+sin(27k / 25) . Figure 2.9 present the block diagram of the
FLNFN-based control system. The inputs to the FLNFN controller are the reference input, the
previous plant output, and the previous control signal; the output of the FLNFN controller is
the control signal to the plant. The online algorithm developed in this dissertation is adopted
to adjust the structure and the parameters;of the FLNFN controller such that the error between
the output of the plant and the desired, output from.a reference model approaches a small

value after some train cycles.

r(k)

» Reference Model
i(k)
. VJF
Backpropagation e(k)(
/ Algorithm -
/ —_—
Vi / yp(k)
’ u(k)
— FLNFN > Plant N
— > Controller
//
x/
'?‘: 3
=

Figure 2.9: Block diagram of FLNFN controller-based control system.

After 500 training iterations, six fuzzy rules are generated. In this example, the proposed
FLNFN controller is compared to the FLNN controller [25] and the TSK-type NFN controller

[9]. Each of the controllers is applied to control the bounded input bounded output (BIBO)

27



nonlinear plant. In the following four cases, the FLNFN controller is demonstrated to
outperform the other models.

In the first case, the reference input is given by Eq. (2.25) and the final result is shown in
Fig. 2.10(a). Figure 2.10(b) presents the error curves of the FLNFN controller and the
TSK-type NFN controller. In this figure, the FLNFN controller yields smaller errors than the
TSK-type NFN controller. In the second case, after 100 epochs, the reference input is changed
tor(k) =sin(27k /25). Figures 2.11(a)-(b) plot the result of the FLNFN controller and the
corresponding errors of the FLNFN controller and the TSK-type NFN controller. In the third
case, after 100 epochs, the reference input is changed to an impulse signal. Figure 2.12(a)
presents the simulation result. Figure 2.12 (b) present the corresponding errors of the FLNFN
controller, the FLNN controller and the TSK-type NFN controllers. In the fourth case, a
disturbance of 2.0 is added to the system between the 100th and the 150th epochs. In this case,
the FLNFN-based control system can recover from.the disturbance quickly, as shown in Fig.
2.13. The RMS (root mean square) error-is adopted to evaluate the performance. Table 2.2
presents the RMS errors of the FLNEN controller; the FLNN controller and the TSK-type
NFN controller. Table 2.2 shows that, according to the simulation results, the proposed

FLNFN controller outperforms the other models.
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Figure 2.10: Final system response in first case of example 2. (a) The dashed line represents

plant output and the solid line represents the reference model. (b) Error curves of FLNFN
controller and TSK-type NFN controller.
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Figure 2.11: Final system response in second case of example2. (a) The dashed line represents

plant output and the solid line represents the reference model. (b) Error curves of FLNFN
controller and TSK-type NFN controller.
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Figure 2.12: Final system response in third case of example 2. (a) The dashed line represents

plant output and the solid line represents the reference model. (b) Error curves of FLNFN
controller and TSK-type NFN controller.
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Figure 2.13: Final system response in fourth case of example 2. The dashed line represents

plant output and the solid line represents the reference model.
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Table 2.2: Comparison of performance of various controllers to control of

BIBO nonlinear plant.
FLNFN FLNN TSK-type NFN
Method
Controller Controller [25] Controller [9]
Training
500 1000 500
Steps
Parameter 6 rules/ 9 rules/
79 parameters
Numbers 60 parameters 63 parameters
RMS error
0.0004 0.0211 0.0084
of casel
RMS error
0.0006 0.0208 0.0075
of case2
RMS error
0.0007 0.0303 0.0095
of case3

Example 3: Control of Ball and Beam System
Figure 2.14 presents the ball and beam'system [61]. The beam is made to rotate in the
vertical plane by applying a torque at the Center of rotation and the ball is free to roll along the

beam. The ball must remain in contact with the beam:

Figure 2.14: Ball and beam system.

The ball and beam system can be written in state space form as

X X, 0
X, B(x,x; — Gsinx;) 0
= +
X3 Xy 0 (2.26)
X, 0 1
y=%
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where x=(x,,x,,x;,x,) =(r,7,0, 0)" is the state of the system and y=x, =r isthe output

of the system. The control  is the angular acceleration (&) and the parameters B = 0.7143
and G = 9.81 are set in this system. The purpose of control is to determine u(x) such that the
closed-loop system output y converges to zero from different initial conditions.

According to the input/output-linearization algorithm [61], the control law u(x) is
determined as follows; for state x, compute v(x)=—-a;@,(x)—a,p,(x)—,d,(x) - p (x),

where ¢ (x)=x,, ¢(x)=x,, ¢(x)=-BGsinx,, ¢(x)=—BGx,cosx, and ¢, are

chosen such that s*+a,s’+a,s’+as+a, is a Hurwitz polynomial. Compute

a(x)=—BGcosx, and b(x)=BGx; sinx,; then u(x)=[v(x)—b(x)]/a(x).

In this simulation, the differential equations are solved using the second/third-order
Runge-Kutta method. The FLNEN model is trained to approximate the aforementioned
conventional controller of a ball and beam system. 'u(x) =[v(x)—b(x)]/ a(x) is adopted to
generate the input/output train pair with x obtained by randomly sampling 200 points in the
region U=[-5,5]x[-3,3]x[-1,1]x[-2,2]. After online structure-parameter learning, 14 fuzzy rules
are generated. The controller after learning was tested under the following four initial
conditions; x(0) = [2.4, -0.1, 0.6, 0.1]%, [1.6, 0.05, -0.5, -0.05]", [-1.6, -0.05, 0.5, 0.05]" and
[-2.4, 0.1, -0.6, -0.1]". Figure 2.15 plots the output responses of the closed-loop ball and beam
system controlled by the FLNFN model and the TSK-type NFN model. These responses
approximate those of the original controller under the four initial conditions. In this figure, the
curves of the FLNFN model tend quickly to stabilize. Figure 2.16 also presents the behavior
of the four states of the ball and beam system, starting at the initial condition [-2.4, 0.1, -0.6,
-0.1]". In this figure, the four states of the system decay gradually to zero. The results
demonstrate the perfect control capability of the trained FLNFN model. The performance of
the FLNFN controller is compared with that of the FALCON controller [5], the FLNN
controller [25] and the TSK-type NFN controller [9]. Table 2.3 presents the comparison
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results. The results demonstrate that the proposed FLNFN controller outperforms other

controllers.

Metar

1 1
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Figure 2.15: Responses of ball and beam system controlled by FLNFN model (solid curves)
and TSK-type NFN model (dotted curves) under four initial conditions.
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Figure 2.16: Responses of four states of ball and beam system under the control of the trained
FLNFN controller.
Table 2.3: Comparison of performance of various controllers to control of ball and

beam system.

FLNN
FLNFN FALCON TSK-type NFN
Method Controller
Controller Controller [5] 25] Controller [9]
Training
500 50000 1000 500
Steps
Parameter 14 rules/ 28 rules/ 317 22 rules/
Numbers 280 parameters 280 parameters | parameters | 286 parameters
RMS
0.056 0.2 0.153 0.079
errors
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Example 4: Control of Multi-input Multi-output (MIMO) Plant

In this example, the MIMO plants [62] to be controlled are described by the equations

05 2nlk)
Yulk+1) 1 | 1+ y0 (k) (k)
[y,,z( k+1)} o5 2n(F)y (k) Lz(k )}'
' 1+y;2;2(k)

(2.27)

The controlled outputs should follow the desired output y,; and y,, as specified by the

following 250 pieces of data;

{yrl(k)} _{sin(kﬂ/45)} (2.28)

V.,(k) - cos(km/45)

The inputs of the FLNFN are y,;(k),wy2(k)s y,1(k) and y,2(k), and the outputs are u;(k) and
ux(k). After 500 training iterations,. four fuzzy rules are generated. In this example, the
proposed FLNFN controller is compared to,the FLNN tontroller [25] and the TSK-type NFN
controller [9]. Each of the controllers.is applied to control the MIMO plant. To demonstrate
the performance of the proposed controller; Figures 2.17(a) and (b) plot the control results of
the desired output and the model output using FLNFN controller. Figures 2.17 (¢) and (d)
show the error curves of the FLNFN controller and the TSK-type NFN controller. Table 2.4
presents the RMS errors of the FLNFN controller, the FLNN controller and the TSK-type
NFN controller. Table 2.4 shows that, according to the simulation results, the proposed

FLNFN controller is better than the other controllers.

Table 2.4: Comparison of performance of various controllers to control of MIMO plant.

FLNFN FLNN Controller |TSK-type NFN Controller
Method
Controller [25] [9]
Training Steps 500 1000 500
4 rules/ 10 rules/
Parameter Numbers 161 parameters
128 parameters 140 parameters
RMS errors 0.0002 0.0738 0.0084
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Figure 2.17: Desired output (solid line) and model output using FLNFN controller (dotted line)
of (a) Output 1. (b) Output 2 in Example 4. Error curves of FLNFN controller (solid line) and
TSK-type NFN controller (dotted line) for (c) output 1 and (d) output 2.

2.4 Summary

This dissertation proposes a functional-link-based neuro-fuzzy network (FLNFN) structure for

nonlinear system control. The FLNFN model uses a functional link neural network to the
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consequent part of the fuzzy rules. The FLNFN model can automatically construct and adjust
free parameters by performing online structure/parameter learning schemes concurrently. The
FLNFN model was proven to be a universal approximator and to convergence stably. Finally,
the proposed FLNFN model yields better simulation results than other existing models under

some circumstances.

