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Abstract

Electroencephalogram is a powerful non-invasive tool widely used by for both
medical diagnosis and neurobiolegical research:because it provides high temporal
resolution in milliseconds which directly reflects the-dynamics of the generating cell
assemblies, and it is the only- brain-imaging. modality that does not require the
head/body to be fixed. However, the lack of-availability of EEG monitoring system
capable of high-definition recording, online signal processing and artifact cancellation,
without use of conductive gels applied to the scalp, has long thwarted the applications
of EEG monitoring in the workplace. This dissertation describes a design,
development and testing of a neural human machine interface that allows assessment
of brain activities of participants actively performing ordinary tasks in natural body
positions and situations within a real operational environment. More importantly, this
dissertation also discuss the implications of this innovative mobile wireless brain
imaging technology in neuroscience and neuro-technology, through three sample
studies: (1) cognitive-state monitoring of participants performing realistic driving
tasks in the virtual-reality-based dynamic driving simulator; (2) the efficacy and

neural correlates of auditory feedback delivered to participants to maintain



participants attention and alertness; (3) the neural correlates of kinesthetic sensation
and perception in the dynamic driving simulator. Results of these studies provide
many new insights into the understanding of complex brain functions of participants
performing ordinary/routine tasks in a minimum constrained environment. These
results also allow a better appreciation of the limitations of normal human
performance in repetitive task environments, and may allow more detailed study of
changes in cognitive dynamics in brain-damaged, diseased, or genetically abnormal
individuals. Furthermore, these findings might be difficult, if ever possible, to obtain
in a standard EEG laboratory where participants are asked to limit their eye blinks,
teeth clinching, head/ body movements. We, thus, believe this work opens a new

chapter in neuro-cognitive human-machine interface/interaction.



%ﬁi%éﬁ%$’ﬁi&%ﬁ%%ﬁ#M@ﬁ%ﬁ&ﬂﬁiﬂ:&&ﬁ&&ﬂﬁai§
IARAERER 0 B A F AT - RaRTRATRE > A kg B R » ]t A g
BhrGPEFAT Y B GBI AESFTHR BRI PR R S RPEEY
PP s G TR SRERE B REBERASHEFT 0 o Y sk
L FGRGEE S B RN A 07 B blde 1 UCSC e+ 4 4a% - NASAIPL 7 i
Ay s UCSD et + T et = L > MPIBehZ2 k% #E L X -

Bt R LR S UCSD A+ T o4 A ERE LB YRR EF I 2RI REE L%

)2

2o R ATREBEP IR KBRS AeR R FRO AR R AR X e g4

—=

Rod 24 2 8d e f e @ - TRSHER DT CH LS B ] o
2o KR RET RN FREA A RER S > PR L EhL AR o

F_*
\\?{y
\ ¥y

B AT L A & 5 TR SRR G A T R ek Bk s

ho HF S ENEAL LT oL TRHR G CEF A ST LR R 0 F 0B

ira:rﬁ#fq%r RmAFT P ARIEE P PRENREI N gL E AN Y
P EAL Y ] R R R S R s 0 S BRI -

Bofl s AREHANLIRE AARFY B HAPRIILE > FRAAFF I L
LSS T & ERIEY EL R A RE S R SR Ry (e Rt S R

PRBE KEAGA SR A CRE22FEEFV 2B 2R d e PRy

(Y

Frif difeinee SRAT > 1G5 R D TR G AME DTALRA S A B A D

EFE o BT E %E}%}’EE%‘}Q °

¥ iE il
2007/10/11



Contents

B B s i
ADSTFACT. ...ttt b e b e e ii
5 oSS PP OOPPRRPON v
(O0] 01 (=] 0 | £ TP U P OUR TR PPRUURTOPROPY vi
LISt OF TADIES ... e viii
ST OF FIQUIES. ...ttt ettt sttt nb et st e e beenee s IX
I a1 1 oo [N o1 1 o] o F OSSO P PP TP PRSI 1
I \V/ o] 11V U] o SO PRTRTPR 1
1.2 Statement of the Problem ... 2
IR I\ (0] 7 U4 ] o SO PRTSTPR 4
2. Materials and Methods..........a0 ... coabes s eeee e seeas 6
2.1 Virtual-reality-based Dynamic Driving Environment..............ccccoceveeieinennne 6
2.2 Electroencephalogram Signal AcquiSition SYStem...........c.cccccveveivevecvieseennns 9
2.3 Independent Component-ANalySiS: L il it 11
2.4 Event-Related Potential..... ot o e ciifotinesceceeeeeeeeens 12
2.5 Event-Related Spectral Perturbation..............cccccccveveiiiiiciciicce e, 13
3. EEG Activation of Kinesthetic Perception .........cccccviveviiiieiieiniin e 15
K200 A 1 11 0o [ Tox 4 o o SO R 15
3.2 EXPErimental SETUPD .....ooveveiiiiciiiieieeie s 19
3.3 EXPerimental RESUITLS. ... s 24
KRR D o 1 11 o o RSP 32
4. EEG Activation under Different Cognitive States..........coccoveeriiiniiinneniieneennns 36
I o € T [UTox £ o] o SOOI 36
4.2 EXPErimental SELUP .......coviviiieie et 37
4.3 EXperimental RESUILS........ccvi it 44
4.4 DISCUSSION....c.vttiteitieteesiesieieste st ste st st s st e s et e st e sbesbe b e s be et e e seeseens et e nbesbesaenbeareene e 51
5. Portable Brain Computer Interface in Detecting Drowsiness..........ccccccceevenenn 52
T8 A 1011 o To 18 Tod ¥ o] o SRS 52
5.2 SyStemM AFCRITECTUNE ... s 54
5.3 Real-time Drivier’s Drowsiness DeteCtion ..........ccccoovvvvereniesiiennsre e e 64

Vi



5.4 Experimental Results and DIiSCUSSION ........cccoeivierinienieieniene e

B. CONCIUSIONS ... et e e e e e e e et e e e e e e e e e e e e e e e e e e e aeenees

References

vii



List of Tables

................................................................................................................... 25
Table 4-1: Correlation spectra between smoothed driving errors and ICA power
spectra of first 2 ICA components of each subject.............cccccovvereennnne 47
Table 4-2: Performance of testing patterns for electrode-skin-electrode
impedance (ESEI) measurement ............ccooeveneiie e 50
Table 5-1: The Comparison of the Bluetooth and RF 3100/3105...........ccccccveeeeee 58
Table 5-2: The Comparison of the Performance ...........ccoocoeiiiiiiinnieiciieneee 68
Table 5-3. The comparisons of the Estimation Performance..............ccccccevvveeinnnne 70
Table 5-4: Comparison of Brain Computer Interface Systems..........cccccceeeveenens 71

viii



List of Figures

Figure 2-1: (a) Kinesthetic virtual reality (VR) driving environment, (b) The
driving cabin simulator mounted on a 6-DOF dynamic Stewart

MOLION PIALFOIrM ..o 7
Figure 2-2: Flowchart of the VR-based highway scene developed environment
................................................................................................................. 7
Figure 2-3: The width of highway is equally divided into 256 units and the width
OF the Car 1S 32 UNITS ....cueiiiiie e 8
Figure 2-4: The 32 channel EEG electrode cap ontents..........cccooeieiiiininiinnnns 10
Figure 2-5: The International 10-20 system of electrode placement ist of Tables
................................................................................................................ 10
Figure 2-6: The scalp topographies and the corresponding log bandpower
spectra of all ICA components.st of FIQUIES.........ccccooeviiniiieninennnne 12
Figure 2-7: Event-related spectral perturbation plot.ntroduction........................ 14
Figure 3-1: Illustration of the design for'Stop-Go events in diving ..........c.ccccveee 20

Figure 3-2: The vehicle was randomly.drifted away from the cruising position,
which was defined as a!deviation event, and the subjects were
instructed to steer the vehicle back to-the center of the cruising la as
quickly as possible ... I i 21

Figure 3-3: The ICA componentsfrom 11 subjects are clustered into 9 groups......

Figure 3-4: A right mu component shows mu characteristic 10 Hz and 22 Hz
peaks in the activity spectrum (lower left).........cccoocoviniiiininnnine. 26
Figure 3-5: The mean ERSP of the mu component following deviation events........

Figure 3-6: Single-trial Event-Related Potentials (ERPs) of the central midline
(CM) component following deviation events under 4 different
(010] 0o 1 (0] 1< OSSP 28
Figure 3-7: Mean (N=29) component map and mean power spectra of a left-mu
component cluster. Individual component maps resembled the
averaged SCalP MAP .....co i 29
Figure 3-8: The group-averaged ERSP shows the component activations
following Stop-Go events under the motion (left panels) and

motionless (right panels) conditions...........c.ccoccvvveiieninienieneee e 30
Figure 3-9: The group-averaged ERSP images following deviation events under
motion and motionless CoNditioNS............ccocveiiriiiinnenie e 31



Figure 3-10: The differences between mu blocking in motion and motionless
conditions, which were obtained by subtracting motionless ERSP
(right panels of Figure 3-9) from the motion ERSP (left panels of

FIQUIE 3-9) Lo 32
Figure 4-1: Flowchart of the drowsiness detection SyStem............ccccoecevirvriinenns 38
Figure 4-2: A VR-based dynamic driving environment for interactive driving
(0 1=] T 01T SRR 39
Figure 4-3: Flowchart for processing the EEG signals..........ccccccoooveviniiniiiciene. 40
Figure 4-4: Forehead positions of conventional wet electrodes (circle) and MEMS
EEG SENSOIS (SQUAKE)....c.uiiiiiiieiieeiesieesieeie sttt st 42
Figure 4-5: An example of the deviation event...........ccccooovniiiiiinn i 43
Figure 4-6: An example of the driving performance that represented by the
digitized vehicle deviation traJectories. .........ccocovvrienieeieniinseeneenn 43
Figure 4-7: Raw EEG Data Recording by MEMS sensors and Standard Wet
SBINSOIS ..ttt nneas 44
Figure 4-8: The EEG power spectra of 5 MEMS / Wet sensor pairs ..........c......... 45
Figure 4-9: Correlation of driving performance and EEG power spectra from the
different two SUDJECTES....... e rrmecie s cstiihe e 46
Figure 4-10: Estimated and actual driving error of Session #2 of Subject 1 using
the EEG SIgnals .o i it 48
Figure 4-11: Estimated and actual drivingerror.of Session #1 Subject 1 using the
EEG SIQNAIS.....coe ittt 48
Figure 4-12: Estimated and actual driving error of Session #2 of Subject 2 using
the EEG SIQNAIS ..o 49
Figure 4-13: Estimated and actual driving error of Session #1 of Subject 2 using
the EEG SIQNAIS ..o 49
Figure 5-1: The block diagram of the proposed Brain Computer Interface........ 55
Figure 5-2: The detail architecture of the Brain Computer Interface.................. 57
Figure 5-3: Software structure of the embedded system and the data processing
FIOW < e 60
Figure 5-4: Time series diagram of multi-task scheduling mechanism................ 61
Figure 5-5: Flowchart of the proposed EEG signal analysis procedure.............. 65
Figure 5-6: Testing results of the acquisition/amplifying unit and the developed
GUI monitoring INTerface..........oovovieiiiiice e 67
Figure 5-7: The training and testing results of the drowsiness level estimation
implemented on the embedded BCI System..........cccccooeiiiiiiiinnnnnnn 70



1. Introduction

1.1 Motivation

Drivers’ fatigue has been implicated as a causal factor in many accidents.
Preventing accidents caused by drowsiness has become a major focus of active safety
driving in recent years. During the past years, driving safely has received increasing
attention of the publics due to the growing number of traffic accidents because of the
marked decline in the drivers’ abilities of perception, recognition and vehicle control
abilities while sleepy. Therefore, it requires an optimal human estimation system to
online continuously detect drivers’ cognitive state related to abilities in perception,
recognition, and vehicle control. The difficulties in developing such a system are lack
of significant index for detecting drowsiness,and complicated noise interferences in a
realistic and dynamic driving® environment. ‘Development of the drowsiness
monitoring technology for preventing accidents behind the steering wheel has become
a major interest in the field “of safety--driving.-Thus, developing accurate and
non-invasive real-time driver drowsiness ‘monitoring system would be highly
desirable, particularly if this system can be further integrated into an automatic
warning system.

It is known that abundant information on physiological changes such as eye
activity measures, heart rate variability (HRV), or particularly, the
electroencephalogram (EEG) activities can relate with drowsiness (Muckovic et al.,
2002; Roberts et al., 2000). Previous studies (Stern et al., 1994; McGregor and Stern,
1996) showed that the eye blink duration and the blink rate typically increases while
blink amplitude decreases as function of the cumulative time, and the saccade
frequencies and velocities of electrooculogram (EOG) decline when people get

drowsy. Although approaches based on EOG signals showed that eye-activity



variations were highly correlated with the human fatigue and can accurately and
quantitatively estimate alertness levels, the step size (temporal resolution) of those
eye-activity based methods is relatively long (about 10 seconds) to track slow changes
in vigilance (Orden et al., 2000). Contrarily, the step size of the EEG-based methods
can be reduced to about 2 seconds to track second-to-second fluctuations in the
subject’s performance (Orden et al., 2001; Jung et al., 1997; Makeig and Jung, 1996).
Since the computer power becomes faster and faster, it is practicable and appealing to
know what information about human cognitive state and behavior are available
through analyzing complex EEG signals. Hence, we constructed a virtual-reality (VR)
based highway-driving environment to study drivers’ cognitive changes during a
long-term driving. A lane-keeping driving experiment was designed to indirectly
quantify the driver’s drowsiness level and a drowsiness estimation system combining
the EEG power spectrum analysis,.the principle camponent analysis (PCA) and the
linear regression model was developed.-Independent-Component Analysis (ICA) was
used in the similar experiments (Comeon, 1994; Girolami, 1998; Lee et al., 1999) to
locate the optimal electrode placements for each individual. A total of 10 frequency
bands in 2 ICA components are selected and fed to the linear regression models to

estimate driver’s performance.

