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以函數鏈結為基礎之類神經模糊網路及其應用 

 

研究生：陳政宏 指導教授：林進燈 博士 

 

國立交通大學電機與控制工程學系﹙研究所﹚博士班 

 

摘    要 

本篇論文提出一以函數鏈結為基礎之類神經模糊網路及其相關學習演算法。此類神

經模糊網路採用函數鏈結類神經網路當作模糊法則的後件部。此後件部是輸入變數的非

線性組合，它是利用函數展開的方式，能在高維度的輸入空間中提供良好的非線性決策

能力，因此，可使網路輸出更具體且更逼近目標輸出。本論文主要為三大部分。第一部

份將詳細介紹以函數鏈結為基礎之類神經模糊網路及其線上學習演算法。此演算法包含

架構學習及參數學習，架構學習是藉由熵的量測決定是否要增長一個新的法則，參數學

習是使用倒傳遞演算法調整網路上的所有參數。由於倒傳遞演算法常常會得到局部最佳

解。因此，在第二部份中，我們提出一改良式差分進化演算法，所提出的演算法與傳統

差分進化演算法是不同的，在於我們使用一有效的搜尋機制使得每條個體能更新在目前

最佳解和亂數搜尋解之間，並採用以群為基底的突變方式以提高個體間彼此的差異性。

但以上的進化演算法，無法決定該使用多少法則數。因此，在第三部份中，我們提出一

以法則為基礎的共生差分進化演算法。此演算法是利用多個子族群進行進化，每個子族

群的個體代表每條模糊法則，且每個子族群能各自進化。此外，這演算法也能自動決定

子族群數，並最佳化網路上的所有參數。最後，我們將與其他方法比較，以證實所提出

的網路架構及其相關演算法之有效性。 
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A Functional-Link-Based Neuro-Fuzzy Network 
and Its Applications 

 

Student：Cheng-Hung Chen         Advisor：Dr. Chin-Teng Lin 

 

Department of Electrical and Control Engineering  

National Chiao-Tung University 
 

Abstract 

This dissertation proposes a functional-link-based neuro-fuzzy network (FLNFN) and its 

related learning algorithms. The proposed FLNFN model uses a functional link neural 

network to the consequent part of the fuzzy rules. The consequent part uses a nonlinear 

functional expansion to form arbitrarily complex decision boundaries. Thus, the local 

properties of the consequent part in the FLNFN model enable a nonlinear combination of 

input variables to be approximated more effectively. This dissertation consists of three major 

parts. In the first part, the FLNFN model and an online learning are presented. The online 

learning algorithm consists of structure learning and parameter learning. The structure 

learning depends on the entropy measure to determine the number of fuzzy rules. The 

parameter learning, based on back-propagation, can adjust the shape of the membership 

function and the corresponding weights of the consequent part. Unfortunately, the 

back-propagation learning algorithm may reach the local minima very quickly. Therefore, a 

modified differential evolution (MODE) is presented to optimize the FLNFN parameters in 

the second part. The proposed MODE learning algorithm differs from the traditional 

differential evolution. The MODE adopts a method to effectively search between the best 

individual and randomly chosen individuals, and the MODE also provides a cluster-based 

mutation scheme, which maintains useful diversity in the population to increase the search 
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capability. But, the aforementioned algorithm cannot determine how many rules to be used. 

Therefore, a rule-based symbiotic modified differential evolution (RSMODE) is proposed for 

the FLNFN model in the third part. The RSMODE adopts a multi-subpopulation scheme that 

uses each individual represents a single fuzzy rule and each individual in each subpopulation 

evolves separately. Furthermore, the proposed RSMODE learning algorithm can also 

determine the number of rule-based subpopulation and adjust the FLNFN parameters. Finally, 

the proposed FLNFN model and its related learning algorithms are applied in various control 

problems. Results of this dissertation demonstrate the effectiveness of the proposed methods. 
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Chapter 1 
 

 

Introduction 
 

 

1.1  Motivation 

In the field of artificial intelligence, neural networks are essentially low-level computational 

structures and algorithms that offer good performance when they deal with sensory data. 

However, it is difficult to understand the meaning of each neuron and each weight in the 

networks. Generally, fuzzy systems are easy to appreciate because they use linguistic terms 

and if-then rules. However, they lack the learning capacity to fine-tune fuzzy rules and 

membership functions. Therefore, neuro-fuzzy networks combine the benefits of neural 

networks and fuzzy systems to solve many engineering problems. Neuro-fuzzy networks 

bring the low-level learning and computational power of neural networks into fuzzy systems 

and give the high-level human-like thinking and reasoning of fuzzy systems to neural 

networks. 

Recently, neuro-fuzzy networks have become popular topics of research, and are applied 

in many areas, such as prediction, control, identification, recognition, decision-making, etc. 

Neuro-fuzzy networks have some significant issues including how to design an adaptive 

neruo-fuzzy network and how to design an effective learning algorithm. Therefore, we 

propose a functional-link-based neuro-fuzzy network (FLNFN) and its related learning 

algorithms in this dissertation. The proposed FLNFN model, which combines a neuro-fuzzy 
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network with a functional link neural network, is designed to improve the accuracy of 

functional approximation. Each fuzzy rule that corresponds to a functional link neural 

network consists of a functional expansion of input variables. The consequent part of the 

proposed model is a nonlinear combination of input variables. Hence, the local properties of 

the consequent part in the FLNFN model enable a nonlinear combination of input variables to 

be approximated more effectively. 

Training of the parameters is the main problem in designing a neuro-fuzzy network. 

Backpropagation (BP) training is commonly adopted to solve this problem. It is a powerful 

training technique that can be applied to networks with a forward structure. Since the steepest 

descent approach is used in BP training to minimize the error function, the algorithms may 

reach the local minima very quickly and never find the global solution. The aforementioned 

disadvantages lead to suboptimal performance, even for a favorable neuro-fuzzy network 

topology. Therefore, technologies, that can be used to train the system parameters and find the 

global solution while optimizing the overall structure, are required. Next, we propose a 

rule-based symbiotic modified differential evolution (RSMODE) for the proposed FLNFN 

model. The RSMODE can automatically determine the number of fuzzy rules and generate 

initial subpopulation. Furthermore, each individual in each subpopulation evolves separately 

using a modified differential evolution (MODE). The proposed MODE adopts a method to 

effectively search between the best individual and randomly chosen individuals. Finally, the 

proposed FLNFN model is applied in various control problems and practical applications. 

Results of this dissertation demonstrate the effectiveness of the proposed method. 

 

1.2  Literature Survey 

Recently, neuro-fuzzy networks [1]-[20] provide the advantages of both neural networks and 

fuzzy systems, unlike pure neural networks or fuzzy systems alone. Neuro-fuzzy networks 
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(NFN) bring the low-level learning and computational power of neural networks into fuzzy 

systems and give the high-level human-like thinking and reasoning of fuzzy systems to neural 

networks. 

Two typical types of neuro-fuzzy networks are the Mamdani-type and the 

Takagi-Sugeno-Kang (TSK)-type. For Mamdani-type neuro-fuzzy networks [4]-[6], the 

minimum fuzzy implication is adopted in fuzzy reasoning. For TSK-type neuro-fuzzy 

networks (TSK-type NFN) [7]-[10], the consequence part of each rule is a linear combination 

of input variables. Many researchers [9]-[10] have shown that TSK-type neuro-fuzzy 

networks offer better network size and learning accuracy than Mamdani-type neuro-fuzzy 

networks. In the typical TSK-type neuro-fuzzy network, which is a linear polynomial of input 

variables, the model output is approximated locally by the rule hyper-planes. Nevertheless, 

the traditional TSK-type neuro-fuzzy network does not take full advantage of the mapping 

capabilities that may be offered by the consequent part. 

Introducing a nonlinear function, especially a neural structure, to the consequent part of 

the fuzzy rules has yielded the NARA [21] and the CANFIS [22] models. These models 

[21]-[22] apply multilayer neural networks to the consequent part of the fuzzy rules. Although 

the interpretability of the model is reduced, the representational capability of the model is 

markedly improved. However, the multilayer neural network has such disadvantages as 

slower convergence and greater computational complexity. Therefore, this dissertation uses 

the functional link neural network (FLNN) [23]-[25] to the consequent part of the fuzzy rules, 

called a functional-link-based neuro-fuzzy network (FLNFN). The consequent part of the 

proposed FLNFN model is a nonlinear combination of input variables, which differs from the 

other existing models [5], [9]-[10]. The FLNN is a single layer neural structure capable of 

forming arbitrarily complex decision regions by generating nonlinear decision boundaries 

with nonlinear functional expansion. The FLNN [26] was conveniently used for function 

approximation and pattern classification with faster convergence rate and less computational 
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loading than a multilayer neural network. Moreover, using the functional expansion can 

effectively increase the dimensionality of the input vector, so the hyper-planes generated by 

the FLNN will provide a good discrimination capability in input data space. 

In addition, training of the parameters is the main problem in designing a neuro-fuzzy 

network. Backpropagation (BP) training is commonly adopted to solve this problem. It is a 

powerful training technique that can be applied to networks with a forward structure. Since 

the steepest descent approach is used in BP training to minimize the error function, the 

algorithms may reach the local minima very quickly and never find the global solution. The 

aforementioned disadvantages lead to suboptimal performance, even for a favorable 

neuro-fuzzy network topology. Therefore, technologies, that can be used to train the system 

parameters and find the global solution while optimizing the overall structure, are required. 

Recent development in genetic algorithms (GAs) has provided a method for neuro-fuzzy 

system design. Genetic fuzzy systems (GFSs) [27]-[31] hybridize the approximate reasoning 

of fuzzy systems with the learning capability of genetic algorithms. GAs represent highly 

effective techniques for evaluating system parameters and finding global solutions while 

optimizing the overall structure. Thus, many researchers have developed GAs to implement 

fuzzy systems and neuro-fuzzy systems in order to automate the determination of structures 

and parameters [32]-[52]. 

Carse et al. [32] presented a GA-based approach to employ variable length rule sets and 

simultaneously evolves fuzzy membership functions and relations called Pittsburgh-style 

fuzzy classifier system. Herrera et al. [33] proposed a genetic algorithm-based tuning 

approach for the parameters of membership functions used to define fuzzy rules. This 

approach relied on a set of input-output training data and minimized a squared-error function 

defined in terms of the training data. Homaifar and McCormick [34] presented a method that 

simultaneously found the consequents of fuzzy rules and the center points of triangular 

membership functions in the antecedent using genetic algorithms. Velasco [35] described a 
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Michigan approach which generates a special place where rules can be tested to avoid the use 

of bad rules for online genetic learning. Ishibuchi et al. [36] applied a Michigan-style genetic 

fuzzy system to automatically generate fuzzy IF-THEN rules for designing compact fuzzy 

rule-based classification systems. The genetic learning process proposed is based on the 

iterative rule learning approach and it can automatically design fuzzy rule-based systems by 

Cordon et al. [37]. A GA-based learning algorithm called structural learning algorithm in a 

vague environment (SLAVE) was proposed in [38]. SLAVE used an iterative approach to 

include more information in the process of learning one individual rule. Furthermore, a very 

interesting algorithm was proposed by Russo in [39] which attempted to combine all good 

features of fuzzy systems, neural networks and genetic algorithm for fuzzy model derivation 

from input-output data. Chung et al. [40] adopted both neural networks and GAs to 

automatically determine the parameters of fuzzy logic systems. They utilized a feedforward 

neural network for realizing the basic elements and functions of a fuzzy controller. In [41], a 

hybrid of evolution strategies and simulated annealing algorithms is employed to optimize 

membership function parameters and rule numbers which are combined with genetic 

parameters. 

Three main strategies, including Pittsburgh-type, Michigan-type, and the iterative rule 

learning genetic fuzzy systems, focus on generating and learning fuzzy rules in genetic fuzzy 

systems. First, the Pittsburgh-type genetic fuzzy system [42] was characterized by using a 

fuzzy system as an individual in genetic operators. Second, the Michigan-type genetic fuzzy 

system was used for generating fuzzy rules in [43], where each fuzzy rule was treated as an 

individual. Thus, the rule generation methods in [43] were referred to as fuzzy classifier 

systems. Third, the iterative rule learning genetic fuzzy system [44] was adopted to search one 

adequate rule set for each iteration of the learning process. Moreover, Ishibuchi et al. [45]-[48] 

proposed genetic algorithms for constructing a fuzzy system consisting of a small number of 

linguistic rules. Mitra et al. [49]-[52] presented some approaches that exploit the benefits of 
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soft computation tools for rule generation. 

In the aforementioned literatures, it has been fully demonstrated that GAs are very 

powerful in searching for the true profile. However, the search is extremely time-consuming, 

which is one of the basic disadvantages of all GAs. Although the convergence in some special 

cases can be improved by hybridizing GAs with some local search algorithms, it is achieved 

at the expense of the versatility and simplicity of the algorithm. Similar to GAs, DE [53]-[55] 

also belongs to the broad class of evolutionary algorithms, but DE has many advantages such 

as the strong search ability and the fast convergence ability over GAs or any other traditional 

optimization approach, especially for real valued problems [55]. Therefore, we propose a 

rule-based symbiotic modified differential evolution (RSMODE) for the proposed FLNFN 

model. The RSMODE is to adjust the system parameters and find the global solution while 

optimizing the overall structure. 

 

1.3  Organization of Dissertation 

The overall objective of this dissertation is to develop a novel neuro-fuzzy network and its 

related learning algorithm. Organization and objectives of each chapter in this dissertation are 

as follows. 

In Chapter 2, we propose a functional-link-based neuro-fuzzy network (FLNFN) 

structure for nonlinear system control. The proposed FLNFN model uses a functional link 

neural network (FLNN) to the consequent part of the fuzzy rules. This dissertation uses 

orthogonal polynomials and linearly independent functions in a functional expansion of the 

FLNN. Thus, the consequent part of the proposed FLNFN model is a nonlinear combination 

of input variables. An online learning algorithm, which consists of structure learning and 

parameter learning, is also presented. The structure learning depends on the entropy measure 

to determine the number of fuzzy rules. The parameter learning, based on the gradient descent 
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method, can adjust the shape of the membership function and the corresponding weights of 

the FLNN. 

In Chapter 3, we present a modified differential evolution (MODE) for the proposed 

FLNFN model. The proposed MODE learning algorithm adopts an evolutionary learning 

method to optimize the FLNFN parameters. The MODE algorithm uses a method to 

effectively search toward the current best individual. Furthermore, the MODE algorithm also 

provides a cluster-based mutation scheme, which maintains useful diversity in the population 

to increase the search capability. 