36



Chapter 3

A Modified Differential Evolution for the FLNFN
Model

In Chapter 2, we have developed the functional-link-based neuro-fuzzy network (FLNFN).
However, the back-propagation learning algorithm may reach the local minima very quickly.
Therefore, a modified differential evolution (MODE): is presented to optimize the FLNFN
parameters in this chapter. The.proposed MODE learning algorithm has two crucial ideas.
First, MODE adopts a method to"effectively search between the best-so-far individual and
randomly chosen individuals. Therefore, MODE not only explores the search space by
randomly chosen individuals but also exploits the search capability of a near global optimal
solution by the best-so-far individual. Second, MODE provides a cluster-based mutation
scheme, which maintains useful diversity in the population to increase the search capability.
The cluster-based mutation scheme prevents the MODE from being trapped in local optima of

the search space.

3.1 A Brief Introduction of Differential Evolution

This section describes basic concepts concerning differential evolution (DE) [53]. Differential

evolution is a parallel direct search method which utilizes NP N-dimensional parameter
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vectors
X6, i=1,2,..,NP (3.1

as a population for each generation G. NP does not change during the minimization process.
The initial vector population is chosen randomly and should cover the entire parameter space.
As a rule, we will assume a uniform probability distribution for all random decisions unless
otherwise stated. In case a preliminary solution is available, the initial population might be
generated by adding normally distributed random deviations to the nominal solution. DE
generates new parameter vectors by adding the weighted difference between two population
vectors to a third vector. Let this operation be called mutation. The mutated vector’s
parameters are then mixed with the parameters of another predetermined vector, the target
vector, to yield the so-called trial vector. Rarameter mixing is often referred to as “crossover”
in the ES-community and will be explaingéd later in.more detail. If the trial vector yields a
lower cost function value than the target vector, the trial vector replaces the target vector in
the following generation. This last operation-is called selection. Each population vector has to
serve once as the target vector so that VP competitions take place in one generation.

More specifically DE’s basic strategy can be described as follows:

Mutation —For each target vector x,,, i=1,2,..., NP, a mutant vector is generated

according to
Vign =X, 6+ F-(x, 6 —x. ;) (3.2)

with random indexes r,,r,,7; € {1, 2, NP}, integer, mutually different and ¥ > 0. The
randomly chosen integers r;, ; and #; are also chosen to be different from the running index i,

so that NP must be greater or equal to four to allow for this condition. F'is a real and constant

factor[0, 2] which controls the amplification of the differential variation (xrz,c_x,~3,c)-

Figure 3.1 shows a two-dimensional example that illustrates the different vectors which play a
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part in the generation of v, ;..

.
Vig+1=Xn,cTF (.er,G - X3,G)

> Xy

Figure 3.1: An example of a two-dimensional cost function showing its contour lines and the

process for generating v, ;.

Crossover —In order to increase the diversity of'the perturbed parameter vectors, crossover is

introduced. To this end, the trial ¥ector:
W T (”1;',G+1a Ui, G105 uNi,G+1) (3.3)

is formed, where

V.. if (r())<CR)or j=rn(i
- { won OGS CRYOr =) o

X, if (7(j)> CR)or j = m(Gy !~

In Eq.(3.4), r(j) is the jth evaluation of a uniform random number generator with

outcome e [0,1]. CR is the crossover constante[0,1] which has to be determined by the user.

rn(i) is a randomly chosen index €1,2,.., N which ensures that u, ., gets at least one

parameter from v, ., . Figure 3.2 gives an example of the crossover mechanism for

7-dimensional vectors.
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Xi,G ViG+1 Ui G+1

j=1 =1 =1
2 2 2
r(3)<=CR
3 3 —»3
r(4)<=CR
4 4 —> 4
5 5 5
r(6)<=CR
6 6 —>» 6
7 7 7
Target vector Mutant Trial
containing the vector vector
parameters X;;
j: 1 ,2, eee ,N

Figure 3.2: Illustration of the crossover process for N=7 parameters.

Selection — To decide whether or not it should become a member of generation G+1, the trial

vector u, .., is compared to the target,véctor! =, .  using the greedy criterion. If vector
u, ;,, yields a smaller cost function value than %, .,then x, .., issetto u, ., ; otherwise,

the old value x, is retained.

3.2 A Modified Differential Evolution

This section describes a modified differential evolution (MODE) for the FLNFN model. The
MODE learning algorithm consists of four major phases — the initialization phase, the
evaluation phase, the reproduction phase and the cluster-based mutation phase. First, the
initialization phase creates an initial population. Second, the evaluation phase evaluates the
performance of each individual using an objective function. Third, the reproduction phase
generates new individuals and select survivors to the next phase. Fourth, the cluster-based
mutation phase ensures diversity and prevents a population from converging to a suboptimal

solution. The whole learning process is described step-by-step below.

40



3.2.1 [Initialization Phase
A. Coding Step

The foremost step in MODE is the coding of the neuro-fuzzy network into an individual.
Figure 3.3 shows an example of the coding of parameters of the neuro-fuzzy network into an
individual where i and j represent the ith input variable and the jth rule, respectively. In this
dissertation, a Gaussian membership function is adopted with variables that represent the

mean and variance of the membership function. Figure 3.3 represents the neuro-fuzzy
network given by Eq. (2.3), where m; and o, are the mean and variance of a Gaussian
membership function, respectively, and w;; represents the corresponding link weight of the

consequent part that is connected to the jth rule node. In this dissertation, a real number

represents the position of each individual.

Individual | Rule; [ Rule, | ..... | Rule; [ ..... [Ruler

mp| oy | My | O |-eeee| MYy Cif..... Wi | Wi |- | Wi

j

Figure 3.3: Coding FLNFN into an individual in the proposed MODE method.

B. Create Initial Population

Before the MODE learning algorithm is applied, every individual x,, must be created

randomly in the range [0, 1], where i=1, 2, ..., PS represents the ith individual for each

generation g and PS denotes the population size.

3.2.2 Evaluation Phase
In this dissertation, we adopt a fitness function (i.e., objective function) to evaluate the
performance of each individual. The fitness function is defined as follows:

41



Fitness Value = ! (3.5)

1 & _
1+\/ FZ(yk_yk)

t k=1

where y; represents the model output of the kth data, y, represents the desired output of the

kth data, and N, represents the number of the training data.

3.2.3 Reproduction Phase
A. Parent Choice

Each individual in the current generation is allowed to breed through mating with other

randomly selected individuals from the population. Specifically, for each individual x, ,, i=1,

2, ..., PS, where g denotes the current generation, three other random individuals, x X

n.8° .8
and x, ., are selected from the population such- that »;, r,, and r; € {1,2,...PS} and
i # 1, #r, #1,. This way, a parent pool of four individuals is formed to produce an offspring.

B. Offspring Generation

After choosing the parents, MODE applies a differential operation to generate a mutated

individual v, ., according to the following equation:

Vig =X, +(1-F)(x, ,—x

)HE (X =X, ) (3.6)

3.8
where F, commonly known as the scaling factor, is defined as % to control the rate at

which the population evolves, g denotes the current generation, G is the maximum number of

generations, and x,,, is the best-so-far individual in each generation. To complement the
differential operation search strategy, then MODE uses a crossover operation, often referred to

as discrete recombination, in which the mutated individual v,, is mated with x;,, and

generates the offspring u, , . The elements of an individual u,, are inherited from x,, and
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v. ., which are determined by a parameter called crossover probability (CR [0,1]), as

g’

follows:

(3.7)

if Rand(d)> CR

Viag» 1f Rand(d)<CR
uidgz X

id,g»
where d =1,2,...,D denotes the dth element of individual vectors. Rand(d)€[0,1] is the
dth evaluation of a random number generator.

C. Survivor Selection

MODE applies selection pressure only when selecting survivors. A knockout competition

is played between each individual x,, and its offspring u,,, and the winner is selected

deterministically based on objective function values and is then promoted to the next phase.

Moreover, the best individual also reserves to the next generation.

3.2.4 Cluster-Based Mutation Phase

To prevent the MODE from bemg. trapped in the-local optima of the search space (i.e.,
problems in which there are a number of points that are better than all their neighboring
solutions, but do not have as good a fitness as the globally optimal solution), we adopt a
cluster-based mutation scheme, which maintains diversity in the population to increase the
search capability. We use an easy and fast self-cluster algorithm (SCA) [66] to cluster the
population. Each cluster can be viewed as a subspace with similar biological features in the
environment that can support different types of life; that is, these similar individuals of each
cluster direct the search toward the same local optima. Then, for each cluster, the best
individual will be reserved and other individuals will be suitably mutated to the next
generation. Mutation is an operator that randomly alters the allele of an element. Figure 3.4

shows the mutation of an individual. The mutation value is generated according to
Mean: Individual[d]=m, +random[0,1]x o (3.89)

43



Variance: [Individual[d]=2xrandom[0,1]x o, 3.9

/
Other parameters: Individual[d]= random[—1,1] (3.10)
where m;; and o are the current mean and variance in the current individual, respectively.

Following the mutation step, a new individual can be introduced into the each population.

Mutation Point

Old Individual mp| oy |eeeee| Mg | O |----- Wip | oo My | O1j | eeen| My O-,'j e[ Wi |
m‘/ne
New Individual |m,; | o)) [.....] my | oy |- Wi | oo my | oy oo ™[Oy o Wy ]

Figure 3.4: A mutation operation in the modified differential evolution.