1.2 Statement of the Problem

Biomedical signal monitoring systems have been rapidly advanced with
electronic and information technologies in recent years. Electroencephalogram (EEG)
recordings are usually obtained by placing electrodes on the scalp with a conductive
gel or paste, each of which is attached to a wire that is then connected to an external
signal acquisition device. The tethering caused by this method of recording prohibits

experiments in real operational environments. Furthermore, most of the existing
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physiological signal monitoring systems can only record the signals without the
capability of automatic analysis. In this study, we develop a portable and real-time
Brain Computer Interface (BCI) that can acquire and analyze EEG signals in real-time
to monitor human physiological as well as cognitive states and, in turn, provide
warning signals to the users when needed. In order to widely application in the
realistic environment, we should consider the effects of kinesthetic perception on the
BCI system. Therefore, we first constructed the unique virtual reality-based dynamic
driving environment to investigate EEG activation on kinesthetic perception and
under different cognitive states. Then, the neural human machine interface/interaction
in realistic environment will be well-established by combining the findings of EEG
activation with the portable and real-time BCI system.

Kinesthetic perception is one.of the most important sensations to human beings.
The vestibular system thus plays an'important role in our lives. We usually overlook
the contributions of the vestibular system-to-our lives, simply because it doesn’t give
us the sense of this vivid and harmonic-world.-the'way our eyes and ears do. However,
we would not have a complete sensation without the perception of motion. Vestibular
system is one of the most important sensory apparatus for detecting the perception of
motion. One of the most experienced kinesthetic perceptions in our life is the motion
associated with driving. Almost all of the existing EEG correlated research studies of
perceiving kinesthetic stimuli focus on the brain dynamics of the subjects receiving
visual and/or auditory stimulus, very few one focus on the subject perception of
kinesthetic stimulus such as car drivers, airplane pilots, etc.

After the investigation of kinesthetic perception, we would use the portable
real-time BCI system as the base platform and increase some actual functions such as
low-power consumption for portability and high computational capability to process

EEG signal. The portable and real-time BCI system consists of a 4-channel bio-signal
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acquisition/amplification module, a wireless transmission module, a dual-core signal
processing unit and a host system for display and storage. The embedded dual-core
processing system with multi-task scheduling capability was proposed to acquire and
process the input EEG signals in real-time. In addition, the wireless transmission
module, which eliminates the inconvenience of wiring, can be switched between radio
frequency (RF) and Bluetooth according to the transmission distance. Finally, the
real-time EEG-based drowsiness monitoring and warning algorithms were
implemented and integrated into the system to close the loop of the BCI system. The
practical online testing demonstrates the feasibility of using the proposed system with
the ability of real-time processing, automatic analysis and on-line warning feedback in
real-world operation and living environments.

Based on the neural human machine interface/interaction in the future work, we
will perform more realistic experiments on.the unique VR-based dynamic driving
environment which can simulate vehicle-driving-and 3D surrounded scenes to
investigate the EEG correlated activities.of the-driver (such as, distraction, carsickness
(motion sickness), etc.). It will widen the fundamental biomedical and brain science
research and spawns new industry opportunities to provide the solutions of real-life

problems.

1.3 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 describes the virtual
reality-based dynamic driving environment, electroencephalogram (EEG) signal
acquisition system, Independent Component Analysis (ICA), event-related potential
(ERP), and event-related spectral perturbation (ERSP). Chapter 3 explores EEG
activation of kinesthetic perception under our unique virtual-reality-based dynamic

driving environment. Chapter 4 investigates EEG activation under different cognitive

4



states and develops drowsiness estimation technology by using Micro Electro
Mechanical Systems sensor (MEMS sensor). Based on the drowsiness estimation
technology, Chapter 5 develops the portable brain computer interface to real-time

detect drivers’ drowsiness. At last, we make some conclusions in Chapter 6.



2. Materials and Methods

2.1 Virtual-Reality-based Dynamic Driving Environment

In this study, we developed a VR-based 3D high-fidelity interactive highway
scene, which was composed of seven identical PCs, synchronized by LAN, running
the same VR program. The synchronized scenes were projected from seven projectors
to constitute a surrounding vision (as shown in Figure 2-1. (a)). At the center of the
projected scenes, we mounted a real vehicle (without the unnecessary weight of an
engine and other components) on the motion platform to provide motion sensations as
would be experienced in real driving (as shown in Figure 2-1. (b)). The vestibular
cues, or motion cues, were delivered by a motion platform controlled by six hydraulic
linear actuators. This hexapod configuration is also known as a Stewart Platform
(Stewart, 1965). During driving .in the réal world, either deceleration or acceleration
would occur even on smooth road. The platform generated accelerations in vertical,
lateral, and longitudinal directions of a.vehicle as well as pitch, roll, and yaw angular
accelerations. To simulate a deceleration in'driving motion, for instance, the driver
would feel a force pushing him/her against the seat belt, and the platform would
simultaneously tilt forward to change the gravity direction to simulate the deceleration
force. Similarly, the platform would tilt backward to simulate an acceleration force.
This (or comparable) technique has been used widely in driving simulation studies
(Reymond and Kemeny, 2000).

In the VR-based dynamic environment and its emulation software, WorldToolKit
(WTK) library and application programmer’s interface (API) (Cardoso and
Souloumiac, 1993) were reported in our previous study (Lin et al., 2005 & 2006). The

detailed development diagram of the VR-based scene is shown in Figure 2-2.



(b)
Figure 2-1: (a) Kinesthetic virtual reality (VR) driving environment, (b) The driving

cabin simulator mounted on a 6-DOF dynamic Stewart motion platform
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Figure 2-2: Flowchart of the VR-based highway scene developed environment. The
dynamic models and shapes of the 3D objects in the VR scene are created and linked

to the WTK library to form a complete interactive VR simulated scene

Firstly, we create models of various objects (such as cars, roads, trees and so on.)
for the scene and set up the corresponding positions, attitudes, and other relative
parameters. Then, we develop dynamic models among these virtual objects and build
a complete simulated highway scene of full functionality with the aid of the high-level
C-based API program. The VR-based four-lane highway scene is projected on a

120-surround screen (304.1-cm wide and 228.1-cm high), which is 350 cm away from



the driving cabin that is mounted on a 6-DOF Stewart motion platform. The four lanes
from left to right are separated by a median stripe. The distance from the left side to
the right side of the road is equally divided into 256 points (digitized into values
0-255, as shown in Figure 2-3), where the width of each lane and the car is 60 units
and 32 units, respectively. These units can be converted to the real distance (for
instance, the width of the real road is about 6 meters) in real-world applications. The
refresh rate of highway scene is set properly to emulate a car driving at a fixed speed
of 100 km/hr on the highway. The car is randomly drifted (triggered from the WTK
program and the on-set time is recorded) away from the center of the cruising lane to

mimic the consequences of a non-ideal road surface.

Figure 2-3: The width of highway is equally divided into 256 units and the width of

the car is 32 units

To the best of our knowledge, the proposed environment setting is the first

attempt at applying “kinesthetic” VR environment with motion platform techniques to



investigate brain activity in neuropsychological studies. The motion platform was
conjugated with physiological and behavioral response recordings to offer more
assessment options than the conventional neuropsychological studies could do. This
was an innovative idea that provided an interactive, safe and realistic environment at
very low cost. The VR technique allows subjects to interact directly with a virtual
environment rather than passively responding to monotonic auditory and visual
stimuli, and thus is an excellent setting for studying EEG dynamics in interactive and

realistic tasks.

2.2 Electroencephalogram Signal Acquisition System

Subjects wore a movement-proof electrode cap with 36 sintered Ag/AgCl
electrodes to measure the electrical activities ‘of.the brain. The physiological data
acquisition used 2 bipolar ECG .electrodes-placed: on the chest and 33 unipolar
EEG/EOG electrodes placed based on-a-medified International 10-20 system (FP1/2,
F3/4, ¥7/8, FZ, ¥C3/4, FT7/8, FCZ; C3/4, T3/4, CZ, CP3/4, TP7/8, CPZ, P3/4, T5/6,
PZ, O1/2, OZ, VEOU, VEOL, Al) and refer to the mean of the left and right mastoid
electrodes. Figure 2-4 shows the 32 channel EEG electrode cap. All EEG channels
were located based on a modified International 10-20 system as shown in Figure 2-5
(Thakor, 1999). The 10-20 system is based on the relationship between the locations

of an electrode and the underlying area of cerebral cortex.
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Figure 2-5: The International 10-20 system of electrode placement

Before data acquisition, the contact impedance between EEG electrodes and
scalp was calibrated to be less than 5kQ by injecting NaCl-based conductive gel. We
used the Scan NuAmps Express system (Compumedics Ltd., VIC, Australia), a
high-quality 40-channel digital EEG amplifier capable of 32-bit precision sampled at
1000 Hz, to simultaneously record the EEG/EOG/ECG data and the deviation
between the center of the vehicle and the center of the cruising lane triggered by the
VR program. The EEG data were band-passed between 0.5 and 100Hz with a 60Hz
notch filter, and recorded with 16-bit quantization level at a sampling rate of 500 Hz

and then down-sampled to 250 Hz for the simplicity of data processing.
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2.3 Independent Component Analysis

Independent Component Analysis (ICA) is a signal processing technique that
finds a linear mapping matrix or unmixing matrix W such that the unknown unmixed
signals of the dimension N, U(t) = [u;(t), ..., un(t)]" could be separated from their
mixtures, X(t), that is Y(t) = W'X(t). The ICA methods were extensively applied to
blind source separation problem since 1990s (Jutten et al., 1991; Comon, 1994; Bell et
al., 1995; Girolami, 1998, Lee et al., 1999). Subsequent technical reports (Jung et al.,
1998, 2000, & 2001; Naganawa et al., 2005; Liao et al., 2005) demonstrated that ICA
was a suitable solution to the problem of EEG source segregation, identification, and
localization.

In this study, we used an extended version of informax algorithm of Bell and
Sejnowski (1995) that can separate sources Wwith either super- or sub-Gaussian
distributions, to decompose distinct.brain activities. After ICA training, we can obtain
33 ICA components decomposed from the measured 33-channel EEG data. It has also
been used in our previous study {(Lin. et al;, .2005). Figure 2-6 shows the scalp
topographies of ICA back-projection matrix W™ of one subject and the log bandpower
spectra of all ICA components, which provide information about the location of the
sources. For instance, eye activity was projected mainly to frontal sites. Hence, most
of the eye-movement artifacts are isolated to components 1-3, as shown in Figure 2-6.
The drowsiness-related potential is on the parietal lobe to occipital lobe. We can
observe that the ICA components 8, 17, and 27 may be considered as effective
“sources” related to drowsiness in the VR-based dynamic driving experiment (based

on the correlation analysis in chapter 4).
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Figure 2-6: The scalp topographies and the corresponding log bandpower spectra of

all ICA components.

2.4 Event-Related Potential

Single-trial event-related potential (ERP) data are usually averaged prior to
analysis to increase their signal/noise relative to non-time and -phase locked EEG
activity and non-neural artifacts. The ERP is much smaller than the amplitudes of
ongoing EEG, and it is thus often buried in the EEG recordings. In order to extract the
ERP from EEG signal, we need to increase the signal to noise ratio by presenting the

same type of stimuli to the subject repeatedly. ERP is often obtained by averaging
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EEG signals of accumulated single trails of the same condition. Ongoing EEG signals
across signal trails are considered random and independent of the stimulus. However,
it is assumed that the waveform and latency of ERP pattern are invariant to the same
stimulus. Through phase cancellation, time- and phase-locked EEG signals will be
more prominent.

Event-Related Potential (ERP) images directly visualized single event-related
EEG trials and their contributions to the averaged ERP (Jung et al., 2001). An ERP
image also makes visible relationships between subject behavior and
amplitudes/latencies of individual event-related responses. The limitation of ERP is
that it only measures coherent time-and-phase-locked activities. Averaging same
response epochs would involve phase cancellation, brain activities not exactly

synchronized in both time and phase are averaged-out.

2.5 Event-Related Spectral Perturbation

The event-related spectral perturbation’ (ERSP) measures average dynamic
changes in amplitudes of the broad band EEG spectrum as a function of time
following cognitive events. The processing flow is shown in Figure 2-7. The time
sequence of EEG channel data or ICA activations are subject to Fast Fourier
Transform (FFT) with overlapped moving windows. Spectrums prior to event onsets
are considered as baseline spectra. The mean baseline spectra were converted into dB
power and subtracted from spectral power after stimulus onsets so that we can
visualize spectral perturbation from the baseline. To reduce random error, spectrums
in each epoch were smoothed by 3-windows moving-average. This procedure is
applied to all the epochs, the results are then averaged to yield ERSP image. Through
ERSP, we are able to observe time-locked but not necessarily phase-locked activities.

