

國國國國 立立立立 交交交交 通通通通 大大大大 學學學學

電機與控制工程學系電機與控制工程學系電機與控制工程學系電機與控制工程學系

博博博博 士士士士 論論論論 文文文文

以函數鏈結為基礎之類神經模糊網路及其應用以函數鏈結為基礎之類神經模糊網路及其應用以函數鏈結為基礎之類神經模糊網路及其應用以函數鏈結為基礎之類神經模糊網路及其應用

A Functional-Link-Based Neuro-Fuzzy Network and Its Applications

研研研研 究究究究 生生生生：：：：陳政宏陳政宏陳政宏陳政宏

指導教授指導教授指導教授指導教授：：：：林進燈林進燈林進燈林進燈

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 七七七七 年年年年 七七七七 月月月月

以函數鏈結為基礎之類神經模糊網路及其應用

A Functional-Link-Based Neuro-Fuzzy Network and Its

Applications

研 究 生：陳政宏 Student：Cheng-Hung Chen

指導教授：林進燈 博士 Advisor：Dr. Chin-Teng Lin

國 立 交 通 大 學

電 機 與 控 制 工 程 學 系

博 士 論 文

A Dissertation

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical and Control Engineering

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

國 立 交 通 大 學國 立 交 通 大 學國 立 交 通 大 學國 立 交 通 大 學

博碩士論文全文電子檔著作權授權書博碩士論文全文電子檔著作權授權書博碩士論文全文電子檔著作權授權書博碩士論文全文電子檔著作權授權書
(提供授權人裝訂於紙本論文書名頁之次頁用)

本授權書所授權之學位論文，為本人於國立交通大學 電機與控制工程 系所

＿＿＿＿＿＿組， 九十六 學年度第 二 學期取得博士學位之論文。

論文題目：以函數鏈結為基礎之類神經模糊網路及其應用

指導教授：林進燈

■ 同意 □不同意

本人茲將本著作，以非專屬、無償授權國立交通大學與台灣聯合大學系統圖

書館：基於推動讀者間「資源共享、互惠合作」之理念，與回饋社會與學術

研究之目的，國立交通大學及台灣聯合大學系統圖書館得不限地域、時間與

次數，以紙本、光碟或數位化等各種方法收錄、重製與利用；於著作權法合

理使用範圍內，讀者得進行線上檢索、閱覽、下載或列印。

論文全文上載網路公開之範圍及時間：

本校及台灣聯合大學系統區域網路 ■ 中華民國 99 年 2 月 23 日公開

校外網際網路 ■ 中華民國 99 年 2 月 23 日公開

授授授授 權權權權 人人人人：：：：陳政宏陳政宏陳政宏陳政宏

親筆簽名親筆簽名親筆簽名親筆簽名：：：：

中華民中華民中華民中華民國國國國 97 年年年年 7 月月月月 30 日日日日

國 立 交 通 大 學國 立 交 通 大 學國 立 交 通 大 學國 立 交 通 大 學

博碩士紙本論文著作權授權書博碩士紙本論文著作權授權書博碩士紙本論文著作權授權書博碩士紙本論文著作權授權書
(提供授權人裝訂於全文電子檔授權書之次頁用)

本授權書所授權之學位論文，為本人於國立交通大學 電機與控制工程 系所

＿＿＿＿＿＿組， 九十六 學年度第 二 學期取得博士學位之論文。

論文題目：以函數鏈結為基礎之類神經模糊網路及其應用

指導教授：林進燈

■ 同意

本人茲將本著作，以非專屬、無償授權國立交通大學，基於推動讀者間「資

源共享、互惠合作」之理念，與回饋社會與學術研究之目的，國立交通大學

圖書館得以紙本收錄、重製與利用；於著作權法合理使用範圍內，讀者得進

行閱覽或列印。

本論文為本人向經濟部智慧局申請專利(未申請者本條款請不予理會)的附

件之一，申請文號為：____________________，請將論文延至____年____

月____日再公開。

授授授授 權權權權 人人人人：：：：陳政宏陳政宏陳政宏陳政宏

親筆簽名親筆簽名親筆簽名親筆簽名：：：：

中華民中華民中華民中華民國國國國 97 年年年年 7 月月月月 30 日日日日

國家圖書館國家圖書館國家圖書館國家圖書館博碩士論文電子檔案上網授權書博碩士論文電子檔案上網授權書博碩士論文電子檔案上網授權書博碩士論文電子檔案上網授權書

ID:GT009312816

本授權書所授權之論文為授權人在國立交通大學電機學院電機與控制工程系所

_________ 組 九十六 學年度第 二 學期取得博士學位之論文。

論文題目：以函數鏈結為基礎之類神經模糊網路及其應用

指導教授：林進燈

茲同意將授權人擁有著作權之上列論文全文（含摘要），非專屬、無償授權國

家圖書館，不限地域、時間與次數，以微縮、光碟或其他各種數位化方式將上

列論文重製，並得將數位化之上列論文及論文電子檔以上載網路方式，提供讀

者基於個人非營利性質之線上檢索、閱覽、下載或列印。

※ 讀者基於非營利性質之線上檢索、閱覽、下載或列印上列論文，應依著作權法相關規定辦理。

授權人授權人授權人授權人：：：：陳政宏陳政宏陳政宏陳政宏

親筆簽名親筆簽名親筆簽名親筆簽名：：：：

中華民中華民中華民中華民國國國國 97 年年年年 7 月月月月 30 日日日日

1. 本授權書請以黑筆撰寫，並列印二份，其中一份影印裝訂於附錄三之二(博碩士紙本

論文著作權授權書)之次頁﹔另一份於辦理離校時繳交給系所助理，由圖書館彙總寄

交國家圖書館。

推薦函推薦函推薦函推薦函

一、事由：推薦電機與控制工程系博士班研究生陳政宏提出論文以參加國立交通

大學博士論文口試。

二、說明：本校電機與控制工程系博士班研究生陳政宏已完成博士班規定之學科

及論文研究訓練。

有關學科部分，陳君以修必應修學分（請查學籍資料），通過資格考試；有

關論文方面，陳君已完成“以函數鏈結為基礎之類神經模糊網路及其應用”

初稿。其論文“A Functional-Link-Based Neuro-Fuzzy Network for Nonlinear

System Control”和“Using an Efficient Immune Symbiotic Evolution Learning

for Compensatory Neuro-Fuzzy Controller”等兩篇已經被 IEEE Trans. on Fuzzy

Systems 期刊所接受。另有論文“A Hybrid of Cooperative Particle Swarm

Optimization and Cultural Algorithm for Neural Fuzzy Networks and Its

Prediction Applications”也已經被 IEEE Trans. on Systems, Man, and

Cybernetics, Part C: Applications and Reviews期刊所接受（請參閱博士論文

著作目錄）。

三、總言之，陳君已具備國立交通大學電機與控制工程系博士班研究生應有之教

育及訓練水準，因此推薦陳君參加國立交通大學電機與控制工程系博士論文

口試。

此致

國立交通大學電機與控制工程學系

 電機與控制工程學系教授

 林 進 燈

中華民國 97年 5月

 i

以函數鏈結為基礎之類神經模糊網路及其應用

研究生：陳政宏 指導教授：林進燈 博士

國立交通大學電機與控制工程學系﹙研究所﹚博士班

摘 要

本篇論文提出一以函數鏈結為基礎之類神經模糊網路及其相關學習演算法。此類神

經模糊網路採用函數鏈結類神經網路當作模糊法則的後件部。此後件部是輸入變數的非

線性組合，它是利用函數展開的方式，能在高維度的輸入空間中提供良好的非線性決策

能力，因此，可使網路輸出更具體且更逼近目標輸出。本論文主要為三大部分。第一部

份將詳細介紹以函數鏈結為基礎之類神經模糊網路及其線上學習演算法。此演算法包含

架構學習及參數學習，架構學習是藉由熵的量測決定是否要增長一個新的法則，參數學

習是使用倒傳遞演算法調整網路上的所有參數。由於倒傳遞演算法常常會得到局部最佳

解。因此，在第二部份中，我們提出一改良式差分進化演算法，所提出的演算法與傳統

差分進化演算法是不同的，在於我們使用一有效的搜尋機制使得每條個體能更新在目前

最佳解和亂數搜尋解之間，並採用以群為基底的突變方式以提高個體間彼此的差異性。

但以上的進化演算法，無法決定該使用多少法則數。因此，在第三部份中，我們提出一

以法則為基礎的共生差分進化演算法。此演算法是利用多個子族群進行進化，每個子族

群的個體代表每條模糊法則，且每個子族群能各自進化。此外，這演算法也能自動決定

子族群數，並最佳化網路上的所有參數。最後，我們將與其他方法比較，以證實所提出

的網路架構及其相關演算法之有效性。

 ii

A Functional-Link-Based Neuro-Fuzzy Network
and Its Applications

Student：Cheng-Hung Chen Advisor：Dr. Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract

This dissertation proposes a functional-link-based neuro-fuzzy network (FLNFN) and its

related learning algorithms. The proposed FLNFN model uses a functional link neural

network to the consequent part of the fuzzy rules. The consequent part uses a nonlinear

functional expansion to form arbitrarily complex decision boundaries. Thus, the local

properties of the consequent part in the FLNFN model enable a nonlinear combination of

input variables to be approximated more effectively. This dissertation consists of three major

parts. In the first part, the FLNFN model and an online learning are presented. The online

learning algorithm consists of structure learning and parameter learning. The structure

learning depends on the entropy measure to determine the number of fuzzy rules. The

parameter learning, based on back-propagation, can adjust the shape of the membership

function and the corresponding weights of the consequent part. Unfortunately, the

back-propagation learning algorithm may reach the local minima very quickly. Therefore, a

modified differential evolution (MODE) is presented to optimize the FLNFN parameters in

the second part. The proposed MODE learning algorithm differs from the traditional

differential evolution. The MODE adopts a method to effectively search between the best

individual and randomly chosen individuals, and the MODE also provides a cluster-based

mutation scheme, which maintains useful diversity in the population to increase the search

 iii

capability. But, the aforementioned algorithm cannot determine how many rules to be used.

Therefore, a rule-based symbiotic modified differential evolution (RSMODE) is proposed for

the FLNFN model in the third part. The RSMODE adopts a multi-subpopulation scheme that

uses each individual represents a single fuzzy rule and each individual in each subpopulation

evolves separately. Furthermore, the proposed RSMODE learning algorithm can also

determine the number of rule-based subpopulation and adjust the FLNFN parameters. Finally,

the proposed FLNFN model and its related learning algorithms are applied in various control

problems. Results of this dissertation demonstrate the effectiveness of the proposed methods.

 iv

Acknowledgment
在這研究期間裡，首先要感謝我的博士班指導教授 林進燈博士和碩士

班指導教授 林正堅博士，在二位教授豐富的學識、殷勤的教導及嚴謹的督

促下，使我學習到許多的寶貴知識及在面對事情中應有的處理態度、方法，

並且在研究與投稿論文的過程中，二位教授有許多深入的見解及看法且對

於斟酌字句、思慮周延，更是我該學習的目標。師恩好蕩，指導提攜，銘

感於心。

由衷感謝口試委員傅立成教授、周至宏教授、洪宗貝教授、李祖聖教授、

蔡文祥教授及楊谷洋教授給予許多寶貴的建議與指正，使得這篇論文更加

完整。同時要感謝交大多媒體實驗室的學長 劉得正博士及蒲鶴章博士還有

全體同學及學弟妹，在研究的過程中不斷的互相砥礪及討論。感謝過去 91

級朝陽資工系的所有同學，在這過程中，一起分享不同的經驗。感謝一路

走來陪伴身邊的所有朋友，使得我的研究生涯變得多采多姿。

特別要感謝我的父親、母親、妹妹，在這段日子中不斷的給予支持及鼓

勵，讓我能夠專心於研究的工作並完成博士學位。最後誠摯地以本論文研

究成果獻給我的師長、父母、家人及所有的朋友們。

陳政宏

九十七年七月二十七日

 v

Contents

Abstract in Chinese..i
Abstract in English ...ii
Acknowledgment...iv
Contents ..v
List of Tables ..vii
List of Figures..viii

1 Introduction ..1

1.1 Motivation ...1
1.2 Literature Survey ...2
1.3 Organization of Dissertation..6

2 A Functional-Link-Based Neuro-Fuzzy Network (FLNFN)..8
2.1 Structure of Functional-Link-Based Neuro-Fuzzy Network8

2.1.1 Functional Link Neural Networks ..9
2.1.2 Structure of the FLNFN Model ..10

2.2 Learning Algorithms of the FLNFN Model ..13
2.2.1 Structure Learning Phase..14
2.2.2 Parameter Learning Phase ..17
2.2.3 Convergence Analysis ..19

2.3 Experimental Results...19
2.4 Summary..35

3 A Modified Differential Evolution for the FLNFN Model...37
3.1 A Brief Introduction of Differential Evolution..37
3.2 A Modified Differential Evolution ..40

3.2.1 Initialization Phase ...41
3.2.2 Evaluation Phase...41
3.2.3 Reproduction Phase ..42
3.2.4 Cluster-Based Mutation Phase..43

3.3 Experimental Results...44
3.4 Summary..70

4 A Rule-Based Symbiotic Modified Differential Evolution for the FLNFN Model71
4.1 A Basic Concept of Symbiotic Evolution..72
4.2 A Rule-Based Symbiotic Modified Differential Evolution72

4.2.1 Initialization Phase ...74
4.2.2 Parameter Learning Phase ..76

4.3 Experimental Results...81

 vi

4.4 Summary..93
5 Conclusion and Future Works ..94

Appendix ..97

A. Proof of the Universal Approximator Theorem..97
B. Proof of Convergence Theorem..100

Bibliography ...105
Vita.. 113
Publication List... 114

 vii

List of Tables

Table 2.1: Comparison of performance of various controllers to control of water bath
temperature system. ..26

Table 2.2: Comparison of performance of various controllers to control of BIBO nonlinear
plant. ...31

Table 2.3: Comparison of performance of various controllers to control of ball and beam
system. ..33

Table 2.4: Comparison of performance of various controllers to control of MIMO plant.......34
Table 3.1: Parameter settings before training. ..45
Table 3.2: Comparison of performance of various controllers to control of water bath

temperature system. ..49
Table 3.3: Comparison of performance of various controllers to control of the planetary train

type inverted pendulum system with a 0.1s sampling rate.58
Table 3.4: Comparison of performance of various controllers to control of the magnetic

levitation system with a 0.1s sampling rate..69
Table 4.1: Parameter settings before training. ..81
Table 4.2: Comparison of performance of various controllers to control of water bath

temperature system. ..86
Table 4.3: Comparison of performance of various controllers to control of ball and beam

system. ..88
Table 4.4: Comparison of performance of various controllers to control of backing up the

truck. ...93

 viii

List of Figures

Figure 2.1: Structure of FLNN. ..9
Figure 2.2: Structure of proposed FLNFN model. ... 11
Figure 2.3: Flow diagram of the structure/parameter learning for the FLNFN model.............14
Figure 2.4: Conventional online training scheme...21
Figure 2.5: (a) Final regulation performance of FLNFN controller in water bath system. (b)

Error curves of the FLNFN controller, TSK-type NFN controller and FLNN
controller between k=81 and k=100. ..24

Figure 2.6: (a) Behavior of FLNFN controller under impulse noise in water bath system. (b)
Error curves of FLNFN controller, TSK-type NFN controller and FLNN
controller...25

Figure 2.7: (a) Behavior of FLNFN controller when a change occurs in the water bath system.
(b) Error curves of FLNFN controller, TSK-type NFN controller and FLNN
controller...25

Figure 2.8: (a) Tracking of FLNFN controller when a change occurs in the water bath system.
(b) Error curves of FLNFN controller, TSK-type NFN controller and FLNN
controller...26

Figure 2.9: Block diagram of FLNFN controller-based control system...................................27
Figure 2.10: Final system response in first case of example 2. (a) The dashed line represents

plant output and the solid line represents the reference model. (b) Error curves
of FLNFN controller and TSK-type NFN controller..29

Figure 2.11: Final system response in second case of example2. (a) The dashed line represents
plant output and the solid line represents the reference model. (b) Error curves
of FLNFN controller and TSK-type NFN controller..29

Figure 2.12: Final system response in third case of example 2. (a) The dashed line represents
plant output and the solid line represents the reference model. (b) Error curves
of FLNFN controller and TSK-type NFN controller..30

Figure 2.13: Final system response in fourth case of example 2. The dashed line represents
plant output and the solid line represents the reference model...........................30

Figure 2.14: Ball and beam system. ...31
Figure 2.15: Responses of ball and beam system controlled by FLNFN model (solid curves)

and TSK-type NFN model (dotted curves) under four initial conditions...........33
Figure 2.16: Responses of four states of ball and beam system under the control of the trained

FLNFN controller. ..33
Figure 2.17: Desired output (solid line) and model output using FLNFN controller (dotted line)

of (a) Output 1. (b) Output 2 in Example 4. Error curves of FLNFN controller
(solid line) and TSK-type NFN controller (dotted line) for (c) output 1 and (d)

 ix

output 2. ..35
Figure 3.1: An example of a two-dimensional cost function showing its contour lines and the

process for generating 1, +Giv39

Figure 3.2: Illustration of the crossover process for N=7 parameters.40
Figure 3.3: Coding FLNFN into an individual in the proposed MODE method.41
Figure 3.4: A mutation operation in the modified differential evolution..................................44
Figure 3.5: (a) Final regulation performance of FLNFN-MODE controller in water bath

system. (b) Error curves of the FLNFN-MODE controller, FLNFN-DE
controller and FLNFN-GA controller. ..46

Figure 3.6: (a) Behavior of FLNFN-MODE controller under impulse noise in water bath
system. (b) Error curves of FLNFN-MODE controller, FLNFN-DE controller
and FLNFN-GA controller..47

Figure 3.7: (a) Behavior of FLNFN-MODE controller when a change occurs in the water bath
system. (b) Error curves of FLNFN-MODE controller, FLNFN-DE controller
and FLNFN-GA controller..48

Figure 3.8: (a) Tracking of FLNFN-MODE controller when a change occurs in the water bath
system. (b) Error curves of FLNFN-MODE controller, FLNFN-DE controller
and FLNFN-GA controller..49

Figure 3.9: A physical model geometry of the planetary train type inverted pendulum.50
Figure 3.10: Control block diagram for the planetary train type inverted pendulum system. .53
Figure 3.11: The experimental planetary train type inverted pendulum system.54
Figure 3.12: (a)-(d) Final regulation performance of the FLNFN-MODE controller, PID

controller, FLNFN-DE controller and FLNFN-GA controller. (e) Scaling curves
of the FLNFN-MODE controller and PID controller between the 1.5th second
and the 3.5th second. ...56

Figure 3.13: (a)-(d) Tracking of the FLNFN-MODE controller, PID controller, FLNFN-DE
controller and FLNFN-GA controller, respectively, for a square wave with
amplitude 02.0± and frequency 0.5Hz. (e) Tracking curves of the
FLNFN-MODE controller and PID controller between the 4th second and the 8th
second. ..58

Figure 3.14: Sphere and coil arrangement of the magnetic levitation system..........................59
Figure 3.15: Control block diagram for the magnetic levitation system.61
Figure 3.16: Experimental magnetic levitation system. ...62
Figure 3.17: (a)-(d) Experimental results of FLNFN-MODE controller, PID controller,

FLNFN-DE controller and FLNFN-GA controller due to periodic sinusoidal
command for reference position and actual position, tracking error and control
effort. ..64

Figure 3.18: (a)-(d) Experimental results of FLNFN-MODE controller, PID controller,

 x

FLNFN-DE controller and FLNFN-GA controller due to periodic square
command for reference position and actual position, tracking error and control
effort. ..65

Figure 3.19: (a)-(d) Behavior of the FLNFN-MODE controller, PID controller, FLNFN-DE
controller and FLNFN-GA controller under impulse noise in a magnetic
levitation system for reference and actual positions, tracking error, and control
effort. ..67

Figure 3.20: (a)-(d) Behavior of the FLNFN-MODE controller, PID controller, FLNFN-DE
controller, and FLNFN-GA controller when a change occurs in the magnetic
levitation system for reference and actual positions, tracking error, and control
effort. ..69

Figure 4.1: Flowchart of the RSMODE learning algorithm...73
Figure 4.2: Coding a fuzzy rule into an individual in the RSMODE learning algorithm.74
Figure 4.3: Structure of the individual in the RSMODE learning algorithm.77
Figure 4.4: Illustration of the MODE process for 8-dimensional vector..................................79
Figure 4.5: A mutation operation in the rule-based symbiotic modified differential evolution.