3.3 Experimental Results

This dissertation demonstrated. the: performance ' of the FLNFN-MODE controller for
nonlinear system control. The FLNFN-MODE controller is applied to control of water bath
temperature system. In addition, this experimentation discusses the use of a real-time digital
control environment with a hardware-in-the-loop (HIL) control application. We configure a
real-time visual simulation (VisSim) environment including a RT-DAC4/PCI motion control
card and HIL systems to demonstrate the performance of the FLNFN-MODE controller for
practical control applications. VisSim is a Windows-based program for the modeling and
simulation of complex nonlinear dynamic systems. VisSim combines an intuitive drag and
drop block diagram interface with a powerful simulation engine. We can generate a VisSim
diagram using a customizable ANSI C code directly. In this dissertation, we applied the
FLNFN-MODE controller to the planetary train type inverted pendulum system and the

magnetic levitation system in the VisSim. The experiment compares the performance with
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that of the FLNFN-MODE controller, the FLNFN-DE controller, and the FLNFN-GA
controller. Table 3.1 presents the parameter settings before training used in the three computer
simulations for the MODE. In the DE, the population size is set to 50, the maximum number
of generation is set to 2000, and the crossover rate is set to 0.9. In the GA, the population size
is set to 50, the maximum number of generation is set to 2000, the crossover rate is set to 0.5,

and the mutation rate is set to 0.3.

Table 3.1: Parameter settings before training.

Parameter Value
Population Size 50
Maximum Number of

. 2000
Generation
Crossover Rate 09
Coding Type Real Number

Example 1: Control of Water Bath Temperature System

The description of the system'is'the sameas Example 1 of Section 2.3. In this example,
four fuzzy rules are adopted and the population size is set to 50. The evolution proceeded for
2000 generations, and was repeated thirty times.

This dissertation compares the FLNFN-MODE controller to the FLNFN-DE controller
and the FLNFN-GA controller. Each of these controllers is applied to the water bath
temperature control system. The performance measures include the set-points regulation, the
influence of impulse noise, and a large parameter variation in the system, and the tracking
capability of the controllers.

Figure 3.5(a) presents the regulation performance of the FLNFN-MODE controller. The
regulation performance was also tested using the FLNFN-DE controller and the FLNFN-GA
controller. Figure 3.5(b) plots the error curves of the FLNFN-MODE controller, the

FLNFN-DE controller and the FLNFN-GA controller. Figure 3.6(a) and (b) present the
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behaviors of the FLNFN-MODE controller under the influence of impulse noise, and the
corresponding errors, respectively. Figure 3.7(a) presents the behaviors of the FLNFN-MODE
controller when in the plant dynamics change. Figure 3.7(b) presents the corresponding errors
of the FLNFN-MODE controller, the FLNFN-DE controller and the FLNFN-GA controllers.
Figure 3.8(a) presents the tracking performance of the FLNFN-MODE controller. Figure
3.8(b) presents the corresponding errors of the FLNFN-MODE controller, the FLNFN-DE
controller, and the FLNFN-GA controller. The aforementioned simulation results, presented in
Table 3.2, demonstrate that the proposed FLNFN-MODE -controller outperforms other

controllers.
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Figure 3.5: (a) Final regulation performance of FLNFN-MODE controller in water bath
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system. (b) Error curves of the FLNFN-MODE -controller, FLNFN-DE controller and
FLNFN-GA controller.
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Figure 3.6: (a) Behavior of FLNFN-MODE controller under impulse noise in water bath
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Table 3.2: Comparison of performance of various controllers to control of

20 40 60

(b)

water bath temperature system.

—— FLNFN-MODE
~==- FLNFN-DE
.......... FLNFN-GA

I L
80 100

120

120 FLNFN-MODE | « FENFN-DE FLNFN-GA
SAE=] y,, (k)= y(k)|
=t Controller Controller Controller
Regulation
352.78 352.91 372.85
Performance
Influence of Impulse
] 270.59 270.65 282.21
Noise
Effect of Change in
- 263.39 263.25 270.66
Plant Dynamics
Tracking
42.03 42.92 62.02
Performance

Example 2: Control of Planetary Train Type Inverted Pendulum System

In order to predict the dynamic behavior of a system from given input command and
initial conditions of the system, it is necessary to make a mathematical model of the planetary
train type inverted pendulum system [67]. The dynamic behavior of the system is helpful in
sizing the actuator, choosing the amplifier power, designing the details of the mechanisms,

and tuning the controller by computer simulation. To clarify the kinematic and dynamic
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relations, three major movable parts, the center gear, the planetary gear and the pendulum, are

depicted in Fig. 3.9.

Figure 3.9: A physical model geometry,of the planetary train type inverted pendulum.

The kinematic relations of the| three components can be allotted to two mutual
movements as follows. First, we assume the pendulum to be stationary (6, =0). The ratio of

the movements of the planetary gear to the center gear is

e __MN_ 1 (.11)
0, N, n

where 6, and 6, are the angle of the center gear and the planetary gear, respectively; N,
and N, are the number of the tooth of the center gear and the planetary gear, respectively; ;
and 7, are the radius of the center gear and the planetary gear; the dot denotes the time
derivative; and 91' refers to the angular velocity of the planetary gear in this case. Thus,

0 =eb),. (3.12)
Second, we assume the center gear to be stationary (92 =0) and allow the pendulum and

planetary gear to turn. The velocity of the planetary gear center can then be expressed as

v=(r+n)6,. (3.13)
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This velocity lets the angular velocity of the planetary gear (91" ) in this case be

9'1"=fl=’t—lr249‘0. (3.14)
Combining Egs. (3.13) and (3.14), we obtain
6, = 6!+ 6!
g+ G19)
n

For the purpose of obtaining the relations between the input motor torque 7,, the output
responses of the pendulum 6,, and the center gear 6,, we will use Lagrangian mechanics.
Using this method can ensure that we analyze the mechanism in a systematic approach. It

starts with the findings of kinetic energy and potential energy of each movable part.

1 .
Kz 2512922

P =0

8]

K =%ml[(r1 +7,)6,1 +%119',2

B =mg(n +#)cos 0, (3.16)

1(1 .
0 =5[§m012j902

P = mog%cosﬁo

X

where K,,K,,and K, are the kinetic energy of the center gear, the planetary gear and the
pendulum, respectively; P, F,and F, are the potential energy of the center gear, the
planetary gear and the pendulum, respectively; 7, and /, are the moment of inertia of the
center gear and the planetary gear, respectively; m, and m, are the mass of the planetary gear
and the pendulum, respectively; and / is the length of the pendulum.

Substituting Eq. (3.15) into Eq. (3.16), we obtain Lagrangian as follows:
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L= K->P
1 1 :
:[Eml(rl +r2)2+gmolz}6’02
2
) ) L (3.17)
+%Il[e6?2+rl+r2 eoj +%12922

h

—{ml(r1 +r2)+%mo}gcost90

Because 6, and 6, are two independent variables, we regard them as generalized

coordinates. Using Lagrange’s equation, two of the dynamic equations are derived as follows:

d oL OL
=) "5
dt 06, 06, 18)
= (e, +1,)d, + e(“—rzjlléo
h
d  OL oL
to=— ()"
dt 06, a8,
; _
:[{”1‘*‘_”2} 1, +m1(r1+r2)2+%m012 b, : (3.19)
i

+e(r1 =8 ]Iléz —|:m1(r1 +r2)+%m0 gsing,

h

In Eq. (3.19), there is no external torque ‘applied in the pendulum, so we assign zero to the
variable 7.

In this dissertation, the proposed control structure is shown in Fig. 3.10. The applied
encoder is used to sense the angle of the pendulum and then to translate the signal as a
feedback signal. The pendulum angle is controlled by a motor torque until the pendulum is
balanceable. To validate the usefulness of the proposed control system under different
reference trajectories, two cases, including the set-point command (i.e., the stick angle
command is equal to zero) and the periodic square command (i.e., the stick angle command is

equal to the square wave) are used in this experimentation.
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Figure 3.10: Control block diagram for the planetary train type inverted pendulum system.

This dissertation compares the FLNFN-MODE controller to the PID controller, the
FLNFN-DE controller, and the FLNFN-GA controller. Each of these controllers is applied to
the planetary train type inverted pendulum system. The PID controller is implemented as

follows:

1 de
u(t) =K e(t) + K, jo e(tdr+K, (3.20)

where u(¢) is the control output and the error, €(¢), iS:defined as e(f)=desired value-measured
value of quantity being contrglled. The control gaifis K,=830, K=0, and K,~=0.3284 are
designed. The training patterns=of the FLNEN model are generated using the various PID
controllers with different control gains.

Figure 3.11 shows an experimental planetary train type inverted pendulum system test
used to validate the experimentation results. The performance measures include the set-points
regulation (Case 1) and the square command tracking capability (Case 2) of the controllers. In
Case 1, the proposed system is controlled to follow the set-points, which is equal to zero.
Figure 3.12(a)-(d) presents the regulation performance of the FLNFN-MODE controller, the
PID controller, the FLNFN-DE controller, and the FLNFN-GA controller. Figure 3.12(e) plots
the scaling curves of the FLNFN-MODE controller and the PID controller between the 1.5™
second and the 3.5™ second. To test their regulation performance, two performance indexes,
the sum of absolute error (SAE) for the pendulum angle and the pendulum speed, are defined

by
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0,7 -6, (3.21)

0, -0, and S4E, =

SAE, =Y
where ) and 6, are the referred pendulum angle and the actual pendulum angle,
respectively, and e'gef ~and 5’0 are the referred pendulum speed and the actual pendulum
speed, respectively. The SAE, and SAE 4 of the experimental results are presented in

Table 3.3.
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Figure 3.12: (a)-(d) Final regulation performance of the FLNFN-MODE controller, PID
controller, FLNFN-DE controller and FLNFN-GA controller. (e) Scaling curves of the
FLNFN-MODE controller and PID controller between the 1.5 second and the 3.5™ second.

In Case 2, the tracking capability of thevpr()posed system is tested using a square wave
with amplitude +£0.02 and fréquency O.SHZ.' F igﬁre 3.13(a)-(d) presents the regulation
performance of the FLNFN-MODE controller, the PIDV controller, the FLNFN-DE controller,
and the FLNFN-GA controller. Figure 3 .13(6)7plots the scaling curves of the FLNFN-MODE
controller and the PID controller between the 4™ second and the 8" second. A summary of the
experimental results are presented in Table 3.3. As presented in Table 3.3, the proposed

FLNFN-MODE controller outperforms the other controllers.
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Figure 3.13: (a)-(d) Tracking of the FLNFN-MODE controller, PID controller, FLNFN-DE
controller and FLNFN-GA controller, respectively, for a square wave with amplitude +0.02

and frequency 0.5Hz. (e) Tracking curves of the FLNFN-MODE controller and PID controller
between the 4™ second and the 8" second.

