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腦神經人機界面及應用 

 

研究生：柯立偉                        指導教授：林進燈  博士 

 

國立交通大學  電機與控制工程學系  博士班 

 

摘  要 

近年來在醫學診斷和神經生物學研究中，腦電波訊號(Electroencephalogram, 

EEG)已成為非常有用的非侵入式生理訊號工具，主要因為它能在千分之一秒

(milliseconds)的時間裡提供極高的生理訊號解析度，直接反映出細胞群體中動態

的變化。在所有量測大腦造影的醫療工具中，量測腦電波訊號最不受任何限制，

因為在量測過程中，受試者不需受到固定身體和保持頭不動等限制。然而，若將

現今市面上的腦波監測系統應用到日常生活中卻會深深受到許多限制，例如：需

在頭皮上塗抹導電膠才能量測腦電波訊號，系統缺乏高精確度的量測，即時訊號

處理和有效去除雜訊等功能，皆是主要腦波監測系統的缺失。因此，為了解決這

些缺失，本論文主要目的在開發，設計和測試一可直接應用於日常生活環境裡的

腦神經人機界面，可讓使用者在日常生活的自然情況下方便使用生理訊號監測系

統，即使是在多變的環境中做不同的工作任務，亦能直接擷取大腦活動變化。更

重要的是，本論文為了探討此創新的移動式無線腦神經人機界面的應用，我們亦

建構一環繞式虛擬實境動態駕駛環境，此環境可真實的模擬日常生活的駕駛情

境，無論是應用於神經科學基礎研究上或是應用於日常生活中的警示提醒，皆能

有效地測試此腦神經人機界面的效能。在本論文中，我們提出三個與日常生活相

關的應用研究，但絕不僅侷限於這些而已，這三個研究分別為：(1) 在虛擬實境

動態駕駛環境裡探討受試者駕車時的認知狀態的變化；(2) 探討利用聲音回饋來
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維持駕駛員的精神狀態和注意力是否集中的腦神經變化；(3) 在虛擬實境動態駕

駛環境裡探討動態刺激對身體感覺和知覺的腦神經變化。對目前許多探討複雜腦

功能的研究來說，本論文探討的應用能在生活環境裡受限最小並提出許多重要新

穎的發現，這些研究成果亦可有效提升正常人每天在反覆工作任務環境下的工作

能力表現，也可應用於腦傷、生病或身體不健全等病人更細部的動態認知狀態研

究。否則這些成果至今僅能請受試者來傳統腦波實驗室參與實驗，並要求受試者

固定身體，頭不能亂動，眼睛不能亂瞄等限制受試者行為。一旦有了創新的可攜

式無線腦神經人機界面，這些限制將能一一破除，我們相信這能為認知神經科學

和人機界面互動等研究開啟另一新的頁章。 
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Abstract 

Electroencephalogram is a powerful non-invasive tool widely used by for both 

medical diagnosis and neurobiological research because it provides high temporal 

resolution in milliseconds which directly reflects the dynamics of the generating cell 

assemblies, and it is the only brain imaging modality that does not require the 

head/body to be fixed. However, the lack of availability of EEG monitoring system 

capable of high-definition recording, online signal processing and artifact cancellation, 

without use of conductive gels applied to the scalp, has long thwarted the applications 

of EEG monitoring in the workplace. This dissertation describes a design, 

development and testing of a neural human machine interface that allows assessment 

of brain activities of participants actively performing ordinary tasks in natural body 

positions and situations within a real operational environment. More importantly, this 

dissertation also discuss the implications of this innovative mobile wireless brain 

imaging technology in neuroscience and neuro-technology, through three sample 

studies: (1) cognitive-state monitoring of participants performing realistic driving 

tasks in the virtual-reality-based dynamic driving simulator; (2) the efficacy and 

neural correlates of auditory feedback delivered to participants to maintain 
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participants attention and alertness; (3) the neural correlates of kinesthetic sensation 

and perception in the dynamic driving simulator. Results of these studies provide 

many new insights into the understanding of complex brain functions of participants 

performing ordinary/routine tasks in a minimum constrained environment. These 

results also allow a better appreciation of the limitations of normal human 

performance in repetitive task environments, and may allow more detailed study of 

changes in cognitive dynamics in brain-damaged, diseased, or genetically abnormal 

individuals. Furthermore, these findings might be difficult, if ever possible, to obtain 

in a standard EEG laboratory where participants are asked to limit their eye blinks, 

teeth clinching, head/ body movements. We, thus, believe this work opens a new 

chapter in neuro-cognitive human-machine interface/interaction. 
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1. Introduction 

1.1 Motivation 

Drivers’ fatigue has been implicated as a causal factor in many accidents. 

Preventing accidents caused by drowsiness has become a major focus of active safety 

driving in recent years. During the past years, driving safely has received increasing 

attention of the publics due to the growing number of traffic accidents because of the 

marked decline in the drivers’ abilities of perception, recognition and vehicle control 

abilities while sleepy. Therefore, it requires an optimal human estimation system to 

online continuously detect drivers’ cognitive state related to abilities in perception, 

recognition, and vehicle control. The difficulties in developing such a system are lack 

of significant index for detecting drowsiness and complicated noise interferences in a 

realistic and dynamic driving environment. Development of the drowsiness 

monitoring technology for preventing accidents behind the steering wheel has become 

a major interest in the field of safety driving. Thus, developing accurate and 

non-invasive real-time driver drowsiness monitoring system would be highly 

desirable, particularly if this system can be further integrated into an automatic 

warning system. 

It is known that abundant information on physiological changes such as eye 

activity measures, heart rate variability (HRV), or particularly, the 

electroencephalogram (EEG) activities can relate with drowsiness (Vuckovic et al., 

2002; Roberts et al., 2000). Previous studies (Stern et al., 1994; McGregor and Stern, 

1996) showed that the eye blink duration and the blink rate typically increases while 

blink amplitude decreases as function of the cumulative time, and the saccade 

frequencies and velocities of electrooculogram (EOG) decline when people get 

drowsy. Although approaches based on EOG signals showed that eye-activity 
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variations were highly correlated with the human fatigue and can accurately and 

quantitatively estimate alertness levels, the step size (temporal resolution) of those 

eye-activity based methods is relatively long (about 10 seconds) to track slow changes 

in vigilance (Orden et al., 2000). Contrarily, the step size of the EEG-based methods 

can be reduced to about 2 seconds to track second-to-second fluctuations in the 

subject’s performance (Orden et al., 2001; Jung et al., 1997; Makeig and Jung, 1996). 

Since the computer power becomes faster and faster, it is practicable and appealing to 

know what information about human cognitive state and behavior are available 

through analyzing complex EEG signals. Hence, we constructed a virtual-reality (VR) 

based highway-driving environment to study drivers’ cognitive changes during a 

long-term driving. A lane-keeping driving experiment was designed to indirectly 

quantify the driver’s drowsiness level and a drowsiness estimation system combining 

the EEG power spectrum analysis, the principle component analysis (PCA) and the 

linear regression model was developed. Independent Component Analysis (ICA) was 

used in the similar experiments (Comon, 1994; Girolami, 1998; Lee et al., 1999) to 

locate the optimal electrode placements for each individual. A total of 10 frequency 

bands in 2 ICA components are selected and fed to the linear regression models to 

estimate driver’s performance. 

 

1.2 Statement of the Problem 

Biomedical signal monitoring systems have been rapidly advanced with 

electronic and information technologies in recent years. Electroencephalogram (EEG) 

recordings are usually obtained by placing electrodes on the scalp with a conductive 

gel or paste, each of which is attached to a wire that is then connected to an external 

signal acquisition device. The tethering caused by this method of recording prohibits 

experiments in real operational environments. Furthermore, most of the existing 
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physiological signal monitoring systems can only record the signals without the 

capability of automatic analysis. In this study, we develop a portable and real-time 

Brain Computer Interface (BCI) that can acquire and analyze EEG signals in real-time 

to monitor human physiological as well as cognitive states and, in turn, provide 

warning signals to the users when needed. In order to widely application in the 

realistic environment, we should consider the effects of kinesthetic perception on the 

BCI system. Therefore, we first constructed the unique virtual reality-based dynamic 

driving environment to investigate EEG activation on kinesthetic perception and 

under different cognitive states. Then, the neural human machine interface/interaction 

in realistic environment will be well-established by combining the findings of EEG 

activation with the portable and real-time BCI system. 

Kinesthetic perception is one of the most important sensations to human beings.  

The vestibular system thus plays an important role in our lives. We usually overlook 

the contributions of the vestibular system to our lives, simply because it doesn’t give 

us the sense of this vivid and harmonic world the way our eyes and ears do. However, 

we would not have a complete sensation without the perception of motion. Vestibular 

system is one of the most important sensory apparatus for detecting the perception of 

motion. One of the most experienced kinesthetic perceptions in our life is the motion 

associated with driving. Almost all of the existing EEG correlated research studies of 

perceiving kinesthetic stimuli focus on the brain dynamics of the subjects receiving 

visual and/or auditory stimulus, very few one focus on the subject perception of 

kinesthetic stimulus such as car drivers, airplane pilots, etc. 

After the investigation of kinesthetic perception, we would use the portable 

real-time BCI system as the base platform and increase some actual functions such as 

low-power consumption for portability and high computational capability to process 

EEG signal. The portable and real-time BCI system consists of a 4-channel bio-signal 
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acquisition/amplification module, a wireless transmission module, a dual-core signal 

processing unit and a host system for display and storage. The embedded dual-core 

processing system with multi-task scheduling capability was proposed to acquire and 

process the input EEG signals in real-time. In addition, the wireless transmission 

module, which eliminates the inconvenience of wiring, can be switched between radio 

frequency (RF) and Bluetooth according to the transmission distance. Finally, the 

real-time EEG-based drowsiness monitoring and warning algorithms were 

implemented and integrated into the system to close the loop of the BCI system. The 

practical online testing demonstrates the feasibility of using the proposed system with 

the ability of real-time processing, automatic analysis and on-line warning feedback in 

real-world operation and living environments.  

Based on the neural human machine interface/interaction in the future work, we 

will perform more realistic experiments on the unique VR-based dynamic driving 

environment which can simulate vehicle driving and 3D surrounded scenes to 

investigate the EEG correlated activities of the driver (such as, distraction, carsickness 

(motion sickness), etc.). It will widen the fundamental biomedical and brain science 

research and spawns new industry opportunities to provide the solutions of real-life 

problems. 

 

1.3 Organization of Dissertation 

This dissertation is organized as follows. Chapter 2 describes the virtual 

reality-based dynamic driving environment, electroencephalogram (EEG) signal 

acquisition system, Independent Component Analysis (ICA), event-related potential 

(ERP), and event-related spectral perturbation (ERSP). Chapter 3 explores EEG 

activation of kinesthetic perception under our unique virtual-reality-based dynamic 

driving environment. Chapter 4 investigates EEG activation under different cognitive 
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states and develops drowsiness estimation technology by using Micro Electro 

Mechanical Systems sensor (MEMS sensor). Based on the drowsiness estimation 

technology, Chapter 5 develops the portable brain computer interface to real-time 

detect drivers’ drowsiness. At last, we make some conclusions in Chapter 6. 
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2. Materials and Methods 

2.1 Virtual-Reality-based Dynamic Driving Environment 

In this study, we developed a VR-based 3D high-fidelity interactive highway 

scene, which was composed of seven identical PCs, synchronized by LAN, running 

the same VR program. The synchronized scenes were projected from seven projectors 

to constitute a surrounding vision (as shown in Figure 2-1. (a)). At the center of the 

projected scenes, we mounted a real vehicle (without the unnecessary weight of an 

engine and other components) on the motion platform to provide motion sensations as 

would be experienced in real driving (as shown in Figure 2-1. (b)). The vestibular 

cues, or motion cues, were delivered by a motion platform controlled by six hydraulic 

linear actuators. This hexapod configuration is also known as a Stewart Platform 

(Stewart, 1965). During driving in the real world, either deceleration or acceleration 

would occur even on smooth road. The platform generated accelerations in vertical, 

lateral, and longitudinal directions of a vehicle as well as pitch, roll, and yaw angular 

accelerations. To simulate a deceleration in driving motion, for instance, the driver 

would feel a force pushing him/her against the seat belt, and the platform would 

simultaneously tilt forward to change the gravity direction to simulate the deceleration 

force. Similarly, the platform would tilt backward to simulate an acceleration force. 

This (or comparable) technique has been used widely in driving simulation studies 

(Reymond and Kemeny, 2000). 