In Chapter 4, we propose a rule-based symbiotic modified differential evolution 

(RSMODE) for the proposed FLNFN model. The proposed RSMODE learning algorithm 

consists of initialization phase and parameter learning phase. The initialization phase can 

determine the number of subpopulation which satisfies the fuzzy partition of input variables 

using the entropy measure. The parameter learning phase combines two strategies including a 

subpopulation symbiotic evolution and a modified differential evolution. The RSMODE can 

automatically generate initial subpopulation and each individual in each subpopulation 

evolves separately using a modified differential evolution. We also compare our method with 

other methods in the literature early. Finally, conclusions and future works are summarized in 

the last section. 
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Chapter 2 
 

 

A Functional-Link-Based Neuro-Fuzzy Network 
 

 

In this chapter, a functional-link-based neuro-fuzzy network (FLNFN) model is presented for 

nonlinear system control. The FLNFN model, which combines a neuro-fuzzy network with a 

functional link neural network (FLNN), is designed to improve the accuracy of functional 

approximation. Each fuzzy rule that corresponds to a FLNN consists of a functional 

expansion of input variables. The orthogonal polynomials and linearly independent functions 

are adopted as functional link neural network bases. An online learning algorithm, consisting 

of structure learning and parameter learning, is proposed to construct the FLNFN model 

automatically. The structure learning algorithm determines whether or not to add a new node 

which satisfies the fuzzy partition of input variables. Initially, the FLNFN model has no rules. 

The rules are automatically generated from training data by entropy measure. The parameter 

learning algorithm is based on back-propagation to tune the free parameters in the FLNFN 

model simultaneously to minimize an output error function. 

 

2.1  Structure of Functional-Link-Based Neuro-Fuzzy Network 

This section describes the structure of functional link neural networks and the structure of the 

FLNFN model. In functional link neural networks, the input data usually incorporate high 

order effects and thus artificially increase the dimensions of the input space using a functional 
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expansion. Accordingly, the input representation is enhanced and linear separability is 

achieved in the extended space. The FLNFN model adopted the functional link neural 

network generating complex nonlinear combination of input variables to the consequent part 

of the fuzzy rules. The rest of this section details these structures. 

 

2.1.1  Functional Link Neural Networks 

The functional link neural network is a single layer network in which the need for hidden 

layers is removed. While the input variables generated by the linear links of neural networks 

are linearly weighted, the functional link acts on an element of input variables by generating a 

set of linearly independent functions (i.e., the use of suitable orthogonal polynomials for a 

functional expansion), and then evaluating these functions with the variables as the arguments. 

Therefore, the FLNN structure considers trigonometric functions. For example, for a 

two-dimensional input Txx ],[ 21=X , the enhanced input is obtained using trigonometric 

functions in T,...xcos,xsin,x,...,xcos,xsin,x ]) ( ) (  ) ( ) ( [ 222111 ππππ=Φ . Thus, the input 

variables can be separated in the enhanced space [23]. In the FLNN structure with reference 

to Fig. 2.1, a set of basis functions Φ  and a fixed number of weight parameters W  

represent )(xfW . The theory behind the FLNN for multidimensional function approximation 

has been discussed elsewhere [24] and is analyzed below. 
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Figure 2.1: Structure of FLNN. 

 

Consider a set of basis functions ΚΦΒ ∈∈= kk A)}({φ , } 2 1{ ...,,=Κ  with the following 
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properties; 1) 11 =φ , 2) the subset M
kj k 1

}{
=

∈= ΒφΒ  is a linearly independent set, meaning 

that if ∑ =
=

M

k kkw
1

0φ , then 0=kw  for all M...,,,k   2 1= , and 3) [ ] ∞<∑ =

21

1

2 /j

k Akjsup φ . 

 Let M
k k 1
}{

=
= φΒ  be a set of basis functions to be considered, as shown in Fig. 2.1. The 

FLNN comprises M basis functions MM...,,, Β∈}   { 21 φφφ . The linear sum of the jth node is 

given by  

∑
=

=
M

k
kkjj )(wŷ

1
Xφ                            (2.1) 

where Nℜ⊂Α∈X , T
Nxxx ],...,,[ 21=X  is the input vector and T

jMjjj www ],...,,[ 21=W  is 

the weight vector associated with the jth output of the FLNN. jŷ  denotes the local output of 

the FLNN structure and the consequent part of the jth fuzzy rule in the FLNFN model. Thus, 

Eq.(2.1) can be expressed in matrix form as ΦWy jjˆ = , where T
N x,...xx )](),(),([ 21 φφφ=Φ  

is the basis function vector, which is the output of the functional expansion block. The 

m-dimensional linear output may be given by WΦY =ˆ , where T
mŷ...ŷŷˆ ],,,[ 21=Y , m 

denotes the number of functional link bases, which equals the number of fuzzy rules in the 

FLNFN model, and W  is a (m×M)-dimensional weight matrix of the FLNN given by 

T],...,,[ M21 wwwW = . In the FLNFN model, the corresponding weights of functional link 

bases do not exist in the initial state, and the amount of the corresponding weights of 

functional link bases generated by the online learning algorithm is consistent with the number 

of fuzzy rules. Section 3 details the online learning algorithm. 

 

2.1.2  Structure of the FLNFN Model 

This subsection describes the FLNFN model, which uses a nonlinear combination of input 

variables (FLNN). Each fuzzy rule corresponds to a sub-FLNN, comprising a functional link. 

Figure 2.2 presents the structure of the proposed FLNFN model. 
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The FLNFN model realizes a fuzzy if-then rule in the following form. 

Rule-j: NjNijijj AxAxAxAx  is  and ...  is  and ...  is  and  is  IF 2211  

     

MMjjj

M

k
kkjj

www

wy

φφφ

φ

+++=

=∑
=

...

ˆ THEN

2211

1                        (2.2) 

where xi and jŷ  are the input and local output variables, respectively; Aij is the linguistic 

term of the precondition part with Gaussian membership function; N is the number of input 

variables; wkj is the link weight of the local output; kφ  is the basis trigonometric function of 

input variables; M is the number of basis function, and Rule-j is the jth fuzzy rule. 
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Figure 2.2: Structure of proposed FLNFN model. 

 

The operation functions of the nodes in each layer of the FLNFN model are now 

described. In the following description, u(l) denotes the output of a node in the lth layer. 
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No computation is performed in layer 1. Each node in this layer only transmits input 

values to the next layer directly: 

ii xu =)1( .                              (2.3) 

Each fuzzy set Aij is described here by a Gaussian membership function. Therefore, the 

calculated membership value in layer 2 is 










 −
−= 2

21
2 ][

ij

ij
)(

i)(
ij

mu
expu

σ
                       (2.4) 

where mij and ijσ  are the mean and variance of the Gaussian membership function, 

respectively, of the jth term of the ith input variable xi. 

Nodes in layer 3 receive one-dimensional membership degrees of the associated rule 

from the nodes of a set in layer 2. Here, the product operator described above is adopted to 

perform the precondition part of the fuzzy rules. As a result, the output function of each 

inference node is 

∏=
i

ijj uu )2()3(                              (2.5) 

where the ∏
i

iju )2(  of a rule node represents the firing strength of its corresponding rule. 

Nodes in layer 4 are called consequent nodes. The input to a node in layer 4 is the output 

from layer 3, and the other inputs are calculated from a functional link neural network, as 

shown in Fig. 2.2. For such a node, 

∑
=

⋅=
M

k
kkjjj wuu

1

)3()4( φ                           (2.6) 

where wkj is the corresponding link weight of functional link neural network and kφ  is the 

functional expansion of input variables. The functional expansion uses a trigonometric 

polynomial basis function, given by [ ]=654321 φφφφφφ  

[ ]) ( ) (  ) (  ) ( 222111 xcosxsinxxcosxsinx ππππ  for two-dimensional input variables. Therefore, 

M is the number of basis functions, NM ×= 3 , where N is the number of input variables. 
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Moreover, the output nodes of functional link neural network depend on the number of fuzzy 

rules of the FLNFN model. 

The output node in layer 5 integrates all of the actions recommended by layers 3 and 4 

and acts as a defuzzifier with, 
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where R is the number of fuzzy rules, and y is the output of the FLNFN model. 

As described above, the number of tuning parameters for the FLNFN model is known to 

be (2+3×P)×N×R, where N, R and P denote the number of inputs, existing rules, and outputs, 

respectively. The proposed FLNFN model can be demonstrated to be a universal uniform 

approximation by Stone-Weierstrass theorem [56] for continuous functions over compact sets. 

The detailed proof is given in the Appendix. 

 

2.2  Learning Algorithms of the FLNFN Model 

This section presents an online learning algorithm for constructing the FLNFN model. The 

proposed learning algorithm comprises a structure learning phase and a parameter learning 

phase. Figure 2.3 presents flow diagram of the learning scheme for the FLNFN model. 

Structure learning is based on the entropy measure used to determine whether a new rule 

should be added to satisfy the fuzzy partitioning of input variables. Parameter learning is 

based on supervised learning algorithms. The back-propagation algorithm minimizes a given 

cost function by adjusting the link weights in the consequent part and the parameters of the 

membership functions. Initially, there are no nodes in the network except the input-output 

nodes, i.e., there are no any nodes in the FLNFN model. The nodes are created automatically 

as learning proceeds, upon the reception of online incoming training data in the structure and 

parameter learning processes. The rest of this section details the structure learning phase and 
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the parameter learning phase. Finally in this section, the stability analysis of the FLNFN 

model based on the Lyapunov approach is performed the convergence property. 

 

Start

Initialization

Is xi the first
input data?

Generate the first rule with   
    mi1=xi
σi1=σinit
wk1=random [-1,1]

where σinit is
a prespecified constant

Generate a new rule with 
    mij=xi
σij=σinit
wkj=random [-1,1]

where σinit is
a prespecified constant

Yes

No

Yes

No

Done?

End

Yes

No

Parameter learning
(Backpropagation )

?max EMEM <

Structure learning

 
Figure 2.3: Flow diagram of the structure/parameter learning for the FLNFN model. 

 

2.2.1  Structure Learning Phase 

The first step in structure learning is to determine whether a new rule from should be 

extracted the training data and to determine the number of fuzzy sets in the universal of 

discourse of each input variable, since one cluster in the input space corresponds to one 

potential fuzzy logic rule, in which ijm  and ijσ  represent the mean and variance of that 

cluster, respectively. For each incoming pattern xi, the rule firing strength can be regarded as 
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the degree to which the incoming pattern belongs to the corresponding cluster. Entropy 

measure between each data point and each membership function is calculated based on a 

similarity measure. A data point of closed mean will has lower entropy. Therefore, the entropy 

values between data points and current membership functions are calculated to determine 

whether or not to add a new rule. For computational efficiency, the entropy measure can be 

calculated using the firing strength from )2(
iju  as follow; 

∑
=

−=
N

i
ijijj DDEM

1
2log                         (2.8) 

where ( )1)2(exp −
= ijij uD  and ]1,0[∈jEM . According to Eq. (2.8), the measure is used to 

generate a new fuzzy rule and new functional link bases for new incoming data is described as 

follows. The maximum entropy measure 

jRj
EMEM

T )(1max max
≤≤

=                         (2.9) 

is determined, where R(t) is the number of existing rules at time t. If EMEM ≤max , then a 

new rule is generated, where ]1,0[∈EM  is a prespecified threshold that decays during the 

learning process. 

In the structure learning phase, the threshold parameter EM  is an important parameter. 

The threshold is set to between zero and one. A low threshold leads to the learning of coarse 

clusters (i.e., fewer rules are generated), whereas a high threshold leads to the learning of fine 

clusters (i.e., more rules are generated). If the threshold value equals zero, then all the training 

data belong to the same cluster in the input space. Therefore, the selection of the threshold 

value EM  will critically affect the simulation results. As a result of our extensive 

experiments and by carefully examining the threshold value EM , which uses the range [0, 1], 

we concluded that the relationship between threshold value EM  and the number of input 

variables. Accordingly, EM  is defined as 0.26-0.3 times of the number of input variables. 

Once a new rule has been generated, the next step is to assign the initial mean and 
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variance to the new membership function and the corresponding link weight for the 

consequent part. Since the goal is to minimize an objective function, the mean, variance and 

weight are all adjustable later in the parameter learning phase. Hence, the mean, variance and 

weight for the new rule are set as follows; 

i
R

ij xm t =+ )( )1(                             (2.10) 

init
R

ij
t σσ =+ )( )1(                            (2.11) 

]1 ,1[)( )1( −=+ randomw tR
kj                        (2.12) 

where xi is the new input and initσ  is a prespecified constant. The whole algorithm for the 

generation of new fuzzy rules and fuzzy sets in each input variable is as follows. No rule is 

assumed to exist initially exist: 

Step 1: IF xi is the first incoming pattern THEN do 

      {Generate a new rule 

       with mean mi1=xi, variance 1iσ = initσ , weight wk1=random[-1, 1] 

       where initσ  is a prespecified constant. 

} 

Step 2: ELSE for each newly incoming xi, do 

{Find  jRj
EMEM

t )(1max max
≤≤

=  

 IF  EMEM ≥max  

    do nothing 

 ELSE 

 {R(t+1) = R(t) +1 

  generate a new rule 

with mean iiR xm
)t(
=

+1
, variance initiR )t(

σσ =
+1

, weight ],[randomw
)t(kR 1 1

1
−=

+
 

  where initσ  is a prespecified constant.} 



 17

} 

 

2.2.2  Parameter Learning Phase 

After the network structure has been adjusted according to the current training data, the 

network enters the parameter learning phase to adjust the parameters of the network optimally 

based on the same training data. The learning process involves determining the minimum of a 

given cost function. The gradient of the cost function is computed and the parameters are 

adjusted with the negative gradient. The back-propagation algorithm is adopted for this 

supervised learning method. When the single output case is considered for clarity, the goal to 

minimize the cost function E is defined as 

)(
2
1)]()([

2
1)( 22 tetytytE d =−=                     (2.13) 

where yd(t) is the desired output and y(t) is the model output for each discrete time t. In each 

training cycle, starting at the input variables, a forward pass is adopted to calculate the activity 

of the model output y(t). 

When the back-propagation learning algorithm is adopted, the weighting vector of the 

FLNFN model is adjusted such that the error defined in Eq. (2.13) is less than the desired 

threshold value after a given number of training cycles. The well-known back-propagation 

learning algorithm may be written briefly as 









∂
∂

−+=∆+=+
)(
)()()()()1(
tW
tEtWtWtWtW η                (2.14) 

where, in this case, η  and W represent the learning rate and the tuning parameters of the 

FLNFN model, respectively. Let Tw,,m ][ σ=W  be the weighting vector of the FLNFN 

model. Then, the gradient of error E(.) in Eq. (2.13) with respect to an arbitrary weighting 

vector W is 

W
tyte

W
tE

∂
∂

=
∂
∂ )()()( .                         (2.15) 

Recursive applications of the chain rule yield the error term for each layer. Then the 
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parameters in the corresponding layers are adjusted. With the FLNFN model and the cost 

function as defined in Eq. (2.13), the update rule for wj can be derived as follows; 

)()()1( twtwtw kjkjkj ∆+=+                       (2.16) 

where 









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∑ =
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u
e
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)3(

)(

φ
η

η∆

. 