Table 3.3: Comparison of performance .of various controllers to control of the

planetary train type inverted pendulum 'system with a 0.1s sampling rate.

FLNFN-MODE PID ELNFN-DE FLNFN-GA
Controller Controller Controller Controller

SAE, | SAE, | SAEj.SAEg | SAE, | SAE, | SAE, | SAE,

& 9 2

Case 1|33.3549|68.5454|34.0881|73.3770(33.4316(69.1548|33.5696|69.7101
Case 2(33.6101(72.3521|34.4442|80.4085|33.7968|72.9001|33.8245|73.3907

Example 3: Control of Magnetic Levitation System

In order to construct a physical model of the behavior of the magnetic levitation system
[68], it is necessary to make some statements about the system and also to make some
simplifying assumptions. The physical model of the sphere and coil of the magnetic levitation
system is shown in Fig. 3.14. The applied control is voltage, which is converted into a current
within the mechanical unit. The current passes through an electromagnet which creates the

corresponding magnetic field in its vicinity. The sphere is placed along the vertical axis of the

electromagnet.
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Using the fundamental principle of dynamics, the behavior of the ferromagnetic ball is

given by the following electromechanical equation

2

mcjlx—mg—FB(x,i) (3.22)

P

where m is the mass of the levitated ball, g denotes the acceleration due to gravity, x is the
distance of the ball from the electromagnet, i is the current across the electromagnet, and
F,(x,i) is the magnetic control force.

The effect of the magnetic field from the electromagnetic is to introduce a magnetic
dipole in the sphere which itself becomes magnetized. The force acting on the sphere is then
composed of gravity and the magnetic force acting on the induced dipole. The magnetic field
at a distance of x from the end of the coil may be calculated from the Biot-Savart Law. This
states that the magnetic field produced by ajsmall segment of wire, dS, carrying a current / is
given by

ﬂ]der

dB = (3.23)

4z . r

where u, is the permeability of free space and dSxr is the vector product of dS and r.

Coil ds Metal
r Sphere
Electro- [ \? ?\
<magnetic©ﬁ{ Fy IQJI > mg
X | X |
/]

Figure 3.14: Sphere and coil arrangement of the magnetic levitation system.

We are interested in the field along the axis of the coil. Consideration of symmetry
shows that the magnetic field perpendicular to the axis is zero. To evaluate the integral in Eq.
(3.23), we position the current carrying element dS to lie horizontally on the top of the coil
and specify it by its unit vector components similarly, we specify the vector r by its unit
vector components. Then we have

dS=dS[010] and r=r[sind 0 cosé]. (3.24)
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In Eq. (3.23), the vector product of dS and r from Eq. (3.24) is given by

dSxr=dSr[cosd 0 sind]. (3.25)
Now, from considerations of symmetry the field component perpendicular to the coil axis

must be zero on the axis. This is the sind component in Eq. (3.25). Also
the radius of the coil R =7 cosé . (3.26)

Hence, from Egs. (3.23), (3.25) and (3.26), the magnetic field component dB_ along the axis

is given by

_ 4, IdSR .

dB and °=(R*+x%)2. (3.27)

Y o4r
Hence integrating Eq. (3.27) round a single loop gives

2
szf_o ]27rR3
T (R +x%)?
M LR
3

0 3
(R2+xz)2

(3.28)

To evaluate the field due to the many-turns along the axis of the coil, let » be the number
of turns per meter and let L (m) be its length. Now, .we sum all the contributions from all the
turns of the coils, as shown in Fig 3.14. When Eq. (3.28) is used, the total axial field from all

the turns of the coil becomes

IRz X+L
g M J- dx

Total — 3 (329)
2 X 2 2\2
(R"+x7)?
Integrating Eq. (3.29) by parts gives
IR’
BTntal = luo n2 X+L 1 - X 1 (330)
RP(R*+(X+L))* R*(R*+X?)?
We can rewrite Eq. (3.30) as
B(x)=K, 1 G(X) (3.31)

The force on the ball due to the field is proportional to the induced dipole strength and

the field strength. The induced dipole strength is itself proportional to the field strength and,
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hence, the upwards force on the ball due to the field B is given by
F,=K, K, I’ (G(X)-G(X +&X)). (3.32)
Therefore,

F,~—K,18X G (X) (3.33)

where G'(X) denotes the derivation and X is the dipole separation. On the assumption that

the poles are located at the centre of the mass of each hemisphere of the ball, 60X is small
compared to L and R and may be taken as a constant. Therefore, Eq. (3.33) becomes

F,~KI*G(X). (3.34)

In this dissertation, the proposed control structure is shown in Fig. 3.15. The applied

photo detector is used to detect the position of the levitated object and then to translate the

signal as feedback signal.

___________________ -
I Jevitated object : levitated object
position command ; it
: Controller D/AF=- Driver .Ma.lgn etie LI
| Levitation System
: |
I |
I |
|
| . Photo
| A/D ; Detector
|
|

Figure 3.15: Control block diagram for the magnetic levitation system.

In this experiment, the proposed FLNFN-MODE controller is compared to the PID
controller, the FLNFN-DE controller, and the FLNFN-GA controller. Each of the controllers
is applied to control the magnetic levitation system. As in example 2, the PID controller with
K,=1.7, K=0, and K;~=0.031 is designed. The training patterns of the FLNFN model are
generated using the various PID controllers with different control gains. Figure 3.16 shows an
experimental magnetic levitation system which is tested to validate the experimentation
results. In the following four cases, the FLNFN-MODE controller is demonstrated to have
outperformed the other controllers.
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Figure 3.16: Experimental magnetic levitation system.

The first case and the second case are used to verify the tracking capability of the
controllers. In the first case, the reference signal is given by a sinusoidal wave with amplitude
0.5 and frequency 0.2Hz, and in the second case, the reference signal is presented by a square
wave with amplitude 0.5 and frequency 0.2Hz. The final experimental results of the

FLNFN-MODE controller, the PID cofifroller, {fie,FLNFN-DE controller and the FLNFN-GA

controller are shown in Fig. 3.12%?5—@)@3){1[

Fd:gi:-i_fg_éa)-(d). To evaluate their performance, a
performance index, the sum of a})'s.olutﬁ*I error (SAE), i,é:;]aeﬁned by

A=

(3.35)

TEARRENT

where P’/ and P are the reference trajectory and the actual position of the simulated

system, respectively. In the first case, the SAE, values of the FLNFN-MODE controller, the
PID controller, the FLNFN-DE controller and the FLNFN-GA controller are, respectively,
12.9002, 27.7017, 13.9169 and 15.1572, which values are given in the second row of Table
3.4. In the second case, the SAE, values of the FLNFN-MODE controller, the PID
controller, the FLNFN-DE controller and the FLNFN-GA controller are, respectively, 48.4033,
85.7310, 50.7233 and 53.5194, which values are given in the third row of Table 3.4. The

proposed FLNFN-MODE controller has a smaller SAE, value than the other controllers.
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Figure 3.17: (a)-(d) Experimental results of FLNFN-MODE -controller, PID controller,
FLNFN-DE controller and FLNFN-GA controller due to periodic sinusoidal command for
reference position and actual position, tracking error and control effort.
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Figure 3.18: (a)-(d) Experimental results of FLNFN-MODE -controller, PID controller,
FLNFN-DE controller and FLNFN-GA controller due to periodic square command for

reference position and actual position, tracking error and control effort.

The third experimentation is performed to demonstrate the noise-rejection ability of the
four controllers when some unknown impulse noise is imposed on the process. One impulse
noise value, —8mm, is added to the plant output at the 7™ second. A set- -point of 2.5mm is
adopted in this experimental case. The FLNFN-MODE controller can recover from the
disturbance quickly after the occurrence of the impulse noise, as shown in Fig. 3.19(a).
Figures 3.19(b)-(d) present the behaviors of the other three controllers under the influence of

impulse noise. The SAE, values of the FLNFN-MODE controller, the PID controller, the
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FLNFN-DE controller, and the FLNFN-GA controller are, respectively, 9.2709, 12.7345,
10.1515 and 10.8771, which are shown in the fourth row of Table 3.4. The FLNFN-MODE

controller performs quite well.
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Figure 3.19: (a)-(d) Behavior of the FLNFN-MODE controller, PID controller, FLNFN-DE
controller and FLNFN-GA controller under impulse noise in a magnetic levitation system for

reference and actual positions, tracking error, and control effort.

One common characteristic of many industrial-control processes is that their parameters
tend to change in an unpredictable way. The signal 0.6*u(z—0.005) is added to the plant
input between the 7" second and the 15" second in the fourth experiment to test the
robustness of the four controllers. A set-point of 2.5mm is adopted in this fourth experiment.
Figures 3.20(a)-(d) present the behaviors of the FLNFN-MODE controller, the PID controller,
the FLNFN-DE controller, and the FLNFN-GA controller when in the plant dynamics change.

The SAE, values of the FLNFN-MODE controller, the PID controller, the FLNFN-DE
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controller, and the FLNFN-GA controller are, respectively, 7.9469, 24.0004, 11.0672 and
14.0844, which values are shown in the fifth row of Table 3.4. The results present the
favorable control and disturbance rejection capabilities of the trained FLNFN-MODE

controller in the magnetic levitation system.
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Figure 3.20: (a)-(d) Behavior of the FLNFN-MODE controller, PID controller, FLNFN-DE
controller, and FLNFN-GA controller when a change occurs in the magnetic levitation system

for reference and actual positions, tracking error, and control effort.