..81
Figure 4.6: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE,

FLNFN-DE and FLNFN-GA in Example 1. ..83
Figure 4.7: (a) Final regulation performance of FLNFN-RSMODE controller in water bath

system. (b) Error curves of the FLNFN-RSMODE controller, FLNFN-RSDE
controller, the FLNFN-DE controller, and FLNFN-GA controller.83

Figure 4.8: (a) Behavior of FLNFN-RSMODE controller under impulse noise in water bath
system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE
controller, the FLNFN-DE controller and FLNFN-GA controller.84

Figure 4.9: (a) Behavior of FLNFN-RSMODE controller when a change occurs in the water
bath system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE
controller, the FLNFN-DE controller, and FLNFN-GA controller.85

Figure 4.10: (a) Tracking of FLNFN-RSMODE controller when a change occurs in the water
bath system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE
controller, the FLNFN-DE controller, and FLNFN-GA controller.86

Figure 4.11: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE,
FLNFN-DE, and FLNFN-GA in Example 2. ...87

Figure 4.12: Responses of ball and beam system controlled by FLNFN-RSMODE controller
(solid curves) and FLNFN-RSDE controller (dotted curves) under four initial
conditions. ..88

Figure 4.13: Responses of four states of the ball and beam system under the control of the
FLNFN-RSMODE controller. ..88

Figure 4.14: Diagram of simulated truck and loading zone. ..89

 xi

Figure 4.15: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE,
FLNFN-DE and FLNFN-GA in Example 3. ..91

Figure 4.16: The moving trajectories of the truck where the solid curves represent the six sets
of training trajectories and the dotted curves represent the moving trajectories of
the truck under the FLNFN-RSMODE controller. ...91

Figure 4.17: Trajectories of truck, starting at four initial positions under the control of the
FLNFN-RSMODE after learning using training trajectories.92

 1

Chapter 1

Introduction

1.1 Motivation

In the field of artificial intelligence, neural networks are essentially low-level computational

structures and algorithms that offer good performance when they deal with sensory data.

However, it is difficult to understand the meaning of each neuron and each weight in the

networks. Generally, fuzzy systems are easy to appreciate because they use linguistic terms

and if-then rules. However, they lack the learning capacity to fine-tune fuzzy rules and

membership functions. Therefore, neuro-fuzzy networks combine the benefits of neural

networks and fuzzy systems to solve many engineering problems. Neuro-fuzzy networks

bring the low-level learning and computational power of neural networks into fuzzy systems

and give the high-level human-like thinking and reasoning of fuzzy systems to neural

networks.

Recently, neuro-fuzzy networks have become popular topics of research, and are applied

in many areas, such as prediction, control, identification, recognition, decision-making, etc.

Neuro-fuzzy networks have some significant issues including how to design an adaptive

neruo-fuzzy network and how to design an effective learning algorithm. Therefore, we

propose a functional-link-based neuro-fuzzy network (FLNFN) and its related learning

algorithms in this dissertation. The proposed FLNFN model, which combines a neuro-fuzzy

 2

network with a functional link neural network, is designed to improve the accuracy of

functional approximation. Each fuzzy rule that corresponds to a functional link neural

network consists of a functional expansion of input variables. The consequent part of the

proposed model is a nonlinear combination of input variables. Hence, the local properties of

the consequent part in the FLNFN model enable a nonlinear combination of input variables to

be approximated more effectively.

Training of the parameters is the main problem in designing a neuro-fuzzy network.

Backpropagation (BP) training is commonly adopted to solve this problem. It is a powerful

training technique that can be applied to networks with a forward structure. Since the steepest

descent approach is used in BP training to minimize the error function, the algorithms may

reach the local minima very quickly and never find the global solution. The aforementioned

disadvantages lead to suboptimal performance, even for a favorable neuro-fuzzy network

topology. Therefore, technologies, that can be used to train the system parameters and find the

global solution while optimizing the overall structure, are required. Next, we propose a

rule-based symbiotic modified differential evolution (RSMODE) for the proposed FLNFN

model. The RSMODE can automatically determine the number of fuzzy rules and generate

initial subpopulation. Furthermore, each individual in each subpopulation evolves separately

using a modified differential evolution (MODE). The proposed MODE adopts a method to

effectively search between the best individual and randomly chosen individuals. Finally, the

proposed FLNFN model is applied in various control problems and practical applications.

Results of this dissertation demonstrate the effectiveness of the proposed method.

1.2 Literature Survey

Recently, neuro-fuzzy networks [1]-[20] provide the advantages of both neural networks and

fuzzy systems, unlike pure neural networks or fuzzy systems alone. Neuro-fuzzy networks

 3

(NFN) bring the low-level learning and computational power of neural networks into fuzzy

systems and give the high-level human-like thinking and reasoning of fuzzy systems to neural

networks.

Two typical types of neuro-fuzzy networks are the Mamdani-type and the

Takagi-Sugeno-Kang (TSK)-type. For Mamdani-type neuro-fuzzy networks [4]-[6], the

minimum fuzzy implication is adopted in fuzzy reasoning. For TSK-type neuro-fuzzy

networks (TSK-type NFN) [7]-[10], the consequence part of each rule is a linear combination

of input variables. Many researchers [9]-[10] have shown that TSK-type neuro-fuzzy

networks offer better network size and learning accuracy than Mamdani-type neuro-fuzzy

networks. In the typical TSK-type neuro-fuzzy network, which is a linear polynomial of input

variables, the model output is approximated locally by the rule hyper-planes. Nevertheless,

the traditional TSK-type neuro-fuzzy network does not take full advantage of the mapping

capabilities that may be offered by the consequent part.

Introducing a nonlinear function, especially a neural structure, to the consequent part of

the fuzzy rules has yielded the NARA [21] and the CANFIS [22] models. These models

[21]-[22] apply multilayer neural networks to the consequent part of the fuzzy rules. Although

the interpretability of the model is reduced, the representational capability of the model is

markedly improved. However, the multilayer neural network has such disadvantages as

slower convergence and greater computational complexity. Therefore, this dissertation uses

the functional link neural network (FLNN) [23]-[25] to the consequent part of the fuzzy rules,

called a functional-link-based neuro-fuzzy network (FLNFN). The consequent part of the

proposed FLNFN model is a nonlinear combination of input variables, which differs from the

other existing models [5], [9]-[10]. The FLNN is a single layer neural structure capable of

forming arbitrarily complex decision regions by generating nonlinear decision boundaries

with nonlinear functional expansion. The FLNN [26] was conveniently used for function

approximation and pattern classification with faster convergence rate and less computational

 4

loading than a multilayer neural network. Moreover, using the functional expansion can

effectively increase the dimensionality of the input vector, so the hyper-planes generated by

the FLNN will provide a good discrimination capability in input data space.

In addition, training of the parameters is the main problem in designing a neuro-fuzzy

network. Backpropagation (BP) training is commonly adopted to solve this problem. It is a

powerful training technique that can be applied to networks with a forward structure. Since

the steepest descent approach is used in BP training to minimize the error function, the

algorithms may reach the local minima very quickly and never find the global solution. The

aforementioned disadvantages lead to suboptimal performance, even for a favorable

neuro-fuzzy network topology. Therefore, technologies, that can be used to train the system

parameters and find the global solution while optimizing the overall structure, are required.

Recent development in genetic algorithms (GAs) has provided a method for neuro-fuzzy

system design. Genetic fuzzy systems (GFSs) [27]-[31] hybridize the approximate reasoning

of fuzzy systems with the learning capability of genetic algorithms. GAs represent highly

effective techniques for evaluating system parameters and finding global solutions while

optimizing the overall structure. Thus, many researchers have developed GAs to implement

fuzzy systems and neuro-fuzzy systems in order to automate the determination of structures

and parameters [32]-[52].

Carse et al. [32] presented a GA-based approach to employ variable length rule sets and

simultaneously evolves fuzzy membership functions and relations called Pittsburgh-style

fuzzy classifier system. Herrera et al. [33] proposed a genetic algorithm-based tuning

approach for the parameters of membership functions used to define fuzzy rules. This

approach relied on a set of input-output training data and minimized a squared-error function

defined in terms of the training data. Homaifar and McCormick [34] presented a method that

simultaneously found the consequents of fuzzy rules and the center points of triangular

membership functions in the antecedent using genetic algorithms. Velasco [35] described a

 5

Michigan approach which generates a special place where rules can be tested to avoid the use

of bad rules for online genetic learning. Ishibuchi et al. [36] applied a Michigan-style genetic

fuzzy system to automatically generate fuzzy IF-THEN rules for designing compact fuzzy

rule-based classification systems. The genetic learning process proposed is based on the

iterative rule learning approach and it can automatically design fuzzy rule-based systems by

Cordon et al. [37]. A GA-based learning algorithm called structural learning algorithm in a

vague environment (SLAVE) was proposed in [38]. SLAVE used an iterative approach to

include more information in the process of learning one individual rule. Furthermore, a very

interesting algorithm was proposed by Russo in [39] which attempted to combine all good

features of fuzzy systems, neural networks and genetic algorithm for fuzzy model derivation

from input-output data. Chung et al. [40] adopted both neural networks and GAs to

automatically determine the parameters of fuzzy logic systems. They utilized a feedforward

neural network for realizing the basic elements and functions of a fuzzy controller. In [41], a

hybrid of evolution strategies and simulated annealing algorithms is employed to optimize

membership function parameters and rule numbers which are combined with genetic

parameters.

Three main strategies, including Pittsburgh-type, Michigan-type, and the iterative rule

learning genetic fuzzy systems, focus on generating and learning fuzzy rules in genetic fuzzy

systems. First, the Pittsburgh-type genetic fuzzy system [42] was characterized by using a

fuzzy system as an individual in genetic operators. Second, the Michigan-type genetic fuzzy

system was used for generating fuzzy rules in [43], where each fuzzy rule was treated as an

individual. Thus, the rule generation methods in [43] were referred to as fuzzy classifier

systems. Third, the iterative rule learning genetic fuzzy system [44] was adopted to search one

adequate rule set for each iteration of the learning process. Moreover, Ishibuchi et al. [45]-[48]

proposed genetic algorithms for constructing a fuzzy system consisting of a small number of

linguistic rules. Mitra et al. [49]-[52] presented some approaches that exploit the benefits of

 6

soft computation tools for rule generation.

In the aforementioned literatures, it has been fully demonstrated that GAs are very

powerful in searching for the true profile. However, the search is extremely time-consuming,

which is one of the basic disadvantages of all GAs. Although the convergence in some special

cases can be improved by hybridizing GAs with some local search algorithms, it is achieved

at the expense of the versatility and simplicity of the algorithm. Similar to GAs, DE [53]-[55]

also belongs to the broad class of evolutionary algorithms, but DE has many advantages such

as the strong search ability and the fast convergence ability over GAs or any other traditional

optimization approach, especially for real valued problems [55]. Therefore, we propose a

rule-based symbiotic modified differential evolution (RSMODE) for the proposed FLNFN

model. The RSMODE is to adjust the system parameters and find the global solution while

optimizing the overall structure.

1.3 Organization of Dissertation

The overall objective of this dissertation is to develop a novel neuro-fuzzy network and its

related learning algorithm. Organization and objectives of each chapter in this dissertation are

as follows.

In Chapter 2, we propose a functional-link-based neuro-fuzzy network (FLNFN)

structure for nonlinear system control. The proposed FLNFN model uses a functional link

neural network (FLNN) to the consequent part of the fuzzy rules. This dissertation uses

orthogonal polynomials and linearly independent functions in a functional expansion of the

FLNN. Thus, the consequent part of the proposed FLNFN model is a nonlinear combination

of input variables. An online learning algorithm, which consists of structure learning and

parameter learning, is also presented. The structure learning depends on the entropy measure

to determine the number of fuzzy rules. The parameter learning, based on the gradient descent

 7

method, can adjust the shape of the membership function and the corresponding weights of

the FLNN.

In Chapter 3, we present a modified differential evolution (MODE) for the proposed

FLNFN model. The proposed MODE learning algorithm adopts an evolutionary learning

method to optimize the FLNFN parameters. The MODE algorithm uses a method to

effectively search toward the current best individual. Furthermore, the MODE algorithm also

provides a cluster-based mutation scheme, which maintains useful diversity in the population

to increase the search capability.

In Chapter 4, we propose a rule-based symbiotic modified differential evolution

(RSMODE) for the proposed FLNFN model. The proposed RSMODE learning algorithm

consists of initialization phase and parameter learning phase. The initialization phase can

determine the number of subpopulation which satisfies the fuzzy partition of input variables

using the entropy measure. The parameter learning phase combines two strategies including a

subpopulation symbiotic evolution and a modified differential evolution. The RSMODE can

automatically generate initial subpopulation and each individual in each subpopulation

evolves separately using a modified differential evolution. We also compare our method with

other methods in the literature early. Finally, conclusions and future works are summarized in

the last section.

 8

Chapter 2

A Functional-Link-Based Neuro-Fuzzy Network

In this chapter, a functional-link-based neuro-fuzzy network (FLNFN) model is presented for

nonlinear system control. The FLNFN model, which combines a neuro-fuzzy network with a

functional link neural network (FLNN), is designed to improve the accuracy of functional

approximation. Each fuzzy rule that corresponds to a FLNN consists of a functional

expansion of input variables. The orthogonal polynomials and linearly independent functions

are adopted as functional link neural network bases. An online learning algorithm, consisting

of structure learning and parameter learning, is proposed to construct the FLNFN model

automatically. The structure learning algorithm determines whether or not to add a new node

which satisfies the fuzzy partition of input variables. Initially, the FLNFN model has no rules.

The rules are automatically generated from training data by entropy measure. The parameter

learning algorithm is based on back-propagation to tune the free parameters in the FLNFN

model simultaneously to minimize an output error function.

2.1 Structure of Functional-Link-Based Neuro-Fuzzy Network

This section describes the structure of functional link neural networks and the structure of the

FLNFN model. In functional link neural networks, the input data usually incorporate high

order effects and thus artificially increase the dimensions of the input space using a functional

 9

expansion. Accordingly, the input representation is enhanced and linear separability is

achieved in the extended space. The FLNFN model adopted the functional link neural

network generating complex nonlinear combination of input variables to the consequent part

of the fuzzy rules. The rest of this section details these structures.

2.1.1 Functional Link Neural Networks

The functional link neural network is a single layer network in which the need for hidden

layers is removed. While the input variables generated by the linear links of neural networks

are linearly weighted, the functional link acts on an element of input variables by generating a

set of linearly independent functions (i.e., the use of suitable orthogonal polynomials for a

functional expansion), and then evaluating these functions with the variables as the arguments.

Therefore, the FLNN structure considers trigonometric functions. For example, for a

two-dimensional input Txx],[21=X , the enhanced input is obtained using trigonometric

functions in T,...xcos,xsin,x,...,xcos,xsin,x]) () () () ([222111 ππππ=Φ . Thus, the input

variables can be separated in the enhanced space [23]. In the FLNN structure with reference

to Fig. 2.1, a set of basis functions Φ and a fixed number of weight parameters W

represent)(xfW . The theory behind the FLNN for multidimensional function approximation

has been discussed elsewhere [24] and is analyzed below.

x1

x2

Fu
nc

tio
na

l
Ex

pa
ns

io
n

.

.

.
xN

.

.

.

.

.

.

1φ

2φ

Mφ

∑

∑

∑

1ŷ

2ŷ

mŷ

X

W

Ŷ

Figure 2.1: Structure of FLNN.

Consider a set of basis functions ΚΦΒ ∈∈= kk A)}({φ , } 2 1{ ...,,=Κ with the following

 10

properties; 1) 11 =φ , 2) the subset M
kj k 1

}{
=

∈= ΒφΒ is a linearly independent set, meaning

that if ∑ =
=

M

k kkw
1

0φ , then 0=kw for all M...,,,k 2 1= , and 3) [] ∞<∑ =

21

1

2 /j

k Akjsup φ .

 Let M
k k 1
}{

=
= φΒ be a set of basis functions to be considered, as shown in Fig. 2.1. The

FLNN comprises M basis functions MM...,,, Β∈} { 21 φφφ . The linear sum of the jth node is

given by

∑
=

=
M

k
kkjj)(wŷ

1
Xφ (2.1)

where Nℜ⊂Α∈X , T
Nxxx],...,,[21=X is the input vector and T

jMjjj www],...,,[21=W is

the weight vector associated with the jth output of the FLNN. jŷ denotes the local output of

the FLNN structure and the consequent part of the jth fuzzy rule in the FLNFN model. Thus,

Eq.(2.1) can be expressed in matrix form as ΦWy jjˆ = , where T
N x,...xx)](),(),([21 φφφ=Φ

is the basis function vector, which is the output of the functional expansion block. The

m-dimensional linear output may be given by WΦY =ˆ , where T
mŷ...ŷŷˆ],,,[21=Y , m

denotes the number of functional link bases, which equals the number of fuzzy rules in the

FLNFN model, and W is a (m×M)-dimensional weight matrix of the FLNN given by

T],...,,[M21 wwwW = . In the FLNFN model, the corresponding weights of functional link

bases do not exist in the initial state, and the amount of the corresponding weights of

functional link bases generated by the online learning algorithm is consistent with the number

of fuzzy rules. Section 3 details the online learning algorithm.

2.1.2 Structure of the FLNFN Model

This subsection describes the FLNFN model, which uses a nonlinear combination of input

variables (FLNN). Each fuzzy rule corresponds to a sub-FLNN, comprising a functional link.

Figure 2.2 presents the structure of the proposed FLNFN model.

 11

The FLNFN model realizes a fuzzy if-then rule in the following form.

Rule-j: NjNijijj AxAxAxAx is and ... is and ... is and is IF 2211

MMjjj

M

k
kkjj

www

wy

φφφ

φ

+++=

=∑
=

...

ˆ THEN

2211

1 (2.2)

where xi and jŷ are the input and local output variables, respectively; Aij is the linguistic

term of the precondition part with Gaussian membership function; N is the number of input

variables; wkj is the link weight of the local output; kφ is the basis trigonometric function of

input variables; M is the number of basis function, and Rule-j is the jth fuzzy rule.

x1

x2

Fu
nc

tio
na

l
Ex

pa
ns

io
n

x1

x2

y

w11
w21

wM1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

N
or

m
al

iz
at

io
n

1ŷ

2ŷ

3ŷ

1φ

2φ

Mφ

∑

∑

∑

Figure 2.2: Structure of proposed FLNFN model.

The operation functions of the nodes in each layer of the FLNFN model are now

described. In the following description, u(l) denotes the output of a node in the lth layer.

 12

No computation is performed in layer 1. Each node in this layer only transmits input

values to the next layer directly:

ii xu =)1(. (2.3)

Each fuzzy set Aij is described here by a Gaussian membership function. Therefore, the

calculated membership value in layer 2 is










 −
−= 2

21
2][

ij

ij
)(

i)(
ij

mu
expu

σ
 (2.4)

where mij and ijσ are the mean and variance of the Gaussian membership function,

respectively, of the jth term of the ith input variable xi.

Nodes in layer 3 receive one-dimensional membership degrees of the associated rule

from the nodes of a set in layer 2. Here, the product operator described above is adopted to

perform the precondition part of the fuzzy rules. As a result, the output function of each

inference node is

∏=
i

ijj uu)2()3((2.5)

where the ∏
i

iju)2(of a rule node represents the firing strength of its corresponding rule.

Nodes in layer 4 are called consequent nodes. The input to a node in layer 4 is the output

from layer 3, and the other inputs are calculated from a functional link neural network, as

shown in Fig. 2.2. For such a node,

∑
=

⋅=
M

k
kkjjj wuu

1

)3()4(φ (2.6)

where wkj is the corresponding link weight of functional link neural network and kφ is the

functional expansion of input variables. The functional expansion uses a trigonometric

polynomial basis function, given by []=654321 φφφφφφ

[]) () () () (222111 xcosxsinxxcosxsinx ππππ for two-dimensional input variables. Therefore,

M is the number of basis functions, NM ×= 3 , where N is the number of input variables.

 13

Moreover, the output nodes of functional link neural network depend on the number of fuzzy

rules of the FLNFN model.

The output node in layer 5 integrates all of the actions recommended by layers 3 and 4

and acts as a defuzzifier with,

∑

∑

∑

∑ ∑

∑

∑

=

=

=

= =

=

= =









=== R

j

)(
j

R

j
j

)(
j

R

j

)(
j

R

j

M

k
kkj

)(
j

R

j

)(
j

R

j

)(
j

)(

u

ŷu

u

wu

u

u
uy

1

3

1

3

1

3

1 1

3

1

3

1

4

5

φ
 (2.7)

where R is the number of fuzzy rules, and y is the output of the FLNFN model.