In the VR-based dynamic environment and its emulation software, WorldToolKit 

(WTK) library and application programmer’s interface (API) (Cardoso and 

Souloumiac, 1993) were reported in our previous study (Lin et al., 2005 & 2006). The 

detailed development diagram of the VR-based scene is shown in Figure 2-2. 
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(a)                              (b) 

Figure 2-1: (a) Kinesthetic virtual reality (VR) driving environment, (b) The driving 

cabin simulator mounted on a 6-DOF dynamic Stewart motion platform 

 

Visual C++

WTK library

Dynamic 
Model

Create 3D Model

VR Scene

Create Parameter 
Model

 
Figure 2-2: Flowchart of the VR-based highway scene developed environment. The 

dynamic models and shapes of the 3D objects in the VR scene are created and linked 

to the WTK library to form a complete interactive VR simulated scene 

 

Firstly, we create models of various objects (such as cars, roads, trees and so on.) 

for the scene and set up the corresponding positions, attitudes, and other relative 

parameters. Then, we develop dynamic models among these virtual objects and build 

a complete simulated highway scene of full functionality with the aid of the high-level 

C-based API program. The VR-based four-lane highway scene is projected on a 

120-surround screen (304.1-cm wide and 228.1-cm high), which is 350 cm away from 
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the driving cabin that is mounted on a 6-DOF Stewart motion platform. The four lanes 

from left to right are separated by a median stripe. The distance from the left side to 

the right side of the road is equally divided into 256 points (digitized into values 

0-255, as shown in Figure 2-3), where the width of each lane and the car is 60 units 

and 32 units, respectively. These units can be converted to the real distance (for 

instance, the width of the real road is about 6 meters) in real-world applications. The 

refresh rate of highway scene is set properly to emulate a car driving at a fixed speed 

of 100 km/hr on the highway. The car is randomly drifted (triggered from the WTK 

program and the on-set time is recorded) away from the center of the cruising lane to 

mimic the consequences of a non-ideal road surface. 

 

Figure 2-3: The width of highway is equally divided into 256 units and the width of 

the car is 32 units 

 

To the best of our knowledge, the proposed environment setting is the first 

attempt at applying “kinesthetic” VR environment with motion platform techniques to 
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investigate brain activity in neuropsychological studies. The motion platform was 

conjugated with physiological and behavioral response recordings to offer more 

assessment options than the conventional neuropsychological studies could do. This 

was an innovative idea that provided an interactive, safe and realistic environment at 

very low cost. The VR technique allows subjects to interact directly with a virtual 

environment rather than passively responding to monotonic auditory and visual 

stimuli, and thus is an excellent setting for studying EEG dynamics in interactive and 

realistic tasks. 

 

2.2 Electroencephalogram Signal Acquisition System 

Subjects wore a movement-proof electrode cap with 36 sintered Ag/AgCl 

electrodes to measure the electrical activities of the brain. The physiological data 

acquisition used 2 bipolar ECG electrodes placed on the chest and 33 unipolar 

EEG/EOG electrodes placed based on a modified International 10-20 system (FP1/2, 

F3/4, F7/8, FZ, FC3/4, FT7/8, FCZ, C3/4, T3/4, CZ, CP3/4, TP7/8, CPZ, P3/4, T5/6, 

PZ, O1/2, OZ, VEOU, VEOL, A1) and refer to the mean of the left and right mastoid 

electrodes. Figure 2-4 shows the 32 channel EEG electrode cap. All EEG channels 

were located based on a modified International 10-20 system as shown in Figure 2-5 

(Thakor, 1999). The 10-20 system is based on the relationship between the locations 

of an electrode and the underlying area of cerebral cortex. 
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Figure 2-4: The 32 channel EEG electrode cap 

 

(a) The lateral view            (b) The top view 

Figure 2-5: The International 10-20 system of electrode placement 

 

Before data acquisition, the contact impedance between EEG electrodes and 

scalp was calibrated to be less than 5kΩ by injecting NaCl-based conductive gel. We 

used the Scan NuAmps Express system (Compumedics Ltd., VIC, Australia), a 

high-quality 40-channel digital EEG amplifier capable of 32-bit precision sampled at 

1000 Hz, to simultaneously record the EEG/EOG/ECG data and the deviation 

between the center of the vehicle and the center of the cruising lane triggered by the 

VR program. The EEG data were band-passed between 0.5 and 100Hz with a 60Hz 

notch filter, and recorded with 16-bit quantization level at a sampling rate of 500 Hz 

and then down-sampled to 250 Hz for the simplicity of data processing. 
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2.3 Independent Component Analysis 

Independent Component Analysis (ICA) is a signal processing technique that 

finds a linear mapping matrix or unmixing matrix W such that the unknown unmixed 

signals of the dimension N, U(t) = [u1(t), …, uN(t)]T could be separated from their 

mixtures, X(t), that is Y(t) = W-1X(t). The ICA methods were extensively applied to 

blind source separation problem since 1990s (Jutten et al., 1991; Comon, 1994; Bell et 

al., 1995; Girolami, 1998, Lee et al., 1999). Subsequent technical reports (Jung et al., 

1998, 2000, & 2001; Naganawa et al., 2005; Liao et al., 2005) demonstrated that ICA 

was a suitable solution to the problem of EEG source segregation, identification, and 

localization. 

In this study, we used an extended version of informax algorithm of Bell and 

Sejnowski (1995) that can separate sources with either super- or sub-Gaussian 

distributions, to decompose distinct brain activities. After ICA training, we can obtain 

33 ICA components decomposed from the measured 33-channel EEG data. It has also 

been used in our previous study (Lin et al., 2005). Figure 2-6 shows the scalp 

topographies of ICA back-projection matrix W-1 of one subject and the log bandpower 

spectra of all ICA components, which provide information about the location of the 

sources. For instance, eye activity was projected mainly to frontal sites. Hence, most 

of the eye-movement artifacts are isolated to components 1-3, as shown in Figure 2-6. 

The drowsiness-related potential is on the parietal lobe to occipital lobe. We can 

observe that the ICA components 8, 17, and 27 may be considered as effective 

“sources” related to drowsiness in the VR-based dynamic driving experiment (based 

on the correlation analysis in chapter 4). 
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Figure 2-6: The scalp topographies and the corresponding log bandpower spectra of 

all ICA components. 

 

2.4 Event-Related Potential 

Single-trial event-related potential (ERP) data are usually averaged prior to 

analysis to increase their signal/noise relative to non-time and -phase locked EEG 

activity and non-neural artifacts. The ERP is much smaller than the amplitudes of 

ongoing EEG, and it is thus often buried in the EEG recordings. In order to extract the 

ERP from EEG signal, we need to increase the signal to noise ratio by presenting the 

same type of stimuli to the subject repeatedly. ERP is often obtained by averaging 
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EEG signals of accumulated single trails of the same condition. Ongoing EEG signals 

across signal trails are considered random and independent of the stimulus. However, 

it is assumed that the waveform and latency of ERP pattern are invariant to the same 

stimulus. Through phase cancellation, time- and phase-locked EEG signals will be 

more prominent. 

Event-Related Potential (ERP) images directly visualized single event-related 

EEG trials and their contributions to the averaged ERP (Jung et al., 2001). An ERP 

image also makes visible relationships between subject behavior and 

amplitudes/latencies of individual event-related responses. The limitation of ERP is 

that it only measures coherent time-and-phase-locked activities. Averaging same 

response epochs would involve phase cancellation, brain activities not exactly 

synchronized in both time and phase are averaged out. 

 

2.5 Event-Related Spectral Perturbation 

The event-related spectral perturbation (ERSP) measures average dynamic 

changes in amplitudes of the broad band EEG spectrum as a function of time 

following cognitive events. The processing flow is shown in Figure 2-7. The time 

sequence of EEG channel data or ICA activations are subject to Fast Fourier 

Transform (FFT) with overlapped moving windows. Spectrums prior to event onsets 

are considered as baseline spectra. The mean baseline spectra were converted into dB 

power and subtracted from spectral power after stimulus onsets so that we can 

visualize spectral perturbation from the baseline. To reduce random error, spectrums 

in each epoch were smoothed by 3-windows moving-average. This procedure is 

applied to all the epochs, the results are then averaged to yield ERSP image. Through 

ERSP, we are able to observe time-locked but not necessarily phase-locked activities. 

ERSP thus can reveal aspects of event-related brain dynamics which might not be 
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measurable in ERP averages of the same response epochs (Makeig, 1993). In this 

study, we applied both ERP and ERSP analysis on the EEG data acquisition in our 

experiments. 

 

Figure 2-7: Event-related spectral perturbation plot. ERSP plots the grand mean time 

course of changes from pre-stimulus baseline in log spectral power of a 

scalp-recorded EEG or ICA component activation time-locked to stimulus 

presentation or subject responses across frequencies. 
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3. EEG Activation of Kinesthetic Perception 

3.1 Introduction 

Kinesthetic perception -- the sensory apparatus that detects motion -- is one of 

the most important sensations to human beings, yet we usually overlook the 

contributions of the vestibular system to our lives, simply because it doesn’t give us 

the sense of this vivid and harmonic world the way our eyes and ears do. In addition, 

kinesthetic perception doesn’t involve taste or smell, making it less appreciated. But, 

we would not have a complete sensation of the world without the perception of 

motion. Vestibular system is one of the most important sensory apparatus for 

detecting the perception of motion. One of the most common kinesthetic perceptions 

in our life is the motion associated with driving. Almost all of the existing EEG 

correlated research studies of perceiving kinesthetic stimuli focus on the brain 

dynamics of the subjects receiving visual and/or auditory stimulus, very few one 

focus on the subject perception of kinesthetic stimulus such as car drivers, airplane 

pilots, etc. 

In this chapter, we investigated EEG dynamics in response to kinesthetic stimuli 

by using the dynamic VR driving environment. This dynamic VR environment 

mimicked visual-vestibular co-stimulation during driving. Using simple driving 

behaviors such as deceleration, acceleration, and deviation, we studied brain 

responses of kinesthetic inputs by comparing subjects’ EEG differences in motion 

(while the motion platform is active) and motionless (while the motion platform is 

inactive) conditions of the dynamic platform. 

 

3.1.1 Vestibular system and kinesthetic stimulus response 

The human vestibular system is a sensory apparatus located bilaterally in the 
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inner ears which detects the motion of the head and body in space (Berthoz, 2000). It 

is composed of two functional parts: the otolithic organs and the semicircular canals. 

The otolithic organs detect linear accelerations, while the semicircular canals detect 

rotary accelerations (Merfeld et al., 1999; Seidmann et al., 1998). Vestibular 

information plays an important role in perceptual tasks such as ego-motion estimation 

(Berthoz et al., 1995). In recent research, vestibular information was shown to 

disambiguate the interpretation of dynamic visual information during an observer’s 

movement (Wexler et al., 2001). Researchers have tried to measure evoked potentials 

of vestibular origin for 30 years. Elidan et al. (1991) reported the ERP response to 

high speed and transient vertical Z axis rotation. Subjects were rotated at the speed of 

10,000°/sec2 for 2 ms. The reported negativity peaked at about 15 ms after the onsets 

of rotation from signals measured at a forehead mastoid electrode. Baudonniere et al. 

(1999) reported a biphasic negative wave, that is most prominent at central midline 

electrode (Cz) in subjects who received short (30 ms) linear displacements without 

co-stimulation of the semicircular canals. 

Probst et al. (1993, 1996, & 1997) and Loose et al. (2002) observed bell-shaped 

negativity at central midline channels following roll up and down motion along the 

X axis. The Vestibular Evoked Potential (VESTEP) evoked by stimulating otolithic 

and semicircular canals with different orientations of rotations or directions of 

movements was investigated in depth. The experimental variables in these studies 

were well controlled; for instance, subjects were blindfolded in VESTEP 

investigations, or watched pixels moving or rotating on the screen. This might be 

desirable from the perspective of scientific research, but is less practical because we 

rarely experience vestibular stimulation without visual co-stimulation or watch pixels 

rotating or moving in the real world. We actually live in a visual-vestibular 

co-stimulation world and the visual cue is always a meaningful and continuous scene 
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-- in driving, for instance. 

 

3.1.2 Kinesthetic perception during driving 

One of the most experienced kinesthetic perceptions in our life is the motion 

associated with driving. Whenever our vehicle accelerates, decelerates, or curves 

around a corner, we experience a force pulling our body against the direction of 

motion. However, there are at least several major obstacles in investigating the 

driving perception in a real driving environment. First, the safety concerns dictate that 

experiments must be conducted in a safe driving environment, making it an ethic issue 

to conduct driving experiments on the road while experiments know the subject might 

experience attentions lapse during experiments. Second, appropriate data acquisition 

and monitoring are needed for studying the rapid physiological responses of 

kinesthetic stimuli. The stimulation should be simple enough and repeatable to keep 

the experiment under control. Last, objective evaluation should be assessed in the 

studies. A driver senses not only the pushing or pulling force, but also the scene 

changes related to the movement of the vehicle. The driving perception includes the 

co-stimulation of visual cue, vestibular stimulation, muscle reaction, and skin 

pressure.  

