Chapter 2

System Model

Fig.2-1: Transmitter

Notations in Fig.2-1 and Fig.2-2:

b : the information bit sequence

- $\tilde{\mathbf{b}}$: the bit sequence after inserting pilot bits
- **c** : the coded bit sequence
- \tilde{c} : the bit sequence after puncturing
- c': the interleaved bit sequence of $\ { ilde c}$
- \mathbf{x} : the transmitted symbol vector

y : the received channel output symbol vector

 $L_{D,M}$: the a posteriori log likelihood ratio of \mathbf{c}' at the output of the demodulator $L_{A,M}$: the a priori log likelihood ratio of \mathbf{c}' going into the demodulator $L_{E,M}$: the extrinsic log likelihood ratio of \mathbf{c}' at the output of the demodulator $L_{D,Dec}$: the a posteriori log likelihood ratio of $\tilde{\mathbf{c}}$ going into the puncturer $L_{A,Dec}$: the a priori log likelihood ratio of $\tilde{\mathbf{c}}$ at the output of the puncturer $L_{E,Dec}$: the extrinsic log likelihood ratio of $\tilde{\mathbf{c}}$ at the output of the puncturer

We consider a bit-interleaved coded modulation with iterative decoding (BICM-ID) system . In the transmitter, we add pilot bits into to information bits before entering the encoder. After encoding, puncturing scheme is applied. The details about pilot-insertion and puncturing are discussed in the following chapters.

The *ith* channel output y_i under AWGN channel is given by

$$y_i = x_i + n_i$$
, $i = 0, 1, ..., N_s - 1$ (2.1)

Where n_i is Gaussian distributed with zero mean and variance $\sigma_n^2 = N_0/2$ and N_s is the number of the transmitted symbols. In this chapter, we will introduce the basic knowledge of a BICM-ID system.

2.1 Encoder

The encoder we use here is a convolutional encoder, but it can be another encoder such as a Turbo code encoder or a low-density-parity-check (LDPC) encoder. We use a code rate 1/2 convolutional code of memory 6, and the industry-standard generator polynomials are $(g_0, g_1) = (133_8, 171_8)$, as shown in Fig.2-3.

Fig. 2-3: The convolutional encoder (K=7, R=1/2)

2.2 Bit interleaving

In order to avoid burst errors, the interleaving technique is utilized . In the BICM system , coded and punctured bits are interleaved through a bit-level interleaver before mapping to symbols. There are many different designs on the interleavers. In this thesis, we choose the S-random interleaver [12], [13].

An S-random interleaver guarantees that the two bits within a distance S_1 at the interleaver input can not be mapped to a distance less than S_2 apart at the interleaver output. Usually $S_1=S_2=S_{sq}$ is chosen. Considering the two inputs i and j , such that

$$0 < \left| i - j \right| < S_{sq} \tag{2.2}$$

then the design guarantees that

$$\left|\Pi\left(i\right) - \Pi\left(j\right)\right| > S_{sq} \tag{2.3}$$

Equations (2.2) and (2.3) are basic criterions of the S-random interleaver. There are other modifications of the S-random interleaver that may bound the sum of the length of the error events at the input and at the output of the interleaver [14]. In this thesis, if the size of one frame is large enough, we let S_{sq} be larger than 5 times of the constraint length of the outer code.

2.3 Signal mapping

The interleaved bits should be modulated by BPSK, QPSK, 16QAM and 64QAM with the well known labeling methods, such as Gray, Anti-Gray and Natural. In the chapter 6, we will design other bit-mappings suited for the outer codes that we choose to achieve higher performance.

In this thesis, we focus on the constellations of 16QAM and 64QAM with Gray [15], Anti-Gray and Natural labeling , as shown in the Fig.2-4 to Fig.2-8.

Fig. 2-4: 16QAM, Anti-Gray labeling

		(2	b_1b_2		
	1000	1100	0100	0000		
	• 8	• 12	4	• 0		
	1001	1101	0101	0001		
	• 9	• 13	• 5	•	Ŧ	
-	1011	1111	0111	0011	- 1	
	• 11	• 15	• 7	• 3		
	1010	1110	0110	0010		
	• 10	• 14	• 6	• 2		

Fig. 2-5: 16QAM, Gray labeling

100000 101000 111000 110000 01000 011000 001000	000000
• 40 56 48 E 16 24 8	• 0
100001 101001 111001 110001 010001 011001 001001	000001
• 33 41 57 49 176 25 9	• 1
100011 101011 111011 110011 010011 011011	000011
• • • • • • • • • • • • • • • • • • •	• 3
100010 101010 111010 110010 010010 011010 001010	000010
• • • • • • • • • • • • • • • • • • •	• 2
100110 101110 111110 110110 010110 011110 001110	I
38 46 62 54 22 30 14	• 6
100111 101111 111111 110111 0101111 011111 001111	000111
39 47 63 55 23 31 15	• 7
100101 101101 111101 110101 010101 011101 001101	000101
37 45 61 53 21 29 13	• 5
100100 101100 111100 110100 010100 011100 001100	000100
36 44 60 52 20 28 12	• 4

Fig. 2-6: 64QAM, Gray labeling

		(2	$b_1 b_2 b_3 b_4$
	1100 • 12	1000 • 8	0100 • 4	0000 • 0
	1101 • 13	1001 • 9	0101 • 5	0001 •
_	1110 • 14	1010 • 10	0110 • 6	0010 I 0010 2
	1111 • 15	1011 • 11	0111 • 7	0011 • 3

Fig. 2-7: 16QAM, Natural labeling

	Q				$b_1 b_2 b_3 b_4 b_5 b_6$			
111000	110000	101000	100000	011000	010000	001000	000000	
• 56	• 48	• 40	32	E 24	• 16	• 8	• 0	
111001	110001	101001	100001	011001	010001	001001	000001	
• 57	• 49	• 41	• 33	1250	17	• 9	• 1	
111010	110010	101010	100010	011010	010010	001010	000010	
• 58	• 50	• 42	• 34	• 26	• 18	• 10	• 2	
111011	110011	101011	100011	011011	010011	001011	000011	
• 59	• 51	• 43	• 35	• 27	• 19	• 11	• 3	Ŧ
111100	110100	101100	100100	011100	010100	001100	000100	- 1
• 60	• 52	• 44	• 36	• 28	• 20	• 12	• 4	
111101	110101	101101	100101	011101	010101	001101	000101	
• 61	• 53	• 45	• 37	29	• 21	• 13	• 5	
111110	110110	101110	100110	011110	010110	001110	000110	
• 62	• 54	• 46	• 38	• 30	• 22	• 14	• 6	
111111	110111	101111	100111	011111	010111	001111	000111	
• 63	• 55	• 47	• 39	• 31	• 23	• 15	• 7	

Fig. 2-8: 64QAM, Natural labeling