ERSP thus can reveal aspects of event-related brain dynamics which might not be
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measurable in ERP averages of the same response epochs (Makeig, 1993). In this

study, we applied both ERP and ERSP analysis on the EEG data acquisition in our

experiments.
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Figure 2-7: Event-related spectral perturbation plot. ERSP plots the grand mean time
course of changes from pre-stimulus baseline in log spectral power of a

scalp-recorded EEG or ICA component activation time-locked to stimulus

presentation or subject responses across frequencies.
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3. EEG Activation of Kinesthetic Perception

3.1 Introduction

Kinesthetic perception -- the sensory apparatus that detects motion -- is one of
the most important sensations to human beings, yet we usually overlook the
contributions of the vestibular system to our lives, simply because it doesn’t give us
the sense of this vivid and harmonic world the way our eyes and ears do. In addition,
kinesthetic perception doesn’t involve taste or smell, making it less appreciated. But,
we would not have a complete sensation of the world without the perception of
motion. Vestibular system is one of the most important sensory apparatus for
detecting the perception of motion. One of the most common kinesthetic perceptions
in our life is the motion associated with driving. Almost all of the existing EEG
correlated research studies of perceiving kinesthetic stimuli focus on the brain
dynamics of the subjects receiving visual and/or auditory stimulus, very few one
focus on the subject perception-of kinesthetie- stimulus such as car drivers, airplane
pilots, etc.

In this chapter, we investigated EEG dynamics in response to kinesthetic stimuli
by using the dynamic VR driving environment. This dynamic VR environment
mimicked visual-vestibular co-stimulation during driving. Using simple driving
behaviors such as deceleration, acceleration, and deviation, we studied brain
responses of kinesthetic inputs by comparing subjects’ EEG differences in motion
(while the motion platform is active) and motionless (while the motion platform is

inactive) conditions of the dynamic platform.

3.1.1 Vestibular system and kinesthetic stimulus response

The human vestibular system is a sensory apparatus located bilaterally in the
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inner ears which detects the motion of the head and body in space (Berthoz, 2000). It
is composed of two functional parts: the otolithic organs and the semicircular canals.
The otolithic organs detect linear accelerations, while the semicircular canals detect
rotary accelerations (Merfeld et al., 1999; Seidmann et al., 1998). Vestibular
information plays an important role in perceptual tasks such as ego-motion estimation
(Berthoz et al., 1995). In recent research, vestibular information was shown to
disambiguate the interpretation of dynamic visual information during an observer’s
movement (Wexler et al., 2001). Researchers have tried to measure evoked potentials
of vestibular origin for 30 years. Elidan et al. (1991) reported the ERP response to
high speed and transient vertical Z axis rotation. Subjects were rotated at the speed of
10,000°/sec2 for 2 ms. The reported negativity peaked at about 15 ms after the onsets
of rotation from signals measured.at a forehead mastoid electrode. Baudonniere et al.
(1999) reported a biphasic negative'wave, that is, most prominent at central midline
electrode (Cz) in subjects who-teceived-short (30 ms) linear displacements without
co-stimulation of the semicircular canals.

Probst et al. (1993, 1996, & 1997) and Loose et al. (2002) observed bell-shaped
negativity at central midline channels following roll up and down motion along the
X axis. The Vestibular Evoked Potential (VESTEP) evoked by stimulating otolithic
and semicircular canals with different orientations of rotations or directions of
movements was investigated in depth. The experimental variables in these studies
were well controlled; for instance, subjects were blindfolded in VESTEP
investigations, or watched pixels moving or rotating on the screen. This might be
desirable from the perspective of scientific research, but is less practical because we
rarely experience vestibular stimulation without visual co-stimulation or watch pixels
rotating or moving in the real world. We actually live in a visual-vestibular

co-stimulation world and the visual cue is always a meaningful and continuous scene
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-- in driving, for instance.

3.1.2 Kinesthetic perception during driving

One of the most experienced kinesthetic perceptions in our life is the motion
associated with driving. Whenever our vehicle accelerates, decelerates, or curves
around a corner, we experience a force pulling our body against the direction of
motion. However, there are at least several major obstacles in investigating the
driving perception in a real driving environment. First, the safety concerns dictate that
experiments must be conducted in a safe driving environment, making it an ethic issue
to conduct driving experiments on the road while experiments know the subject might
experience attentions lapse during experiments. Second, appropriate data acquisition
and monitoring are needed for:studying the“rapid physiological responses of
kinesthetic stimuli. The stimulation.should be simple enough and repeatable to keep
the experiment under control. Last,objective-evaluation should be assessed in the
studies. A driver senses not only the pushing or pulling force, but also the scene
changes related to the movement of the vehicle. The driving perception includes the
co-stimulation of visual cue, vestibular stimulation, muscle reaction, and skin
pressure.

This is indeed a complicated mechanism to understand. One of our solutions is to
conduct driving experiments using a realistic simulator, which is widely used in
driving-related research (Kemeny et al., 2003). Regarding the necessity of motion
during driving, the literature shows that the absence of motion information increases
reaction times to external movement perturbations and decreases safety margins in the
control of lateral acceleration in curve driving (Reymond et al., 2001). In real driving,
improper signals from disordered vestibular organs were reported to contribute to

inappropriate steering adjustment (Page and Gresty, 1985). Groen et al. (1999) also
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showed that the presence of vestibular information in driving simulators was
important in the perception of illusory self-tilt and illusory self-motion. These studies
emphasized the importance of motion perception during driving to the assessment of
driving performance and behavior. However, assessing driving performance or
behavior is not objective enough since the performance and behavior varies due to the
subject’s training or learning effect. In this paper, we use a direct and objective

method to evaluate human cognition during driving.

3.1.3 EEG studies under VR based dynamic driving

The EEG is a complex signal, the statistical properties of which depend on both
time and space. Regarding the temporal characteristics, it is essential to note that EEG
signals are ever-changing. The EEG has been used for 80 years in clinical practice as
well as basic scientific studies. It is.a popular-method for evaluating human cognition
today, which directly measures: brain-tesponses to ‘external or internal stimulation.
Much more information can be obtained from-an EEG than from appearance behavior.
Compared to another widely used neuro-imaging modality, functional Magnetic
Resonance Imaging (fMRI), the greatest advantage of EEG is speed-it can record
complex patterns of neural activity occurring within fractions of a second after a
stimulus has been presented. EEG acquisition is also much less expensive, more
portable and the only modality in which subjects allow to move their heads, thus it is
applicable in operational environments such as driving in the moving vehicle.

In recent years, researchers have designed the Virtual Reality (VR) senses to
provide appropriate environments for assessing brain activity during driving (Lin et
al., 2005; Eoh et al., 2005). Lin et al. (2005) introduced the “dynamic” VR
environment, that is, a VR scene with a motion platform, in conjunction with

physiological and behavioral response recordings to offer more assessment options
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than were available in traditional neuropsychological studies. This was an innovative
idea that provided an interactive and realistic environment at very low cost and
avoided the risks of operating an actual vehicle on the road. However, the EEG
correlates of kinesthetic stimulations induced by the motion platform in the dynamic
VR scene have not been fully assessed or appreciated.

To solve the aforementioned problems in studying kinesthetic perceptions during
driving, using the realistic simulator is a good alternative used in driving-related
research (Page and Gresty, 1985; Reymond et al., 2001; Groen et al., 1999; Eoh et al.,
2005). Those studies primarily emphasized on the importance of motion perception
during driving by assessing subjects’ driving performances and behaviors. But such
evaluations may be not objective enough since the performances and behaviors could
vary with the subject’s previous training or learning experiences. To simulate the more
realistic driving condition, we-have designed an mteractive Virtual Reality (VR)
scenes and a dynamic driving- simulator te-provide appropriate environments for
assessing brain activity during kinesthetic driving (Lin et al. 2005). The “kinesthetic”
VR environment is a VR scene with a motion platform controlled by the six hydraulic
linear actuators. During the driving experiment, all scenes are continuously updated

according to the displacement of the car and the subject’s wheel handling.

3.2 Experiment Setup
3.2.1 Driving Events

We designed three driving events: stop, go, and deviation in the development
virtual reality-based dynamic driving environment. The stop and go events were
paired into a Stop-Go event, which means a stop event was always followed by a go
event. The deceleration and acceleration in a Stop-Go event was controlled by a

computer program. Figure 3-1 shows the time course of a typical Stop-Go event.

19



One Stop and Go Trial

Yellow nght Red Light No Light Green nght Constant
Speed

Cue | Deceleration Stop Acceleratmné

Course = ! !

9 Sec to next trial

-5° f ; | i
Platform 15 sec

" %*%*‘?‘*Q"’ﬂ"’%

Figure 3-1: Illustration of the design for Stop-Go events in driving. The time course is

cut into five sections. The top-panel pictures show the VR scenes in the sections, the
blue trace shows the pitch angle of the hexapod motion platform, and the bottom
panels depict the posture of the vehicle mounted on the motion platform. An event
starts with a yellow-light cue displayed on thé:screen. One second later, the yellow
light is replaced by a red light and a Stop-Go.event begins in conjunction with a
deceleration simulated by the motion platform. The car is slowed down to a complete
stop in four seconds when the réd light is out..Seven seconds later, a green light is
shown on the screen, and a go event begins. The hexapod motion platform starts
accelerating for 3 seconds. Then the green light goes off, and the vehicle is moving at
a constant speed until the next event occurs.

Subjects were not required to take any action in the stop and go events during the
experiment so that it can avoid the artifacts caused by the movement of the subjects.
Moreover, the vehicle was randomly drifted away from the cruising position, which
was defined as a deviation, and the subjects were instructed to steer the vehicle back
to the center of the cruising lane as quickly as possible. The deviation events can keep
subjects’ attention and we can estimate the subjects’ cognitive level from the reaction
times. The driving behavioral information, such as the onsets of the deviation, subject

reaction times, or steering angles, were recorded for further analysis.

20



Figure 3-2 illustrates a deviation event in which the vehicle was moving forward
in a straight line. The vehicle deviated either to the left or to the right. The Stop-Go
event and deviation event occurred randomly with the probability of 50% and the

inter-event interval was 9 seconds.

Response time

was recorded
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Figure 3-2: The vehicle was ralﬂomry[,gxﬁeiqway. from the cruising position, which

5 1896 Y
was defined as a deviation event *’a;n.d ﬁle subje "_;;t§ were instructed to steer the vehicle

back to the center of the cruising lane as q:lfcil:ly as possible. The driving behavioral
information, such as the onsets of the deviation, subject reaction times, or steering
angles, were recorded for further analysis. In a deviation event, the vehicle was
moving forward in a straight line. The vehicle deviated either to the left or to the right.

The Stop-Go event and deviation event occurred randomly with the probability of

50% and the inter-event intervals were 9 seconds.

3.2.2 Subjects and EEG Data Acquisition
Ten right-handed, healthy subjects (aged between 20 and 28) participated in this
study. All subjects had driving license and at least one-year driving experience.

Subjects were instructed to keep the car at the center of the inside lane by controlling
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the steering wheel, and to perform the driving task consciously. Each subject
completed four 25-minute sessions of the driving experiment. Sessions were motion
and motionless counterbalanced and each session included stop-go events and
deviation events in random order. Thus we have six conditions: “Motion-Stop,”
“Motion-Go,” “Motion-Deviation,” “Motionless-Stop,” “Motionless-Go,” and
“Motionless-Deviation.” To prevent subjects from experiencing drowsiness during
experiments, they rested for a few minutes after each session until they were ready for
the next one. The entire driving experiment lasted about 2 hours. Subjects performed
at least 2 driving experiments on different days for testing the cross-session
consistency.

Subjects wore the movement-proof electrode cap with 36 sintered Ag/AgCl
electrodes to simultaneously record the EEG/EOG/ECG data and the deviation
between the center of the vehicle and the center of the cruising lane triggered by the
VR program. In addition, an acceletometer recording 3-DOF (Degrees of Freedom)
was placed on the center of the wehicle to-record the platform movement. This
accelerometer recorded orientations of the vehicle in pitch, roll, and yaw during the
driving simulation, thus we could correlate physiological data with the orientation
recording and investigate the relationship between human cognition and kinesthetic

stimulus.

3.2.3 EEG Data Analysis

The recordings were down-sampled to 250 Hz for simplicity of data processing.
Then the EEG data were preprocessed using a simple low-pass filter with a cut-off
frequency of 50 Hz to remove the line noise (60 Hz and its harmonic) and other
high-frequency noises for further analysis. The continuous EEG signals were first

extracted into epochs whose lengths were designed to cover the whole platform
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dynamics in single driving events. For stop events and go events, epochs contained
EEG data from 4s before to 9s after the onsets of the red light. For deviation events,
epochs contained signals from 1s before to 2s after the deviation onsets. We then
applied ICA to concatenated epochs to decompose them into temporally statistical
component activations.

To study the -cross-subject component stability of ICA decomposition,
components from multiple sessions and subjects were clustered based on their spatial
distributions and EEG characteristics (Jung et al., 2001; Makeig et al., 2004).

Component clustering grouped massive components from multiple sessions and
subjects into several significant clusters. Cluster analysis, k-means, was applied to the
normalized scalp topographies and power spectra of all 930 (30 channels x 31
sessions) components from the:*10 subjects. “After ICA decomposition, noisy
components were removed prior to'cluster analysis; The cluster analysis, k-means,
identified at least 9 clusters of-components-having similar power spectra and scalp
projections. These component clustess. also-"showed functionally distinct activity
patterns. Nine distinct component clusters (as shown in Figure 3-3) accounted for eye
blinks (upper left), horizontal eye movements (upper right), and other brain activities,
respectively. Artifactual components accounted for such as eye blinks and horizontal
eye movements were effectively removed from the activity of the other seven

component clusters by the ICA decomposition and are not further considered here.
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Figure 3-3: The ICA components from 11 subjects are clustered into 9 groups. The
averaged scalp map and averaged baseline (before event onsets) power spectral
density of each group are shown in the plot. The motion-related features are found in
left-mu (middle-left), right-mu.* (middle-right), and central-midline (middle)

components.