This is indeed a complicated mechanism to understand. One of our solutions is to 

conduct driving experiments using a realistic simulator, which is widely used in 

driving-related research (Kemeny et al., 2003). Regarding the necessity of motion 

during driving, the literature shows that the absence of motion information increases 

reaction times to external movement perturbations and decreases safety margins in the 

control of lateral acceleration in curve driving (Reymond et al., 2001). In real driving, 

improper signals from disordered vestibular organs were reported to contribute to 

inappropriate steering adjustment (Page and Gresty, 1985). Groen et al. (1999) also 
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showed that the presence of vestibular information in driving simulators was 

important in the perception of illusory self-tilt and illusory self-motion. These studies 

emphasized the importance of motion perception during driving to the assessment of 

driving performance and behavior. However, assessing driving performance or 

behavior is not objective enough since the performance and behavior varies due to the 

subject’s training or learning effect. In this paper, we use a direct and objective 

method to evaluate human cognition during driving. 

 

3.1.3 EEG studies under VR based dynamic driving 

The EEG is a complex signal, the statistical properties of which depend on both 

time and space. Regarding the temporal characteristics, it is essential to note that EEG 

signals are ever-changing. The EEG has been used for 80 years in clinical practice as 

well as basic scientific studies. It is a popular method for evaluating human cognition 

today, which directly measures brain responses to external or internal stimulation. 

Much more information can be obtained from an EEG than from appearance behavior. 

Compared to another widely used neuro-imaging modality, functional Magnetic 

Resonance Imaging (fMRI), the greatest advantage of EEG is speed-it can record 

complex patterns of neural activity occurring within fractions of a second after a 

stimulus has been presented. EEG acquisition is also much less expensive, more 

portable and the only modality in which subjects allow to move their heads, thus it is 

applicable in operational environments such as driving in the moving vehicle. 

In recent years, researchers have designed the Virtual Reality (VR) senses to 

provide appropriate environments for assessing brain activity during driving (Lin et 

al., 2005; Eoh et al., 2005). Lin et al. (2005) introduced the “dynamic” VR 

environment, that is, a VR scene with a motion platform, in conjunction with 

physiological and behavioral response recordings to offer more assessment options 
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than were available in traditional neuropsychological studies. This was an innovative 

idea that provided an interactive and realistic environment at very low cost and 

avoided the risks of operating an actual vehicle on the road. However, the EEG 

correlates of kinesthetic stimulations induced by the motion platform in the dynamic 

VR scene have not been fully assessed or appreciated. 

To solve the aforementioned problems in studying kinesthetic perceptions during 

driving, using the realistic simulator is a good alternative used in driving-related 

research (Page and Gresty, 1985; Reymond et al., 2001; Groen et al., 1999; Eoh et al., 

2005). Those studies primarily emphasized on the importance of motion perception 

during driving by assessing subjects’ driving performances and behaviors. But such 

evaluations may be not objective enough since the performances and behaviors could 

vary with the subject’s previous training or learning experiences. To simulate the more 

realistic driving condition, we have designed an interactive Virtual Reality (VR) 

scenes and a dynamic driving simulator to provide appropriate environments for 

assessing brain activity during kinesthetic driving (Lin et al. 2005). The “kinesthetic” 

VR environment is a VR scene with a motion platform controlled by the six hydraulic 

linear actuators. During the driving experiment, all scenes are continuously updated 

according to the displacement of the car and the subject’s wheel handling. 

 

3.2 Experiment Setup 

3.2.1 Driving Events 

We designed three driving events: stop, go, and deviation in the development 

virtual reality-based dynamic driving environment. The stop and go events were 

paired into a Stop-Go event, which means a stop event was always followed by a go 

event. The deceleration and acceleration in a Stop-Go event was controlled by a 

computer program. Figure 3-1 shows the time course of a typical Stop-Go event.  
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Figure 3-1: Illustration of the design for Stop-Go events in driving. The time course is 

cut into five sections. The top-panel pictures show the VR scenes in the sections, the 

blue trace shows the pitch angle of the hexapod motion platform, and the bottom 

panels depict the posture of the vehicle mounted on the motion platform. An event 

starts with a yellow-light cue displayed on the screen. One second later, the yellow 

light is replaced by a red light and a Stop-Go event begins in conjunction with a 

deceleration simulated by the motion platform. The car is slowed down to a complete 

stop in four seconds when the red light is out. Seven seconds later, a green light is 

shown on the screen, and a go event begins. The hexapod motion platform starts 

accelerating for 3 seconds. Then the green light goes off, and the vehicle is moving at 

a constant speed until the next event occurs. 

Subjects were not required to take any action in the stop and go events during the 

experiment so that it can avoid the artifacts caused by the movement of the subjects. 

Moreover, the vehicle was randomly drifted away from the cruising position, which 

was defined as a deviation, and the subjects were instructed to steer the vehicle back 

to the center of the cruising lane as quickly as possible. The deviation events can keep 

subjects’ attention and we can estimate the subjects’ cognitive level from the reaction 

times. The driving behavioral information, such as the onsets of the deviation, subject 

reaction times, or steering angles, were recorded for further analysis. 
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Figure 3-2 illustrates a deviation event in which the vehicle was moving forward 

in a straight line. The vehicle deviated either to the left or to the right. The Stop-Go 

event and deviation event occurred randomly with the probability of 50% and the 

inter-event interval was 9 seconds. 

 

Figure 3-2: The vehicle was randomly drifted away from the cruising position, which 

was defined as a deviation event, and the subjects were instructed to steer the vehicle 

back to the center of the cruising lane as quickly as possible. The driving behavioral 

information, such as the onsets of the deviation, subject reaction times, or steering 

angles, were recorded for further analysis. In a deviation event, the vehicle was 

moving forward in a straight line. The vehicle deviated either to the left or to the right. 

The Stop-Go event and deviation event occurred randomly with the probability of 

50% and the inter-event intervals were 9 seconds. 

 

3.2.2 Subjects and EEG Data Acquisition 

Ten right-handed, healthy subjects (aged between 20 and 28) participated in this 

study. All subjects had driving license and at least one-year driving experience. 

Subjects were instructed to keep the car at the center of the inside lane by controlling 
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the steering wheel, and to perform the driving task consciously. Each subject 

completed four 25-minute sessions of the driving experiment. Sessions were motion 

and motionless counterbalanced and each session included stop-go events and 

deviation events in random order. Thus we have six conditions: “Motion-Stop,” 

“Motion-Go,” “Motion-Deviation,” “Motionless-Stop,” “Motionless-Go,” and 

“Motionless-Deviation.” To prevent subjects from experiencing drowsiness during 

experiments, they rested for a few minutes after each session until they were ready for 

the next one. The entire driving experiment lasted about 2 hours. Subjects performed 

at least 2 driving experiments on different days for testing the cross-session 

consistency. 

Subjects wore the movement-proof electrode cap with 36 sintered Ag/AgCl 

electrodes to simultaneously record the EEG/EOG/ECG data and the deviation 

between the center of the vehicle and the center of the cruising lane triggered by the 

VR program. In addition, an accelerometer recording 3-DOF (Degrees of Freedom) 

was placed on the center of the vehicle to record the platform movement. This 

accelerometer recorded orientations of the vehicle in pitch, roll, and yaw during the 

driving simulation, thus we could correlate physiological data with the orientation 

recording and investigate the relationship between human cognition and kinesthetic 

stimulus. 

 

3.2.3 EEG Data Analysis 

The recordings were down-sampled to 250 Hz for simplicity of data processing. 

Then the EEG data were preprocessed using a simple low-pass filter with a cut-off 

frequency of 50 Hz to remove the line noise (60 Hz and its harmonic) and other 

high-frequency noises for further analysis. The continuous EEG signals were first 

extracted into epochs whose lengths were designed to cover the whole platform 
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dynamics in single driving events. For stop events and go events, epochs contained 

EEG data from 4s before to 9s after the onsets of the red light. For deviation events, 

epochs contained signals from 1s before to 2s after the deviation onsets. We then 

applied ICA to concatenated epochs to decompose them into temporally statistical 

component activations. 

To study the cross-subject component stability of ICA decomposition, 

components from multiple sessions and subjects were clustered based on their spatial 

distributions and EEG characteristics (Jung et al., 2001; Makeig et al., 2004). 

Component clustering grouped massive components from multiple sessions and 

subjects into several significant clusters. Cluster analysis, k-means, was applied to the 

normalized scalp topographies and power spectra of all 930 (30 channels x 31 

sessions) components from the 10 subjects. After ICA decomposition, noisy 

components were removed prior to cluster analysis. The cluster analysis, k-means, 

identified at least 9 clusters of components having similar power spectra and scalp 

projections. These component clusters also showed functionally distinct activity 

patterns. Nine distinct component clusters (as shown in Figure 3-3) accounted for eye 

blinks (upper left), horizontal eye movements (upper right), and other brain activities, 

respectively. Artifactual components accounted for such as eye blinks and horizontal 

eye movements were effectively removed from the activity of the other seven 

component clusters by the ICA decomposition and are not further considered here. 
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Figure 3-3: The ICA components from 11 subjects are clustered into 9 groups. The 

averaged scalp map and averaged baseline (before event onsets) power spectral 

density of each group are shown in the plot. The motion-related features are found in 

left-mu (middle-left), right-mu (middle-right), and central-midline (middle) 

components. 

 

3.3 Experiment Results 

The sessions in each experiment were divided into “motion” (when the motion 

platform was in action) and “motionless” (when the motion platform was not in action) 

sessions with stop, go, and deviation events. According to the behavioral data of the 

deviation events, all subjects’ response time are less than one second (as shown in 

Table 3-1). This indicated that all subjects were alert and attentive during the whole 

sessions. We get six conditions: “Motion-Stop,” “Motion-Go,” “Motion-Deviation,” 

“Motionless-Stop,” “Motionless-Go,” and “Motionless-Deviation” after the subjects 

have performed all the experiments. By comparing the motion and motionless pair, 

we hope to find some differences in brain responses between these two conditions. 
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Table 3-1: The response time (RT) of Motion-Deviation and Motionless-Deviation 

events. Overall, the RT in dynamic driving is 40~50 ms shorter than that in static 

driving. These results were obtained using PRISM. 

 

 

3.3.1 Effects of Kinesthetic Stimuli in Mu Component Activations 

Figure 3-4 shows the ERSP of a component from a typical subject that exhibited 

differential brain responses between motion and motionless conditions. The 

component scalp map exhibited the defining features of mu rhythms -- distinct 

spectral peaks near 10 Hz and 22 Hz, with equivalent dipoles located roughly over 

hand motor cortex (and/or adjacent post-central somatosensory areas), and oriented 

roughly orthogonal to the directions of the central sulci. The upper ERSP panels show 

the ERSP following stop events, while the lower two show go-event ERSP. Images on 

the left are brain responses under “motion” conditions and those on the right are under 

“motionless” conditions. The curves below the images are the time courses of the 

platform motion (pitching, rotate by Y axis). Mu power was strongly blocked 

(reduced) around the peak of platform motion in Motion-Stop and Motion-Go events. 

In contrast, no mu blocking occurred following either stop or go events in the 

motionless condition (Figure 3-4, right panels). Thus the mu blocking appears to be 

induced by the kinesthetic inputs in stop and go events. 
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Figure 3-4: A right mu component shows mu characteristic 10 Hz and 22 Hz peaks in 

the activity spectrum (lower left). The component mean ERSP shows mean 

event-related changes in (log) spectral power across data trials time-locked to the 

kinesthetic stimulus onsets (dashed line). Following the motion platform movement, 

this activity is blocked. The activity was unchanged from the baseline spectra if the 

motion platform was not in action (right). 

 

Mu blocking was also observed following deviation events. Figure 3-5 shows the 

ERSP of a right mu component following deviation events. The upper and lower 

panels show ERSPs of the component following “deviate-to-left” and 

“deviate-to-right” events, respectively. The curves below show the recorded platform 

motion. Notice that the motion platform tilted along different directions in Stop-Go 

and deviation events (cf. Figure 3-5). In deviation events, the platform rotated slightly 

along the vertical Z axis. 

When deviation occurred, the subjects were instructed to maneuver the car back 

to the cruising position by steering the wheel. It is expected that mu activity would be 

blocked due to the hand movement (cf. Figure 3-5 ERSP) in both motion and 

motionless conditions. However, the latency of mu blocking in the motion condition 
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(Figure 3-5 left panels) was significantly shorter than that in the motionless condition 

(Figure 3-5 right panels). 

 

Figure 3-5: The mean ERSP of the mu component following deviation events. The 

upper panels correspond to deviate-to-left events, and the lower panels correspond to 

deviate-to-right events. The left panels show the ERSP of the component when the 

motion platform was in action (Motion-Deviation), while the right panels plot the 

ERSP when the platform was not in action (Motionless-Deviation). Mu blocking 

appears in all four conditions, but the latencies of the activation were shorter in 

Motion-Deviation (left panels) than those in motionless conditions. 