Table 3.4: Comparison of performance of various controllers to control of the magnetic

levitation system with a 0.1s sampling rate.

SAE, = Z pr P‘ FLNFN-MODE PID FLNFN-DE | FLNFN-GA
Controller Controller | Controller | Controller
Tracking sinusoidal wave 12.9002 27.70017 13.9169 15.1572
Tracking square wave 48.4033 85.7310 50.7233 53.5194
Influence of Impulse
. 9.2709 12.7345 10.1515 10.8771
Noise
Effect of Change in Plant
i 7.9469 24.0004 11.0672 14.0844
Dynamics
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3.4 Summary

This dissertation proposes a functional-link-based neuro-fuzzy network based on a modified
differential evolution (FLNFN-MODE) for nonlinear system control. The FLNFN-MODE
controller adopts a nonlinear combination of input variables to the consequent part of fuzzy
rules and uses a modified differential evolution to optimize the system parameters. We applied
the FLNFN-MODE controller to the planetary train type inverted pendulum system and the
magnetic levitation system in the VisSim. The experimental results demonstrate that the
FLNFN-MODE controller obtains a smaller SAE value than the generally used FLNFN-DE,

FLNFN-GA, and PID controllers for solving nonlinear control problems.

70



Chapter 4

A Rule-Based Symbiotic Modified Differential
Evolution for the FLNFN Model

In this chapter, a rule-based symbiotic modified differential evolution (RSMODE) is proposed
for the FLNFN model. The proposed RSMODE learning algorithm consists of the
initialization phase to generate-initial rulebased subpopulation, and the parameter learning
phase to adjust the FLNFN parameters.-The initialization phase can determine the number of
rule-based subpopulation which satisfies the fuzzy. partition of input variables. Initially, there
is not any subpopulation. The rule-based subpopulation is automatically generated from
training data by entropy measure. The parameter learning phase combines two strategies
including a subpopulation symbiotic evolution (SSE) and a modified differential evolution
(MODE). The SSE in which each individual represents a single fuzzy rule differs from
original symbiotic evolution. Each subpopulation allows the rule itself to evolve. The MODE
adopts a method to effectively search between the best individual and randomly chosen
individuals. Therefore, the MODE not only explores the search space by randomly chosen
individuals but also exploits the search capability of a near global optimal solution by the

best-so-far individual.
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4.1 A Basic Concept of Symbiotic Evolution

Elements of any ecological system live in an intricate web of interdependence. When two
species of organisms live in close physical contact with each other, their relationship is called
symbiotic. In a symbiotic relationship at least one of the organisms directly benefits from its
close association with the other organism. There are three major forms of symbiotic
relationships: mutualism, commensalisms, and parasitism [69].

Mutualism — A reciprocal relationship in which two different species live in a symbiotic
way where both species benefit and are dependent upon the relationship, that is, both species
benefit by the relationship.

Commensalism — A relationship in which one species derives food or shelter from
another species without seriously harming that organism or providing any benefits in return,
that is, one species benefits while:the othetr species s not affected.

Parasitism— A relationship between two species in which one species (the parasite)
nourishes itself to the detriment’of the other species.(the host), that is, one species benefits
and the other is harmed.

Many researchers [70]-[74] have adopted the concept of mutualisms to develop
symbiotic evolution. In addition, recent development [75] in the concept of commensalisms
has provided a multi-swarm cooperative particle swarm optimizer method by the phenomenon

of symbiosis in natural ecosystems.

4.2 A Rule-Based Symbiotic Modified Differential Evolution

This section represents the proposed rule-based symbiotic modified differential evolution
(RSMODE). The RSMODE learning algorithm comprises the initialization phase and the
parameter learning phase. The initialization phase uses the entropy measure that determines

proper input space partitioning, finds the mean and variance of the Gaussian membership
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function and the number of rules. Next, the initial rule-based subpopulation is created
according to a range of the mean and variance of the membership function. The parameter
learning phase consists of a subpopulation symbiotic evolution (SSE) and a modified
differential evolution (MODE). Each individual in each subpopulation evolves separately
using a modified differential evolution. But in order to evaluate each individual, the individual
is composed a fuzzy system using other individuals (rules) in other subpopulations. The
detailed flowchart of the proposed RSMODE learning algorithm is presented in Fig. 4.1.
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Figure 4.1: Flowchart of the RSMODE learning algorithm.
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4.2.1 Initialization Phase
In this dissertation, we finish initialization phase from training data in the first generation.
This subsection introduces the production of initial rule-based subpopulation, covering the
coding and initialization steps. The coding step involves the membership functions and the
fuzzy rules of a fuzzy system that represent individuals and are suitable for subpopulation
symbiotic evolution. The initialization step assigns the number of subpopulation before the
evolution process begins.
A. Coding Step

The first step in RSMODE learning algorithm is the coding of a fuzzy rule into an
individual. Figure 4.2 shows an example of a fuzzy rule coded into an individual where i and j

are the ith dimension and the jth rule: Figure 4.2 describes a fuzzy rule given by Eq. (2.3),

where m; and o, are the mean and variance of a Gaussian membership function,

respectively, and w,; represents-the corresponding link weight of the consequent part that is

connected to the jth rule node. In this dissertation, a real number represents the position of
each

Individual

myi| G| mai| Gaf|.....| my | O,

il Wi | Wai|-eeoo | Whiy

Figure 4.2: Coding a fuzzy rule into an individual in the RSMODE learning algorithm.

B. Initialization Step
For training data, finding the optimal solution is difficult because the range of training
data is wide. Therefore, the data must be normalized. Let training date be transformed to the

interval of [0, 1]:

£ =1 Timin 4.1



where X, is the value after normalization; %, is the vector of the ith dimension to be

is the minimum value of vector X,; X is the maximum value of

i_max

normalized; x.

i_min
vector X;.

Before the RSMODE method is designed, the individuals that will constitute R initial
subpopulation must be created. The first step in initialization phase is to create the initial first
individual in each subpopulation to satisfy the fuzzy rule partition of input variables. The
fuzzy rule partition strategy can determine whether a new rule should be extracted from the
training data and determine the number of fuzzy rules in the universal of discourse of each

input variable, since one cluster in the input space corresponds to one potential fuzzy logic

rule, in which m, and o, represent the mean and variance of that cluster, respectively. For

each incoming data X,, the rule firing strength.can'be regarded as the degree to which the
incoming data belongs to the cotresponding cluster. Entropy measure between each data point
and each membership function is calculated based on a similarity measure. A data point of
closed mean will has lower entropy. Therefore, the entropy values between data points and
current membership functions are calculated to determine whether or not to add a new rule
into the initial first individual and create a new rule-based subpopulation space. For

computational efficiency, the entropy measure can be calculated using the firing strength from

,ui(/.z) (x,) as follow;

N
EM ;==Y D;log, D, (4.2)

i=1
where D, = exp(ul.(jz)(ii)‘l) and EM ; €[0,1]. According to Eq. (4.2), the measure is used to
generate a new fuzzy rule and new functional link bases for new incoming data is described as

follows. The maximum entropy measure

EM,, =maxEM, 4.3)

1<j<R
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is determined, where R is the number of existing rules. If EM < EM , then a new rule and

a new rule-based subpopulation space are generated, where me[o,l] is a prespecified

threshold.

Once a new rule has been generated, the next step is to assign the initial first individual
in the new rule-based subpopulation by the initial mean and variance to the new membership
function and the corresponding link weight. Hence, the mean, variance and weight for the new

rule are set as follows;

m; =X, (4.4)
Oy = Oy 4.5)
Wit =Fandom[-1,1] (4.6)

where X, is the current input data and o1 -is.a prespecified constant.

init

The second step is to create other individuals in each subpopulation according to a range

of the initial first individual. The following formulations show the production of the other

individuals.
Mean: [Individual[d]=m, +random[0,1]x o, , where d=1,3,...,2xN-1 4.7
Variance: [Individual[d]=2xrandom[0,1]x o, where d=2,4,...,2xN (4.8)
Other parameters: [ndividualld]=random[—1,1], where d>2xN 4.9)

where d is the site of each individual and m; and oy are the corresponding mean and variance,

respectively, of the initial first individual.

4.2.2 Parameter Learning Phase
The parameter learning combines two strategies including a subpopulation symbiotic

evolution (SSE) and a modified differential evolution (MODE). Each subpopulation allows
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the individual (rule) itself to evolve by evaluating the composed fuzzy system. Figure 4.3
shows the structure of the individual in the rule-based symbiotic modified differential

evolution. The parameter learning process is described step-by-step below.

Individual
m,, O-‘/ mz/- O'Z,|| I’VI[/ | O'”| ..... |W]/ Wg/ WM/
~ ~
~ ~
~ ~
4
Rule /7, Best Fuzzy System
Rule 7, | Rule / | | Rule j | | Rule R |
Subpopulation / < -
Rule 7,
L Rule 7, Current Fuzzy System
| Rule | | Ruleji | ... | Rule R |
4 Rule j,
Rulejz
. MODE
Subpopulation j < 2
Rule jk
Trial Fuzzy System
4 Rule R,
Rule Rz
Subpopulation R < -
Rule R,
_ Rule R,

Figure 4.3: Structure of the individual in the RSMODE learning algorithm.