As described above, the number of tuning parameters for the FLNFN model is known to

be (2+3×P)×N×R, where N, R and P denote the number of inputs, existing rules, and outputs,

respectively. The proposed FLNFN model can be demonstrated to be a universal uniform

approximation by Stone-Weierstrass theorem [56] for continuous functions over compact sets.

The detailed proof is given in the Appendix.

2.2 Learning Algorithms of the FLNFN Model

This section presents an online learning algorithm for constructing the FLNFN model. The

proposed learning algorithm comprises a structure learning phase and a parameter learning

phase. Figure 2.3 presents flow diagram of the learning scheme for the FLNFN model.

Structure learning is based on the entropy measure used to determine whether a new rule

should be added to satisfy the fuzzy partitioning of input variables. Parameter learning is

based on supervised learning algorithms. The back-propagation algorithm minimizes a given

cost function by adjusting the link weights in the consequent part and the parameters of the

membership functions. Initially, there are no nodes in the network except the input-output

nodes, i.e., there are no any nodes in the FLNFN model. The nodes are created automatically

as learning proceeds, upon the reception of online incoming training data in the structure and

parameter learning processes. The rest of this section details the structure learning phase and

 14

the parameter learning phase. Finally in this section, the stability analysis of the FLNFN

model based on the Lyapunov approach is performed the convergence property.

Start

Initialization

Is xi the first
input data?

Generate the first rule with
 mi1=xi
σi1=σinit
wk1=random [-1,1]

where σinit is
a prespecified constant

Generate a new rule with
 mij=xi
σij=σinit
wkj=random [-1,1]

where σinit is
a prespecified constant

Yes

No

Yes

No

Done?

End

Yes

No

Parameter learning
(Backpropagation)

?max EMEM <

Structure learning

Figure 2.3: Flow diagram of the structure/parameter learning for the FLNFN model.

2.2.1 Structure Learning Phase

The first step in structure learning is to determine whether a new rule from should be

extracted the training data and to determine the number of fuzzy sets in the universal of

discourse of each input variable, since one cluster in the input space corresponds to one

potential fuzzy logic rule, in which ijm and ijσ represent the mean and variance of that

cluster, respectively. For each incoming pattern xi, the rule firing strength can be regarded as

 15

the degree to which the incoming pattern belongs to the corresponding cluster. Entropy

measure between each data point and each membership function is calculated based on a

similarity measure. A data point of closed mean will has lower entropy. Therefore, the entropy

values between data points and current membership functions are calculated to determine

whether or not to add a new rule. For computational efficiency, the entropy measure can be

calculated using the firing strength from)2(
iju as follow;

∑
=

−=
N

i
ijijj DDEM

1
2log (2.8)

where ()1)2(exp −
= ijij uD and]1,0[∈jEM . According to Eq. (2.8), the measure is used to

generate a new fuzzy rule and new functional link bases for new incoming data is described as

follows. The maximum entropy measure

jRj
EMEM

T)(1max max
≤≤

= (2.9)

is determined, where R(t) is the number of existing rules at time t. If EMEM ≤max , then a

new rule is generated, where]1,0[∈EM is a prespecified threshold that decays during the

learning process.

In the structure learning phase, the threshold parameter EM is an important parameter.

The threshold is set to between zero and one. A low threshold leads to the learning of coarse

clusters (i.e., fewer rules are generated), whereas a high threshold leads to the learning of fine

clusters (i.e., more rules are generated). If the threshold value equals zero, then all the training

data belong to the same cluster in the input space. Therefore, the selection of the threshold

value EM will critically affect the simulation results. As a result of our extensive

experiments and by carefully examining the threshold value EM , which uses the range [0, 1],

we concluded that the relationship between threshold value EM and the number of input

variables. Accordingly, EM is defined as 0.26-0.3 times of the number of input variables.

Once a new rule has been generated, the next step is to assign the initial mean and

 16

variance to the new membership function and the corresponding link weight for the

consequent part. Since the goal is to minimize an objective function, the mean, variance and

weight are all adjustable later in the parameter learning phase. Hence, the mean, variance and

weight for the new rule are set as follows;

i
R

ij xm t =+)()1((2.10)

init
R

ij
t σσ =+)()1((2.11)

]1 ,1[)()1(−=+ randomw tR
kj (2.12)

where xi is the new input and initσ is a prespecified constant. The whole algorithm for the

generation of new fuzzy rules and fuzzy sets in each input variable is as follows. No rule is

assumed to exist initially exist:

Step 1: IF xi is the first incoming pattern THEN do

 {Generate a new rule

 with mean mi1=xi, variance 1iσ = initσ , weight wk1=random[-1, 1]

 where initσ is a prespecified constant.

}

Step 2: ELSE for each newly incoming xi, do

{Find jRj
EMEM

t)(1max max
≤≤

=

 IF EMEM ≥max

 do nothing

 ELSE

 {R(t+1) = R(t) +1

 generate a new rule

with mean iiR xm
)t(
=

+1
, variance initiR)t(

σσ =
+1

, weight],[randomw
)t(kR 1 1

1
−=

+

 where initσ is a prespecified constant.}

 17

}

2.2.2 Parameter Learning Phase

After the network structure has been adjusted according to the current training data, the

network enters the parameter learning phase to adjust the parameters of the network optimally

based on the same training data. The learning process involves determining the minimum of a

given cost function. The gradient of the cost function is computed and the parameters are

adjusted with the negative gradient. The back-propagation algorithm is adopted for this

supervised learning method. When the single output case is considered for clarity, the goal to

minimize the cost function E is defined as

)(
2
1)]()([

2
1)(22 tetytytE d =−= (2.13)

where yd(t) is the desired output and y(t) is the model output for each discrete time t. In each

training cycle, starting at the input variables, a forward pass is adopted to calculate the activity

of the model output y(t).

When the back-propagation learning algorithm is adopted, the weighting vector of the

FLNFN model is adjusted such that the error defined in Eq. (2.13) is less than the desired

threshold value after a given number of training cycles. The well-known back-propagation

learning algorithm may be written briefly as









∂
∂

−+=∆+=+
)(
)()()()()1(
tW
tEtWtWtWtW η (2.14)

where, in this case, η and W represent the learning rate and the tuning parameters of the

FLNFN model, respectively. Let Tw,,m][σ=W be the weighting vector of the FLNFN

model. Then, the gradient of error E(.) in Eq. (2.13) with respect to an arbitrary weighting

vector W is

W
tyte

W
tE

∂
∂

=
∂
∂)()()(. (2.15)

Recursive applications of the chain rule yield the error term for each layer. Then the

 18

parameters in the corresponding layers are adjusted. With the FLNFN model and the cost

function as defined in Eq. (2.13), the update rule for wj can be derived as follows;

)()()1(twtwtw kjkjkj ∆+=+ (2.16)

where














⋅⋅−=

∂
∂

−=

∑ =

R

j j

kj
w

kj
wkj

u

u
e

w
Etw

1
)3(

)3(

)(

φ
η

η∆

.

Similarly, the update laws for mij, and ijσ are

)()()1(tmtmtm ijijij ∆+=+ (2.17)

)()()1(ttt ijijij σ∆σσ +=+ (2.18)

where










 −
⋅













⋅⋅−=

∂
∂

−=

∑ =

2

)1(

1
)3(

)4()(2

)(

ij

iji
R

j j

j
m

ij
mij

mu

u

u
e

m
Etm

σ
η

η∆










 −
⋅













⋅⋅−=

∂
∂

−=

∑ =

3

2)1(

1
)3(

)4()(2

)(

ij

iji
R

j j

j

ij
ij

mu

u

u
e

Et

σ
η

σ
ησ∆

σ

σ

where wη , mη and ση are the learning rate parameters of the weight, the mean, and the

variance, respectively. In this dissertation, both the link weights in the consequent part and the

parameters of the membership functions in the precondition part are adjusted by using the

back-propagation algorithm. Recently, many researchers [10], [57] tuned the consequent

parameters using either least mean squares (LMS) or recursive least squares (RLS) algorithms

to obtain optimal parameters. However, they still used the back-propagation algorithm to

 19

adjust the precondition parameters.

2.2.3 Convergence Analysis

The selection of suitable learning rates is very important. If the learning rate is small,

convergence will be guaranteed. In this case, the speed of convergence may be slow. However,

the learning rate is large, and then the system may become unstable. The Appendix derives

varied learning rates, which guarantee convergence of the output error based on the analyses

of a discrete Lyapunov function, to train the FLNFN model effectively. The convergence

analyses in this dissertation are performed to derive specific learning rate parameters for

specific network parameters to ensure the convergence of the output error [58]-[59]. Moreover,

the guaranteed convergence of output error does not imply the convergence of the learning

rate parameters to their optimal values. The following simulation results demonstrate the

effectiveness of the online learning FLNFN model based on the proposed delta adaptation law

and varied learning rates.

2.3 Experimental Results

This dissertation demonstrated the performance of the FLNFN model for nonlinear system

control. This section simulates various control examples and compares the performance of the

FLNFN model with that of other models. The FLNFN model is adopted to design controllers

in four simulations of nonlinear system control problems - water bath temperature control

system [60], control of a bounded input bounded output (BIBO) nonlinear plant [58], control

of the ball and beam system [61], and multi-input multi-output (MIMO) plant control [62].

Example 1: Control of Water Bath Temperature System

The goal of this section is to elucidate the control of the temperature of a water bath

 20

system according to,

CT
tyY

C
tu

dt
tdy

R

)()()(0 −+= (2.19)

where y(t) is the output temperature of the system in C° ; u(t) is the heat flowing into the

system; 0Y is room temperature; C is the equivalent thermal capacity of the system, and TR is

the equivalent thermal resistance between the borders of the system and the surroundings.

TR and C are assumed to be essentially constant, and the system in Eq.(2.19) is rewritten

in discrete-time form to some reasonable approximation. The system

040)(5.0]1[)(
1

)1(
)()1(yeku

e

e
kyeky Ts

ky

Ts

Ts α

α

α α
δ

−
−

−

− −+
+

−
+=+ (2.20)

is obtained, where α and δ are some constant values of TR and C. The system parameters

used in this example are 400151 −= e.α , 3679738 −= e.δ and 0Y =25.0(C°), which were

obtained from a real water bath plant considered elsewhere [60]. The plant input u(k) is

limited to 0 and 5V, and the sampling period is Ts=30 second.

 The conventional online training scheme is adopted for online training. Figure 2.4

presents a block diagram for the conventional online training scheme. This scheme has two

phases - the training phase and the control phase. In the training phase, the switches S1 and

S2 are connected to nodes 1 and 2, respectively, to form a training loop. In this loop, we can

define a training data with input vector)]()1([)(kykykI pp += and desired output)(ku ,

where the input vector of the FLNFN controller is the same as that used in the general inverse

modeling [63] training scheme. In the control phase, the switches S1 and S2 are connected to

nodes 3 and 4, respectively, forming a control loop. In this loop, the control signal)(ˆ ku is

generated according to the input vector)]()1([)(' kykykI pref += , where py is the plant

output and refy is the reference model output.

A sequence of random input signals urd(k) limited to 0 and 5V is injected directly into the

 21

simulated system described in Eq. (2.20), using the online training scheme for the FLNFN

controller. The 120 training patterns are selected based on the input-outputs characteristics to

cover the entire reference output. The temperature of the water is initially 25 c° , and rises

progressively when random input signals are injected. After 10000 training iterations, four

fuzzy rules are generated. The obtained fuzzy rules are as follows.

Rule-1: 249)(27.234,7. is and 61532.416,11. is IF 21 µµ x)(x

)xcos()xsin(.x.

)xcos(.)xsin(.xŷ

222

1111

 35.204 7994102617
 54634 8497432.095 THEN
ππ
ππ

+−−
−+=

Rule-2: .977)(46.281,13 is and 734.96,9.62 is IF 21 µµ x)(x

)xcos()xsin(x

)xcos()xsin(xŷ

222

1112

 70.946 61.82752.923
 77.705 11.76621.447 THEN
ππ
ππ

+−−
−+=

Rule-3: .864)(62.499,15 is and 1062.771,6.9 is IF 21 µµ x)(x

)xcos()xsin(x

)xcos()xsin(xŷ

222

1113

 103.33 36.75240.322
 46.359 10.90725.735 THEN
ππ
ππ

++−
−−=

Rule-4: 097)(64.654,9. is and 6979.065,8.7 is IF 21 µµ x)(x

)xcos()xsin(x

)xcos()xsin(xŷ

222

1114

 34.838 61.0655.8152
 57.759 37.22346.055 THEN
ππ
ππ

++−
−−=

yp(k+1)

yref(k+1)
yp(k+1)

1

3
S1

Z-1

2

4

S2

)(ˆ ku

)(ku

+
Plant

Z-1

–
FLNFN

Controller

Figure 2.4: Conventional online training scheme.

This dissertation compares the FLNFN controller to the proportional-integral-derivative

(PID) controller [64], the manually designed fuzzy controller [1], the functional link neural

network [25] and the TSK-type neuro-fuzzy network (TSK-type NFN) [9]. Each of these

controllers is applied to the water bath temperature control system. The performance measures

include the set-points regulation, the influence of impulse noise, and a large parameter

 22

variation in the system, and the tracking capability of the controllers.

 The first task is to control the simulated system to follow three set-points.









≤<
≤<

≤

°
°
°

=
.12080

8040
40

,75
,55
,35

)(
k
k

k

for
for
for

c
c
c

kyref . (2.21)

Figure 2.5(a) presents the regulation performance of the FLNFN controller. The regulation

performance was also tested using the FLNN controller and the TSK-type NFN controller.

Figure 2.5(b) plots the error curves of the FLNFN controller, the FLNN controller and the

TSK-type NFN controller between k=81 and k=100. In this figure, the FLNFN controller

obtains smaller errors than the other two controllers. To test their regulation performance, a

performance index, the sum of absolute error (SAE), is defined by

∑ −=
k

ref kykySAE)()((2.22)

where)(kyref and)(ky are the reference output and the actual output of the simulated

system, respectively. The SAE values of the FLNFN controller, the PID controller, the fuzzy

controller, the FLNN controller and the TKS-type NFN controller are 352.8, 418.5, 401.5,

379.2 and 361.9, which values are given in the second row of Table 2.1. The proposed FLNFN

controller has a much better SAE value of regulation performance than the other controllers.

The second set of simulations is performed to elucidate the noise-rejection ability of the

five controllers when some unknown impulse noise is imposed on the process. One impulse

noise value C°−5 is added to the plant output at the 60th sampling instant. A set-point of

C°50 is adopted in this set of simulations. For the FLNFN controller, the same training

scheme, training data and learning parameters as were used in the first set of simulations.

Figure 2.6(a) and (b) present the behaviors of the FLNFN controller under the influence of

impulse noise, and the corresponding errors, respectively. The SAE values of the FLNFN

controller, the PID controller, the fuzzy controller, the FLNN controller and the TSK-type

 23

NFN controller are 270.4, 311.5, 275.8, 324.51 and 274.75, which are shown in the third row

of Table 2.1. The FLNFN controller performs quite well. It recovers very quickly and steadily

after the occurrence of the impulse noise.

One common characteristic of many industrial-control processes is that their parameters

tend to change in an unpredictable way. The value of)2(70 −∗ ku. is added to the plant

input after the 60th sample in the third set of simulations to test the robustness of the five

controllers. A set-point of C°50 is adopted in this set of simulations. Figure 2.7(a) presents

the behaviors of the FLNFN controller when in the plant dynamics change. Figure 2.7(b)

presents the corresponding errors of the FLNFN controller, the FLNN controller and the

TSK-type NFN controllers. The SAE values of the FLNFN controller, the PID controller, the

fuzzy controller, the FLNN controller and the TSK-type NFN controller are 263.3, 322.2,

273.5, 311.5 and 265.4, which values are shown in the fourth row of Table 2.1. The results

present the favorable control and disturbance rejection capabilities of the trained FLNFN

controller in the water bath system.

In the final set of simulations, the tracking capability of the FLNFN controller with

respect to ramp-reference signals is studied. Define














≤<°
≤<°−∗+
≤<°−∗+
≤<°−∗+

≤°

=

1209070
9070))70(5060(
7050))50(8044(
5030))30(5034(

3034

)(

kforC
kforCk.
kforCk.
kforCk.

kforC

kyref . (2.23)

Figure 2.8(a) presents the tracking performance of the FLNFN controller. Figure 2.8(b)

presents the corresponding errors of the FLNFN controller, the FLNN controller, and the

TSK-type NFN controller. The SAE values of the FLNFN controller, the PID controller, the

fuzzy controller, the FLNN controller, and the TSK-type NFN controller are 44.2, 100.6, 88.1,

98.4 and 54.2, which are shown in the fifth row of Table 2.1. The results present the favorable

control and disturbance rejection capabilities of the trained FLNFN controller in the water

 24

bath system. The aforementioned simulation results, presented in Table 2.1, demonstrate that

the proposed FLNFN controller outperforms other controllers.

(a)

(b)
Figure 2.5: (a) Final regulation performance of FLNFN controller in water bath system. (b)
Error curves of the FLNFN controller, TSK-type NFN controller and FLNN controller
between k=81 and k=100.

(a)

 25

(b)
Figure 2.6: (a) Behavior of FLNFN controller under impulse noise in water bath system. (b)
Error curves of FLNFN controller, TSK-type NFN controller and FLNN controller.

(a)

(b)
Figure 2.7: (a) Behavior of FLNFN controller when a change occurs in the water bath system.
(b) Error curves of FLNFN controller, TSK-type NFN controller and FLNN controller.

 26

(a)

(b)
Figure 2.8: (a) Tracking of FLNFN controller when a change occurs in the water bath system.
(b) Error curves of FLNFN controller, TSK-type NFN controller and FLNN controller.

Table 2.1: Comparison of performance of various controllers to control of water bath
temperature system.

∑
=

−=
120

1

|)()(|
k

ref kykySAE FLNFN
Controller

PID
Controller

[64]

Fuzzy
Controller

[65]

FLNN
Controller

[25]

TSK-type
NFN

Controller
[9]

Regulation
Performance

354.84 418.5 401.5 379.22 361.96

Influence of Impulse
Noise

272.61 311.5 275.8 324.51 274.75

Effect of Change in
Plant Dynamics

264.35 322.2 273.5 311.54 265.48

Tracking
Performance

44.28 100.6 88.1 98.43 54.28

 27

Example 2: Control of Bounded Input Bounded Output Nonlinear Plant

In this case, the plant is described by the difference equation

)(
)(1

)()1(3
2 ku

ky
kyky +

+
=+ . (2.24)

The reference model is described by the difference equation

)()(60)1(krky.ky rr +=+ (2.25)

where)252()102()(/ksin/ksinkr ππ += . Figure 2.9 present the block diagram of the

FLNFN-based control system. The inputs to the FLNFN controller are the reference input, the

previous plant output, and the previous control signal; the output of the FLNFN controller is

the control signal to the plant. The online algorithm developed in this dissertation is adopted

to adjust the structure and the parameters of the FLNFN controller such that the error between

the output of the plant and the desired output from a reference model approaches a small

value after some train cycles.

Reference Model

Backpropagation
Algorithm

Plant

yr(k)

u(k)

r(k)

yp(k)

e(k)

Z-1

+

–

FLNFN
Controller

Figure 2.9: Block diagram of FLNFN controller-based control system.

After 500 training iterations, six fuzzy rules are generated. In this example, the proposed

FLNFN controller is compared to the FLNN controller [25] and the TSK-type NFN controller

[9]. Each of the controllers is applied to control the bounded input bounded output (BIBO)

 28

nonlinear plant. In the following four cases, the FLNFN controller is demonstrated to

outperform the other models.

 In the first case, the reference input is given by Eq. (2.25) and the final result is shown in

Fig. 2.10(a). Figure 2.10(b) presents the error curves of the FLNFN controller and the

TSK-type NFN controller. In this figure, the FLNFN controller yields smaller errors than the

TSK-type NFN controller. In the second case, after 100 epochs, the reference input is changed

to)25/2sin()(kkr π= . Figures 2.11(a)-(b) plot the result of the FLNFN controller and the

corresponding errors of the FLNFN controller and the TSK-type NFN controller. In the third

case, after 100 epochs, the reference input is changed to an impulse signal. Figure 2.12(a)

presents the simulation result. Figure 2.12 (b) present the corresponding errors of the FLNFN

controller, the FLNN controller and the TSK-type NFN controllers. In the fourth case, a

disturbance of 2.0 is added to the system between the 100th and the 150th epochs. In this case,

the FLNFN-based control system can recover from the disturbance quickly, as shown in Fig.