 

3.3.2 Effects of Kinesthetic Stimuli in Central Midline Component Activations 

Figure 3-6 shows the scalp map and dynamic properties of an independent 

component from the same subject in Motion-Deviation and Motionless-Deviation 

conditions. The scalp map of the CM component (Figure 3-6 upper left) resembles 

scalp maps of the “P3a” or “P3novel” ERP peaks seen, for example, when unique and 

unexpected stimuli are included in a randomly alternating sequence of target and 
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non-target stimuli (Polich and Comerchero, 2003). In two-dimensional “ERP image” 

plots of single trials from the subject, potential fluctuations in single trials are shown 

as color-coded horizontal lines, here normalized by component activation baseline 

variability then sorted (across all trials) by response time (RT). The ERP images 

clearly show that the early kinesthetic response, peaked at ~250 ms, was time-locked 

to deviation onset. However, this sharp negativity was missing in the motionless 

condition (Figure 3-6 right panels). We suspect that the negativity was primarily 

induced by the platform motion. 

 

Figure 3-6: Single-trial Event-Related Potentials (ERPs) of the central midline (CM) 

component following deviation events under 4 different conditions. The upper two 

panels plot ERSP in deviate-to-left events, and the lower two panels plot ERSP in 

deviate-to-right events. The left panels correspond to Motion-Deviation, while the 

right panels correspond to Motionless-Deviation. The averaged ERPs exhibit a strong 

negative peak 500 ms after deviation onsets in all 4 conditions, however the negativity 

peaks ~250 ms post-event are only evoked by the deviation events when the platform 
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is in action (Motion-Deviation). 

 

3.3.3 Effects of Kinesthetic Stimuli in Component Clustering Results 

Figure 3-7 shows the mean map and power spectrum of a large cluster of left mu 

components. The power spectra of the component cluster contained peaks near 11 and 

20 Hz. In all 29 components from 10 subjects contributing to this cluster, the 11 Hz 

activity was blocked following kinesthetic stimuli in the motion condition, strongly 

suggesting that these represented mu activity. Scalp maps of individual left mu 

components in this cluster (Figure 3-7 right panels) strongly resembled the (left) 

cluster mean map. 

 

Figure 3-7: Mean (N=29) component map and mean power spectra of a left-mu 

component cluster. Individual component maps resembled the averaged scalp map. 

 

Figure 3-8 shows the component cluster mean ERSP of the component 

activations following Stop-Go events under the motion (left panels) and motionless 

(right panels) conditions. The ERSP images of motion sessions exhibited a strong mu 
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blocking and alpha rebound, which were completely missing from the ERSP images 

under motionless conditions, consistent with the results in a typical subject shown in 

Figure 3-4. 

 

Figure 3-8: The group-averaged ERSP shows the component activations following 

Stop-Go events under the motion (left panels) and motionless (right panels) 

conditions. The ERSP images of motion sessions exhibited a strong mu blocking and 

alpha rebound, which were completely missing from the ERSP images under 

motionless conditions, consistent with the results in a typical experiment shown in 

Figure 3-4. 

 

Similarly, Figure 3-9 shows averaged ERSP images following deviation events 

under motion and motionless conditions. Although the ERSP images in all four 

conditions exhibited similar mu blocking induced by the steering actions, the latencies 

of mu blocking differed considerably. Figure 3-10 shows the differences between mu 

blocking in motion and motionless conditions, which were obtained by subtracting the 
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motionless ERSP (right panels of Figure 3-9) from the motion ERSP (left panels of 

Figure 3-9). The dashed line marks average response time. A brief (~200 ms) 

alpha-band power suppression was evident in these two ERSP difference images, 

indicating that the mu blocking occurred earlier in Motion-Deviation events than in 

Motionless-Deviation events. No significant differences were found in the rest of the 

ERSP difference images. The subtracted images showed that mu blocking occurred 

200 ms earlier in Motion-Deviation. 

 

 
Figure 3-9: The group-averaged ERSP images following deviation events under 

motion and motionless conditions. Although the ERSP images in all four conditions 

exhibited similar mu blocking, the latencies of mu blocking differed considerably. 
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Figure 3-10: The differences between mu blocking in motion and motionless 

conditions, which were obtained by subtracting motionless ERSP (right panels of 

Figure 3-9) from the motion ERSP (left panels of Figure 3-9). The ERSP difference 

images show a brief (250~300 ms) alpha-band power suppression, indicating that the 

mu blocking occurred earlier in Motion-Deviation than in Motionless-Deviation. 

 

3.4 Discussion 

In this study, we recorded and analyzed un-averaged single-trial EEG data in 31 

driving experiments from 10 volunteer drivers under two different driving conditions 

-- motion and motionless. The hexapod motion platform that simulated driving events 

allowed us to study neural correlates of kinesthetic stimuli, which is difficult, if 

possible, to study in regular EEG laboratories. We performed ICA to separate the EEG 

contributions of distinct brain processes to explore their individual and joint 

event-related dynamics following Stop-Go and deviation events through ERP 

differences and time-frequency analysis (ERSP). The 9 independent component 

clusters here identified by their similar scalp projections and activity spectra resemble 

classes of EEG phenomena long described by neurologists from observations of paper 

data displays such as central and lateral alpha, left and right mu, and frontal-midline 

theta rhythms. Alpha power of the mu component cluster was strongly blocked 

(~-5dB) around the peak of platform movement in Motion-Stop and Motion-Go 

events. A sharp negative was found in the central midline component cluster only in 
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Motion-Deviation events. We believe that these two features were induced by 

kinesthetic stimuli. 

 

3.4.1 Phenomenon in Mu Component 

Mu rhythm (μ rhythm) is an EEG rhythm recorded usually from the motor cortex 

of the dominant hemisphere. It is also called arciform rhythm given the shape of the 

waveforms. It is a variant of normality, and it can be suppressed by a simple motor 

activity such as clenching the fist of the contra lateral side, or passively moved (Thilo 

et al., 2003; Loose et al., 2002; Parker et al., 2001). Mu is believed to be the electrical 

output of the synchronization of large portions of pyramidal neurons of the motor 

cortex which control the hand and arm movement when it is inactive. 

Deviation events involved subject responses to steer the vehicle back to the 

cruising position, thus it is expected that mu power would be blocked following 

deviation events. Our results also showed unexpected strong mu blocking in response 

to Motion-Stop and Motion-Go events in which no action was involved, suggesting 

kinesthetic stimuli could also induce mu blocking. Following deviation events, mu 

power was strongly blocked in both motion and motionless conditions (cf. Figures 3-9 

and 3-10). Mean subject RT indexed by the first steering action in response to 

Motion-Deviation events leads that in response to Motionless-Deviation events by 

about 50 ms. Thus, we expect that the latency of mu blocking in Motion-Deviation 

events would lead that in Motionless-Deviation events by a comparable length. 

However, Figure 3-10 reveals that the mu-blocking latency discrepancy between the 

two conditions is about 250~300 ms, which could not be attributed entirely to the 

subject RT latency difference. Mu blocking thus appears associated with kinesthetic 

stimuli delivered to the drivers. In short, long-lasting mu blocking following deviation 

events began with the EEG brain dynamics induced by kinesthetic stimuli, followed 
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by marked mu power decrease associated with subject motor actions. Table 3-1 gives 

us the information that response time in Motion-Deviation events was only 50 ms 

faster than in Motionless-Deviation events. By these two results we discovered 

200~250 ms duration which was not related to steering action. 

 

3.4.2 Phenomenon in Central Midline Component 

The central midline component cluster exhibits a sharp negativity in averaged 

ERP following Motion-Deviations, but the negativity is missing from the ERP 

following Motionless-Deviations. The mean ERP in deviate-to-right and 

deviate-to-left conditions was almost identical. ERP images also show a weaker 

negative ERP time-locked to subjects’ reactions (the black line in the ERP image), 

which again is comparable following Motion-Deviation and Motionless-Deviation 

events. Response time in Motion-Deviation events was approximately 50 ms shorter 

than that in Motionless-Deviation events (as shown in Table 3-1), consistent with a 

previous report (Wexler et al., 2001) which showed that the absence of motion 

information increased response times to external movement perturbations. 

The sharp negativity in the ERP of the central midline component cluster is also 

consistent with previous VESTEP studies of Elidan et al. (1982, 1984, & 1987). They 

showed a negative potential near Cz or forehead, induced by external kinesthetic 

stimulus. They did not, however, report any mu blocking in response to the kinesthetic 

stimuli, which to the best of our knowledge has never been reported in the past. The 

reason is due at least in part to the fact that our experimental environment, which 

combined visual and vestibular interaction and driver response, was more complicated 

and realistic than the experimental setups used in previous studies. 
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3.4.3 EEG Alpha Activity related to Drowsiness 

Traditionally, EEG alpha band was used as an indicator of drowsiness estimation 

during driving (Lin et al., 2005; Eoh et al., 2005). Alpha power has been reported to 

index the level of drowsiness in attention-sustained experiments in a laboratory 

setting. In this study, our results showed that alpha-band activity varies during driving, 

especially when the vehicle is moving and delivers kinesthetic stimuli to the drivers 

and passengers, which might confound the fatigue-related alpha power changes in 

driving. Thus, more care must be taken to examine the validity of using alpha power 

to index drowsiness level in real driving. 

Our experiment results show that kinesthetic stimulus during driving induces (1) 

Mu blocking in the somatomotor components, and (2) Sharp negative ERP in central 

midline components. The mu blocking appeared to be induced by two types of stimuli 

successively. When the subjects received kinesthetic inputs, their alpha activities in 

the left and right mu components were blocked. After a short period, the subjects 

made an adjustment to balance them, inducing a secondary mu blocking. The alpha 

power variation induced by the motion of the vehicle might interfere with the 

estimation of the driving cognitive state based on the fluctuations in the alpha power 

spectra. 

Furthermore, negative ERP was found in central midline components following 

kinesthetic stimulus onsets. These results demonstrate that multiple cortical EEG 

sources respond to driving events distinctively in dynamic and static/laboratory 

environments. A static driving simulator could not induce some cognitive responses 

that are actively involved in real driving. We also reported that the absence of driving 

motion will increase the reaction time to external perturbations by studying the 

response time in deviation events. Thus a driving simulator with a motion platform is 

crucial to studying event-related brain activities involved in real driving. 
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4. EEG Activation under Different Cognitive States 

4.1 Introduction 

The growing number of traffic accidents had become a serious concern to the 

society in recent years. Accidents caused by driver’s drowsiness behind the steering 

wheel have a high fatality rate because of the marked decline in the driver’s abilities 

of perception, recognition and vehicle control abilities while being sleepy. For 

instance, the National Highway Traffic Safety Administration (NHTSA) 

conservatively estimates that 100,000 police-reported crashes are the direct result of 

driver fatigue each year. This results in an estimated 1,550 deaths, 71,000 injuries and 

$12.5 billion in monetary losses. The National Science Foundation (NSF) also 

reported in 2002 that 51% of adult drivers had driven a vehicle while feeling drowsy 

and 17% had actually fallen asleep. Preventing traffic accidents caused by drowsiness 

is highly desirable but requires techniques for continuously monitoring, estimating, 

and predicting the level of alertness of drivers and delivering effective feedbacks to 

maintain their maximum performance (Pilutti and Ulsoy, 1999). Therefore, we 

demonstrated an EEG-based drowsiness estimation method in long-term driving in 

this chapter. In our past research, we had already found the parietal and occipital brain 

sources were highly correlated with drowsiness via ICA-based signal process (Lin et 

al., 2005 & 2006). The method combined ICA, EEG log band power spectrum, 

correlation analysis, and linear regression models to indirectly estimate driver’s 

drowsiness level. Here, we use the same method to estimate subject drowsiness level, 

except we employ MEMS sensors rather than conventional wet ones to acquire 

continuous EEG data to demonstrate the potential uses of the MEMS sensors during 

long and routine recordings in the VR-based dynamic driving environment. 

In realistic environment, it is not humane and convenient to acquire the EEG 
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signal with skin preparation even it had better performance. Using electrolytic gel is 

not only uncomfortable and inconvenience, but also can cause itchy feeling, and 

sometimes make skin red and swollen during long-term EEG-measurement. Hence, 

we also have developed an EEG-based drowsiness estimation algorithm that consisted 

of signal acquisition, power spectrum estimation, Principal Component Analysis 

(PCA)-based signal process, and multivariate linear regression to estimate the driver’s 

drowsiness level in the VR-based dynamic driving environment. 

 

4.2 Experimental Setup 

Ten subjects (ages from 20 to 40 years, 29.8±5.9 years old) participated in the 

VR-based highway driving experiments. To maximize the opportunities to get 

valuable data for our study, all driving experiments were conducted in the early 

afternoons after lunch. Statistics (Jung et al., 1997; Makeig and Jung, 1995) showed 

that people often get drowsy within one hour of continuous driving during these 

periods, indicating that drowsiness is not necessarily caused by long driving-hours. 