3.3 Experiment Results

The sessions in each experiment were divided into “motion” (when the motion
platform was in action) and “motionless” (when the motion platform was not in action)
sessions with stop, go, and deviation events. According to the behavioral data of the
deviation events, all subjects’ response time are less than one second (as shown in
Table 3-1). This indicated that all subjects were alert and attentive during the whole
sessions. We get six conditions: “Motion-Stop,” “Motion-Go,” “Motion-Deviation,”
“Motionless-Stop,” “Motionless-Go,” and “Motionless-Deviation™ after the subjects
have performed all the experiments. By comparing the motion and motionless pair,

we hope to find some differences in brain responses between these two conditions.
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Table 3-1: The response time (RT) of Motion-Deviation and Motionless-Deviation
events. Overall, the RT in dynamic driving is 40~50 ms shorter than that in static

driving. These results were obtained using PRISM.

Mean N Std. Deviation Std. Error Mean

Par 1
Dev. Motion V1 754.097 846 269.6578 0.2710
Left

Motionless V3 812.566 346 251.1152 8.6335
Pair 2
Dev. Motion V2 730.491 327 295.6911 10.2822
Right

Motionless V4 | 769,549 | 827 201.2164 10.1266

3.3.1 Effects of Kinesthetic Stimuli in Mu Component Activations

Figure 3-4 shows the ERSP of a component from a typical subject that exhibited
differential brain responses between motion ,and motionless conditions. The
component scalp map exhibited the-defining, features of mu rhythms -- distinct
spectral peaks near 10 Hz and 22"Hz;.with equivalent dipoles located roughly over
hand motor cortex (and/or adjacent post-central somatosensory areas), and oriented
roughly orthogonal to the directions of the central sulci. The upper ERSP panels show
the ERSP following stop events, while the lower two show go-event ERSP. Images on
the left are brain responses under “motion” conditions and those on the right are under
“motionless” conditions. The curves below the images are the time courses of the
platform motion (pitching, rotate by Y axis). Mu power was strongly blocked
(reduced) around the peak of platform motion in Motion-Stop and Motion-Go events.
In contrast, no mu blocking occurred following either stop or go events in the
motionless condition (Figure 3-4, right panels). Thus the mu blocking appears to be

induced by the kinesthetic inputs in stop and go events.
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Figure 3-4: A right mu component shows mu characteristic 10 Hz and 22 Hz peaks in
the activity spectrum (lower left). The component mean ERSP shows mean
event-related changes in (log) spectral power across data trials time-locked to the
kinesthetic stimulus onsets (dashed line). Following the motion platform movement,
this activity is blocked. The activity was unchanged- from the baseline spectra if the

motion platform was not in action (right).

Mu blocking was also observed following deviation events. Figure 3-5 shows the
ERSP of a right mu component following deviation events. The upper and lower
panels show ERSPs of the component following “deviate-to-left” and
“deviate-to-right” events, respectively. The curves below show the recorded platform
motion. Notice that the motion platform tilted along different directions in Stop-Go
and deviation events (cf. Figure 3-5). In deviation events, the platform rotated slightly
along the vertical Z axis.

When deviation occurred, the subjects were instructed to maneuver the car back
to the cruising position by steering the wheel. It is expected that mu activity would be
blocked due to the hand movement (cf. Figure 3-5 ERSP) in both motion and

motionless conditions. However, the latency of mu blocking in the motion condition
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(Figure 3-5 left panels) was significantly shorter than that in the motionless condition

(Figure 3-5 right panels).
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Figure 3-5: The mean ERSP of.the mu’component following deviation events. The
upper panels correspond to deviate-to-left events, and the lower panels correspond to
deviate-to-right events. The left-panels show-the ERSP of the component when the
motion platform was in action (Motien-Deviation), while the right panels plot the
ERSP when the platform was not in action (Motionless-Deviation). Mu blocking
appears in all four conditions, but the latencies of the activation were shorter in

Motion-Deviation (left panels) than those in motionless conditions.

3.3.2 Effects of Kinesthetic Stimuli in Central Midline Component Activations
Figure 3-6 shows the scalp map and dynamic properties of an independent
component from the same subject in Motion-Deviation and Motionless-Deviation
conditions. The scalp map of the CM component (Figure 3-6 upper left) resembles
scalp maps of the “P3a” or “P3novel” ERP peaks seen, for example, when unique and

unexpected stimuli are included in a randomly alternating sequence of target and
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non-target stimuli (Polich and Comerchero, 2003). In two-dimensional “ERP image”
plots of single trials from the subject, potential fluctuations in single trials are shown
as color-coded horizontal lines, here normalized by component activation baseline
variability then sorted (across all trials) by response time (RT). The ERP images
clearly show that the early kinesthetic response, peaked at ~250 ms, was time-locked
to deviation onset. However, this sharp negativity was missing in the motionless
condition (Figure 3-6 right panels). We suspect that the negativity was primarily

induced by the platform motion.
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Figure 3-6: Single-trial Event-Related Potentials (ERPs) of the central midline (CM)
component following deviation events under 4 different conditions. The upper two
panels plot ERSP in deviate-to-left events, and the lower two panels plot ERSP in
deviate-to-right events. The left panels correspond to Motion-Deviation, while the
right panels correspond to Motionless-Deviation. The averaged ERPs exhibit a strong
negative peak 500 ms after deviation onsets in all 4 conditions, however the negativity

peaks ~250 ms post-event are only evoked by the deviation events when the platform
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is in action (Motion-Deviation).

3.3.3 Effects of Kinesthetic Stimuli in Component Clustering Results

Figure 3-7 shows the mean map and power spectrum of a large cluster of left mu
components. The power spectra of the component cluster contained peaks near 11 and
20 Hz. In all 29 components from 10 subjects contributing to this cluster, the 11 Hz
activity was blocked following kinesthetic stimuli in the motion condition, strongly
suggesting that these represented mu activity. Scalp maps of individual left mu
components in this cluster (Figure 3-7 right panels) strongly resembled the (left)

cluster mean map.
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Figure 3-7: Mean (N=29) component map and mean power spectra of a left-mu

component cluster. Individual component maps resembled the averaged scalp map.

Figure 3-8 shows the component cluster mean ERSP of the component
activations following Stop-Go events under the motion (left panels) and motionless

(right panels) conditions. The ERSP images of motion sessions exhibited a strong mu
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blocking and alpha rebound, which were completely missing from the ERSP images

under motionless conditions, consistent with the results in a typical subject shown in

Figure 3-4.
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Figure 3-8: The group-averaged”ERSP shows _the component activations following
Stop-Go events under the motion (left panels) and motionless (right panels)
conditions. The ERSP images of motion sessions exhibited a strong mu blocking and
alpha rebound, which were completely missing from the ERSP images under
motionless conditions, consistent with the results in a typical experiment shown in

Figure 3-4.

Similarly, Figure 3-9 shows averaged ERSP images following deviation events
under motion and motionless conditions. Although the ERSP images in all four
conditions exhibited similar mu blocking induced by the steering actions, the latencies
of mu blocking differed considerably. Figure 3-10 shows the differences between mu

blocking in motion and motionless conditions, which were obtained by subtracting the
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motionless ERSP (right panels of Figure 3-9) from the motion ERSP (left panels of
Figure 3-9). The dashed line marks average response time. A brief (~200 ms)
alpha-band power suppression was evident in these two ERSP difference images,
indicating that the mu blocking occurred earlier in Motion-Deviation events than in
Motionless-Deviation events. No significant differences were found in the rest of the
ERSP difference images. The subtracted images showed that mu blocking occurred

200 ms earlier in Motion-Deviation.
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Figure 3-9: The group-averaged ERSP images following deviation events under
motion and motionless conditions. Although the ERSP images in all four conditions

exhibited similar mu blocking, the latencies of mu blocking differed considerably.
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Figure 3-10: The differences between mu blocking in motion and motionless
conditions, which were obtained by subtracting motionless ERSP (right panels of
Figure 3-9) from the motion ERSP (left panels of Figure 3-9). The ERSP difference
images show a brief (250~300 ms) alpha-band power suppression, indicating that the

mu blocking occurred earlier in Motion-Deviation than in Motionless-Deviation.

3.4 Discussion

In this study, we recorded and analyzed un=averaged single-trial EEG data in 31
driving experiments from 10 volunteer drivers under'two different driving conditions
-- motion and motionless. The hexapod motion platform that simulated driving events
allowed us to study neural correlates of kinesthetic stimuli, which is difficult, if
possible, to study in regular EEG laboratories. We performed ICA to separate the EEG
contributions of distinct brain processes to explore their individual and joint
event-related dynamics following Stop-Go and deviation events through ERP
differences and time-frequency analysis (ERSP). The 9 independent component
clusters here identified by their similar scalp projections and activity spectra resemble
classes of EEG phenomena long described by neurologists from observations of paper
data displays such as central and lateral alpha, left and right mu, and frontal-midline
theta rhythms. Alpha power of the mu component cluster was strongly blocked
(~-5dB) around the peak of platform movement in Motion-Stop and Motion-Go

events. A sharp negative was found in the central midline component cluster only in
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Motion-Deviation events. We believe that these two features were induced by

kinesthetic stimuli.

3.4.1 Phenomenon in Mu Component

Mu rhythm (p rhythm) is an EEG rhythm recorded usually from the motor cortex
of the dominant hemisphere. It is also called arciform rhythm given the shape of the
waveforms. It is a variant of normality, and it can be suppressed by a simple motor
activity such as clenching the fist of the contra lateral side, or passively moved (Thilo
et al., 2003; Loose et al., 2002; Parker et al., 2001). Mu is believed to be the electrical
output of the synchronization of large portions of pyramidal neurons of the motor
cortex which control the hand and arm movement when it is inactive.

Deviation events involved subject response€s to steer the vehicle back to the
cruising position, thus it is expected that mu power would be blocked following
deviation events. Our results also showed-unexpected strong mu blocking in response
to Motion-Stop and Motion-Go events.in which no action was involved, suggesting
kinesthetic stimuli could also induce mu blocking. Following deviation events, mu
power was strongly blocked in both motion and motionless conditions (cf. Figures 3-9
and 3-10). Mean subject RT indexed by the first steering action in response to
Motion-Deviation events leads that in response to Motionless-Deviation events by
about 50 ms. Thus, we expect that the latency of mu blocking in Motion-Deviation
events would lead that in Motionless-Deviation events by a comparable length.
However, Figure 3-10 reveals that the mu-blocking latency discrepancy between the
two conditions is about 250~300 ms, which could not be attributed entirely to the
subject RT latency difference. Mu blocking thus appears associated with kinesthetic
stimuli delivered to the drivers. In short, long-lasting mu blocking following deviation

events began with the EEG brain dynamics induced by kinesthetic stimuli, followed
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by marked mu power decrease associated with subject motor actions. Table 3-1 gives
us the information that response time in Motion-Deviation events was only 50 ms
faster than in Motionless-Deviation events. By these two results we discovered

200~250 ms duration which was not related to steering action.

3.4.2 Phenomenon in Central Midline Component

The central midline component cluster exhibits a sharp negativity in averaged
ERP following Motion-Deviations, but the negativity is missing from the ERP
following Motionless-Deviations. The mean ERP in deviate-to-right and
deviate-to-left conditions was almost identical. ERP images also show a weaker
negative ERP time-locked to subjects’ reactions (the black line in the ERP image),
which again is comparable following Motion-Deviation and Motionless-Deviation
events. Response time in Motion-Deviation events was approximately 50 ms shorter
than that in Motionless-Deviation events-tas-shown in Table 3-1), consistent with a
previous report (Wexler et al., 200%). which showed that the absence of motion
information increased response times to external movement perturbations.

The sharp negativity in the ERP of the central midline component cluster is also
consistent with previous VESTEP studies of Elidan et al. (1982, 1984, & 1987). They
showed a negative potential near Cz or forehead, induced by external kinesthetic
stimulus. They did not, however, report any mu blocking in response to the kinesthetic
stimuli, which to the best of our knowledge has never been reported in the past. The
reason is due at least in part to the fact that our experimental environment, which
combined visual and vestibular interaction and driver response, was more complicated

and realistic than the experimental setups used in previous studies.
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3.4.3 EEG Alpha Activity related to Drowsiness

Traditionally, EEG alpha band was used as an indicator of drowsiness estimation
during driving (Lin et al., 2005; Eoh et al., 2005). Alpha power has been reported to
index the level of drowsiness in attention-sustained experiments in a laboratory
setting. In this study, our results showed that alpha-band activity varies during driving,
especially when the vehicle is moving and delivers kinesthetic stimuli to the drivers
and passengers, which might confound the fatigue-related alpha power changes in
driving. Thus, more care must be taken to examine the validity of using alpha power
to index drowsiness level in real driving.

Our experiment results show that kinesthetic stimulus during driving induces (1)
Mu blocking in the somatomotor components, and (2) Sharp negative ERP in central
midline components. The mu blocking appeared to.be induced by two types of stimuli
successively. When the subjects received kinesthetie inputs, their alpha activities in
the left and right mu components were-blocked. After a short period, the subjects
made an adjustment to balance thém, inducing .a secondary mu blocking. The alpha
power variation induced by the motion of the vehicle might interfere with the
estimation of the driving cognitive state based on the fluctuations in the alpha power
spectra.

Furthermore, negative ERP was found in central midline components following
kinesthetic stimulus onsets. These results demonstrate that multiple cortical EEG
sources respond to driving events distinctively in dynamic and static/laboratory
environments. A static driving simulator could not induce some cognitive responses
that are actively involved in real driving. We also reported that the absence of driving
motion will increase the reaction time to external perturbations by studying the
response time in deviation events. Thus a driving simulator with a motion platform is

crucial to studying event-related brain activities involved in real driving.