2.13. The RMS (root mean square) error is adopted to evaluate the performance. Table 2.2

presents the RMS errors of the FLNFN controller, the FLNN controller and the TSK-type

NFN controller. Table 2.2 shows that, according to the simulation results, the proposed

FLNFN controller outperforms the other models.

(a)

 29

(b)

Figure 2.10: Final system response in first case of example 2. (a) The dashed line represents
plant output and the solid line represents the reference model. (b) Error curves of FLNFN
controller and TSK-type NFN controller.

(a)

(b)

Figure 2.11: Final system response in second case of example2. (a) The dashed line represents
plant output and the solid line represents the reference model. (b) Error curves of FLNFN
controller and TSK-type NFN controller.

 30

(a)

(b)

Figure 2.12: Final system response in third case of example 2. (a) The dashed line represents
plant output and the solid line represents the reference model. (b) Error curves of FLNFN
controller and TSK-type NFN controller.

Figure 2.13: Final system response in fourth case of example 2. The dashed line represents
plant output and the solid line represents the reference model.

 31

Table 2.2: Comparison of performance of various controllers to control of
BIBO nonlinear plant.

Method
FLNFN

Controller
FLNN

Controller [25]
TSK-type NFN
Controller [9]

Training
Steps

500 1000 500

Parameter
Numbers

6 rules/
60 parameters

79 parameters
9 rules/

63 parameters
RMS error

of case1
0.0004 0.0211 0.0084

RMS error
of case2

0.0006 0.0208 0.0075

RMS error
of case3

0.0007 0.0303 0.0095

Example 3: Control of Ball and Beam System

Figure 2.14 presents the ball and beam system [61]. The beam is made to rotate in the

vertical plane by applying a torque at the center of rotation and the ball is free to roll along the

beam. The ball must remain in contact with the beam.

θ

beam

origin

r
ball u

Figure 2.14: Ball and beam system.

The ball and beam system can be written in state space form as

1

4

3
2
41

2

4

3

2

1

,

1
0
0
0

0

)sin(

xy

u
x

xGxxB
x

x
x
x
x

=



















+


















−

=



















&

&

&

&

 (2.26)

 32

where TT ,,r,rx,x,x,xx)()(4321 θθ &&≡= is the state of the system and rxy 1 ≡= is the output

of the system. The control u is the angular acceleration (θ&&) and the parameters B = 0.7143

and G = 9.81 are set in this system. The purpose of control is to determine u(x) such that the

closed-loop system output y converges to zero from different initial conditions.

According to the input/output-linearization algorithm [61], the control law u(x) is

determined as follows; for state x, compute)()()()()(10213243 xxxxxv φαφαφαφα −−−−= ,

where 11)(xx =φ , 22)(xx =φ , 33)(xsinBGx −=φ , 344)(xcosBGxx −=φ and iα are

chosen such that 01
2

2
3

3
4 αααα ++++ ssss is a Hurwitz polynomial. Compute

3)(xcosBGxa −= and 3
2
4)(xsinBGxxb = ; then)()]()([)(xa/xbxvxu −= .

In this simulation, the differential equations are solved using the second/third-order

Runge-Kutta method. The FLNFN model is trained to approximate the aforementioned

conventional controller of a ball and beam system.)()]()([)(xa/xbxvxu −= is adopted to

generate the input/output train pair with x obtained by randomly sampling 200 points in the

region U=[-5,5]×[-3,3]×[-1,1]×[-2,2]. After online structure-parameter learning, 14 fuzzy rules

are generated. The controller after learning was tested under the following four initial

conditions; x(0) = [2.4, -0.1, 0.6, 0.1]T, [1.6, 0.05, -0.5, -0.05]T, [-1.6, -0.05, 0.5, 0.05]T and

[-2.4, 0.1, -0.6, -0.1]T. Figure 2.15 plots the output responses of the closed-loop ball and beam

system controlled by the FLNFN model and the TSK-type NFN model. These responses

approximate those of the original controller under the four initial conditions. In this figure, the

curves of the FLNFN model tend quickly to stabilize. Figure 2.16 also presents the behavior

of the four states of the ball and beam system, starting at the initial condition [-2.4, 0.1, -0.6,

-0.1]T. In this figure, the four states of the system decay gradually to zero. The results

demonstrate the perfect control capability of the trained FLNFN model. The performance of

the FLNFN controller is compared with that of the FALCON controller [5], the FLNN

controller [25] and the TSK-type NFN controller [9]. Table 2.3 presents the comparison

 33

results. The results demonstrate that the proposed FLNFN controller outperforms other

controllers.

Figure 2.15: Responses of ball and beam system controlled by FLNFN model (solid curves)
and TSK-type NFN model (dotted curves) under four initial conditions.

Figure 2.16: Responses of four states of ball and beam system under the control of the trained
FLNFN controller.

Table 2.3: Comparison of performance of various controllers to control of ball and
beam system.

Method
FLNFN

Controller
FALCON

Controller [5]

FLNN
Controller

[25]

TSK-type NFN
Controller [9]

Training
Steps

500 50000 1000 500

Parameter
Numbers

14 rules/
280 parameters

28 rules/
280 parameters

317
parameters

22 rules/
286 parameters

RMS
errors

0.056 0.2 0.153 0.079

 34

Example 4: Control of Multi-input Multi-output (MIMO) Plant

In this example, the MIMO plants [62] to be controlled are described by the equations

.
)k(u
)k(u

)k(y
)k(y)k(y

.

)k(y
)k(y

.

)k(y
)k(y

p

pp

p

p

p

p








+



















+

+
=








+
+

2

1

2
2

21

2
2

1

2

1

1
50

1
50

1
1

 (2.27)

The controlled outputs should follow the desired output yr1 and yr2 as specified by the

following 250 pieces of data;

.
)/kcos(
)/ksin(

)k(y
)k(y

r

r








=








45
45

2

1

π
π

 (2.28)

The inputs of the FLNFN are yp1(k), yp2(k), yr1(k) and yr2(k), and the outputs are u1(k) and

u2(k). After 500 training iterations, four fuzzy rules are generated. In this example, the

proposed FLNFN controller is compared to the FLNN controller [25] and the TSK-type NFN

controller [9]. Each of the controllers is applied to control the MIMO plant. To demonstrate

the performance of the proposed controller, Figures 2.17(a) and (b) plot the control results of

the desired output and the model output using FLNFN controller. Figures 2.17 (c) and (d)

show the error curves of the FLNFN controller and the TSK-type NFN controller. Table 2.4

presents the RMS errors of the FLNFN controller, the FLNN controller and the TSK-type

NFN controller. Table 2.4 shows that, according to the simulation results, the proposed

FLNFN controller is better than the other controllers.

Table 2.4: Comparison of performance of various controllers to control of MIMO plant.

Method
FLNFN

Controller
FLNN Controller

[25]
TSK-type NFN Controller

[9]
Training Steps 500 1000 500

Parameter Numbers
4 rules/

128 parameters
161 parameters

10 rules/
140 parameters

RMS errors 0.0002 0.0738 0.0084

 35

Figure 2.17: Desired output (solid line) and model output using FLNFN controller (dotted line)
of (a) Output 1. (b) Output 2 in Example 4. Error curves of FLNFN controller (solid line) and
TSK-type NFN controller (dotted line) for (c) output 1 and (d) output 2.

2.4 Summary

This dissertation proposes a functional-link-based neuro-fuzzy network (FLNFN) structure for

nonlinear system control. The FLNFN model uses a functional link neural network to the

 36

consequent part of the fuzzy rules. The FLNFN model can automatically construct and adjust

free parameters by performing online structure/parameter learning schemes concurrently. The

FLNFN model was proven to be a universal approximator and to convergence stably. Finally,

the proposed FLNFN model yields better simulation results than other existing models under

some circumstances.

 37

Chapter 3

A Modified Differential Evolution for the FLNFN

Model

In Chapter 2, we have developed the functional-link-based neuro-fuzzy network (FLNFN).

However, the back-propagation learning algorithm may reach the local minima very quickly.

Therefore, a modified differential evolution (MODE) is presented to optimize the FLNFN

parameters in this chapter. The proposed MODE learning algorithm has two crucial ideas.

First, MODE adopts a method to effectively search between the best-so-far individual and

randomly chosen individuals. Therefore, MODE not only explores the search space by

randomly chosen individuals but also exploits the search capability of a near global optimal

solution by the best-so-far individual. Second, MODE provides a cluster-based mutation

scheme, which maintains useful diversity in the population to increase the search capability.

The cluster-based mutation scheme prevents the MODE from being trapped in local optima of

the search space.

3.1 A Brief Introduction of Differential Evolution

This section describes basic concepts concerning differential evolution (DE) [53]. Differential

evolution is a parallel direct search method which utilizes NP N-dimensional parameter

 38

vectors

 NPix Gi ..., ,2 ,1 ,, = (3.1)

as a population for each generation G. NP does not change during the minimization process.

The initial vector population is chosen randomly and should cover the entire parameter space.

As a rule, we will assume a uniform probability distribution for all random decisions unless

otherwise stated. In case a preliminary solution is available, the initial population might be

generated by adding normally distributed random deviations to the nominal solution. DE

generates new parameter vectors by adding the weighted difference between two population

vectors to a third vector. Let this operation be called mutation. The mutated vector’s

parameters are then mixed with the parameters of another predetermined vector, the target

vector, to yield the so-called trial vector. Parameter mixing is often referred to as “crossover”

in the ES-community and will be explained later in more detail. If the trial vector yields a

lower cost function value than the target vector, the trial vector replaces the target vector in

the following generation. This last operation is called selection. Each population vector has to

serve once as the target vector so that NP competitions take place in one generation.

More specifically DE’s basic strategy can be described as follows:

Mutation－For each target vector NPix Gi ..., ,2 ,1 ,, = , a mutant vector is generated

according to

()GrGrGrGi xxFxv ,,,1, 321
−⋅+=+ (3.2)

with random indexes { }NPrrr ,..., 2 ,1 , , 321 ∈ , integer, mutually different and F > 0. The

randomly chosen integers r1, r2 and r3 are also chosen to be different from the running index i,

so that NP must be greater or equal to four to allow for this condition. F is a real and constant

factor]2 ,0[∈ which controls the amplification of the differential variation ()GrGr xx ,, 32
− .

Figure 3.1 shows a two-dimensional example that illustrates the different vectors which play a

 39

part in the generation of 1, +Giv .

xr3,G

X2

X1

Minimum

xr2,G
xr1,G

F (xr2,G - xr3,G)

vi,G+1=xr1,G+F (xr2,G–xr3,G)

xi,G

Figure 3.1: An example of a two-dimensional cost function showing its contour lines and the

process for generating 1, +Giv .

Crossover－In order to increase the diversity of the perturbed parameter vectors, crossover is

introduced. To this end, the trial vector:

()1,1,21,11, ..., , , ++++ = GNiGiGiGi uuuu (3.3)

is formed, where

Nj
irnjCRjrx
irnjCRjrv

u
Gji

Gji
Gji ..., ,1 ,

)(or))((if
)(or))((if

,

1,
1, =





≠>
=≤

= +
+ . (3.4)

In Eq.(3.4), r(j) is the jth evaluation of a uniform random number generator with

outcome]1 ,0[∈ . CR is the crossover constant]1 ,0[∈ which has to be determined by the user.

rn(i) is a randomly chosen index N ..., ,2 ,1∈ which ensures that 1, +Giu gets at least one

parameter from 1, +Giv . Figure 3.2 gives an example of the crossover mechanism for

7-dimensional vectors.

 40

j=1

 2

 3

 4

 5

 6

 7

xi,G vi,G+1 ui,G+1

j=1

 2

 3

 4

 5

 6

 7

j=1

 2

 3

 4

 5

 6

 7

Target vector
containing the

parameters xji,G,
j=1,2,…,N

Mutant
vector

Trial
vector

r(3)<=CR

r(4)<=CR

r(6)<=CR

Figure 3.2: Illustration of the crossover process for N=7 parameters.

Selection－To decide whether or not it should become a member of generation G+1, the trial

vector 1, +Giu is compared to the target vector Gix , using the greedy criterion. If vector

1, +Giu yields a smaller cost function value than Gix , , then 1, +Gix is set to 1, +Giu ; otherwise,

the old value Gix , is retained.

3.2 A Modified Differential Evolution

This section describes a modified differential evolution (MODE) for the FLNFN model. The

MODE learning algorithm consists of four major phases – the initialization phase, the

evaluation phase, the reproduction phase and the cluster-based mutation phase. First, the

initialization phase creates an initial population. Second, the evaluation phase evaluates the

performance of each individual using an objective function. Third, the reproduction phase

generates new individuals and select survivors to the next phase. Fourth, the cluster-based

mutation phase ensures diversity and prevents a population from converging to a suboptimal

solution. The whole learning process is described step-by-step below.

 41

3.2.1 Initialization Phase

A. Coding Step

The foremost step in MODE is the coding of the neuro-fuzzy network into an individual.

Figure 3.3 shows an example of the coding of parameters of the neuro-fuzzy network into an

individual where i and j represent the ith input variable and the jth rule, respectively. In this

dissertation, a Gaussian membership function is adopted with variables that represent the

mean and variance of the membership function. Figure 3.3 represents the neuro-fuzzy

network given by Eq. (2.3), where ijm and ijσ are the mean and variance of a Gaussian

membership function, respectively, and kjw represents the corresponding link weight of the

consequent part that is connected to the jth rule node. In this dissertation, a real number

represents the position of each individual.

m1j m2j w1j w2j….. mij ….. ….. wMj

Individual

j1σ j2σ ijσ

Rule1 Rule2 ….. Rulej ….. RuleR

Figure 3.3: Coding FLNFN into an individual in the proposed MODE method.

B. Create Initial Population

Before the MODE learning algorithm is applied, every individual gix , must be created

randomly in the range [0, 1], where i=1, 2, …, PS represents the ith individual for each

generation g and PS denotes the population size.

3.2.2 Evaluation Phase

In this dissertation, we adopt a fitness function (i.e., objective function) to evaluate the

performance of each individual. The fitness function is defined as follows:

 42

∑
=

−+

=
tN

k
kk

t

)yy(
N

ValueFitness

1

21 1

1 (3.5)

where yk represents the model output of the kth data, ky represents the desired output of the

kth data, and Nt represents the number of the training data.

3.2.3 Reproduction Phase

A. Parent Choice

Each individual in the current generation is allowed to breed through mating with other

randomly selected individuals from the population. Specifically, for each individual gix , , i=1,

2, …, PS, where g denotes the current generation, three other random individuals, grx ,1
, grx ,2

and grx ,3
, are selected from the population such that r1, r2, and r3 { }PS,...2,1∈ and

321 rrri ≠≠≠ . This way, a parent pool of four individuals is formed to produce an offspring.

B. Offspring Generation

After choosing the parents, MODE applies a differential operation to generate a mutated

individual giv , , according to the following equation:

)()()1(,,,,, 1321 grbestgrgrgrgi xxFxxFxv −⋅+−⋅−+= (3.6)

where F, commonly known as the scaling factor, is defined as G
g to control the rate at

which the population evolves, g denotes the current generation, G is the maximum number of

generations, and bestx is the best-so-far individual in each generation. To complement the

differential operation search strategy, then MODE uses a crossover operation, often referred to

as discrete recombination, in which the mutated individual giv , is mated with gix , and

generates the offspring giu , . The elements of an individual giu , are inherited from gix , and

 43

giv , , which are determined by a parameter called crossover probability (]1 ,0[∈CR), as

follows:





>
≤

=
CRdRandx
CRdRandv

u
gid

gid
gid)(if,

)(if,

,

,
, (3.7)

where Dd ,...,2,1= denotes the dth element of individual vectors.]1 ,0[)(∈dRand is the

dth evaluation of a random number generator.

C. Survivor Selection

MODE applies selection pressure only when selecting survivors. A knockout competition

is played between each individual gix , and its offspring giu , , and the winner is selected

deterministically based on objective function values and is then promoted to the next phase.

Moreover, the best individual also reserves to the next generation.

3.2.4 Cluster-Based Mutation Phase

To prevent the MODE from being trapped in the local optima of the search space (i.e.,

problems in which there are a number of points that are better than all their neighboring

solutions, but do not have as good a fitness as the globally optimal solution), we adopt a

cluster-based mutation scheme, which maintains diversity in the population to increase the

search capability. We use an easy and fast self-cluster algorithm (SCA) [66] to cluster the

population. Each cluster can be viewed as a subspace with similar biological features in the

environment that can support different types of life; that is, these similar individuals of each

cluster direct the search toward the same local optima. Then, for each cluster, the best

individual will be reserved and other individuals will be suitably mutated to the next

generation. Mutation is an operator that randomly alters the allele of an element. Figure 3.4

shows the mutation of an individual. The mutation value is generated according to

Mean: ijij randommdIndividual σ×+=]1,0[][(3.8)

 44

Variance: ijrandomdIndividual σ××=]1,0[2][(3.9)

Other parameters:]1 1[][,randomdIndividual −= (3.10)

where mij and σij are the current mean and variance in the current individual, respectively.

Following the mutation step, a new individual can be introduced into the each population.

m11 ….. mi1 wi1 …..11σ

Mutation Point

mij
new

Old Individual

New Individual

1iσ ….. m1j ….. mij wij …..jσ1 ijσ …..

m11 ….. mi1 wi1 …..11σ 1iσ ….. m1j ….. wij …..jσ1 ijσ …..mij
new

Figure 3.4: A mutation operation in the modified differential evolution.

3.3 Experimental Results

This dissertation demonstrated the performance of the FLNFN-MODE controller for

nonlinear system control. The FLNFN-MODE controller is applied to control of water bath

temperature system. In addition, this experimentation discusses the use of a real-time digital

control environment with a hardware-in-the-loop (HIL) control application. We configure a

real-time visual simulation (VisSim) environment including a RT-DAC4/PCI motion control

card and HIL systems to demonstrate the performance of the FLNFN-MODE controller for

practical control applications. VisSim is a Windows-based program for the modeling and

simulation of complex nonlinear dynamic systems. VisSim combines an intuitive drag and

drop block diagram interface with a powerful simulation engine. We can generate a VisSim

diagram using a customizable ANSI C code directly. In this dissertation, we applied the

FLNFN-MODE controller to the planetary train type inverted pendulum system and the

magnetic levitation system in the VisSim. The experiment compares the performance with

 45

that of the FLNFN-MODE controller, the FLNFN-DE controller, and the FLNFN-GA

controller. Table 3.1 presents the parameter settings before training used in the three computer

simulations for the MODE. In the DE, the population size is set to 50, the maximum number

of generation is set to 2000, and the crossover rate is set to 0.9. In the GA, the population size

is set to 50, the maximum number of generation is set to 2000, the crossover rate is set to 0.5,

and the mutation rate is set to 0.3.

Table 3.1: Parameter settings before training.

Parameter Value
Population Size 50
Maximum Number of
Generation

2000

Crossover Rate 0.9
Coding Type Real Number

Example 1: Control of Water Bath Temperature System

The description of the system is the same as Example 1 of Section 2.3. In this example,

four fuzzy rules are adopted and the population size is set to 50. The evolution proceeded for

2000 generations, and was repeated thirty times.

This dissertation compares the FLNFN-MODE controller to the FLNFN-DE controller

and the FLNFN-GA controller. Each of these controllers is applied to the water bath

temperature control system. The performance measures include the set-points regulation, the

influence of impulse noise, and a large parameter variation in the system, and the tracking

capability of the controllers.

Figure 3.5(a) presents the regulation performance of the FLNFN-MODE controller. The

regulation performance was also tested using the FLNFN-DE controller and the FLNFN-GA

controller. Figure 3.5(b) plots the error curves of the FLNFN-MODE controller, the

FLNFN-DE controller and the FLNFN-GA controller. Figure 3.6(a) and (b) present the

 46

behaviors of the FLNFN-MODE controller under the influence of impulse noise, and the

corresponding errors, respectively. Figure 3.7(a) presents the behaviors of the FLNFN-MODE

controller when in the plant dynamics change. Figure 3.7(b) presents the corresponding errors

of the FLNFN-MODE controller, the FLNFN-DE controller and the FLNFN-GA controllers.

Figure 3.8(a) presents the tracking performance of the FLNFN-MODE controller. Figure

3.8(b) presents the corresponding errors of the FLNFN-MODE controller, the FLNFN-DE

controller, and the FLNFN-GA controller. The aforementioned simulation results, presented in

Table 3.2, demonstrate that the proposed FLNFN-MODE controller outperforms other

controllers.