Similarly, the update laws for mij, and ijσ  are 

)()()1( tmtmtm ijijij ∆+=+                       (2.17) 

)()()1( ttt ijijij σ∆σσ +=+                       (2.18) 

where  
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where wη , mη  and ση  are the learning rate parameters of the weight, the mean, and the 

variance, respectively. In this dissertation, both the link weights in the consequent part and the 

parameters of the membership functions in the precondition part are adjusted by using the 

back-propagation algorithm. Recently, many researchers [10], [57] tuned the consequent 

parameters using either least mean squares (LMS) or recursive least squares (RLS) algorithms 

to obtain optimal parameters. However, they still used the back-propagation algorithm to 
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adjust the precondition parameters. 

 

2.2.3  Convergence Analysis 

The selection of suitable learning rates is very important. If the learning rate is small, 

convergence will be guaranteed. In this case, the speed of convergence may be slow. However, 

the learning rate is large, and then the system may become unstable. The Appendix derives 

varied learning rates, which guarantee convergence of the output error based on the analyses 

of a discrete Lyapunov function, to train the FLNFN model effectively. The convergence 

analyses in this dissertation are performed to derive specific learning rate parameters for 

specific network parameters to ensure the convergence of the output error [58]-[59]. Moreover, 

the guaranteed convergence of output error does not imply the convergence of the learning 

rate parameters to their optimal values. The following simulation results demonstrate the 

effectiveness of the online learning FLNFN model based on the proposed delta adaptation law 

and varied learning rates. 

 

2.3  Experimental Results 

This dissertation demonstrated the performance of the FLNFN model for nonlinear system 

control. This section simulates various control examples and compares the performance of the 

FLNFN model with that of other models. The FLNFN model is adopted to design controllers 

in four simulations of nonlinear system control problems - water bath temperature control 

system [60], control of a bounded input bounded output (BIBO) nonlinear plant [58], control 

of the ball and beam system [61], and multi-input multi-output (MIMO) plant control [62]. 

 

Example 1: Control of Water Bath Temperature System 

The goal of this section is to elucidate the control of the temperature of a water bath 



 20

system according to, 

CT
tyY

C
tu

dt
tdy

R

)()()( 0 −+=                        (2.19) 

where y(t) is the output temperature of the system in C°  ; u(t) is the heat flowing into the 

system; 0Y  is room temperature; C is the equivalent thermal capacity of the system, and TR is 

the equivalent thermal resistance between the borders of the system and the surroundings. 

TR and C are assumed to be essentially constant, and the system in Eq.(2.19) is rewritten 

in discrete-time form to some reasonable approximation. The system 

040)(5.0 ]1[)(
1

)1(
)()1( yeku

e

e
kyeky Ts

ky

Ts

Ts α

α

α α
δ

−
−

−

− −+
+

−
+=+             (2.20) 

is obtained, where α  and δ  are some constant values of TR and C. The system parameters 

used in this example are 400151 −= e.α , 3679738 −= e.δ  and 0Y =25.0( C° ), which were 

obtained from a real water bath plant considered elsewhere [60]. The plant input u(k) is 

limited to 0 and 5V, and the sampling period is Ts=30 second. 

 The conventional online training scheme is adopted for online training. Figure 2.4 

presents a block diagram for the conventional online training scheme. This scheme has two 

phases - the training phase and the control phase. In the training phase, the switches S1 and 

S2 are connected to nodes 1 and 2, respectively, to form a training loop. In this loop, we can 

define a training data with input vector )](  )1([)( kykykI pp +=  and desired output )(ku , 

where the input vector of the FLNFN controller is the same as that used in the general inverse 

modeling [63] training scheme. In the control phase, the switches S1 and S2 are connected to 

nodes 3 and 4, respectively, forming a control loop. In this loop, the control signal )(ˆ ku  is 

generated according to the input vector )](  )1([)(' kykykI pref += , where py  is the plant 

output and refy  is the reference model output. 

A sequence of random input signals urd(k) limited to 0 and 5V is injected directly into the 
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simulated system described in Eq. (2.20), using the online training scheme for the FLNFN 

controller. The 120 training patterns are selected based on the input-outputs characteristics to 

cover the entire reference output. The temperature of the water is initially 25 c° , and rises 

progressively when random input signals are injected. After 10000 training iterations, four 

fuzzy rules are generated. The obtained fuzzy rules are as follows. 

Rule-1: 249)(27.234,7. is  and 61532.416,11. is  IF 21 µµ x)(x  

 
)xcos()xsin(.x.

)xcos(.)xsin(.xŷ

222

1111

 35.204 7994102617
 54634 8497432.095 THEN
ππ
ππ

+−−
−+=

 

Rule-2: .977)(46.281,13 is  and 734.96,9.62 is  IF 21 µµ x)(x  

 
)xcos()xsin(x

)xcos()xsin(xŷ

222

1112

 70.946 61.82752.923
 77.705 11.76621.447 THEN
ππ
ππ

+−−
−+=

 

Rule-3: .864)(62.499,15 is  and 1062.771,6.9 is  IF 21 µµ x)(x  

           
)xcos()xsin(x

)xcos()xsin(xŷ

222

1113

 103.33 36.75240.322
 46.359 10.90725.735 THEN
ππ
ππ

++−
−−=

 

Rule-4: 097)(64.654,9. is  and 6979.065,8.7 is  IF 21 µµ x)(x  

           
)xcos()xsin(x

)xcos()xsin(xŷ

222

1114

 34.838 61.0655.8152
 57.759 37.22346.055 THEN
ππ
ππ

++−
−−=
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Figure 2.4: Conventional online training scheme. 
 

This dissertation compares the FLNFN controller to the proportional-integral-derivative 

(PID) controller [64], the manually designed fuzzy controller [1], the functional link neural 

network [25] and the TSK-type neuro-fuzzy network (TSK-type NFN) [9]. Each of these 

controllers is applied to the water bath temperature control system. The performance measures 

include the set-points regulation, the influence of impulse noise, and a large parameter 
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variation in the system, and the tracking capability of the controllers. 

  The first task is to control the simulated system to follow three set-points. 
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kyref .                  (2.21) 

Figure 2.5(a) presents the regulation performance of the FLNFN controller. The regulation 

performance was also tested using the FLNN controller and the TSK-type NFN controller. 

Figure 2.5(b) plots the error curves of the FLNFN controller, the FLNN controller and the 

TSK-type NFN controller between k=81 and k=100. In this figure, the FLNFN controller 

obtains smaller errors than the other two controllers. To test their regulation performance, a 

performance index, the sum of absolute error (SAE), is defined by 

∑ −=
k

ref kykySAE )()(                        (2.22) 

where )(kyref  and )(ky  are the reference output and the actual output of the simulated 

system, respectively. The SAE values of the FLNFN controller, the PID controller, the fuzzy 

controller, the FLNN controller and the TKS-type NFN controller are 352.8, 418.5, 401.5, 

379.2 and 361.9, which values are given in the second row of Table 2.1. The proposed FLNFN 

controller has a much better SAE value of regulation performance than the other controllers. 

The second set of simulations is performed to elucidate the noise-rejection ability of the 

five controllers when some unknown impulse noise is imposed on the process. One impulse 

noise value C°−5  is added to the plant output at the 60th sampling instant. A set-point of 

C°50  is adopted in this set of simulations. For the FLNFN controller, the same training 

scheme, training data and learning parameters as were used in the first set of simulations. 

Figure 2.6(a) and (b) present the behaviors of the FLNFN controller under the influence of 

impulse noise, and the corresponding errors, respectively. The SAE values of the FLNFN 

controller, the PID controller, the fuzzy controller, the FLNN controller and the TSK-type 
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NFN controller are 270.4, 311.5, 275.8, 324.51 and 274.75, which are shown in the third row 

of Table 2.1. The FLNFN controller performs quite well. It recovers very quickly and steadily 

after the occurrence of the impulse noise. 

One common characteristic of many industrial-control processes is that their parameters 

tend to change in an unpredictable way. The value of )2(70 −∗ ku.  is added to the plant 

input after the 60th sample in the third set of simulations to test the robustness of the five 

controllers. A set-point of C°50  is adopted in this set of simulations. Figure 2.7(a) presents 

the behaviors of the FLNFN controller when in the plant dynamics change. Figure 2.7(b) 

presents the corresponding errors of the FLNFN controller, the FLNN controller and the 

TSK-type NFN controllers. The SAE values of the FLNFN controller, the PID controller, the 

fuzzy controller, the FLNN controller and the TSK-type NFN controller are 263.3, 322.2, 

273.5, 311.5 and 265.4, which values are shown in the fourth row of Table 2.1. The results 

present the favorable control and disturbance rejection capabilities of the trained FLNFN 

controller in the water bath system. 

In the final set of simulations, the tracking capability of the FLNFN controller with 

respect to ramp-reference signals is studied. Define  
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Figure 2.8(a) presents the tracking performance of the FLNFN controller. Figure 2.8(b) 

presents the corresponding errors of the FLNFN controller, the FLNN controller, and the 

TSK-type NFN controller. The SAE values of the FLNFN controller, the PID controller, the 

fuzzy controller, the FLNN controller, and the TSK-type NFN controller are 44.2, 100.6, 88.1, 

98.4 and 54.2, which are shown in the fifth row of Table 2.1. The results present the favorable 

control and disturbance rejection capabilities of the trained FLNFN controller in the water 
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bath system. The aforementioned simulation results, presented in Table 2.1, demonstrate that 

the proposed FLNFN controller outperforms other controllers. 

 

(a) 

 

(b) 
Figure 2.5: (a) Final regulation performance of FLNFN controller in water bath system. (b) 
Error curves of the FLNFN controller, TSK-type NFN controller and FLNN controller 
between k=81 and k=100. 

 

(a) 
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(b) 
Figure 2.6: (a) Behavior of FLNFN controller under impulse noise in water bath system. (b) 
Error curves of FLNFN controller, TSK-type NFN controller and FLNN controller. 

 

(a) 

 

(b) 
Figure 2.7: (a) Behavior of FLNFN controller when a change occurs in the water bath system. 
(b) Error curves of FLNFN controller, TSK-type NFN controller and FLNN controller. 
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(a) 

 

(b) 
Figure 2.8: (a) Tracking of FLNFN controller when a change occurs in the water bath system. 
(b) Error curves of FLNFN controller, TSK-type NFN controller and FLNN controller. 

Table 2.1: Comparison of performance of various controllers to control of water bath 
temperature system. 

∑
=

−=
120

1

|)()(|
k

ref kykySAE  FLNFN 
Controller 

PID 
Controller 

[64] 

Fuzzy 
Controller 

[65] 

FLNN 
Controller 

[25] 

TSK-type 
NFN 

Controller 
[9] 

Regulation 
Performance 

354.84 418.5 401.5 379.22 361.96 

Influence of Impulse 
Noise 

272.61 311.5 275.8 324.51 274.75 

Effect of Change in 
Plant Dynamics 

264.35 322.2 273.5 311.54 265.48 

Tracking 
Performance 

44.28 100.6 88.1 98.43 54.28 
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Example 2: Control of Bounded Input Bounded Output Nonlinear Plant 

In this case, the plant is described by the difference equation 

)(
)(1

)()1( 3
2 ku

ky
kyky +

+
=+ .                     (2.24) 

The reference model is described by the difference equation 

)()(60)1( krky.ky rr +=+                       (2.25) 

where )252()102()( /ksin/ksinkr ππ += . Figure 2.9 present the block diagram of the 

FLNFN-based control system. The inputs to the FLNFN controller are the reference input, the 

previous plant output, and the previous control signal; the output of the FLNFN controller is 

the control signal to the plant. The online algorithm developed in this dissertation is adopted 

to adjust the structure and the parameters of the FLNFN controller such that the error between 

the output of the plant and the desired output from a reference model approaches a small 

value after some train cycles. 
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Plant
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Figure 2.9: Block diagram of FLNFN controller-based control system. 

 

After 500 training iterations, six fuzzy rules are generated. In this example, the proposed 

FLNFN controller is compared to the FLNN controller [25] and the TSK-type NFN controller 

[9]. Each of the controllers is applied to control the bounded input bounded output (BIBO) 
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nonlinear plant. In the following four cases, the FLNFN controller is demonstrated to 

outperform the other models. 

 In the first case, the reference input is given by Eq. (2.25) and the final result is shown in 

Fig. 2.10(a). Figure 2.10(b) presents the error curves of the FLNFN controller and the 

TSK-type NFN controller. In this figure, the FLNFN controller yields smaller errors than the 

TSK-type NFN controller. In the second case, after 100 epochs, the reference input is changed 

to )25/2sin()( kkr π= . Figures 2.11(a)-(b) plot the result of the FLNFN controller and the 

corresponding errors of the FLNFN controller and the TSK-type NFN controller. In the third 

case, after 100 epochs, the reference input is changed to an impulse signal. Figure 2.12(a) 

presents the simulation result. Figure 2.12 (b) present the corresponding errors of the FLNFN 

controller, the FLNN controller and the TSK-type NFN controllers. In the fourth case, a 

disturbance of 2.0 is added to the system between the 100th and the 150th epochs. In this case, 

the FLNFN-based control system can recover from the disturbance quickly, as shown in Fig. 

2.13. The RMS (root mean square) error is adopted to evaluate the performance. Table 2.2 

presents the RMS errors of the FLNFN controller, the FLNN controller and the TSK-type 

NFN controller. Table 2.2 shows that, according to the simulation results, the proposed 

FLNFN controller outperforms the other models. 

 

 
(a) 
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(b) 

Figure 2.10: Final system response in first case of example 2. (a) The dashed line represents 
plant output and the solid line represents the reference model. (b) Error curves of FLNFN 
controller and TSK-type NFN controller. 

 
(a) 

 
(b) 

Figure 2.11: Final system response in second case of example2. (a) The dashed line represents 
plant output and the solid line represents the reference model. (b) Error curves of FLNFN 
controller and TSK-type NFN controller. 
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(a) 

 
(b) 

Figure 2.12: Final system response in third case of example 2. (a) The dashed line represents 
plant output and the solid line represents the reference model. (b) Error curves of FLNFN 
controller and TSK-type NFN controller. 
 

 
Figure 2.13: Final system response in fourth case of example 2. The dashed line represents 
plant output and the solid line represents the reference model. 
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Table 2.2: Comparison of performance of various controllers to control of 
BIBO nonlinear plant. 