35



4. EEG Activation under Different Cognitive States

4.1 Introduction

The growing number of traffic accidents had become a serious concern to the
society in recent years. Accidents caused by driver’s drowsiness behind the steering
wheel have a high fatality rate because of the marked decline in the driver’s abilities
of perception, recognition and vehicle control abilities while being sleepy. For
instance, the National Highway Traffic Safety Administration (NHTSA)
conservatively estimates that 100,000 police-reported crashes are the direct result of
driver fatigue each year. This results in an estimated 1,550 deaths, 71,000 injuries and
$12.5 billion in monetary losses. The National Science Foundation (NSF) also
reported in 2002 that 51% of adult driyers had driven a vehicle while feeling drowsy
and 17% had actually fallen asleep. Preventing traffic accidents caused by drowsiness
is highly desirable but requires techniques-for continuously monitoring, estimating,
and predicting the level of alertness of drivers and-delivering effective feedbacks to
maintain their maximum performance ‘(Pilutti and Ulsoy, 1999). Therefore, we
demonstrated an EEG-based drowsiness estimation method in long-term driving in
this chapter. In our past research, we had already found the parietal and occipital brain
sources were highly correlated with drowsiness via ICA-based signal process (Lin et
al., 2005 & 2006). The method combined ICA, EEG log band power spectrum,
correlation analysis, and linear regression models to indirectly estimate driver’s
drowsiness level. Here, we use the same method to estimate subject drowsiness level,
except we employ MEMS sensors rather than conventional wet ones to acquire
continuous EEG data to demonstrate the potential uses of the MEMS sensors during
long and routine recordings in the VR-based dynamic driving environment.

In realistic environment, it is not humane and convenient to acquire the EEG
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signal with skin preparation even it had better performance. Using electrolytic gel is
not only uncomfortable and inconvenience, but also can cause itchy feeling, and
sometimes make skin red and swollen during long-term EEG-measurement. Hence,
we also have developed an EEG-based drowsiness estimation algorithm that consisted
of signal acquisition, power spectrum estimation, Principal Component Analysis
(PCA)-based signal process, and multivariate linear regression to estimate the driver’s

drowsiness level in the VR-based dynamic driving environment.

4.2 Experimental Setup

Ten subjects (ages from 20 to 40 years, 29.8+5.9 years old) participated in the
VR-based highway driving experiments. To maximize the opportunities to get
valuable data for our study, all driving experiments were conducted in the early
afternoons after lunch. Statistics (Jung et al.,~1997; Makeig and Jung, 1995) showed
that people often get drowsy withih-one-hout of continuous driving during these
periods, indicating that drowsiness+ 1§ not necessarily caused by long driving-hours.
The driving speed is fixed as 100 km/hr and the car is randomly and automatically
drifted away from the center of the cruising lane to mimic the consequences of a
non-ideal road surface. On the first day, participants were told of the general features
of the driving task, completed necessary informed consent material, and then started
with a 15 to 30-minute practice to keep the car at the center of the cruising lane by
maneuvering the car with the steering wheel. Subjects reported this amount of
practice to be sufficient to reach a performance asymptote on the task. After practicing,
participants wore wired EEG cap with electrodes and began 1-hour lane-keeping
driving task. Participants returned on a different day to complete the other 1-hour
driving session for cross-session test. While the subject was alert in the experiment,

his/her response time was short and the deviation of the car was small; otherwise the
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subject’s response time and the car deviation would be slow and long. In this driving
experiment, the VR-based freeway scene showed only one car driven on the road
without any other event stimuli to simulate a monotonous and unexciting task that
could easily make drivers fallen asleep.

The flowchart of data analysis for estimating the level of drowsiness based on
the EEG power spectrum is shown in Figure 4-1. For each subject, after collecting
EEG signals and driving deviation in 1-hour simulated driving session, the EEG data
were first preprocessed using a simple low-pass filter with a cut-off frequency of 50
Hz to remove the line noise and other high-frequency noise. Then, we applied ICA to
decompose EEG-signals into temporally independent stationary sources and

calculated the moving-averaged log power spectra of all ICA components.

Adaptive
33-channel Power Featu.re
EEG data spectta of > selectlgn —
ICA mechanism Effective
l components frequency
Correlation bands and
ICA % analysis ICA
decomposition components
2 ICA
ICA components v
components with highest quwsigess
correlation estimation
coefficient
Power A
Spectra
analysis Linear
regression
model

Figure 4-1: Flowchart of the drowsiness detection system

In general, the drowsiness-related regions are mainly in the parietal and occipital
lobes. If we acquire the EEG signal from these haired regions of the hindbrain to

detect drowsiness level in realistic environment, it is uncomfortable and inconvenient
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to acquire the EEG signal from the conventional gel-based sensors on the scalp. To
overcome this limitation, we employ the self-stabilized MEMS sensor to replace the
conventional ones. The self-stabilized MEMS sensor is expected to circumvent the
high impedance characteristics of the stratum corneum (SC) and then skin preparation
and electrolytic gel application are not required. Due to the limitation of the current
MEMS technology, self-stabilized MEMS sensor is not sufficient to penetrate human
hairs to contact stratum germinativum (SG) or even SC. The hair elasticity also makes
it difficult to fix the sensor on the scalp. Therefore, the self-stabilized MEMS sensors
in this study are placed at non-hairy sites, such as Fpl and Fp2 on the forehead to

on-line estimate the driver’s drowsiness level in real-world application.

4.2.1 Experimental Environmer\lt'-':"‘:: _

A VR-based dynamic drivi'.rlig s1mu1|;1It1c')nenV1ro,nment is designed and built for
interactive driving experiment;:___"lt m'cllides—t-hfeem'la_]or parts: (a) the 3D highway
driving scene based on the Virtueii' reahty te(':l_mblb:;(;ry, (b) the driving cabin simulator
mounted on a 6-DOF dynamic Stewart motion platform (as shown in Figure 2-1 (a) &

(b)) and (c) the EEG acquisition system with 13-channel sensors (as shown in Figure

4-2).

:" 1Scm 15cm 15cm 1.Sem
l — e ———
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Figure 4-2: A VR-based dynamic driving environment for interactive driving

experiments
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Acquired EEG signals are analyzed by power spectral density analysis,
PCA-based signal processing, and linear regression model to estimate subject’s
driving performance as shown in Figure 4-3. The subject’s performance is defined as
the deviations between the center of the vehicle and the center of the cruising (3rd)
lane. While the subject was alert in the experiment, his/her response time was short
and the deviation of the car was small; otherwise the subject’s response time and the
car deviation would be slow and long. In this driving experiment, the VR-based
freeway scene showed only one car driven on the road without any other event stimuli
to simulate a monotonous and unexciting task that could easily make drivers fallen
asleep. These physiological and behavioral data are continuously and simultaneously

measured and recorded by the WTK program and the acquisition system.

EEG Log
EEG Noise Moving-Averaged [Power Spectra| Correlation
—> > _ > i
Removal Spectral analysis Analysis
[
v Select 50 PCA Subiect
. ubject’s
Principle Component |COMPONENTS| nsitiple Linear 1
) > ) — Driving
Analysis Regression Model
Performance

Figure 4-3: Flowchart for processing the EEG signals. (1) A low-pass filter was used
to remove the line noise and higher frequency (>50Hz) noise. (2) Moving-averaged
spectral analysis was used to calculate the EEG log power spectrum of each channel
advancing at 2-sec steps. (3) Two EEG channels with higher correlation coefficients
between subject’s driving performance and EEG log power spectrum were further
selected. (4) PCA was trained and used to decompose selected features and extract the
representative PCA-components as the input vectors for the linear regression models
(LRM). (5). LRMs were trained in one training session and used to continuously

estimate the individual subject’s driving performance in the testing session.
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The time series of recorded driving performance were smoothed using a causal
90-s square moving-averaged filter (Sterlade, 1993; Treisman, 1984) advancing at
2-sec steps to eliminate variance at cycle lengths shorter than 1-2 minutes since the
driving performance tended to vary irregularly with cycle lengths of 4 minutes and
longer (Jung et al., 1997; Makeig and Jung, 1995). The EEG data recorded by the
MEMS (or wet) electrode pairs were first preprocessed using a simple low-pass filter
with a cut-off frequency of 50 Hz to remove the line noise and other high-frequency
noise. After moving-average power spectral analysis, we obtained EEG log power
spectrum time series for the 5 MEMS (or wet) electrodes. Then, we applied
Karhunen-Loeve Principal Component Analysis (PCA) to the resultant EEG log
spectrum betweem 1 and 40 Hz to extract the directions of largest variance for each
session. Projections of the EEG:log spectral data (PCA components) along the
subspace formed by the eigenvectors corresponding to the largest 50 eigenvalues were
used as inputs to a multiple linear,regression model (Chatterjee, 1986) for each
individual subject to estimate the time course-of his/her driving error (Bishop, 1995).
Each model was trained using the features extracted only from the training session

and tested on the data from a separate testing session.

4.2.2 EEG Data Acquisition

Figure 4-4 shows the placements of five MEMS/conventional sensor pairs at the
frontal locations. The first and fifth MEMS sensors are placed at Fpl and Fp2
according to the international 10-20 electrode placement system (Thakor, 1999). We
also placed three additional MEMS sensors evenly spaced between these two MEMS
sensors and labeled them as MEMS2, MEMS3, and MEMS4. Corresponding
conventional wet electrodes were placed 1 cm above the MEMS EEG sensors (cf.

Figure 4-2). The contact impedance between the MEMS/wet electrode and skin was
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calibrated to be less than 5 kQ. The EEG was recorded from these 5 MEMS and 5 wet
electrodes, referenced against linked mastoids (A1, A2) by the Neuroscan NuAmps
Express system (Compumedics Ltd., VIC, Australia, as shown in Figure 4-2),
band-passed between 0.5 and 100Hz with a 60Hz notch filter, and recorded with
16-bit quantization level at a sampling rate of 500 Hz and then down-sampled to 250

Hz for the simplicity of data processing.

Wetl Weﬂ %W WetsS

Figure 4-4: Forehead positions of -cqnvennoﬁ’alﬁwet electrodes (circle) and MEMS

EEG sensors (square)

4.2.3 Lane Keeping Driving Task

In the long-term driving, the car cruised with a fixed velocity of 100 km/hr on
the VR-based highway scene and it was randomly drifted either to the left or to the
right away from the cruising position with a constant velocity. The subjects were
instructed to steer the vehicle back to the center of the cruising lane as quickly as
possible. Figure 4-5 shows the time course of a typical deviation event that embedded

in the long-term lane-keeping driving task.
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Deviation y ol Response

Response
Onset

Figure 4-5: An example of the deviation event. The car cruised with a fixed velocity

of 100 km/hr on the VR-based highway scene and it was randomly drifted either to
the left or to the right away from the cruising position with a constant velocity. The
subjects were instructed to steer the vehicle back to the center of the cruising lane as

quickly as possible.

index. The VR-based four-lane stralght hlghway scene was applied in the experiment.

Figure 4-6 shows an example of the driving performance represented by the vehicle

wn [ILJ

deviation trajectories.
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Figure 4-6: An example of the driving performance that represented by the digitized

vehicle deviation trajectories
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4.3 Experimental Results

In order to demonstrate the potential applications of the MEMS electrodes for
long and routine EEG recording in operational environments, we investigated the
quality of the EEG signals recorded by the MEMS EEG sensors placed at Fpl and
Fp2 for estimating subjects’ drowsiness in a sustained-attention driving experiment.
The EEG signals recorded by five MEMS sensors were fed into an EEG-based
drowsiness estimation system (Lin et al., 2005) as shown in Figure 4-3 to estimate

driver’s driving performance, an indication of driver’s drowsiness level.

4.3.1 Comparison Performance between MEMS-based and Standard Wet Sensor
Figure 4-7 plots the raw EEG signals measured by the proposed MEMS EEG
sensors and wet electrode pairs (only the leftmost and rightmost MEMS/wet pairs are
shown here). As can be seen, the. EEG signals tecorded by the MEMS sensors are
extremely comparable to those obtained by the-corresponding wet electrodes.
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Figure 4-7: Raw EEG Data Recording by MEMS sensors and Standard Wet Sensors

Figure 4-8 over-plots the EEG power spectra of 5 MEMS/wet sensor pairs. As it

can been seen, they are extremely similar especially in low frequency bands (1-30Hz),
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indicating that the signals obtained by proposed MEMS EEG sensors matched well
with the EEG signals recorded by the conventional wet electrodes.

50

a0

a5r

=
n

40+

.
=]

3B

I
5

30

w
=]

251

%}
izl

EEG Log Power Spectra
EEG Log Power Spectra

20r

[
=}

5

o

o
n

0 5 10 15 20 25 30 38 40 0 ] 10 15 20 25 30 35 40
Freguency (Hz) Freguency (Hz)

55

(d)
0F 5o — Wetd ||

a0f

a5

=
[=]

40F

r
53}

Bf

I
[=]

OF

y
]

EEG Log Power Spectra
EEG Log Power Spectra

L
5] 10 15 20 25 30 35 40

1DD
Frequency (Hz) Frequency (Hz)
zz e _ Figure 4-8: The EEG power spectra of 5
el b | MEMS / Wet sensor pairs
o 1 (a) MEMS1 / Wetl sensor pair

3/

(b) MEMS2 / Wet2 sensor pair
(c) MEMS3 / Wet3 sensor pair
(d) MEMS4 / Wet4 sensor pair
(e) MEMSS / WetS5 sensor pair

o

251

EEG Log Power Spectra

20r

5 1 1I5Frequ92ﬂlucy’ o ® . ® D
4.3.2 Correlation Analysis Results

The correlation coefficients between the subject’s driving performance and the
log power spectra of all ICA components at each frequency band are further evaluated
to form a correlation spectrum. The normalized log sub-band power spectra of top two

ICA components with the highest correlation coefficients in some critical bands are
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further selected as the input features of the conventional linear regression model to
estimate the individual subject’s drowsiness level. Figure 4-9 shows the correlation of
driving performance and EEG power spectra from the different two subjects. We can
easily find that alpha band (8-13 Hz) is highly correlated with drowsiness. These
results are consistent with the related studies (Jung et al., 1997; Makeig and Jung,

1996) and alpha band will be a good indicator to detect drowsiness level.