(a)

(b)
Figure 3.5: (a) Final regulation performance of FLNFN-MODE controller in water bath

 47

system. (b) Error curves of the FLNFN-MODE controller, FLNFN-DE controller and
FLNFN-GA controller.

(a)

(b)
Figure 3.6: (a) Behavior of FLNFN-MODE controller under impulse noise in water bath
system. (b) Error curves of FLNFN-MODE controller, FLNFN-DE controller and
FLNFN-GA controller.

 48

(a)

(b)
Figure 3.7: (a) Behavior of FLNFN-MODE controller when a change occurs in the water bath
system. (b) Error curves of FLNFN-MODE controller, FLNFN-DE controller and
FLNFN-GA controller.

(a)

 49

(b)
Figure 3.8: (a) Tracking of FLNFN-MODE controller when a change occurs in the water bath
system. (b) Error curves of FLNFN-MODE controller, FLNFN-DE controller and
FLNFN-GA controller.

Table 3.2: Comparison of performance of various controllers to control of
water bath temperature system.

∑
=

−=
120

1
|)()(|

k
ref kykySAE

FLNFN-MODE
Controller

FLNFN-DE
Controller

FLNFN-GA
Controller

Regulation
Performance

352.78 352.91 372.85

Influence of Impulse
Noise

270.59 270.65 282.21

Effect of Change in
Plant Dynamics

263.39 263.25 270.66

Tracking
Performance

42.03 42.92 62.02

Example 2: Control of Planetary Train Type Inverted Pendulum System

In order to predict the dynamic behavior of a system from given input command and

initial conditions of the system, it is necessary to make a mathematical model of the planetary

train type inverted pendulum system [67]. The dynamic behavior of the system is helpful in

sizing the actuator, choosing the amplifier power, designing the details of the mechanisms,

and tuning the controller by computer simulation. To clarify the kinematic and dynamic

 50

relations, three major movable parts, the center gear, the planetary gear and the pendulum, are

depicted in Fig. 3.9.

1θ&

2θ&

m0g

m1g

m2g

0θ

Figure 3.9: A physical model geometry of the planetary train type inverted pendulum.

The kinematic relations of the three components can be allotted to two mutual

movements as follows. First, we assume the pendulum to be stationary (00 =θ&). The ratio of

the movements of the planetary gear to the center gear is

1

2

1

2

2

1

r
r

N
Ne −=−=

′
=
θ
θ
&

&
 (3.11)

where 1θ and 2θ are the angle of the center gear and the planetary gear, respectively; N1

and N2 are the number of the tooth of the center gear and the planetary gear, respectively; r1

and r2 are the radius of the center gear and the planetary gear; the dot denotes the time

derivative; and 1θ ′& refers to the angular velocity of the planetary gear in this case. Thus,

21 θθ && e=′ . (3.12)

Second, we assume the center gear to be stationary (02 =θ&) and allow the pendulum and

planetary gear to turn. The velocity of the planetary gear center can then be expressed as

021)(θ&rrv += . (3.13)

 51

This velocity lets the angular velocity of the planetary gear (1θ ′′&) in this case be

0
1

21

1
1 θθ &&

r
rr

r
v +
==′′ . (3.14)

Combining Eqs. (3.13) and (3.14), we obtain

0
1

21
2

111

θθ

θθθ

&&

&&&

r
rr

e
+

+=

′′+′=
. (3.15)

For the purpose of obtaining the relations between the input motor torque 2τ , the output

responses of the pendulum 0θ , and the center gear 2θ , we will use Lagrangian mechanics.

Using this method can ensure that we analyze the mechanism in a systematic approach. It

starts with the findings of kinetic energy and potential energy of each movable part.

000

2
0

2
00

02111

2
11

2
02111

2

2
222

cos
2
1

3
1

2
1

cos)(
2
1])[(

2
1
0
2
1

θ

θ

θ

θθ

θ

gmP

lmK

rrgmP

IrrmK

P

IK

=







=

+=

++=

=

=

&

&&

&

 (3.16)

where 012 and , , KKK are the kinetic energy of the center gear, the planetary gear and the

pendulum, respectively; 012 and , , PPP are the potential energy of the center gear, the

planetary gear and the pendulum, respectively; 12 and II are the moment of inertia of the

center gear and the planetary gear, respectively; 01 and mm are the mass of the planetary gear

and the pendulum, respectively; and l is the length of the pendulum.

Substituting Eq. (3.15) into Eq. (3.16), we obtain Lagrangian as follows:

 52

00211

2
22

2

0
1

21
21

2
0

2
0

2
211

cos
2
1)(

2
1

2
1

6
1)(

2
1

θ

θθθ

θ

gmrrm

I
r

rreI

lmrrm

PKL





 ++−

+






 +
++





 ++=

−= ∑∑

&&&

&

. (3.17)

Because 0θ and 2θ are two independent variables, we regard them as generalized

coordinates. Using Lagrange’s equation, two of the dynamic equations are derived as follows:

01
1

21
221

2

22
2

)(

)(

θθ

θθ
τ

&&&&

&

I
r

rreIIe

LL
dt
d








 +
++=

∂
∂

−
∂
∂

=

, (3.18)

0021121
1

21

0
2

0
2

2111

2

1

21

00
0

sin
2
1)(

3
1)(

)(

θθ

θ

θθ
τ

gmrrmI
r

rre

lmrrmI
r

rr

LL
dt
d





 ++−







 +
+












+++







 +
=

∂
∂

−
∂
∂

=

&&

&&

&

. (3.19)

In Eq. (3.19), there is no external torque applied in the pendulum, so we assign zero to the

variable 0τ .

In this dissertation, the proposed control structure is shown in Fig. 3.10. The applied

encoder is used to sense the angle of the pendulum and then to translate the signal as a

feedback signal. The pendulum angle is controlled by a motor torque until the pendulum is

balanceable. To validate the usefulness of the proposed control system under different

reference trajectories, two cases, including the set-point command (i.e., the stick angle

command is equal to zero) and the periodic square command (i.e., the stick angle command is

equal to the square wave) are used in this experimentation.

 53

Controller D/A Driver
Planetary Train
Type Inverted

Pendulum

Encoder

pendulum angle
pendulum angle

command

PC

A/D

Figure 3.10: Control block diagram for the planetary train type inverted pendulum system.

This dissertation compares the FLNFN-MODE controller to the PID controller, the

FLNFN-DE controller, and the FLNFN-GA controller. Each of these controllers is applied to

the planetary train type inverted pendulum system. The PID controller is implemented as

follows:

dt
deKdeKteKtu d

t

ip ++= ∫0)()()(ττ (3.20)

where u(t) is the control output and the error, e(t), is defined as e(t)=desired value-measured

value of quantity being controlled. The control gains Kp=830, Ki=0, and Kd=0.3284 are

designed. The training patterns of the FLNFN model are generated using the various PID

controllers with different control gains.

Figure 3.11 shows an experimental planetary train type inverted pendulum system test

used to validate the experimentation results. The performance measures include the set-points

regulation (Case 1) and the square command tracking capability (Case 2) of the controllers. In

Case 1, the proposed system is controlled to follow the set-points, which is equal to zero.

Figure 3.12(a)-(d) presents the regulation performance of the FLNFN-MODE controller, the

PID controller, the FLNFN-DE controller, and the FLNFN-GA controller. Figure 3.12(e) plots

the scaling curves of the FLNFN-MODE controller and the PID controller between the 1.5th

second and the 3.5th second. To test their regulation performance, two performance indexes,

the sum of absolute error (SAE) for the pendulum angle and the pendulum speed, are defined

by

 54

∑ −= 000
θθθ

refSAE and ∑ −= 000
θθθ
&&

&
refSAE (3.21)

where ref
0θ and 0θ are the referred pendulum angle and the actual pendulum angle,

respectively, and ref
0θ& and 0θ& are the referred pendulum speed and the actual pendulum

speed, respectively. The
0θ

SAE and
0θ&

SAE of the experimental results are presented in

Table 3.3.

Figure 3.11: The experimental planetary train type inverted pendulum system.

(a)

 55

(b)

(c)

(d)

 56

(e)

Figure 3.12: (a)-(d) Final regulation performance of the FLNFN-MODE controller, PID
controller, FLNFN-DE controller and FLNFN-GA controller. (e) Scaling curves of the
FLNFN-MODE controller and PID controller between the 1.5th second and the 3.5th second.

In Case 2, the tracking capability of the proposed system is tested using a square wave

with amplitude 02.0± and frequency 0.5Hz. Figure 3.13(a)-(d) presents the regulation

performance of the FLNFN-MODE controller, the PID controller, the FLNFN-DE controller,

and the FLNFN-GA controller. Figure 3.13(e) plots the scaling curves of the FLNFN-MODE

controller and the PID controller between the 4th second and the 8th second. A summary of the

experimental results are presented in Table 3.3. As presented in Table 3.3, the proposed

FLNFN-MODE controller outperforms the other controllers.

(a)

 57

(b)

(c)

(d)

 58

(e)

Figure 3.13: (a)-(d) Tracking of the FLNFN-MODE controller, PID controller, FLNFN-DE
controller and FLNFN-GA controller, respectively, for a square wave with amplitude 02.0±
and frequency 0.5Hz. (e) Tracking curves of the FLNFN-MODE controller and PID controller
between the 4th second and the 8th second.

Table 3.3: Comparison of performance of various controllers to control of the
planetary train type inverted pendulum system with a 0.1s sampling rate.

FLNFN-MODE
Controller

PID
Controller

FLNFN-DE
Controller

FLNFN-GA
Controller

0θ
SAE

0θ&
SAE

0θ
SAE

0θ&
SAE

0θ
SAE

0θ&
SAE

0θ
SAE

0θ&
SAE

Case 1 33.3549 68.5454 34.0881 73.3770 33.4316 69.1548 33.5696 69.7101
Case 2 33.6101 72.3521 34.4442 80.4085 33.7968 72.9001 33.8245 73.3907

Example 3: Control of Magnetic Levitation System

In order to construct a physical model of the behavior of the magnetic levitation system

[68], it is necessary to make some statements about the system and also to make some

simplifying assumptions. The physical model of the sphere and coil of the magnetic levitation

system is shown in Fig. 3.14. The applied control is voltage, which is converted into a current

within the mechanical unit. The current passes through an electromagnet which creates the

corresponding magnetic field in its vicinity. The sphere is placed along the vertical axis of the

electromagnet.

 59

Using the fundamental principle of dynamics, the behavior of the ferromagnetic ball is

given by the following electromechanical equation

),(2

2

ixFmg
dt

xdm B−= (3.22)

where m is the mass of the levitated ball, g denotes the acceleration due to gravity, x is the

distance of the ball from the electromagnet, i is the current across the electromagnet, and

),(ixFB is the magnetic control force.

The effect of the magnetic field from the electromagnetic is to introduce a magnetic

dipole in the sphere which itself becomes magnetized. The force acting on the sphere is then

composed of gravity and the magnetic force acting on the induced dipole. The magnetic field

at a distance of x from the end of the coil may be calculated from the Biot-Savart Law. This

states that the magnetic field produced by a small segment of wire, Sd , carrying a current I is

given by

3
0

4 r
dId rSB ×

=
π
µ (3.23)

where 0µ is the permeability of free space and rS×d is the vector product of Sd and r .

Electro-
magnetic

I

R

r

x δx

θ
dS Metal

Sphere
Coil

FB mgN S

Figure 3.14: Sphere and coil arrangement of the magnetic levitation system.

We are interested in the field along the axis of the coil. Consideration of symmetry

shows that the magnetic field perpendicular to the axis is zero. To evaluate the integral in Eq.

(3.23), we position the current carrying element Sd to lie horizontally on the top of the coil

and specify it by its unit vector components similarly, we specify the vector r by its unit

vector components. Then we have

]cos 0 [sin and]0 1 0[θθrdSd == rS . (3.24)

 60

In Eq. (3.23), the vector product of Sd and r from Eq. (3.24) is given by

]sin0[cos θθrdSd =×rS . (3.25)

Now, from considerations of symmetry the field component perpendicular to the coil axis

must be zero on the axis. This is the θsin component in Eq. (3.25). Also

θcos coil theof radius the rR = . (3.26)

Hence, from Eqs. (3.23), (3.25) and (3.26), the magnetic field component xdB along the axis

is given by

2
3

223
3

0)(and
4

xRr
r

RdSIdBx +==
π
µ . (3.27)

Hence integrating Eq. (3.27) round a single loop gives

2
3

22

2
0

2
3

22

2
0

)(
2

)(

2
4

xR

RI
xR

RIBx

+
=

+
=

µ

π
π
µ

. (3.28)

To evaluate the field due to the many turns along the axis of the coil, let n be the number

of turns per meter and let L (m) be its length. Now, we sum all the contributions from all the

turns of the coils, as shown in Fig 3.14. When Eq. (3.28) is used, the total axial field from all

the turns of the coil becomes

∫
+

+
=

LX

X
Total

xR

dxRInB
2
3

22

2
0

)(
2

µ (3.29)

Integrating Eq. (3.29) by parts gives

















+
−

++

+
=

2
1

2222
1

222

2
0

)())((
2

XRR

X

LXRR

LXRInBTotal
µ (3.30)

We can rewrite Eq. (3.30) as

)()(1 XGIKxB = (3.31)

The force on the ball due to the field is proportional to the induced dipole strength and

the field strength. The induced dipole strength is itself proportional to the field strength and,

 61

hence, the upwards force on the ball due to the field B is given by

))()((2
21 XXGXGIKKFB δ+−= . (3.32)

Therefore,

)('3 XGXIKFB δ−≈ (3.33)

where)(' XG denotes the derivation and Xδ is the dipole separation. On the assumption that

the poles are located at the centre of the mass of each hemisphere of the ball, Xδ is small

compared to L and R and may be taken as a constant. Therefore, Eq. (3.33) becomes

)('2 XGIKFB ≈ . (3.34)

In this dissertation, the proposed control structure is shown in Fig. 3.15. The applied

photo detector is used to detect the position of the levitated object and then to translate the

signal as feedback signal.

Controller D/A Driver Magnetic
Levitation System

Photo
Detector

levitated object
position

levitated object
position command

PC

A/D

Figure 3.15: Control block diagram for the magnetic levitation system.

In this experiment, the proposed FLNFN-MODE controller is compared to the PID

controller, the FLNFN-DE controller, and the FLNFN-GA controller. Each of the controllers

is applied to control the magnetic levitation system. As in example 2, the PID controller with

Kp=1.7, Ki=0, and Kd=0.031 is designed. The training patterns of the FLNFN model are

generated using the various PID controllers with different control gains. Figure 3.16 shows an

experimental magnetic levitation system which is tested to validate the experimentation

results. In the following four cases, the FLNFN-MODE controller is demonstrated to have

outperformed the other controllers.

 62

Figure 3.16: Experimental magnetic levitation system.

The first case and the second case are used to verify the tracking capability of the

controllers. In the first case, the reference signal is given by a sinusoidal wave with amplitude

0.5 and frequency 0.2Hz, and in the second case, the reference signal is presented by a square

wave with amplitude 0.5 and frequency 0.2Hz. The final experimental results of the

FLNFN-MODE controller, the PID controller, the FLNFN-DE controller and the FLNFN-GA

controller are shown in Fig. 3.17(a)-(d) and Fig. 3.18(a)-(d). To evaluate their performance, a

performance index, the sum of absolute error (SAE), is defined by

∑ −= PPSAE ref
P (3.35)

where refP and P are the reference trajectory and the actual position of the simulated

system, respectively. In the first case, the PSAE values of the FLNFN-MODE controller, the

PID controller, the FLNFN-DE controller and the FLNFN-GA controller are, respectively,

12.9002, 27.7017, 13.9169 and 15.1572, which values are given in the second row of Table

3.4. In the second case, the PSAE values of the FLNFN-MODE controller, the PID

controller, the FLNFN-DE controller and the FLNFN-GA controller are, respectively, 48.4033,

85.7310, 50.7233 and 53.5194, which values are given in the third row of Table 3.4. The

proposed FLNFN-MODE controller has a smaller PSAE value than the other controllers.

 63

(a)

(b)

(c)

 64

(d)

Figure 3.17: (a)-(d) Experimental results of FLNFN-MODE controller, PID controller,
FLNFN-DE controller and FLNFN-GA controller due to periodic sinusoidal command for
reference position and actual position, tracking error and control effort.

(a)

(b)

 65

(c)

(d)

Figure 3.18: (a)-(d) Experimental results of FLNFN-MODE controller, PID controller,
FLNFN-DE controller and FLNFN-GA controller due to periodic square command for
reference position and actual position, tracking error and control effort.

The third experimentation is performed to demonstrate the noise-rejection ability of the

four controllers when some unknown impulse noise is imposed on the process. One impulse

noise value, mm8− , is added to the plant output at the 7th second. A set-point of mm5.2 is

adopted in this experimental case. The FLNFN-MODE controller can recover from the

disturbance quickly after the occurrence of the impulse noise, as shown in Fig. 3.19(a).

Figures 3.19(b)-(d) present the behaviors of the other three controllers under the influence of

impulse noise. The PSAE values of the FLNFN-MODE controller, the PID controller, the

 66

FLNFN-DE controller, and the FLNFN-GA controller are, respectively, 9.2709, 12.7345,

10.1515 and 10.8771, which are shown in the fourth row of Table 3.4. The FLNFN-MODE

controller performs quite well.

(a)

(b)

 67

(c)

(d)

Figure 3.19: (a)-(d) Behavior of the FLNFN-MODE controller, PID controller, FLNFN-DE
controller and FLNFN-GA controller under impulse noise in a magnetic levitation system for
reference and actual positions, tracking error, and control effort.

One common characteristic of many industrial-control processes is that their parameters

tend to change in an unpredictable way. The signal)005.0(6.0 −∗ tu is added to the plant

input between the 7th second and the 15th second in the fourth experiment to test the

robustness of the four controllers. A set-point of mm5.2 is adopted in this fourth experiment.

Figures 3.20(a)-(d) present the behaviors of the FLNFN-MODE controller, the PID controller,

the FLNFN-DE controller, and the FLNFN-GA controller when in the plant dynamics change.

The PSAE values of the FLNFN-MODE controller, the PID controller, the FLNFN-DE

 68

controller, and the FLNFN-GA controller are, respectively, 7.9469, 24.0004, 11.0672 and

14.0844, which values are shown in the fifth row of Table 3.4. The results present the

favorable control and disturbance rejection capabilities of the trained FLNFN-MODE

controller in the magnetic levitation system.

(a)

(b)

 69

(c)

(d)

Figure 3.20: (a)-(d) Behavior of the FLNFN-MODE controller, PID controller, FLNFN-DE
controller, and FLNFN-GA controller when a change occurs in the magnetic levitation system
for reference and actual positions, tracking error, and control effort.

Table 3.4: Comparison of performance of various controllers to control of the magnetic
levitation system with a 0.1s sampling rate.

∑ −= PPSAE ref
P FLNFN-MODE

Controller
PID

Controller
FLNFN-DE
Controller

FLNFN-GA
Controller

Tracking sinusoidal wave 12.9002 27.70017 13.9169 15.1572
Tracking square wave 48.4033 85.7310 50.7233 53.5194
Influence of Impulse

Noise
9.2709 12.7345 10.1515 10.8771

Effect of Change in Plant
Dynamics

7.9469 24.0004 11.0672 14.0844

 70

3.4 Summary

This dissertation proposes a functional-link-based neuro-fuzzy network based on a modified

differential evolution (FLNFN-MODE) for nonlinear system control. The FLNFN-MODE

controller adopts a nonlinear combination of input variables to the consequent part of fuzzy

rules and uses a modified differential evolution to optimize the system parameters. We applied

the FLNFN-MODE controller to the planetary train type inverted pendulum system and the

magnetic levitation system in the VisSim. The experimental results demonstrate that the

FLNFN-MODE controller obtains a smaller SAE value than the generally used FLNFN-DE,

FLNFN-GA, and PID controllers for solving nonlinear control problems.