Method 
FLNFN 

Controller 
FLNN 

Controller [25] 
TSK-type NFN 
Controller [9] 

Training 
Steps 

500 1000 500 

Parameter 
Numbers 

6 rules/ 
60 parameters 

79 parameters 
9 rules/ 

63 parameters 
RMS error 

of case1 
0.0004 0.0211 0.0084 

RMS error 
of case2 

0.0006 0.0208 0.0075 

RMS error 
of case3 

0.0007 0.0303 0.0095 

 

Example 3: Control of Ball and Beam System 

Figure 2.14 presents the ball and beam system [61]. The beam is made to rotate in the 

vertical plane by applying a torque at the center of rotation and the ball is free to roll along the 

beam. The ball must remain in contact with the beam. 

 

θ

beam

origin

r
ball u

 
Figure 2.14: Ball and beam system. 

 

The ball and beam system can be written in state space form as  
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where TT ,,r,rx,x,x,xx )()( 4321 θθ &&≡=  is the state of the system and rxy 1 ≡=  is the output 

of the system. The control u is the angular acceleration (θ&& ) and the parameters B = 0.7143 

and G = 9.81 are set in this system. The purpose of control is to determine u(x) such that the 

closed-loop system output y converges to zero from different initial conditions. 

According to the input/output-linearization algorithm [61], the control law u(x) is 

determined as follows; for state x, compute )()()()()( 10213243 xxxxxv φαφαφαφα −−−−= , 

where 11 )( xx =φ , 22 )( xx =φ , 33 )( xsinBGx −=φ , 344 )( xcosBGxx −=φ  and iα  are 

chosen such that 01
2

2
3

3
4 αααα ++++ ssss  is a Hurwitz polynomial. Compute 

3)( xcosBGxa −=  and 3
2
4)( xsinBGxxb = ; then )()]()([)( xa/xbxvxu −= . 

In this simulation, the differential equations are solved using the second/third-order 

Runge-Kutta method. The FLNFN model is trained to approximate the aforementioned 

conventional controller of a ball and beam system. )()]()([)( xa/xbxvxu −=  is adopted to 

generate the input/output train pair with x obtained by randomly sampling 200 points in the 

region U=[-5,5]×[-3,3]×[-1,1]×[-2,2]. After online structure-parameter learning, 14 fuzzy rules 

are generated. The controller after learning was tested under the following four initial 

conditions; x(0) = [2.4, -0.1, 0.6, 0.1]T, [1.6, 0.05, -0.5, -0.05]T, [-1.6, -0.05, 0.5, 0.05]T and 

[-2.4, 0.1, -0.6, -0.1]T. Figure 2.15 plots the output responses of the closed-loop ball and beam 

system controlled by the FLNFN model and the TSK-type NFN model. These responses 

approximate those of the original controller under the four initial conditions. In this figure, the 

curves of the FLNFN model tend quickly to stabilize. Figure 2.16 also presents the behavior 

of the four states of the ball and beam system, starting at the initial condition [-2.4, 0.1, -0.6, 

-0.1]T. In this figure, the four states of the system decay gradually to zero. The results 

demonstrate the perfect control capability of the trained FLNFN model. The performance of 

the FLNFN controller is compared with that of the FALCON controller [5], the FLNN 

controller [25] and the TSK-type NFN controller [9]. Table 2.3 presents the comparison 
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results. The results demonstrate that the proposed FLNFN controller outperforms other 

controllers. 

 
Figure 2.15: Responses of ball and beam system controlled by FLNFN model (solid curves) 
and TSK-type NFN model (dotted curves) under four initial conditions. 

 
Figure 2.16: Responses of four states of ball and beam system under the control of the trained 
FLNFN controller. 

Table 2.3: Comparison of performance of various controllers to control of ball and 
beam system. 

Method 
FLNFN 

Controller 
FALCON 

Controller [5] 

FLNN 
Controller 

[25] 

TSK-type NFN 
Controller [9] 

Training 
Steps 

500 50000 1000 500 

Parameter 
Numbers 

14 rules/  
280 parameters 

28 rules/ 
280 parameters 

317 
parameters 

22 rules/ 
286 parameters 

RMS 
errors 

0.056 0.2 0.153 0.079 
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Example 4: Control of Multi-input Multi-output (MIMO) Plant 

In this example, the MIMO plants [62] to be controlled are described by the equations  
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The controlled outputs should follow the desired output yr1 and yr2 as specified by the 

following 250 pieces of data; 
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The inputs of the FLNFN are yp1(k), yp2(k), yr1(k) and yr2(k), and the outputs are u1(k) and 

u2(k). After 500 training iterations, four fuzzy rules are generated. In this example, the 

proposed FLNFN controller is compared to the FLNN controller [25] and the TSK-type NFN 

controller [9]. Each of the controllers is applied to control the MIMO plant. To demonstrate 

the performance of the proposed controller, Figures 2.17(a) and (b) plot the control results of 

the desired output and the model output using FLNFN controller. Figures 2.17 (c) and (d) 

show the error curves of the FLNFN controller and the TSK-type NFN controller. Table 2.4 

presents the RMS errors of the FLNFN controller, the FLNN controller and the TSK-type 

NFN controller. Table 2.4 shows that, according to the simulation results, the proposed 

FLNFN controller is better than the other controllers. 

 
Table 2.4: Comparison of performance of various controllers to control of MIMO plant. 

Method 
FLNFN 

Controller 
FLNN Controller 

[25] 
TSK-type NFN Controller 

[9] 
Training Steps 500 1000 500 

Parameter Numbers 
4 rules/ 

128 parameters 
161 parameters 

10 rules/ 
140 parameters 

RMS errors 0.0002 0.0738 0.0084 
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Figure 2.17: Desired output (solid line) and model output using FLNFN controller (dotted line) 
of (a) Output 1. (b) Output 2 in Example 4. Error curves of FLNFN controller (solid line) and 
TSK-type NFN controller (dotted line) for (c) output 1 and (d) output 2. 
 

2.4  Summary 

This dissertation proposes a functional-link-based neuro-fuzzy network (FLNFN) structure for 

nonlinear system control. The FLNFN model uses a functional link neural network to the 
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consequent part of the fuzzy rules. The FLNFN model can automatically construct and adjust 

free parameters by performing online structure/parameter learning schemes concurrently. The 

FLNFN model was proven to be a universal approximator and to convergence stably. Finally, 

the proposed FLNFN model yields better simulation results than other existing models under 

some circumstances. 
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Chapter 3 
 

 

A Modified Differential Evolution for the FLNFN 

Model 
 

 

In Chapter 2, we have developed the functional-link-based neuro-fuzzy network (FLNFN). 

However, the back-propagation learning algorithm may reach the local minima very quickly. 

Therefore, a modified differential evolution (MODE) is presented to optimize the FLNFN 

parameters in this chapter. The proposed MODE learning algorithm has two crucial ideas. 

First, MODE adopts a method to effectively search between the best-so-far individual and 

randomly chosen individuals. Therefore, MODE not only explores the search space by 

randomly chosen individuals but also exploits the search capability of a near global optimal 

solution by the best-so-far individual. Second, MODE provides a cluster-based mutation 

scheme, which maintains useful diversity in the population to increase the search capability. 

The cluster-based mutation scheme prevents the MODE from being trapped in local optima of 

the search space. 

 

3.1  A Brief Introduction of Differential Evolution 

This section describes basic concepts concerning differential evolution (DE) [53]. Differential 

evolution is a parallel direct search method which utilizes NP N-dimensional parameter 
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vectors 

 NPix Gi  ..., ,2 ,1    ,, =                          (3.1) 

as a population for each generation G. NP does not change during the minimization process. 

The initial vector population is chosen randomly and should cover the entire parameter space. 

As a rule, we will assume a uniform probability distribution for all random decisions unless 

otherwise stated. In case a preliminary solution is available, the initial population might be 

generated by adding normally distributed random deviations to the nominal solution. DE 

generates new parameter vectors by adding the weighted difference between two population 

vectors to a third vector. Let this operation be called mutation. The mutated vector’s 

parameters are then mixed with the parameters of another predetermined vector, the target 

vector, to yield the so-called trial vector. Parameter mixing is often referred to as “crossover” 

in the ES-community and will be explained later in more detail. If the trial vector yields a 

lower cost function value than the target vector, the trial vector replaces the target vector in 

the following generation. This last operation is called selection. Each population vector has to 

serve once as the target vector so that NP competitions take place in one generation. 

More specifically DE’s basic strategy can be described as follows: 

Mutation－For each target vector NPix Gi  ..., ,2 ,1    ,, = , a mutant vector is generated 

according to 

( )GrGrGrGi xxFxv ,,,1, 321
−⋅+=+                      (3.2) 

with random indexes { }NPrrr  ,..., 2 ,1 , , 321 ∈ , integer, mutually different and F > 0. The 

randomly chosen integers r1, r2 and r3 are also chosen to be different from the running index i, 

so that NP must be greater or equal to four to allow for this condition. F is a real and constant 

factor ]2 ,0[∈  which controls the amplification of the differential variation ( )GrGr xx ,, 32
− . 

Figure 3.1 shows a two-dimensional example that illustrates the different vectors which play a 
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part in the generation of 1, +Giv . 

 

xr3,G

X2

X1

Minimum

xr2,G
xr1,G

F (xr2,G - xr3,G)

vi,G+1=xr1,G+F (xr2,G–xr3,G)

xi,G

 
Figure 3.1: An example of a two-dimensional cost function showing its contour lines and the 

process for generating 1, +Giv . 

 

Crossover－In order to increase the diversity of the perturbed parameter vectors, crossover is 

introduced. To this end, the trial vector: 

( )1,1,21,11,  ..., , , ++++ = GNiGiGiGi uuuu                      (3.3) 

is formed, where 

Nj
irnjCRjrx
irnjCRjrv

u
Gji

Gji
Gji  ..., ,1  ,

)(or  ))(( if      
)(or  ))(( if    

,

1,
1, =





≠>
=≤

= +
+ .           (3.4) 

In Eq.(3.4), r(j) is the jth evaluation of a uniform random number generator with 

outcome ]1 ,0[∈ . CR is the crossover constant ]1 ,0[∈  which has to be determined by the user. 

rn(i) is a randomly chosen index N ..., ,2 ,1∈  which ensures that 1, +Giu  gets at least one 

parameter from 1, +Giv . Figure 3.2 gives an example of the crossover mechanism for 

7-dimensional vectors. 
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parameters xji,G, 
j=1,2,…,N

Mutant 
vector

Trial 
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r(3)<=CR

r(4)<=CR

r(6)<=CR

 
Figure 3.2: Illustration of the crossover process for N=7 parameters. 

 

Selection－To decide whether or not it should become a member of generation G+1, the trial 

vector 1, +Giu  is compared to the target vector Gix ,  using the greedy criterion. If vector 

1, +Giu  yields a smaller cost function value than Gix , , then 1, +Gix  is set to 1, +Giu ; otherwise, 

the old value Gix ,  is retained. 

 

3.2  A Modified Differential Evolution 

This section describes a modified differential evolution (MODE) for the FLNFN model. The 

MODE learning algorithm consists of four major phases – the initialization phase, the 

evaluation phase, the reproduction phase and the cluster-based mutation phase. First, the 

initialization phase creates an initial population. Second, the evaluation phase evaluates the 

performance of each individual using an objective function. Third, the reproduction phase 

generates new individuals and select survivors to the next phase. Fourth, the cluster-based 

mutation phase ensures diversity and prevents a population from converging to a suboptimal 

solution. The whole learning process is described step-by-step below. 
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3.2.1  Initialization Phase 

A. Coding Step 

The foremost step in MODE is the coding of the neuro-fuzzy network into an individual. 

Figure 3.3 shows an example of the coding of parameters of the neuro-fuzzy network into an 

individual where i and j represent the ith input variable and the jth rule, respectively. In this 

dissertation, a Gaussian membership function is adopted with variables that represent the 

mean and variance of the membership function. Figure 3.3 represents the neuro-fuzzy 

network given by Eq. (2.3), where ijm  and ijσ  are the mean and variance of a Gaussian 

membership function, respectively, and kjw  represents the corresponding link weight of the 

consequent part that is connected to the jth rule node. In this dissertation, a real number 

represents the position of each individual. 

 

m1j m2j w1j w2j….. mij ….. ….. wMj

Individual

j1σ j2σ ijσ

Rule1 Rule2 ….. Rulej ….. RuleR

 

Figure 3.3: Coding FLNFN into an individual in the proposed MODE method. 
 

B. Create Initial Population 

Before the MODE learning algorithm is applied, every individual gix ,  must be created 

randomly in the range [0, 1], where i=1, 2, …, PS represents the ith individual for each 

generation g and PS denotes the population size. 

 

3.2.2  Evaluation Phase 

In this dissertation, we adopt a fitness function (i.e., objective function) to evaluate the 

performance of each individual. The fitness function is defined as follows: 
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where yk represents the model output of the kth data, ky  represents the desired output of the 

kth data, and Nt represents the number of the training data. 

 

3.2.3  Reproduction Phase 

A. Parent Choice 

Each individual in the current generation is allowed to breed through mating with other 

randomly selected individuals from the population. Specifically, for each individual gix , , i=1, 

2, …, PS, where g denotes the current generation, three other random individuals, grx ,1
, grx ,2

 

and grx ,3
, are selected from the population such that r1, r2, and r3 { }PS,...2,1∈  and 

321 rrri ≠≠≠ . This way, a parent pool of four individuals is formed to produce an offspring. 

B. Offspring Generation 

After choosing the parents, MODE applies a differential operation to generate a mutated 

individual giv , , according to the following equation: 

)()()1( ,,,,, 1321 grbestgrgrgrgi xxFxxFxv −⋅+−⋅−+=               (3.6) 

where F, commonly known as the scaling factor, is defined as G
g  to control the rate at 

which the population evolves, g denotes the current generation, G is the maximum number of 

generations, and bestx  is the best-so-far individual in each generation. To complement the 

differential operation search strategy, then MODE uses a crossover operation, often referred to 

as discrete recombination, in which the mutated individual giv ,  is mated with gix ,  and 

generates the offspring giu , . The elements of an individual giu ,  are inherited from gix ,  and 
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giv , , which are determined by a parameter called crossover probability ( ]1 ,0[∈CR ), as 

follows: 





>
≤

=
CRdRandx
CRdRandv

u
gid

gid
gid )( if,

)( if,

,

,
,                      (3.7) 

where Dd ,...,2,1=  denotes the dth element of individual vectors. ]1 ,0[)( ∈dRand  is the 

dth evaluation of a random number generator. 

C. Survivor Selection 

MODE applies selection pressure only when selecting survivors. A knockout competition 

is played between each individual gix ,  and its offspring giu , , and the winner is selected 

deterministically based on objective function values and is then promoted to the next phase. 

Moreover, the best individual also reserves to the next generation. 