Comelation of EEG Power and Driving Error Cormelation of EEG Power and Driving Ermor
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Figure 4-9: Correlation of driving per‘fof_rggnce’ and EEG power spectra from the

different two subjects - L & TR

Table 4-1 shows the scalp topographies and spectrum correlation of each subject
between driving performance and ICA power spectra of the top two ICA components.
The correlations are particularly strong at central and posterior areas, which are
consistent with related studies in the driving experiments (Makeig and Inlow, 1993;
Makeig and Jung, 1996). The relatively high correlation coefficients near 0-band or
a-band may be suitable for drowsiness estimation, as the subject’s cognitive state
might fall into stage one of the non-rapid eye movement sleep. As can been seen that
the best drowsiness-correlated components (best matching) differ in each subject, in
general their scalp topographies are all within the ambit of central lobe to occipital

lobe.
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Table 4-1: Correlation spectra between smoothed driving errors and ICA power

spectra of first 2 ICA components of each subject

SUBJECTI  SUBJECT2  SUBJECT3  SUBJECT4 SUBJECTS

D

5~9Hz &8~12Hz 10~14Hz 4~8Hz 8~12Hz

DROWSINESS
RELATED ICA
COMPONENTS

s
—
@
Q

Bands

SUBJECT6 ~ SUBJECT7 SUBJECT8  SUBJECT9  SUBJECTI10

-

DROWSINESS
RELATED ICA
COMPONENTS

Freq.

4~8Hz 5~9Hz 9~13Hz 7~11Hz 10~ 14 Hz
Bands

4.3.3 Drowsiness Estimation Results

Figure 4-3 shows the flowchart of the EEG-based drowsiness estimation
algorithm. EEG signals are analyzed by power spectral density analysis, PCA-based
signal processing, and lineaf- ‘regression_model-to estimate subject’s driving
performance. Figures 4-10 to 4-13.cempare the drowsiness-estimation performance
obtained by MEMS EEG sensors and wet electrodes in the sustained-attention driving
tasks. They show the minute scale fluctuation of the each driver’s driving
performance index in 1-hour driving session. In each figure, the blue and red traces
represent the acquired and estimated driving errors, respectively, and all of these
figures are the results on the testing data.

Figures 4-10(a) and (b) show the estimated driving error in Session #2 of Subject
1 using the EEG signals recorded by the conventional wet electrodes and the MEMS
EEG sensors, respectively. The estimators were trained with the EEG signals from
Session #1 to estimate the driving error of Session #2 of Subject 1 (the blue traces in
Figure 4-10). Conversely, Figures 4-11 (a) and (b) show the estimated driving error of
Subject 1 using EEG data from Session #2 as the training dataset and those from
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Session #1 as the testing dataset.
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Figure 4-10: Estimated and actual driving error of Session #2 of Subject 1 using the

EEG signals recorded by (a) the conventional wet electrodes and (b) MEMS EEG

sensors, respectively. The estimators were trained with the EEG signals from Session

#1 to estimate the driving error of Session #2 (the blue traces).
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Figure 4-11: Estimated and actual driving error of Session #1 Subject 1 using the EEG

signals recorded by (a) the wet and (b) MEMS electrodes, respectively. The estimators

were trained with the EEG signals of Session #2 to estimate the driving error of

Session #1 (the blue traces).
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Similarly, Figures 4-12 and 4-13 show estimated and actual driving errors made

by another subject (Subject 2). Table 4-2 shows the comparison results of correlation

coefficient between the actual and estimated driving error time series using MEMS

sensors and conventional wet sensors for 5 different subjects.
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Figure 4-12: Estimated and actual’driving error of Session #2 of Subject 2 using the

EEG signals recorded by (a) the . wet and (b) MEMS electrodes, respectively. The

estimators were trained with the EEG signals.ftom Session #1 to estimate the driving

error of Session #2 (the blue traces):
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Figure 4-13: Estimated and actual driving error of Session #1 of Subject 2 using the

EEG signals recorded by (a) the wet and (b) proposed electrodes, respectively. The

estimators were trained with the EEG signals of Session #2 to estimate the driving

error of Session #1 (the blue traces).
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Table 4-2: Performance of testing patterns for electrode-skin-electrode impedance

(ESEI) measurement

Session 1 estimates Session 2 Session 2 estimates Session 1

Wet sensor MEMS sensor Wet sensor MEMS sensor
Subject 1 0.95 0.96 0.90 0.92
Subject 2 0.96 0.96 0.85 0.88
Subject 3 0.82 0.83 0.84 0.86
Subject 4 0.92 0.94 0.81 0.83
Subject 5 0.85 0.86 0.85 0.88

As can be seen in Figures 4-10 to 4-13 and Table 4-2, the estimated driving
errors based on EEG spectra matched well with the actual errors, consistent with our
recent report in the same driving tasks using whole-head 32-channel EEG (Lin et al.
2005). The results demonstrated the feasibility 6f accurately estimating subject task
performance based on EEG signals collected: from the frontal non-hairy sites.
Furthermore, the estimation accuragy-based on the EEG collected by the MEMS
sensor is comparable to that based on-the signals collected by conventional wet sensor,
indicating the feasibility of using MEMS sensors that do not require skin preparation
or conductive pastes to acquire high-quality EEG signals in operational environments.

In Table 4-2, the correlation coefficient between the two time series (using
Session 1 to estimate Session 2) is r = 0.96 of subject 1, r = 0.96 of subject 2, r = 0.83
of subject 3, r = 0.94 of subject 4, and r = 0.86 of subject 5, in the testing session 2.
The correlation coefficient between the two time series (using Session 2 to estimate
Session 1) is r = 0.92 of subject 1, r = 0.88 of subject 2, r = 0.86 of subject 3, r = 0.83
of subject 4, and r = 0.88 of subject 5, in the testing session 1. The average
performance of the estimation system can be reached over 90% by using five

self-stabilized MEMS sensors at forehead area.
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4.4 Discussion

The lack of availability of EEG monitoring system without use of conductive
gels applied to the scalp has long thwarted both military and civilian applications of
EEG monitoring in the workplace. In this chapter, MEMS sensors with microprobe
array structure bring EEG monitoring to the operational environment without
requiring scalp gel or other scalp preparation. Our experimental results demonstrated
that the MEMS sensors have advantages in electrode/skin interface impedance, signal
intensity and size over the conventional wet sensors. Furthermore, we find that alpha
band (8-13 Hz) is highly correlated with drowsiness. It means alpha band will be a
good indicator to detect drowsiness level. Hence, we employed the MEMS sensor to
collect continuous EEG signals in realistic 1-hour sustained-attention experiments to
test the feasibility of using MEMS sensors ‘in operational environments. The
EEG-based drowsiness estimation.system consists of the MEMS sensor array, power
spectrum estimation, PCA-based EEG.signal, processing, and multivariate linear
regression to estimate driver’s drowsiness level in a VR-based dynamic driving
simulator. The system continuously estimates subject drowsiness level (driving
performance) based on the EEG signals measured by the MEMS sensors and
parameters derived from the pilot data from the same subject. Our results showed that
the MEMS sensors perform comparably to conventional wet sensors placed adjacently,
suggesting the practical uses of MEMS sensor in operational environments where skin

preparation and messy conductive paste are not feasible or undesirable.
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5. Portable Brain Computer Interface in Detecting

Drowsiness

5.1 Introduction

The advance in sensor technology and information technology reduces the power
consumption of the sensors and make the cost of production cheaper. These trends
make it possible to embed sensors in different place or objects to measure a wide
variety of physiological signals. A physiological signal monitoring system will be
extremely useful in many areas if they are portable and capable of wirelessly
monitoring target physiological signals and analyzing them in real time. Biomedical
signal monitoring systems have been rapidly advanced with electronic and
information technologies in recent,years. EEG, recordings are usually obtained by
placing electrodes on the scalp: with a conductive: gel or paste, each of which is
attached to a wire that is then connected-to’an external signal acquisition device. The
tethering caused by this method of recording prohibits experiments in real operational
environments. Furthermore, most of the existing EEG monitoring systems can only
record the signals without the capability of automatic analysis. Recently, with the
development of embedded system and signal processing technique, there is a tendency
to apply the embedded system technique to brain computer interface (BCI). An
EEG-based BCI provide a feasible and noninvasive way for the communication
between the human brain and the computer (Kalcher et al., 1996; Guger et al., 2001;
Cheng et al., 2002; Obermaier et al., 2001). Traditionally, the variations of brain
waveforms are measured and analyzed by personal computers (PCs). Due to the
inconvenience of PC-based BCI that limits the user’s mobility, portable and
inexpensive BCI platform—small devices with long battery life that can be carried

indoors or outdoors are desired (Bianchi et al., 2003).
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There are some studies regarding the portable BCI devices (Gao et al., 2003;
Edlinger et al., 2005; Whitchurch et al., 2002). Gao et al. (2003) used steady-state
visual evoked potential (SSVEP) to control environmental device, such as TV, video
tape recorders, or air-conditioners. A portable pocket PC-based BCI was developed
by Edlinger et al. (2005). Whitchurch et al. (2002) developed a wireless system for
long term EEG monitoring of absence epilepsy. Obeid et al. (2004) proposed a
telemetry system for single unit recording. However, these systems mainly focused on
the monitoring hardware but not on real-time analysis. Real-time embedded systems
combined with wireless transmission have become a trend of developing diagnosis or
homecare systems (Bianchi et al., 2003; Piccini et al., 2004) because they provide a
platform to build sensing and inexpensive BCI systems. Many extended applications
may be more practicable to implement on the newer platforms whenever the smaller
and more powerful devices are developed.

Therefore, we develop a real-time.wireless embedded EEG-based BCI system
that includes 4-channel physiological signal acquisition, wireless transmission, and a
dual-core embedded system with multi-task scheduling in this chapter. The
development of a portable and real-time BCI in the virtual-reality-based dynamic
driving environment forms the base of investigating brain activities and cognitive
state changes with kinesthetic stimuli such as on-line driver drowsiness detection and
warning for performance enhancement, investigation of EEG activities of kinesthetic
perception. The proposed system employs signal acquisition and amplification units
to collect EEG signals and the wireless module for the transmission of the recorded
data can overcome the problem of wiring. With the wireless modules, the subject can
carry a light sensing module instead of wiring to the analysis system which provides
the advantage of mobility. The function of the wireless transmission module is

selectable between Bluetooth and a custom-made transmission radio frequency (RF)
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mode depending on different applications and locations. Since the processing of the
EEG data needs a large number of calculations, the computing power of the
embedded system becomes critical when selecting a suitable embedded processor.
Therefore, a dual-core processor integrating a DSP and an ARM (advanced RISC
machine) processor was used in our embedded system. A multi-task scheduling
mechanism was also implemented in the embedded system to enhance the real-time
signal processing performance. The proposed structure makes it unique to other
system designs in terms of its wireless transmission subsystem and dual-core
embedded processors for convenient use and powerful computational capability.
Finally, a real-time drowsiness detection method combined with an on-line warning
feedback is implemented in the developed BCI system for demonstration. Many
traffic accidents on highways are caused by drivets’ drowsiness. Our previous studies
discovered that some features in human EEG.signals-are highly related to drowsiness
level (Lin et al., 2005 and 2006). and- they, can® be used for estimating driver
drowsiness. After the on-line analysis-of the EEG data by the multi-task scheduling
embedded system, the warning device will be triggered when the drowsiness

condition occurs.