 71

Chapter 4

A Rule-Based Symbiotic Modified Differential

Evolution for the FLNFN Model

In this chapter, a rule-based symbiotic modified differential evolution (RSMODE) is proposed

for the FLNFN model. The proposed RSMODE learning algorithm consists of the

initialization phase to generate initial rule-based subpopulation, and the parameter learning

phase to adjust the FLNFN parameters. The initialization phase can determine the number of

rule-based subpopulation which satisfies the fuzzy partition of input variables. Initially, there

is not any subpopulation. The rule-based subpopulation is automatically generated from

training data by entropy measure. The parameter learning phase combines two strategies

including a subpopulation symbiotic evolution (SSE) and a modified differential evolution

(MODE). The SSE in which each individual represents a single fuzzy rule differs from

original symbiotic evolution. Each subpopulation allows the rule itself to evolve. The MODE

adopts a method to effectively search between the best individual and randomly chosen

individuals. Therefore, the MODE not only explores the search space by randomly chosen

individuals but also exploits the search capability of a near global optimal solution by the

best-so-far individual.

 72

4.1 A Basic Concept of Symbiotic Evolution

Elements of any ecological system live in an intricate web of interdependence. When two

species of organisms live in close physical contact with each other, their relationship is called

symbiotic. In a symbiotic relationship at least one of the organisms directly benefits from its

close association with the other organism. There are three major forms of symbiotic

relationships: mutualism, commensalisms, and parasitism [69].

Mutualism－A reciprocal relationship in which two different species live in a symbiotic

way where both species benefit and are dependent upon the relationship, that is, both species

benefit by the relationship.

Commensalism－A relationship in which one species derives food or shelter from

another species without seriously harming that organism or providing any benefits in return,

that is, one species benefits while the other species is not affected.

Parasitism－A relationship between two species in which one species (the parasite)

nourishes itself to the detriment of the other species (the host), that is, one species benefits

and the other is harmed.

Many researchers [70]-[74] have adopted the concept of mutualisms to develop

symbiotic evolution. In addition, recent development [75] in the concept of commensalisms

has provided a multi-swarm cooperative particle swarm optimizer method by the phenomenon

of symbiosis in natural ecosystems.

4.2 A Rule-Based Symbiotic Modified Differential Evolution

This section represents the proposed rule-based symbiotic modified differential evolution

(RSMODE). The RSMODE learning algorithm comprises the initialization phase and the

parameter learning phase. The initialization phase uses the entropy measure that determines

proper input space partitioning, finds the mean and variance of the Gaussian membership

 73

function and the number of rules. Next, the initial rule-based subpopulation is created

according to a range of the mean and variance of the membership function. The parameter

learning phase consists of a subpopulation symbiotic evolution (SSE) and a modified

differential evolution (MODE). Each individual in each subpopulation evolves separately

using a modified differential evolution. But in order to evaluate each individual, the individual

is composed a fuzzy system using other individuals (rules) in other subpopulations. The

detailed flowchart of the proposed RSMODE learning algorithm is presented in Fig. 4.1.

Is the first
input data?

ix̂

Generate the first
subpopulation

according to the
current input data

Generate a new
subpopulation

according to the
current input data

Yes

Yes

No

Are all training data
finished in the first

generation?

No

No

Yes

initialization
phase

Generate the initial best fuzzy system by
the first individual in each subpopulation

Update each individual in each subpopulation with a
knockout competition between the current composed

fuzzy system and the trial composed fuzzy system using
a modified differential evolution

Update the best
fuzzy system

Mutation

Termination?

Begin

End

No

Yes

parameter
learning
phase

? EMEMmax <

Figure 4.1: Flowchart of the RSMODE learning algorithm.

 74

4.2.1 Initialization Phase

In this dissertation, we finish initialization phase from training data in the first generation.

This subsection introduces the production of initial rule-based subpopulation, covering the

coding and initialization steps. The coding step involves the membership functions and the

fuzzy rules of a fuzzy system that represent individuals and are suitable for subpopulation

symbiotic evolution. The initialization step assigns the number of subpopulation before the

evolution process begins.

A. Coding Step

The first step in RSMODE learning algorithm is the coding of a fuzzy rule into an

individual. Figure 4.2 shows an example of a fuzzy rule coded into an individual where i and j

are the ith dimension and the jth rule. Figure 4.2 describes a fuzzy rule given by Eq. (2.3),

where ijm and ijσ are the mean and variance of a Gaussian membership function,

respectively, and kjw represents the corresponding link weight of the consequent part that is

connected to the jth rule node. In this dissertation, a real number represents the position of

each

m1j m2j w1j w2j….. mij ….. ….. wMj

Individual

j1σ j2σ ijσ

Figure 4.2: Coding a fuzzy rule into an individual in the RSMODE learning algorithm.

B. Initialization Step

For training data, finding the optimal solution is difficult because the range of training

data is wide. Therefore, the data must be normalized. Let training date be transformed to the

interval of [0, 1]:

'
min_

'
max_

'
min_

'

ˆˆ
ˆˆ

ˆ
ii

ii
i xx

xx
x

−

−
= (4.1)

 75

where ix̂ is the value after normalization; 'ˆix is the vector of the ith dimension to be

normalized; '
min_ˆix is the minimum value of vector 'ˆix ; '

max_ˆix is the maximum value of

vector 'ˆix .

Before the RSMODE method is designed, the individuals that will constitute R initial

subpopulation must be created. The first step in initialization phase is to create the initial first

individual in each subpopulation to satisfy the fuzzy rule partition of input variables. The

fuzzy rule partition strategy can determine whether a new rule should be extracted from the

training data and determine the number of fuzzy rules in the universal of discourse of each

input variable, since one cluster in the input space corresponds to one potential fuzzy logic

rule, in which ijm and ijσ represent the mean and variance of that cluster, respectively. For

each incoming data ix̂ , the rule firing strength can be regarded as the degree to which the

incoming data belongs to the corresponding cluster. Entropy measure between each data point

and each membership function is calculated based on a similarity measure. A data point of

closed mean will has lower entropy. Therefore, the entropy values between data points and

current membership functions are calculated to determine whether or not to add a new rule

into the initial first individual and create a new rule-based subpopulation space. For

computational efficiency, the entropy measure can be calculated using the firing strength from

)ˆ()2(
iij xµ as follow;

∑
=

−=
N

i
ijijj DDEM

1
2log (4.2)

where ()1)2()ˆ(exp −= iijij xuD and]1,0[∈jEM . According to Eq. (4.2), the measure is used to

generate a new fuzzy rule and new functional link bases for new incoming data is described as

follows. The maximum entropy measure

jRj
EMEM

≤≤
=

1max max (4.3)

 76

is determined, where R is the number of existing rules. If EMEM ≤max , then a new rule and

a new rule-based subpopulation space are generated, where]1,0[∈EM is a prespecified

threshold.

Once a new rule has been generated, the next step is to assign the initial first individual

in the new rule-based subpopulation by the initial mean and variance to the new membership

function and the corresponding link weight. Hence, the mean, variance and weight for the new

rule are set as follows;

iij xm ˆ= (4.4)

initij σσ = (4.5)

]1 ,1[−= randomwkj (4.6)

where ix̂ is the current input data and initσ is a prespecified constant.

The second step is to create other individuals in each subpopulation according to a range

of the initial first individual. The following formulations show the production of the other

individuals.

Mean: ijij ,randommdIndividual σ×+=]1 0[][, where d=1,3,…,2×N-1 (4.7)

Variance: ijrandomdIndividual σ××=]1,0[2][, where d=2,4,…,2×N (4.8)

Other parameters:]1 1[][,randomdIndividual −= , where d>2×N (4.9)

where d is the site of each individual and mij and σij are the corresponding mean and variance,

respectively, of the initial first individual.

4.2.2 Parameter Learning Phase

The parameter learning combines two strategies including a subpopulation symbiotic

evolution (SSE) and a modified differential evolution (MODE). Each subpopulation allows

 77

the individual (rule) itself to evolve by evaluating the composed fuzzy system. Figure 4.3

shows the structure of the individual in the rule-based symbiotic modified differential

evolution. The parameter learning process is described step-by-step below.

Rule 12
.....

Rule 1k

Subpopulation 1

.....
Rule 1ps

Rule 11

...

Rule j2
.....

Rule jk

Subpopulation j

.....
Rule jps

Rule j1

...

Rule R2
.....

Rule Rk

Subpopulation R

.....
Rule Rps

Rule R1

Rule 1 …... Rule j …... Rule R

Best Fuzzy System

Individual

m1j m2j w1j w2j….. mij ….. ….. wMjj2σj1σ ijσ

Rule 1 …... Rule jk …... Rule R

Current Fuzzy System

Rule 1 …... Rule' jk …... Rule R

Trial Fuzzy System

MODE

Figure 4.3: Structure of the individual in the RSMODE learning algorithm.

Step 1: Generate the Initial Best Fuzzy System

In this step, we orderly select the first individual from each subpopulation, and compose

a fuzzy system as the initial best fuzzy system.

Step 2: Update Each Individual in Each Subpopulation using MODE

In order to update each individual in each subpopulation, we use a modified differential

 78

evolution to select the better individual to the next step. Figure 4.4 gives an example of the

MODE process. Hence, this step comprises of three components - parent choice phase,

offspring generation phase and survivor selection phase.

Step 2.1: Parent Choice Phase

Each individual in the current generation is allowed to breed through mating with other

randomly selected individuals from the subpopulation. Specifically, for each current

individual gkx , , k=1, 2, …, PS, where g denotes the current generation and PS denotes the

population size, three other random individuals grx ,1
, grx ,2

 and grx ,3
 are selected from the

subpopulation such that r1, r2, and r3 { }PS,...2,1∈ and 321 rrrk ≠≠≠ . This way, a parent pool

of four individuals is formed to breed an offspring.

Step 2.2: Offspring Generation Phase

After choosing the parents, MODE applies a differential operation to generate a mutated

individual 1, +gkv , according to the following equation:

)()()1(,,,,1, 1321 grbestgrgrgrgk xxFxxFxv −⋅+−⋅−+=+ (4.10)

where F, commonly known as scaling factor, is defined as G
g to control the rate at which

the subpopulation evolves, g denotes the current generation, G is the maximum number of

generations, and bestx is the corresponding parameter of the best fuzzy system. To

complement the differential operation search strategy, then uses a crossover operation, often

referred to as discrete recombination, in which the mutated individual 1, +gkv is mated with

gkx , and generates the offspring 1, +gku . The element of trial individual 1, +gku are inherited

from gkx , and 1, +gkv , determined by a parameter called crossover probability (]1 ,0[∈CR),

as follows:

 79





>
≤

= +
+ CRdRandx

CRdRandv
u

gkd

gkd
gkd)(if,

)(if,

,

1,
1, (4.11)

where Dd ,...,2,1= denotes the dth element of individual vectors.]1 ,0[)(∈dRand is the

dth evaluation of a random number generator. For searching in nonseparable and multimodal

landscapes 9.0=CR is a good choice [55].

Rule jk Rule' jk

Mutated Individual

xk,g vk,g+1 uk,g+1

d=1 d=1 d=1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

2

3

4

5

6

7

8

CRRand ≤)3(

CRRand ≤)5(

CRRand ≤)6(

Current Individual Trial Individual

Figure 4.4: Illustration of the MODE process for 8-dimensional vector.

Step 2.3: Survivor Selection Phase

MODE applies selection pressure only when selecting survivors. First, the current

composed fuzzy system embeds the current individual gix , into the best fuzzy system and

the trial composed fuzzy system embeds the trial individual 1, +giu into the best fuzzy system.

Second, a knockout competition is played between the current composed fuzzy system and

the trial composed fuzzy system. Then, the corresponding individual of the winner is selected

deterministically based on objective function values and promoted to the next phase. In this

dissertation, we adopt a fitness function (i.e., objective function) to evaluate the performance

of these composed fuzzy systems. The fitness function is defined as follows.

 80

1 1

1

1

2∑
=

−+

=
tN

l
ll

t

)yy(
N

F (4.12)

where yl represents the model output of the lth data; ly represents the desired output of the

lth data, and Nt represents the number of the training data.

Step 3: Update the Best Fuzzy System

Compare the fitness value of the current composed fuzzy system, the trial composed

fuzzy system and the best fuzzy system. If the fitness value of the current composed fuzzy

system exceeds those of the best fuzzy system, then the best fuzzy system is replaced with the

current composed fuzzy system. If the fitness value of the trial composed fuzzy system

exceeds those of the best fuzzy system, and then the best fuzzy system is replaced with the

trial composed fuzzy system.

Step 4: Mutation

After the above process yielded offspring, no new information is introduced to the each

subpopulation at the site of an individual. As a source of new sites, mutation should be used

sparingly because it is a random search operator. In the following simulations, a mutation rate

was set to 1/(2*N+M), meaning that, on average, only one trial parameter is mutated, where N

is the number of input variables, M is the number of basis function of FLNFN and 2*N+M is

the length of each individual. Mutation is an operator that randomly alters the allele of a

element. The mutation adopted in MODE to yield diversity. The individual suffers from a

mutation to avoid falling in a local optimal solution and to ensure the searching capacity of

approximate global optimal solution. Figure 4.5 shows the mutation of an individual. The

mutation value is generated according to Eqs. (4.7)-(4.9), where mij and σij are the

corresponding mean and variance, respectively, of the current individual. Following the

mutation step, a new individual can be introduced into the each subpopulation.

 81

Mutation Site

mij
new

Old Individual

New Individual

m1j m2j w1j w2j….. mij ….. ….. wMjj2σj1σ ijσ

m1j m2j w1j w2j….. ….. ….. wMjj2σj1σ ijσmij
new

Figure 4.5: A mutation operation in the rule-based symbiotic modified differential evolution.

4.3 Experimental Results

This dissertation evaluated the performance of the proposed FLNFN controller using a

rule-based symbiotic modified differential evolution (FLNFN-RSMODE) for nonlinear

control systems. This section presents several examples and compares the performance with

that of the FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA controller.

In the nonlinear control system problems, FLNFN-RSMODE is adopted to design controllers

in three simulations - water bath temperature control system, ball and beam system and

backing up the truck. Table 4.1 presents the parameter settings before training used in the

three computer simulations for the RSMODE. In the RSDE and DE, the population size is set

to 50, the maximum number of generation is set to 2000, and the crossover rate is set to 0.9.

In the GA, the population size is set to 50, the maximum number of generation is set to 2000,

the crossover rate is set to 0.5, and the mutation rate is set to 0.3.

Table 4.1: Parameter settings before training.

Parameter Value
Population Size 50
Maximum Number of
Generation

2000

Crossover Rate 0.9
Mutation Rate 1/(2*N+M)
Coding Type Real Number

 82

Example 1: Control of Water Bath Temperature System

The description of the system is the same as Example 1 of Section 2.3. In initialization

phase, four subpopulations are generated. This dissertation compares the FLNFN-RSMODE

controller to the FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA

controller. Each of these controllers is applied to the water bath temperature control system.

The performance measures include the set-points regulation, the influence of impulse noise,

and a large parameter variation in the system, and the tracking capability of the controllers.

Figure 4.6 plots the learning curves of the best performance of the FLNFN-RSMODE

controller for the fitness value, the FLNFN-RSDE controller, the FLNFN-DE controller and

the FLNFN-GA controller, after the learning process of 2000 generations. Figure 4.7(a)

presents the regulation performance of the FLNFN-RSMODE controller. The regulation

performance was also tested using the FLNFN-RSDE controller, the FLNFN-DE controller

and the FLNFN-GA controller. Figure 4.7(b) plots the error curves of the FLNFN-RSMODE

controller, the FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA

controller. Figure 4.8(a) and (b) present the behaviors of the FLNFN-RSMODE controller, the

FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA controller under the

influence of impulse noise, and the corresponding errors, respectively. Figure 4.9(a) presents

the behaviors of the FLNFN-RSMODE controller when in the plant dynamics change. Figure

4.9(b) presents the corresponding errors of the FLNFN-RSMODE controller, the

FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA controller. Figure

4.10(a) presents the tracking performance of the FLNFN-RSMODE controller. Figure 4.10(b)

presents the corresponding errors of the FLNFN-RSMODE controller, the FLNFN-RSDE

controller, the FLNFN-DE controller, and the FLNFN-GA controller. The aforementioned

simulation results, presented in Table 4.2, demonstrate that the proposed FLNFN controller

outperforms other controllers.

 83

Figure 4.6: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE,
FLNFN-DE and FLNFN-GA in Example 1.

(a)

(b)
Figure 4.7: (a) Final regulation performance of FLNFN-RSMODE controller in water bath
system. (b) Error curves of the FLNFN-RSMODE controller, FLNFN-RSDE controller, the

 84

FLNFN-DE controller, and FLNFN-GA controller.

(a)

(b)
Figure 4.8: (a) Behavior of FLNFN-RSMODE controller under impulse noise in water bath
system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE controller, the
FLNFN-DE controller and FLNFN-GA controller.

 85

(a)

(b)
Figure 4.9: (a) Behavior of FLNFN-RSMODE controller when a change occurs in the water
bath system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE controller, the
FLNFN-DE controller, and FLNFN-GA controller.

(a)

 86

(b)
Figure 4.10: (a) Tracking of FLNFN-RSMODE controller when a change occurs in the water
bath system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE controller, the
FLNFN-DE controller, and FLNFN-GA controller.

Table 4.2: Comparison of performance of various controllers to control of water bath
temperature system.

∑
=

−=
120

1
|)()(|

k
ref kykySAE FLNFN-RSMODE

Controller

FLNFN-RSDE

Controller

FLNFN-DE

Controller

FLNFN-GA

Controller

Regulation Performance 352.66 352.81 352.91 372.85
Influence of Impulse Noise 270.46 270.76 270.65 282.21
Effect of Change in Plant

Dynamics
262.63 263.21 263.25 270.66

Tracking Performance 41.73 42.56 42.92 62.02

Example 2: Control of the Ball and Beam System

The description of the system is the same as Example 1 of Section 2.3. In initialization

phase, 14 subpopulations are generated. This example was simulated 30 times. Figure 4.11

plots the learning curves of the best performance of the FLNFN-RSMODE controller for the

fitness value, the FLFNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA

controller, after the learning process of 2000 generations. The FLNFN-RSMODE controller

after learning was tested under the following four initial conditions; x(0) = [2.4, -0.1, 0.6,

0.1]T, [1.6, 0.05, -0.5, -0.05]T, [-1.6, -0.05, 0.5, 0.05]T and [-2.4, 0.1, -0.6, -0.1]T. Figure 4.12

 87

plots the output responses of the closed-loop ball and beam system controlled by the

FLNFN-RSMODE controller and the FLNFN-RSDE controller. These responses approximate

those of the controller under the four initial conditions. In this figure, the curves of the

FLNFN-RSMODE controller tend quickly to stabilize. Figure 4.13 also shows the behavior of

the four states of the ball and beam system, starting for the initial condition [-2.4, 0.1, -0.6,

-0.1]T. In this figure, the four states of the system decay gradually to zero. The results show

the perfect control capability of the trained FLNFN-RSMODE controller. The performance of

the FLNFN-RSMODE controller is compared with that of the FLNFN-RSDE controller, the

FLNFN-DE controller and the FLNFN-GA controller. Table 4.3 presents the comparison

results. The results demonstrate that the proposed FLNFN-RSMODE controller outperforms

other controllers.

Figure 4.11: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE,
FLNFN-DE, and FLNFN-GA in Example 2.

 88

Figure 4.12: Responses of ball and beam system controlled by FLNFN-RSMODE controller
(solid curves) and FLNFN-RSDE controller (dotted curves) under four initial conditions.

Figure 4.13: Responses of four states of the ball and beam system under the control of the
FLNFN-RSMODE controller.

Table 4.3: Comparison of performance of various controllers to control of ball and beam
system.

Method FLNFN-RSMODE FLNFN-RSDE FLNFN-DE FLNFN-GA

Fitness Value (Ave) 0.9041 0.8737 0.8516 0.8287
Fitness Value (Best) 0.9653 0.9447 0.9441 0.9131

Example 3: Control of Backing Up the Truck

Backing a truck into a loading dock is difficult. It is a nonlinear control problem for

 89

which no traditional control method exists [76]. Figure 4.14 shows the simulated truck and

loading zone. The truck position is exactly determined by three state variables φ , x and y,

where φ is the angle between the truck and the horizontal, and the coordinate pair (x, y)

specifies the position of the center of the rear of the truck in the plane. The steering angle θ

of the truck is the controlled variable. Positive values of θ represent clockwise rotations of

the steering wheel and negative values represent counterclockwise rotations. The truck is

placed at some initial position and is backed up while being steered by the controller. The

objective of this control problem is to use backward only motions of the truck to make the

truck arrive in the desired loading dock (xdesired, ydesired) at a right angle (φ desired=90°). The

truck moves backward as the steering wheel moves through a fixed distance (df) in each step.

The loading region is limited to the plane [0,100] × [0,100].

Figure 4.14: Diagram of simulated truck and loading zone.

The input and output variables of the FLNFN-RSMODE controller must be specified.