The driving speed is fixed as 100 km/hr and the car is randomly and automatically 

drifted away from the center of the cruising lane to mimic the consequences of a 

non-ideal road surface. On the first day, participants were told of the general features 

of the driving task, completed necessary informed consent material, and then started 

with a 15 to 30-minute practice to keep the car at the center of the cruising lane by 

maneuvering the car with the steering wheel. Subjects reported this amount of 

practice to be sufficient to reach a performance asymptote on the task. After practicing, 

participants wore wired EEG cap with electrodes and began 1-hour lane-keeping 

driving task. Participants returned on a different day to complete the other 1-hour 

driving session for cross-session test. While the subject was alert in the experiment, 

his/her response time was short and the deviation of the car was small; otherwise the 
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subject’s response time and the car deviation would be slow and long. In this driving 

experiment, the VR-based freeway scene showed only one car driven on the road 

without any other event stimuli to simulate a monotonous and unexciting task that 

could easily make drivers fallen asleep. 

The flowchart of data analysis for estimating the level of drowsiness based on 

the EEG power spectrum is shown in Figure 4-1. For each subject, after collecting 

EEG signals and driving deviation in 1-hour simulated driving session, the EEG data 

were first preprocessed using a simple low-pass filter with a cut-off frequency of 50 

Hz to remove the line noise and other high-frequency noise. Then, we applied ICA to 

decompose EEG-signals into temporally independent stationary sources and 

calculated the moving-averaged log power spectra of all ICA components.  
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Figure 4-1: Flowchart of the drowsiness detection system 

 

In general, the drowsiness-related regions are mainly in the parietal and occipital 

lobes. If we acquire the EEG signal from these haired regions of the hindbrain to 

detect drowsiness level in realistic environment, it is uncomfortable and inconvenient 
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to acquire the EEG signal from the conventional gel-based sensors on the scalp. To 

overcome this limitation, we employ the self-stabilized MEMS sensor to replace the 

conventional ones. The self-stabilized MEMS sensor is expected to circumvent the 

high impedance characteristics of the stratum corneum (SC) and then skin preparation 

and electrolytic gel application are not required. Due to the limitation of the current 

MEMS technology, self-stabilized MEMS sensor is not sufficient to penetrate human 

hairs to contact stratum germinativum (SG) or even SC. The hair elasticity also makes 

it difficult to fix the sensor on the scalp. Therefore, the self-stabilized MEMS sensors 

in this study are placed at non-hairy sites, such as Fp1 and Fp2 on the forehead to 

on-line estimate the driver’s drowsiness level in real-world application. 

 

4.2.1 Experimental Environment 

A VR-based dynamic driving simulation environment is designed and built for 

interactive driving experiments. It includes three major parts: (a) the 3D highway 

driving scene based on the virtual reality technology, (b) the driving cabin simulator 

mounted on a 6-DOF dynamic Stewart motion platform (as shown in Figure 2-1 (a) & 

(b)) and (c) the EEG acquisition system with 13-channel sensors (as shown in Figure 

4-2). 

 

Figure 4-2: A VR-based dynamic driving environment for interactive driving 

experiments 
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Acquired EEG signals are analyzed by power spectral density analysis, 

PCA-based signal processing, and linear regression model to estimate subject’s 

driving performance as shown in Figure 4-3. The subject’s performance is defined as 

the deviations between the center of the vehicle and the center of the cruising (3rd) 

lane. While the subject was alert in the experiment, his/her response time was short 

and the deviation of the car was small; otherwise the subject’s response time and the 

car deviation would be slow and long. In this driving experiment, the VR-based 

freeway scene showed only one car driven on the road without any other event stimuli 

to simulate a monotonous and unexciting task that could easily make drivers fallen 

asleep. These physiological and behavioral data are continuously and simultaneously 

measured and recorded by the WTK program and the acquisition system. 

 

Figure 4-3: Flowchart for processing the EEG signals. (1) A low-pass filter was used 

to remove the line noise and higher frequency (>50Hz) noise. (2) Moving-averaged 

spectral analysis was used to calculate the EEG log power spectrum of each channel 

advancing at 2-sec steps. (3) Two EEG channels with higher correlation coefficients 

between subject’s driving performance and EEG log power spectrum were further 

selected. (4) PCA was trained and used to decompose selected features and extract the 

representative PCA-components as the input vectors for the linear regression models 

(LRM). (5). LRMs were trained in one training session and used to continuously 

estimate the individual subject’s driving performance in the testing session. 
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The time series of recorded driving performance were smoothed using a causal 

90-s square moving-averaged filter (Sterlade, 1993; Treisman, 1984) advancing at 

2-sec steps to eliminate variance at cycle lengths shorter than 1-2 minutes since the 

driving performance tended to vary irregularly with cycle lengths of 4 minutes and 

longer (Jung et al., 1997; Makeig and Jung, 1995). The EEG data recorded by the 

MEMS (or wet) electrode pairs were first preprocessed using a simple low-pass filter 

with a cut-off frequency of 50 Hz to remove the line noise and other high-frequency 

noise. After moving-average power spectral analysis, we obtained EEG log power 

spectrum time series for the 5 MEMS (or wet) electrodes. Then, we applied 

Karhunen-Loeve Principal Component Analysis (PCA) to the resultant EEG log 

spectrum betweem 1 and 40 Hz to extract the directions of largest variance for each 

session. Projections of the EEG log spectral data (PCA components) along the 

subspace formed by the eigenvectors corresponding to the largest 50 eigenvalues were 

used as inputs to a multiple linear regression model (Chatterjee, 1986) for each 

individual subject to estimate the time course of his/her driving error (Bishop, 1995). 

Each model was trained using the features extracted only from the training session 

and tested on the data from a separate testing session. 

 

4.2.2 EEG Data Acquisition 

Figure 4-4 shows the placements of five MEMS/conventional sensor pairs at the 

frontal locations. The first and fifth MEMS sensors are placed at Fp1 and Fp2 

according to the international 10-20 electrode placement system (Thakor, 1999). We 

also placed three additional MEMS sensors evenly spaced between these two MEMS 

sensors and labeled them as MEMS2, MEMS3, and MEMS4. Corresponding 

conventional wet electrodes were placed 1 cm above the MEMS EEG sensors (cf. 

Figure 4-2). The contact impedance between the MEMS/wet electrode and skin was 
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calibrated to be less than 5 kΩ. The EEG was recorded from these 5 MEMS and 5 wet 

electrodes, referenced against linked mastoids (A1, A2) by the Neuroscan NuAmps 

Express system (Compumedics Ltd., VIC, Australia, as shown in Figure 4-2), 

band-passed between 0.5 and 100Hz with a 60Hz notch filter, and recorded with 

16-bit quantization level at a sampling rate of 500 Hz and then down-sampled to 250 

Hz for the simplicity of data processing. 

 

Figure 4-4: Forehead positions of conventional wet electrodes (circle) and MEMS 

EEG sensors (square) 

 

4.2.3 Lane Keeping Driving Task 

In the long-term driving, the car cruised with a fixed velocity of 100 km/hr on 

the VR-based highway scene and it was randomly drifted either to the left or to the 

right away from the cruising position with a constant velocity. The subjects were 

instructed to steer the vehicle back to the center of the cruising lane as quickly as 

possible. Figure 4-5 shows the time course of a typical deviation event that embedded 

in the long-term lane-keeping driving task. 
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Figure 4-5: An example of the deviation event. The car cruised with a fixed velocity 

of 100 km/hr on the VR-based highway scene and it was randomly drifted either to 

the left or to the right away from the cruising position with a constant velocity. The 

subjects were instructed to steer the vehicle back to the center of the cruising lane as 

quickly as possible. 

 

Firstly, we need to quantify the volunteer’s drowsiness level in this experiment. 

When subjects fall drowsy, they often exhibits relative inattention to environments, 

eye closure, less mobility, failure to motor control and making decision (Brookhuis et 

al., 2003). Hence, the vehicle deviations were defined as the subject’s drowsiness 

index. The VR-based four-lane straight highway scene was applied in the experiment. 

Figure 4-6 shows an example of the driving performance represented by the vehicle 

deviation trajectories. 

 

Figure 4-6: An example of the driving performance that represented by the digitized 

vehicle deviation trajectories 
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4.3 Experimental Results 

In order to demonstrate the potential applications of the MEMS electrodes for 

long and routine EEG recording in operational environments, we investigated the 

quality of the EEG signals recorded by the MEMS EEG sensors placed at Fp1 and 

Fp2 for estimating subjects’ drowsiness in a sustained-attention driving experiment. 

The EEG signals recorded by five MEMS sensors were fed into an EEG-based 

drowsiness estimation system (Lin et al., 2005) as shown in Figure 4-3 to estimate 

driver’s driving performance, an indication of driver’s drowsiness level. 

 

4.3.1 Comparison Performance between MEMS-based and Standard Wet Sensor 

Figure 4-7 plots the raw EEG signals measured by the proposed MEMS EEG 

sensors and wet electrode pairs (only the leftmost and rightmost MEMS/wet pairs are 

shown here). As can be seen, the EEG signals recorded by the MEMS sensors are 

extremely comparable to those obtained by the corresponding wet electrodes. 

 

Figure 4-7: Raw EEG Data Recording by MEMS sensors and Standard Wet Sensors 

 

Figure 4-8 over-plots the EEG power spectra of 5 MEMS/wet sensor pairs. As it 

can been seen, they are extremely similar especially in low frequency bands (1-30Hz), 
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indicating that the signals obtained by proposed MEMS EEG sensors matched well 

with the EEG signals recorded by the conventional wet electrodes. 

 

 

 

 

4.3.2 Correlation Analysis Results 

The correlation coefficients between the subject’s driving performance and the 

log power spectra of all ICA components at each frequency band are further evaluated 

to form a correlation spectrum. The normalized log sub-band power spectra of top two 

ICA components with the highest correlation coefficients in some critical bands are 

(a) (b) 

(e) 

(d)(c) 

Figure 4-8: The EEG power spectra of 5 
MEMS / Wet sensor pairs 

(a) MEMS1 / Wet1 sensor pair  
(b) MEMS2 / Wet2 sensor pair 
(c) MEMS3 / Wet3 sensor pair 
(d) MEMS4 / Wet4 sensor pair 
(e) MEMS5 / Wet5 sensor pair 
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further selected as the input features of the conventional linear regression model to 

estimate the individual subject’s drowsiness level. Figure 4-9 shows the correlation of 

driving performance and EEG power spectra from the different two subjects. We can 

easily find that alpha band (8-13 Hz) is highly correlated with drowsiness. These 

results are consistent with the related studies (Jung et al., 1997; Makeig and Jung, 

1996) and alpha band will be a good indicator to detect drowsiness level.  

  

Figure 4-9: Correlation of driving performance and EEG power spectra from the 

different two subjects 

 

Table 4-1 shows the scalp topographies and spectrum correlation of each subject 

between driving performance and ICA power spectra of the top two ICA components. 

The correlations are particularly strong at central and posterior areas, which are 

consistent with related studies in the driving experiments (Makeig and Inlow, 1993; 

Makeig and Jung, 1996). The relatively high correlation coefficients near θ-band or 

α-band may be suitable for drowsiness estimation, as the subject’s cognitive state 

might fall into stage one of the non-rapid eye movement sleep. As can been seen that 

the best drowsiness-correlated components (best matching) differ in each subject, in 

general their scalp topographies are all within the ambit of central lobe to occipital 

lobe. 
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Table 4-1: Correlation spectra between smoothed driving errors and ICA power 

spectra of first 2 ICA components of each subject 
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4.3.3 Drowsiness Estimation Results 

Figure 4-3 shows the flowchart of the EEG-based drowsiness estimation 

algorithm. EEG signals are analyzed by power spectral density analysis, PCA-based 

signal processing, and linear regression model to estimate subject’s driving 

performance. Figures 4-10 to 4-13 compare the drowsiness-estimation performance 

obtained by MEMS EEG sensors and wet electrodes in the sustained-attention driving 

tasks. They show the minute scale fluctuation of the each driver’s driving 

performance index in 1-hour driving session. In each figure, the blue and red traces 

represent the acquired and estimated driving errors, respectively, and all of these 

figures are the results on the testing data. 

Figures 4-10(a) and (b) show the estimated driving error in Session #2 of Subject 

1 using the EEG signals recorded by the conventional wet electrodes and the MEMS 

EEG sensors, respectively. The estimators were trained with the EEG signals from 

Session #1 to estimate the driving error of Session #2 of Subject 1 (the blue traces in 

Figure 4-10). Conversely, Figures 4-11 (a) and (b) show the estimated driving error of 

Subject 1 using EEG data from Session #2 as the training dataset and those from 
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Session #1 as the testing dataset. 

 

 

(a)                                (b) 

Figure 4-10: Estimated and actual driving error of Session #2 of Subject 1 using the 

EEG signals recorded by (a) the conventional wet electrodes and (b) MEMS EEG 

sensors, respectively. The estimators were trained with the EEG signals from Session 

#1 to estimate the driving error of Session #2 (the blue traces). 