5.2 System Architecture

The block diagram of the developed EEG-based BCI system is showed in Figure
5-1, which includes five units: (1) signal acquisition and amplification unit, (2)
wireless data transmission unit, (3) embedded signal processing unit, (4) host system

for data storage and real-time display, and (5) warning device.
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Figure 5-1: The block diagram of the proposed Brain Computer Interface

The three-layer sensing module "pr‘dvi'de'_s- 4-ch biomedical signal acquisition,

amplification and wireless trai.n'smiss:i(ﬁi i Iictioﬁs. The signal acquisition and

amplification unit is placed on the fop side of la_ye'r-‘l',',:and the 8-bit A/D converters are
designed on the bottom side ogz.léye%%:"i. Layer-21s the CPLD module that controls
A/D and wireless modules. For wireles-zé'trér;'s.rn.ission, RF3100 module is arranged in
layer-3, and the Bluetooth module is placed on the top side of layer-1. The size of the
sensing module is 4.5cmx6.5cmx2.5¢cm, and the weight of the module with a Li-ion
battery is 51g. The sensing module (including signal acquisition, amplification and
wireless units) is designed to operate at 300mA with 3.7-V DC power supply and its
power consumption is about 1.11W. The module can continuously operate for at least
45 hours with a commercial 16000mA/h Li-ion battery. Besides, the EEG signal

processing unit (OMAP 1510) and the host system (personal computer) is powered

with AC.
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5.2.1 Signal Acquisition and Amplification Unit

The signal acquisition and amplification unit is applied to measure the EEG
signal and to filter out the artifacts as shown in part (a) of Figure 5-2. The EEG
amplifying circuit consists of a pre-amplifier (a differential amplifier) with the gain of
100, an isolated amplifier to protect subject, a band-pass filter that was composed of a
low-pass filter and a high-pass filter to reserve 1-100Hz signals, a differential
amplifier which had the gain of 10 or 50 (that can be chosen by a switch). The gain of
the pre-amplifier (100) is larger than the amplifier (a gain of 10) because of the EEG
signal is in micro-Volt level, and thus larger amplification is needed before filtering.
The capacity we used in the band-pass filter can compensate the DC-offset, thus there
are no mechanism designed for the problem. The sensing module that carried by the
subjects is designed to operate with a 3.7-Volt DC power supply and the DC voltage
can be either supplied by a battery,or AC power line-Therefore, a 60Hz notch filter is
also included to eliminate the -effect-of.-the-line noise in case we have to run the

system with AC power.
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Figure 5-2: The detail architecture of the Brain Computer Interface

5.2.2 Wireless Data Transmission Unit

Part (b) of Figure 5-2 shows the wireless data transmission unit which includes
8-bit A/D converters (parallel output, sampling rate = 768 Hz, AD-7575, Analog
Device, Inc.), a Complex Programmable Logic Device (CPLD) and wireless modules.
The acquired signal is first converted from analog to digital, and then transmitted
through the wireless modules. The ALTERA FLEX10K EPM 7128STC100-7 CPLD
is employed to control the A/D converter and encode the data for the wireless

modules. Two different transmission methods can be selected in the wireless module
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of the designed BCI system according to the transmission distance in applications.
Although Bluetooth module is most commonly used in medical/clinical settings where
short-distance transmission is required, however, sometimes long-distance
transmission is desirable in the settings. In addition to drivers’ drowsiness estimation,
the system is expected to be applied in various fields such as home cares, clinical
physiological signal monitoring, exercise training, etc. Thus, we also integrated a
custom-made radio-frequency transmission module with longer operation range in the
developed system. RF 3100/3105 (Ancher Technology, Inc.) module is a transparent
module that integrates low transmission power and high transmission rate (76800 bps)

designs. The comparison of Bluetooth and RF3100/3105 is shown in Table 5-1.

Table 5-1: The Comparison of the Bluetooth and RF 3100/3105

Mode Bluetooth RF 3100/3105
Frequency Band 24GHz 915MHz
Transmission Distance 10m 200-600m
Transmission Direction Full-Duplex Half-Duplex

Frequency Shift Frequency Shift

Modulation Method
Keying Keying
Transmission Power 0dBm (1mW) 12dBm
Interface UART ~ USB UART

The transmission rate is set as 19200 bps only in our final design to prevent
transmission error and it can still provide 295 Hz sampling rate for 4-ch signal
transmission. This setting is quite enough for general EEG signal acquisition since the

most concerned frequency band of EEG signals is during 1~60 Hz. The EEG signals
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are recorded at the higher sampling rate to preserve the original signal as well as
possible for various applications in addition to drowsiness estimation. Thus the
signals are recorded at a higher sampling rate and down-sampled in the EEG signal

analysis unit.

5.2.3 Dual-core Processing Unit

It is expected that the portable biomedical devices should provide more advanced
functions such as real-time feedback to the users in addition to on-line monitoring.
Therefore, more complex processing methods have been proposed for physiological
analysis and they will produce more impacts if can be implemented in a real device or
product. A dual-core processing unit is adopted as a platform that EEG signal
processing methods as well as the.intelligent technology can be implemented on it for
different applications due to its- powerful computation power. The operating core is
Texas Instruments (TI) Open Multimedia-Astchitecture Platform (OMAP) 1510, which
is composed of an ARM925 processor-and a- TMS320C55x DSP processor. The DSP
core was used to process EEG data and the ARM925 was used to communicate with
other devices such as wireless transmission modules and TCP/IP network. The DSP
Gateway is used as the cooperation structure for the communication between the two
cores since these two cores have different functions as shown in part (c¢) of Figure 5-2.

DSP gateway is the software that makes ARM core possible to use resource of
DSP core by Application Program Interface (API), and works like a small real-time
kernel which manages the resource and data flow in the DSP core. With this
mechanism, the DSP processor is on only when the system needs to process the EEG
data. The Linux operating system (OS) is built to manage the resource of ARM core
(Kobayashi and Takahashi, 2003). The functions of ARM core can be divided into

three parts: (1) wireless module control, (2) TCP/IP control, and (3) DSP gateway
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driver. The ARM core was selected for these tasks due to its excellent interface
control ability. The process flow and task distribution in the embedded system are

shown in Figure 5-3.
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Figure 5-3: Software structure of the embedded system and the data processing flow

There are two processing flows running at the same time including EEG data
acquisition and communication and EEG signal processing. The data processing flows
are described as follows. (1) After receiving EEG data from wireless device, Task A
transmits the data to network. The EEG data are then stored in the shared memory. (2)
After the EEG data are stored, Task B enables the DSP module and sends data to DSP.
(3) After DSP receives the EEG data, DSP processes the data with Hanning Window
and Short-Time FFT analysis. (4) After EEG analysis, DSP sends the result to ARM

and ARM performs the other processes and saves the result to the share memory. (5)If
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the driver drowsiness is detected through EEG analysis, the embedded system will
send the triggering signal to the warning device via wireless transmission.

Since the proposed BCI system is designed to work in real-time, the signal
receiving task should continue while EEG signal is on processing. An embedded
multi-task scheduling mechanism system is used to manage these tasks and to ensure
the accurate sampling rate for EEG signal acquisition and data process/analysis in real
time (Liu Jane, 2000). The tasks are divided into three types according to their
working frequency: (1) Task A- wireless device and TCP/IP control; (2) Task B- call
DSP task and transmit EEG data to IPBUF buffer; (3) Task C- receiving data from
IPBUF buffer and further processing of the DSP processed data. The time series

diagram of the multi-task scheduling system is shown in Figure 5-4.

I Task A I Task A I Task A |/| Task A I Task A I /I Task A I

v

Send EEG data to DSP Receive result from DSP
Receive EEG data from wireless device and transmit data to network

Figure 5-4: Time series diagram of multi-task scheduling mechanism

The working frequency of buffer IPBUF data transmission is much smaller than
the working frequency of wireless device and TCP/IP control. Thus we allowed the
system continuously to receive signals from the wireless module and output to the
display unit through TCP/IP. The system can decide when to process other tasks by
itself. With the architecture, the ARM core will not only hold and wait but also keep
transmitting data from the wireless module to the display unit when the DSP core is
processing the EEG signals. Inter-process communication (IPC) is also an important

issue for our scheduling system since the tasks in our system are not completely
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independent. In our system, ARM-Linux was used to manage tasks. Linux provides
three methods for IPC including: message queue, semaphore, and shared memory.
Message queue and semaphore are not efficient enough for the proposed embedded
system. Three modified communication methods are employed in the proposed BCI
system for inter-process communication: (a) a novel synchronization mechanism, (b)
arbitration method, and (c) sharing memory buffer (IPBUF) between processing cores.
Traditionally, the synchronization procedure is enabled when two tasks are accessing
one memory block at the same time. The memory is blocked when one task is writing
or reading on it thus no other task can access to the memory. The synchronization
procedure unlocks the blocked memory when the first task finishes writing/reading
and then sends a signal to inform other waiting tasks. It’s obvious that the mechanism
can largely decline the processing speed of the'processor. A new synchronization
mechanism is designed to deal ;with the simultancous memory access by both
receiving EEG data from EEG acquisition.system (Task A) and sending EEG data to
DSP (Task B). When task A is accessing the.-memory, Task B will be idle and waste
some time in waiting. Therefore, we use two blocks of memory with the same size to
reduce the waiting time. When Task A is storing EEG data on memory M1, Task B
can get the EEG data from memory M2 at the same time. With the modified
procedure, these two tasks can execute concurrently and reduce the waiting time
caused by synchronization control. Although the method consumes double memory
size to complete the procedure, the required extra memory is less than 4K bytes.
Besides, we use arbitration flag register instead of semaphore due to that the speed of
flag register based on shared memory is the fastest [IPC method in Linux platform. In
addition, using flag register can reduce the amount of memory needed because one

declared variable can contain many flags.
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5.2.4 Host System for Data Storage and Real-Time Display

The structure of the host system is shown in part (d) of Figure 5-2. The host
system has two functions including data storage and real-time EEG signal display.
The data size of continuous EEG recordings is beyond the storage capacity of the
embedded system. Thus, we have implemented a network file system to store EEG
signals. Additionally, we built a graphic user interface (GUI) to show the bio-medical
signals in real-time as shown in Figure 5-6 (c). The connection between the host

system and the embedded system is TCP/IP protocol.

5.2.5 Warning Device

The warning device is combined in our system as shown in Figure 5-2 (e). Visual
signal and audio signal can be presented to the BCI users as the feedback warning
signals. The audio signals are more.effective.4n our prior study for driver drowsiness
warning since it is easier to detect laudio-signals than visual signals for the driver
when he/she is drowsy. The efficiency. of audio signals with different frequencies:
500Hz, 1750Hz, and 3000 Hz were tested in the prior study and the audio signal of
1750Hz achieves the best results. The triggering signals are sending from the
dual-core EEG signal processing unit to the warning device through wireless
transmission modules. The RF3100/3105 modules are half-duplex, which means the
modules cannot transfer and receive signals at the same time. Since the signals are
transmitted as packages, a package of warning signal can be transmitted in the time
period between two packages of the acquired EEG signals for transmission. The time
period between two packages might be too short for the reverse-direction transmission
if the transmission frequency is set too high. To deal with the problem, the
transmission frequency is set lower to leave some time duration for the data

transmission from the other end.
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5.3 Real-time Driver’s Drowsiness Detection and Warning

With combining on-line EEG recording and wireless transmission ability, the
proposed BCI system is designed for real-time physiological signal analysis. Thus a
real-time drowsiness detection method combined with an on-line warning feedback is
implemented in the developed BCI system for demonstration. A dynamic operating

environment is also built up to test and verify the robustness of the BCI system.

5.3.1 Experimental Design

The virtual-reality (VR) based dynamic driving environment reported in chapter
2 was used to investigate those changes on drivers’ cognitive states in long-hour
driving tasks. However, the traditional wet electrode requires electrical gel to increase
the conductivity between the electrode and the scalp. Thus it takes time for
preparation and the subjects -need to wash their hair after recording. For the
convenience in practical applicationsy we-place-five dry electrodes (Chiou et al., 2006)
on the driver’s forehead and the distance between two near electrodes is 1.5 cm to
acquire the EEG signals for the BCI system. The EEG features related to alertness
changes can be extracted from EEG signals acquired by the electrodes at the forehead
according to our experiments. Therefore, placing electrode array on the forehead is a
feasible and convenient strategy for drivers’ drowsiness estimation. Six dry electrodes
are used to acquire EEG signals from the driver including five electrodes placed on
the subject’s forehead and one placed behind the subject’s left ear. The five electrodes
we placed on subject’s forehead including a common ground electrode and 4 EEG
electrodes. The ground electrode is directly connected to the ground of power supply.
The EEG signals we used in further analysis are measured between the 4 EEG
electrodes and the reference electrode. The dry electrodes and the sensing module can

be embedded in a hat as shown in Figure 5-1. The combination of the dry electrodes
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and the sensing module has gradually improved the convenience and the future

applicability of the developed system.

5.3.2 Data Processing Flow and Analyzing System Design

The analysis procedure implemented in the dual-core signal processing unit is
shown in Figure 5-5. The acquired EEG signals are first down-sampled to 64 Hz to
reduce the calculation loading of the system and a 64-points Hanning-window is then
applied to smooth the signals. The short-time Fourier transform is used to extract the
time-frequency characteristics of the EEG signals and a 90-second moving average

filter is applied to eliminate the noise.
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Figure 5-5: Flowchart of the proposed EEG signal analysis procedure

We use principal component analysis (PCA) on the EEG power spectrum to
reduce the data dimension and the computational loading of the embedded system.
The EEG features (dimension = 20) extracted by PCA are then fed into a linear
regression model to estimate the driver’s drowsiness levels. The EEG signals
collected in the first session were used to construct his/her drowsiness estimation

model including the PCA method through off-line training by the PC. The model
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including the PCA matrix is then load into OMAP 1510 to process and analysis the
subject’s EEG signals in the other days in on-line and real-time for testing.

The main tasks of the embedded processor OMAP1510 was to process EEG data,
wireless receiver control, and TCP/IP control. Thus we distributed these tasks into
DSP core and ARM core to retain satisfied performance. According to the
characteristics of the processors, the calculation of driving error estimation needed to
process a long period of EEG data, so it was implemented in ARM processor. On the
other hand, the Hanning windowing and short-time FFT needs heavy computation and
thus implemented in the DSP core to balance the computation load. The remaining

processes were implemented in ARM, because they need relatively less computations.

5.4 Experimental Results and Discussion

The feasibility of the proposed BCI system s tested in three aspects. First, we
test the basic functions including bio-medical, signal amplification/acquisition and
wireless transmission of the system: The embedded multi-task scheduling system will
then be tested and compared with the system without scheduling. Finally, the

accuracy of the embedded drowsiness monitoring system will be evaluated.

5.4.1 Test of the Basic Functions

The basic functions of the developed BCI system should be tested before any
further applications. The sub-systems are designed in modules to make the system
more flexible for different applications. Thus the test of the system can be divided
into two phases, the sub-system testing and the overall-system testing. The
acquisition/amplifying unit is tested for its dependability by three steps. First, a sin
wave with frequency of 5 Hz and 30uV vibration amplitude generated by the EEG

simulator is used for simulation test. Then EEG signals of eye blinking were test
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because the amplitude of the signals will be larger and it is easy to be recognized from
acquired signal. Finally, we want to measure o wave to confirm the signal we
measured is real EEG signal. When subjects take rest and close their eyes, we can
continuously measure a wave which with frequency band between 8-12 Hz. Figure

5-6 (b) shows the o wave measured by the developed system.
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Figure 5-6: Testing results of the acquiéifigomémplifying unit and the developed GUI

monitoring interface ~ .