The controller has two inputs, truck angle φ and cross position x. When the clearance

between the truck and the loading dock is assumed to be sufficient, the y coordinate is not

considered as an input variable. The output of the controller is the steering angle θ. The

ranges of the variables x, φ and θ are as follows.

100x0 ≤≤ (4.13)

°≤≤°− 27090 φ (4.14)

 90

°≤≤°− 3030 θ (4.15)

The equations of backward motion of the truck are,













−

+
=+

++=+

++=+

−

)k(sin)k(sind)k(cosl
)k(sin)k(cosd)k(sinl

tan)1k(

)k(sin)k(cosd)k(y)1k(y

)k(cos)k(cosd)k(x)1k(x

f

f1

f

f

θφφ
θφφ

φ

φθ

φθ

 (4.16)

where l is the length of the truck. Equation (4.16) yields the next state from the present state.

Learning involves several attempts, each starting from an initial state and terminating

when the desired state is reached; the FLNFN is thus trained. In initialization phase, 7

subpopulations are generated. This example was simulated 30 times. The fitness value of the

FLNFN-RSMODE is approximately 0.9746 and the learning curve of FLNFN-RSMODE is

compared with those obtained using the FLNFN-RSDE, FLNFN-DE, and FLNFN-GA, as

shown in Fig. 4.15. In Fig. 4.16, the solid curves are the training paths and the dotted curves

are the paths that the tuck runs under the control of the proposed controller. As this figure

shown, the FLNFN-RSMODE controller can smooth the training paths. Figures 4.17(a)-(d)

plot the trajectories of the moving truck controlled by the FLNFN-RSMODE controller,

starting at initial positions (x, y, φ) = (a) (40, 20, -30°), (b) (10 ,20 ,150°), (c) (70, 20, -30°)

and (d) (80, 20, 150°), after the training process has been terminated. The considered

performance indices include the best fitness and the average fitness value. Table 4.4 compares

the results. According to these results, the proposed FLNFN-RSMODE controller outperforms

various existing methods.

 91

Figure 4.15: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE,
FLNFN-DE and FLNFN-GA in Example 3.

Figure 4.16: The moving trajectories of the truck where the solid curves represent the six sets
of training trajectories and the dotted curves represent the moving trajectories of the truck
under the FLNFN-RSMODE controller.

(a)

 92

(b)

(c)

(d)

Figure 4.17: Trajectories of truck, starting at four initial positions under the control of the
FLNFN-RSMODE after learning using training trajectories.

 93

Table 4.4: Comparison of performance of various controllers to control of backing up the
truck.

Method FLNFN-RSMODE FLNFN-RSDE FLNFN-DE FLNFN-GA

Fitness Value (Ave) 0.9110 0.8939 0.8846 0.8421
Fitness Value (Best) 0.9746 0.9604 0.9527 0.9286

4.4 Summary

This dissertation proposes a rule-based symbiotic modified differential evolution (RSMODE)

for the FLNFN model. The proposed RSMODE learning algorithm consists of initialization

phase to generate initial rule-based subpopulation, and parameter learning phase to adjust the

FLNFN parameters. The proposed RSMODE learning algorithm allows that each individual

in each subpopulation evolves separately using a modified differential evolution. The

experimental results demonstrate that the proposed RSMODE can obtain a better performance

than other existing methods under some circumstances.

 94

Chapter 5

Conclusion and Future Works

This dissertation proposes a functional-link-based neuro-fuzzy network (FLNFN) structure for

nonlinear system control. The FLNFN model uses a functional link neural network to the

consequent part of the fuzzy rules. The FLNFN model can automatically be constructed and

the FLNFN parameters can be adjusted by performing online structure/parameter learning

schemes concurrently. The advantages of the proposed FLNFN model are summarized below.

1) The consequent of the fuzzy rules of the proposed model is a nonlinear combination of

input variables. This study uses the functional link neural network to the consequent part of

the fuzzy rules. The local properties of the consequent part in the FLNFN model enable a

nonlinear combination of input variables to be approximated more effectively.

2) The online learning algorithm can automatically construct the FLNFN model. No

rules or memberships exist initially. They are created automatically as learning proceeds, as

online incoming training data are received and as structure and parameter learning are

performed.

3) The FLNFN model is proven to be a universal approximator by Stone–Weierstrass

theorem and its convergence properties are proven by the Lyapunov theorem in the Appendix.

4) As demonstrated in section 2.3, the proposed FLNFN model is a more adaptive and

effective controller than the other models.

 95

Furthermore, in order to prevent the FLNFN parameters to quickly reach the local

optima. This dissertation also proposes a rule-based symbiotic modified differential evolution

(RSMODE) for the FLNFN model. The proposed RSMODE comprises multi-subpopulation

that uses each individual represents a single fuzzy rule and each individual in each

subpopulation evolves separately using a modified differential evolution. The advantages of

the proposed RSMODE method are summarized as follows:

1) The RSMODE can automatically determine the number of subpopulation. No

subpopulation exists initially. They are generated automatically using entropy measure which

satisfies the fuzzy partition of input variables.

2) The RSMODE adopt a subpopulation symbiotic evolution strategy which uses the

rule-based subpopulation to evolve separately.

3) The RSMODE adopt a modified differential evolution strategy to effectively search

between the current best individual and randomly chosen individuals.

Moreover, the proposed FLNFN model and its related learning algorithms can obtain

better simulation results than alternative methods in some circumstances, for example

achieving higher design accuracy in many nonlinear control problems. We shall address the

two issues of the FLNFN model and its related learning algorithms. First, we always require

that training data be sufficient and proper. However, there is no procedure or rule suitable for

all cases in choosing training data. One rule of thumb is that training data should cover the

entire expected input space and then during the training process select training-vector pairs

randomly from the set. Second, we believe that the proposed FLNFN-RSMODE and

FLNFN-MODE are a more adaptive and effective controller than the FLNFN-BP for

high-order nonlinear or overly complex systems.

Two advanced topics on the proposed FLNFN model should be addressed in future

research. First, the FLNFN model will tend to apply high-order nonlinear or overly complex

systems if it can suitably adopt the consequent part of a nonlinear combination of input

 96

variables, and a functional expansion of multiple trigonometric polynomials. Therefore, it

should be analyzed to use how many trigonometric polynomials for functional expansion in

future. Second, there are some parameters in the RSMODE method influence the accuracy

and complexity of the final FLNFN and training duration. These parameters should be

automatically selected using an effective method in future. Khosla et al. [77] presented a

systematic based on Taguchi approach reasoning scheme for identifying the strategy

parameters for the evolutionary algorithm. The Taguchi approach provides systematic, simple

and efficient methodology using fractional factorial design to study a large number of

parameters with only a few well-defined experimental sets.

 97

Appendix

A. Proof of the Universal Approximator Theorem

The Stone-Weierstrass theorem [56] is adopted to prove the universal approximator

theorem. For a clear description in the FLNFN model, only the multi-input single-output

(MISO) function ℜ∈→ℜ∈ yxf N: is considered. The FLNFN is expressed as

∑

∑

=

== R

j
j

R

j
jj

xu

xuy
xy

1

)3(

1

)3(

)(

)(ˆ
)((A.1)

Theorem A1: Stone-Weierstrass Theorem: Let A be a set of real continuous functions on

a compact set U. If 1) U is an algebra that if ∈21, ff A, and ∈c R, then ∈+ 21 ff A,

∈⋅ 21 ff A, and ∈1cf A; 2) A separates points on U, meaning that for ∈yx, U, yx ≠ , there

exists ∈1f A such that)()(21 yfxf ≠ , and 3) A vanishes at no point of U, meaning that for

each ∈x U there exists ∈1f A such that 0)(1 ≠xf , then the uniform closure of A consists of

all real continuous functions on U.

Lemma A1: Let Y be the family of function ℜ→ℜNy : defined in Eq.(A.1); then

Y→U, where U is a compact set.

Proof of Lemma A1: Here, the membership function is

1
)(

exp)(0 2

2

≤










 −
−=<

ij

iji
A

mx
x

ij σ
µ .

Therefore, the continuous function)3(
ju is closed and bounded for all Nx ℜ∈ . That is,

Y⊂U.

Proof of Theorem A1: First, we prove that Y is algebra. Let ∈21, ff Y, such that they can

be written as

 98

∑ ∏

∏∑

∑

∑

= =

==

=

=























 −
−























 −
−⋅++

=

=

1

11

1

11
2

1,1

2
1,11

1

11
2

1,1

2
1,11

1

11
1,11,1

1

11

)3(
1

1

11

)3(
11

1

1
)1(

exp

1
)1(

exp)11...11(

1

11ˆ
)(

R

j

N

i ji

jii

N

i ji

jii
R

j
MjMj

R

j
j

R

j
jj

mx

mx
ww

u

uy
xf

σ

σ
φφ

 (A.2)

∑ ∏

∏∑

∑

∑

= =

==

=

=























 −
−























 −
−⋅++

=

=

2

12

2

12
2

2,2

2
2,22

2

12
2

2,2

2
2,22

2

12
2,12,1

2

12

)3(
2

2

12

)3(
22

2

2
)2(

exp

2
)2(

exp)22...22(

2

22ˆ
)(

R

j

N

i ji

jii

N

i ji

jii
R

j
MjMj

R

j
j

R

j
jj

mx

mx
ww

u

uy
xf

σ

σ
φφ

 (A.3)

where jy1ˆ and jy2ˆ ℜ∈ , j∀ .

Therefore,

∑∑ ∏

∑∑ ∏

= =
=

= =
=

⋅+
=+ 1

11

2

12
1

)3(
2

)3(
1

1

11

2

12
1

)3(
2

)3(
121

21

)21(

)21()2ˆ1ˆ(
)(R

j

R

j

N

i jj

R

j

R

j

N

i jjjj

uu

uuyy
xff . (A.4)

Since)3(1 ju and)3(2 ju are Gaussian in form, i.e., this can be verified by straightforward

algebraic operations; hence, Eq.(A.4) is in the same form as Eq.(A.1), so that ∈+ 21 ff Y.

Similarly, we have

∑∑ ∏

∑∑ ∏

= =
=

= =
=

⋅⋅
=⋅ 1

11

2

12
1

)3(
2

)3(
1

1

11

2

12
1

)3(
2

)3(
121

21

)21(

)21()2ˆ1ˆ(
)(R

j

R

j

N

i jj

R

j

R

j

N

i jjjj

uu

uuyy
xff (A.5)

which is also in the same form as Eq.(A.1); hence, ∈⋅ 21 ff Y, Finally, for arbitrary ℜ∈c

 99

∑ ∏

∑ ∏

=
=

=
=

⋅⋅
=⋅ 1

11
1

)3(
1

1

11
1

)3(
11

1

)1(

)1()1ˆ(
)(R

j

N

i j

R

j

N

i jj

u

uyc
xfc (A.6)

which is again in the form of Eq.(A.1); hence, ∈⋅ 1fc Y. Therefore, Y is an algebra.

Next, Y is proven to separate points on U, by constructing a required f; ∈f Y is

specified such that)'()'(yfxf ≠ for arbitrarily given ∈',' yx U with '' yx ≠ . Two fuzzy

rules in the form of Eq.(2.3) are chosen for the fuzzy rule base.

Let)',...,','(' 21 Nxxxx = and)',...,','(' 21 Nyyyy = . If ii yx '' ≠ , then two fuzzy rules can be

chosen as the fuzzy rule base. Furthermore, let the Gaussian membership functions be








 −
−= 2

2)'(exp)(
1 σ

µ ii
iA

xxx
i

 (A.7)








 −
−= 2

2)'(exp)(
2 σ

µ ii
iA

yxx
i

 (A.8)

Then, f can be expressed as
















 −
−+















 −
−
















 −
−+















 −
−

=

∏∏

∏∏

==

==

N

i
i

iiN

i
i

ii

N

i
i

iiN

i
i

ii

yxxx

yxyxxy
f

1 2
2

2

1 2
1

2

1 2
2

2

1 2
1

2

)'(exp)'(exp

)'(exp2ˆ)'(exp1ˆ

σσ

σσ
 (A.9)

where 1ŷ and 2ŷ are outputs of the local FLNN model calculated for output y and rule

Rule-1, Rule-2 and ℜ∈jŷ , j∀ . With this system,
















 −
−+
















 −
−+

=

∏

∏

=

=

N

i
i

ii

N

i
i

ii

yx

yxyy
xf

1 2
2

2

1 2
2

2

)''(exp1

)''(exp2ˆ1ˆ
)'(

σ

σ
 (A.10)

 100
















 −
−+
















 −
−+

=

∏

∏

=

=

N

i
i

ii

N

i
i

ii

xy

xyyy
yf

1 2
1

2

1 2
1

2

)''(exp1

)''(exp1ˆ2ˆ
)'(

σ

σ
 (A.11)

Since '' yx ≠ , some i must exist such that ii yx '' ≠ ; hence)'()'(yfxf ≠ . Therefore, Y

separates points on U.

Finally, Y is proven to vanish at no point of U. By Eq.(A.1),)()3(xu j is constant and

does not equal zero. That is, for all Nx ℜ∈ , 0)()3(>xu j . If),...,2,1(,0)()3(Rjxu j => , then

0>y for any Nx ℜ∈ . That is, any ∈y Y with 0)()3(>xu j can serve as the required f.

In summary, the FLNFN model is a universal approximator, using the Stone-Weierstrass

theorem and the fact that Y is a continuous real set on U proves the theorem.

B. Proof of Convergence Theorem

Theorem B1: Let wη be the learning rate parameter of the FLNFN weight, and let

maxwP be defined as)(maxmax kPP wkw ≡ , where kjw wykP ∂∂=)(and ⋅ is the

Euclidean norm in Nℜ . The convergence is guaranteed if wη is chosen as

RPww λλη == 2
max)(, in which λ is a positive constant gain, and R is the number of rules

in the FLNFN model.

Proof of Theorem B1: Since

∑
=

=
∂
∂

= R

j
j

kj

kj
w

u

u
w
ykP

1

)3(

)3(

)(
φ

 (B.1)

and 1
1

)3()3(≤∑
=

R

j
jkj uu φ , the following result holds;

RkPw ≤)(. (B.2)

 101

Then, a discrete Lyapunov function is selected as

)(
2
1)(2 kekV = . (B.3)

The change in the Lyapunov function is obtained as

[])()1(
2
1

)()1()(

22 keke

kVkVkV

−+=

−+=∆
. (B.4)

The error difference can be represented as [23]

kj

T

kj

w
w

keke

kekeke

∆












∂
∂

+=

∆+=+

)()(

)()()1(

 (B.5)

where e∆ and kw∆ represent the output error change and the weight change in the output

layer, respectively. Equations (2.17) and (B.5) yield

)()()(kP
w
y

y
ke

w
ke

w
kjkj

=
∂
∂

∂
∂

=
∂
∂ (B.6)

)()()()()1(kPkekPkeke ww
T

w η−=+ . (B.7)

Then,

[]
)()(1)(

)()(1)()1(

kPkPke

kPkPkeke

w
T

ww

w
T

ww

η

η

−⋅≤

−⋅=+
 (B.8)

is true. If RPww λλη ==)(2
max is chosen, then the term)()(1 kPkP w

T
wwη− in Eq.(B.8) is

less than 1. Therefore, the Lyapunov stability of 0>V and 0<∆V is guaranteed. The

output error between the reference model and actual plant converges to zero as ∞→t . This

fact completes the proof of the theorem.

 The following lemmas [25] are used to prove Theorem 2.

 Lemma B1: Let)exp()(2hhhg −= , then ℜ∈∀< hhg ,1)(.

 Lemma B2: Let)exp()(22 hhhf −= , then ℜ∈∀< hhf ,1)(.

Theorem B2: Let mη and ση be the learning rate parameters of the mean and standard

 102

deviation of the Gaussian function for the FLNFN; let maxmP be defined as

)(maxmax kPP mkm ≡ , where ijm mykP ∂∂=)(; let maxσP be defined as)(maxmax kPP k σσ ≡ ,

where ijykP σσ ∂∂=)(. The convergence is guaranteed if mη and ση are chosen as

[] ()[] 2

minmax
2

−
⋅== ijkjwm wM σηηη σ , in which)(max

max
kww kjkkj = ;

)(min
min

kijkij σσ = ; ⋅ is the absolute value.

Proof of Theorem B2: According to Lemma B1,

[] []{ } 1/)(exp/)(2 <−−− ijijiijiji mxmx σσ . The upper bounds on)(kPm can be derived as

follows;














<

<
























 −
−









 −










<












∂
∂












∂
∂












∂
∂












∂
∂

=

∂
∂

=

∑∑

∑∑

= =

= =

min
max

1 1

2

1 1

)2(

)2(

)3(

)3(

)4(

)4(

2

2

exp 2

)(

ij
kj

ij

R

j

M

k
kkj

ij

iji

ij

iji

ij

R

j

M

k
kkj

ij

ij

ij

j

j

j

j

ij
m

wRM

w

mxmx
σ

w

m
u

u
u

u
u

u
y

m
ykP

σ

σ
φ

σσ
φ (B.9)

where Mkk ,...,2,1for ,]1,0[=∈φ . Thus,














<

min
max

2)(
ij

kjm wRMkP
σ

. (B.10)

The error difference can also be represented as [23]

ij

T

ij

m
m

keke

kekeke

∆












∂
∂

+=

∆+=+

)()(

)()()1(

 (B.11)

where ijm∆ represents the change of the mean of the Gaussian function in the membership

 103

function layer. Equation (2.18) and (B.11) yield

)()()(kP
m
y

y
ke

m
ke

m
ijij

=
∂
∂

∂
∂

=
∂
∂ (B.12)

)()()()()1(kPkekPkeke mm
T

m η−=+ . (B.13)

Then,

[]
)()(1)(

)()(1)()1(

kPkPke

kPkPkeke

m
T

mm

m
T

mm

η

η

−⋅≤

−⋅=+
 (B.14)

is true. If [] ()[] 2

minmax
2

max 2)(
−

⋅== ijkjwmm wMP σηλη is chosen, then the term

)()(1 kPkP m
T

mmη− in Eq.(B.14) is less than 1. Therefore, the Lyapunov stability of 0>V

and 0<∆V given by Eq.(B.3) and Eq.(B.4), is guaranteed. The output error between the

reference model and actual plant converges to zero as ∞→t .

According to Lemma B2, [] []{ } 1/)(exp/)(22 <−−− ijijiijiji mxmx σσ . The upper bounds

on)(kPσ can be derived as follows;














<

<
























 −
−









 −










<












∂
∂












∂
∂












∂
∂












∂
∂

=

∂
∂

=

∑∑

∑∑

= =

= =

min
max

1 1

22

1 1

)2(

)2(

)3(

)3(

)4(

)4(

2

2

exp 2

)(

ij
kj

ij

R

j

M

k
kkj

ij

iji

ij

iji

ij

R

j

M

k
kkj

ij

ij

ij

j

j

j

j

ij

wRM

w

mxmx
σ

w

u
u
u

u
u

u
y

ykP

σ

σ
φ

σσ
φ

σ

σσ

 (B.15)

where Mkk ,...,2,1for ,]1,0[=∈φ . Thus,














<

min
max

2)(
ij

kjwRMkP
σσ . (B.16)

The error difference can be represented as

 104

ij

T

ij

keke

kekeke

σ
σ

∆












∂
∂

+=

∆+=+

)()(

)()()1(

 (B.17)

where ijσ∆ represents the change of the variance of the Gaussian function in the

membership function layer. Equation (2.19) and (B.17) yield

)()()(kPy
y
keke

ijij
σσσ

=
∂
∂

∂
∂

=
∂
∂ (B.18)

)()()()()1(kPkekPkeke T
σσσ η−=+ . (B.19)

Then,

[]
)()(1)(

)()(1)()1(

kPkPke

kPkPkeke
T

T

σσσ

σσσ

η

η

−⋅≤

−⋅=+
 (B.20)

is true. If [] ()[] 2

minmax
2

max 2)(
−

⋅== ijkjw wMP σηλη σσ is chosen, then the term

)()(1 kPkPT
σσση− in Eq. (B.20) is less than 1. Therefore, the Lyapunov stability of 0>V

and 0<∆V given by Eq. (B.3) and Eq. (B.4) is guaranteed. The output error between the

reference model and actual plant converges to zero as ∞→t . This fact completes the proof

of the theorem.

 105

Bibliography

[1] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to

Intelligent System, NJ: Prentice-Hall, 1996.

[2] S. Mitra and Y. Hayashi, “Neuro-Fuzzy Rule Generation: Survey in Soft Computing

Framework,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 748-768, May 2000.