 

 

(a)                                (b) 

Figure 4-11: Estimated and actual driving error of Session #1 Subject 1 using the EEG 

signals recorded by (a) the wet and (b) MEMS electrodes, respectively. The estimators 

were trained with the EEG signals of Session #2 to estimate the driving error of 

Session #1 (the blue traces). 
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Similarly, Figures 4-12 and 4-13 show estimated and actual driving errors made 

by another subject (Subject 2). Table 4-2 shows the comparison results of correlation 

coefficient between the actual and estimated driving error time series using MEMS 

sensors and conventional wet sensors for 5 different subjects.  

 

(a)                                (b) 

Figure 4-12: Estimated and actual driving error of Session #2 of Subject 2 using the 

EEG signals recorded by (a) the wet and (b) MEMS electrodes, respectively. The 

estimators were trained with the EEG signals from Session #1 to estimate the driving 

error of Session #2 (the blue traces). 

 

(a)                                (b) 

Figure 4-13: Estimated and actual driving error of Session #1 of Subject 2 using the 

EEG signals recorded by (a) the wet and (b) proposed electrodes, respectively. The 

estimators were trained with the EEG signals of Session #2 to estimate the driving 

error of Session #1 (the blue traces). 
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Table 4-2: Performance of testing patterns for electrode-skin-electrode impedance 

(ESEI) measurement 

Session 1 estimates Session 2 Session 2 estimates Session 1  
Wet sensor MEMS sensor Wet sensor MEMS sensor 

Subject 1 0.95 0.96 0.90 0.92 
Subject 2 0.96 0.96 0.85 0.88 
Subject 3 0.82 0.83 0.84 0.86 
Subject 4 0.92 0.94 0.81 0.83 
Subject 5 0.85 0.86 0.85 0.88 

 

As can be seen in Figures 4-10 to 4-13 and Table 4-2, the estimated driving 

errors based on EEG spectra matched well with the actual errors, consistent with our 

recent report in the same driving tasks using whole-head 32-channel EEG (Lin et al. 

2005). The results demonstrated the feasibility of accurately estimating subject task 

performance based on EEG signals collected from the frontal non-hairy sites. 

Furthermore, the estimation accuracy based on the EEG collected by the MEMS 

sensor is comparable to that based on the signals collected by conventional wet sensor, 

indicating the feasibility of using MEMS sensors that do not require skin preparation 

or conductive pastes to acquire high-quality EEG signals in operational environments. 

In Table 4-2, the correlation coefficient between the two time series (using 

Session 1 to estimate Session 2) is r = 0.96 of subject 1, r = 0.96 of subject 2, r = 0.83 

of subject 3, r = 0.94 of subject 4, and r = 0.86 of subject 5, in the testing session 2. 

The correlation coefficient between the two time series (using Session 2 to estimate 

Session 1) is r = 0.92 of subject 1, r = 0.88 of subject 2, r = 0.86 of subject 3, r = 0.83 

of subject 4, and r = 0.88 of subject 5, in the testing session 1. The average 

performance of the estimation system can be reached over 90% by using five 

self-stabilized MEMS sensors at forehead area. 
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4.4 Discussion 

The lack of availability of EEG monitoring system without use of conductive 

gels applied to the scalp has long thwarted both military and civilian applications of 

EEG monitoring in the workplace. In this chapter, MEMS sensors with microprobe 

array structure bring EEG monitoring to the operational environment without 

requiring scalp gel or other scalp preparation. Our experimental results demonstrated 

that the MEMS sensors have advantages in electrode/skin interface impedance, signal 

intensity and size over the conventional wet sensors. Furthermore, we find that alpha 

band (8-13 Hz) is highly correlated with drowsiness. It means alpha band will be a 

good indicator to detect drowsiness level. Hence, we employed the MEMS sensor to 

collect continuous EEG signals in realistic 1-hour sustained-attention experiments to 

test the feasibility of using MEMS sensors in operational environments. The 

EEG-based drowsiness estimation system consists of the MEMS sensor array, power 

spectrum estimation, PCA-based EEG signal processing, and multivariate linear 

regression to estimate driver’s drowsiness level in a VR-based dynamic driving 

simulator. The system continuously estimates subject drowsiness level (driving 

performance) based on the EEG signals measured by the MEMS sensors and 

parameters derived from the pilot data from the same subject. Our results showed that 

the MEMS sensors perform comparably to conventional wet sensors placed adjacently, 

suggesting the practical uses of MEMS sensor in operational environments where skin 

preparation and messy conductive paste are not feasible or undesirable. 
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5. Portable Brain Computer Interface in Detecting 

Drowsiness 

5.1 Introduction 

The advance in sensor technology and information technology reduces the power 

consumption of the sensors and make the cost of production cheaper. These trends 

make it possible to embed sensors in different place or objects to measure a wide 

variety of physiological signals. A physiological signal monitoring system will be 

extremely useful in many areas if they are portable and capable of wirelessly 

monitoring target physiological signals and analyzing them in real time. Biomedical 

signal monitoring systems have been rapidly advanced with electronic and 

information technologies in recent years. EEG recordings are usually obtained by 

placing electrodes on the scalp with a conductive gel or paste, each of which is 

attached to a wire that is then connected to an external signal acquisition device. The 

tethering caused by this method of recording prohibits experiments in real operational 

environments. Furthermore, most of the existing EEG monitoring systems can only 

record the signals without the capability of automatic analysis. Recently, with the 

development of embedded system and signal processing technique, there is a tendency 

to apply the embedded system technique to brain computer interface (BCI). An 

EEG-based BCI provide a feasible and noninvasive way for the communication 

between the human brain and the computer (Kalcher et al., 1996; Guger et al., 2001; 

Cheng et al., 2002; Obermaier et al., 2001). Traditionally, the variations of brain 

waveforms are measured and analyzed by personal computers (PCs). Due to the 

inconvenience of PC-based BCI that limits the user’s mobility, portable and 

inexpensive BCI platform—small devices with long battery life that can be carried 

indoors or outdoors are desired (Bianchi et al., 2003). 
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There are some studies regarding the portable BCI devices (Gao et al., 2003; 

Edlinger et al., 2005; Whitchurch et al., 2002). Gao et al. (2003) used steady-state 

visual evoked potential (SSVEP) to control environmental device, such as TV, video 

tape recorders, or air-conditioners. A portable pocket PC-based BCI was developed 

by Edlinger et al. (2005). Whitchurch et al. (2002) developed a wireless system for 

long term EEG monitoring of absence epilepsy. Obeid et al. (2004) proposed a 

telemetry system for single unit recording. However, these systems mainly focused on 

the monitoring hardware but not on real-time analysis. Real-time embedded systems 

combined with wireless transmission have become a trend of developing diagnosis or 

homecare systems (Bianchi et al., 2003; Piccini et al., 2004) because they provide a 

platform to build sensing and inexpensive BCI systems. Many extended applications 

may be more practicable to implement on the newer platforms whenever the smaller 

and more powerful devices are developed. 

Therefore, we develop a real-time wireless embedded EEG-based BCI system 

that includes 4-channel physiological signal acquisition, wireless transmission, and a 

dual-core embedded system with multi-task scheduling in this chapter. The 

development of a portable and real-time BCI in the virtual-reality-based dynamic 

driving environment forms the base of investigating brain activities and cognitive 

state changes with kinesthetic stimuli such as on-line driver drowsiness detection and 

warning for performance enhancement, investigation of EEG activities of kinesthetic 

perception. The proposed system employs signal acquisition and amplification units 

to collect EEG signals and the wireless module for the transmission of the recorded 

data can overcome the problem of wiring. With the wireless modules, the subject can 

carry a light sensing module instead of wiring to the analysis system which provides 

the advantage of mobility. The function of the wireless transmission module is 

selectable between Bluetooth and a custom-made transmission radio frequency (RF) 
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mode depending on different applications and locations. Since the processing of the 

EEG data needs a large number of calculations, the computing power of the 

embedded system becomes critical when selecting a suitable embedded processor. 

Therefore, a dual-core processor integrating a DSP and an ARM (advanced RISC 

machine) processor was used in our embedded system. A multi-task scheduling 

mechanism was also implemented in the embedded system to enhance the real-time 

signal processing performance. The proposed structure makes it unique to other 

system designs in terms of its wireless transmission subsystem and dual-core 

embedded processors for convenient use and powerful computational capability. 

Finally, a real-time drowsiness detection method combined with an on-line warning 

feedback is implemented in the developed BCI system for demonstration. Many 

traffic accidents on highways are caused by drivers’ drowsiness. Our previous studies 

discovered that some features in human EEG signals are highly related to drowsiness 

level (Lin et al., 2005 and 2006) and they can be used for estimating driver 

drowsiness. After the on-line analysis of the EEG data by the multi-task scheduling 

embedded system, the warning device will be triggered when the drowsiness 

condition occurs. 

 

5.2 System Architecture 

The block diagram of the developed EEG-based BCI system is showed in Figure 

5-1, which includes five units: (1) signal acquisition and amplification unit, (2) 

wireless data transmission unit, (3) embedded signal processing unit, (4) host system 

for data storage and real-time display, and (5) warning device. 
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Figure 5-1: The block diagram of the proposed Brain Computer Interface 

 

The three-layer sensing module provides 4-ch biomedical signal acquisition, 

amplification and wireless transmission functions. The signal acquisition and 

amplification unit is placed on the top side of layer-1, and the 8-bit A/D converters are 

designed on the bottom side of layer-1. Layer-2 is the CPLD module that controls 

A/D and wireless modules. For wireless transmission, RF3100 module is arranged in 

layer-3, and the Bluetooth module is placed on the top side of layer-1. The size of the 

sensing module is 4.5cm×6.5cm×2.5cm, and the weight of the module with a Li-ion 

battery is 51g. The sensing module (including signal acquisition, amplification and 

wireless units) is designed to operate at 300mA with 3.7-V DC power supply and its 

power consumption is about 1.11W. The module can continuously operate for at least 

45 hours with a commercial 16000mA/h Li-ion battery. Besides, the EEG signal 

processing unit (OMAP 1510) and the host system (personal computer) is powered 

with AC. 
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5.2.1 Signal Acquisition and Amplification Unit 

The signal acquisition and amplification unit is applied to measure the EEG 

signal and to filter out the artifacts as shown in part (a) of Figure 5-2. The EEG 

amplifying circuit consists of a pre-amplifier (a differential amplifier) with the gain of 

100, an isolated amplifier to protect subject, a band-pass filter that was composed of a 

low-pass filter and a high-pass filter to reserve 1-100Hz signals, a differential 

amplifier which had the gain of 10 or 50 (that can be chosen by a switch). The gain of 

the pre-amplifier (100) is larger than the amplifier (a gain of 10) because of the EEG 

signal is in micro-Volt level, and thus larger amplification is needed before filtering. 

The capacity we used in the band-pass filter can compensate the DC-offset, thus there 

are no mechanism designed for the problem. The sensing module that carried by the 

subjects is designed to operate with a 3.7-Volt DC power supply and the DC voltage 

can be either supplied by a battery or AC power line. Therefore, a 60Hz notch filter is 

also included to eliminate the effect of the line noise in case we have to run the 

system with AC power. 
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Figure 5-2: The detail architecture of the Brain Computer Interface 

 

5.2.2 Wireless Data Transmission Unit 

Part (b) of Figure 5-2 shows the wireless data transmission unit which includes 

8-bit A/D converters (parallel output, sampling rate = 768 Hz, AD-7575, Analog 

Device, Inc.), a Complex Programmable Logic Device (CPLD) and wireless modules. 

The acquired signal is first converted from analog to digital, and then transmitted 

through the wireless modules. The ALTERA FLEX10K EPM 7128STC100-7 CPLD 

is employed to control the A/D converter and encode the data for the wireless 

modules. Two different transmission methods can be selected in the wireless module 
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of the designed BCI system according to the transmission distance in applications. 

Although Bluetooth module is most commonly used in medical/clinical settings where 

short-distance transmission is required, however, sometimes long-distance 

transmission is desirable in the settings. In addition to drivers’ drowsiness estimation, 

the system is expected to be applied in various fields such as home cares, clinical 

physiological signal monitoring, exercise training, etc. Thus, we also integrated a 

custom-made radio-frequency transmission module with longer operation range in the 

developed system. RF 3100/3105 (Ancher Technology, Inc.) module is a transparent 

module that integrates low transmission power and high transmission rate (76800 bps) 

designs. The comparison of Bluetooth and RF3100/3105 is shown in Table 5-1. 

 

Table 5-1: The Comparison of the Bluetooth and RF 3100/3105 

Mode Bluetooth RF 3100/3105 

Frequency Band 2.4GHz 915MHz 

Transmission Distance 10m 200-600m 

Transmission Direction Full-Duplex Half-Duplex 

Modulation Method 
Frequency Shift 

Keying 

Frequency Shift 

Keying 

Transmission Power 0dBm (1mW) 12dBm 

Interface UART、USB UART 

 

The transmission rate is set as 19200 bps only in our final design to prevent 

transmission error and it can still provide 295 Hz sampling rate for 4-ch signal 

transmission. This setting is quite enough for general EEG signal acquisition since the 

most concerned frequency band of EEG signals is during 1~60 Hz. The EEG signals 
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are recorded at the higher sampling rate to preserve the original signal as well as 

possible for various applications in addition to drowsiness estimation. Thus the 

signals are recorded at a higher sampling rate and down-sampled in the EEG signal 

analysis unit. 