Step 1: Generate the Initial Best Fuzzy System

In this step, we orderly select the first individual from each subpopulation, and compose
a fuzzy system as the initial best fuzzy system.
Step 2: Update Each Individual in Each Subpopulation using MODE

In order to update each individual in each subpopulation, we use a modified differential

77



evolution to select the better individual to the next step. Figure 4.4 gives an example of the
MODE process. Hence, this step comprises of three components - parent choice phase,
offspring generation phase and survivor selection phase.
Step 2.1: Parent Choice Phase

Each individual in the current generation is allowed to breed through mating with other

randomly selected individuals from the subpopulation. Specifically, for each current

individual x, ., k=1, 2, ..., PS, where g denotes the current generation and PS denotes the

population size, three other random individuals x x, ., and x, - are selected from the

1,82 1.8
subpopulation such that 7, 7, and ;€ {1,2,...PS} and k #r, #r, # r,. This way, a parent pool
of four individuals is formed to breed an offspring.

Step 2.2: Offspring Generation Phase

After choosing the parents,"MODE applies.adifferential operation to generate a mutated

individual v, ,.,, according to the following equation:
vk,g+1 = xrl,g + (1 Ty F) . (xrz,g & xr3,g) +F- (xhest - xrl,g) (410)

where F, commonly known as scaling factor, is defined as % to control the rate at which

the subpopulation evolves, g denotes the current generation, G is the maximum number of

generations, and x,,, is the corresponding parameter of the best fuzzy system. To
complement the differential operation search strategy, then uses a crossover operation, often

referred to as discrete recombination, in which the mutated individual v, .., is mated with

x,, and generates the offspring u, .. The element of trial individual u, ,,, are inherited

from x,, and v, ,,,, determined by a parameter called crossover probability (CR €[0,1]),

as follows:
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V., ..., if Rand(d)<CR
ukd,g+1={ e @ 4.11)

if Rand(d) > CR

kd,g >

where d =1,2,...,D denotes the dth element of individual vectors. Rand(d)<[0,1] is the
dth evaluation of a random number generator. For searching in nonseparable and multimodal

landscapes CR =0.9 is a good choice [55].

Xkg Vig+1 Ugg+1

d=1 =1 d=1

2 2 2
Rand(3) < CR

3 3 —> 3

4 4 4
Rand(5) <CR

5 5 —> 5
Rand(6) <CR

6 6 —> 6

7 7 7

8 8 8

Current Individual Mutated Individual Trial Individual
(ot

Figure 4.4: Illustration of the MODE process for 8-dimensional vector.

Step 2.3: Survivor Selection Phase

MODE applies selection pressure only when selecting survivors. First, the current

composed fuzzy system embeds the current individual x,, into the best fuzzy system and

the trial composed fuzzy system embeds the trial individual u, .., into the best fuzzy system.

Second, a knockout competition is played between the current composed fuzzy system and
the trial composed fuzzy system. Then, the corresponding individual of the winner is selected
deterministically based on objective function values and promoted to the next phase. In this
dissertation, we adopt a fitness function (i.e., objective function) to evaluate the performance

of these composed fuzzy systems. The fitness function is defined as follows.
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1
L B — (4.12)
1+\/ ﬁZ(yl_yz)

t 1=l

where y; represents the model output of the /th data; y, represents the desired output of the

/th data, and N, represents the number of the training data.
Step 3: Update the Best Fuzzy System

Compare the fitness value of the current composed fuzzy system, the trial composed
fuzzy system and the best fuzzy system. If the fitness value of the current composed fuzzy
system exceeds those of the best fuzzy system, then the best fuzzy system is replaced with the
current composed fuzzy system. If the fitness value of the trial composed fuzzy system
exceeds those of the best fuzzy system, and then the best fuzzy system is replaced with the
trial composed fuzzy system.
Step 4. Mutation

After the above process yielded joffspring, no new information is introduced to the each
subpopulation at the site of an individual. As a.source of new sites, mutation should be used
sparingly because it is a random search operator. In the following simulations, a mutation rate
was set to 1/(2*N+M), meaning that, on average, only one trial parameter is mutated, where N
is the number of input variables, M is the number of basis function of FLNFN and 2*N+M is
the length of each individual. Mutation is an operator that randomly alters the allele of a
element. The mutation adopted in MODE to yield diversity. The individual suffers from a
mutation to avoid falling in a local optimal solution and to ensure the searching capacity of
approximate global optimal solution. Figure 4.5 shows the mutation of an individual. The
mutation value is generated according to Eqs. (4.7)-(4.9), where m; and o; are the
corresponding mean and variance, respectively, of the current individual. Following the

mutation step, a new individual can be introduced into the each subpopulation.
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Figure 4.5: A mutation operation in the rule-based symbiotic modified differential evolution.

4.3 Experimental Results

This dissertation evaluated the performance of the proposed FLNFN controller using a
rule-based symbiotic modified differential evolution (FLNFN-RSMODE) for nonlinear
control systems. This section presents_several examples and compares the performance with
that of the FLNFN-RSDE controller, the EENEN-DE controller and the FLNFN-GA controller.
In the nonlinear control systemproblems, FLNFN-RSMODE is adopted to design controllers
in three simulations - water bath: temperature control system, ball and beam system and
backing up the truck. Table 4.1 presents the parameter settings before training used in the
three computer simulations for the RSMODE. In the RSDE and DE, the population size is set
to 50, the maximum number of generation is set to 2000, and the crossover rate is set to 0.9.
In the GA, the population size is set to 50, the maximum number of generation is set to 2000,

the crossover rate is set to 0.5, and the mutation rate is set to 0.3.

Table 4.1: Parameter settings before training.

Parameter Value
Population Size 50
Maximum Number of

] 2000
Generation
Crossover Rate 09
Mutation Rate 1/(2*N+M)
Coding Type Real Number
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Example 1: Control of Water Bath Temperature System

The description of the system is the same as Example 1 of Section 2.3. In initialization
phase, four subpopulations are generated. This dissertation compares the FLNFN-RSMODE
controller to the FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA
controller. Each of these controllers is applied to the water bath temperature control system.
The performance measures include the set-points regulation, the influence of impulse noise,
and a large parameter variation in the system, and the tracking capability of the controllers.

Figure 4.6 plots the learning curves of the best performance of the FLNFN-RSMODE
controller for the fitness value, the FLNFN-RSDE controller, the FLNFN-DE controller and
the FLNFN-GA controller, after the learning process of 2000 generations. Figure 4.7(a)
presents the regulation performance of the FENEN-RSMODE controller. The regulation
performance was also tested using.the FENFN-RSDE controller, the FLNFN-DE controller
and the FLNFN-GA controller. Figure 4.7(b) plots the error curves of the FLNFN-RSMODE
controller, the FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA
controller. Figure 4.8(a) and (b) present the behaviors of the FLNFN-RSMODE controller, the
FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA controller under the
influence of impulse noise, and the corresponding errors, respectively. Figure 4.9(a) presents
the behaviors of the FLNFN-RSMODE controller when in the plant dynamics change. Figure
4.9(b) presents the corresponding errors of the FLNFN-RSMODE controller, the
FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA controller. Figure
4.10(a) presents the tracking performance of the FLNFN-RSMODE controller. Figure 4.10(b)
presents the corresponding errors of the FLNFN-RSMODE controller, the FLNFN-RSDE
controller, the FLNFN-DE controller, and the FLNFN-GA controller. The aforementioned
simulation results, presented in Table 4.2, demonstrate that the proposed FLNFN controller
outperforms other controllers.
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Figure 4.6: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE,
FLNFN-DE and FLNFN-GA in Example 1.
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system. (b) Error curves of the FLNFN-RSMODE controller, FLNFN-RSDE controller, the
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FLNFN-DE controller, and FLNFN-GA controller.
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Figure 4.8: (a) Behavior of FLNFN-RSMODE controller under impulse noise in water bath
system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE controller, the
FLNFN-DE controller and FLNFN-GA controller.
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FLNFN-DE controller, and FLNFN-GA controller.
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Figure 4.10: (a) Tracking of FLNFN-RSMODE controller when a change occurs in the water
bath system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE controller, the
FLNFN-DE controller, and FLNFN-GA controller.

Table 4.2: Comparison of performance’ of various controllers to control of water bath
temperature system.

2 FLNFN-RSMODE . |' FLNFN-RSDE FLNFN-DE FLNFN-GA
SAE=Y | y,,(k) = (k)|
k=1 Controller Controller Controller Controller
Regulation Performance 352.66 352.81 35291 372.85
Influence of Impulse Noise 270.46 270.76 270.65 282.21
Effect of Change in Plant
i 262.63 263.21 263.25 270.66
Dynamics
Tracking Performance 41.73 42.56 42.92 62.02

Example 2: Control of the Ball and Beam System

The description of the system is the same as Example 1 of Section 2.3. In initialization
phase, 14 subpopulations are generated. This example was simulated 30 times. Figure 4.11
plots the learning curves of the best performance of the FLNFN-RSMODE controller for the
fitness value, the FLFNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA
controller, after the learning process of 2000 generations. The FLNFN-RSMODE controller
after learning was tested under the following four initial conditions; x(0) = [2.4, -0.1, 0.6,
0.11%, [1.6, 0.05, -0.5, -0.05]", [-1.6, -0.05, 0.5, 0.05]" and [-2.4, 0.1, -0.6, -0.1]". Figure 4.12

86



plots the output responses of the closed-loop ball and beam system controlled by the
FLNFN-RSMODE controller and the FLNFN-RSDE controller. These responses approximate
those of the controller under the four initial conditions. In this figure, the curves of the
FLNFN-RSMODE controller tend quickly to stabilize. Figure 4.13 also shows the behavior of
the four states of the ball and beam system, starting for the initial condition [-2.4, 0.1, -0.6,
-0.1]". In this figure, the four states of the system decay gradually to zero. The results show
the perfect control capability of the trained FLNFN-RSMODE controller. The performance of
the FLNFN-RSMODE controller is compared with that of the FLNFN-RSDE controller, the
FLNFN-DE controller and the FLNFN-GA controller. Table 4.3 presents the comparison
results. The results demonstrate that the proposed FLNFN-RSMODE controller outperforms

other controllers.