After tested and verified the sub;ysterﬂé, we test and verify the whole system
online. In order to show the processed results of our system, we developed a Java
graphic user interface (GUI) to receive the processed results of the embedded system
by TCP/IP network and plot them on the display screen as shown in Figure 5-6 (c).
The left two frames are two-channel EEG raw data (Frame A, B), and the right frames

show the estimated drowsiness levels (Frame C, D).

5.4.2 Embedded Multi-Task Scheduling
The multi-task scheduling mechanism was developed to ensure the accurate
sampling rate for EEG signal acquisition and data analysis in real time. In order to test

the performance of the embedded multi-task scheduling system, two-channel EEG
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data with sampling rate of 65Hz were fed to the BCI system. The time consumptions
of BCI system executing 1000 cycles of signal processing procedure in DSP with and
without embedded multi-task scheduling are compared and the test results are shown
in Table 5-2. It takes 2425 seconds to complete the 1000 cycles without multi-task

scheduling, whereas the system with multi-task scheduling needs only 1933 seconds.

Table 5-2: The Comparison of the Performance

Considering the time of data Without considering the time of
Execution receiving data receiving
Time Without With Without With
(second) multi-task multi-task multi-task multi-task
scheduling scheduling scheduling scheduling
1000 cycles 2425 1933 587 95
One cycle 2.425 1.933 0.587 0.095

It is noted that the execution time is mainly used in receiving data. It takes 1838
seconds for the system to receive data which means it takes only 95 and 587 seconds
for 1000-cycle data processing with and without multi-task scheduling, respectively.
In average, it takes 1.933 second and 2.425 seconds to complete one data processing
cycle (the drowsiness level in 2 seconds) with and without multi-task scheduling,
respectively. If the time cost of data reception is not considered, the executing time
will be reduced from 0.6 second to 0.1 second with embedded multi-task scheduling.
As a result, the embedded multi-task scheduling system is useful to reduce the

execution time and ensure the correctness of the received data. It takes about 1.933
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second to calculate a value of driving error. The result is shown in Frame C of Figure

5-6 (c) as a peak. The time interval between two peaks is about 2 seconds.

5.4.3 Drowsiness Detection

In order to test and verify the feasibility of applying the developed embossed
BCI system into practical applications, the drowsiness detection method proposed in
chapter 4 was implemented in the BCI system for on-line testing. Two different
sessions of EEG signals are acquired in different day for each subject. The EEG data
collected in the 1st session is used as training data to construct a driving error
estimating system. The EEG data collected from the 2nd session is then applied to the
constructed estimating system to predict the drowsiness levels of the driver. The result
is shown in Frame C of Figure 5-6.(¢) as a peak. The time interval between two peaks
is about 2 seconds. The amplitude.of the peak represents the estimated driving error
calculated by the drowsiness estimating.system: The subject is considered drowsy if
the value of driving error is bigger than a threshold and the warning device will be
triggered. The correlation coefficient between the predicted drowsiness levels and the
actual driving error acquired in the second session is calculated as an index of the
system performance.

The training and testing results of the drowsiness level estimation for subject 5 is
shown in Figure 5-7. The red dash line in Figure 5-7 indicates the drowsiness level
estimated by the BCI system and the blue solid line is the acquired driving error. The
comparison of the estimating performance for 5 individual subjects is given in Table
5-3. The average correlation between the estimated and the acquired data among 5

subjects can reach to 75%.
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Figure 5-7: The training and testing results of the drowsiness level estimation
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implemented on the embedded BCI system.

Table 5-3. The comparisons of the Estimation Performance

1000 1500
Time (sec)

(b) Testing result

Subject 1 2 3 4 5 Average
Training 97% 96% 86% 95% 93% 92.6%
Testing 77% 85% 78% 72% 81% 78.6%

5.4.4 Comparisons and Discussions

The specifications of the proposed BCI system and the other existing systems are
concluded in Table 5-4. Gao et al. (2003) proposed an environmental controller using
a BCI technique based on steady-state visual evoked potential and the system consists
of a stimulator, a digital signal processor, and a trainable infrared sensing-controller.
They applied a FFT and a feature extraction mechanism in DSP to control the electric
apparatus. The Graz-brain-computer interface (BCI) (Edlinger et al., 2005) is a
cue-based system using the imagery of motor action as the appropriate mental task.
Whitchurch et al. (2002) devised a wireless monitoring system based on Bluetooth to

enable the physician to monitor the EEG when the patient resumes his/her normal
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activity for the reason that the transmission band (2.4GHz) is allowed in hospital.

Obeid et al. (2003) developed a 16 channel sensing telemetry system to facilitate

multichannel single unit recordings from freely moving test subjects. The 16-channel

signals derived from implanted neural electrodes were transmitted through IEEE

802.11b. It only can work for 45 minutes without power supply due to large power

consumption.

Table 5-4: Comparison of Brain Computer Interface Systems

Gao et al. | Whitchurch | Obeid et al. | Edlinger et Our BCI
BCI System
(2003) et al. (2002) (2003) al., 2005 System
. . .| EEG/ECG/ | EEG/EMG
Signal EEG EEG Single unit
EOG ECG/EOG
Channels 2 6 16 8 5
Transmission ) WLAN ) Bluetooth/
Wire Bluetooth Wire
Method IEEE802.11b RF
Resolution of
12 12 8 16 8
A/D
Sampling
200 -- 244 256 457
Rate (Hz)
Gain -- 10000 500/1000 -- 1000/5000
4~35 Hz 1~100Hz
. 60 Hz 211 Hz
Filter band pass ) -- band pass
low pass high-pass
50 Hz notch 60 Hz notch
Signal 66MHz AMD Dual-Core
. DSP Laptop PDA
Processing Processor DSP
. FFT and FFT/PCA
Analysis o
Feature -- -- FFT Estimation
Procedures )
Extraction Model

Regarding to the proposed system, we used two different wireless transmission

modules to ensure the flexibility of the proposed BCI system since the transmission

distance of Bluetooth can only cover 10 meters while the RF module can cover more

71




than 200 meters. Users can easily switch between the two wireless modules
depending on different application environments. Main procedures were implemented
in the signal processing unit and the real-time capability is also guaranteed due to the
developed embedded multi-task scheduling mechanism. It can also provide on-line
warning signals when the abnormal state of uses such as drowsiness in driving

appears.
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6. Conclusions

EEG has been widely used for both clinical diagnosis and fundamental cognitive
neuroscience because its low cost, high temporal resolution and need for the subject to
hold still is less stringent than other brain imaging modalities such as functional
magnetic resonance imaging (fMRI) and Magnetoencephalogram (MEG). However,
compared to other modalities, EEG has long been considered an imaging modality
with relatively high noise and low spatial resolution. These technical and
methodological issues have limited researchers to explore the applications of EEG in
operational environments. Research at our Center has shown EEG to be, by contrast, a
rich source of information about ongoing cortical brain dynamics, both local, and
distributed, with both millisecond-scale .time resolution and a surprising degree of
spatial resolution and complexity. The drivingforce.in this dramatic revaluation of the
perceived value of EEG imaging is the development and application of more adequate
computational methods and models-in EEG-interpretation. We believe the recent
advances in electronics and signal-processing: methods have made it the applications
of EEG monitoring feasible in the workplace. My research has been to develop
hardware and software to push the envelope of today's applications of EEG to
monitoring brain dynamics of participants performing ordinary tasks in the
workplace.

To this end, in this study, we have constructed a VR-based dynamic driving
environment for BCI research by providing subjects kinesthetic stimuli along with
the normal visual and/or auditory stimuli. The VR platform incorporates the
technologies of information science, mechanism, and control. This Steward Platform
provides the user realistic sensations (including vision and motion) of driving and

allows subjects to control the mounted vehicle through a steering wheel. This setup
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allows us to study high-temporal-resolution event-related brain dynamics following
various driving events. We applied ICA to separate the distinct EEG contributions
arising from different brain processes to explore their individual and joint
event-related dynamics following Stop-Go and deviation events through ERP
differences and time-frequency analysis, ERSP. Our results showed that kinesthetic
stimulus during driving induce (1) Mu blocking in the somato-motor components, and
(2) Sharp negative ERP in central midline components. The mu blocking appeared to
be induced by two types of stimuli. When the subjects received kinesthetic inputs,
their alpha activities in the left and right somato-motor areas were significantly
reduced (blocked). After a short period, the subjects made an adjustment to balance
them, inducing a secondary mu blocking. The alpha power variation induced by the
motion of the vehicle might interfere with the estimation of the driving cognitive state
based on the fluctuations in the alpha power spectra.

Furthermore, negative ERP was.found-in-central midline components following
kinesthetic stimulus onsets. These- results.demonstrate that multiple cortical EEG
sources respond to driving events distinctively in the dynamic environment, which
could not be found in regular static laboratories because a static driving simulator
could not induce some cognitive responses that are actively involved in real driving.
We also reported that the absence of driving motion will increase the reaction time to
external perturbations These EEG correlates of kinesthetic stimuli might have
profound implications for EEG studies. Our results suggested we might need to
re-consider the applicability of the findings from so-called ‘well managed’ studies
from regular EEG laboratories to the EEG dynamics in the workplace.

In a parallel effort to push the envelope of today's applications of EEG to the

workplace, we had successfully developed the wireless embedded BCI system with

real-time bio-signals processing ability. The system consists of 4-channel
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self-stabilized MEMS sensors, signal acquisition and amplification circuits, a
wireless transmission unit, a dual-core signal processing unit, a display and
monitoring unit, and a warning device for assessing human physiological and mental
information in operational environments. The development of a portable and
real-time BCI in the virtual-reality-based dynamic driving environment forms the
base of next-generation neuro-imaging modality — mobile high-definition
high-definition electromagnetic brain imaging that imaging of participants actively
performing ordinary tasks in natural body positions and situations within a
real-world environment.

EEG signals were first acquired by signal acquisition and amplification unit, and
then transmitted from wireless data transmitter to wireless data receiver. The
wirelessly transmitted EEG signals'were processed. by the data processing unit and the
processed results were then transmitted 'to-the. sensing system for data storage,
real-time display or triggering the -warning. devices by TCP/IP. A multi-task
scheduling procedure was employed-.in_the dual-core signal processing unit to
enhance the efficiency of the embedded system and ensure that the BCI system
properly works in real-time. A real-time drowsiness detection method combined with
an on-line warning feedback was also implemented in the mobile BCI system for
demonstration. This research incorporates the several important technologies: (1) a
sensing module for signal acquisition, amplification and wireless transmission, (2) a
dual-core embedded system for real-time EEG signal processing, and (3) an automatic
bio-feedback loop for on-line warning. By combining these technologies, the portable
BCI platform has enough flexibility to be applied and adapted to various applications.

Our test results showed that self-stabilized MEMS sensors with microprobe array
structure can be used to acquire high-fidelity EEG monitoring in a realistic

environment without requiring scalp gel or other scalp preparation. Furthermore, we
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have successfully applied this real-time prosthetic system to collect continuous EEG
signals in realistic 1-hour sustained-attention experiments to test the feasibility of
using self-stabilized MEMS sensors in kinesthetic VVR-based driving environment.
The system could continuously estimate the drowsiness level of the subjects (with
average estimation performance over 90%) by using five self-stabilized MEMS
sensors placed at the forehead.

We plan to further optimize the current portable BCI system and test it in real
environments. Future directions include: Ultra-low power circuits for portability and
optimized computational methods to real-time EEG signal processing. We will
implement the BCI in a small unit consisting of advanced EEG amplifiers and
software programs that implement our cognitive-state monitoring and transient
brain-response detection techniques. During ‘normal operation, the system will
estimate a brain-state in real- time and will deliver information on significant
brain-state changes to the operator.in-the-form ‘of auditory and visual feedback
according to the operators' cognitive state and-response lapses to critical situations. It
will also optimize the information presentation rates and timing according to the
operators’ cognitive states.

In conclusion, this dissertation describes a design, development and testing of a
neural human machine interface/interaction that allows assessment of brain activities
of participants actively performing ordinary tasks in natural body positions and
situations within a real operational environment. The development of the portable and
real-time BCI system can acquire and analyze electroencephalogram (EEG) signals in
real-time to monitor human physiological signals as well as cognitive states and, in
turn, provide feedbacks to the users when needed. More importantly, this dissertation
also discuss the implications of this innovative mobile wireless brain imaging

technology in neuroscience and neuro-technology, through three sample studies: (1)
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cognitive-state monitoring of participants performing realistic driving tasks in the
virtual-reality-based dynamic driving simulator; (2) the efficacy and neural correlates
of auditory feedback delivered to participants to maintain participants attention and
alertness; (3) the neural correlates of kinesthetic sensation and perception in the
dynamic driving simulator.

Results of these studies provide many new insights into the understanding of
complex brain functions of participants performing ordinary/routine tasks in a
minimum constrained environment. These results also allow a better appreciation of
the limitations of normal human performance in repetitive task environments, and
may allow more detailed study of changes in cognitive dynamics in brain-damaged,
diseased, or genetically abnormal individuals. Furthermore, these findings might be
difficult, if ever possible, to obtain-in a standard:EEG laboratory where participants
are asked to limit their eye blinks, teeth clinching, head/ body movements. We, thus,
believe this work opens a ~new:-chapter—in ‘neuro-cognitive human-machine
interface/interaction. It will widen'the fundamental biomedical and brain science
research, and spawns new industry opportunities to provide the solutions of real-life

problems.
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