 

3.2.4  Cluster-Based Mutation Phase 

To prevent the MODE from being trapped in the local optima of the search space (i.e., 

problems in which there are a number of points that are better than all their neighboring 

solutions, but do not have as good a fitness as the globally optimal solution), we adopt a 

cluster-based mutation scheme, which maintains diversity in the population to increase the 

search capability. We use an easy and fast self-cluster algorithm (SCA) [66] to cluster the 

population. Each cluster can be viewed as a subspace with similar biological features in the 

environment that can support different types of life; that is, these similar individuals of each 

cluster direct the search toward the same local optima. Then, for each cluster, the best 

individual will be reserved and other individuals will be suitably mutated to the next 

generation. Mutation is an operator that randomly alters the allele of an element. Figure 3.4 

shows the mutation of an individual. The mutation value is generated according to 

Mean: ijij randommdIndividual σ×+= ]1,0[][                  (3.8) 
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Variance: ijrandomdIndividual σ××= ]1,0[2][                  (3.9) 

Other parameters: ]1 1[][ ,randomdIndividual −=                 (3.10) 

where mij and σij are the current mean and variance in the current individual, respectively. 

Following the mutation step, a new individual can be introduced into the each population. 

 

m11 ….. mi1 wi1 …..11σ

Mutation Point

mij
new

Old Individual

New Individual

1iσ ….. m1j ….. mij wij …..jσ1 ijσ …..

m11 ….. mi1 wi1 …..11σ 1iσ ….. m1j ….. wij …..jσ1 ijσ …..mij
new

 
Figure 3.4: A mutation operation in the modified differential evolution. 

 

3.3  Experimental Results 

This dissertation demonstrated the performance of the FLNFN-MODE controller for 

nonlinear system control. The FLNFN-MODE controller is applied to control of water bath 

temperature system. In addition, this experimentation discusses the use of a real-time digital 

control environment with a hardware-in-the-loop (HIL) control application. We configure a 

real-time visual simulation (VisSim) environment including a RT-DAC4/PCI motion control 

card and HIL systems to demonstrate the performance of the FLNFN-MODE controller for 

practical control applications. VisSim is a Windows-based program for the modeling and 

simulation of complex nonlinear dynamic systems. VisSim combines an intuitive drag and 

drop block diagram interface with a powerful simulation engine. We can generate a VisSim 

diagram using a customizable ANSI C code directly. In this dissertation, we applied the 

FLNFN-MODE controller to the planetary train type inverted pendulum system and the 

magnetic levitation system in the VisSim. The experiment compares the performance with 
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that of the FLNFN-MODE controller, the FLNFN-DE controller, and the FLNFN-GA 

controller. Table 3.1 presents the parameter settings before training used in the three computer 

simulations for the MODE. In the DE, the population size is set to 50, the maximum number 

of generation is set to 2000, and the crossover rate is set to 0.9. In the GA, the population size 

is set to 50, the maximum number of generation is set to 2000, the crossover rate is set to 0.5, 

and the mutation rate is set to 0.3. 

 
Table 3.1: Parameter settings before training. 

Parameter Value 
Population Size 50 
Maximum Number of 
Generation 

2000 

Crossover Rate 0.9 
Coding Type Real Number 

 

Example 1: Control of Water Bath Temperature System 

The description of the system is the same as Example 1 of Section 2.3. In this example, 

four fuzzy rules are adopted and the population size is set to 50. The evolution proceeded for 

2000 generations, and was repeated thirty times. 

This dissertation compares the FLNFN-MODE controller to the FLNFN-DE controller 

and the FLNFN-GA controller. Each of these controllers is applied to the water bath 

temperature control system. The performance measures include the set-points regulation, the 

influence of impulse noise, and a large parameter variation in the system, and the tracking 

capability of the controllers. 

Figure 3.5(a) presents the regulation performance of the FLNFN-MODE controller. The 

regulation performance was also tested using the FLNFN-DE controller and the FLNFN-GA 

controller. Figure 3.5(b) plots the error curves of the FLNFN-MODE controller, the 

FLNFN-DE controller and the FLNFN-GA controller. Figure 3.6(a) and (b) present the 
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behaviors of the FLNFN-MODE controller under the influence of impulse noise, and the 

corresponding errors, respectively. Figure 3.7(a) presents the behaviors of the FLNFN-MODE 

controller when in the plant dynamics change. Figure 3.7(b) presents the corresponding errors 

of the FLNFN-MODE controller, the FLNFN-DE controller and the FLNFN-GA controllers. 

Figure 3.8(a) presents the tracking performance of the FLNFN-MODE controller. Figure 

3.8(b) presents the corresponding errors of the FLNFN-MODE controller, the FLNFN-DE 

controller, and the FLNFN-GA controller. The aforementioned simulation results, presented in 

Table 3.2, demonstrate that the proposed FLNFN-MODE controller outperforms other 

controllers. 

 

(a) 

 

(b) 
Figure 3.5: (a) Final regulation performance of FLNFN-MODE controller in water bath 
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system. (b) Error curves of the FLNFN-MODE controller, FLNFN-DE controller and 
FLNFN-GA controller. 
 

 

(a) 

 

(b) 
Figure 3.6: (a) Behavior of FLNFN-MODE controller under impulse noise in water bath 
system. (b) Error curves of FLNFN-MODE controller, FLNFN-DE controller and 
FLNFN-GA controller. 
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(a) 

 

(b) 
Figure 3.7: (a) Behavior of FLNFN-MODE controller when a change occurs in the water bath 
system. (b) Error curves of FLNFN-MODE controller, FLNFN-DE controller and 
FLNFN-GA controller. 

 

(a) 
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(b) 
Figure 3.8: (a) Tracking of FLNFN-MODE controller when a change occurs in the water bath 
system. (b) Error curves of FLNFN-MODE controller, FLNFN-DE controller and 
FLNFN-GA controller. 
 

Table 3.2: Comparison of performance of various controllers to control of 
water bath temperature system. 

∑
=

−=
120

1
|)()(|

k
ref kykySAE

FLNFN-MODE 
Controller 

FLNFN-DE 
Controller 

FLNFN-GA 
Controller 

Regulation 
Performance 

352.78 352.91 372.85 

Influence of Impulse 
Noise 

270.59 270.65 282.21 

Effect of Change in 
Plant Dynamics 

263.39 263.25 270.66 

Tracking 
Performance 

42.03 42.92 62.02 

 

Example 2: Control of Planetary Train Type Inverted Pendulum System 

In order to predict the dynamic behavior of a system from given input command and 

initial conditions of the system, it is necessary to make a mathematical model of the planetary 

train type inverted pendulum system [67]. The dynamic behavior of the system is helpful in 

sizing the actuator, choosing the amplifier power, designing the details of the mechanisms, 

and tuning the controller by computer simulation. To clarify the kinematic and dynamic 
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relations, three major movable parts, the center gear, the planetary gear and the pendulum, are 

depicted in Fig. 3.9. 

 

1θ&

2θ&

m0g

m1g

m2g

0θ

 
Figure 3.9: A physical model geometry of the planetary train type inverted pendulum. 

 

The kinematic relations of the three components can be allotted to two mutual 

movements as follows. First, we assume the pendulum to be stationary ( 00 =θ& ). The ratio of 

the movements of the planetary gear to the center gear is 
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where 1θ  and 2θ  are the angle of the center gear and the planetary gear, respectively; N1 

and N2 are the number of the tooth of the center gear and the planetary gear, respectively; r1 

and r2 are the radius of the center gear and the planetary gear; the dot denotes the time 

derivative; and 1θ ′&  refers to the angular velocity of the planetary gear in this case. Thus, 

21 θθ && e=′ .                             (3.12) 

Second, we assume the center gear to be stationary ( 02 =θ& ) and allow the pendulum and 

planetary gear to turn. The velocity of the planetary gear center can then be expressed as 

021 )( θ&rrv += .                           (3.13) 
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This velocity lets the angular velocity of the planetary gear ( 1θ ′′& ) in this case be 

0
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1
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r
rr

r
v +
==′′ .                         (3.14) 

Combining Eqs. (3.13) and (3.14), we obtain 
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For the purpose of obtaining the relations between the input motor torque 2τ , the output 

responses of the pendulum 0θ , and the center gear 2θ , we will use Lagrangian mechanics. 

Using this method can ensure that we analyze the mechanism in a systematic approach. It 

starts with the findings of kinetic energy and potential energy of each movable part. 
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where 012  and , , KKK  are the kinetic energy of the center gear, the planetary gear and the 

pendulum, respectively; 012  and , , PPP  are the potential energy of the center gear, the 

planetary gear and the pendulum, respectively; 12  and II  are the moment of inertia of the 

center gear and the planetary gear, respectively; 01  and mm  are the mass of the planetary gear 

and the pendulum, respectively; and l is the length of the pendulum. 

Substituting Eq. (3.15) into Eq. (3.16), we obtain Lagrangian as follows: 
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Because 0θ  and 2θ  are two independent variables, we regard them as generalized 

coordinates. Using Lagrange’s equation, two of the dynamic equations are derived as follows: 
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In Eq. (3.19), there is no external torque applied in the pendulum, so we assign zero to the 

variable 0τ . 

In this dissertation, the proposed control structure is shown in Fig. 3.10. The applied 

encoder is used to sense the angle of the pendulum and then to translate the signal as a 

feedback signal. The pendulum angle is controlled by a motor torque until the pendulum is 

balanceable. To validate the usefulness of the proposed control system under different 

reference trajectories, two cases, including the set-point command (i.e., the stick angle 

command is equal to zero) and the periodic square command (i.e., the stick angle command is 

equal to the square wave) are used in this experimentation. 
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Figure 3.10: Control block diagram for the planetary train type inverted pendulum system. 

 

This dissertation compares the FLNFN-MODE controller to the PID controller, the 

FLNFN-DE controller, and the FLNFN-GA controller. Each of these controllers is applied to 

the planetary train type inverted pendulum system. The PID controller is implemented as 

follows: 

dt
deKdeKteKtu d

t

ip ++= ∫0 )()()( ττ                     (3.20) 

where u(t) is the control output and the error, e(t), is defined as e(t)=desired value-measured 

value of quantity being controlled. The control gains Kp=830, Ki=0, and Kd=0.3284 are 

designed. The training patterns of the FLNFN model are generated using the various PID 

controllers with different control gains. 

Figure 3.11 shows an experimental planetary train type inverted pendulum system test 

used to validate the experimentation results. The performance measures include the set-points 

regulation (Case 1) and the square command tracking capability (Case 2) of the controllers. In 

Case 1, the proposed system is controlled to follow the set-points, which is equal to zero. 

Figure 3.12(a)-(d) presents the regulation performance of the FLNFN-MODE controller, the 

PID controller, the FLNFN-DE controller, and the FLNFN-GA controller. Figure 3.12(e) plots 

the scaling curves of the FLNFN-MODE controller and the PID controller between the 1.5th 

second and the 3.5th second. To test their regulation performance, two performance indexes, 

the sum of absolute error (SAE) for the pendulum angle and the pendulum speed, are defined 

by 
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∑ −= 000
θθθ

refSAE   and  ∑ −= 000
θθθ
&&

&
refSAE             (3.21) 

where ref
0θ  and 0θ  are the referred pendulum angle and the actual pendulum angle, 

respectively, and ref
0θ&  and 0θ&  are the referred pendulum speed and the actual pendulum 

speed, respectively. The 
0θ

SAE  and 
0θ&

SAE  of the experimental results are presented in 

Table 3.3. 

 

 

Figure 3.11: The experimental planetary train type inverted pendulum system. 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 
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(e) 

Figure 3.12: (a)-(d) Final regulation performance of the FLNFN-MODE controller, PID 
controller, FLNFN-DE controller and FLNFN-GA controller. (e) Scaling curves of the 
FLNFN-MODE controller and PID controller between the 1.5th second and the 3.5th second. 
 

In Case 2, the tracking capability of the proposed system is tested using a square wave 

with amplitude 02.0±  and frequency 0.5Hz. Figure 3.13(a)-(d) presents the regulation 

performance of the FLNFN-MODE controller, the PID controller, the FLNFN-DE controller, 

and the FLNFN-GA controller. Figure 3.13(e) plots the scaling curves of the FLNFN-MODE 

controller and the PID controller between the 4th second and the 8th second. A summary of the 

experimental results are presented in Table 3.3. As presented in Table 3.3, the proposed 

FLNFN-MODE controller outperforms the other controllers. 

 
(a) 
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(b) 

 
(c) 

 
(d) 
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(e) 

Figure 3.13: (a)-(d) Tracking of the FLNFN-MODE controller, PID controller, FLNFN-DE 
controller and FLNFN-GA controller, respectively, for a square wave with amplitude 02.0±  
and frequency 0.5Hz. (e) Tracking curves of the FLNFN-MODE controller and PID controller 
between the 4th second and the 8th second. 
 

Table 3.3: Comparison of performance of various controllers to control of the 
planetary train type inverted pendulum system with a 0.1s sampling rate. 

FLNFN-MODE 
Controller 

PID 
Controller 

FLNFN-DE 
Controller 

FLNFN-GA 
Controller 

 

0θ
SAE  

0θ&
SAE

0θ
SAE

0θ&
SAE

0θ
SAE

0θ&
SAE

0θ
SAE  

0θ&
SAE

Case 1 33.3549 68.5454 34.0881 73.3770 33.4316 69.1548 33.5696 69.7101
Case 2 33.6101 72.3521 34.4442 80.4085 33.7968 72.9001 33.8245 73.3907

 

Example 3: Control of Magnetic Levitation System 

In order to construct a physical model of the behavior of the magnetic levitation system 

[68], it is necessary to make some statements about the system and also to make some 

simplifying assumptions. The physical model of the sphere and coil of the magnetic levitation 

system is shown in Fig. 3.14. The applied control is voltage, which is converted into a current 

within the mechanical unit. The current passes through an electromagnet which creates the 

corresponding magnetic field in its vicinity. The sphere is placed along the vertical axis of the 

electromagnet. 
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Using the fundamental principle of dynamics, the behavior of the ferromagnetic ball is 

given by the following electromechanical equation 

),(2

2

ixFmg
dt

xdm B−=                         (3.22) 

where m is the mass of the levitated ball, g denotes the acceleration due to gravity, x is the 

distance of the ball from the electromagnet, i is the current across the electromagnet, and 

),( ixFB  is the magnetic control force. 

The effect of the magnetic field from the electromagnetic is to introduce a magnetic 

dipole in the sphere which itself becomes magnetized. The force acting on the sphere is then 

composed of gravity and the magnetic force acting on the induced dipole. The magnetic field 

at a distance of x from the end of the coil may be calculated from the Biot-Savart Law. This 

states that the magnetic field produced by a small segment of wire, Sd , carrying a current I is 

given by 

3
0  

4 r
dId rSB ×

=
π
µ                           (3.23) 

where 0µ  is the permeability of free space and rS×d  is the vector product of Sd  and r . 