Fitness Value

Vi —— FLNFN-RSMODE ||
e FLNFN-RSDE
T FLNFN.DE
------- FLNFN-GA
D 1 L L 1 1 L 1 T X
O 200 400 600 800 1000 1200 1400 1600 1800 2000

Generations

Figure 4.11: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE,
FLNFN-DE, and FLNFN-GA in Example 2.
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Figure 4.12: Responses of ball and beam system controlled by FLNFN-RSMODE controller
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(solid curves) and FLNFN-RSDE controller (dotted curves) under four initial conditions.

Figure 4.13: Responses of four states of the ball and beam system under the control of the
FLNFN-RSMODE controller.
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Table 4.3: Comparison of performance of various controllers to control of ball and beam

system.
Method FLNFN-RSMODE | FLNFN-RSDE | FLNFN-DE FLNFN-GA
Fitness Value (Ave) 0.9041 0.8737 0.8516 0.8287
Fitness Value (Best) 0.9653 0.9447 0.9441 0.9131

Example 3: Control of Backing Up the Truck

Backing a truck into a loading dock is difficult. It is a nonlinear control problem for
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which no traditional control method exists [76]. Figure 4.14 shows the simulated truck and
loading zone. The truck position is exactly determined by three state variables ¢, x and y,
where ¢ is the angle between the truck and the horizontal, and the coordinate pair (x, y)
specifies the position of the center of the rear of the truck in the plane. The steering angle &
of the truck is the controlled variable. Positive values of & represent clockwise rotations of
the steering wheel and negative values represent counterclockwise rotations. The truck is
placed at some initial position and is backed up while being steered by the controller. The
objective of this control problem is to use backward only motions of the truck to make the
truck arrive in the desired loading dock (Xgesireds Viesirea) at a right angle (@ gesiea=90"). The
truck moves backward as the steering wheel moves through a fixed distance (d)) in each step.
The loading region is limited to the plane [0,100] x [0,100].

loading dock (Xdesired, Ydesired)
]

Figure 4.14: Diagram of simulated truck and loading zone.

The input and output variables of the FLNFN-RSMODE controller must be specified.

The controller has two inputs, truck angle ¢ and cross position x. When the clearance

between the truck and the loading dock is assumed to be sufficient, the y coordinate is not

considered as an input variable. The output of the controller is the steering angle &. The
ranges of the variables x, ¢ and ¢ are as follows.

0<x<100 (4.13)

—90° < $< 270° (4.14)
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-30°<0<30° (4.15)
The equations of backward motion of the truck are,
x(k+1)=x(k)+d,cosO(k)+cosd(k)
yk+1)=y(k)+d, cosO(k)+sind(k) (4.16)

[ Ising(k)+d, cosp(k)sinO(k)

o(k+1)=tan - -
lcosp(k)—d, sing(k)sin0(k)

where / is the length of the truck. Equation (4.16) yields the next state from the present state.
Learning involves several attempts, each starting from an initial state and terminating
when the desired state is reached; the FLNFN is thus trained. In initialization phase, 7
subpopulations are generated. This example was simulated 30 times. The fitness value of the
FLNFN-RSMODE is approximately 0.9746 and the learning curve of FLNFN-RSMODE is
compared with those obtained using the (FLNFN-RSDE, FLNFN-DE, and FLNFN-GA, as
shown in Fig. 4.15. In Fig. 4.16,.the solid'¢urves are.the training paths and the dotted curves
are the paths that the tuck runs under the control of the proposed controller. As this figure
shown, the FLNFN-RSMODE controller can:smooth' the training paths. Figures 4.17(a)-(d)
plot the trajectories of the moving ‘truckycontrolled by the FLNFN-RSMODE controller,
starting at initial positions (x, y, ¢) = (a) (40, 20, -30"), (b) ( 10,20 ,150%), (c) ( 70, 20, -30°)
and (d) ( 80, 20, 150%), after the training process has been terminated. The considered
performance indices include the best fitness and the average fitness value. Table 4.4 compares
the results. According to these results, the proposed FLNFN-RSMODE controller outperforms

various existing methods.
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Figure 4.15: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE,
FLNFN-DE and FLNFN-GA in Example 3.
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Figure 4.16: The moving trajectories of the truck where the solid curves represent the six sets
of training trajectories and the dotted curves represent the moving trajectories of the truck
under the FLNFN-RSMODE controller.
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Figure 4.17: Trajectories of truck, starting at four initial positions under the control of the

FLNFN-RSMODE after learning using training trajectories.
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Table 4.4: Comparison of performance of various controllers to control of backing up the

truck.
Method FLNFN-RSMODE |FLNFN-RSDE| FLNFN-DE | FLNFN-GA
Fitness Value (Ave) 0.9110 0.8939 0.8846 0.8421
Fitness Value (Best) 0.9746 0.9604 0.9527 0.9286

4.4 Summary

This dissertation proposes a rule-based symbiotic modified differential evolution (RSMODE)
for the FLNFN model. The proposed RSMODE learning algorithm consists of initialization
phase to generate initial rule-based subpopulation, and parameter learning phase to adjust the
FLNFN parameters. The proposed RSMODE learning algorithm allows that each individual
in each subpopulation evolves separately using a modified differential evolution. The
experimental results demonstrate that.the proposed RSMODE can obtain a better performance

than other existing methods undef some ¢ircumstances.
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Chapter 5

Conclusion and Future Works

This dissertation proposes a functional-link-based neuro-fuzzy network (FLNFN) structure for
nonlinear system control. The FLNFN model uses a functional link neural network to the
consequent part of the fuzzy rules. 'The FENFN model can automatically be constructed and
the FLNFN parameters can be ‘adjusted by.performing online structure/parameter learning
schemes concurrently. The advantages of the proposed FLNFN model are summarized below.

1) The consequent of the fuzzy rules of the propesed model is a nonlinear combination of
input variables. This study uses the functional link neural network to the consequent part of
the fuzzy rules. The local properties of the consequent part in the FLNFN model enable a
nonlinear combination of input variables to be approximated more effectively.

2) The online learning algorithm can automatically construct the FLNFN model. No
rules or memberships exist initially. They are created automatically as learning proceeds, as
online incoming training data are received and as structure and parameter learning are
performed.

3) The FLNFN model is proven to be a universal approximator by Stone—Weierstrass
theorem and its convergence properties are proven by the Lyapunov theorem in the Appendix.

4) As demonstrated in section 2.3, the proposed FLNFN model is a more adaptive and

effective controller than the other models.
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Furthermore, in order to prevent the FLNFN parameters to quickly reach the local
optima. This dissertation also proposes a rule-based symbiotic modified differential evolution
(RSMODE) for the FLNFN model. The proposed RSMODE comprises multi-subpopulation
that uses each individual represents a single fuzzy rule and each individual in each
subpopulation evolves separately using a modified differential evolution. The advantages of
the proposed RSMODE method are summarized as follows:

1) The RSMODE can automatically determine the number of subpopulation. No
subpopulation exists initially. They are generated automatically using entropy measure which
satisfies the fuzzy partition of input variables.

2) The RSMODE adopt a subpopulation symbiotic evolution strategy which uses the
rule-based subpopulation to evolve separately.

3) The RSMODE adopt a medified differential evolution strategy to effectively search
between the current best individual.and randomly chosen individuals.

Moreover, the proposed FLNFN '‘model and its related learning algorithms can obtain
better simulation results than alternative methods in some circumstances, for example
achieving higher design accuracy in many nonlinear control problems. We shall address the
two issues of the FLNFN model and its related learning algorithms. First, we always require
that training data be sufficient and proper. However, there is no procedure or rule suitable for
all cases in choosing training data. One rule of thumb is that training data should cover the
entire expected input space and then during the training process select training-vector pairs
randomly from the set. Second, we believe that the proposed FLNFN-RSMODE and
FLNFN-MODE are a more adaptive and effective controller than the FLNFN-BP for
high-order nonlinear or overly complex systems.

Two advanced topics on the proposed FLNFN model should be addressed in future
research. First, the FLNFN model will tend to apply high-order nonlinear or overly complex
systems if it can suitably adopt the consequent part of a nonlinear combination of input
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variables, and a functional expansion of multiple trigonometric polynomials. Therefore, it
should be analyzed to use how many trigonometric polynomials for functional expansion in
future. Second, there are some parameters in the RSMODE method influence the accuracy
and complexity of the final FLNFN and training duration. These parameters should be
automatically selected using an effective method in future. Khosla et al. [77] presented a
systematic based on Taguchi approach reasoning scheme for identifying the strategy
parameters for the evolutionary algorithm. The Taguchi approach provides systematic, simple
and efficient methodology using fractional factorial design to study a large number of

parameters with only a few well-defined experimental sets.
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Appendix

A. Proof of the Universal Approximator Theorem

The Stone-Weierstrass theorem [56] is adopted to prove the universal approximator
theorem. For a clear description in the FLNFN model, only the multi-input single-output

(MISO) function f:xeR" - yeR is considered. The FLNFN is expressed as
y(x) =L (A.D)

Theorem Al: Stone-Weierstrass Theorem: Let A be a set of real continuous functions on
a compact set U. If 1) U is an algebra: that if f,,f, €A, and c€R, then f +f, €A,
fi-f, €A, and cf, €A; 2) A sepdrates pointsion U;'meaning that for x,y €U, x=# y, there
exists f, €A such that f (x)#.f,(»), and 3) A vanishes at no point of U, meaning that for
each x e U there exists f; €A such that f(x)=# 0 ,then the uniform closure of A consists of
all real continuous functions on U.

Lemma Al: Let Y be the family of function y:R" — Rdefined in Eq.(A.1); then
Y — U, where U is a compact set.