[3] F. Sun, Z. Sun, L. Li, and H. X. Li, “Neuro-Fuzzy Adaptive Control Based on Dynamic

Inversion for Robotic Manipulators,” Fuzzy Sets and Systems, Vol. 134, No. 1, pp.

117-133, Feb. 2003.

[4] L. X. Wang and J. M. Mendel, “Generating Fuzzy Rules by Learning from Examples,”

IEEE Trans. on Syst., Man, and Cybern., Vol. 22, No. 6, pp. 1414-1427, Nov/Dec. 1992.

[5] C. J. Lin and C. T. Lin, “An ART-Based Fuzzy Adaptive Learning Control Network,”

IEEE Trans. Fuzzy Systems, Vol. 5, No. 4, pp. 477-496, Nov. 1997.

[6] W. S. Lin, C. H. Tsai, and J. S. Liu, “Robust Neuro-Fuzzy Control of Multivariable

Systems by Tuning Consequent Membership Functions,” Fuzzy Sets and Systems, Vol.

124, No. 2, pp. 181-195, Dec. 2001.

[7] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to

Modeling and Control,” IEEE Trans. on Syst., Man, Cybern., Vol. 15, pp. 116-132, 1985.

[8] C. Li and C. Y. Lee, “Self-Organizing Neuro-Fuzzy System for Control of Unknown

Plants,” IEEE Trans. Fuzzy Systems, Vol. 11, No. 1, pp. 135-150, Feb. 2003.

[9] J.-S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Trans.

on Syst., Man, and Cybern., Vol. 23, pp. 665-685, 1993.

[10] C. F. Juang and C. T. Lin, “An On-Line Self-Constructing Neural Fuzzy Inference

Network and Its Applications,” IEEE Trans. Fuzzy Systems, Vol. 6, No.1, pp. 12-31, Feb.

1998.

 106

[11] S. Halgamuge and M. Glesner, “Neural Networks in Designing Fuzzy Systems for Real

World Applications,” Fuzzy Sets and Systems, Vol. 65, pp. 1-12, 1994.

[12] N. Kasabov, “Learning Fuzzy Rules and Approximate Reasoning in Fuzzy Neural

Networks and Hybrid Systems,” Fuzzy Sets and Systems, Vol. 82, pp. 135-149, 1996.

[13] D. Nauck and R. Kruse, “A Neuro-Fuzzy Method to Learn Fuzzy Classification Rules

From Data,” Fuzzy Sets and Systems, Vol. 89, pp. 277-288, 1997.

[14] S. Paul and S. Kumar, “Subsethood-Product Fuzzy Neural Inference System

(SuPFuNIS),” IEEE Trans. Neural Networks, Vol. 13, No. 3, pp. 578-599, 2002.

[15] J. S. Wang and C. S. G. Lee, “Self-Adaptive Neuro-Fuzzy Inference Systems for

Classification Applications,” IEEE Trans. Fuzzy Systems, Vol. 10, No. 6, pp. 790-802,

2002.

[16] C. J. Lin and C. T. Lin, “Reinforcement Learning for an ART-Based Fuzzy Adaptive

Learning Control Network,” IEEE Trans. Neural Networks, Vol. 7, No. 3, pp. 709-731,

June, 1996.

[17] F. J. Lin, C. H. Lin, and P. H. Shen, “Self-Constructing Fuzzy Neural Network Speed

Controller for Permanent-Magnet Synchronous Motor Drive,” IEEE Trans. Fuzzy

Systems, Vol. 9, No. 5, pp. 751-759, Oct. 2001.

[18] C. T. Chao, T. J. Chen, and C. C. Teng, “Simplification of Fuzzy-Neural Systems Using

Similarity Analysis,” IEEE Trans. Syst., Man, Cybern., Vol. 26, No. 2, pp. 344-354,

1996.

[19] C. J. Lin and C. H. Chen, “Identification and Prediction Using Recurrent Compensatory

Neuro-Fuzzy Systems,” Fuzzy Sets and Systems, Vol. 150, pp. 307-330, 2005.

[20] C. H. Chen, C. J. Lin, and C. T. Lin, “A Functional-Link-Based Neuro-Fuzzy Network

for Nonlinear System Control,” accepted to appear in IEEE Trans. on Fuzzy Systems,

2008.

[21] H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, “Neural Networks Designed on

 107

Approximate Reasoning Architecture and Their Application,” IEEE Trans. Neural

Networks, Vol. 3, pp. 752-759, Sept. 1992.

[22] E. Mizutani and J.-S. R. Jang, “Coactive Neural Fuzzy Modeling,” in Proc. Int. Conf.

Neural Networks, pp. 760-765, 1995.

[23] Y. H. Pao, Adaptive Pattern Recognition and Neural Networks, MA: Addison-Wesley,

1989.

[24] J. C. Patra and R. N. Pal, “A Functional Link Artificial Neural Network for Adaptive

Channel Equalization,” Signal Process., Vol. 43, pp. 181-195, May 1995.

[25] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of Nonlinear

Dynamic Systems Using Functional Link Artificial Neural Networks,” IEEE Trans. on

Syst., Man, and Cybern., Vol. 29, Apr. 1999.

[26] Y. H. Pao, S. M. Phillips, and D. J. Sobajic, “Neural-Net Computing and Intelligent

Control Systems,” International Journal of Control, Vol. 56, No. 2, pp. 263-289, 1992.

[27] E. Sanchez, T. Shibata, L. A. Zadeh, Genetic Algorithms and Fuzzy Logic Systems: Soft

Computing Perspectives, Singapore: World Scientific, 1997.

[28] O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena, Genetic Fuzzy Systems-Evolutionary

Tuning and Learning of Fuzzy Knowledge Bases, Singapore: World Scientific, 2001.

[29] P. P. Angelov, Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive

Systems, Physica-Verlag, Heidelberg, 2002.

[30] O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, “Ten Years of

Genetic Fuzzy Systems: Current Framework and New Trends,” Fuzzy Sets and Systems,

Vol. 141, No. 1, pp. 5-31, 2004.

[31] F. Herrera, “Genetic Fuzzy Systems: Status, Critical Considerations and Future

Directions,” International Journal of Computational Intelligence Research, Vol. 1, No. 1,

pp. 59-67, 2005.

[32] B. Carse, T. C. Fogarty, and A. Munro, “Evolving Fuzzy Rule Based Controllers Using

 108

Genetic Algorithms,” Fuzzy Sets Syst., Vol. 80, pp. 273-293, June 1996.

[33] F. Herrera, M. Lozano, and J. L. Verdegay, “Tuning Fuzzy Logic Controllers by Genetic

Algorithms,” Int. J. Approx. Reas., Vol. 12, pp. 299-315, Apr./May 1995.

[34] A. Homaifar and E. McCormick, “Simultaneous Design of Membership Functions and

Rule Sets for Fuzzy Controllers Using Genetic Algorithms,” IEEE Trans. Fuzzy Syst., Vol.

3, pp. 129-139, May 1995.

[35] J. Velasco, “Genetic-Based On-Line Learning for Fuzzy Process Control,” Int. J. Intell.

Syst., Vol. 13, pp. 891-903, 1998.

[36] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance Evaluation of Fuzzy Classifier

Systems for Multidimensional Pattern Classification Problems,” IEEE Trans. Syst., Man,

Cybern.-Part B: Cybern., Vol. 29, pp. 601-608, 1999.

[37] O. Cordon, M. J. del Jesus, F. Herrera, and M. Lozano, “MOGUL: A Methodology to

Obtain Genetic Fuzzy Rule-Based Systems under the Iterative Rule Learning Approach,”

Int. J. Intell. Syst., Vol. 14, pp. 1123-1153, 1999.

[38] A. Gonzalez and R. Perez, “SLAVE: A Genetic Learning System Based on an Iterative

Approach,” IEEE Trans. Fuzzy Syst., Vol. 27, pp. 176-91, Apr. 1999.

[39] M. Russo, “FuGeNeSys: A Fuzzy Genetic Neural System for Fuzzy Modeling,” IEEE

Trans. Fuzzy Systems, Vol. 6, pp. 373-388, 1998.

[40] I. F. Chung, C. J. Lin, and C. T. Lin, “A GA-Based Fuzzy Adaptive Learning Control

Network,” Fuzzy Sets and Systems, Vol. 112, No. 1, pp. 65-84, 2000.

[41] G. Alpaydin, G. Dandar, and S. Balkir, “Evolution-Based Design of Neural Fuzzy

Networks Using Self-Adapting Genetic Parameters,” IEEE Trans. Fuzzy Systems, Vol. 10,

No. 2, pp. 211-221, 2002.

[42] S. H. Stewart, S. Taylor, J. M. Baker, F. Hoffmann, and G. Pfister, “Evolutionary Design

of a Fuzzy Knowledge Base for a Mobile Robot,” International Journal of Approximate

Reasoning, Vol. 17, No. 4, pp. 447-469, Nov. 1997.

 109

[43] A. Parodi and P. Bonelli, “A New Approach to Fuzzy Classifier Systems,” Proc. of 5th

Int. Conf. Genetic Algorithms, pp. 223-230, 1993.

[44] L. Castillo, A. Gonzalez, and R. Perez, “Including a Simplicity Criterion in the Selection

of the Best Rule in a Genetic Fuzzy Learning Algorithm,” Fuzzy Sets and Systems, Vol.

120, No. 2, pp. 309-321, 2001.

[45] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting Fuzzy If-Then Rules

for Classification Problems Using Genetic Algorithms,” IEEE Trans. Fuzzy Systems, Vol.

3, No. 3, pp. 260-270, 1995.

[46] H. Ishibuchi, T. Murata, and I. B. Turksen, “Single-Objective and Two-Objective Genetic

Algorithms for Selecting Linguistic Rules for Pattern Classification Problems,” Fuzzy

Sets and Systems, Vol. 89, No. 2, pp. 135-150, 1997.

[47] H. Ishibuchi, T. Nakashima, and T. Murata, “Three-Objective Genetics-Based Machine

Learning for Linguistic Rule Extraction,” Information Sciences, Vol. 136, No. 1-4, pp.

109-133, 2001.

[48] H. Ishibuchi and Y. Nojima, “Analysis of Interpretability-Accuracy Tradeoff of Fuzzy

Systems by Multiobjective Fuzzy Genetics-Based Machine Learning,” International

Journal of Approximate Reasoning, Vol. 44, No. 1, pp. 4-31, 2007.

[49] S. Mitra and S. K. Pal, “Fuzzy Multi-Layer Perceptron, Inferencing and Rule

Generation,” IEEE Trans. Neural Networks, Vol. 6, No. 1, pp. 51-63, 1995.

[50] S. Mitra and S. K. Pal, “Fuzzy Self-Organization, Inferencing, and Rule Generation,”

IEEE Trans. Syst., Man, Cybern. A, Vol. 26, No. 5, pp. 608-620, 1996.

[51] S. Mitra, K. M. Konwar, and S. K. Pal, “Fuzzy Decision Tree, Linguistic Rules and

Fuzzy Knowledge-Based Network: Generation and Evaluation,” IEEE Trans. Syst., Man,

Cybern. C, Vol. 32, No. 4, 2002.

[52] S. K. Pal, S. Mitra, and P. Mitra, “Rough-Fuzzy MLP: Modular Evolution, Rule

Generation, and Evaluation,” IEEE Trans. Knowledge and Data Engineering, Vol. 15, No.

 110

1, pp. 328-339, 2003.

[53] R. Storn and K. V. Price, “Differential Evolution-A Simple and Efficient Heuristic for

Global Optimization Over Continuous spaces,” J. Global Opt., Vol. 11, No. 4, pp.

341-359, Dec. 1997.

[54] R. Storn, “System Design by Constraint Adaptation and Differential Evolution,” IEEE

Trans. Evolutionary Computation, Vol. 3, No. 1, pp. 22-34, Apr. 1999.

[55] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical

Approach to Global Optimization, Germany: Springer-Verlag, 2005.

[56] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, NewYork, 1976.

[57] L. X. Wang and J. M. Mendel, “Fuzzy Adaptive Filters, with Application to Nonlinear

Channel Equalization,” IEEE Trans. Fuzzy Systems, Vol. 1, No. 3, pp. 161-170, Aug.

1993.

[58] C. C. Ku and K. Y. Lee, “Diagonal Recurrent Neural Networks for Dynamic Systems

Control,” IEEE Trans. Neural Networks, Vol. 6, pp. 144.156, Jan. 1995.

[59] Y. C. Chen and C. C. Teng, “A Model Reference Control Structure Using a Fuzzy Neural

Network,” Fuzzy Sets and Systems, Vol. 73, pp. 291-312, 1995.

[60] J. Tanomaru and S. Omatu, “Process Control by On-Line Trained Neural Controllers,”

IEEE Trans. on Ind. Electron., Vol. 39, pp. 511-521, 1992.

[61] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear Control via Approximate Input-Output

Linearization: the Ball and Beam Example,” IEEE Transactions on Automatic Control,

Vol. 37, pp. 392-398, 1992.

[62] K. S. Narendra and K. Parthasarathy, “Identification and Control of Dynamical Systems

Using Neural Networks,” IEEE Trans. Neural Networks, Vol. 1, No. 1, pp. 4-27, Mar.

1990.

[63] D. Psaltis, A. Sideris, and A. Yamamura, “A Multilayered Neural Network Controller,”

IEEE Contr. Syst., Vol. 8, pp. 17-21, 1988.

 111

[64] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, Prentice Hall,

1995.

[65] K. J. Astrom and B. Wittenmark, Adaptive Control, MA: Addison-Wesley, 1989.

[66] C. H. Chen, C. J. Lin, and C. T. Lin, “An Efficient Quantum Neuro-Fuzzy Classifier

Based on Fuzzy Entropy and Compensatory Operation,” Soft Computing, Vol. 12, No. 6,

pp. 567-583, Apr. 2008.

[67] Cho Chieh Tech. Enterprise Ltd. http://www.chochieh.com.tw/

[68] Feedback Instruments Limited http://www.fbk.com/

[69] A. E. Douglas, Symbiotic Interactions, Oxford University Press, Oxford, 1994.

[70] R. E. Smith, S. Forrest and A. S. Perelson, “Searching for Diverse, Cooperative

Populations with Genetic Algorithms,” Evolutionary Computation, Vol. 1, No. 2, pp.

127-149, 1993.

[71] D. E. Moriarty and R. Miikkulainen, “Efficient Reinforcement Learning through

Symbiotic Evolution,” Mach. Learn., Vol. 22, pp. 11-32, 1996.

[72] C. F. Juang, J. Y. Lin and C. T. Lin, “Genetic Reinforcement Learning through Symbiotic

Evolution for Fuzzy Controller Design,” IEEE Trans. Syst., Man, Cybern. B, Vol. 30, No.

2, Apr. 2000.

[73] M. Jamei, M. Mahfouf, and D. A. Linkens, “Elicitation and Fine-Tuning of Fuzzy

Control Rules Using Symbiotic Evolution,” Fuzzy Sets and Systems, Vol. 147, No. 1, pp.

57-74, Oct. 2004.

[74] C. H. Chen, C. J. Lin, and C. T. Lin, “Using an Efficient Immune Symbiotic Evolution

Learning for Compensatory Neuro-Fuzzy Controller,” accepted to appear in IEEE Trans.

on Fuzzy Systems, 2008.

[75] B. Niu, Y. Zhu, X. He, and H. Wu, “MCPSO: A Multi-Swarm Cooperative Particle

Swarm Optimizer,” Applied Mathematics and Computation, Vol. 185, pp. 1050-1062,

2007.

 112

[76] D. Nguyen and B. Widrow, “The Truck Backer-Upper: An Example of Self-Learning in

Neural Network,” IEEE Conf. Syst. Mag., Vol. 10, No. 3, pp. 18-23, 1990.

[77] A. Khosla, S. Kumar, and K. K. Aggarwal, “Identification of Strategy Parameters for

Particle Swarm Optimizer through Taguchi Method,” Journal of Zhejiang University:

Science, Vol. 7, No. 12, pp. 1989-1994, 2006.

 113

Vita

博士候選人學經歷資料

姓名：陳政宏 (Cheng-Hung Chen)

性別：男

生日：民國 68 年 2 月 23 日

出生地：高雄市

論文題目：

中文：以函數鏈結為基礎之類神經模糊網路及其應用

英文：A Functional-Link-Based Neuro-Fuzzy Network and Its Applications

學歷：

� 民國 91 年 6 月，朝陽科技大學資訊工程系畢業

� 民國 93 年 6 月，朝陽科技大學資訊工程系碩士班畢業

� 民國 97 年 7 月，國立交通大學電機與控制工程學系博士班，提博士論

文口試

 114

Publication List

著作目錄

姓名：陳政宏(Cheng-Hung Chen)

已刊登或被接受之期刊論文：

[1] Cheng-Hung Chen, Cheng-Jian Lin, and Chin-Teng Lin, “A Functional-Link-Based
Neuro-Fuzzy Network for Nonlinear System Control,” accepted to appear in IEEE Trans.
on Fuzzy Systems, 2008. (2.8 點)

[2] Cheng-Jian Lin, Cheng-Hung Chen, and Chin-Teng Lin, “A Hybrid of Cooperative
Particle Swarm Optimization and Cultural Algorithm for Neural Fuzzy Networks and Its
Prediction Applications,” accepted to appear in IEEE Trans. on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 2008. (2 點)

[3] Cheng-Hung Chen, Cheng-Jian Lin, and Chin-Teng Lin, “Using an Efficient Immune
Symbiotic Evolution Learning for Compensatory Neuro-Fuzzy Controller,” accepted to
appear in IEEE Trans. on Fuzzy Systems, 2008. (2.8 點)

[4] Cheng-Hung Chen, Cheng-Jian Lin, and Chin-Teng Lin, “An Efficient Quantum
Neuro-Fuzzy Classifier Based on Fuzzy Entropy and Compensatory Operation,” Soft
Computing, Vol. 12, No. 6, pp. 567-583, Apr. 2008. (1.4 點)

研討會論文：

[1] Cheng-Hung Chen, Chin-Teng Lin, and Cheng-Jian Lin, “A Novel Recurrent
Neuro-Fuzzy System and Its Applications,” Cross-Strait Workshop on Controls, Taipei,
Taiwan, R.O.C., pp. 69-74, Nov. 22-26, 2007.

[2] Cheng-Hung Chen, Chin-Teng Lin, and Cheng-Jian Lin, “A Functional-Link-Based
Fuzzy Neural Network for Temperature Control,” The First IEEE Symposium on
Foundations of Computational Intelligence, Honolulu, Hawaii, USA, pp. 53-58, Apr. 1-5,
2007.

[3] Cheng-Hung Chen, Cheng-Jian Lin, and Chin-Teng Lin, “A Recurrent Functional-Link-
Based Neural Fuzzy System and Its Applications,” The First IEEE Symposium on
Computational Intelligence in Image and Signal Processing, Honolulu, Hawaii, USA, pp.
415-420, Apr. 1-5, 2007.

[4] Cheng-Hung Chen, Cheng-Jian Lin, and Chin-Teng Lin, “A Self-Constructing
Compensatory Neural Fuzzy System for Nonlinear System Control,” The 14th National
Conference on Fuzzy Theory and Its Applications, Kaohsiung, Taiwan, R.O.C., Dec.
14-15, 2006.

[5] Cheng-Hung Chen, Chin-Teng Lin, and Cheng-Jian Lin, “Identification and Prediction

 115

Using Recurrent Compensatory Neuro-Fuzzy Systems,” The 14th National Conference
on Fuzzy Theory and Its Applications, Kaohsiung, Taiwan, R.O.C., Dec. 14-15, 2006.

[6] Cheng-Hung Chen, Chin-Teng Lin, and Cheng-Jian Lin, “A Novel Neuro-Fuzzy
Inference System for Skin Color Detection,” The 19th IPPR Conference on Computer
Vision, Graphics and Image Processing, Taoyuan, Taiwan, R.O.C., Aug. 13-15, 2006.

[7] Chin-Teng Lin and Cheng-Hung Chen, “An Entropy-Based Neuro-Fuzzy Inference
System for Classification Applications,” The First Taiwan Software Engineering
Conference, Taipei, Taiwan, R.O.C., pp. 189-194, June 3-4, 2005.

[8] Cheng-Hung Chen and Chin-Teng Lin, 2005, “Identification of Chaotic System Using
Recurrent Compensatory Neuro-Fuzzy Systems,” IEEE Int’l Workshop on Cellular
Neural Networks and their Applications, Hsinchu, Taiwan, R.O.C., pp. 15-18, May 28-30,
2005.