 

Electro-
magnetic

I

R

r

x δx

θ
dS Metal 

Sphere
Coil

FB mgN S

 
Figure 3.14: Sphere and coil arrangement of the magnetic levitation system. 

 

We are interested in the field along the axis of the coil. Consideration of symmetry 

shows that the magnetic field perpendicular to the axis is zero. To evaluate the integral in Eq. 

(3.23), we position the current carrying element Sd  to lie horizontally on the top of the coil 

and specify it by its unit vector components similarly, we specify the vector r  by its unit 

vector components. Then we have 

]cos  0  [sin    and    ]0  1  0[ θθrdSd == rS .               (3.24) 
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In Eq. (3.23), the vector product of Sd  and r  from Eq. (3.24) is given by 

]sin0[cos θθrdSd =×rS .                    (3.25) 

Now, from considerations of symmetry the field component perpendicular to the coil axis 

must be zero on the axis. This is the θsin  component in Eq. (3.25). Also 

θcos  coil  theof radius the rR = .                  (3.26) 

Hence, from Eqs. (3.23), (3.25) and (3.26), the magnetic field component xdB  along the axis 

is given by 

2
3

223
3

0 )(    and    
4

xRr
r

RdSIdBx +==
π
µ .                (3.27) 

Hence integrating Eq. (3.27) round a single loop gives 

2
3

22

2
0

2
3

22

2
0

)(
2

)(

2
4

xR

RI
xR

RIBx

+
=

+
=

µ

π
π
µ

.                        (3.28) 

To evaluate the field due to the many turns along the axis of the coil, let n be the number 

of turns per meter and let L (m) be its length. Now, we sum all the contributions from all the 

turns of the coils, as shown in Fig 3.14. When Eq. (3.28) is used, the total axial field from all 

the turns of the coil becomes 

∫
+

+
=

LX

X
Total

xR

dxRInB
2
3

22

2
0

)(
2

µ                   (3.29) 

Integrating Eq. (3.29) by parts gives 

















+
−

++

+
=

2
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2222
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2
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)())((
2

XRR

X

LXRR

LXRInBTotal
µ         (3.30) 

We can rewrite Eq. (3.30) as 

)()( 1 XGIKxB =                          (3.31) 

The force on the ball due to the field is proportional to the induced dipole strength and 

the field strength. The induced dipole strength is itself proportional to the field strength and, 
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hence, the upwards force on the ball due to the field B is given by 

))()((2
21 XXGXGIKKFB δ+−= .                      (3.32) 

Therefore, 

)('3 XGXIKFB δ−≈                              (3.33) 

where )(' XG  denotes the derivation and Xδ  is the dipole separation. On the assumption that 

the poles are located at the centre of the mass of each hemisphere of the ball, Xδ  is small 

compared to L and R and may be taken as a constant. Therefore, Eq. (3.33) becomes 

)('2 XGIKFB ≈ .                               (3.34) 

In this dissertation, the proposed control structure is shown in Fig. 3.15. The applied 

photo detector is used to detect the position of the levitated object and then to translate the 

signal as feedback signal. 

 

Controller D/A Driver Magnetic 
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levitated object 
position command
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Figure 3.15: Control block diagram for the magnetic levitation system. 

 

In this experiment, the proposed FLNFN-MODE controller is compared to the PID 

controller, the FLNFN-DE controller, and the FLNFN-GA controller. Each of the controllers 

is applied to control the magnetic levitation system. As in example 2, the PID controller with 

Kp=1.7, Ki=0, and Kd=0.031 is designed. The training patterns of the FLNFN model are 

generated using the various PID controllers with different control gains. Figure 3.16 shows an 

experimental magnetic levitation system which is tested to validate the experimentation 

results. In the following four cases, the FLNFN-MODE controller is demonstrated to have 

outperformed the other controllers. 
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Figure 3.16: Experimental magnetic levitation system. 

 

The first case and the second case are used to verify the tracking capability of the 

controllers. In the first case, the reference signal is given by a sinusoidal wave with amplitude 

0.5 and frequency 0.2Hz, and in the second case, the reference signal is presented by a square 

wave with amplitude 0.5 and frequency 0.2Hz. The final experimental results of the 

FLNFN-MODE controller, the PID controller, the FLNFN-DE controller and the FLNFN-GA 

controller are shown in Fig. 3.17(a)-(d) and Fig. 3.18(a)-(d). To evaluate their performance, a 

performance index, the sum of absolute error (SAE), is defined by 

∑ −= PPSAE ref
P                          (3.35) 

where refP  and P  are the reference trajectory and the actual position of the simulated 

system, respectively. In the first case, the PSAE  values of the FLNFN-MODE controller, the 

PID controller, the FLNFN-DE controller and the FLNFN-GA controller are, respectively, 

12.9002, 27.7017, 13.9169 and 15.1572, which values are given in the second row of Table 

3.4. In the second case, the PSAE  values of the FLNFN-MODE controller, the PID 

controller, the FLNFN-DE controller and the FLNFN-GA controller are, respectively, 48.4033, 

85.7310, 50.7233 and 53.5194, which values are given in the third row of Table 3.4. The 

proposed FLNFN-MODE controller has a smaller PSAE  value than the other controllers. 
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 3.17: (a)-(d) Experimental results of FLNFN-MODE controller, PID controller, 
FLNFN-DE controller and FLNFN-GA controller due to periodic sinusoidal command for 
reference position and actual position, tracking error and control effort. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3.18: (a)-(d) Experimental results of FLNFN-MODE controller, PID controller, 
FLNFN-DE controller and FLNFN-GA controller due to periodic square command for 
reference position and actual position, tracking error and control effort. 
 

The third experimentation is performed to demonstrate the noise-rejection ability of the 

four controllers when some unknown impulse noise is imposed on the process. One impulse 

noise value, mm8− , is added to the plant output at the 7th second. A set-point of mm5.2  is 

adopted in this experimental case. The FLNFN-MODE controller can recover from the 

disturbance quickly after the occurrence of the impulse noise, as shown in Fig. 3.19(a). 

Figures 3.19(b)-(d) present the behaviors of the other three controllers under the influence of 

impulse noise. The PSAE  values of the FLNFN-MODE controller, the PID controller, the 
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FLNFN-DE controller, and the FLNFN-GA controller are, respectively, 9.2709, 12.7345, 

10.1515 and 10.8771, which are shown in the fourth row of Table 3.4. The FLNFN-MODE 

controller performs quite well. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3.19: (a)-(d) Behavior of the FLNFN-MODE controller, PID controller, FLNFN-DE 
controller and FLNFN-GA controller under impulse noise in a magnetic levitation system for 
reference and actual positions, tracking error, and control effort. 
 

One common characteristic of many industrial-control processes is that their parameters 

tend to change in an unpredictable way. The signal )005.0(6.0 −∗ tu  is added to the plant 

input between the 7th second and the 15th second in the fourth experiment to test the 

robustness of the four controllers. A set-point of mm5.2  is adopted in this fourth experiment. 

Figures 3.20(a)-(d) present the behaviors of the FLNFN-MODE controller, the PID controller, 

the FLNFN-DE controller, and the FLNFN-GA controller when in the plant dynamics change. 

The PSAE  values of the FLNFN-MODE controller, the PID controller, the FLNFN-DE 
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controller, and the FLNFN-GA controller are, respectively, 7.9469, 24.0004, 11.0672 and 

14.0844, which values are shown in the fifth row of Table 3.4. The results present the 

favorable control and disturbance rejection capabilities of the trained FLNFN-MODE 

controller in the magnetic levitation system. 

 

 
(a) 

 
(b) 
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(c) 

  
(d) 

Figure 3.20: (a)-(d) Behavior of the FLNFN-MODE controller, PID controller, FLNFN-DE 
controller, and FLNFN-GA controller when a change occurs in the magnetic levitation system 
for reference and actual positions, tracking error, and control effort. 
 

Table 3.4: Comparison of performance of various controllers to control of the magnetic 
levitation system with a 0.1s sampling rate. 

∑ −= PPSAE ref
P  FLNFN-MODE 

Controller 
PID 

Controller 
FLNFN-DE 
Controller 

FLNFN-GA 
Controller 

Tracking sinusoidal wave 12.9002 27.70017 13.9169 15.1572 
Tracking square wave 48.4033 85.7310 50.7233 53.5194 
Influence of Impulse 

Noise 
9.2709 12.7345 10.1515 10.8771 

Effect of Change in Plant 
Dynamics 

7.9469 24.0004 11.0672 14.0844 
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3.4  Summary 

This dissertation proposes a functional-link-based neuro-fuzzy network based on a modified 

differential evolution (FLNFN-MODE) for nonlinear system control. The FLNFN-MODE 

controller adopts a nonlinear combination of input variables to the consequent part of fuzzy 

rules and uses a modified differential evolution to optimize the system parameters. We applied 

the FLNFN-MODE controller to the planetary train type inverted pendulum system and the 

magnetic levitation system in the VisSim. The experimental results demonstrate that the 

FLNFN-MODE controller obtains a smaller SAE value than the generally used FLNFN-DE, 

FLNFN-GA, and PID controllers for solving nonlinear control problems. 
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Chapter 4 
 

 

A Rule-Based Symbiotic Modified Differential 

Evolution for the FLNFN Model 
 

 

In this chapter, a rule-based symbiotic modified differential evolution (RSMODE) is proposed 

for the FLNFN model. The proposed RSMODE learning algorithm consists of the 

initialization phase to generate initial rule-based subpopulation, and the parameter learning 

phase to adjust the FLNFN parameters. The initialization phase can determine the number of 

rule-based subpopulation which satisfies the fuzzy partition of input variables. Initially, there 

is not any subpopulation. The rule-based subpopulation is automatically generated from 

training data by entropy measure. The parameter learning phase combines two strategies 

including a subpopulation symbiotic evolution (SSE) and a modified differential evolution 

(MODE). The SSE in which each individual represents a single fuzzy rule differs from 

original symbiotic evolution. Each subpopulation allows the rule itself to evolve. The MODE 

adopts a method to effectively search between the best individual and randomly chosen 

individuals. Therefore, the MODE not only explores the search space by randomly chosen 

individuals but also exploits the search capability of a near global optimal solution by the 

best-so-far individual. 
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4.1  A Basic Concept of Symbiotic Evolution 

Elements of any ecological system live in an intricate web of interdependence. When two 

species of organisms live in close physical contact with each other, their relationship is called 

symbiotic. In a symbiotic relationship at least one of the organisms directly benefits from its 

close association with the other organism. There are three major forms of symbiotic 

relationships: mutualism, commensalisms, and parasitism [69]. 

Mutualism－A reciprocal relationship in which two different species live in a symbiotic 

way where both species benefit and are dependent upon the relationship, that is, both species 

benefit by the relationship. 

Commensalism－A relationship in which one species derives food or shelter from 

another species without seriously harming that organism or providing any benefits in return, 

that is, one species benefits while the other species is not affected.  

Parasitism－A relationship between two species in which one species (the parasite) 

nourishes itself to the detriment of the other species (the host), that is, one species benefits 

and the other is harmed. 

Many researchers [70]-[74] have adopted the concept of mutualisms to develop 

symbiotic evolution. In addition, recent development [75] in the concept of commensalisms 

has provided a multi-swarm cooperative particle swarm optimizer method by the phenomenon 

of symbiosis in natural ecosystems. 

 

4.2  A Rule-Based Symbiotic Modified Differential Evolution 

This section represents the proposed rule-based symbiotic modified differential evolution 

(RSMODE). The RSMODE learning algorithm comprises the initialization phase and the 

parameter learning phase. The initialization phase uses the entropy measure that determines 

proper input space partitioning, finds the mean and variance of the Gaussian membership 
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function and the number of rules. Next, the initial rule-based subpopulation is created 

according to a range of the mean and variance of the membership function. The parameter 

learning phase consists of a subpopulation symbiotic evolution (SSE) and a modified 

differential evolution (MODE). Each individual in each subpopulation evolves separately 

using a modified differential evolution. But in order to evaluate each individual, the individual 

is composed a fuzzy system using other individuals (rules) in other subpopulations. The 

detailed flowchart of the proposed RSMODE learning algorithm is presented in Fig. 4.1. 

Is      the first
input data?

ix̂

Generate the first 
subpopulation 

according to the 
current input data

Generate a new 
subpopulation 

according to the 
current input data

Yes

Yes

No

Are all training data 
finished in the first 

generation?

No

No

Yes

initialization 
phase

Generate the initial best fuzzy system by 
the first individual in each subpopulation

Update each individual in each subpopulation with a 
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fuzzy system and the trial composed fuzzy system using 
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Update the best 
fuzzy system
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Termination?
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End
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learning 
phase

? EMEMmax <

 
Figure 4.1: Flowchart of the RSMODE learning algorithm. 
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4.2.1  Initialization Phase 

In this dissertation, we finish initialization phase from training data in the first generation. 

This subsection introduces the production of initial rule-based subpopulation, covering the 

coding and initialization steps. The coding step involves the membership functions and the 

fuzzy rules of a fuzzy system that represent individuals and are suitable for subpopulation 

symbiotic evolution. The initialization step assigns the number of subpopulation before the 

evolution process begins. 

A. Coding Step 

The first step in RSMODE learning algorithm is the coding of a fuzzy rule into an 

individual. Figure 4.2 shows an example of a fuzzy rule coded into an individual where i and j 

are the ith dimension and the jth rule. Figure 4.2 describes a fuzzy rule given by Eq. (2.3), 

where ijm  and ijσ  are the mean and variance of a Gaussian membership function, 

respectively, and kjw  represents the corresponding link weight of the consequent part that is 

connected to the jth rule node. In this dissertation, a real number represents the position of 

each 

m1j m2j w1j w2j….. mij ….. ….. wMj

Individual

j1σ j2σ ijσ
 

Figure 4.2: Coding a fuzzy rule into an individual in the RSMODE learning algorithm. 
 

B. Initialization Step 

For training data, finding the optimal solution is difficult because the range of training 

data is wide. Therefore, the data must be normalized. Let training date be transformed to the 

interval of [0, 1]: 

'
min_

'
max_
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'
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=                           (4.1) 
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where ix̂  is the value after normalization; 'ˆix  is the vector of the ith dimension to be 

normalized; '
min_ˆix  is the minimum value of vector 'ˆix ; '

max_ˆix  is the maximum value of 

vector 'ˆix . 