 

5.2.3 Dual-core Processing Unit 

It is expected that the portable biomedical devices should provide more advanced 

functions such as real-time feedback to the users in addition to on-line monitoring. 

Therefore, more complex processing methods have been proposed for physiological 

analysis and they will produce more impacts if can be implemented in a real device or 

product. A dual-core processing unit is adopted as a platform that EEG signal 

processing methods as well as the intelligent technology can be implemented on it for 

different applications due to its powerful computation power. The operating core is 

Texas Instruments (TI) Open Multimedia Architecture Platform (OMAP) 1510, which 

is composed of an ARM925 processor and a TMS320C55x DSP processor. The DSP 

core was used to process EEG data and the ARM925 was used to communicate with 

other devices such as wireless transmission modules and TCP/IP network. The DSP 

Gateway is used as the cooperation structure for the communication between the two 

cores since these two cores have different functions as shown in part (c) of Figure 5-2. 

DSP gateway is the software that makes ARM core possible to use resource of 

DSP core by Application Program Interface (API), and works like a small real-time 

kernel which manages the resource and data flow in the DSP core. With this 

mechanism, the DSP processor is on only when the system needs to process the EEG 

data. The Linux operating system (OS) is built to manage the resource of ARM core 

(Kobayashi and Takahashi, 2003). The functions of ARM core can be divided into 

three parts: (1) wireless module control, (2) TCP/IP control, and (3) DSP gateway 
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driver. The ARM core was selected for these tasks due to its excellent interface 

control ability. The process flow and task distribution in the embedded system are 

shown in Figure 5-3. 

 

Figure 5-3: Software structure of the embedded system and the data processing flow 

 

There are two processing flows running at the same time including EEG data 

acquisition and communication and EEG signal processing. The data processing flows 

are described as follows. (1) After receiving EEG data from wireless device, Task A 

transmits the data to network. The EEG data are then stored in the shared memory. (2) 

After the EEG data are stored, Task B enables the DSP module and sends data to DSP. 

(3) After DSP receives the EEG data, DSP processes the data with Hanning Window 

and Short-Time FFT analysis. (4) After EEG analysis, DSP sends the result to ARM 

and ARM performs the other processes and saves the result to the share memory. (5)If 
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the driver drowsiness is detected through EEG analysis, the embedded system will 

send the triggering signal to the warning device via wireless transmission. 

Since the proposed BCI system is designed to work in real-time, the signal 

receiving task should continue while EEG signal is on processing. An embedded 

multi-task scheduling mechanism system is used to manage these tasks and to ensure 

the accurate sampling rate for EEG signal acquisition and data process/analysis in real 

time (Liu Jane, 2000). The tasks are divided into three types according to their 

working frequency: (1) Task A- wireless device and TCP/IP control; (2) Task B- call 

DSP task and transmit EEG data to IPBUF buffer; (3) Task C- receiving data from 

IPBUF buffer and further processing of the DSP processed data. The time series 

diagram of the multi-task scheduling system is shown in Figure 5-4. 

 
Figure 5-4: Time series diagram of multi-task scheduling mechanism 

 

The working frequency of buffer IPBUF data transmission is much smaller than 

the working frequency of wireless device and TCP/IP control. Thus we allowed the 

system continuously to receive signals from the wireless module and output to the 

display unit through TCP/IP. The system can decide when to process other tasks by 

itself. With the architecture, the ARM core will not only hold and wait but also keep 

transmitting data from the wireless module to the display unit when the DSP core is 

processing the EEG signals. Inter-process communication (IPC) is also an important 

issue for our scheduling system since the tasks in our system are not completely 
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independent. In our system, ARM-Linux was used to manage tasks. Linux provides 

three methods for IPC including: message queue, semaphore, and shared memory. 

Message queue and semaphore are not efficient enough for the proposed embedded 

system. Three modified communication methods are employed in the proposed BCI 

system for inter-process communication: (a) a novel synchronization mechanism, (b) 

arbitration method, and (c) sharing memory buffer (IPBUF) between processing cores. 

Traditionally, the synchronization procedure is enabled when two tasks are accessing 

one memory block at the same time. The memory is blocked when one task is writing 

or reading on it thus no other task can access to the memory. The synchronization 

procedure unlocks the blocked memory when the first task finishes writing/reading 

and then sends a signal to inform other waiting tasks. It’s obvious that the mechanism 

can largely decline the processing speed of the processor. A new synchronization 

mechanism is designed to deal with the simultaneous memory access by both 

receiving EEG data from EEG acquisition system (Task A) and sending EEG data to 

DSP (Task B). When task A is accessing the memory, Task B will be idle and waste 

some time in waiting. Therefore, we use two blocks of memory with the same size to 

reduce the waiting time. When Task A is storing EEG data on memory M1, Task B 

can get the EEG data from memory M2 at the same time. With the modified 

procedure, these two tasks can execute concurrently and reduce the waiting time 

caused by synchronization control. Although the method consumes double memory 

size to complete the procedure, the required extra memory is less than 4K bytes. 

Besides, we use arbitration flag register instead of semaphore due to that the speed of 

flag register based on shared memory is the fastest IPC method in Linux platform. In 

addition, using flag register can reduce the amount of memory needed because one 

declared variable can contain many flags. 
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5.2.4 Host System for Data Storage and Real-Time Display 

The structure of the host system is shown in part (d) of Figure 5-2. The host 

system has two functions including data storage and real-time EEG signal display. 

The data size of continuous EEG recordings is beyond the storage capacity of the 

embedded system. Thus, we have implemented a network file system to store EEG 

signals. Additionally, we built a graphic user interface (GUI) to show the bio-medical 

signals in real-time as shown in Figure 5-6 (c). The connection between the host 

system and the embedded system is TCP/IP protocol. 

 

5.2.5 Warning Device 

The warning device is combined in our system as shown in Figure 5-2 (e). Visual 

signal and audio signal can be presented to the BCI users as the feedback warning 

signals. The audio signals are more effective in our prior study for driver drowsiness 

warning since it is easier to detect audio signals than visual signals for the driver 

when he/she is drowsy. The efficiency of audio signals with different frequencies: 

500Hz, 1750Hz, and 3000 Hz were tested in the prior study and the audio signal of 

1750Hz achieves the best results. The triggering signals are sending from the 

dual-core EEG signal processing unit to the warning device through wireless 

transmission modules. The RF3100/3105 modules are half-duplex, which means the 

modules cannot transfer and receive signals at the same time. Since the signals are 

transmitted as packages, a package of warning signal can be transmitted in the time 

period between two packages of the acquired EEG signals for transmission. The time 

period between two packages might be too short for the reverse-direction transmission 

if the transmission frequency is set too high. To deal with the problem, the 

transmission frequency is set lower to leave some time duration for the data 

transmission from the other end. 
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5.3 Real-time Driver’s Drowsiness Detection and Warning 

With combining on-line EEG recording and wireless transmission ability, the 

proposed BCI system is designed for real-time physiological signal analysis. Thus a 

real-time drowsiness detection method combined with an on-line warning feedback is 

implemented in the developed BCI system for demonstration. A dynamic operating 

environment is also built up to test and verify the robustness of the BCI system. 

 

5.3.1 Experimental Design 

The virtual-reality (VR) based dynamic driving environment reported in chapter 

2 was used to investigate those changes on drivers’ cognitive states in long-hour 

driving tasks. However, the traditional wet electrode requires electrical gel to increase 

the conductivity between the electrode and the scalp. Thus it takes time for 

preparation and the subjects need to wash their hair after recording. For the 

convenience in practical applications, we place five dry electrodes (Chiou et al., 2006) 

on the driver’s forehead and the distance between two near electrodes is 1.5 cm to 

acquire the EEG signals for the BCI system. The EEG features related to alertness 

changes can be extracted from EEG signals acquired by the electrodes at the forehead 

according to our experiments. Therefore, placing electrode array on the forehead is a 

feasible and convenient strategy for drivers’ drowsiness estimation. Six dry electrodes 

are used to acquire EEG signals from the driver including five electrodes placed on 

the subject’s forehead and one placed behind the subject’s left ear. The five electrodes 

we placed on subject’s forehead including a common ground electrode and 4 EEG 

electrodes. The ground electrode is directly connected to the ground of power supply. 

The EEG signals we used in further analysis are measured between the 4 EEG 

electrodes and the reference electrode. The dry electrodes and the sensing module can 

be embedded in a hat as shown in Figure 5-1. The combination of the dry electrodes 
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and the sensing module has gradually improved the convenience and the future 

applicability of the developed system. 

 

5.3.2 Data Processing Flow and Analyzing System Design 

The analysis procedure implemented in the dual-core signal processing unit is 

shown in Figure 5-5. The acquired EEG signals are first down-sampled to 64 Hz to 

reduce the calculation loading of the system and a 64-points Hanning-window is then 

applied to smooth the signals. The short-time Fourier transform is used to extract the 

time-frequency characteristics of the EEG signals and a 90-second moving average 

filter is applied to eliminate the noise.  

 

Figure 5-5: Flowchart of the proposed EEG signal analysis procedure 

 

We use principal component analysis (PCA) on the EEG power spectrum to 

reduce the data dimension and the computational loading of the embedded system. 

The EEG features (dimension = 20) extracted by PCA are then fed into a linear 

regression model to estimate the driver’s drowsiness levels. The EEG signals 

collected in the first session were used to construct his/her drowsiness estimation 

model including the PCA method through off-line training by the PC. The model 
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including the PCA matrix is then load into OMAP 1510 to process and analysis the 

subject’s EEG signals in the other days in on-line and real-time for testing. 

The main tasks of the embedded processor OMAP1510 was to process EEG data, 

wireless receiver control, and TCP/IP control. Thus we distributed these tasks into 

DSP core and ARM core to retain satisfied performance. According to the 

characteristics of the processors, the calculation of driving error estimation needed to 

process a long period of EEG data, so it was implemented in ARM processor. On the 

other hand, the Hanning windowing and short-time FFT needs heavy computation and 

thus implemented in the DSP core to balance the computation load. The remaining 

processes were implemented in ARM, because they need relatively less computations. 

 

5.4 Experimental Results and Discussion 

The feasibility of the proposed BCI system is tested in three aspects. First, we 

test the basic functions including bio-medical signal amplification/acquisition and 

wireless transmission of the system. The embedded multi-task scheduling system will 

then be tested and compared with the system without scheduling. Finally, the 

accuracy of the embedded drowsiness monitoring system will be evaluated. 

 

5.4.1 Test of the Basic Functions 

The basic functions of the developed BCI system should be tested before any 

further applications. The sub-systems are designed in modules to make the system 

more flexible for different applications. Thus the test of the system can be divided 

into two phases, the sub-system testing and the overall-system testing. The 

acquisition/amplifying unit is tested for its dependability by three steps. First, a sin 

wave with frequency of 5 Hz and 30uV vibration amplitude generated by the EEG 

simulator is used for simulation test. Then EEG signals of eye blinking were test 
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because the amplitude of the signals will be larger and it is easy to be recognized from 

acquired signal. Finally, we want to measure α wave to confirm the signal we 

measured is real EEG signal. When subjects take rest and close their eyes, we can 

continuously measure α wave which with frequency band between 8-12 Hz. Figure 

5-6 (b) shows the α wave measured by the developed system. 

 

Figure 5-6: Testing results of the acquisition/amplifying unit and the developed GUI 

monitoring interface 

 

After tested and verified the subsystems, we test and verify the whole system 

online. In order to show the processed results of our system, we developed a Java 

graphic user interface (GUI) to receive the processed results of the embedded system 

by TCP/IP network and plot them on the display screen as shown in Figure 5-6 (c). 

The left two frames are two-channel EEG raw data (Frame A, B), and the right frames 

show the estimated drowsiness levels (Frame C, D). 

 

5.4.2 Embedded Multi-Task Scheduling 

The multi-task scheduling mechanism was developed to ensure the accurate 

sampling rate for EEG signal acquisition and data analysis in real time. In order to test 

the performance of the embedded multi-task scheduling system, two-channel EEG 

(a) 

(b) (c) 
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data with sampling rate of 65Hz were fed to the BCI system. The time consumptions 

of BCI system executing 1000 cycles of signal processing procedure in DSP with and 

without embedded multi-task scheduling are compared and the test results are shown 

in Table 5-2. It takes 2425 seconds to complete the 1000 cycles without multi-task 

scheduling, whereas the system with multi-task scheduling needs only 1933 seconds.  