Proof of Lemma Al: Here, the membership function is

0< My, (x)= exp[—w} <I.
i

Therefore, the continuous function uf) is closed and bounded for all xeR". That is,
YcU.

Proof of Theorem Al: First, we prove that Y is algebra. Let f,, f, €Y, such that they can

be written as
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R1

> i1

fo)={t———
Zulfl)
1=l
3 = —ml, ) (A.2)
Z(wlljl(;ﬁl, +otwly, i d1,)- Hexp _M
_ ’ ’ il=1 ol

i {ﬁ eXpI:_ (X — I};llzl,jl) :H

Jl=1| il=1 il,j1

R2

> 52,12
fr(x)= 121—
Su2?)
j2=1
A.3)
R2 N2 (x,, —m2, .)2 (
D (W2, 82, +..+ w2M7j2¢2M)-[H exp{— 2222’2ﬂ
_ j2=1 i2=1 i2,j2
k21 1s (le _m212 j2)2
24 Texp| = 7
j2=1]-i2=1 212 ,j2
where y1, and 72, eR, Vj.
Therefore,
Rl R2
D DN +92,)- (H ulYu2%))
fi+ () = - (A4)
ZZ(H u1(3)u2(3)

jl=1 j2=1

Since ul(f) and “2(1‘3) are Gaussian in form, i.e., this can be verified by straightforward

algebraic operations; hence, Eq.(A.4) is in the same form as Eq.(A.1), so that f + 1, €Y.

Similarly, we have

Rl R2
ZZ(yljl y2]2) (H z’l1(3)1'l2’(]32)
N hH(x)= S Rl R2 (A.5)
( u1(3)u2(3)
22

which is also in the same form as Eq.(A.1); hence, f,- f, €Y, Finally, for arbitrary c e R
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> e 1))
e fi(x) =L (A.6)

> T«

=

which is again in the form of Eq.(A.1); hence, c- f, € Y. Therefore, Y is an algebra.
Next, Y is proven to separate points on U, by constructing a required f; f €Y is
specified such that f(x'")# f(»') for arbitrarily given x',y'eU with x'#y'. Two fuzzy

rules in the form of Eq.(2.3) are chosen for the fuzzy rule base.

Let x'=(x',,x';,...,x"y) and y'=(y'),»",....,y"y) . If x';# ', then two fuzzy rules can be

chosen as the fuzzy rule base. Furthermore, let the Gaussian membership functions be

ﬂA“(x,-):exp{—w (A7)
O

u, ()= exp[— G y,) f"' ) (A.8)
O

Then, f'can be expressed as

Sl T exol =GRl 5ol T expl = 2"
y1|:Hi=1 eXp|: pi }j‘ + y2|:Hi=l exp{ 2 i|i|

il O-i2

N Oy =Y ’ N _(xi_y'[)2
L A |

where p1 and p2 are outputs of the local FLNN model calculated for output y and rule

/= (A.9)

Rule-1, Rule-2 and y, eR, Vj. With this system,

. N N x' —")?
yl+y2{Hi=lexp{—( ! )2}’) ﬂ

O

1+ {H]-Vl exp{— Gy ﬂ
= o,

i2

S = (A.10)
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. . N v._xv_ 2

Ui 1

1+ {HNI exp{— O=x) _f'i i H
- O

il

FOH=

(A.11)

Since x'#y', some i must exist such that x'.#)'; hence f(x')# f()"'). Therefore, Y

separates points on U.

Finally, Y is proven to vanish at no point of U. By Eq.(A.1), u!”(x) is constant and
does not equal zero. That is, for all xeR", uf)(x) >0. If uf)(x) >0,(j=12,...,R), then

y>0 forany xeR".Thatis, any yeY with u;”(x) >0 can serve as the required f.

In summary, the FLNFN model is a universal approximator, using the Stone-Weierstrass

theorem and the fact that Y is a continuous real set.on U proves the theorem.

B. Proof of Convergence Theorem

Theorem BI: Let n, be thé/learning rate parameter of the FLNFN weight, and let

P be defined as P, =max,|P, (k)| , where P,(k)=0dy/ow, and || is the

wmax wmax

. . N . . .
Euclidean norm in R" . The convergence is guaranteed if 7, 1is chosen as

n,=4/ (P,...) =A/R,in which 1 is a positive constant gain, and R is the number of rules

in the FLNFN model.

Proof of Theorem B1: Since

(3)
p(ky=-2 (B.1)

owy; S 3)
! Z”f

Jj=1

R
and uf )¢k Z:u;3 ) <1, the following result holds;
j=1

P, (k)| <VR. (B.2)
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Then, a discrete Lyapunov function is selected as
V(k)= %ez (k). (B.3)

The change in the Lyapunov function is obtained as

AV (k) =V (k+1)=V (k)

. B.4

:%[ez(k+l)—e2(k)] B4
The error difference can be represented as [23]
e(k+1)=e(k)+ Ae(k)
T

B.5

= e(k)+ Fe(k )} Aw, ()
o '

where Ae and Aw, represent the output error change and the weight change in the output

layer, respectively. Equations (2.17) and (B.5) yield

Oe(k) — e(k) “ay = P (k) (B.6)
oW, &y 0w,

e(k+1)=e(k)=P. (k)n e(k)P,(k). (B.7)
Then,

e+ 1] = ety [r=m, BI G0y P, 0]

(B.8)
<[le®)|-Jt-,B! ()P, (k)|

is true. If 7, = /1/(Pw

ymax

)= A/R is chosen, then the term “l -n, P! (k)PW(k)” in Eq.(B.8) is

less than 1. Therefore, the Lyapunov stability of />0 and AV <0 is guaranteed. The
output error between the reference model and actual plant converges to zero as ¢ — oo. This
fact completes the proof of the theorem.

The following lemmas [25] are used to prove Theorem 2.

Lemma BI: Let g(h)=hexp(-h’), then |g(h)|<1,VheR.

Lemma B2: Let f(h)=h* exp(=h’), then |f(h)|<1,VheR.

Theorem B2: Let n, and 7, be the learning rate parameters of the mean and standard
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deviation of the Gaussian function for the FLNFN; let P be defined as

mmax

P, = max,||P, ()|, where P, (k)=0y/om

;let P, bedefinedas P, . =max,|P, (k)

ij 2 o max o max

9

where P, (k)=0dy/0c, . The convergence is guaranteed if 7, and 7, are chosen as

mo=no=bumt| Gl N i whien ;

= maxk‘wkj (k)‘

max

_=min,|o, (k)

‘O'y.‘ _ Dol | is the absolute value.
Proof of Theorem B2: According to Lemma B1,
‘[(x,. —my)/ O'ij.]exp{— [(x,. — mij.)/ay.]z}‘ <1. The upper bounds on P, (k) can be derived as

follows;

| oy 6u;4) au;” ﬁusz)
- auﬁ-‘” 6u§3) 6ul.(jz) om,

<>t fJ{x"_m"Jexp —[x"_’""’J (B.9)

O..
9 | max
O..
Y Imin

where ¢, €[0,1], for k =1,2,..., M . Thus,

[P, ()| < RM [ [L] (B.10)

max ‘

Y Imin

The error difference can also be represented as [23]
e(k+1)=e(k)+ Ae(k)

oek) | o (B.11)
om.. ij

)

=e(k)+ [
where Am; represents the change of the mean of the Gaussian function in the membership
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function layer. Equation (2.18) and (B.11) yield

Oe(k) Oe(k) oy
om., dy Om

y

=P (k) (B.12)

i

e(k+1)=e(k)—- PmT (k)n,e(k)P, (k). (B.13)
Then,

e+ 1| =fetk)- 1=, B} ()P, ()]
<[le)|- 1=, By (k) (K

max /‘

Hl—?]umT (k)P, (k)” in Eq.(B.14) is less than 1. Therefore, the Lyapunov stability of V' >0

(B.14)

)} 1S chosen, then the term

1s true. If 77m—/1/( mmax) _[UW/M] ﬂWk,

and AV <0 given by Eq.(B.3) and Eq.(B.4), is guaranteed. The output error between the

reference model and actual plant converges tozero as ¢ — 0.
According to Lemma B2, |[(xl. +np) o;.j]2 exp{— [(xl. -m;)/ o, H <1. The upper bounds
on P (k) can be derived as follows;

9
P, (k) :a_y

i

(v Yot Y oul Y ouf
8u§.4) 8u§.3 ) 6ul.(jz) 80'”.
R X, —m ’ X, —m ’

< w == Y| exp|— P B.15
Z s %y ][ O J ’ [ Oy J ( :

J=1
Wi 78
1 O-ij

< ‘ Wk max [ \]
min

Oy
where ¢, €[0,1], for k=1,2,..., M . Thus,

[\/]:

M-
b
LR
=

A
M=
(V)

=~
Il

I

|2, (ol < RM

)

The error difference can be represented as
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e(k +1) = e(k) + Ae(k)

de(k) TAG (B.17)
oo, v

)

:e(k){

where Ao, represents the change of the variance of the Gaussian function in the

membership function layer. Equation (2.19) and (B.17) yield

Oe(k) _Oe(k) oy
oo, dy 0oy

y

= P.(k) (B.18)

e(k+1)=e(k)— P! (k)n e(k)P, (k). (B.19)
Then,

JeCi+ 1] = ek -[1-n, BT G0y, (0]
<[le)|-|1-n. P ()P, k)

i (2/ |Uff

HI—UJPGT (k)P, (k)” in Eq. (B.20) is'less than 1. Therefore, the Lyapunov stability of V' >0

(B.20)

is true. If ngzl/(Pgmax)zz[nw/M]-uw,g. min)}z is chosen, then the term

and AV <0 given by Eq. (B.3).and Eq. (B:4) is guaranteed. The output error between the
reference model and actual plant convergesto zero as ¢ — oo. This fact completes the proof

of the theorem.
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