Before the RSMODE method is designed, the individuals that will constitute R initial 

subpopulation must be created. The first step in initialization phase is to create the initial first 

individual in each subpopulation to satisfy the fuzzy rule partition of input variables. The 

fuzzy rule partition strategy can determine whether a new rule should be extracted from the 

training data and determine the number of fuzzy rules in the universal of discourse of each 

input variable, since one cluster in the input space corresponds to one potential fuzzy logic 

rule, in which ijm  and ijσ  represent the mean and variance of that cluster, respectively. For 

each incoming data ix̂ , the rule firing strength can be regarded as the degree to which the 

incoming data belongs to the corresponding cluster. Entropy measure between each data point 

and each membership function is calculated based on a similarity measure. A data point of 

closed mean will has lower entropy. Therefore, the entropy values between data points and 

current membership functions are calculated to determine whether or not to add a new rule 

into the initial first individual and create a new rule-based subpopulation space. For 

computational efficiency, the entropy measure can be calculated using the firing strength from 

)ˆ()2(
iij xµ  as follow;  

∑
=

−=
N

i
ijijj DDEM

1
2log                          (4.2) 

where ( )1)2( )ˆ(exp −= iijij xuD  and ]1,0[∈jEM . According to Eq. (4.2), the measure is used to 

generate a new fuzzy rule and new functional link bases for new incoming data is described as 

follows. The maximum entropy measure 

jRj
EMEM

≤≤
=

1max max                          (4.3) 
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is determined, where R is the number of existing rules. If EMEM ≤max , then a new rule and 

a new rule-based subpopulation space are generated, where ]1,0[∈EM  is a prespecified 

threshold. 

Once a new rule has been generated, the next step is to assign the initial first individual 

in the new rule-based subpopulation by the initial mean and variance to the new membership 

function and the corresponding link weight. Hence, the mean, variance and weight for the new 

rule are set as follows; 

iij xm ˆ=                                (4.4) 

initij σσ =                               (4.5) 

]1 ,1[−= randomwkj                           (4.6) 

where ix̂  is the current input data and initσ  is a prespecified constant. 

The second step is to create other individuals in each subpopulation according to a range 

of the initial first individual. The following formulations show the production of the other 

individuals. 

Mean: ijij ,randommdIndividual σ×+= ]1 0[][ , where d=1,3,…,2×N-1       (4.7) 

Variance: ijrandomdIndividual σ××= ]1,0[2][ , where d=2,4,…,2×N       (4.8) 

Other parameters: ]1 1[][ ,randomdIndividual −= , where d>2×N        (4.9) 

where d is the site of each individual and mij and σij are the corresponding mean and variance, 

respectively, of the initial first individual. 

 

4.2.2  Parameter Learning Phase 

The parameter learning combines two strategies including a subpopulation symbiotic 

evolution (SSE) and a modified differential evolution (MODE). Each subpopulation allows 
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the individual (rule) itself to evolve by evaluating the composed fuzzy system. Figure 4.3 

shows the structure of the individual in the rule-based symbiotic modified differential 

evolution. The parameter learning process is described step-by-step below. 
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Figure 4.3: Structure of the individual in the RSMODE learning algorithm. 

 

Step 1: Generate the Initial Best Fuzzy System 

In this step, we orderly select the first individual from each subpopulation, and compose 

a fuzzy system as the initial best fuzzy system. 

Step 2: Update Each Individual in Each Subpopulation using MODE 

In order to update each individual in each subpopulation, we use a modified differential 
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evolution to select the better individual to the next step. Figure 4.4 gives an example of the 

MODE process. Hence, this step comprises of three components - parent choice phase, 

offspring generation phase and survivor selection phase. 

Step 2.1: Parent Choice Phase 

Each individual in the current generation is allowed to breed through mating with other 

randomly selected individuals from the subpopulation. Specifically, for each current 

individual gkx , , k=1, 2, …, PS, where g denotes the current generation and PS denotes the 

population size, three other random individuals grx ,1
, grx ,2

 and grx ,3
 are selected from the 

subpopulation such that r1, r2, and r3 { }PS,...2,1∈  and 321 rrrk ≠≠≠ . This way, a parent pool 

of four individuals is formed to breed an offspring. 

Step 2.2: Offspring Generation Phase 

After choosing the parents, MODE applies a differential operation to generate a mutated 

individual 1, +gkv , according to the following equation: 

)()()1( ,,,,1, 1321 grbestgrgrgrgk xxFxxFxv −⋅+−⋅−+=+             (4.10) 

where F, commonly known as scaling factor, is defined as G
g  to control the rate at which 

the subpopulation evolves, g denotes the current generation, G is the maximum number of 

generations, and bestx  is the corresponding parameter of the best fuzzy system. To 

complement the differential operation search strategy, then uses a crossover operation, often 

referred to as discrete recombination, in which the mutated individual 1, +gkv  is mated with 

gkx ,  and generates the offspring 1, +gku . The element of trial individual 1, +gku  are inherited 

from gkx ,  and 1, +gkv , determined by a parameter called crossover probability ( ]1 ,0[∈CR ), 

as follows: 
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where Dd ,...,2,1=  denotes the dth element of individual vectors. ]1 ,0[)( ∈dRand  is the 

dth evaluation of a random number generator. For searching in nonseparable and multimodal 

landscapes 9.0=CR  is a good choice [55]. 
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Figure 4.4: Illustration of the MODE process for 8-dimensional vector. 
 

Step 2.3: Survivor Selection Phase 

MODE applies selection pressure only when selecting survivors. First, the current 

composed fuzzy system embeds the current individual gix ,  into the best fuzzy system and 

the trial composed fuzzy system embeds the trial individual 1, +giu  into the best fuzzy system. 

Second, a knockout competition is played between the current composed fuzzy system and 

the trial composed fuzzy system. Then, the corresponding individual of the winner is selected 

deterministically based on objective function values and promoted to the next phase. In this 

dissertation, we adopt a fitness function (i.e., objective function) to evaluate the performance 

of these composed fuzzy systems. The fitness function is defined as follows. 
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where yl represents the model output of the lth data; ly  represents the desired output of the 

lth data, and Nt represents the number of the training data. 

Step 3: Update the Best Fuzzy System 

Compare the fitness value of the current composed fuzzy system, the trial composed 

fuzzy system and the best fuzzy system. If the fitness value of the current composed fuzzy 

system exceeds those of the best fuzzy system, then the best fuzzy system is replaced with the 

current composed fuzzy system. If the fitness value of the trial composed fuzzy system 

exceeds those of the best fuzzy system, and then the best fuzzy system is replaced with the 

trial composed fuzzy system. 

Step 4: Mutation 

After the above process yielded offspring, no new information is introduced to the each 

subpopulation at the site of an individual. As a source of new sites, mutation should be used 

sparingly because it is a random search operator. In the following simulations, a mutation rate 

was set to 1/(2*N+M), meaning that, on average, only one trial parameter is mutated, where N 

is the number of input variables, M is the number of basis function of FLNFN and 2*N+M is 

the length of each individual. Mutation is an operator that randomly alters the allele of a 

element. The mutation adopted in MODE to yield diversity. The individual suffers from a 

mutation to avoid falling in a local optimal solution and to ensure the searching capacity of 

approximate global optimal solution. Figure 4.5 shows the mutation of an individual. The 

mutation value is generated according to Eqs. (4.7)-(4.9), where mij and σij are the 

corresponding mean and variance, respectively, of the current individual. Following the 

mutation step, a new individual can be introduced into the each subpopulation. 
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Mutation Site

mij
new

Old Individual

New Individual

m1j m2j w1j w2j….. mij ….. ….. wMjj2σj1σ ijσ

m1j m2j w1j w2j….. ….. ….. wMjj2σj1σ ijσmij
new

 
Figure 4.5: A mutation operation in the rule-based symbiotic modified differential evolution. 

 

4.3  Experimental Results 

This dissertation evaluated the performance of the proposed FLNFN controller using a 

rule-based symbiotic modified differential evolution (FLNFN-RSMODE) for nonlinear 

control systems. This section presents several examples and compares the performance with 

that of the FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA controller. 

In the nonlinear control system problems, FLNFN-RSMODE is adopted to design controllers 

in three simulations - water bath temperature control system, ball and beam system and 

backing up the truck. Table 4.1 presents the parameter settings before training used in the 

three computer simulations for the RSMODE. In the RSDE and DE, the population size is set 

to 50, the maximum number of generation is set to 2000, and the crossover rate is set to 0.9. 

In the GA, the population size is set to 50, the maximum number of generation is set to 2000, 

the crossover rate is set to 0.5, and the mutation rate is set to 0.3. 

 
Table 4.1: Parameter settings before training. 

Parameter Value 
Population Size 50 
Maximum Number of 
Generation 

2000 

Crossover Rate 0.9 
Mutation Rate 1/(2*N+M) 
Coding Type Real Number 
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Example 1: Control of Water Bath Temperature System 

The description of the system is the same as Example 1 of Section 2.3. In initialization 

phase, four subpopulations are generated. This dissertation compares the FLNFN-RSMODE 

controller to the FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA 

controller. Each of these controllers is applied to the water bath temperature control system. 

The performance measures include the set-points regulation, the influence of impulse noise, 

and a large parameter variation in the system, and the tracking capability of the controllers. 

Figure 4.6 plots the learning curves of the best performance of the FLNFN-RSMODE 

controller for the fitness value, the FLNFN-RSDE controller, the FLNFN-DE controller and 

the FLNFN-GA controller, after the learning process of 2000 generations. Figure 4.7(a) 

presents the regulation performance of the FLNFN-RSMODE controller. The regulation 

performance was also tested using the FLNFN-RSDE controller, the FLNFN-DE controller 

and the FLNFN-GA controller. Figure 4.7(b) plots the error curves of the FLNFN-RSMODE 

controller, the FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA 

controller. Figure 4.8(a) and (b) present the behaviors of the FLNFN-RSMODE controller, the 

FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA controller under the 

influence of impulse noise, and the corresponding errors, respectively. Figure 4.9(a) presents 

the behaviors of the FLNFN-RSMODE controller when in the plant dynamics change. Figure 

4.9(b) presents the corresponding errors of the FLNFN-RSMODE controller, the 

FLNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA controller. Figure 

4.10(a) presents the tracking performance of the FLNFN-RSMODE controller. Figure 4.10(b) 

presents the corresponding errors of the FLNFN-RSMODE controller, the FLNFN-RSDE 

controller, the FLNFN-DE controller, and the FLNFN-GA controller. The aforementioned 

simulation results, presented in Table 4.2, demonstrate that the proposed FLNFN controller 

outperforms other controllers. 
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Figure 4.6: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE, 
FLNFN-DE and FLNFN-GA in Example 1. 

 

(a) 

 

(b) 
Figure 4.7: (a) Final regulation performance of FLNFN-RSMODE controller in water bath 
system. (b) Error curves of the FLNFN-RSMODE controller, FLNFN-RSDE controller, the 
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FLNFN-DE controller, and FLNFN-GA controller. 
 

 

(a) 

 

(b) 
Figure 4.8: (a) Behavior of FLNFN-RSMODE controller under impulse noise in water bath 
system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE controller, the 
FLNFN-DE controller and FLNFN-GA controller. 
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(a) 

 

(b) 
Figure 4.9: (a) Behavior of FLNFN-RSMODE controller when a change occurs in the water 
bath system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE controller, the 
FLNFN-DE controller, and FLNFN-GA controller. 

 

(a) 
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(b) 
Figure 4.10: (a) Tracking of FLNFN-RSMODE controller when a change occurs in the water 
bath system. (b) Error curves of FLNFN-RSMODE controller, FLNFN-RSDE controller, the 
FLNFN-DE controller, and FLNFN-GA controller. 
 

Table 4.2: Comparison of performance of various controllers to control of water bath 
temperature system. 

∑
=

−=
120

1
|)()(|

k
ref kykySAE  FLNFN-RSMODE 

Controller 

FLNFN-RSDE 

Controller 

FLNFN-DE 

Controller 

FLNFN-GA 

Controller 

Regulation Performance 352.66 352.81 352.91 372.85 
Influence of Impulse Noise 270.46 270.76 270.65 282.21 
Effect of Change in Plant 

Dynamics 
262.63 263.21 263.25 270.66 

Tracking Performance 41.73 42.56 42.92 62.02 

 

Example 2: Control of the Ball and Beam System 

The description of the system is the same as Example 1 of Section 2.3. In initialization 

phase, 14 subpopulations are generated. This example was simulated 30 times. Figure 4.11 

plots the learning curves of the best performance of the FLNFN-RSMODE controller for the 

fitness value, the FLFNFN-RSDE controller, the FLNFN-DE controller and the FLNFN-GA 

controller, after the learning process of 2000 generations. The FLNFN-RSMODE controller 

after learning was tested under the following four initial conditions; x(0) = [2.4, -0.1, 0.6, 

0.1]T, [1.6, 0.05, -0.5, -0.05]T, [-1.6, -0.05, 0.5, 0.05]T and [-2.4, 0.1, -0.6, -0.1]T. Figure 4.12 
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plots the output responses of the closed-loop ball and beam system controlled by the 

FLNFN-RSMODE controller and the FLNFN-RSDE controller. These responses approximate 

those of the controller under the four initial conditions. In this figure, the curves of the 

FLNFN-RSMODE controller tend quickly to stabilize. Figure 4.13 also shows the behavior of 

the four states of the ball and beam system, starting for the initial condition [-2.4, 0.1, -0.6, 

-0.1]T. In this figure, the four states of the system decay gradually to zero. The results show 

the perfect control capability of the trained FLNFN-RSMODE controller. The performance of 

the FLNFN-RSMODE controller is compared with that of the FLNFN-RSDE controller, the 

FLNFN-DE controller and the FLNFN-GA controller. Table 4.3 presents the comparison 

results. The results demonstrate that the proposed FLNFN-RSMODE controller outperforms 

other controllers. 

 

 
Figure 4.11: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE, 
FLNFN-DE, and FLNFN-GA in Example 2. 
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Figure 4.12: Responses of ball and beam system controlled by FLNFN-RSMODE controller 
(solid curves) and FLNFN-RSDE controller (dotted curves) under four initial conditions. 
 

 
Figure 4.13: Responses of four states of the ball and beam system under the control of the 
FLNFN-RSMODE controller. 
 

Table 4.3: Comparison of performance of various controllers to control of ball and beam 
system. 

Method FLNFN-RSMODE FLNFN-RSDE FLNFN-DE FLNFN-GA 

Fitness Value (Ave) 0.9041 0.8737 0.8516 0.8287 
Fitness Value (Best) 0.9653 0.9447 0.9441 0.9131 

 

Example 3: Control of Backing Up the Truck 

Backing a truck into a loading dock is difficult. It is a nonlinear control problem for 
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which no traditional control method exists [76]. Figure 4.14 shows the simulated truck and 

loading zone. The truck position is exactly determined by three state variables φ , x and y, 

where φ  is the angle between the truck and the horizontal, and the coordinate pair (x, y) 

specifies the position of the center of the rear of the truck in the plane. The steering angle θ 

of the truck is the controlled variable. Positive values of θ represent clockwise rotations of 

the steering wheel and negative values represent counterclockwise rotations. The truck is 

placed at some initial position and is backed up while being steered by the controller. The 

objective of this control problem is to use backward only motions of the truck to make the 

truck arrive in the desired loading dock (xdesired, ydesired) at a right angle (φ desired=90°). The 

truck moves backward as the steering wheel moves through a fixed distance (df) in each step. 