 

Table 5-2: The Comparison of the Performance 

Considering the time of data 

receiving 

Without considering the time of 

data receiving Execution 

Time 

(second) 

Without 

multi-task 

scheduling 

With 

multi-task 

scheduling 

Without 

multi-task 

scheduling 

With 

multi-task 

scheduling 

1000 cycles 2425 1933 587 95 

One cycle 2.425 1.933 0.587 0.095 

 

It is noted that the execution time is mainly used in receiving data. It takes 1838 

seconds for the system to receive data which means it takes only 95 and 587 seconds 

for 1000-cycle data processing with and without multi-task scheduling, respectively. 

In average, it takes 1.933 second and 2.425 seconds to complete one data processing 

cycle (the drowsiness level in 2 seconds) with and without multi-task scheduling, 

respectively. If the time cost of data reception is not considered, the executing time 

will be reduced from 0.6 second to 0.1 second with embedded multi-task scheduling. 

As a result, the embedded multi-task scheduling system is useful to reduce the 

execution time and ensure the correctness of the received data. It takes about 1.933 
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second to calculate a value of driving error. The result is shown in Frame C of Figure 

5-6 (c) as a peak. The time interval between two peaks is about 2 seconds. 

 

5.4.3 Drowsiness Detection 

In order to test and verify the feasibility of applying the developed embossed 

BCI system into practical applications, the drowsiness detection method proposed in 

chapter 4 was implemented in the BCI system for on-line testing. Two different 

sessions of EEG signals are acquired in different day for each subject. The EEG data 

collected in the 1st session is used as training data to construct a driving error 

estimating system. The EEG data collected from the 2nd session is then applied to the 

constructed estimating system to predict the drowsiness levels of the driver. The result 

is shown in Frame C of Figure 5-6 (c) as a peak. The time interval between two peaks 

is about 2 seconds. The amplitude of the peak represents the estimated driving error 

calculated by the drowsiness estimating system. The subject is considered drowsy if 

the value of driving error is bigger than a threshold and the warning device will be 

triggered. The correlation coefficient between the predicted drowsiness levels and the 

actual driving error acquired in the second session is calculated as an index of the 

system performance. 

The training and testing results of the drowsiness level estimation for subject 5 is 

shown in Figure 5-7. The red dash line in Figure 5-7 indicates the drowsiness level 

estimated by the BCI system and the blue solid line is the acquired driving error. The 

comparison of the estimating performance for 5 individual subjects is given in Table 

5-3. The average correlation between the estimated and the acquired data among 5 

subjects can reach to 75%. 
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(a) Training result                     (b) Testing result 

Figure 5-7: The training and testing results of the drowsiness level estimation 

implemented on the embedded BCI system. 

 

Table 5-3. The comparisons of the Estimation Performance 

Subject 1 2 3 4 5 Average 

Training 97% 96% 86% 95% 93% 92.6% 

Testing 77% 85% 78% 72% 81% 78.6% 

 

5.4.4 Comparisons and Discussions 

The specifications of the proposed BCI system and the other existing systems are 

concluded in Table 5-4. Gao et al. (2003) proposed an environmental controller using 

a BCI technique based on steady-state visual evoked potential and the system consists 

of a stimulator, a digital signal processor, and a trainable infrared sensing-controller. 

They applied a FFT and a feature extraction mechanism in DSP to control the electric 

apparatus. The Graz-brain-computer interface (BCI) (Edlinger et al., 2005) is a 

cue-based system using the imagery of motor action as the appropriate mental task. 

Whitchurch et al. (2002) devised a wireless monitoring system based on Bluetooth to 

enable the physician to monitor the EEG when the patient resumes his/her normal 
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activity for the reason that the transmission band (2.4GHz) is allowed in hospital. 

Obeid et al. (2003) developed a 16 channel sensing telemetry system to facilitate 

multichannel single unit recordings from freely moving test subjects. The 16-channel 

signals derived from implanted neural electrodes were transmitted through IEEE 

802.11b. It only can work for 45 minutes without power supply due to large power 

consumption. 

 

Table 5-4: Comparison of Brain Computer Interface Systems 

BCI System 
Gao et al. 

(2003) 
Whitchurch 
et al. (2002)

Obeid et al. 
(2003) 

Edlinger et 
al., 2005 

Our BCI 
System 

Signal EEG EEG Single unit
EEG/ECG/

EOG 
EEG/EMG
ECG/EOG

Channels 2 6 16 8 5 
Transmission 

Method 
Wire Bluetooth 

WLAN 
IEEE802.11b

Wire 
Bluetooth/ 

RF 
Resolution of 

A/D 
12 12 8 16 8 

Sampling 
Rate (Hz) 

200 -- 244 256 457 

Gain -- 10000 500/1000 -- 1000/5000 

Filter 
4~35 Hz 
band pass 

50 Hz notch 

60 Hz 
low pass 

211 Hz 
high-pass 

-- 
1~100Hz 
band pass 

60 Hz notch
Signal 

Processing 
DSP Laptop 

66MHz AMD 

Processor 
PDA 

Dual-Core 
DSP 

Analysis 
Procedures 

FFT and 
Feature 
Extraction 

-- -- FFT 
FFT/PCA 
Estimation 
Model 

 

Regarding to the proposed system, we used two different wireless transmission 

modules to ensure the flexibility of the proposed BCI system since the transmission 

distance of Bluetooth can only cover 10 meters while the RF module can cover more 
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than 200 meters. Users can easily switch between the two wireless modules 

depending on different application environments. Main procedures were implemented 

in the signal processing unit and the real-time capability is also guaranteed due to the 

developed embedded multi-task scheduling mechanism. It can also provide on-line 

warning signals when the abnormal state of uses such as drowsiness in driving 

appears. 
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6. Conclusions 

EEG has been widely used for both clinical diagnosis and fundamental cognitive 

neuroscience because its low cost, high temporal resolution and need for the subject to 

hold still is less stringent than other brain imaging modalities such as functional 

magnetic resonance imaging (fMRI) and Magnetoencephalogram (MEG). However, 

compared to other modalities, EEG has long been considered an imaging modality 

with relatively high noise and low spatial resolution. These technical and 

methodological issues have limited researchers to explore the applications of EEG in 

operational environments. Research at our Center has shown EEG to be, by contrast, a 

rich source of information about ongoing cortical brain dynamics, both local, and 

distributed, with both millisecond-scale time resolution and a surprising degree of 

spatial resolution and complexity. The driving force in this dramatic revaluation of the 

perceived value of EEG imaging is the development and application of more adequate 

computational methods and models in EEG interpretation. We believe the recent 

advances in electronics and signal-processing methods have made it the applications 

of EEG monitoring feasible in the workplace. My research has been to develop 

hardware and software to push the envelope of today's applications of EEG to 

monitoring brain dynamics of participants performing ordinary tasks in the 

workplace.  

To this end, in this study, we have constructed a VR-based dynamic driving 

environment for BCI research by providing subjects kinesthetic stimuli along with  

the normal visual and/or auditory stimuli. The VR platform incorporates the 

technologies of information science, mechanism, and control. This Steward Platform 

provides the user realistic sensations (including vision and motion) of driving and 

allows subjects to control the mounted vehicle through a steering wheel. This setup 
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allows us to study high-temporal-resolution event-related brain dynamics following 

various driving events. We applied ICA to separate the distinct EEG contributions 

arising from different brain processes to explore their individual and joint 

event-related dynamics following Stop-Go and deviation events through ERP 

differences and time-frequency analysis, ERSP. Our results showed that kinesthetic 

stimulus during driving induce (1) Mu blocking in the somato-motor components, and 

(2) Sharp negative ERP in central midline components. The mu blocking appeared to 

be induced by two types of stimuli. When the subjects received kinesthetic inputs, 

their alpha activities in the left and right somato-motor areas were significantly 

reduced (blocked). After a short period, the subjects made an adjustment to balance 

them, inducing a secondary mu blocking. The alpha power variation induced by the 

motion of the vehicle might interfere with the estimation of the driving cognitive state 

based on the fluctuations in the alpha power spectra. 

Furthermore, negative ERP was found in central midline components following 

kinesthetic stimulus onsets. These results demonstrate that multiple cortical EEG 

sources respond to driving events distinctively in the dynamic environment, which 

could not be found in regular static laboratories because a static driving simulator 

could not induce some cognitive responses that are actively involved in real driving. 

We also reported that the absence of driving motion will increase the reaction time to 

external perturbations These EEG correlates of kinesthetic stimuli might have 

profound implications for EEG studies. Our results suggested we might need to 

re-consider the applicability of the findings from so-called ‘well managed’ studies 

from regular EEG laboratories to the EEG dynamics in the workplace.   

In a parallel effort to push the envelope of today's applications of EEG to the 

workplace, we had successfully developed the wireless embedded BCI system with 

real-time bio-signals processing ability. The system consists of 4-channel 



 75

self-stabilized MEMS sensors, signal acquisition and amplification circuits, a 

wireless transmission unit, a dual-core signal processing unit, a display and 

monitoring unit, and a warning device for assessing human physiological and mental 

information in operational environments. The development of a portable and 

real-time BCI in the virtual-reality-based dynamic driving environment forms the 

base of next-generation neuro-imaging modality – mobile high-definition 

high-definition electromagnetic brain imaging that imaging of participants actively 

performing ordinary tasks in natural body positions and situations within a 

real-world environment.  

EEG signals were first acquired by signal acquisition and amplification unit, and 

then transmitted from wireless data transmitter to wireless data receiver. The 

wirelessly transmitted EEG signals were processed by the data processing unit and the 

processed results were then transmitted to the sensing system for data storage, 

real-time display or triggering the warning devices by TCP/IP. A multi-task 

scheduling procedure was employed in the dual-core signal processing unit to 

enhance the efficiency of the embedded system and ensure that the BCI system 

properly works in real-time. A real-time drowsiness detection method combined with 

an on-line warning feedback was also implemented in the mobile BCI system for 

demonstration. This research incorporates the several important technologies: (1) a 

sensing module for signal acquisition, amplification and wireless transmission, (2) a 

dual-core embedded system for real-time EEG signal processing, and (3) an automatic 

bio-feedback loop for on-line warning. By combining these technologies, the portable 

BCI platform has enough flexibility to be applied and adapted to various applications. 

Our test results showed that self-stabilized MEMS sensors with microprobe array 

structure can be used to acquire high-fidelity EEG monitoring in a realistic 

environment without requiring scalp gel or other scalp preparation. Furthermore, we 
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have successfully applied this real-time prosthetic system to collect continuous EEG 

signals in realistic 1-hour sustained-attention experiments to test the feasibility of 

using self-stabilized MEMS sensors in kinesthetic VR-based driving environment. 

The system could continuously estimate the drowsiness level of the subjects (with   

average estimation performance over 90%) by using five self-stabilized MEMS 

sensors placed at the forehead. 

We plan to further optimize the current portable BCI system and test it in real 

environments. Future directions include: Ultra-low power circuits for portability and 

optimized computational methods to real-time EEG signal processing. We will 

implement the BCI in a small unit consisting of advanced EEG amplifiers and 

software programs that implement our cognitive-state monitoring and transient 

brain-response detection techniques. During normal operation, the system will 

estimate a brain-state in real time and will deliver information on significant 

brain-state changes to the operator in the form of auditory and visual feedback 

according to the operators' cognitive state and response lapses to critical situations. It 

will also optimize the information presentation rates and timing according to the 

operators’ cognitive states. 

In conclusion, this dissertation describes a design, development and testing of a 

neural human machine interface/interaction that allows assessment of brain activities 

of participants actively performing ordinary tasks in natural body positions and 

situations within a real operational environment. The development of the portable and 

real-time BCI system can acquire and analyze electroencephalogram (EEG) signals in 

real-time to monitor human physiological signals as well as cognitive states and, in 

turn, provide feedbacks to the users when needed. More importantly, this dissertation 

also discuss the implications of this innovative mobile wireless brain imaging 

technology in neuroscience and neuro-technology, through three sample studies: (1) 
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cognitive-state monitoring of participants performing realistic driving tasks in the 

virtual-reality-based dynamic driving simulator; (2) the efficacy and neural correlates 

of auditory feedback delivered to participants to maintain participants attention and 

alertness; (3) the neural correlates of kinesthetic sensation and perception in the 

dynamic driving simulator.  

Results of these studies provide many new insights into the understanding of 

complex brain functions of participants performing ordinary/routine tasks in a 

minimum constrained environment. These results also allow a better appreciation of 

the limitations of normal human performance in repetitive task environments, and 

may allow more detailed study of changes in cognitive dynamics in brain-damaged, 

diseased, or genetically abnormal individuals. Furthermore, these findings might be 

difficult, if ever possible, to obtain in a standard EEG laboratory where participants 

are asked to limit their eye blinks, teeth clinching, head/ body movements. We, thus, 

believe this work opens a new chapter in neuro-cognitive human-machine 

interface/interaction. It will widen the fundamental biomedical and brain science 

research, and spawns new industry opportunities to provide the solutions of real-life 

problems. 
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