The loading region is limited to the plane [0,100] × [0,100]. 

 

 
Figure 4.14: Diagram of simulated truck and loading zone. 

 

The input and output variables of the FLNFN-RSMODE controller must be specified. 

The controller has two inputs, truck angle φ  and cross position x. When the clearance 

between the truck and the loading dock is assumed to be sufficient, the y coordinate is not 

considered as an input variable. The output of the controller is the steering angle θ. The 

ranges of the variables x, φ  and θ are as follows. 

100x0 ≤≤                           (4.13) 

°≤≤°− 27090 φ                          (4.14) 
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°≤≤°− 3030 θ                           (4.15) 

The equations of backward motion of the truck are, 
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           (4.16) 

where l is the length of the truck. Equation (4.16) yields the next state from the present state. 

Learning involves several attempts, each starting from an initial state and terminating 

when the desired state is reached; the FLNFN is thus trained. In initialization phase, 7 

subpopulations are generated. This example was simulated 30 times. The fitness value of the 

FLNFN-RSMODE is approximately 0.9746 and the learning curve of FLNFN-RSMODE is 

compared with those obtained using the FLNFN-RSDE, FLNFN-DE, and FLNFN-GA, as 

shown in Fig. 4.15. In Fig. 4.16, the solid curves are the training paths and the dotted curves 

are the paths that the tuck runs under the control of the proposed controller. As this figure 

shown, the FLNFN-RSMODE controller can smooth the training paths. Figures 4.17(a)-(d) 

plot the trajectories of the moving truck controlled by the FLNFN-RSMODE controller, 

starting at initial positions (x, y, φ ) = (a) (40, 20, -30°), (b) ( 10 ,20 ,150°), (c) ( 70, 20, -30°) 

and (d) ( 80, 20, 150°), after the training process has been terminated. The considered 

performance indices include the best fitness and the average fitness value. Table 4.4 compares 

the results. According to these results, the proposed FLNFN-RSMODE controller outperforms 

various existing methods. 
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Figure 4.15: Learning curves of best performance of the FLNFN-RSMODE, FLNFN-RSDE, 
FLNFN-DE and FLNFN-GA in Example 3. 

 
Figure 4.16: The moving trajectories of the truck where the solid curves represent the six sets 
of training trajectories and the dotted curves represent the moving trajectories of the truck 
under the FLNFN-RSMODE controller. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 4.17: Trajectories of truck, starting at four initial positions under the control of the 
FLNFN-RSMODE after learning using training trajectories. 
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Table 4.4: Comparison of performance of various controllers to control of backing up the 
truck. 

Method FLNFN-RSMODE FLNFN-RSDE FLNFN-DE FLNFN-GA 

Fitness Value (Ave) 0.9110 0.8939 0.8846 0.8421 
Fitness Value (Best) 0.9746 0.9604 0.9527 0.9286 

 

4.4  Summary 

This dissertation proposes a rule-based symbiotic modified differential evolution (RSMODE) 

for the FLNFN model. The proposed RSMODE learning algorithm consists of initialization 

phase to generate initial rule-based subpopulation, and parameter learning phase to adjust the 

FLNFN parameters. The proposed RSMODE learning algorithm allows that each individual 

in each subpopulation evolves separately using a modified differential evolution. The 

experimental results demonstrate that the proposed RSMODE can obtain a better performance 

than other existing methods under some circumstances. 
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Chapter 5 
 

 

Conclusion and Future Works 
 

 

This dissertation proposes a functional-link-based neuro-fuzzy network (FLNFN) structure for 

nonlinear system control. The FLNFN model uses a functional link neural network to the 

consequent part of the fuzzy rules. The FLNFN model can automatically be constructed and 

the FLNFN parameters can be adjusted by performing online structure/parameter learning 

schemes concurrently. The advantages of the proposed FLNFN model are summarized below. 

1) The consequent of the fuzzy rules of the proposed model is a nonlinear combination of 

input variables. This study uses the functional link neural network to the consequent part of 

the fuzzy rules. The local properties of the consequent part in the FLNFN model enable a 

nonlinear combination of input variables to be approximated more effectively. 

2) The online learning algorithm can automatically construct the FLNFN model. No 

rules or memberships exist initially. They are created automatically as learning proceeds, as 

online incoming training data are received and as structure and parameter learning are 

performed. 

3) The FLNFN model is proven to be a universal approximator by Stone–Weierstrass 

theorem and its convergence properties are proven by the Lyapunov theorem in the Appendix. 

4) As demonstrated in section 2.3, the proposed FLNFN model is a more adaptive and 

effective controller than the other models. 
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Furthermore, in order to prevent the FLNFN parameters to quickly reach the local 

optima. This dissertation also proposes a rule-based symbiotic modified differential evolution 

(RSMODE) for the FLNFN model. The proposed RSMODE comprises multi-subpopulation 

that uses each individual represents a single fuzzy rule and each individual in each 

subpopulation evolves separately using a modified differential evolution. The advantages of 

the proposed RSMODE method are summarized as follows: 

1) The RSMODE can automatically determine the number of subpopulation. No 

subpopulation exists initially. They are generated automatically using entropy measure which 

satisfies the fuzzy partition of input variables. 

2) The RSMODE adopt a subpopulation symbiotic evolution strategy which uses the 

rule-based subpopulation to evolve separately. 

3) The RSMODE adopt a modified differential evolution strategy to effectively search 

between the current best individual and randomly chosen individuals. 

Moreover, the proposed FLNFN model and its related learning algorithms can obtain 

better simulation results than alternative methods in some circumstances, for example 

achieving higher design accuracy in many nonlinear control problems. We shall address the 

two issues of the FLNFN model and its related learning algorithms. First, we always require 

that training data be sufficient and proper. However, there is no procedure or rule suitable for 

all cases in choosing training data. One rule of thumb is that training data should cover the 

entire expected input space and then during the training process select training-vector pairs 

randomly from the set. Second, we believe that the proposed FLNFN-RSMODE and 

FLNFN-MODE are a more adaptive and effective controller than the FLNFN-BP for 

high-order nonlinear or overly complex systems. 

Two advanced topics on the proposed FLNFN model should be addressed in future 

research. First, the FLNFN model will tend to apply high-order nonlinear or overly complex 

systems if it can suitably adopt the consequent part of a nonlinear combination of input 
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variables, and a functional expansion of multiple trigonometric polynomials. Therefore, it 

should be analyzed to use how many trigonometric polynomials for functional expansion in 

future. Second, there are some parameters in the RSMODE method influence the accuracy 

and complexity of the final FLNFN and training duration. These parameters should be 

automatically selected using an effective method in future. Khosla et al. [77] presented a 

systematic based on Taguchi approach reasoning scheme for identifying the strategy 

parameters for the evolutionary algorithm. The Taguchi approach provides systematic, simple 

and efficient methodology using fractional factorial design to study a large number of 

parameters with only a few well-defined experimental sets. 
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Appendix 
 

A.  Proof of the Universal Approximator Theorem 

The Stone-Weierstrass theorem [56] is adopted to prove the universal approximator 

theorem. For a clear description in the FLNFN model, only the multi-input single-output 

(MISO) function ℜ∈→ℜ∈ yxf N:  is considered. The FLNFN is expressed as 
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Theorem A1: Stone-Weierstrass Theorem: Let A be a set of real continuous functions on 

a compact set U. If 1) U is an algebra that if ∈21, ff A, and ∈c R, then ∈+ 21 ff A, 

∈⋅ 21 ff A, and ∈1cf A; 2) A separates points on U, meaning that for ∈yx, U, yx ≠ , there 

exists ∈1f A such that )()( 21 yfxf ≠ , and 3) A vanishes at no point of U, meaning that for 

each ∈x U there exists ∈1f A such that 0)(1 ≠xf , then the uniform closure of A consists of 

all real continuous functions on U.  

Lemma A1: Let Y be the family of function ℜ→ℜNy : defined in Eq.(A.1); then 

Y→U, where U is a compact set. 

Proof of Lemma A1: Here, the membership function is 
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Therefore, the continuous function )3(
ju  is closed and bounded for all Nx ℜ∈ . That is, 

Y⊂U. 

Proof of Theorem A1: First, we prove that Y is algebra. Let ∈21, ff Y, such that they can 

be written as 
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where jy1ˆ  and jy2ˆ ℜ∈ , j∀ .  

Therefore, 
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Since )3(1 ju  and )3(2 ju  are Gaussian in form, i.e., this can be verified by straightforward 

algebraic operations; hence, Eq.(A.4) is in the same form as Eq.(A.1), so that ∈+ 21 ff Y. 

Similarly, we have 
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which is also in the same form as Eq.(A.1); hence, ∈⋅ 21 ff Y, Finally, for arbitrary ℜ∈c  
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which is again in the form of Eq.(A.1); hence, ∈⋅ 1fc Y. Therefore, Y is an algebra. 

Next, Y is proven to separate points on U, by constructing a required f; ∈f Y is 

specified such that )'()'( yfxf ≠  for arbitrarily given ∈',' yx U with '' yx ≠ . Two fuzzy 

rules in the form of Eq.(2.3) are chosen for the fuzzy rule base.  

Let )',...,','(' 21 Nxxxx =  and )',...,','(' 21 Nyyyy = . If ii yx '' ≠ , then two fuzzy rules can be 

chosen as the fuzzy rule base. Furthermore, let the Gaussian membership functions be 
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Then, f can be expressed as 
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where 1ŷ  and 2ŷ  are outputs of the local FLNN model calculated for output y and rule 

Rule-1, Rule-2 and ℜ∈jŷ , j∀ . With this system, 
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Since '' yx ≠ , some i must exist such that ii yx '' ≠ ; hence )'()'( yfxf ≠ . Therefore, Y 

separates points on U. 

Finally, Y is proven to vanish at no point of U. By Eq.(A.1), )()3( xu j  is constant and 

does not equal zero. That is, for all Nx ℜ∈ , 0)()3( >xu j . If ),...,2,1(,0)()3( Rjxu j => , then 

0>y  for any Nx ℜ∈ . That is, any ∈y Y with 0)()3( >xu j  can serve as the required f. 

In summary, the FLNFN model is a universal approximator, using the Stone-Weierstrass 

theorem and the fact that Y is a continuous real set on U proves the theorem. 

 

B.  Proof of Convergence Theorem 

Theorem B1: Let wη  be the learning rate parameter of the FLNFN weight, and let 

maxwP  be defined as )(maxmax kPP wkw ≡ , where kjw wykP ∂∂=)(  and   ⋅  is the 

Euclidean norm in Nℜ . The convergence is guaranteed if wη  is chosen as 

RPww λλη == 2
max )( , in which λ  is a positive constant gain, and R is the number of rules 

in the FLNFN model. 

Proof of Theorem B1: Since 

∑
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                         (B.1) 

and 1 
1

)3()3( ≤∑
=

R

j
jkj uu φ , the following result holds; 

RkPw ≤)( .                            (B.2) 
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Then, a discrete Lyapunov function is selected as 

)(
2
1)( 2 kekV = .                           (B.3) 

The change in the Lyapunov function is obtained as 
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The error difference can be represented as [23] 
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where e∆  and kw∆  represent the output error change and the weight change in the output 

layer, respectively. Equations (2.17) and (B.5) yield 
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Then,  
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is true. If RPww λλη == )( 2
max  is chosen, then the term )()(1 kPkP w

T
wwη−  in Eq.(B.8) is 

less than 1. Therefore, the Lyapunov stability of 0>V  and 0<∆V  is guaranteed. The 

output error between the reference model and actual plant converges to zero as ∞→t . This 

fact completes the proof of the theorem. 

 The following lemmas [25] are used to prove Theorem 2. 

 Lemma B1: Let )exp( )( 2hhhg −= , then ℜ∈∀< hhg ,1)( . 

 Lemma B2: Let )exp( )( 22 hhhf −= , then ℜ∈∀< hhf ,1)( . 

Theorem B2: Let mη  and ση  be the learning rate parameters of the mean and standard 
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deviation of the Gaussian function for the FLNFN; let maxmP  be defined as 

)(maxmax kPP mkm ≡ , where ijm mykP ∂∂=)( ; let maxσP  be defined as )(maxmax kPP k σσ ≡ , 

where ijykP σσ ∂∂=)( . The convergence is guaranteed if mη  and ση  are chosen as 

[ ] ( )[ ] 2

minmax
2

−
⋅== ijkjwm wM σηηη σ , in which )(max
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kww kjkkj = ; 

)(min
min

kijkij σσ = ;   ⋅  is the absolute value. 

Proof of Theorem B2: According to Lemma B1, 

[ ] [ ]{ } 1/)(exp/)( 2 <−−− ijijiijiji mxmx σσ . The upper bounds on )(kPm  can be derived as 

follows; 
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where Mkk ,...,2,1for  ,]1,0[ =∈φ . Thus,  
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The error difference can also be represented as [23] 
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where ijm∆  represents the change of the mean of the Gaussian function in the membership 
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function layer. Equation (2.18) and (B.11) yield 
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is true. If [ ] ( )[ ] 2

minmax
2

max 2)(
−

⋅== ijkjwmm wMP σηλη  is chosen, then the term 

)()(1 kPkP m
T

mmη−  in Eq.(B.14) is less than 1. Therefore, the Lyapunov stability of 0>V  

and 0<∆V  given by Eq.(B.3) and Eq.(B.4), is guaranteed. The output error between the 

reference model and actual plant converges to zero as ∞→t . 

According to Lemma B2, [ ] [ ]{ } 1/)(exp/)( 22 <−−− ijijiijiji mxmx σσ . The upper bounds 

on )(kPσ  can be derived as follows; 
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where Mkk ,...,2,1for  ,]1,0[ =∈φ . Thus,  
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The error difference can be represented as 
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where ijσ∆  represents the change of the variance of the Gaussian function in the 

membership function layer. Equation (2.19) and (B.17) yield 
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is true. If [ ] ( )[ ] 2

minmax
2
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⋅== ijkjw wMP σηλη σσ  is chosen, then the term 

)()(1 kPkPT
σσση−  in Eq. (B.20) is less than 1. Therefore, the Lyapunov stability of 0>V  

and 0<∆V  given by Eq. (B.3) and Eq. (B.4) is guaranteed. The output error between the 

reference model and actual plant converges to zero as ∞→t . This fact completes the proof 

of the theorem. 
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